
Practical Passive Leakage-Abuse Attacks
Against Symmetric Searchable Encryption

Matthieu Giraud1, Alexandre Anzala-Yamajako2, Olivier Bernard2, and Pascal
Lafourcade1

1 LIMOS, Université Clermont Auvergne
BP 10448, F-63000, Clermont-Ferrand, France,

firstname.lastname@uca.fr
2 Laboratoire CHiffre, Thales Communication & Security

4 avenue des Louvresses 92622 Gennevilliers,
{alexandre.anzalayamajako,olivier.bernard2}@thalesgroup.com

Abstract. The problem of securely outsourcing client data with search
functionality has given rise to efficient solutions called Symmetric Search-
able Encryption (SSE) schemes. These schemes are provably secure with
respect to an explicit leakage profile; however, determining how much in-
formation can be inferred in practice from this leakage remains difficult.
First, we refine and formalize the leakage hierarchy introduced by Cash et
al. in 2015. Second, we further extend the analysis of existing attacks to
better understand their real-world efficiency and the practicality of their
hypothesis. Finally, we present the first complete practical attacks on L4,
L3 and L2 leakage profiles. Our attacks are passive and only assume the
very realistic knowledge of a small sample of plaintexts; moreover, we
show their devastating effect on real-world datasets.

Keywords: symmetric searchable encryption, leakage, passive attacks.

1 Introduction

With the growing importance of digital data in everyday life, it is necessary to
have backups and access from anywhere. Outsourcing this digital data to a cloud
provider is enticing; however, some data, such as legal, banking or medical doc-
uments, industrial patents or simply our emails can be sensitive or confidential.
Though encryption classically provides confidentiality, it prevents any processing
of the client data by the cloud provider, thus making access to it cumbersome.

First introduced by Song et al. [18], Symmetric Searchable Encryption (SSE)
schemes give to the server the ability to perform keyword searches on encrypted
data by means of a protected database. While the single keyword query is the
basic functionality of an SSE scheme, there also exist SSE schemes expanding the
expressiveness of search queries to boolean [8], range and substring [12] queries,
as well as dynamic SSE schemes [7,16] allowing the client to add new encrypted
documents to the protected database while retaining the search capability.

The amount of information leaked by a given SSE scheme to the server is
formalized by a leakage function [10, 16]. The security of the scheme then relies

on proving that this function does not leak more information than expected.
However, it can be used by an honest-but-curious server [13], which dutifully
executes the scheme but tries to deduce information on the stored documents.
In [6], based on deployed SSE schemes, Cash et al. define four leakage profiles L4,
L3, L2 and L1, L4 being the most leaky and L1 the least. Commercially available
SSE solutions such CipherCloud [2], Bitglass [1] or Skyhigh Networks [3] are
L4 or L3 schemes. Assessing the practical impact of each of these profile on the
server knowledge of the protected data is critical for real life applications.

Leakage-abuse attacks. The first experimental attack on SSE schemes is the IKK
Attack, proposed by Islam et al. in [15]. Its goal is to associate search tokens to
actual keywords, exploiting the data access pattern revealed by client queries
and assuming the adversary has access to a co-occurrence matrix that gives
the probability for two keywords to appear in a randomly chosen document.
Actually, as noted by Cash et al. in [6], this matrix needs to be so precise for
the attack to succeed, that it seems legitimate to suppose the adversary has
access to the number of documents in which every keyword appears. With this
strong extra knowledge, they mount a more effective attack named the Count
Attack [6]. Both attacks target leakage profiles beyond L2, but the strength of
their assumptions questions their practicality. Additionally, Cash et al. propose
in [6] a passive partial document recovery attack for L3-SSE schemes when the
adversary knows plaintext-ciphertext pairs. For an active adversary able to plant
chosen documents in the database, they present a partial document recovery
attack on L3- and L2-SSE schemes [6]. With the extra ability to issue selected
queries, Zhang et al. [19] mount a query recovery attack that works on any
dynamic SSE scheme. These active attacks are very efficient as only few injected
files suffice to reveal the association between keywords and search tokens.

Our contributions. We present the first passive attacks on L4, L3 and L2 leak-
age profiles which only assume the very realistic knowledge of a small sample
of plaintexts in addition to the protected database given to the server. In par-
ticular, our attacks do not rely on observing search queries, nor do they require
the adversary to know any plaintext-ciphertext pairs. Their efficiency and prac-
ticality are demonstrated on several real-world datasets such as the mailing-list
of Lucene Apache project [5]. We also formalize the leakage hierarchy described
by Cash et al. in [6] and reintroduce a transitional L1+ leakage profile between
L2 and L1 profiles in order to better classify existing attacks.

Outline. In Section 2, we provide background on SSE schemes and their security.
Section 3 details formally the leakage hierarchy of Cash et al. [6] and reintroduces
what we call the L1+ profile; this refined hierarchy is used in Section 4 to put
previous attacks into perspective. Section 5 is devoted to the description of our
new passive attacks, whose effectiveness is demonstrated in Section 6.

2 Symmetric Searchable Encryption

A Symmetric Searchable Encryption (SSE) scheme is a protocol between a client
and a server. The client owns a sensitive dataset but has limited computational
power and storage capacity. The server has a large storage space and high pro-
cessing power, but is not trusted by the client except for executing correctly the
search protocol. We introduce some notations, then we formalize SSE schemes
and discuss the associated security notion.

2.1 Notations

Sequences, lists and sets. A sequence of elements is defined here as an ordered
set where repetitions are allowed. A list is therefore an ordered set where all
elements are distinct. Finally, a set is defined as a bunch of distinct elements
with no notion of ordering. Sequences are guarded by (. . .), lists are denoted by
square brackets [. . .] and sets by braces {. . . }. The number of elements of a set
E (resp. list or sequence) is written #E.

We also denote by {t} the set of elements of a list t where the order of
the elements is not considered. Similarly, [s] denotes the list composed of the
elements of a sequence s in their order of first appearance without repetition.

Documents and keywords. Let W = {w1, . . . , wm} be a dictionary composed
of m distinct keywords and DB = {d1, . . . , dn} a set of n documents made
of keywords from W. Each document di is a sequence of length `i, formally
di = (wi1 , . . . , wi`i) ∈W`i . DB is called the dataset. We denote by Wi the set of

distinct keywords of the document di i.e., Wi =
{

[di]
}

.
The same objects are described server-side by introducing the star super-

script. Hence, W∗ = {w∗1 , . . . , w∗m} denotes the set of search tokens associated
to the keywords of W. Similarly, DB∗ = {d∗1, . . . , d∗n} is the set of ciphertexts
of DB where d∗i is the encryption of di, and W∗i is the set of tokens associated
to d∗i . As to emphasize the fact that the association between di and d∗i is not
known to the server a priori, an identifier idi is used to uniquely represent d∗i .
A datastructure EDB is also provided, which contains protected metadata that
allows the server to answer search queries.

