
Accumulators with Applications to
Anonymity-Preserving

Foteini Baldimtsi1, Jan Camenisch2, Maria Dubovitskaya2, Anna Lysyanskaya3,
Leonid Reyzin4, Kai Samelin2,5, and Sophia Yakoubov4

1 George Mason University, Fairfax, VA, USA
foteini@gmu.edu

2 IBM Research – Zurich, Rüschlikon, Switzerland
{jca, mdu, ksa}@zurich.ibm.com

3 Brown University, Providence, RI, USA
anna@cs.brown.edu

4 Boston University, Boston, MA, USA
{reyzin, sonka}@bu.edu

5 TU Darmstadt, Darmstadt, Germany

Abstract. Membership revocation is essential for cryptographic applications, from traditional PKIs to
group signatures and anonymous credentials. Of the various solutions for the revocation problem that
have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new,
RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with
efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction
of Braavos we use a modular approach: we show how to build an accumulator with better functionality
and security from accumulators with fewer features and weaker security guarantees. We then describe an
anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC
can be added to any anonymous system, such as anonymous credentials or group signatures, in order to
equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix,
the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of
practical revocation for anonymous credential systems.

Table of Contents

Accumulators with Applications to Anonymity-Preserving . 1
Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya, Leonid Reyzin, Kai
Samelin, and Sophia Yakoubov

1 Introduction . 3
1.1 Our Contributions . 3

2 Definitions: A Modular View of Accumulator Functionality . 5
2.1 Accumulator Algorithms . 6
2.2 Accumulator Security Properties . 7

3 Modular Accumulator Constructions . 8
3.1 Leveraging Accumulators with Different Functionalities . 8
3.2 Leveraging Less Secure Accumulators . 10

4 Braavos: A Communication-Optimal Adaptively Sound Dynamic Accumulator . 11
4.1 CL-RSA-B: A Communication-Optimal Non-Adaptively Sound Dynamic Accumulator 13
4.2 Braavos Soundness . 16
4.3 Comparison with Other Constructions . 16
4.4 Adding Zero Knowledge to Braavos . 18

5 Anonymous Revocation from Accumulators . 18
5.1 Anonymous Revocation Component (ARC) with Accumulators . 19
5.2 Revocation for Anonymous Credentials Using Braavos: Performance Evaluation 22

6 Acknowledgements . 25
A Lower Bound on Total Communication in Negative Accumulators . 27
B BraavosB: Another Communication-Optimal Adaptively Sound Dynamic Accumulator 27

B.1 Range-RSA: A Dynamic Negative Accumulator . 28
B.2 Range-RSA Accumulator Algorithms . 30
B.3 BraavosB Soundness . 30
B.4 Adding Zero Knowledge to BraavosB . 30

C Security of ARC . 33
C.1 Recalling Security Definitions by Camenisch et al. 33
C.2 Security Definitions for ARC with Join . 34

3

1 Introduction

Authentication of users is vital to most of the electronic systems we use today. It is usually achieved by giving
the user a token, or credential, that the user must present to prove that she has permission to access a service.
An important challenge that such systems face is how to revoke a user’s privileges in case she misbehaves or her
credential gets compromised.

Achieving revocation in practice has been shown to be a very complex problem. The two obvious approaches
are whitelists, where a user is valid if her public key or identity is on a whitelist, and blacklists, where anyone not
on the blacklist can be presumed to be a valid user. Both of these solutions are problematic, because the party
that manages revocation (hereafter called the revocation authority) needs to distribute large lists and update
them continuously.

In anonymous settings, where user authentication must not reveal the user’s identity, things get even more
complicated. In order for a user to show that she hasn’t been revoked, she must prove that she is on the whitelist
(or is not on the blacklist) in zero knowledge, which requires work linear in the size of the list. Having to perform
linear work in the number of whitelisted (or blacklisted) users is far from practical; thus, we look into solutions
where the users and verifiers in charge of authentication only have to do a constant amount of work.

One of the most promising solutions to revocation in anonymous settings has been the use of cryptographic
accumulators [11,33,9]. An accumulator is a binding (but not necessarily hiding) commitment to a set S of
elements. This set can change over time, as elements are added and deleted; accumulators that support both
additions and deletions are called dynamic. Known dynamic accumulators are based on Merkle hash trees [7],
variants of RSA [3,11,26], and bilinear maps [33,18,1]. Upon the addition of a new element x to the set, a witness
w, or proof of membership, is generated for the element. This witness is later used, in conjunction with the
accumulator value, to demonstrate that the element is, in fact, in the set. The witnesses may evolve as the
accumulated set changes.

A dynamic accumulator can be used as an anonymous revocation mechanism [11,9]. The accumulator contains
the whitelist S of users. The revocation authority then only needs to maintain and distribute a short accumulator
value, not an entire large whitelist. When a user is issued a credential, she is given a membership witness w
for her element x. While she hasn’t been revoked, she can prove in zero-knowledge that her x is in the current
accumulator, i.e., that she knows (x,w) such that x corresponds to her identity and w is a valid membership
witness for x. The complexity of this proof is independent of the numbers of added and revoked users. When the
user is revoked, x is removed from the accumulator.

However, there are two downsides to using existing accumulator constructions for revocation in this way.
The first is the high communication cost. Each user has to update her membership witness every time the
accumulator value changes, which typically happens with every addition or deletion. In order to give the users
the information they need for these updates, the revocation authority has to send a broadcast message to all
users. The frequency of these broadcasts is unattractive, especially when constrained devices are used.

The second downside is linkability: users who receive these broadcast messages might be able to link
revocations of their fellow users with the corresponding additions. That is, when a revocation occurs, the
associated broadcast message might contain information related to a previous addition broadcast message,
allowing recipients to determine that the revoked user is the same user who was added at a certain previous
point. This join-revoke linkability is a breach in anonymity.

1.1 Our Contributions

In this work, we focus on building accumulators that avoid the two downsides described above, namely those
of communication overhead and join-revoke linkability. Our contributions are threefold. First, we provide a
new modular definitional view of accumulators. Second, we use this modular view to build a new dynamic
accumulator with optimal communication cost and join-revoke unlinkability. Finally, we explain how our proposed
accumulator can be used to instantiate an anonymous revocation component (ARC) and showcase that our
scheme can provide efficient revocation for anonymous credential systems by implementing it for Idemix [16]
(IBM’s anonymous credential system).

Compositional Accumulator Framework. In Section 2, we give a systematic view of accumulator properties,
describing them in a modular way. In Section 3, we leverage our modular view to show simple ways of obtaining
new accumulators with more functionality (adding and deleting, proving membership and non-membership) and

4

better security by combining accumulators that possess only some of the properties. This view of accumulators
also sheds light on trade-offs between functionality and efficiency.

Constructions. Utilizing our compositional framework, in Section 4 and Appendix B we introduce two new
dynamic accumulators which we call Braavos and BraavosB.6 All previously known dynamic accumulators with
strong security guarantees require that the accumulator and each membership witness be updated both every
time a new element is added to the accumulator, and every time an element is deleted from the accumulator. In
Braavos and BraavosB, the accumulator value and membership witnesses are updated only when an element is
deleted, achieving optimal communication complexity. In particular, this means that the accumulator manager
does not need to broadcast any information to the witness holders when a new element addition occurs, making it
practical to support a high element addition rate. Because element addition does not involve the communication
of any information to other witness holders, Braavos and BraavosB also ensure that a revocation event is not
linkable to a prior addition event, achieving join-revoke unlinkability.

Our Braavos accumulator builds upon the dynamic CL-RSA-B accumulator, which was informally introduced
as a brief remark by Camenisch and Lysyanskaya [11]. CL-RSA-B has the communication optimality of Braavos,
but has a weaker security guarantee which makes it usable only for the accumulation of random elements.
CL-RSA-B is only secure against non-adaptive attacks, as described in Section 2.2.7 Braavos uses CL-RSA-B to
accumulate random elements, and uses digital signatures to bind the random elements to the actual elements
to be accumulated. Because neither CL-RSA-B nor digital signatures require witness updates upon additions,
Braavos does not either.

BraavosB builds upon another new accumulator which we call range-RSA. Range-RSA is dynamic, and
supports proofs of non-membership (that is, it is negative, as defined in Section 2; we show that it can be
modified slightly to be universal, i.e., to also support proofs of membership). BraavosB uses digital signatures
to accumulate added elements, and range-RSA to accumulate deleted elements. So, to prove the membership
of x in BraavosB one must prove possession of a digital signature on x, and non-membership in range-RSA.
The non-membership witness generation in range-RSA is more efficient than in any existing negative dynamic
accumulator, which makes it uniquely suitable for contexts where non-membership witnesses are generated at a
high rate. The efficiency of non-membership witness generation in range-RSA makes it possible for BraavosB to
support high rates of element addition.

While the asymptotic runtime and communication complexities of Braavos and BraavosB are equally good,
in practice Braavos has several advantages over BraavosB. These include more efficient zero knowledge proofs
of membership, smaller accumulator manager storage requirements, and the fact that in Braavos the update
message associated with a deletion does not reveal the deleted element.

Application and Implementation. In Section 5, we describe an anonymous revocation component (ARC) which uses
accumulators to enable revocation in a variety of existing (as well as new) anonymous schemes. Our definition
of the ARC is an extension of the revocation component described by Camenisch et. al [10] that allows the
addition of users after the initial setup, as well as their re-addition after they have been revoked. When Braavos
is the accumulator used to instantiate an ARC, members need to update their witnesses only when another
member is revoked (but not when another member is added), which is key since the number of revocations in a
typical system is much lower than the number of additions. Consider, for instance, PKI certificates. Around 8%
of unexpired certificates are revoked [29]. This number rose from 1% in May 2014 because of the Heartbleed
vulnerability, and is expected to eventually return to 1%. However, it is vital to be able to revoke this 1%, since
the compromised keys can be used to inflict a lot of damage. Moreover, this has to be done without flooding
certificate holders with instructions to update their witnesses roughly 100 times more frequently than necessary.

In Section 5.2, we show how one can directly plug an ARC with Braavos into the leading implementation of
anonymous credentials (idemix) [16]) with no modifications on either side. This compatibility with an existing
working system resolves, for the first time, the problem of practical revocation for anonymous credentials.

We measure the performance of the resulting system, and demonstrate that, for realistic credential presentation
policies, Braavos adds only a ≈10% runtime overhead, both for generation and for verification. In more detail,
even for reasonably high security parameter sizes (2,048 bits), credential generation without revocation takes
≈1.6s, while with revocation it takes ≈1.8s. For verification these numbers become even closer: without revocation
6 The Faceless Men of Braavos, from the Game of Thrones, are able to assume unrecognizable personas, unlinkable to

their other personas.
7 As a side contribution, in Section 4.1 we formalize and prove the security of CL-RSA-B.

5

we need ≈1.7s, while with revocation we need ≈1.8s. Clearly, this is a small price to pay for the benefits of
revocation.

2 Definitions: A Modular View of Accumulator Functionality

λ: The security parameter.

D: The domain of the accumulator (the set of elements that the accumulator can accumulate). Often, D includes all elements (e.g.,
{0, 1}∗). Sometimes, D is more limited (e.g., primes of a certain size).

sk: The accumulator manager’s secret key or trapdoor. (The corresponding public key, if one exists, is not modeled here as it can
be considered to be a part of the accumulator itself.)

t: A discrete time / operation counter.

at: The accumulator at time t.

mt: Any auxiliary values which might be necessary for the maintenance of the accumulator. These are typically held by the accu-
mulator manager. Note that while the accumulator itself should be constant (or at least sub-linear) in size, m may be larger.

St: The set of elements in the accumulated set at time t. Note that S0 can be instantiated to be different, based on the initial sets
supported by the accumulator in question. Most accumulators assume S0 = ∅.

x, y: Elements which might be added to the accumulator.

wxt , u
x
t : The witness that element x is (respectively, is not) in accumulator at at time t.

upmsgwht: A broadcast message sent (by the accumulator manager, if one exists) at time t to all witness holders immediately after the
accumulator has been updated. This message is meant to enable all witness holders to update the witnesses they hold for
consistency with the new accumulator. It will often contain the new accumulator at, and the nature of the update itself (e.g.,
“x has been added and witness wxt has been produced”). It may also contain other information.

upmsgtpt: A broadcast message sent (by the accumulator manager, if one exists) at time t to all third party verifiers immediately after
the accumulator has been updated. This message is meant to provide the third parties with up to date values (the accumulator
at) to verify proofs of membership or non-membership against. It may also contain other information.

upmsgt: All of the information broadcast (by the accumulator manager, if one exists) at time t. upmsgt = (upmsgwht, upmsgtpt). We
often use upmsg instead of upmsgwh and upmsgtp, since these are frequently the same.

Fig. 1. Accumulator algorithm input and output parameters.

In this section, we provide a unified view of accumulator properties. We separately consider accumulators
that support additions, deletions or both, and accumulators that support membership proofs, non-membership
proofs or both. We have a different focus than Derler et al. [19], who also discuss the unification of accumulators.
Namely, unlike Derler et al., we emphasize the modularity of our definitions: subsets of the properties we define
can be easily combined, resulting in a broader range of accumulator types than previously described. To limit
our scope, we only consider accumulator properties pertaining to functionality and soundness in this section;
properties pertaining to privacy are discussed in Section 4.4 and Appendix B.4.

Various flavors of accumulator functionality definitions have been restated in literature a number of times. We
leverage the definitions provided by Reyzin and Yakoubov [35], but reformulate them to offer a more complete
view of the accumulator space. We begin by introducing four basic kinds of accumulator primitives.

– static accumulator : represents a fixed set.
– additive accumulator : supports only additions.
– subtractive accumulator : supports only deletions.
– dynamic accumulator : supports both additions and deletions (as defined in [11]).

Deletions and additions can, of course, be performed simply by re-instantiating the accumulator with the
updated set. This takes at most a polynomial amount of time in the number of element additions or deletions
which have been performed up until that point, but is not, in general, practical. A dynamic accumulator should
support both additions and deletions in time which is either independent of the number of operations performed
altogether, or is sublinear in this number.

We also describe accumulators in terms of the kinds of proofs (membership proofs, non-membership proofs,
or both) they support.

6

– positive accumulator : supports membership proofs.
– negative accumulator : supports non-membership proofs.
– universal accumulator [26]: supports both.

2.1 Accumulator Algorithms

Next, we describe the algorithms used by all of these accumulator primitives. For convenience, Figure 1 enumerates
and explains all algorithm input and output parameters.

We consider three types of parties: (1) an accumulator manager, (2) an entity responsible for an element and
its corresponding witness (from hereon-out referred to as witness holder), and (3) a third party (e.g. a verifier,
who is given any relevant witnesses by the witness holder at the time of verification). Parameters which are
omitted in some schemes have a bar on top.

The following are algorithms performed by the accumulator manager:

– Gen(1λ, S0) → (sk, a0,m0) instantiates the accumulator manager’s secret key sk, the accumulator a0
(representing the initial set S0 ⊆ D of elements in the accumulator, where D is the domain of the accumulator),
and the auxiliary value m0 necessary for the maintenance of the accumulator. m can be thought of as the
accumulator manager’s memory or storage. The allowable S0 sets vary from accumulator to accumulator.
There are accumulators that support only S0 = ∅; others support any polynomial-size S0, and yet others
support any S0 that can be expressed as a polynomial number of ranges.

– Add(sk, at,mt, x)→ (at+1,mt+1, w
x
t+1, upmsgt+1) (for additive and dynamic accumulators) adds the element

x ∈ D to the accumulator, producing the updated accumulator value at+1 and the membership witness wxt+1
for x. It also produces upmsgt+1, which enables witness holders to bring their witnesses up to date, and an
updated auxiliary value mt+1.