The list of all the indices i such that di ∈ DB contains the keyword w is
denoted by DB(w). The notation N denotes the number of pairs (d,w) where
d ∈ DB and w ∈ d i.e., N = #

{
(d,w)

∣∣ d ∈ DB, w ∈ d
}

. Note that, as it
corresponds to a lower bound on the size of EDB, N can always be computed
by the server. Server-side, the list of the identifiers of all the documents d∗i ∈
DB∗ associated to the search token w∗ is written EDB(w∗). We stress that this
information is not accessible directly from w∗ and DB∗, thus the need of the
extra protected metadata structure EDB.

2.2 Static SSE Schemes

Basic SSE schemes are defined by a symmetric encryption scheme together with
an algorithm for setup and another for search.

As a first step, the client creates two datastructures DB∗ and EDB as intro-
duced above. Both datastructures are then uploaded to the server. As a second
step, when the client wants to search for a specific keyword w, he computes the
associated search token w∗ with his secret key and sends w∗ to the server. From
w∗ and EDB the server is able to return the identifiers of all encrypted docu-
ments matching the client’s search. With the list of identifiers the client retrieves
the encrypted documents, from which he can obtain the plaintext documents.
We stress that the server should not be able to learn anything about the client’s
query or the returned documents during the process. For further details, see the
Definition 1 of Appendix A inspired from Curtmola et al. [10].

This formalizes static SSE schemes. Static SSE schemes allow the client to
initialize a protected database that supports keyword searches but cannot be
updated, by opposition to dynamic SSE schemes. Dynamic schemes can be at-
tacked at least as well as static schemes, so we do not introduce them formally.

2.3 Security of SSE Schemes

Introduced by Curtmola et al. in [10] and by Kamara et al. in [16], the leakage
function L of a SSE scheme is a set of information revealed by the SSE scheme
to the server. This leakage function formalizes information that EDB and the
client queries reveal to the server.

The SSE scheme is said to be L-secure iff any polynomial-time adversary
making a sequence Q of queries (i.e., keywords of W) can successfully tell with
only negligible probability whether the protocol is honestly executed or simulated
from the leakage function L.

The L-security proves that no information is leaked by the SSE scheme to
the server outside of what is exposed by the leakage function. Nevertheless, it
does not tell us what is implied in practice on the knowledge of the protected
data. Answering that question is the primary motivation of this paper.

3 A Leakage Hierarchy

We formally define classes of SSE schemes according to how much information
the protected database leaks, as first introduced by Cash et al. in [6].

3.1 L4 Leakage Profile

Without any semantic consideration, a document is characterized by its number
of words, their orders and their occurence counts. Moreover, it is possible to
determine which words are shared with any other document. L4-SSE schemes
reveal all this information, so nothing is lost about the plaintext non-semantic
structure. Thus, a SSE scheme of leakage function L is of class L4 iff:

L(EDB) =
{

(w∗i1 , . . . , w
∗
i`i

)
}
16i6n

.

Example 1. We use the following setup as a running example to illustrate the
different amounts of leakage revealed to the server. Let W = {as, call, i, if,me,
possible, soon, you} and d1 and d2, two documents defined over W where d1 =
(call,me, as, soon, as,possible) and d2 = (i, call, you, if,possible). Assume that
the search tokens associated to keywords of W are the following:

Keywords (W) as call i if me possible soon you
Tokens (W∗) 14 76 33 11 25 35 78 10

Under L4 leakage, EDB reveals to the server (76, 25, 14, 78, 14, 35) → id1 and
(33, 76, 10, 11, 35) → id2. The server knows that the document identified by id1

is of length 6 and has five distinct keywords; it also knows that one keyword,
associated to the token 14, is repeated twice. The document identified by id2

contains exactly five distinct keywords and shares two keywords with the first
document, namely those represented by tokens 35 and 76.

3.2 L3 Leakage Profile

For keyword search purposes, it is not necessary to know the occurrence count
of each keyword. L3-SSE schemes of leakage function L do not reveal this, i.e.:

L(EDB) =
{

L3EDB(idi)
}
16i6n

, where L3EDB(idi) =
[
(w∗i1 , . . . , w

∗
i`i

)
]
.

Example 2. Resuming Example 1, the information revealed by an L3-SSE scheme
about d1 and d2 is: (76, 25, 14, 78, 35) → id1 and (33, 76, 10, 11, 35) → id2. The
server does not know anymore that the token 14 is associated twice to id1.

3.3 L2 Leakage Profile

SSE schemes of class L2 only reveal the set of tokens of a document. The server
can however still determine which documents contain a given token. A SSE
scheme of leakage function L is of class L2 iff:

L(EDB) =
{
W ∗i
}
16i6n

.

Example 3. Resuming Example 1, an L2-SSE scheme reveals about d1 and d2 :
(14, 25, 35, 76, 78) → id1 and (10, 11, 33, 35, 76) → id2. We stress that the token
order is not preserved in EDB: we arbitrarily sorted the token in ascending order,
thus the server does not know their initial order.

3.4 L1+ Leakage Profile

The L1+ profile mentioned here appears in [6] but is not labeled as a separate
profile. We nevertheless reintroduce this profile here for two reasons: first, it
might be an interesting performance-security tradeoff, as shown by the work of
Tessaro and Cash [9]; second, this allows us to differentiate the IKK attack [15]
from the Count attack [6], which are described in Section 4.

With no initial search, SSE schemes of class L1+ of leakage function L only
reveals the number of documents matching an unknown keyword, i.e.:

L(EDB) =
{

#EDB(w∗i)
}
16i6m

.

Example 4. Resuming Example 1, and assuming the client did no query, the
following information about d1 and d2 is revealed by an L1+-SSE scheme:

w∗ 10 11 14 25 33 35 76 78
#EDB(w∗) 1 1 1 1 1 2 2 1

The EDB initial state only shows the number of documents sharing a given
keyword. Now, if the client searches for tokens 35 and 78, this reveals:

w∗ 10 11 14 25 33 35 76 78
#EDB(w∗) 1 1 1 1 1 2 2 1

Identifiers
id1 id1

id2

Hence, documents identified by id1 and id2 share the same keyword of token 35;
keywords of tokens 14 and 35 are both in the document identified by id1.

3.5 L1 Leakage Profile

With no initial search, SSE schemes of class L1 leak the least possible amount
of information i.e., the number N of document/keyword pairs of the dataset:

L(EDB) = {N}.

Example 5. Resuming Example 1, when no search has been done, the informa-
tion revealed by an L1-SSE scheme looks like:

w∗ α β γ δ ε ζ η θ ι κ
Identifiers a b c d e f g h i j

Greek (resp. latin) letters represent tokens (resp. identifiers). The server has
absolutely no clue about this correspondence, so it only knows N = 10. If the
client searches for “soon” and “you”, this reveals:

w∗ α β γ δ ε 35 35 θ ι 78
Identifiers a b c d e id1 id2 h i id1

The server then learns the same information as for the L1+ leakage.

3.6 Effect of Queries on the Leakage Profile

We study what can be inferred from the protected database, but it is infor-
mative to reflect upon the effect of queries on the amount of information re-
vealed to the server. Namely, at the end of the search protocol the client ob-
tains identifiers of the documents matching its query. Server-side this can be
leveraged to associate search tokens {w∗i1 , . . . , w

∗
iq
} to their matched documents

{EDB(w∗i1), . . . ,EDB(w∗iq)}, which corresponds precisely to the definition of the
L2 leakage profile given above. Actually, if all keywords are queried then the
leakage profiles L1 and L1+ both collapse to L2.

4 Prior Work: Going Beyond L2 Leakage Is Difficult

The efficiency of attacks is often viewed as the percentage of queries that could be
correctly paired with plaintext keywords. Actually, efficiency should include the
computational cost and the conservativeness of the assumptions. Thus, before
presenting our attacks in Section 5 schemes, we discuss the efficiency of the IKK
attack from Islam et al. [15] and the Count attack from Cash et al. [6].

4.1 IKK Attack

In [15], Islam et al. present a passive query recovery attack on SSE schemes. It
requires access to a co-occurrence matrix CW which represents the probability for
two keywords to appear in a randomly chosen document. The attack also requires
the observation of queries issued by the client and the responses provided by the
server. The adversary is then able to compute for each pair of search tokens,
the number of documents which are a match for both. Associating keywords to
search tokens boils down to finding the minimum of the function F defined as
follows: for observed search tokens (w∗1 , . . . , w

∗
q),

F (i1, . . . , iq) =
∑

1≤s,t≤q

∣∣∣∣#
(
EDB(w∗s) ∩ EDB(w∗t)

)
n

− CW

(
wis , wit

)∣∣∣∣2 .
Since no assumption are made about the amount of leakage obtained from the
SSE scheme, we can classify the IKK attack as an L1 attack with auxiliary
information in the form of this co-occurence matrix CW. To the best of our
knowledge this is the most generic attack on SSE schemes. Islam et al. justify
the access to a co-occurence matrix by implying that it could be computed from a
dataset similar to the one targeted by the attack. The cost of building CW could
then be amortized over several datasets. Unfortunately, practical experiments
of [6] show that any kind of success with this attack requires CW to have been
computed directly from the plaintext dataset DB. Another constraint is that for
the attack to be practical CW cannot be built over the full dictionnary; we must
assume that all the search tokens are associated to a keyword represented in
CW. Following Section 3.6, we can relax the requirements by considering this
attack on an L2 scheme. In this setting the adversary computes the response set
intersections directly from EDB without the need for search tokens. Complexity-
wise, the IKK attack is costly as minimizing the objective function F requires
the use of simulated annealing [15].

4.2 Count Attack

The Count attack from Cash et al. in [6] also aims at passively recovering queries
with the help of queries and a CW. However on top of that, it requires to have
access for each keyword to the number of plaintext documents that contain
it. The adversary is then able to match search tokens to a set of candidate

keywords. Wrong candidates are then eliminated using CW. In Appendix B we
give the complete algorithm.

Cash et al. classify Count as an L1 attack but it is worth discussing the impact
of the auxiliary information on the actual leakage profile required. Count assumes
that the adversary has access to the pairs

(
wi,#DB(wi)

)
16i6n

from which he can

compute the set
{

#DB(w1), . . . ,#DB(wn)
}

=
{

#EDB(w∗i1), . . . ,#EDB(w∗in)
}

.
One sees that the auxiliary information implies the L1+ leakage profile given in
Section 3.4. Thus we re-classify it as an L1+ attack with auxiliary information.

In practice the increased amount of auxiliary information compared to the
IKK attack allows for a less precise CW : results from [6] show that the IKK attack
requires to build CW from the entire plaintext dataset to obtain meaningful
results while the Count attack achieves a 40% keyword recovery rate with CW

built from 80% of the plaintext dataset.
The use of a co-occurence matrix means that the Count attack shares prop-

erties with the IKK attack: namely we assume that the observed search queries
correspond to keywords in CW and we do not need search queries anymore if
we attack an L2 scheme. Complexity-wise, the Count attack is orders of mag-
nitude faster than the IKK attack since we leverage the extraneous auxiliary
information to avoid doing any numerical optimization step.

5 Partial Plaintext Recovery Attacks

Our attacks aim at recovering information on encrypted documents from the
sole knowledge of EDB. These attacks are completely passive; the only extra
assumption made here is that we know a (small) sample I of the plaintext
documents. We stress that this is in practice a very realistic assumption: for
instance, a dataset of books has a very good chance of containing some best-
sellers; datasets of mails might as well contain items that have been transferred
outside the scope of the SSE scheme.

These attacks proceed in two steps. In the first step, each plaintext of I is
associated to its protected information in EDB. This step is performed using
statistical properties that can be computed independently from the plaintexts
themselves or from the associated leakage given in EDB. The performance of this
association step heavily depends on the statistic capacity to give unique results
over the dataset. In the second step, the keywords of the plaintexts are paired
with their tokens. Of course, under L4 and L3 leakage profiles, which preserve
the order of keywords in EDB, this pairing is completely straightforward.

Finally, correspondences between keywords and tokens obtained from I can
be spread back into EDB, thus recovering partially or totally the content of the
encrypted documents. This actually has a devastating effect, giving to the server
a massive knowledge of DB it is not supposed to have, as shown in Section 6.