– Del(sk, at,mt, x) → (at+1,mt+1, uxt+1, upmsgt+1) (for subtractive and dynamic accumulators) deletes the
element x ∈ D from the accumulator, producing the updated accumulator value at+1 and (optionally) the
non-membership witness uxt+1 for x. It also produces an update message upmsgt+1, which enables witness
holders to bring their witnesses up to date, and an updated auxiliary value mt+1.

A positive or universal accumulator additionally has the following algorithms:

– VerMem(at, x, wxt)→ {0, 1} (executed by any third party) verifies the membership of x in the accumulator
using its membership witness wxt .

– MemWitUpOnAdd(x,wxt , upmsgt+1)→ wxt+1 (executed by a witness holder for additive and dynamic accu-
mulators) updates the membership witness for element x after y is added to the accumulator.

The membership witness update algorithm MemWitUpOnDel (for subtractive and dynamic accumulators) is
defined analogously to MemWitUpOnAdd. Notice that the accumulator manager can eliminate the need for these
algorithms by sending each witness holder a fresh witness on demand; however, this is unreasonable to ask of the
accumulator manager, who might then have to do additional work per witness holder per addition or deletion.
Instead, the accumulator manager broadcasts a single update message upmsg which witness holders use to bring
their witnesses up to date.8

If an element x is in S0, there might be a need to create a membership witness for x independently of the
Add algorithm. To this end, there exists a membership witness creation algorithm MemWitCreate. (In this paper,
we focus on witness generation during Add, so MemWitCreate will not appear in future sections.)

– MemWitCreate(sk, at,mt, x, (upmsg1, . . . , upmsgt)) → wxt (executed by the accumulator manager or any
third party) generates a membership witness wxt for x outside the element addition protocol Add.

For negative and universal accumulators, the non-membership witness creation algorithm NonMemWitCreate,
the non-membership verification algorithm VerNonMem, and the non-membership witness update algorithms
NonMemWitUpOnAdd and NonMemWitUpOnDel are defined analogously to MemWitCreate, VerMem, MemWitUpOnAdd,
and MemWitUpOnDel, respectively.

The presence or absence of all of these algorithms is simple to infer from the accumulator type. For convenience,
Figure 2 describes the algorithms corresponding to each accumulator type.
8 The witness holders can also process the update messages in batches if they choose.

7

Static Additive Subtractive Dynamic
Pos Neg Uni Pos Neg Uni Pos Neg Uni Pos Neg Uni

Accumulator Manager Algorithms
Gen X X X X X X X X X X X X
Add X X X X X X
Del X X X X X X
MemWitCreate X X X X X X X X
NonMemWitCreate X X X X X X X X

Witness Holder Algorithms
MemWitUpOnAdd X X X X
MemWitUpOnDel X X X X
NonMemWitUpOnAdd X X X X
NonMemWitUpOnDel X X X X

Third Party Algorithms
VerMem X X X X X X X X
VerNonMem X X X X X X X X

Fig. 2. Accumulator Algorithms.

2.2 Accumulator Security Properties

In this section, we describe accumulator security properties. Though in Section 2.1 we described many different
types of accumulators, here we limit ourselves to positive dynamic accumulators, because our focal constructions
Braavos and BraavosB are positive and dynamic. Additionally, for simplicity, we assume that the initial set S0
is empty. If desired, our definitions can be extended to other initial sets, and other accumulator types, in a
straightforward way.

Naturally, accumulators must be both correct and sound. We refer to Reyzin and Yakoubov [35] for formal
definitions of correctness. Informally, in a positive accumulator, correctness requires that for every element in
the accumulator, an honest membership witness holder can always prove membership.

In a positive accumulator, soundness (also referred to as security or collision-freeness) requires that for every
element not in the accumulator it is infeasible to prove membership. We present two definitions of soundness
for positive dynamic accumulators with S0 = ∅ (that is, positive dynamic accumulators which start empty):
adaptive soundness (Definition 1), and non-adaptive soundness (Definition 2). Adaptive soundness is the standard
definition of accumulator soundness; it is referred to simply as soundness. We introduce non-adaptive soundness
as a building block for our new accumulator, Braavos, as described in Section 3. Informally, in non-adaptive
soundness, the adversary must commit to his choice of elements to add in advance, whereas in adaptive soundness
the adversary can choose these elements on the fly.

Definition 1. A positive dynamic accumulator is adaptively sound (or simply sound) if for all security param-
eters λ, for all stateful probabilistic polynomial-time adversaries A with black-box access to Add and Del oracles
(which take elements x) on accumulator a, it holds that:

Pr

(sk, a0,m0)← Gen(1λ, ∅);
(x,w)← AAdd,Del(a0,m0);
x /∈ S :
VerMem(a, x, w) = 1

 ≤ ν(λ) ,

where ν is a negligible function in the security parameter, x is an element that is not currently a member (x 6∈ S,
where S started out empty and was updated with every call to Add and Del), and a is the accumulator after the
adversary made all of his calls to Add and Del.

Our definition assumes that inputs to Add and Del are in D and that Del does nothing when called on an
element that is not in the accumulated set. Some external mechanisms must ensure that this is indeed the
case, or else soundness is not guaranteed. This notion of soundness is sufficient for many scenarios, including
anonymity-preserving revocation described in this paper.

We also define a weaker notion of soundness in which the elements are picked in advance (though the ordering
of their additions and deletions may still be adaptive).

8

Definition 2. A positive dynamic accumulator is non-adaptively sound (NA-sound) if the conditions in Def-
inition 1 hold with the following modification: before Gen is run, the adversary A produces a set of elements
x1, . . . , xq ∈ D, and queries to Add and Del must come from this set.

This weaker notion of soundness suffices to ensure soundness for randomly chosen elements, because it does
not matter when they are chosen.

3 Modular Accumulator Constructions

In this section, we introduce the idea of combining different accumulators to obtain new accumulators with
different properties. This technique can lead to the creation of more efficient accumulators, such as the Braavos
accumulator described in Section 4 and the BraavosB accumulator described in Appendix B.

3.1 Leveraging Accumulators with Different Functionalities

Notice that, though the notion of a subtractive accumulator helps us draw a more complete mental picture of
the accumulator space, there are conceptual equivalences that allow us to ignore subtractive accumulators from
hereon out. Let S be the accumulated set of elements, and S be the complement of that set (S = D\S, where D
is the domain of all accumulatable elements).9

Notice that, conceptually,

– a positive additive accumulator of S is the same as a negative subtractive accumulator of S.
– a negative additive accumulator of S is the same as a positive subtractive accumulator of S.
– a universal additive accumulator of S is the same as a universal subtractive accumulator of S.

Next, we discuss combining simple positive and negative accumulators to obtain universal and dynamic
accumulators. An example of a simple positive accumulator is any digital signature scheme; the accumulator value
is the verification key, and a membership witness for x is a signature on x [34]. Simple negative accumulators
include the Merkle tree construction over ranges [7] and the range-RSA accumulator introduced in Appendix
B.1.

For the purpose of this discussion, we assume that all accumulators under consideration have D = {0, 1}∗
(that is, they can can hold arbitrary elements). We also assume that all of these accumulators are used to
accumulate sets, not multi-sets (that is, an element in the accumulated set is not added again unless it was
previously deleted).

Figure 3 gives an illustration of our derivations. The proofs of the correctness and soundness of these
constructions are easy exercises, and are therefore omitted. We include only the proof of soundness of construction
B given its relevance to one of our constructions(it is used in Appendix B).

Adding Dynamism. We can build a dynamic positive accumulator ACC (construction A in Figure 3) out of a
positive accumulator ACCP and a negative accumulator ACCN by adding indexing to the elements. When a new
element x is added to ACC, the pair (x, 1) is added to ACCP. Then, when the element is deleted, the pair (x, 1)
is added to ACCN. Next time x is added, it is added as (x, 2); each time the element is added and deleted, the
index is incremented. (Notice that this requires the accumulator manager to maintain an auxiliary storage m the
size of which is linear in |a|, where a is the set of all elements ever added.) Proving the membership of x then
consists of producing an index i and proving that ((x, i) ∈ ACCP) ∧ ((x, i) 6∈ ACCN).

Similarly, we can build a dynamic negative accumulator ACC (construction C in Figure 3) out of a positive
accumulator ACCP and a negative accumulator ACCN. However, the roles of the two accumulators are reversed;
when an element x is added to ACC, (x, i) is added to ACCN for the appropriate index i. When the element is
deleted, (x, i) is added to ACCP. Proving the non-membership of x then consists of producing an index i and
proving that ((x, 1) 6∈ ACCN) ∨ (((x, i− 1) ∈ ACCP) ∧ ((x, i) 6∈ ACCN)).

Flipping the Sign of a Dynamic Accumulator. There is an alternative way to build dynamic positive (or negative)
accumulators; however, it assumes the existence of a dynamic negative (or positive, respectively) accumulator.
We can build a dynamic positive accumulator ACC (construction B in Figure 3) out of a positive accumulator
9 Note that as long as S is polynomial in size, S can be expressed as a polynomial number of ranges.

9

ADDITIVE DYNAMIC

U
N

IV
E

R
SA

L
N

E
G

A
T

IV
E

P
O

SI
T

IV
E

A B

C D

E F G

a = set of added elements;
d = set of deleted elements.

a

d

a

d

a× N

d×
N

a× N

d×
N

a

a
S

S

a× N× {a, d}

Fig. 3. Modular Accumulator Derivations. Large circles represent a space of accumulator constructions (e.g., the top
left-most large circle contains all positive accumulators). Each dot (labeled A-G) within a large circle represents a
construction of the type corresponding to the large circle. Arrows denote the modular usage of accumulators of the type
corresponding to their start-point to build an accumulator of the type corresponding to their end-point. Arrow labels
denote the types of objects being accumulated by the start-point accumulator. S denotes the set of current members, N
the set of natural numbers (used for indexing), and {a, d} the set of possible actions (‘add’ or ‘delete’).

10

ACCP and a dynamic negative accumulator ACCN by adding all added elements to ACCP, and adding all deleted
elements to ACCN. When an element that has previously been deleted is re-added, it is removed from ACCN.
Proving the membership of x consists of proving that (x ∈ ACCP) ∧ (x 6∈ ACCN). The construction of a dynamic
negative accumulator (construction D in Figure 3) out of a simple negative accumulator and a dynamic positive
accumulator mirrors this one, and we will not discuss it further.

Theorem 1. Construction B is an adaptively sound positive dynamic accumulator if ACCP is a adaptively sound
positive accumulator and ACCN is an adaptively sound negative dynamic accumulator.

Proof. The proof consists of a reduction to the adaptive soundness of either ACCP or ACCN. If an adversary
produces a witness for an element that is not a member of the accumulated set, then if that element was never
added the adversary has succeeded in breaking the adaptive soundness of ACCP, and if that element was deleted
the adversary has succeeded in breaking the adaptive soundness of ACCN.

Instantiating Construction B. In Appendix B, we describe a communication-optimal instantiation of construction
B which we call BraavosB. BraavosB uses digital signatures as the positive accumulator ACCP, and another new
accumulator called range-RSA (described in Appendix B.1) as the dynamic negative accumulator ACCN. The
communication complexity of BraavosB rivals that of Braavos, which is the focal construction of this paper and
is described in detail in Section 4. However, though (asymptotically) the communication costs of Braavos and
BraavosB are equally small, Braavos has several advantages over BraavosB. One of these is that Braavos supports
more efficient zero knowledge proofs of member knowledge. Another is that BraavosB requires the accumulator
manager to store an amount of information linear in the number of deleted elements, while Braavos only requires
the accumulator manager to store a constant amount of information.
Adding Universality. Additive (construction E in Figure 3) and dynamic (construction G in Figure 3) universal
accumulators can be built by combining a positive and negative accumulator of the same type in a straightforward
way; both the positive and negative accumulators are used to accumulate the elements in the set.

A dynamic universal accumulator (construction F in Figure 3) can also be built out of an additive universal
accumulator ACCU in a manner similar to those used to produce constructions A and C. Each element x, when
seen for the first time, is assigned a counter i = 1. When x is added, a tuple of the form (x, i, a) is added to the
additive universal accumulator. When x is deleted, a tuple of the form (x, i, d) is added to the additive universal
accumulator, and the counter i is incremented. Proving the membership of x then consists of producing the
counter i and proving that ((x, i, a) ∈ ACCU) ∧ ((x, i, d) 6∈ ACCU). Proving the non-membership of x consists of
proving that ((x, 1, a) 6∈ ACCU) ∨ (((x, i− 1, d) ∈ ACCU) ∧ ((x, i, a) 6∈ ACCU)).

3.2 Leveraging Less Secure Accumulators

In addition to considering combining accumulators with different functionalities, we can consider combining
accumulators with different security properties. Given an (adaptively) sound positive additive accumulator ACCA
and non-adaptively sound (NA-sound) positive dynamic accumulator ACCNA, we can build an adaptively sound
dynamic accumulator ACC, as shown in Figure 4.10 We call this construction “Construction H”. Its algorithms
are described in Figures 5 through 7. When an element x is added, the accumulator manager selects a random
element r from the domain D of ACCNA. She then adds r to ACCNA, and (x, r) to ACCA. (Recall that random
elements can always be safely accumulated in non-adaptively sound accumulators, since those random elements
can be chosen without using any information about the accumulator.) When deleting x, the accumulator manager
removes r from ACCNA. Proving the membership of x in ACC consists of producing an r and proving that
(r ∈ ACCNA) ∧ ((x, r) ∈ ACCA).

Note that, in order to support deletions, the accumulator manager must store a mapping from every element
x to the corresponding r. This can be avoided by having the accumulator manager use a pseudorandom function
Fs (where s is the secret pseudorandom function seed) to select an r corresponding to a given x: r = Fs(x).
Even though this causes elements added to ACCNA to be computed rather than chosen at random (therefore
seemingly requiring adaptive soundness rather than non-adaptive soundness), non-adaptive soundness is still
sufficient because of the indstinguishability of the pseudorandom and random cases.

The correctness of Construction H follows by inspection.
10 Shamir and Tauman [36] achieve a similar goal of construct chosen message unforgeable signatures from random

message unforgeable ones by using a different technique.

11

ADDITIVE DYNAMIC

SO
U

N
D

N
A

-S
O

U
N

D

H

a = set of added elements;
R = random elements.

a×R

R

Fig. 4. Modular Accumulator Derivations. All accumulators in this diagram are positive. The notation is the same as that
used in Figure 3; additionally, R denotes random elements. A specific (particularly efficient) instantiation of construction
H is discussed further in Section 4.

Theorem 2. Construction H is an adaptively sound positive dynamic accumulator if ACCA is a positive additive
adaptively sound accumulator, ACCNA is a positive dynamic non-adaptively sound accumulator, and Fs is a
pseudorandom function.

Proof. The proof consists of a reduction to the adaptive soundness of ACCA, or the non-adaptive soundness
of ACCNA, or the pseudorandomness of Fs. We give only the outline here, because the formal reductions are
simple exercises. If an adversary produces a witness for an element that is not a member of the accumulated set,
then there are two cases: either the element was never added, or it was deleted. In the first case, the adversary
has succeeded in breaking the adaptive soundness of ACCA. In the second case, the adversary has succeeded in
forging a witness for a pseudo-random element in ACCNA. We know that if truly random elements were used in
ACCNA, then this would break the non-adaptive soundness of ACCNA, since random elements could have been
chosen non-adaptively. Thus, if the adversary is able to forge a witness for ACCNA with pseudorandom elements,
the adversary breaks either the non-adaptive soundness of ACCNA or the pseudorandomness of Fs.

4 Braavos: A Communication-Optimal Adaptively Sound Dynamic Accumulator

In this section we introduce the Braavos accumulator, which is an instantiation of construction H from Figure 4.
Braavos is an adaptively sound positive dynamic accumulator derived from an adaptively sound positive additive
accumulator ACCA and an non-adaptively sound positive dynamic accumulator ACCNA.

We aim for Braavos to have two properties: communication optimality [6] and efficient zero knowledge proofs,
as described in Section 4.4. Our choice of underlying adaptively sound accumulator ACCA in Braavos is the

12

Gen(1λ, ∅):

1. (ACCA.a,ACCA.m,ACCA.sk)← ACCA.Gen(1λ, ∅)
2. (ACCNA.a,ACCNA.m,ACCNA.sk)← ACCNA.Gen(1λ, ∅)
3. Let {Fs}s∈{0,1}λ be a pseudorandom function family whose range is the domain of ACCNA; pick s ∈ {0, 1}λ at random.
4. Let sk = (ACCA.sk,ACCNA.sk, s).
5. Let a = (ACCA.a,ACCNA.a).
6. Let m = (ACCA.m,ACCNA.m).
7. Return (sk, a, m).

Add(sk, a,m, x):

1. Set r = Fs(x).
2. (ACCA.a,ACCA.m,ACCA.w,ACCA.upmsg) ← ACCA.Add(ACCA.sk,ACCA.a,ACCA.m, (x, r)).
3. (ACCNA.a,ACCNA.m,ACCNA.w,ACCNA.upmsg) ← ACCNA.Add(ACCNA.sk,ACCNA.a,ACCNA.m, r).
4. Let w = (ACCA.w,ACCNA.w).
5. Let upmsg = (ACCA.upmsg,ACCNA.upmsg).
6. Return (a,m,w, upmsg).

Del(sk, a,m, x):

1. Set r = Fs(x).
2. Let (ACCNA.a,ACCNA.m,ACCNA.upmsg) ← ACCNA.Del(ACCNA.sk,ACCNA.a,ACCNA.m, r).
3. Return (a,m,ACCNA.upmsg).

Fig. 5. Construction H from Figure 4 accumulator manager algorithms (Gen, Add, Del and MemWitCreate), in terms of
the underlying positive adaptively sound accumulator ACCA and positive dynamic non-adaptively sound accumulator
ACCNA. In all of these algorithms, we assume that sk = (ACCA.sk,ACCNA.sk, s), a = (ACCA.a,ACCNA.a), and m =
(ACCA.m,ACCNA.m).

MemWitUpOnAdd(a, x, w, upmsg):

1. Parse (ACCA.upmsg,ACCNA.upmsg) = upmsg.
2. Parse (ACCA.w,ACCNA.w) = w.
3. ACCA.w ← ACCA.MemWitUpOnAdd(x,ACCA.w,ACCA.upmsg).
4. ACCNA.w ← ACCNA.MemWitUpOnAdd(x,ACCNA.w,ACCNA.upmsg).
5. Return w = (ACCA.w,ACCNA.w).

MemWitUpOnDel(a, x, w, upmsg):

1. Parse (ACCA.w,ACCNA.w) = w.
2. ACCNA.w ← ACCNA.MemWitUpOnAdd(x,ACCNA.w, upmsg).
3. Return w = (ACCA.w,ACCNA.w).

The witness holder can run BatchMemWitUpOnDel immediately before producing a proof.

Fig. 6. Construction H from Figure 4 witness holder algorithms (MemWitUpOnAdd and MemWitUpOnDel), in terms of
the underlying positive adaptively sound accumulator ACCA and positive dynamic non-adaptively sound accumulator
ACCNA. Note that when Construction H is instantiated with a digital signature scheme as the positive accumulator ACCA,
there is no need for a MemWitUpOnAdd algorithm.

VerMem(a, x, w):

1. Parse (ACCA.a,ACCNA.a) = a.
2. Parse (ACCA.w,ACCNA.w) = w.
3. Let b1 ← ACCA.VerMem(ACCA.a, x,ACCA.w).
4. Let b2 ← ACCNA.VerMem(ACCNA.a, x,ACCNA.w).
5. Return 1 if b1 = b2 = 1, and return 0 otherwise.

Fig. 7. Construction H from Figure 4 third party algorithms (VerMem), in terms of the underlying positive adaptively
sound accumulator ACCA and positive dynamic non-adaptively sound accumulator ACCNA.

13

CL signature scheme [12], because it supports efficient zero knowledge proofs of knowledge of a signature on a
committed value. Note that though construction H has a MemWitUpOnAdd algorithm (described in Figure 6),
this algorithm is not used by Braavos, since signatures do not require witness updates when additions take place.

The challenge that remains is finding a communication-optimal, dynamic, non-adaptively sound accumulator
ACCNA. ACCNA should only require membership witness updates upon element deletions, not element additions.
In Section 4.1, we describe CL-RSA-B, which is exactly such an accumulator.

4.1 CL-RSA-B: A Communication-Optimal Non-Adaptively Sound Dynamic Accumulator

In this section, we formally describe the CL-RSA-B accumulator, which was informally introduced by Camenisch
and Lysyanskaya [11] in a remark on page 12. The CL-RSA-B accumulator is similar to the standard RSA
accumulator [11], which evolves the accumulator value (as well as all membership witnesses) with every addition
and deletion. The CL-RSA-B accumulator, unlike the RSA accumulator, evolves the accumulator value with every
deletion only. However, the price is that, as far as we can tell, the CL-RSA-B accumulator is only non-adaptively
sound.
The RSA Accumulator. In order to understand the CL-RSA-B accumulator, it helps to understand the RSA
accumulator first. Its value is a quadratic residue a modulo n, where n is an RSA modulus: n = pq, where
p = 2p′ + 1 and q = 2q′ + 1 for prime p, p′, q, and q′. The domain D of the RSA accumulator consists of all odd
positive prime integers x.11

During the addition of x to the accumulator, the new accumulator value is computed as at+1 = axt mod n.
The membership witness w for x is then defined to be the old accumulator value at. A membership verification
consists of checking that wx ≡ a mod n. When another element y is added to the accumulator, the membership
witness for x is updated by taking wt+1 = wyt mod n.

When an element y is deleted, the accumulator manager (who knows the trapdoor p′q′) computes the new
accumulator as at+1 = ay

−1 mod p′q′
t mod n. The membership witness w for x can then be updated using the

Bezout coefficients b and c such that bx+cy = 1. (Recall that the domain D of the accumulator contains only odd
prime numbers, so such b and c are guaranteed to exist.) The new witness is computed as wt+1 = wcta

b
t+1 mod n.

The CL-RSA-B Accumulator. The CL-RSA-B accumulator preserves the relationship between the accumulator
value and the witnesses, but avoids computing a new accumulator value and updating witnesses during each
addition. Instead, during the addition of odd prime x the accumulator manager keeps the accumulator constant,
and computes the membership witness w for x as w = ax

−1 mod p′q′ mod n. Notice that this eliminates the need
for updating existing membership witnesses during additions. The process for proving membership and for
deletions is the same as in the RSA accumulator. The algorithms of the CL-RSA-B accumulator are detailed in
Figure 8.
CL-RSA-B Soundness. The RSA accumulator is adaptively sound, meaning that an adversary cannot find a
membership witness for an element that is not a member even if she chooses which elements should be added,
optionally based on accumulator and witness values she has previously seen.

The CL-RSA-B accumulator is non-adaptively sound, meaning that an adversary cannot find a membership
witness for an element that is not a member if she chooses all elements to add prior to seeing any accumulator
information. In particular, the CL-RSA-B accumulator is sound when only random elements are added to the
accumulator, since those can be chosen prior to seeing any accumulator or witness values.12 This holds under
the strong RSA assumption [2].

Assumption 1 (Strong RSA) For any probabilistic polynomial-time adversary A,

Pr[p, q ← {λ-bit safe primes};n = pq; t ← Z∗n; (r, e) ← A(n, t) : re = t mod n ∧ e is prime] = ν(λ)

For some negligible function ν.
11 Note that p′ or q′ cannot themselves be accumulated, since (p′)−1 mod p′q′ and (q′)−1 mod p′q′ do not exist; however,

that only happens with negligible probability in the adaptive soundness game in Definition 1, since if the adversary
finds p′ or q′, he or she has succeeded in factoring n.

12 We are not certain whether CL-RSA-B is also adaptively sound. Proving that it is or is not is an open problem. It is
adaptively sound when the when a polynomial-size subset of D is used as the domain; however, this is a very limiting
restriction.

14

Gen(1λ, ∅):

1. Select two λ-bit safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are also prime, and let n = pq. (Consider n to be
public knowledge from hereon out; it is actually a part of the accumulator value a, but for simplicity we will not refer to it
as such.)

2. Let sk = p′q′.
3. Select a random integer a′ ← Z∗n.
4. Let a = (a′)2 mod n.
5. Return (sk, a).

Add(sk, a, x):

1. Check that x ∈ D (that is, that x is an odd prime). If not, FAIL.
2. Let w = ax

−1 mod p′q′ mod n.
3. Return (a,w, upmsg = ⊥).

Del(sk, a, x):

1. Check that x ∈ D (that is, that x is an odd prime). If not, FAIL.
2. Let a = ax

−1 mod p′q′ mod n.
3. Let upmsg = (a, x).
4. Return (a, upmsg).

MemWitUpOnDel(a, x, w, upmsg):

1. Parse (a, y) = upmsg.
2. Compute Bezout coefficients b, c such that bx + cy = 1. (Given that x 6= y, since both x and y are prime, such b and c are

guaranteed to exist.)
3. Let w = wcab mod n.
4. Return w.

VerMem(a, x, w):

1. Return 1 if a = wx mod n.
2. Return 0 otherwise.

Fig. 8. CL-RSA-B algorithms.

Theorem 3. The CL-RSA-B accumulator with a domain D consisting of odd primes is non-adaptively sound
under the strong RSA assumption.

Proof. In Figure 9, we reduce the non-adaptive soundness of the CL-RSA-B accumulator to the strong RSA
assumption. The reduction R takes in an RSA integer n and a random value t ∈ Z∗n, and returns r, e such
that t = re mod n. R leverages an adversary A which can break the non-adaptive soundness of the CL-RSA-B
accumulator; that is, after making addition (Add) and deletion (Del) queries on elements chosen before seeing
the initial state of the accumulator, A can produce an odd prime x and a witness w such that a = wx mod n,
and x is not in the accumulator.
R must be able to answer two types of queries from A: Add queries on the non-adaptively chosen elements,

and Del queries on the same elements. Let qAdd be an upper bound on the number of Add queries, and qDel be an
upper bound on the number of Del queries A can make. During the setup phase, having received the elements
x1, . . . , xqAdd from A, the reduction R creates an accumulator for which it can answer Add and Del queries on
elements x1, . . . , xqAdd . It does so by starting with a = t2 mod n, and raising a to the power of the elements.
By raising a to the power of xqDel

j , R creates an accumulator value for which it is able to answer Del and Add
queries on xj even if A spends all of its Del queries on that one element. However, if A forges a witness w for xj
(after having added and deleted it fewer than qDel times), the reduction won’t be able to use w to break the
strong RSA assumption, since it already knows w! For that reason, R guesses a “target” element xj from among
x1, . . . , xqAdd , and the number ej of times that xj will be added and deleted before the forgery (which can be
anywhere from 0 to qDel), and only raises t to the power of xejj , not xqDel

j . Figure 9 shows the details of how the
reduction picks an accumulator value based on x1, . . . , xqAdd , how it answers Add and Del queries, and how it
then uses the output of A to break the strong RSA assumption.

This reduction succeeds as long as:

1. During the query phase, R does not output FAIL. R does not output FAIL if the target exponent ei was
chosen correctly, which happens with probability 1

qDel+1 .

15

Setup(n, t, qAdd, qDel):

1. Let x1, . . . , xqAdd be the distinct odd primes provided by the adversary A.
2. Let a = t2 (so as to make a a quadratic residue).
3. Let ec = 2 be the current exponent linking t to a. (So, a = tec mod n is an invariant.)
4. Pick a random index j ← {1, . . . , qAdd}.
5. For i ∈ [1, . . . , qAdd]:

(a) If i = j: pick a random ei ← {0, . . . , qDel}.
(b) Else: ei = qDel.

(c) Let a = a
(xei
i

) mod n.
(d) Let ec = ecx

ei
i

.
6. Return a = eec

i
mod n to the adversary A.

Add(xi):

1. If ei = 0: FAIL.
2. Let w = tec/xi mod n. (Note that ec must be divisible by xi, since ec has a factor of xei

i
, and ei > 0.)

3. Return w.

Del(xi):

1. If ei = 0: FAIL.
2. Let ec = ec/xi. (Note that ec must be divisible by xi, since ec has a factor of xei

i
, and ei > 0.)

3. Let ei = ei − 1.
4. Let a = tec mod n.
5. Let upmsg = (a, xi).
6. Return (a, upmsg).

Output(e, w):

1. Check that a = we mod n. If not, FAIL.
2. If e = xi for i ∈ {1, . . . , qAdd} and (i 6= j or ei > 0): FAIL.
3. We know that e and ec must be relatively prime; ec has no factors outside of x1, . . . , xqAdd , and those factors have powers

ei. So, R can compute Bezout coefficients b, c such that be+ cec = 1.
4. Let r = tbwc mod n.

(Let y = te
−1 mod p′q′ mod n; equivalently, ye mod n = t. Since we mod n = a and tec mod n = (ye)ec mod n = a, it

follows that w = yec mod n. So, r = tbwc = (ye)b(yec)c = y1 = y.)
5. Return (r, e).

Fig. 9. Reduction R from the non-adaptive soundness of CL-RSA-B to the strong RSA assumption.

2. During the output phase, R does not output FAIL. If A outputs a witness for an element xi ∈ {x1, . . . , xqAdd},
R does not output FAIL as long as:
(a) R makes x the “target” prime (that is, j = i). This happens with probability 1

qAdd
.

(b) R correctly chooses the target exponent ei for x. This happens with probability 1
qDel+1 . However, this is

already accounted for in item 1.
3. A succeeds in breaking the security of the CL-RSA-B accumulator, which we assume happens with non-

negligible probability ε.

As long as R does not output FAIL, A sees the same transcript it would when interacting with a real
accumulator manager. The probability of the reduction R succeeding is 1

qAdd
1

qDel+1ε, which is non-negligible.

Other Approaches for Expanding the Domain and Getting Adaptive Soundness for CL-RSA-B. The domain D of
CL-RSA-B consists of odd primes. Such a limited domain is not a problem for our main application, because
the Braavos accumulator manager can choose a (psuedo)random prime r when a new element is added to the
accumulator for the first time, as described in Construction H. In fact, Construction H can be viewed as one
approach to expanding the domain of CL-RSA-B and obtaining adaptive security for it. Here we briefly mention
other approaches. Let D′ be the desired domain. Let f be a mapping from D′ to λ-bit odd primes. To add
x ∈ D′ to the accumulator, add f(x) instead. We can obtain adaptive soundness in the following ways:

– We can model f as a random oracle (the proof is straightforward).
– We can avoid the random oracle by making a different strong assumption instead: namely, the assumption

that f is collision-resistant, and the very strong “adaptive strong-RSA assumption”. Informally, the adaptive
strong-RSA assumption states that even given an oracle that can take roots modulo n, it is difficult to find
new roots whose power is relatively prime to those of the roots produced by the oracle.