5.1 Mask Attack on L4-SSE Schemes

In order to capture keywords number, order and occurence counts, we introduce
the mask of a document di (resp. idi), denoted by mask(di) (resp. mask(idi)),

as the sequence where all keywords (resp. tokens) are replaced by their position
of first appearance. For example, if di = (to,be, or,not, to,be), then mask(di) =
mask(idi) = (1, 2, 3, 4, 1, 2).

The idea of the attack is intuitive: for each plaintext d ∈ I, the mask of d is
computed; this mask is then compared with all masks of corresponding length
computed from EDB.

Hopefully, only one mask of EDB is matching the mask of d, leading to a
correct association. In practice, this is almost always the case (see Section 6).
The entire process is summarized in Algorithm 1.

Input: EDB, I ⊆ DB
Output: Set of tokens W∗rec ⊆W∗ associated to their keyword in W

foreach d ∈ I do
Ad =

{
i
∣∣ `i = #d and mask(idi) = mask(d)

}
;

return W∗rec =
{
W∗i

∣∣ #Adi = 1
}

Algorithm 1: Mask Attack.

5.2 Co-Mask Attack on L3-SSE Schemes

Under L3 leakage the Mask Attack does not apply anymore as the mask of a
document d boils down to the sequence

(
1, . . . ,#[d]

)
.

Therefore we introduce the co-resulting mask of a pair (d1, d2) of documents,
denoted by comask(d1, d2). Intuitively, it can be viewed as the mask of the in-
tersection, marking the positions of the keywords of W1,2 = W1 ∩ W2. More
formally, if 1W1,2

(·) is the indicator function on W1,2, we define:

comask(d1, d2) =
((
1W1,2

(d1[i])
)
1≤i≤#W1

,
(
1W1,2

(d2[i])
)
1≤i≤#W2

)
.

We stress that this quantity can be computed directly from every EDB of profile
L3; by abuse of notation this is denoted by comask(id1, id2).

The general idea of the algorithm is as follows: for each pair in (di, dj) ∈ I2,
the co-resulting mask of the pair is computed and compared with all co-resulting
masks computed from elements of EDB which have length #[di] and #[dj].

In practice, this kind of exhaustive search would be particularly inefficient.
We instead iteratively construct a set At containing all t-tuples of identifiers
such that the co-resulting masks of all pairs in the t-uple match the co-resulting
masks of the corresponding pairs in (d1, . . . , dt) ⊆ I. More formally:

At =
{ (

idi1 , . . . , idit
) ∣∣∣ ∀s, u ≤ t, comask(idis , idiu) = comask(ds, du)

}
.

To compute At from At−1 using dt, we consider for each induced new pair (dj , dt)
the set Cj,t of pairs of identifiers (idij , idit) with matching co-resulting masks,
such that both idij and idit are still marked as compatible. From the Cj,t’s, it
is easy to remove all unconsistent t-tuples from At i.e., for each j, those having
positions j and t not in Cj,t. When t reaches #I, the whole search space has

been explored: each component A#I [k] composed of only one element gives the
correct association A#I [k] = idk.

It is worth noting that in practice A2 is almost always reduced to one element,
and so is A#I . In any case, very few identifiers would remain possible for a given
document in A#I . The Co-Mask Attack is summarized in Algorithm 2.

Input: EDB, I =
(
d1, . . . , d#I

)
⊆ DB

Output: Set of tokens W∗rec ⊆W∗ associated to their keyword in W

/* Consider the first pair of documents */

A2 =

{ (
idi1 , idi2

) ∣∣∣∣ #idi1 = #[d1], #idi2 = #[d2]
and comask(idi1 , idi2) = comask(d1, d2)

}
;

/* Construct At from At−1 using dt */

for t = 3 to #I do
At = At−1 ×

{
id
∣∣ #id = #[dt]

}
;

/* At will be reduced by considering all new pairs (dj , dt) */

foreach j < t do

Cj,t =

{ (
idij , idit

) ∣∣∣∣ idij ∈ At[j], idt ∈ At[t]
and comask(idij , idit) = comask(dj , dt)

}
;

At =
{
a ∈ At

∣∣ (a[j], a[t]
)
∈ Cj,t

}
; /* Keep consistent t-tuples */

if #At = 1 then break;

return W∗rec =
{
W∗t

∣∣ #A#I [t] = 1
}

Algorithm 2: Co-Mask Attack

We stress that this attack could be extended to higher order intersections,
in the spirit of the PowerSet Attack presented in the next section. In practice,
only considering pairs already gives outstanding results, as shown in Section 6.

5.3 PowerSet Attack on L2-SSE Schemes

As the order of keywords is not preserved anymore under L2 leakage, the co-
resulting mask used in the Co-Mask Attack cannot be computed. Worse, even if a
document is correctly associated to its identifier, inferring the correct association
between each keyword and its token is still a challenge. The PowerSet Attack
addresses both issues.

Associating Documents and Identifiers. An L2 leakage still allows to de-
termine which keywords are shared between two documents. To associate docu-
ments of I to their identifiers, it is therefore tempting to run the Co-Mask Attack
where the co-resulting mask of a pair of documents is replaced by the cardinal
of their intersection. Unfortunately this is not sufficient, since in practice many
pairs of identifiers of EDB share the same number of tokens.

We introduce the power set of order h of a list of t documents, denoted by
PowerSetth

(
d1, . . . , dt

)
, and defined as the sequence of the

(
t
h

)
cardinals of all

possible intersections of h elements of the t-uple. More formally:

PowerSetth
(
d1, . . . , dt

)
=

(
#

⋂
1≤j≤h

dij

)
1≤i1<···<ih≤t

.

The superscript will be omitted when it is clear from the context. We stress that
this sequence can be computed directly from every EDB of profile L2; by abuse
of notation this will be denoted by PowerSeth

(
id1, . . . , idt

)
.

The algorithm strives to exploit all available information on I i.e., find se-
quences of identifiers such that all intersections of all possible subsets match
the cardinals of those computed on I. As this is a huge search space, it must
be explored with care. Therefore, we iteratively construct a set At containing
all t-tuples of identifiers such that all power sets of order less than t match the
power sets of the corresponding documents in (d1, . . . , dt) ∈ I. When t reaches
#I, all information on I has been processed and singleton components of A#I
give a correct association.

Computing At starting from At−1 and candidate identifiers for dt requires
to reduce the size of At as fast as possible. This is done by considering subset
intersections of increasing order, thus squeezing At as the combinatorics grow.