16

– We can get somewhat better assumptions by having f be a randomized mapping, and include the randomness
R as part of the witness. Then, assuming that for every two elements x1 and x2, the distributions f(x1;R)
and f(x2;R) (over random choices of R) are statistically close, we can use the technique from [23]. To do so,
we need to assume that the strong RSA assumption (Assumption 1) also holds in a model where there exists
an oracle O that on input x, p returns a random R such that f(R;x) = p.

– Alternatively, we can use the strong-RSA assumption without modification if f is a trapdoor hash function,
following the technique of [36].

All of these approaches require f that maps to primes. A way to build such f is described in [5, Section 3.2] (see
also [30, Section 7]).

4.2 Braavos Soundness

The Braavos accumulator uses Camenisch-Lysyanskaya (CL) signatures [12] as the underlying positive accumulator
ACCA, and the CL-RSA-B accumulator as the underlying dynamic positive non-adaptively sound accumulator
ACCNA. CL signatures are existentially unforgeable under the strong RSA assumption. Recall that according to
Theorem 3, the CL-RSA-B accumulator is non-adaptively sound under the same assumption. By Theorem 2, this
implies that the Braavos accumulator is an adaptively sound positive dynamic accumulator under the strong
RSA assumption.

Properties other than adaptive soundness (such as correctness) are self-evident.

4.3 Comparison with Other Constructions

The Braavos accumulator is a positive, dynamic accumulator with efficient (constant-time) membership witness
generation, and no membership witness updates upon element additions — only upon element deletions. In
particular, for a fixed security parameter λ, Braavos achieves the total communication lower bound shown by
Camacho [6]. (Total communication refers to the sum of the sizes of all upmsg messages sent by the accumulator
manager to the witness holders after |a| additions and |d| deletions.) In Appendix A, we prove that adding
universality would necessarily degrade the total communication of Braavos.

In Figure 10, we compare Braavos (and BraavosB, described in Appendix B) to prior constructions in terms
of the properties introduced in Section 2. We compare them to digital signatures, and to the three other primary
lines of work on accumulators: the RSA construction [3,11,26], the bilinear map constructions [33,18,1], and the
Merkle tree constructions [7].15 In our comparison we also include two building blocks: the CL-RSA-B accumulator
(used in Braavos, and described in Section 4.1), and the range-RSA accumulator (used in BraavosB, and described
in Appendix B.1).

As mentioned earlier, though the properties and asymptotic costs of Braavos and BraavosB appear similar,
Braavos has several advantages over BraavosB. One of these is more efficient zero knowledge proofs of member
knowledge; another is that the accumulator manager storage in Braavos is only O(1), whereas in BraavosB it is
O(|d|).

Though Figure 10 includes some of the most well known accumulator constructions to compare with Braavos
and BraavosB, we would like to note that there exists a large number of other dynamic accumulator constructions
in the literature [26,18,9,1,17,20]. To the best of our knowledge, these constructions do not achieve the efficiency
we aim for.

Non-accumulator constructions. Finally, although cryptographic accumulators are the most prominent way to
achieve anonymous revocation, other methods have been suggested in the literature. One such method is based
on the Naor-Naor-Lotspiech (NNL) broadcast encryption scheme [32]. Libert, Peters and Yung [27] adapt the
NNL method to achieve anonymous revocation for group signatures. At a high level, the NNL algorithm works as
13 Here range-RSA is presented as a negative accumulator, because that is how it is used in the BraavosB accumulator.

However, range-RSA can be easily modified to be universal.
14 |a| and |d| refer to the number of elements added and deleted after the addition of the element whose witness updates

are being discussed.
15 For those interested in a more concrete comparison, Lapon et al. [25] provide concrete running time measurements of

bilinear map accumulator constructions and the RSA construction. We discuss the concrete running times of Braavos
in Section 5.2.

17

Protocol Runtimes

Accumulator Si
gs

RSA BM Merkle ra
ng

e-
R

SA
13

Br
aa

vo
sB

CL
-R

SA
-B

Br
aa

vo
s

Add 1 1 1 log |a| 1 1 1 1
Del − 1 1 log |a| 1 1 1 1

NonMemWitCreate − |S| |S| log |a| 1 − − −
MemWitUpOnAdd 0 1 1 log |a| − 0 0 0
MemWitUpOnDel − 1 1 log |a| − 1 1 1

NonMemWitUpOnAdd − 1 1 log |a| 1 − − −
NonMemWitUpOnDel − 1 1 log |a| 1 − − −

VerMem 1 1 1 log |a| − 1 1 1
VerNonMem − 1 1 log |a| 1 − − −

Storage
Accumulator size 1 1 1 1 1 1 1 1

Witness size 1 1 1 log |a| 1 1 1 1
Manager storage (|m|) 1 |S| |S| |a| |S| |d| 1 1

Properties
Additive? X X X X X X X X

Subtractive? X X X X X X X
Positive? X X X X X X X
Negative? X X X X

Total comm. to Verifier 14 0 |a|+ |d| |a|+ |d| (|a|+ |d|) log |a| |a|+ |d| |d| |d| |d|
Total comm. to Member 0 |a|+ |d| |a|+ |d| (|a|+ |d|) log |a| |a|+ |d| |d| |d| |d|

Efficient ZKPs? X X X X X X X
Adaptively sound? X X X X X X X

Fig. 10. Various Accumulators and their Protocol Runtimes, Storage Requirements, and Properties. We let |a| denote the
number of elements added to the accumulator, |d| denote the number of elements deleted from the accumulator, and |S|
denote the total number of member elements in the accumulator. (Note that |S| is |a| − |d|.) The Braavos and BraavosB
accumulators are the first adaptively sound dynamic (additive and subtractive) accumulators to have the optimal total
communication of O(|d|). Sigs represents any digital signature scheme. The RSA Construction is due to [3,11,26]. The BM
(bilinear map) construction is due to [33,18,1]. The Merkle tree construction is due to [7]. Range-RSA and BraavosB are
described in Appendix B. CL-RSA-B and Braavos were described earlier in this section. A logarithmic factor is omitted
everywhere; it is implicit as the size of our elements. Big-O notation is omitted from this table in the interest of brevity.

follows: it uses a binary tree with 2`−1 leaves which represent the members of the group. If r leaves are revoked,
the NLL algorithm partitions the set of unrevoked leaves into m disjoint sets. Each such set can be represented
using nodes (a, b) of the tree, such that b is a descendant of a and a leaf i is in the partition that corresponds to
nodes (a, b) if i is a descendant of a but not a descendant of b.

In the bilinear map setting, in the standard model, Libert, Peters and Yung construct a revocable group
signature scheme in which the group manager organizes the unrevoked users according to the NNL partition,
and a valid user, as part of her group signature, demonstrates that she is in a valid partition, i.e. that her
membership certificate i corresponds to a valid NNL subset. Their main tools are vector-commitments and proof
friendly signature schemes. In contrast to the accumulator-based solution, the amount of work each user has to
do is independent of the total number of users revoked. This comes at a price: (a) the group manager will have
to perform O(r) work in order to publish the updated revocation tree in each time period, where r is the number
of users revoked so far (note that in Braavos the accumulator manager only performs constant work); (b) their
solution is tailored for the bilinear-map setting; finally, (c) it is not clear how to extend the their techniques
from revocable group signatures to revocable anonymous credentials.

18

4.4 Adding Zero Knowledge to Braavos

So far, we have only discussed the functionality of accumulators, ignoring potential privacy concerns. There
typically exist three primary privacy goals in the context of accumulators: hiding the membership (or non-
membership) witness, hiding the element whose membership (or non-membership) is being demonstrated as well
as the witness, and hiding all information about the accumulated set [24]. For our application of anonymous
credential revocation (discussed in Section 5), we mostly care about zero knowledge proofs of member knowledge,
which hide not only the witness, but the member element itself.

The Braavos accumulator supports efficient zero-knowledge proofs of member knowledge. Given that Braavos
is composed of two accumulators ACCA and ACCNA, in order for a witness holder to produce a zero-knowledge
proof of member knowledge in Braavos, she would have to produce a conjunction of proofs of member knowledge
in both ACCA and ACCNA and a proof that those members have the correct relationship. More concretely, she
would have to compute the following zero-knowledge proof (described using Camenisch-Stadler [15] notation):

ZKP[(x, r,ACCA.w,ACCNA.w) :
∧ ACCA.VerMem(ACCA.a, (x, r),ACCA.w)
∧ ACCNA.VerMem(ACCNA.a, r,ACCNA.w)

](ACCNA.a,ACCA.a)

Where ACCA is the signature scheme SIGCL = (KeyGen,Sign,Verify) due to Camenisch and Lysyanskaya [12],
and ACCNA is the CL-RSA-B accumulator.

For integration into larger systems, it might be important to be able to link the witnesses used in the
proof to other statements, while still keeping the elements and witnesses private. To this end, commitments
to the witnesses can be used. Let Com = (Commit,Verify) be a commitment scheme; to integrate commitments
into the zero knowledge proof, a witness holder computes commitments to the membership witnesses ACCA.w
and ACCNA.w: (C1, o1) = Com.Commit(ACCA.w) and (C2, o2) = Com.Commit(ACCNA.w), where o1 and o2 are
decommitment values. The proof is then enhanced, as follows:

ZKP[(x, r,ACCA.w,ACCNA.w, o1, o2) :
Com.Verify(C1,ACCA.w, o1)
∧ Com.Verify(C2,ACCNA.w, o2)
∧ ACCA.VerMem(ACCNA.a, (x, r),ACCA.w)
∧ ACCNA.VerMem(ACCNA.a, r,ACCNA.w)

](ACCNA.a,ACCA.a, C1, C2)

For concrete descriptions of the individual clauses of this proof using the commitment scheme due to Fujisaki
and Okamoto [22], please refer to Fujisaki and Okamoto [22] and Camenisch and Lysyanskaya [12,11].

5 Anonymous Revocation from Accumulators

In this section, we show how accumulators can be used in practice. Accumulators combined with zero knowledge
proofs are a perfect solution for providing revocation in a system where preserving users’ privacy is crucial.

As an example, consider an anonymous credential system where transactions involving the same credential
need to be unlinkable. An anonymous credential system is comprised of users, issuers, and verifiers. An issuer
certifies a user’s attributes in the form of a credential. To authenticate a user, a verifier first sends her a
presentation policy that describes which statements she should prove about her credentials. Based on the policy,
the user derives a fresh unlinkable proof (or token) from her credentials and sends it to the verifier. The verifier
then determines whether the token is valid with respect to the policy.

To make credentials revocable, the user needs to be able to prove that the credential, on which the token is
based, was not revoked. This must be done in a privacy-preserving fashion, i.e., without destroying unlinkability.
Camenisch et al. [10] describe a generic revocation component, which can be added to any anonymous system,
including anonymous credentials and group signature schemes. We refer to this component as the anonymous
revocation component (ARC).

19

An ARC requires an additional entity called a revocation authority (RA). The RA assists the issuer with
adding new users to the system, maintains the necessary revocation information, and changes the revocation
status of any user in the system. (The role of the RA can optionally be played by an issuer or a verifier.)
Camenisch et al. [10] describe the necessary interfaces and definitions for an ARC, and show how to instantiate
it with the revocation scheme of Nakanishi et al. [31].

In Section 5.1, we show how to instantiate an ARC with accumulators and zero knowledge proofs, and extend
the definition of an ARC to include the addition of users after the initial setup and the re-addition of users after
they have been revoked. In Section 5.2, we provide performance measurements of our ARC with Braavos in the
Identity Mixer anonymous credential system (idemix) [16].

5.1 Anonymous Revocation Component (ARC) with Accumulators

ARC.SPGen(sparg): Using global system parameters sparg (group descriptions, parameters for ZKP, etc.), generate revocation
system parameters sparr = (sparg,RS), where RS specifies the set of supported revocation handles. The revocation system
parameters can be given to any algorithm of the revocation framework.

ARC.RKGen(sparr):

– Generate the initial accumulator value:
[WL]: (sk, a,m)← ACCP.Gen(1λ, ∅).
[BL]: (sk, a,m)← ACCN.Gen(1λ, ∅).

– Generate witnesses for every rh ∈ RS:
[WL]: (a,m,wrh , upmsg)← ACCP.Add(sk, a,m, rh). Let M =M∪ {upmsg},W =W ∪ {wrh}.
[BL]: wrh ← ACCN.NonMemWitCreate(sk, a,m, rh). Let W =W ∪ {wrh},M = ∅.

– Generate signing keys (sgk, vk)← SIG.KeyGen(sparg).
– Sign the revocation information: σ ← SIG.Sign(sgk, (a,W,M)).
– Output rpk = vk, rsk = (sgk, sk,m), and RI = (a,W,M, σ).

ARC.Revoke(rh, rsk,RI):

– Parse RI as (a,W,M, σ) and rsk as (sgk, sk,m).
Abort if SIG.Verify(vk, σ, (a,W,M)) = 0.

– Update the accumulator value:
[WL]: (a,m, upmsg)← ACCP.Del(sk, a,m, rh).
[BL]: (a,m,w, upmsg)← ACCN.Add(sk, a,m, rh).

– Let M =M∪ {upmsg}.
– Remove the corresponding witness from the revocation information: W =W\{wrh}.
– Sign the updated revocation information: σ ← SIG.sign(sgk, (a,W,M) and append the signature to RI : RI = (a,W,M, σ).
– Output the updated RI .

ARC.RevTokenGen(rh, C, o,RI , rpk):

– Parse RI as (a,W,M, σ) and rpk as vk. Abort if SIG.Verify(vk, σ, (a,W,M)) = 0.
– Update the accumulator witness wrh :

For every new upmsg ∈ M since the last witness update:
[WL]: wrh ← ACCP.MemWitUpOnDel(rh, wrh , upmsg)
[BL]: wrh ← ACCN.NonMemWitUpOnAdd(rh, wrh , upmsg).

– Prove knowledge of wrh and rh such that wrh is a witness that rh is (not) in the accumulator a:
[WL]: rt ← ZKP.Prove[(rh, o, wrh) : Com.Verify(rh, C, o) = 1 ∧ ACCP.VerMem(a, rh, wrh) = 1](C, a).
[BL]: rt ← ZKP.Prove[(rh, o, wrh) : Com.Verify(rh, C, o) = 1 ∧ ACCN.VerNonMem(a, rh, wrh) = 1](C, a).

– Output rt.

ARC.RevTokenVer(rt, C,RI , rpk):

– Parse RI as (a,W,M, σ) and rpk as vk. Abort if SIG.Verify(vk, σ, (a,W,M)) = 0.
– Verify the proof:

[WL]: b← ZKP.Verify[(rh, o, wrh) : Com.Verify(rh, C, o) = 1 ∧ ACCP.VerMem(a, rh, wrh) = 1](C, a, rt).
[BL]: b← ZKP.Verify[(rh, o, wrh) : Com.Verify(rh, C, o) = 1 ∧ ACCN.VerNonMem(a, rh, wrh) = 1](C, a, rt).

– Output b.

Fig. 11. ARC algorithms using accumulators, for both the whitelisting and blacklisting approaches.

ARC Syntax. In an ARC, revocation is done via a special value called a revocation handle (rh) that can be
embedded into the revocable object, i.e., as a special attribute in a credential. rh is bound to the revocable object
with a signature. By using a commitment to rh, a proof that rh has not been revoked can be easily combined
with any other proof about rh– for example, that rh was signed in a credential, as shown in Section 4.4.

20

As described by Camenisch et al. [10], an ARC consists of the following algorithms: ARC.SPGen, ARC.RKGen,
ARC.RevTokenGen, ARC.Revoke, and ARC.RevTokenVer.