Let A
(h)
t be the set of compatible t-tuples with all power sets of order up to h:

A
(h)
t =

{ (
idi1 , . . . , idit

) ∣∣∣∣∣ ∀s ≤ h, PowerSets(d1, . . . , dt)

= PowerSets(idi1 , . . . , idit)

}
.

The algorithm then computes the following decreasing sequence, using the pro-

cedure Reduce given in Algorithm 3 to go from A
(h)
t to A

(h+1)
t :

At−1 ×
{

id
∣∣ #id = #{dt}

}
= A

(1)
t ⊇ A

(2)
t ⊇ A

(3)
t ⊇ · · · ⊇ A

(t)
t = At .

Input: It =
(
d1, . . . , dt

)
, h-order candidates A

(h)
t

Output: Set of (h + 1)-order candidates A
(h+1)
t

Bt = A
(h)
t ;

/* Consider each subset of (h + 1) elements containing dt */

foreach 1 ≤ j1 < · · · < jh < t do

Cj,t =

{ (
(idij), idit

) ∣∣∣∣ idt ∈ Bt[t], (idij) ∈ Bt[j],
and #

(
idit ∩ (idij)

)
= #

(
dt ∩ (dj)

) };

Bt =
{
b ∈ Bt

∣∣ ((b[j]), b[t]) ∈ Cj,t

}
; /* Keep consistent t-tuples */

if #Bt = 1 then break;

return A
(h+1)
t = Bt

Algorithm 3: Reduce procedure: computing A
(h+1)
t from A

(h)
t .

We stress that, by induction, only subsets containing dt have to be considered.
Algorithm 4 summarizes the first phase of the PowerSet Attack.3

3 In our implementation of the PowerSet Attack, we first go through all documents
then we increase the size of subsets to avoid phenomena of combinatorial explosion.

Input: EDB, I =
(
d1, . . . , d#I) ⊆ DB

Output: Set of documents I0 ⊆ I associated to their identifiers in EDB

/* Consider the first pair of documents */

A2 =

{ (
idi1 , idi2

) ∣∣∣∣ #idi1 = #{d1}, #idi2 = #{d2}
and PowerSet2(idi1 , idi2) = PowerSet2(d1, d2)

}
;

/* Construct At from At−1 using dt */

for t = 3 to #I do

A
(1)
t = At−1 ×

{
id
∣∣ #id = #{dt}

}
;

/* Consider intersections of increasing order h to reduce At */

for h = 2 to t do

A
(h)
t = Reduce

(
A

(h−1)
t

)
;

if #A
(h)
t = 1 then set At = A

(h)
t and break;

return I0 =
{
dt
∣∣ #A#I [t] = 1

}
Algorithm 4: PowerSet Attack: documents-identifiers association.

In practice, computing A2 is the most costly part of Algorithm 4, as the
result is sufficiently small so that adding new documents becomes negligible.
Moreover, experiments show that At is reduced to one element as soon as t ≥ 4.

Associating Keywords and Tokens. The previous phase associates each
document of I0 with a set of tokens. Since token ordering is not preserved under
L2 leakage, finding the correct keyword-token associations remains non-trivial.

To solve this problem, we construct the inverted index of I0, denoted by
inv(I0), which associates the keywords w ∈ I0 and to the identifiers of the doc-
uments containing w. This inverted index is then ordered by decreasing number
of identifiers to form the ordered inverted index inv≥(I0).

Consider first the keyword wi having the most identifiers, and assume that
no following keyword has the same associated identifiers. Hence the intersection
of the sets of tokens associated to wi gives us an unique match w∗i . Now, if the
second line wj of inv≥(I0) is also unique, we distinguish two cases: either the
intersection of the sets of tokens associated to wj gives us an unique match w∗j ;
or, when identifiers are also associated to the previous keyword wi, we obtain
two tokens. Knowing w∗i from the first association, we easily deduce the token
w∗j associated to wj .

Example 6. Let I0 = {d1, d2, d3} be a set of three documents d1 = (w1, w2, w3),
d2 = (w3, w2) and d3 = (w1, w2). Inverted indexes inv(I0) and inv≥(I0) are:

inv(I0)
w1 id1 id3

w2 id1 id2 id3

w3 id1 id2

inv≥(I0)
w2 id1 id2 id3

w3 id1 id2

w1 id1 id3

Consider the first line of inv≥(I0). We know that only w2 is in d1, d2 and d3.
Hence W∗1 ∩W∗2 ∩W∗3 =

{
w∗2
}

. Now, consider the second keyword of inv≥(I0)

i.e., w3. This keyword is in d1 and d2, but w2 too. So W∗1 ∩W∗2 =
{
w∗2 , w

∗
3

}
, but

we already know that w∗2 is the token of w2, hence the token of w3 is w∗3 .

Unfortunately, several keywords may be associated to the same identifiers
i.e., be simultaneously in exactly the same documents. In this case, they are com-
pletely undistinguishable and we ignore them when they appear in the following
intersections. This keyword/token association process is given in Algorithm 5.

Input: EDB, set I0 ⊆ I of documents associated to their identifiers
Output: Set of tokens W∗rec ⊆W∗ associated to their keyword in W

W∗ign ← ∅ ; /* Contains associated and undistinguishable tokens */

Compute inv≥(I0);
foreach w ∈ inv≥(I0) taken in decreasing order do

Aw =
(⋂{

W∗i
∣∣ idi ∈ inv≥(I0)[w]

}) ∖
W∗ign;

W∗ign = W∗ign ∪Aw; /* Associated (#Aw = 1) or undistinguishable */

return W∗rec =
{
Aw

∣∣ #Aw = 1
}

Algorithm 5: PowerSet Attack: keywords-tokens association.

5.4 Elements of Complexity

Deriving precise complexity bounds for our attacks is difficult, as they heavily
depend on statistical properties of the targeted dataset. We nevertheless give
some elements allowing to compare the impact of the leakage profiles.

The most relevant data for our attacks is the maximum number of identifiers
to consider for a document of a given length i.e., for each leakage profile:

ML23 = max
d∈DB

#
{

id | #id = #[d]
}

and ML4 = max
d∈DB

#
{

id | #id = #d
}

Measurements on our datasets (see Section 6) show that
√

#DB is a good ap-
proximation of these values. It is actually a worst-case assumption, as in practice
we can consider documents of I with the least number of candidates first.

Mask Attack. Each document of I induces the computation of at most ML4

masks; hence the total complexity is O
(
#I ·ML4

)
mask computations.

Co-Mask Attack. Constructing A2 costs M2
L23 applications of comask. We heuris-

tically expect the sets At to decrease as t grows. Indeed, if #A2 ≤ ML23, each
association of dt starts from a smaller set At−1 and imposes greater constraints,
thus costing at most #A2 ·ML23. In our experiments, A2 is almost always reduced
to one element, so we conjecture a total complexity of O

(
M2

L23+(1+ε)#I ·ML23

)
co-resulting mask computations.

PowerSet Attack. The analysis is much more complex. However, heuristically,
the first pair considered drastically reduces the number #A2 of candidates, and
the same reasoning as above leads to a conjectured complexity of O

(
M2

L23+#A2 ·
#I ·ML23

)
intersections cardinals computations.

6 Experimental Results

Real-World Datasets. We implemented and ran the attacks presented in Sec-
tion 5 on four different real-world datasets to evaluate their practical efficiency.

The first dataset is the email dataset from the Enron corporation, available
online [11]. Unlike Islam et al. [15] and Cash et al. [6], we consider all 490,369
emails of the datasets, including mails sent from the outside of Enron. The second
and third datasets are mailing lists from the Apache foundation, namely Apache
Commons [4] (28,997 emails) and Apache Lucene [5] (58,884 emails). The last
dataset is the 21,602 books of the Project Gutenberg [14].

One email message, one article or one book is considered as one document.
For each document, stopwords have been removed and keywords processed using
the standard Porter stemming algorithm [17].

Efficiency Measures. We ran our attacks for different sizes of I using steps
of 1% until 10% then steps of 10% from 10% to 100%. Here 1% represents 1%
of the pairs (d,w) of the dataset; this allows for a fairer comparison between
datasets than the usual per-document measure, as knowing a long document do
not have the same impact as knowing a short one.

The measured success rate is the ratio of keywords-tokens associations over
the set of keywords of I. Then, these correspondences are spread back into
EDB in order to evaluate their impact on other documents of the dataset. In
particular, we measured the rate of documents of the dataset whose keywords
are recovered at 70%, 80%, 90% and 100%.

Experimental Results on Lucene. We expose here the results of our attacks
on the Lucene dataset; the reader is invited to refer to Appendix C for details
on other datasets. All timings are measured on a Core i7 using 16 Go RAM.

As shown in Figure 1, our attacks have a huge impact, giving the server a
precise knowledge of the entire dataset even when I is small. Table 1 summarizes
the results when the server knows only 1% of the dataset.

Mask Attack. Over 98% of documents have a unique mask in Lucene dataset.
This translates into over 99% keyword-token association rate over the set I in
all cases. Moreover, knowing only 1% of the dataset already allows the server
to recover 70% of the keywords close to all documents; and 3146 of them are
completely recovered. Running the Mask Attack on the Lucene dataset when
1% of the dataset is known to the server requires 72 seconds.

Co-Mask Attack. Experiments show that despite the loss of the frequency infor-
mation, it remains as effective as the Mask Attack. However, the computational
complexity increases and running this attack when 1% of the dataset is known
to the server requires 284 seconds.

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mask Attack

% of known dataset

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Co-Mask Attack

% of known dataset

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

PowerSet Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

Fig. 1: Efficiency of our attacks on Lucene dataset depending on the server’s
knowledge rate.

PowerSet Attack. It suffers widely from the loss of keyword order. Hence, while
the documents-identifiers association performs equally well, the exact association
between keywords and tokens plateau around 20%. Still, the knowledge of 1% of
the dataset already allows to recover 80% of the keywords of more than 70% of
the database documents. This attack is the most costly and runs in 489 seconds
when 1% of the dataset is known to the server.

Success Rate 70% 80% 90% 100% Time (s)

Mask Attack .99 .97 .88 .48 .05 72
Co-Mask Attack .99 .97 .87 .47 .05 284
PowerSet Attack .21 .93 .71 .24 .01 489

Table 1: Attacks efficiency on Lucene datasets with a 1% plaintext knowledge.

Practical Impact. As noted in [6], this reconstruction allows to reveal sensitive
information even if the order of keywords is not preserved. Human inspection of
the output of our attacks gives a clear idea of the sense of each document.

7 Conclusion

Prior work [19] taught us that SSE schemes have no hope of being secure in a
setting where the adversary can inject chosen files. Additionally, the authors of [6,
15] have shown that passive observation of search tokens reveal the underlying
searched keyword when the dataset is completely known.

This paper, focusing on passive attacks of L4, L3 and L2 schemes, adds to
this knowledge in several ways. The most glaring conclusion is that our attacks
are devastating: regardless of the leakage profile, knowing a mere 1% of the
document sets translates into over 90% of documents whose content is revealed
over 70%. Moreover, we show that from a security point of view the L4 and
L3 leakage profiles are actually equivalent. To conclude, the results in this paper
help us to better understand the practical security of SSE schemes and hopefully
will help practioners make more secure SSE schemes.

Future work may look into counter-measures to these attacks and their im-
pact on real-world datasets. Another valuable area of research is the study of the
behaviour of the degradation from L1 and L1+ to L2 in the presence of queries.

References

1. Bitglass. Security, Compliance, and Encryption. http://www.bitglass.com/

salesforce-security. Accessed: 2017-01-18.

2. CipherCloud. Cloud Data Encryption. https : / / www . ciphercloud . com /

technologies/encryption/. Accessed: 2017-01-18.

3. Skyhigh Networds. Skyhigh for Salesforce. https://www.skyhighnetworks.com/

product/salesforce-security/. Accessed: 2017-01-18.

4. Apache Commons email dataset. http://mail-archives.apache.org/mod_mbox/
commons-user/. Accessed: 2016-04.

5. Apache Lucene email dataset. http://mail-archives.apache.org/mod_mbox/

lucene-java-user/. Accessed: 2016-04.

6. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks Against
Searchable Encryption. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 668–679, New York, NY,
USA, 2015. ACM.

7. D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
Dynamic Searchable Encryption in Very-Large Databases: Data Structures and
Implementation. In 21st Annual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February 23-26, 2014, 2014.

8. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner. Highly-
Scalable Searchable Symmetric Encryption with Support for Boolean Queries. In
Advances in Cryptology – CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 353–
373, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

9. D. Cash and S. Tessaro. The Locality of Searchable Symmetric Encryption. In
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 351–368. Springer Berlin Heidelberg, 2014.

http://www.bitglass.com/salesforce-security
http://www.bitglass.com/salesforce-security
https://www.ciphercloud.com/technologies/encryption/
https://www.ciphercloud.com/technologies/encryption/
https://www.skyhighnetworks.com/product/salesforce-security/
https://www.skyhighnetworks.com/product/salesforce-security/
http://mail-archives.apache.org/mod_mbox/commons-user/
http://mail-archives.apache.org/mod_mbox/commons-user/
http://mail-archives.apache.org/mod_mbox/lucene-java-user/
http://mail-archives.apache.org/mod_mbox/lucene-java-user/

10. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS ’06, pages
79–88, New York, NY, USA, 2006. ACM.

11. Enron email dataset. http://www.cs.cmu.edu/~./enron/. Accessed: 2016-04.
12. S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich

Queries on Encrypted Data: Beyond Exact Matches. In Computer Security –
ESORICS 2015: 20th European Symposium on Research in Computer Security,
Vienna, Austria, September 21-25, 2015, Proceedings, Part II, pages 123–145.
Springer International Publishing, 2015.

13. O. Goldreich. Secure Multi-party Computation, 1998. Working Draft.
14. Project Gutenberg. http://www.gutenberg.org/wiki/Main_Page. Accessed:

2016-04.
15. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access Pattern disclosure on Search-

able Encryption: Ramification, Attack and Mitigation. In 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, California,
USA, February 5-8, 2012, 2012.

16. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic Searchable Symmetric
Encryption. In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security, CCS ’12, pages 965–976, New York, NY, USA, 2012. ACM.

17. M. F. Porter. An algorithm for suffix striping. Program, 14(3):130–137, 1980.
18. D. X. Song, D. Wagner, and A. Perrig. Practical Techniques for Searches on

Encrypted Data. In Proceedings of the 2000 IEEE Symposium on Security and
Privacy, SP ’00, pages 44–, Washington, DC, USA, 2000. IEEE Computer Society.

19. Y. Zhang, J. Katz, and C. Papamanthou. All Your Queries Are Belong to Us:
The Power of File-Injection Attacks on Searchable Encryption. Cryptology ePrint
Archive, Report 2016/172, 2016. http://eprint.iacr.org/2016/172.

http://www.cs.cmu.edu/~./enron/
http://www.gutenberg.org/wiki/Main_Page
http://eprint.iacr.org/2016/172

A Static SSE Scheme

Definition 1 (Static SSE scheme). Given a symmetric encryption scheme
(E·(·),D·(·)) we define a static SSE scheme of security parameter λ as a quartet
of polynomial-time algorithms Π = (Gen,Setup,SearchClient,SearchServer) by:

(K, k)← Gen(1λ) is a probabilistic key generation algorithm that is run by the
client. It takes as input a security parameter λ, and outputs two symmetric
secret keys K and k which are both kept securely by the client.

(EDB,DB∗)← Setup(K, k,DB, E·(·)) is an algorithm that is run by the client to
set the scheme up. It takes as input secret keys K and k, the database DB
and the algorithm E·(·), and outputs both the protected metadata EDB and
the encrypted documents DB∗ = (Ek(d1), . . . , Ek(dn)).

w∗ ← SearchClient(K,w) is a deterministic algorithm that is run by the client to
send a query to the server. It takes as input the secret key K and a keyword
queried w ∈ W, and outputs the search token w∗ ∈ W∗ associated with w.
Finally w∗ is sent to the server.

EDB(w∗)← SearchServer(EDB, w∗) is a deterministic algorithm that is run by
the server to answer a client-query. It takes as input the protected metadata
EDB and the client-generated search token w∗ and outputs EDB(w∗): the
identifiers of the encrypted documents containing keyword w. This list is
sent back to the client.

B Count Attack Algorithm

Input: W, T, CT , CW

Output: K ⊂W × T
K← ∅ ;
Trec ← ∅ ;
WrongPickFlag← false ;
ProgressFlag← true ;
min← 0 ;
foreach t ∈ T do

L(t)← {w ∈W s. t. #DB(w) = #EDB(t)} ;
if #L(t) < min then

min← |L(t)| ;
tmin ← t ;

foreach w ∈ L
(
tmin

)
do

K←
(
tmin, w

)
;

Trec ← tmin ;
WrongPickFlag← false ;
while ProgressFlag do

if WrongPickFlag = true then
continue ;

ProgressFlag← false ;
foreach t ∈ T− Trec do

foreach w ∈ L(t) do
foreach (t′, w′) ∈ K do

if CT (t, t′) 6= CW (w,w′) then
L(t)← L(t)− {w} ;

if L(t) = {w} then
K← K ∪ {(t, w)} ;
Trec ← Trec ∪ {t} ;
ProgressFlag← true;

if L(t) = ∅ then
WrongPickFlag← true ;
continue ;

if WrongPickFlag = false then
return K

Algorithm 6: Count attack [6]

C Experimental Results

In Section C.1, we present the results for Mask Attack with datasets Commons
in Figure 2, Lucene in Figure 3, Enron in Figure 4 and Gutenberg in Figure 5.
Section C.2, presents the results for Co-Mask Attack with datasets Commons in
Figure 6, Lucene in Figure 7 and Gutenberg in Figure 8. To finish, Section C.3
presents the results for PowerSet Attack with datasets Commons in Figure 9
and Lucene in Figure 10.

Graphs: Two informations are presented in each graph. The first information
is the rate of associations between keywords and search tokens. This rate is
calculated compared to the number of keywords present in the sample I, then
it is calculated compared to the total number of keywords (#W) in the dataset.

The second information is the number of documents recovered partially or
totally. We give the number of documents recovered at least 80%, 90% and 100%.

Tables: The first column of each table is the percentage of plaintext documents
known by the server. The second column represent the rate of associations be-
tween keywords and search tokens. Other columns present the number of docu-
ments recovered at least 70%, 80%, 90% and 100%.

Datasets: We present below some characteristics of datasets that we used. These
datasets are all available online and their different nature allow us to verify the
efficiency of our attacks on differents contents.

Datasets Content #DB #W N

Commons mailing list 28 997 230 893 3 910 562
Enron emails 490 369 643 818 47 301 160
Gutenberg books 21 602 2 853 955 91 261 811
Lucene mailing list 58 884 394 481 7 952 794

Table 2: Characteristics of used datasets.

Discussion: Below, we summarize the efficiency between our three attacks.

L4 Due to the amount of leaked information, our attack on L4-SSE schemes are
the most efficient. On average, we exploit at 99% information given by the
plaintext documents known by the adversary.