– Revocation parameters are generated using ARC.SPGen(sparg)→ sparr , and then added to the global system
parameters sparg.

– The revocation authority RA runs ARC.RKGen(sparr) → (rsk, rpk,RI) to generate the RA’s secret and
public keys (rsk, rpk) and the initial revocation information RI . RI contains all public data that parties
need in order to generate and verify proofs of non-revocation. RI can also be supplemented by privately held
witnesses.

– The RA can revoke a user based on her revocation handle rh by updating the revocation information RI :
ARC.Revoke(rh, rsk,RI)→ RI ′.

– A user who has a valid credential can generate a publicly verifiable token rt proving that her revocation
handle rh has not been revoked and that C is a commitment to rh. ARC.RevTokenGen(rh, C, o,RI , rpk)→ rt.
(For each new revocation token rt, the user generates a fresh commitment to rh in order to avoid making her
tokens linkable. (C, o, rh) can also be used in other proofs - for example, the user should also prove that rh
is an attribute of her credential.)

– A verifier can check such a token by running ARC.RevTokenVer(rt, C,RI , rpk)→ {0, 1}.

Note that ARC.RevTokenGen and ARC.RevTokenVer can be integrated into an interactive protocol if interactive
zero knowledge proofs are used instead of non-interactive ones.

Accumulator-Based ARC. Let ACCP and ACCN be a positive and a negative dynamic accumulator, respectively.
Let ZKP = (Prove,Verify) be a zero knowledge proof of knowledge system (as described in Section 4.4),
SIG = (KeyGen,Sign,Verify) be a signature scheme, and Com = (Commit,Verify) be a commitment scheme.

Let RS be a set of supported revocation handles, W be a list of all witnesses, and M be a list of all update
messages that are contained in the revocation information RI and are necessary for the witness updates.

In Figure 11, we describe our accumulator-based ARC. For clarity we describe two approaches in parallel: the
blacklist [BL] approach and the whitelist [WL] one. In the blacklist approach, only the revoked users’ revocation
handles are added to the accumulator. To prove that her credential has not been revoked, a user proves that
her revocation handle rh is not in the accumulator (by means of a non-membership witness). In the whitelist
approach all users’ revocation handles are added to the accumulator when their credentials are issued, and are
removed from the accumulator upon revocation. To prove that her credential has not been revoked, a user proves
that her revocation handle rh is in the accumulator (by means of a membership witness). Naturally, a positive
accumulator realizes the whitelist approach and a negative accumulator realizes the blacklist one.

Security Analysis of ARC With Accumulators. We now analyze the security of the accumulator-based
ARC constructions described in Figure 11. Here we only provide an intuition for the security properties and
recall the formal revocation security definitions from [10] in Appendix C.1 (Definitions 3–5).

Correctness. Correctness requires that whenever an honestly computed revocation information RI is used, an
honest user is able to successfully generate valid tokens.

Theorem 4. The ARC described in Figure 11 is correct (Definition 3 ([10]: Definition 4.4.1)).

The proof follows immediately from the correctness of the accumulator scheme and the properties of ZKP.

Soundness. Revocation soundness captures the following: to make the verifier accept, the user must know the
revocation handle contained in the commitment it computes a revocation token for. Further, nobody except for
the revocation authority can come up with a new valid revocation information, i.e., the revocation information is
always authentic. Finally, this revocation handle must not have been revoked in an earlier revocation step.

Theorem 5. Assuming that the accumulators ACCP and ACCN are adaptively sound, the signature scheme SIG
is existentially unforgeable, and the zero knowledge proof system ZKP is sound, then the ARC described in
Figure 11 is sound (Definition 4 ([10]: Definition 4.4.2)) in the random oracle model.

Proof. We prove this theorem by showing that a prover can only convince the verifier with negligible probability
for each of the three given winning conditions.

21

Case a: Assume that the adversary outputs (RIA, rt, C) such that the verifier accepts, but commitment
verification fails. By construction, a revocation token rt is a zero knowledge proof of knowledge of rh, o such
that Com.Verify(rh, C, o) = 1. Therefore, it follows from the soundness of ZKP that Com.Verify(rh, C, o) =
0 ∧ ARC.RevTokenVer(rt, C,RI , rpk) = 1 can only happen with negligible probability.
We note that here we consider the revocation component in isolation, without bridging it with any signature
or credential scheme. Therefore, it is not necessary to require the binding property from the commitment
scheme. When the revocation handle is used in any other proof (of a valid signature, etc.) the binding
property is required for the security of the overall system.

Case b: Assume that the adversary outputs (RIA, rt, C) such that the verifier accepts although the given
revocation information was never generated by the revocation authority. Then the following algorithm R can
be used to break the unforgeability of the underlying signature scheme SIG. Briefly, R behaves as follows.
– It runs ARC.SPGen and ARC.RKGen(sparr) as described in Figure 11, obtaining values rpk, RI and parr.
– It then calls A on input (rpk,RI , parr).
– For every call (Revoke, rh) to ORevoke, R computes the updated revocation information by requesting the

required signatures from the signing oracle.
– When A outputs (RIA, rt, C), R extracts the signature component σA of RIA (and removes the signature

from the RIA value itself.. If the signature σA does not verify on the signature-less RIA or if the signature
σA was previously returned by the signing oracle, R returns ⊥. Otherwise, R returns (RIA, σA).

It is easy to see that R succeeds in forging a signature as long as it does not output ⊥, which occurs with
non-negligible probability if A succeeds with non-negligible probability.

Case c: Assume that the adversary outputs (RIA, rt, C) such that the verifier accepts although the revocation
handle was previously revoked. Then through a sequence of games we can build a reduction to the adaptive
soundness property of the underlying accumulator scheme and the soundness of ZKP. Briefly, R uses the
adaptive soundness oracles to add and delete revocation handles from the accumulator, and then uses the
ZKPK extractor to extract the revocation handle and the corresponding membership witness. It then outputs
these revocation handle and witness as a forgery to the adaptive soundness challenger.

Privacy. Revocation privacy ensures that no adversary can tell which of two unrevoked revocation handles
rh0, rh1 underlies a revocation token.

Theorem 6. Assuming that the commitment scheme Com is hiding and that the zero knowledge proof system
ZKP is zero knowledge, the ARC described in Figure 11 is private (Definition 5 ([10]: Definition 4.4.3)).

As revocation tokens are zero knowledge, they do not leak any information about the revocation handle, and
the claim follows immediately.

Enabling Dynamic Revocation. In most large systems, it is insufficient to start with a fixed set of users, and
revoke users over time. Other users might need to be added to the system, or users’ revocation status might
need to be changed back to “un-revoked”. We extend the syntax described by Camenisch et al. [10] to include
this additional functionality; that is, we add a Join algorithm that allows the RA to add users to the system
after the initial setup has been performed.

For the whitelist approach, this reduces the computational complexity of the RA key generation algorithm
ARC.RKGen and the size of the revocation information RI , since the RA no longer needs to include all potential
users’ revocation handles in the initial whitelist accumulator. Users’ witnesses are no longer a part of RI , since
they are given to their intended holders when a Join is executed. Additionally, RevTokenGen algorithm takes a
witness as a separate input.

Let RU be a set of the revocation handles that are already in use. RU is initialized in ARC.RKGen, at which
time it is empty since we assume that initially there are no users in the system – they are now only added via
the Join algorithm. We describe the details of the Join algorithm in Figure 12.

The RA is usually asked to execute the Join algorithm by the issuer. When issuing a revocable credential,
the issuer requests a membership witness from the RA. If the user in question has previously joined - and
subsequently been revoked from - the system, the issuer gives the RA her revocation handle rh. Otherwise, the
RA generates a fresh revocation handle for the user. The issuer signs the revocation handle inside the credential,
and sends the credential together with rh and the witness to the user.

22

ARC.Join(rsk, rpk,RI , rh′)→ (wrh ,RI ′, rh): RA optionally receives a revocation handle rh′ (for a previously revoked user) as
input. (If the user is joining for the first time, the input rh′ is ⊥ and RA picks a fresh rh, which is returned to the user.) RA
then does the following:

– Parse RI as (a,M, σ), rpk as vk, and rsk as (sgk, sk,m). Abort if SIG.Verify(vk, σ, (a,M)) = 0 or if rh′ /∈ RS.
– If rh′ = ⊥, pick a fresh revocation handle rh′ ← RS\RU .
– Let rh = rh′.
– Add rh to RU .
– Update the accumulator value:

[WL]: (a,m,wrh , upmsg)← ACCP.Add(sk, a,m, rh).
[BL]: (a,m, urh , upmsg)← ACCN.Del(sk, a,m, rh).

– Let M =M∪ {upmsg}. wrh ← ACCN.NonMemWitCreate(sk, a,m, rh).
– Sign the updated revocation information: σ ← SIG.sign(sgk, (a,M)).
– Let RI = (a,M, σ).
– Output wrh and rh privately to the party that invoked the algorithm, and output RI publicly.

Fig. 12. Join algorithm.

If the Join algorithm changes the accumulator value, users need to update their witnesses to account for the
additions. Therefore, the ACCP.MemWitUpOnAdd (in the whitelist approach) or ACCN.NonMemWitUpOnDel (in
the blacklist approach) algorithms are used in ARC.RevTokenGen to bring the witness up to date.

Theorem 7. The ARC extended with the Join algorithm (Figure 12) is correct (Definition 6), sound (Definition
7), and private (Definition 8) if the commitment scheme Com is hiding, the zero knowledge proof system ZKP is
sound and zero knowledge, the accumulators ACCP and ACCN are adaptively sound, and the signature scheme
SIG is existentially unforgeable.

The proof is very similar to the one from the previous section and, therefore, omitted.

Join-Revoke Unlinkability. Before adding the Join algorithm, we did not have to worry about a user addition
being linkable with a user revocation, because we had no user additions. Now that we do have a Join algorithm,
though, this is a real concern; the revocation information could allow others to determine that the user revoked
just now was the user who joined two hours ago, and not the user who joined four hours ago.

More formally, join-revoke unlinkability ensures that no adversary can determine which joining session a
revocation corresponds to. This is similar to the blindness of blind signature schemes. The adversary should
be unable to guess which user out of two has joined, even if it can choose the revocation handles itself, can
arbitrarily join and revoke users, and can generate revocation tokens for all participants. Note, however, the
revocation authority parameters must be generated honestly, and thus this definition does not imply privacy.
We provide a formal definition for the join-revoke unlinkability in Appendix C.2 (Definition 9).

Theorem 8. The ARC extended with Join algorithm and instantiated with Braavos is join-revoke unlinkable
(Definition 9).

Using ARC with Braavos precludes join-revoke linkability, because joins are not reflected at all in the revocation
information.

5.2 Revocation for Anonymous Credentials Using Braavos: Performance Evaluation

In the previous section we discussed how one can construct an ARC using any dynamic accumulator that supports
zero-knowledge proofs of member knowledge (as well as any secure commitment scheme and any existentially
unforgeable signature scheme). In particular, the Braavos accumulator can be used, together with the zero
knowledge mechanisms described in Section 4.4 and Fujisaki-Okamoto commitments. Using Braavos is especially
efficient because during ARC.RevTokenGen, users only need to run MemWitUpOnDel, not MemWitUpOnAdd.

We now discuss the performance of a real anonymous credential system that uses an ARC with Braavos
to support revocation. The system we have tested is idemix [16].16 We left out key generation, as this is only
relevant at setup once.
16 https://abc4trust.eu/idemix

https://abc4trust.eu/idemix

23

Idemix binds multiple user attributes (e.g., name, age, citizenship status, or employer) into a single credential.
It allows a credential to be used in a number of ways, which are described in detail by Camenisch et al. [8].
Briefly, during credential presentation, a user can either simply prove that she has a valid credential (“proof of
possession”), she can reveal one or more attributes (“opening”, i.e., she can disclose that she is a citizen), or she
can describe attributes in a range (“range proof”, i.e., she can disclose that she is between 21 and 65 years old,
without revealing her actual age).

1A
tt0

Ran
ge

5A
tt0

Ran
ge

10
Att0

Ran
ge

20
Att0

Ran
ge

5A
tt5

Ran
ge

10
Att5

Ran
ge

20
Att5

Ran
ge

0

50

100

150

200

250

300

350

400

450

500

550

600

263.99 270.05 277.21 285.51
266.59

279.75
295.58295.73 302.11 308.8 315.08 308.1 317.71 325.9

32.03 39.79 45.25
62.81

307.29 318.42

374.1

77.46 81.66 88.62
106.05

352.44 364.65 374.1

28.02
41.69 53.12

80.13

388.21 399.38

434.13

79.42
103.92 112.14

127.97

441.18 447.39
475.02

R
un

tim
e

in
m

s

Iss. w/o Iss. w/
Pres. w/o Pres. w/
Verf. w/o Verf. w/

+
12

.0
2%

+
11

.8
7%

+
11

.4
0%

+
10

.3
6%

+
15

.5
7%

+
13

.5
7%

+
10

.2
5%

+
14

1.
84

%

+
10

5.
23

%

+
95

.8
9%

+
68

.8
4%

+
14

.6
9%

+
14

.5
2%

+
8.

77
%

+
18

3.
40

%

+
14

9.
27

%

+
11

1.
11

%

+
59

.7
0%

+
13

.6
4%

+
12

.0
2%

+
9.

42
%

Fig. 13. 1,024Bit Measurements

In Figures 13 and 14, we show the timings of credential issuance (“Iss.”), presentation (“Pres.”) and verification
(“Verf.”), with (“w/”) and without (“w/o”) the anonymous revocation component (ARC) with a 1024-bit and
2048-bit RSA modulus, respectively. We use credentials with 1, 5, 10, and 20 attributes. For all of those credentials,
we measure presentation consisting of a simple proof of possession. For credentials with 5, 10, and 20 attributes,
we also measure presentation consisting of 5 range proofs, to show that using our ARC in conjunction with more
realistic presentation policies only adds a marginal amount of run-time. On the x-axis, xAttyRange means that
the credential has x attributes and y range proofs are performed during presentation.

The measurements were performed locally on a machine with a Intel Quad-Core CPU with 2.70GHz, 16GB
of RAM and Java8u77. In total, 1,000 runs where taken and the figures represent the average run-time. The
precise numbers are given in Table 1 and Table 2.

24

1A
tt0

Ran
ge

5A
tt0

Ran
ge

10
Att0

Ran
ge

20
Att0

Ran
ge

5A
tt5

Ran
ge

10
Att5

Ran
ge

20
Att5

Ran
ge

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

789.47 801.01 803.61 830.46 797.68 804.73 836.67860.33 872.86 875.06 901.41 877.58 880.23 907.78

94.82 110.32 143.68
192.77

1,496.7
1,553.48 1,593.98

321.25 335.95
398.99 427.34

1,731.06 1,760.8 1,788.75

93.62 122.68
175.35

262.16

1,550.83
1,600.33

1,700.77

316.31 331.3
402.46

480.71

1,733.73 1,760.8
1,849.84

R
un

tim
e

in
m

s

Iss. w/o Iss. w/
Pres. w/o Pres. w/
Verf. w/o Verf. w/

+
8.

97
%

+
8.

96
%

+
8.

89
%

+
8.

54
%

+
10

.0
2%

+
9.

38
%

+
8.

50
%

+
23

8.
90

%

+
20

4.
52

%

+
17

7.
69

%

+
12

1.
68

%

+
15

.6
6%

+
13

.3
5%

+
12

.2
2%

+
23

7.
86

%

+
17

0.
05

%

+
12

9.
52

%

+
83

.3
0%

+
11

.7
9%

+
10

.0
3%

+
8.

76
%

Fig. 14. 2,048Bit Measurements

Table 1. Measurements 1,024 Bit

PPPPPPPAction
Spec. 1A0R 5A0R 10A0R 20A0R 5A5R 10A5R 20A5R

Iss. w/o 263.99 270.05 277.21 285.51 266.59 279.75 295.58
Iss. w/ 295.73 302.11 308.80 315.08 308.10 317.71 325.90
Overhead 12.02% 11.87% 11.40% 10.36% 15.57% 13.57% 10.25%
Gen. w/o 32.03 39.79 45.25 62.81 307.29 318.42 343.93
Gen. w/ 77.46 81.66 88.62 106.05 352.44 364.65 374.10
Overhead 141.84% 105.23% 95.85% 68.84% 14.69% 14.52% 8.77%
Verf. w/o 28.02 41.69 53.12 80.13 388.21 399.38 434.13
Verf. w/ 79.42 103.92 112.14 127.97 441.18 447.39 475.02
Overhead 183.40% 149.27% 111.11% 59.70% 13.64% 12.02% 9.42%

Conclusions. The revocation overhead for issuance is the same for all credential types, and is very small. For
presentation and verification, the revocation overhead is only significant for simple proofs of possession with few
attributes. In these cases, the absolute numbers are very small anyway, so the overhead is not a practical problem.
We think that having more attributes inside a credential and more complex presentations (e.g., involving range
proofs) is more realistic, and in the case of 1,024 Bit RSA-moduli and credentials with 20 attributes and 5 range

25

Table 2. Measurements 2,048 Bit

PPPPPPPAction
Spec. 1A0R 5A0R 10A0R 20A0R 5A5R 10A5R 20A5R

Iss. w/o 789.47 801.01 803.61 830.46 797.68 804.73 836.67
Iss. w/ 860.33 872.86 875.06 901.41 877.58 880.23 907.78
Overhead 8.97% 8.96% 8.89% 8.54% 10.02% 9.38% 8.50%
Gen. w/o 94.82 110.32 143.68 192.77 1,496.70 1,553.48 1,593.98
Gen. w/ 321.35 335.95 398.99 427.34 1,731.06 1,760.80 1,788.75
Overhead 238.90% 204.52% 177.69% 121.68% 15.66% 13.35% 12.22%
Verf. w/o 93.62 122.68 175.35 262.16 1,550.83 1,600.33 1,700.77
Verf. w/ 316.31 331.30 402.46 480.71 1,733.73 1,760.80 1,849.84
Overhead 237.86% 170.05% 129.52% 83.30% 11.79% 10.03% 8.76%

proofs, the overhead for a presentation and verification is less than 10%. Thus, anonymity-preserving revocation
using ARC with Braavos is practical, as it does not impact performance significantly. The advantages one gains
by achieving revocability is clearly worth the small price of 10% runtime overhead.

6 Acknowledgements

Jan Camenisch, Maria Dubovitskaya, and Kai Samelin were supported by the European Research Council under
grant agreement number 321310 (PERCY). The work of Foteini Baldimtsi, Leonid Reyzin, and Sophia Yakoubov
was supported, in part, by US NSF grants 1012798, 1012910, and 1422965. Foteini Baldimtsi performed this
work while at Boston University. Leonid Reyzin is grateful for the hospitality and support of IST Austria, where
part of this work was performed. Anna Lysyanskaya’s work was supported by US NSF grant 1422361.

References

1. M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu. Dynamic universal accumulators for DDH groups and their application
to attribute-based anonymous credential systems. In M. Fischlin, editor, Topics in Cryptology – CT-RSA 2009,
volume 5473 of Lecture Notes in Computer Science, pages 295–308. Springer, Heidelberg, Apr. 2009.

2. N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without trees. In W. Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 480–494.
Springer, Heidelberg, May 1997.

3. J. C. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital sinatures (extended
abstract). In T. Helleseth, editor, Advances in Cryptology – EUROCRYPT’93, volume 765 of Lecture Notes in
Computer Science, pages 274–285. Springer, Heidelberg, May 1994.

4. F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Preneel, editor, Advances in Cryptology
– EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 431–444. Springer, Heidelberg, May
2000.

5. C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polylogarithmic communica-
tion. In J. Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer
Science, pages 402–414. Springer, Heidelberg, May 1999.

6. P. Camacho. On the impossibility of batch update for cryptographic accumulators. Cryptology ePrint Archive,
Report 2009/612, 2009. http://eprint.iacr.org/2009/612.

7. P. Camacho, A. Hevia, M. A. Kiwi, and R. Opazo. Strong accumulators from collision-resistant hashing. In T.-C.
Wu, C.-L. Lei, V. Rijmen, and D.-T. Lee, editors, ISC 2008: 11th International Conference on Information Security,
volume 5222 of Lecture Notes in Computer Science, pages 471–486. Springer, Heidelberg, Sept. 2008.

8. J. Camenisch, M. Dubovitskaya, R. R. Enderlein, A. Lehmann, G. Neven, C. Paquin, and F. Preiss. Concepts and
languages for privacy-preserving attribute-based authentication. J. Inf. Sec. Appl., 19(1):25–44, 2014.

9. J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and efficient revocation for
anonymous credentials. In S. Jarecki and G. Tsudik, editors, PKC 2009: 12th International Conference on Theory and
Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 481–500. Springer,
Heidelberg, Mar. 2009.

http://eprint.iacr.org/2009/612

26

10. J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen, G. Neven, and M. Ø. Pedersen. Formal treatment of
privacy-enhancing credential systems. In Selected Areas in Cryptography - SAC 2015 - 22nd International Conference,
Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, volume 9566 of Lecture Notes in Computer
Science, pages 3–24. Springer, 2015.

11. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous
credentials. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 61–76. Springer, Heidelberg, Aug. 2002.

12. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In S. Cimato, C. Galdi, and
G. Persiano, editors, SCN 02: 3rd International Conference on Security in Communication Networks, volume 2576 of
Lecture Notes in Computer Science, pages 268–289. Springer, Heidelberg, Sept. 2003.

13. J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe primes. In
J. Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science,
pages 107–122. Springer, Heidelberg, May 1999.

14. J. Camenisch and M. Michels. Separability and efficiency for generic group signature schemes. In M. J. Wiener,
editor, Advances in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 413–430.
Springer, Heidelberg, Aug. 1999.

15. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups (extended abstract). In B. S. Kaliski
Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 410–424.
Springer, Heidelberg, Aug. 1997.

16. J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix anonymous credential system. In
V. Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications Security, pages 21–30. ACM
Press, Nov. 2002.

17. D. Catalano and D. Fiore. Vector commitments and their applications. In K. Kurosawa and G. Hanaoka, editors,
PKC 2013: 16th International Conference on Theory and Practice of Public Key Cryptography, volume 7778 of Lecture
Notes in Computer Science, pages 55–72. Springer, Heidelberg, Feb. / Mar. 2013.

18. I. Damg̊ard and N. Triandopoulos. Supporting non-membership proofs with bilinear-map accumulators. Cryptology
ePrint Archive, Report 2008/538, 2008. http://eprint.iacr.org/2008/538.

19. D. Derler, C. Hanser, and D. Slamanig. Revisiting cryptographic accumulators, additional properties and relations
to other primitives. In K. Nyberg, editor, Topics in Cryptology – CT-RSA 2015, volume 9048 of Lecture Notes in
Computer Science, pages 127–144. Springer, Heidelberg, Apr. 2015.

20. D. Derler, C. Hanser, and D. Slamanig. Revisiting cryptographic accumulators, additional properties and relations to
other primitives. Cryptology ePrint Archive, Report 2015/087, 2015. http://eprint.iacr.org/2015/087.

21. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In A. M.
Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, Heidelberg, Aug. 1987.

22. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations. In B. S.
Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages
16–30. Springer, Heidelberg, Aug. 1997.

23. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the random oracle. In J. Stern, editor,
Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 123–139.
Springer, Heidelberg, May 1999.

24. E. Ghosh, O. Ohrimenko, D. Papadopoulos, R. Tamassia, and N. Triandopoulos. Zero-knowledge accumulators and
set operations. Cryptology ePrint Archive, Report 2015/404, 2015. http://eprint.iacr.org/2015/404.

25. J. Lapon, M. Kohlweiss, B. D. Decker, and V. Naessens. Performance analysis of accumulator-based revocation
mechanisms. In Security and Privacy - Silver Linings in the Cloud - 25th IFIP TC-11 International Information
Security Conference, SEC 2010, Held as Part of WCC 2010, Brisbane, Australia, September 20-23, 2010. Proceedings,
volume 330 of IFIP Advances in Information and Communication Technology, pages 289–301. Springer, 2010.

26. J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership proofs. In J. Katz and M. Yung,
editors, ACNS 07: 5th International Conference on Applied Cryptography and Network Security, volume 4521 of
Lecture Notes in Computer Science, pages 253–269. Springer, Heidelberg, June 2007.

27. B. Libert, T. Peters, and M. Yung. Group signatures with almost-for-free revocation. In R. Safavi-Naini and
R. Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 571–589. Springer, Heidelberg, Aug. 2012.

28. H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In C.-S. Laih, editor, Advances
in Cryptology – ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 398–415. Springer,
Heidelberg, Nov. / Dec. 2003.

29. Y. Liu, W. Tome, L. Zhang, D. R. Choffnes, D. Levin, B. M. Maggs, A. Mislove, A. Schulman, and C. Wilson.
An end-to-end measurement of certificate revocation in the web’s PKI. In Proceedings of the 2015 ACM Internet
Measurement Conference, IMC 2015, Tokyo, Japan, October 28-30, 2015, pages 183–196. ACM, 2015.

http://eprint.iacr.org/2008/538
http://eprint.iacr.org/2015/087
http://eprint.iacr.org/2015/404

27

30. S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th Annual Symposium on Foundations
of Computer Science, pages 120–130. IEEE Computer Society Press, Oct. 1999.

31. T. Nakanishi, H. Fujii, Y. Hira, and N. Funabiki. Revocable group signature schemes with constant costs for signing
and verifying. In S. Jarecki and G. Tsudik, editors, PKC 2009: 12th International Conference on Theory and Practice
of Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 463–480. Springer, Heidelberg,
Mar. 2009.

32. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In J. Kilian, editor,
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 41–62. Springer,
Heidelberg, Aug. 2001.

33. L. Nguyen. Accumulators from bilinear pairings and applications. In A. Menezes, editor, Topics in Cryptology –
CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 275–292. Springer, Heidelberg, Feb. 2005.

34. H. C. Pöhls and K. Samelin. On updatable redactable signatures. In I. Boureanu, P. Owesarski, and S. Vaudenay,
editors, ACNS 14: 12th International Conference on Applied Cryptography and Network Security, volume 8479 of
Lecture Notes in Computer Science, pages 457–475. Springer, Heidelberg, June 2014.

35. L. Reyzin and S. Yakoubov. Efficient asynchronous accumulators for distributed PKI. Cryptology ePrint Archive,
Report 2015/718, 2015. http://eprint.iacr.org/2015/718.

36. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In J. Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 355–367. Springer, Heidelberg, Aug. 2001.

A Lower Bound on Total Communication in Negative Accumulators

Very importantly, note that unlike prior schemes in the standard model, in Braavos and BraavosB no witness
updates need to be performed when new elements are added to the accumulator. We achieve the lower bound
given by Camacho [6] which states that |d| deletions requires the total size of update messages upmsg to be of
size Ω(|d|) (we are ignoring the implicit factor of log |S| used in their proof). We prove that while achieving this
lower bound for dynamic accumulators, we cannot also support universality.

Theorem 9. In a negative (or universal) accumulator, |a| additions require the total size of update messages to
be of size Ω(|a|).

We prove this theorem in the style of Camacho [6].

Proof. Assume a witness holder has l non-membership witnesses. The accumulator manager then adds a set of
elements a to the accumulator. The witness holder must be able to determine which of the elements for which he
holds non-membership witnesses have been added to the accumulator, simply by bringing his non-membership
witnesses up to date and determining which of them are still valid. This must be true even if the witness holder
holds non-membership witnesses for a superset of a. Thus, the update messages must specify all of a. Specifying
a set a requires at least log (

(
l
|a|
)
) ≥ |a| log l

|a| bits of information. (The factor of log l
|a| can be ignored, as it is

implicit in the size of the elements.)

B BraavosB: Another Communication-Optimal Adaptively Sound Dynamic
Accumulator

In this section, we introduce the BraavosB accumulator, which is an instantiation of construction B from Figure 3.
BraavosB is a dynamic positive accumulator derived from a positive accumulator and a dynamic negative
accumulator. The positive accumulator is used to accumulate added elements, and the negative accumulator is
used to accumulate deleted elements. A proof of membership in BraavosB consists of a proof of membership
in the positive accumulator (that is, a proof that the element in question has been added) and a proof of
non-membership in the negative accumulator (that is, a proof that the element in question has not been deleted).
In Figures 15, 16 and 17, we provide a detailed description of the construction B/ BraavosB algorithms (in terms
of the two accumulators of which it is composed, the positive accumulator ACCP and the negative dynamic
accumulator ACCN).

Just like Braavos, we aim for BraavosB to be communication optimal, and to support of zero knowledge.
It might seem strange to be building a dynamic accumulator out of a negative accumulator which is already
dynamic; however, using the dynamic accumulator to accumulate deleted elements instead of added elements is
the key to saving on communication.

http://eprint.iacr.org/2015/718

28

Our choice of underlying positive accumulator ACCP in BraavosB is any existentially unforgeable digital
signature scheme (as long as it supports zero knowledge proofs of knowledge of a signature on a committed value).
Note that though construction B has a MemWitUpOnAdd algorithm, this algorithm is not used by BraavosB,
since digital signatures do not require membership updates.

The challenge that remains is instantiating ACCN; that is, building a negative dynamic accumulator that
supports efficient zero knowledge proofs and the efficient generation of non-membership witnesses. The Merkle
tree accumulator [7] does not fit the criteria, because it does not support efficient zero-knowledge proofs. The
RSA [3,11,26] and Bilinear Map [33,18,1] accumulators do not fit these criteria either, because for each of them,
generating a non-membership witness takes time linear in the number of accumulated elements. If the number of
accumulated elements is large, and the demand for non-membership witnesses is high, this can be prohibitive;
ideally, non-membership witnesses should be generated in constant time. To fill this need, we construct the
range-RSA accumulator, described in Appendix B.1. The range-RSA accumulator is the core technical piece of
the BraavosB accumulator.

Gen(1λ, ∅):

1. (ACCP.a,ACCP.m,ACCP.sk)← ACCP.Gen(1λ, ∅).
2. (ACCN.a,ACCP.m,ACCN.sk)← ACCN.Gen(1λ, ∅).
3. Let sk = (ACCP.sk,ACCN.sk).
4. Let a = (ACCP.a,ACCN.a).
5. Let m = (ACCP.m,ACCN.m).
6. Return (sk, a, m).

Add(sk, a,m, x):

1. (ACCP.a, ACCP.m, ACCP.w, ACCP.upmsg) ← ACCP.Add(ACCP.sk, ACCP.a, ACCP.m, x).
2. (ACCN.a, ACCN.m, ACCN.upmsg) ← ACCN.Del(ACCN.sk, ACCN.a, ACCN.m, x). (This should do nothing if x is not in ACCN

already.)
3. ACCN.u← ACCN.NonMemWitCreate(ACCN.sk, ACCN.a, ACCN.m, x).
4. Let w =(ACCP.w, ACCN.u).
5. Let upmsg =(ACCP.upmsg, ACCN.upmsg).
6. Return (a, m, w, upmsg).