L3 In spite of the lost of information on the frequency of keywords in documents,
our attack on L3-SSE schemes are also efficient as the attack on L4-SSE
schemes. In fact, we still exploit at 99% information given by the plaintext
documents known by the adversary.

L2 When we do not know the order of keyword in documents, we can now
associate on average 20% of them to their corresponding token. However,
these 20% of keywords are present in most documents, that is why we can
recover a large part of the documents.

C.1 Mask Attack Results for L4 Leakage

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.99 27 136 21 488 7 631 961
2 0.99 27 931 24 125 11 503 1 775
3 0.99 28 224 25 381 14 182 2 571
4 0.99 28 403 26 105 15 758 3 242
5 0.99 28 489 26 587 17 053 3 911

10 0.99 28 721 27 672 20 908 6 692
20 0.99 28 862 28 376 24 308 11 095
30 0.99 28 905 28 601 25 819 14 693
40 0.99 28 935 28 724 26 777 17 583
50 0.99 28 955 28 817 27 435 19 994

Fig. 2: Results of the Mask Attack on Commons dataset.

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.99 57 335 51 752 28 374 3 146
2 0.99 57 928 54 665 36 297 5 639
3 0.99 58 175 55 741 40 068 7 724
4 0.99 58 273 56 246 42 443 9 538
5 0.99 58 348 56 630 44 031 11 120

10 0.99 58 582 57 653 48 922 17 704
20 0.99 58 706 58 261 52 660 26 989
30 0.99 58 764 58 481 54 384 33 670
40 0.99 58 798 58 630 55 586 39 001
50 0.99 58 823 58 704 56 404 43 393

Fig. 3: Results of the Mask Attack on Lucene dataset.

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.97 479 064 468 840 417 832 156 084
2 0.96 481 403 474 111 439 764 198 529
3 0.96 482 285 476 123 448 110 226 283
4 0.96 483 145 477 791 453 622 246 929
5 0.96 484 947 480 232 458 607 264 975

10 0.96 486 237 482 937 468 423 319 751
20 0.96 487 092 484 983 475 371 375 053
30 0.96 487 535 485 904 478 460 405 158
40 0.96 487 744 486 387 480 150 423 732
50 0.96 487 939 486 730 481 363 437 024

Fig. 4: Results of the Mask Attack on Enron dataset.

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.99 20 966 20 491 18 415 257
2 0.99 21 103 20 738 19 303 527
3 0.99 21 175 20 854 19 664 789
4 0.99 21 202 20 905 19 870 1 036
5 0.99 21 237 20 967 20 117 1 304

10 0.99 21 318 21 149 20 592 2 536
20 0.99 21 407 21 271 20 932 4 988
30 0.99 21 453 21 364 21 127 7 349
40 0.99 21 504 21 446 21 258 9 582
50 0.99 21 527 21 480 21 345 11 760

Fig. 5: Results of the Mask Attack on Gutenberg dataset.

C.2 Co-Mask Attack Results for L3 Leakage

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Co-Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.99 26 680 21 009 7 428 917
2 0.99 27 745 23 856 11 299 1 720
3 0.99 28 166 25 273 13 946 2 489
4 0.99 28 329 25 937 15 564 3 190
5 0.99 28 454 26 392 16 840 3 815

10 0.99 28 722 27 689 20 974 6 728
20 0.99 28 853 28 352 24 271 11 129
30 0.99 28 903 28 613 25 835 14 543
40 0.99 28 935 28 751 26 768 17 403
50 0.99 28 952 28 822 27 421 19 886

Fig. 6: Results of the Co-Mask Attack on Commons dataset.

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Co-Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.99 57 258 51 394 28 086 3 240
2 0.99 57 882 54 405 36 092 5 742
3 0.99 58 081 55 529 39 880 7 810
4 0.99 58 190 56 170 42 419 9 575
5 0.99 58 264 56 567 44 106 11 212

10 0.99 58 524 57 598 48 905 17 811
20 0.99 58 701 58 222 52 586 26 880
30 0.99 58 771 58 489 54 371 33 542
40 0.99 58 806 58 620 55 589 38 913
50 0.99 58 832 58 701 56 430 43 333

Fig. 7: Results of the Co-Mask Attack on Lucene dataset.

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Co-Mask Attack

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 1 20 948 20 430 18 328 244
2 1 21 082 20 701 19 313 509
3 1 21 149 20 826 19 704 766
4 0.99 21 181 20 896 19 932 1 019
5 0.99 21 225 20 959 20 109 1 288

10 0.99 21 317 21 154 20 568 2 613
20 0.99 21 401 21 295 20 894 5 044
30 0.99 21 470 21 375 21 099 7 332
40 0.99 21 505 21 424 21 229 9 603
50 0.99 21 532 21 468 21 323 11 778

Fig. 8: Results of the Co-Mask Attack on Gutenberg dataset.

C.3 PowerSet Attack Results for L2 Leakage

Success Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Attack PowerSet

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.23 21 664 9 516 909 51
2 0.22 25 587 17 878 5 007 363
3 0.21 26 430 20 140 6 598 511
4 0.21 26 927 21 532 8 248 688
5 0.20 27 187 22 460 9 249 794

10 0.19 27 929 24 529 12 472 1 385
20 0.18 28 383 26 187 15 715 2 475
30 0.18 28 508 26 780 17 447 3 326
40 0.18 28 588 27 126 18 573 4 059
50 0.18 28 634 27 354 19 460 4 784

Fig. 9: Results of the PowerSet Attack on Commons dataset.

Rate Succes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Attack PowerSet

% of known dataset

Keyword/token associations over I
Keyword/token associations over the dataset

Document recovered >80%

Document recovered >90%

Documents completely recovered

% Rate # 70% # 80% # 90% # 100%

1 0.21 54 839 42 016 14 117 855
2 0.20 56 429 47 828 21 453 1 522
3 0.19 57 013 50 163 25 931 2 120
4 0.19 57 306 51 557 28 974 2 691
5 0.19 57 517 52 483 31 285 3 285

10 0.16 57 899 54 556 37 260 5 458
20 0.16 58 217 56 124 42 062 8 704
30 0.16 58 325 56 703 44 257 11 187
40 0.16 58 396 57 008 45 579 13 064
50 0.16 58 438 57 188 46 513 14 713

Fig. 10: Results of the PowerSet Attack on Lucene dataset.

	Practical Passive Leakage-Abuse Attacks Against Symmetric Searchable Encryption