Del(sk, a,m, x):

1. (ACCN.a, ACCN.m, ACCN.upmsg) ← ACCN.Add(ACCN.sk, ACCN.a, ACCN.m, x).
2. Return (a,m,ACCN.upmsg).

MemWitCreate(sk, a,m, x, (upmsg1, . . . , upmsgt)):

1. ACCP.w ← ACCP.MemWitCreate((ACCP.sk, ACCP.a, ACCP.m, x, (ACCP.upmsg1, . . . ,ACCP.upmsgt)).
2. ACCN.u← ACCN.NonMemWitCreate((ACCN.sk, ACCN.a, ACCN.m, x, (ACCN.upmsg1, . . . ,ACCN.upmsgt)).
3. Return w = (ACCP.w,ACCN.u).

Fig. 15. Construction B from Figure 3 accumulator manager algorithms (Gen, Add and Del), in terms of the underlying
positive accumulator ACCP and negative dynamic accumulator ACCN. In all of these algorithms, we assume that
a = (ACCP.a,ACCN.a), and m = (ACCP.m,ACCN.m).

B.1 Range-RSA: A Dynamic Negative Accumulator

In this section, we present the range-RSA accumulator. This accumulator is a modified version of the RSA
accumulator. Like the Merkle tree accumulator of Camacho et. al [7], the range-RSA accumulator is based on
ranges; it accumulates ranges in a positive RSA accumulator [11]. All elements belonging to such a range are
considered to be non-members; so, a proof of non-membership of x in the range-RSA accumulator would just be
a proof that some range (low, high) is in the underlying positive RSA accumulator, and that low ≤ x ≤ high. 17

17 Note that range-RSA can be made universal by using open ranges instead of closed ones. A proof of non-membership
of x in the range-RSA accumulator would be a proof that some range (low, high) is in the underlying positive RSA
accumulator, and low < x < high. Then, the range-RSA accumulator would support proofs of membership as well as
proofs of non-membership. A proof of membership of x in the range-RSA accumulator would be a proof that some

29

MemWitUpOnAdd(a, x, w, upmsg):

1. Parse (ACCP.upmsg,ACCN.upmsg) = upmsg.
2. Parse (ACCP.w,ACCN.u) = w.
3. ACCN.w ← ACCN.MemWitUpOnDel(x, ACCN.u, ACCN.upmsg).
4. ACCP.w ← ACCP.MemWitUpOnAdd(x, ACCP.w, ACCP.upmsg).
5. Return w = (ACCP.w,ACCN.u).

MemWitUpOnDel(a, x, w, upmsg):

1. Parse (ACCP.w,ACCN.u) = w.
2. ACCN.u← ACCN.NonMemWitUpOnAdd(x, ACCN.u, upmsg).
3. Return w = (ACCP.w,ACCN.u).

The witness holder can run BatchMemWitUpOnDel immediately before producing a proof.

Fig. 16. Construction B from Figure 3 witness holder algorithms (MemWitUpOnAdd and MemWitUpOnDel), in terms of
the underlying positive accumulator ACCP and negative dynamic accumulator ACCN. Note that when Construction B is
instantiated with a digital signature scheme as the positive accumulator ACCP (as in the BraavosB construction), there is
no need for a MemWitUpOnAdd algorithm.

VerMem(a, x, w):

1. Parse (ACCP.a,ACCN.a) = a.
2. Parse (ACCP.w,ACCN.u) = w.
3. Let b1 ← ACCP.VerMem(ACCP.a, x,ACCP.w)
4. Let b2 ← ACCN.VerNonMem(ACCN.a, x,ACCN.u)
5. Return 1 if b1 = b2 = 1, and return 0 otherwise.

Fig. 17. Construction B from Figure 3third party algorithms (VerMem), in terms of the underlying positive accumulator
ACCP and negative dynamic accumulator ACCN.

A range-RSA accumulator can be instantiated empty; the Gen algorithm then creates an empty positive
RSA accumulator, and adds (low, high) to it (where low is smaller than the smallest supported element and
high is the highest supported element). Informally, when an element x is added to the range-RSA accumulator,
the range containing x is deleted from the underlying positive RSA accumulator. To replace that range, at
most two new ranges are added, covering all of the other elements in the deleted range. When an element x is
deleted from the range-RSA accumulator, at most two ranges containing x’s direct neighbors are deleted from
the underlying positive RSA accumulator. A new range, which covers x together with the deleted ranges, is
added. The accumulator manager stores all of the range membership witnesses. Each range membership witness
functions as the non-membership witness for all of the elements in that range; so, producing a non-membership
witness is a simple matter of a look-up. In Appendix B.2, we spell out all of the details of range-RSA accumulator
algorithms.

What remains is the question of how one accumulates ranges in the underlying positive RSA accumulator.
This accumulator requires that all accumulated elements (in our case, ranges) be mapped to prime numbers
using some canonical function f . We choose a function f that is particularly well-suited for use with efficient
zero-knowledge proofs. We define f(low, high) to choose an integer suffix such that p = low||high||suffix is a prime
number, where || denotes concatenation, and each of low, high and suffix use a fixed number l of bits. (Assuming
that prime numbers are dense, for a sufficiently large l such a suffix will always exist.) Our choice of f allows
f(low, high) to be expressed using arithmetic operations: f(low, high) = 22llow + 2lhigh + suffix.

Notice that the range-RSA accumulator can only accumulate elements x such that 0 ≤ x ≤ 2l − 1. This can
be avoided in one of two ways: by allowing l to depend on the range (low, high) in question and encoding l as
part of the f output, or by using a collision-resistant hash function to map all elements to l-bit binary strings.

range (low, high) is in the underlying positive RSA accumulator, with x = low or x = high or both. However, we do
not make this simple modification in this paper, because the zero-knowledge proofs described in Section B.4 are more
efficient for closed ranges. We do not discuss proofs of membership in the range-RSA accumulator any further, as we
only use range-RSA to prove non-membership.

30

For the rest of this paper, we only consider the accumulation of elements x such that 0 ≤ x ≤ 2l − 1, since that
is sufficient for the anonymous revocation application described in Section 5.

Theorem 10. The range-RSA accumulator is a adaptively sound negative dynamic accumulator under the
strong RSA assumption.

Proof (Sketch). In order to break the adaptive soundness of the range-RSA accumulator, an adversary would
need to compute a non-membership witness u for an element x that is actually in the accumulator. This is
equivalent to computing a membership witness w for r = f(low, high) such that low ≤ x ≤ high in the underlying
positive RSA accumulator. No such r is actually in the underlying positive RSA accumulator, so this would
require breaking the security of the positive RSA accumulator, which is hard under the strong RSA assumption.

Properties other than security (such as completeness) are self-evident.

B.2 Range-RSA Accumulator Algorithms

In this section, we describe the algorithms of the range-RSA accumulator introduced in Appendix B.1. Recall
that f(low, high) is a function that can be applied to ranges to get a prime integer of the form p = low||high||suffix,
where || denotes concatenation, and each of low, high and suffix have a fixed number l of bits assigned to them.
suffix can be any value which makes p prime.

Let RSA.Gen, RSA.Add, RSA.MemWitUpOnAdd, RSA.Del, RSA.MemWitUpOnDel and RSA.VerMem be the
protocols the dynamic RSA accumulator [11]. The protocols of the range-RSA accumulator are described in
Figures 18, 19 and 20.

B.3 BraavosB Soundness

The BraavosB accumulator uses Camenisch-Lysyanskaya (CL) signatures [12] as the underlying positive accumula-
tor ACCP, and the range-RSA accumulator as the underlying dynamic negative accumulator ACCN. CL signatures
are existentially unforgeable under the strong RSA assumption. Recall that the range-RSA accumulator is secure
under the same assumption. By Theorem 1, this implies that the BraavosB accumulator is an adaptively sound
positive dynamic accumulator under the strong RSA assumption.

Properties other than adaptive soundness (such as completeness) are self-evident.

B.4 Adding Zero Knowledge to BraavosB

Zero-Knowledge Proofs of Non-Member Knowledge in Range-RSA.
The range-RSA accumulator supports efficient zero-knowledge proofs of non-member knowledge. To prove

knowledge of a non-member, a witness holder proves knowledge of values (x,w, r, low, high, suffix) such that

1. low ≤ x ≤ high,
2. r = low ∗ 22l + high ∗ 2l + suffix, and
3. wr ≡ a mod n (where n is the appropriate RSA integer).

Given that the witness holder (also referred to as the prover) wants to keep all of x, low and high secret, she
will first commit to all of x,w, r, low, high and suffix, and then use those commitments to prove statements about
the underlying values. A suitable commitment scheme is the Fujisaki-Okamoto (FO) commitment scheme [22].

For all the statements that the witness holder needs to prove, there exist standard techniques in the literature.
These techniques, together with their conjunctions, come from a standard zero knowledge proof toolbox:

– proofs of knowledge of a committed value (i.e. knowledge of discrete logarithm representation modulo a
composite [22]),

– proofs of equality of committed values (i.e. proof of knowledge of equality of discrete logarithms modulo a
composite (or two different composites) [14]), and

– proofs that a committed value is the product of two other committed values [13].

31

Gen(1λ):

1. (RSA.sk,RSA.a)← RSA.Gen(1λ, ∅)
2. Let r = f(low, high), where low denotes 0, and high denotes 2l.
3. (RSA.a,RSA.w,RSA.upmsg)← RSA.Add(RSA.a, r)
4. Let sk = RSA.sk.
5. Let a = RSA.a.
6. Let m = [((low, high), r,RSA.w)].
7. Return (sk, a, m).

NonMemWitCreate(x,m):

1. Find the entry ((low, high), r,RSA.w) in m such that low ≤ x ≤ high.
2. If no such element exists, then x is a member of the accumulator: return ⊥.
3. Otherwise, return u = (r,RSA.w).

Add(sk, a,m, x) (executed by the accumulator manager):

1. Let =← [].
2. Find ((low, high), r, w) in m such that low ≤ x ≤ high. If no such element exists, then x is already a member and no work

remains to be done. Otherwise, continue.
3. Remove ((low, high), r, w) from m.
4. (RSA.a,RSA.m,RSA.upmsg)← RSA.Del(RSA.sk,RSA.a, r).
5. Add RSA.upmsg to upmsg.
6. If x 6= low:

(a) Let rl = f(low, x− 1).
(b) (RSA.a,RSA.wl,RSA.upmsgl)← RSA.Add(RSA.a, rl).
(c) Add RSA.upmsgl, RSA.wl and rl to upmsg.
(d) Add ((low, x− 1), rl,RSA.wl) to m.

7. If x 6= high:
(a) Let rh = f(x+ 1, high).
(b) (RSA.a,RSA.wh,RSA.upmsgh)← RSA.Add(RSA.a, rh).
(c) Add RSA.upmsgh, RSA.wh and rhigh to upmsg.
(d) Add ((x+ 1, high), rh,RSA.wh) to m.

8. Let a = RSA.a.
9. Return (a,m, upmsg).

Del(sk, a,m, x) (executed by the accumulator manager):

1. If there exists ((low, high), r, w) in m such that low ≤ x ≤ high, then x is already a non-member: return ⊥. Otherwise,
continue.

2. Let upmsg = [].
3. Let low = x− 1 and high = x+ 1.
4. If there exists ((l, low), rl, RSA.wl) for some l in m:

(a) (RSA.a,RSA.m,RSA.upmsgl)← RSA.Del(RSA.sk,RSA.a, rl).
(b) Add RSA.upmsgl to upmsg.
(c) Delete ((l, low), rl,RSA.wl) from m.
(d) Let low = l.

5. If there exists ((high, h), rh, RSA.wh) for some h in m:
(a) (RSA.a,RSA.m,RSA.upmsgh)← RSA.Del(RSA.sk,RSA.a, rh).
(b) Add RSA.upmsgh to upmsg.
(c) Delete ((high, h), rh,RSA.wh) from m.
(d) Let high = h.

6. r = f(low, high).
7. (RSA.a,RSA.m,RSA.w,RSA.upmsg)← RSA.Add(RSA.sk,RSA.a, r).
8. Add r, RSA.w and RSA.upmsg to upmsg.
9. Add ((low, high), r,RSA.w) to m.

10. Let a = RSA.a.
11. Return (a,m, upmsg).

Fig. 18. Range-RSA accumulator manager algorithms (Gen, NonMemWitCreate, Add and Del).

All of the above-mentioned proofs are sound under the strong RSA assumption.
More specifically, to prove item 1 in the list above, the witness holder will use a range proof [4,28]. A range

proof involves showing that x− low ≥ 0 and that high− x ≥ 0. To do so, one can use the observation that any
non-negative number can be represented as a sum of four squares. The prover would have to find these four
squares for each of x− low and high− x, commit to them, and use commitment equality and product proofs to
demonstrate that each of x− low and high− x is, in fact, a sum of four squares.

To prove item 2, the witness holder will again have to use commitments to all of the elements in question:
r, low, high and suffix. She will then use the homomorphic properties of FO commitments to obtain a single

32

NonMemWitUpOnAdd(x, u, upmsg) (executed by the witness holder upon receipt of upmsg):

1. Parse (r,RSA.w) = u.
2. Parse (RSA.upmsg, rl, RSA.wl, RSA.upmsgl, rh, RSA.wh, RSA.upmsgh) = upmsg.
3. If RSA.upmsgl 6= ⊥:

(a) If x is in the range denoted by rl: return (rl,RSA.wl).
(b) Otherwise: RSA.w = RSA.MemWitUpOnAdd(x, RSA.w, RSA.upmsgl).

4. If RSA.upmsgh 6= ⊥:
(a) If x is in the range denoted by rh: return (rh,RSA.wh).
(b) Otherwise: RSA.w ← RSA.MemWitUpOnAdd(x, RSA.w, RSA.upmsgh).

5. If RSA.upmsg 6= ⊥: RSA.w ← RSA.MemWitUpOnDel(x,RSA.w,RSA.upmsg)
6. Return u = (r,RSA.w).

NonMemWitUpOnDel(a, x, u, upmsg) (executed by the witness holder upon receipt of upmsg):

1. Parse (r,RSA.w) = u.
2. Parse (RSA.upmsgl, RSA.upmsgh, r′, RSA.w′, RSA.upmsg)= upmsg.
3. If x is in the range denoted by r′:

(a) Return (r′,RSA.w′)
4. Otherwise:

(a) If RSA.upmsgl 6= ⊥: RSA.w ← RSA.MemWitUpOnDel(x,RSA.w,RSA.upmsgl).
(b) If RSA.upmsgh 6= ⊥: RSA.w ← RSA.MemWitUpOnDel(x,RSA.w,RSA.upmsgh).
(c) If RSA.upmsg 6= ⊥: RSA.w ← RSA.MemWitUpOnAdd(x,RSA.w,RSA.upmsg).
(d) Return u = (r,RSA.w).

Fig. 19. Range-RSA witness holder algorithms (NonMemWitUpOnAdd and NonMemWitUpOnDel).

VerNonMem(at, x, u) (executed by any third party):

1. Parse w = (r,RSA.w).
2. b1 ← RSA.VerMem(RSA.a, r,RSA.w)
3. b2 = 1 if x is in the range represented by r, and b2 = 0 otherwise.
4. Return 1 if b1 = b2 = 1, and return 0 otherwise.

Fig. 20. Range-RSA third party algorithm (VerNonMem).

commitment to low ∗ 22l + high ∗ 2l + suffix, and use a commitment equality proof to show that the resulting
commitment is to r.

Finally, to prove item 3, the witness holder will show that a committed value has been accumulated. Range-
RSA uses the CL-RSA accumulator [11] as an underlying building block, so this proof will be done as described
by Camenisch and Lysyanskaya [11].

Note that most of these proofs require interaction between the prover and the verifier. One could apply the
Fiat-Shamir heuristic [21] to obtain a non-interactive zero-knowledge proof, but this would require assuming
random oracles.
Zero-Knowledge Proofs of Member Knowledge in BraavosB.

To prove member knowledge for BraavosB in zero knowledge, a witness holder would have to compute the
following zero-knowledge proof (described using Camenisch-Stadler [15] notation):

ZKP[(x, r,ACCA.w,ACCNA.w) :
∧ ACCP.VerMem(ACCP.a, x,ACCP.w)
∧ ACCN.VerNonMem(ACCN.a, x,ACCN.u)

](ACCNA.a,ACCA.a)

Where ACCP is the signature scheme SIGCL = (KeyGen,Sign,Verify) due to Camenisch and Lysyanskaya [12],
and ACCN is the range-RSA accumulator.

If integration into a larger system (where it is important to be able to link the witnesses used in the proof
to other statements) is desired, the witness holder computes commitments to the membership witness ACCP.w

33

and non-membership witness ACCN.u: (C1, o1) = Com.Commit(ACCP.w) and (C2, o2) = Com.Commit(ACCN.u),
where o1 and o2 are decommitment values. The proof is then enhanced, as follows:

ZKP[(x,ACCP.w,ACCN.u, o1, o2) :
Com.Verify(C1,ACCP.w, o1)
∧ Com.Verify(C2,ACCN.u, o2)
∧ ACCP.VerMem(ACCP.a, x,ACCP.w)
∧ ACCN.VerNonMem(ACCN.a, x,ACCN.u)

](ACCP.a,ACCN.a, C1, C2)

For concrete descriptions of the individual clauses of this proof, please refer to Fujisaki and Okamoto [22] and
Camenisch and Lysyanskaya [12,11].

C Security of ARC

In this section we provide the security definitions for ARC. We first recall the revocation security definitions
from [10] and then modify them to incorporate the Join algorithm.

C.1 Recalling Security Definitions by Camenisch et al.

Here, we recall the security definitions given by Camenisch et al. [10].

Correctness. Correctness requires that whenever an honestly computed revocation information RI is used, an
honest user is able to successfully generate valid tokens.

Definition 3 (Revocation Correctness). There exists a negligible function ν such that the following holds
for all ordered sets RS of revocation handles and rh′ /∈ RS:

Pr
[
RevTokenVer(rt, c′,RI , rpk) = 0 :

sparg ← SPGeng(1λ), sparr ← SPGen(sparg),
(C ′, o′)← Commit(rh′), (rsk, rpk,RI)← RKGen(sparr),
RI ← Revoke(rsk,RI , rh) ∀rh ∈ RS,

rt ← RevTokenGen(rh′, C ′, o′,RI , rpk)
]
≤ ν(λ) .

Soundness. Revocation soundness captures the following: to make the verifier accept, the user must know the
revocation handle contained in the commitment it computes a revocation token for. Further, nobody except for
the revocation authority can come up with a new valid revocation information, i.e., the revocation information is
always authentic. Finally, this revocation handle must not have been revoked in an earlier revocation step.

We, however, would like to slightly correct the original definition to eliminate a small flaw. Namely, for an
empty revocation list, if RIA = RI 0, all revocation handles will potentially verify, as nothing is revoked, but
RI 0 is not in L.

Definition 4 (Revocation Soundness). A revocation scheme is sound if there exists an efficient algorithm
Er = (Er

1,Er
2), called the extractor, that satisfies the following properties:

– Er
1 outputs parameters and trapdoors, such that the parameters are indistinguishable from correctly computed

system parameters:

{sparr : sparr ← SPGen(SPGeng(1λ, λ))} ∼
{sparr : (sparr , τr)← Er

1(SPGeng(1λ))} ,

and

34

– for every efficient adversary A there exists a negligible function such that:

Pr
[
RevTokenVer(rt, C,RIA, rpk) = 1 ∧ L 6= ∅ ∧(

Verify(C, rh, o) = 0 ∨ @ (RIA, ∗, ∗) ∈ L ∨

∃ (RIA, epoch, ∗), (RI ′, epoch′, rh) ∈ L : epoch′ ≤ epoch
)

:

(sparr , τr)← Er
1(SPGeng(1λ)), (rsk, rpk,RI 0)← RKGen(sparr),

(RIA, rt, C)← AO
ra

(rpk,RI 0, sparr),

(rh, o)← Er
2(τr, rpk, rt, C)

]
≤ ν(λ).

Here, ′∗′ denotes a wildcard, the oracle Ora simulates an honest revocation authority as follows, where initially
L = ∅ and epoch = 0:

– On input (revoke, rh) for some revocation handle rh ∈ RS, the oracle first revokes rh by computing
RI ′ ← Revoke(rsk,RI , rh). It then updates its internal state as RI ← RI ′ and epoch ← epoch + 1. It then
adds (RI , epoch, rh) to L, and hands back the updated revocation information RI to the adversary.

Privacy. Revocation privacy ensures that no adversary can tell which of two unrevoked revocation handles
rh0, rh1 underlies a revocation token. It is formally defined through the following experiment.

Definition 5 (Revocation Privacy). A revocation scheme is private, if for every efficient adversary A there
exists a negligible function ν such that the following holds:

Pr
[
b′ = b ∧ rt0 6= ⊥ ∧ rt1 6= ⊥ :

sparg ← SPGeng(1λ), sparr ← SPGen(sparg),
(rpk,RI , rh0, rh1, state)← A(sparr), (Ci, oi)← Commit(rhi),
rti ← RevTokenGen(sparr , rhi, Ci, oi,RI , rpk), i = 0, 1,

b← {0, 1}, b′ ← A(Cb, rtb, state)
]
≤ 1

2 + ν(λ) .

C.2 Security Definitions for ARC with Join

We now modify the security definitions of the ARC to incorporate the Join algorithm.

Correctness. It is required that whenever an honestly computed revocation information is used, an honest user is
able to successfully generate valid tokens after Join is run on her rh and either her rh was not revoked before or
rh was unrevoked afterwards (by running Join again on the same rh).

Definition 6 (Revocation Correctness). There exists a negligible function ν such that the following holds
for any rh ∈ RS and for all possible lists RO of operations (Join, tj , rh) and (Revoke, tr, rh) performed on the
revocation handle rh:

Pr
[
RevTokenVer(rt, c′,RI , rpk) = 0 ∧

(
∃(Join, epoch, rh) ∈ RO s.t. @(Revoke, epoch′, rh) ∈ RO

for which epoch′ > epoch
)

:
sparg ← SPGeng(1λ), sparr ← SPGen(sparg), (C ′, o′)← Commit(rh), (rsk, rpk,RI)← RKGen(sparr),

rt ← RevTokenGen(rh, C ′, o′,RI , rpk)
]
≤ ν(λ) .

where epoch denotes sequence numbers of the join and revoke operations, respectively.

35

Soundness. First, we note that the soundness definition (Def. 4) can be simplified as follows: instead of providing
the revocation information itself, the adversary can just reference the version of RI with respect to which
it outputs the proof. The second winning condition, therefore, can be omitted as the “unforgeability” of the
revocation information itself can be achieved by the RA signing the revocation information at the time of every
update. This can be done outside of the scope of ARC and thus we remove signing revocation information from
the algorithms.

Intuitively, the soundness requires the following: to make the verifier accept: (1) the user must know the
revocation handle contained in the commitment it computes a revocation token for; (2) the revocation handle
must not be in the revoked state with respect to the version of the revocation information it refers to.

Definition 7 (Revocation Soundness). A revocation scheme is sound if there exists an efficient algorithm
Er = (Er

1,Er
2), called the extractor, that satisfies the following properties:

– Er
1 outputs parameters and trapdoors, such that the parameters are indistinguishable from correctly computed

system parameters:

{sparr : sparr ← SPGen(SPGeng(1λ, λ))} ∼
{sparr : (sparr , τr)← Er

1(SPGeng(1λ))} ,

and
– for every efficient adversary A there exists a negligible function such that:

Pr
[
RevTokenVer(rt, C,RI , rpk) = 1 ∧(

Verify(C, rh, o) = 0 ∨ (∀ (RI ,V) ∈ L : rh /∈ V)
)

:

(sparr , τr)← Er
1(SPGeng(1λ)), (rsk, rpk,RI 0)← RKGen(sparr),

(rt, C)← AO
ra

(rpk,RI 0, sparr),

(rh, o)← Er
2(τr, rpk, rt, C)

]
≤ ν(λ).

Here, the oracle Ora simulates an honest revocation authority as follows, where initially L = ∅ and V = ∅:

– On input (join, rh), the oracle first checks if rh ∈ V, it does nothing. Else, it runs (wrh,RI ′, rh′) ←
Join(rsk, rpk,RI , rh) and sets V ← V ∪ {rh′}. It then updates its internal state as RI ← RI ′. It then adds
(RI ,V) to L, and hands back the updated revocation information RI ′ to the adversary.

– On input (revoke, rh) for some revocation handle rh ∈ RS, the oracle first checks if rh ∈ V. If not it aborts.
If yes, it revokes rh by computing RI ′ ← Revoke(rsk,RI , rh). It then sets V ← V \ {rh} and adds (RI ,V) to
L, and hands back the updated revocation information RI ′ to the adversary.

Privacy. Revocation privacy ensures that no adversary can tell which of two non-revoked revocation handles
underlies a revocation token.

Definition 8 (Revocation Privacy). A revocation scheme is private, if for every efficient adversary A there
exists a negligible function ν such that the following holds:∣∣∣∣Pr

[
b′ = b ∧ rt0 6= ⊥ ∧ rt1 6= ⊥ :

sparg ← SPGeng(1λ), sparr ← SPGen(sparg),
(rpk,RI , rh0, rh1, state)← A(sparr), (Ci, oi)← Commit(rhi),
rti ← RevTokenGen(sparr , rhi, Ci, oi,RI , rpk), i ∈ {0, 1},

b← {0, 1}, b′ ← A(Cb, rtb, state)
]
− 1

2

∣∣∣∣ ≤ ν(λ) .

36

Experiment Join/Revoke-UnlinkabilityARC
A (λ)

d← {0, 1};
sparg ← SPGeng(1λ); sparr ← SPGenr(sparg); (rsk, rpk,RI)← RKGen(sparr);
(state, rh0, rh1, b)← AO

ra
(sparg, sparr , rpk,RI),

where oracle Ora is an honest revocation authority as defined in the ARC-component.
If rh0 and rh1 are both in the same state (where the state could be one of never-joined, joined, or revoked) do nothing;
else put them into the same state based on the adversary’s choice:

Let RI be the current revocation information.
For i = 0, 1, let (wrh ,RI , rhi)← Join(rsk, rpk,RI , rhi).
If b = 1, for i = 0, 1, let RI ← Revoke(rsk, rpk,RI , rhi).

d′ ← AO
ra′ ,Ouser′

(state,RI),
where oracle Ora′ is a revocation authority with the following behavior:

On input (joinrh, rh):
Ignore, if rh ∈ {rh0, rh1} or rh is currently joined.
Let (wrh ,RI , rh)← Join(rsk, rpk,RI , rh).
Return RI , and the witness wrh , to the adversary.

On input (joinb, b):
Ignore, if b /∈ {0, 1} or rhb⊕d is currently joined.
Let (wrhb⊕d ,RI , rhb⊕d)← Join(rsk, rpk,RI , rhb⊕d).
Return RI , and save the witness wrhb⊕d for further usage.

On input (revoke, rh):
If rh ∈ {rh0, rh1}, do:

If not both rh0 and rh1 are currently joined, ignore.
Let RI 0 ← Revoke(rsk, rpk,RI , rh0); RI 1 ← Revoke(rsk, rpk,RI 0, rh1).
Return (RI 0,RI 1) to the adversary;

else do:
Let RI ← Revoke(rsk, rpk,RI , rh).
Return RI to the adversary.

The oracle Ouser′ behaves as follows:
On input (generate, rh), ignore, if rh /∈ {rh0, rh1} or not both rh0 and rh1 are in a joined state.
Let (C, o)← Commit(rhb).
Let rt ← RevTokenGen(sparr , rhb, C, o,RI , rpk).
Return (rt, C).

return 1, if d′ = d
return 0.

Fig. 21. Join/Revoke Unlinkability

Join-Revoke Unlinkability. Join/Revoke Unlinkability ensures that no adversary can decide to which joining
session a revocation corresponds to. This is related to the blindness of blind signature schemes, in the sense
that the adversary has to guess which user out of two has joined, even if it can choose the revocation handles
itself, and can arbitrarily join and revoke users, yet can also generate revocation tokens for all participants. Note,
however, the revocation authority parameters are generated honestly, and thus this definition does not imply
privacy.

Definition 9 (Join/Revoke Unlinkability). A revocation component ARC is called join/revoke-unlinkable, if
for any PPT adversary A there exists a negligible function ν such that:∣∣∣∣Pr[Join/Revoke-UnlinkabilityARC

A (λ) = 1]− 1
2

∣∣∣∣ ≤ ν(λ)

The corresponding experiment is depicted in Figure 21.

Briefly, the experiment is defined as follows. Given the honestly generated parameters, the adversary outputs
two revocation handles of its choice. If these handles do not share the same state (never-joined, joined, or revoked)
then a bit b indicates which state both handles should be put in (either joined or revoked). Before outputting the

37

challenge revocation handles, the adversary has access to the oracle that acts as an honest revocation authority
and can generate presentation tokens by itself.

After producing the challenge revocation handles, the adversary can query two oracles: the first one acts
like a standard revocation authority with respect to all but the challenge revocation handles. The challenge
ones it handles as follows. Upon a revocation request it revokes both challenge revocation handles if both are
in the joined state, otherwise, ignores the request. Upon a join request it joins either the requested challenge
revocation handle or the other one based on the bit d (if it is not in the joined state already). It does not return
the corresponding witness to the adversary though, since it may leak the information about which handle was
joined. Without the witness the adversary cannot generate presentation tokens for the challenge handles by itself.
Thus, it can obtain those tokens by querying the second oracle that outputs presentation tokens for a challenge
revocation handle only if both challenge handles are in the joined state. Note that the revocation information
RI is altered after the different states.

	Accumulators with Applications to Anonymity-Preserving Revocation
	Introduction
	Our Contributions

	Definitions: A Modular View of Accumulator Functionality
	Accumulator Algorithms
	Accumulator Security Properties

	Modular Accumulator Constructions
	Leveraging Accumulators with Different Functionalities
	Leveraging Less Secure Accumulators

	Braavos: A Communication-Optimal Adaptively Sound Dynamic Accumulator
	CL-RSA-B: A Communication-Optimal Non-Adaptively Sound Dynamic Accumulator
	Braavos Soundness
	Comparison with Other Constructions
	Adding Zero Knowledge to Braavos

	Anonymous Revocation from Accumulators
	Anonymous Revocation Component (ARC) with Accumulators
	Revocation for Anonymous Credentials Using Braavos: Performance Evaluation

	Acknowledgements
	Lower Bound on Total Communication in Negative Accumulators
	BraavosB: Another Communication-Optimal Adaptively Sound Dynamic Accumulator
	Range-RSA: A Dynamic Negative Accumulator
	Range-RSA Accumulator Algorithms
	BraavosB Soundness
	Adding Zero Knowledge to BraavosB

	Security of ARC
	Recalling Security Definitions by Camenisch et al.
	Security Definitions for ARC with Join

