
ROTE: Rollback Protection for Trusted Execution
Sinisa Matetic*, Mansoor Ahmed*, Kari Kostiainen*, Aritra Dhar*, David Sommer*, Arthur Gervais*,

Ari Juels** and Srdjan Capkun*

*Institute of Information Security, ETH Zurich, {firstname.lastname}@inf.ethz.ch
**Cornell Tech, juels@cornell.edu

Abstract—Intel SGX isolates the runtime memory of protected
applications (enclaves) from the OS and allows enclaves to en-
crypt and authenticate (seal) data for persistent storage. Sealing
prevents an untrusted OS from reading or arbitrarily modifying
stored data. However, rollback attacks, where the adversary
replays an old seal, remain possible. Data integrity violations
through rollback can have severe consequences, especially for
enclaves that operate on financial data. The SGX architecture
was recently updated to support monotonic counters that may
be used for rollback prevention, but we show that these counters
have significant performance and security limitations.

In this paper we propose a new approach for rollback
protection on SGX. The intuition behind our approach is simple.
A single platform cannot efficiently prevent rollback, but in
many practical scenarios multiple processors can be enrolled
to assist each other. We design and implement a rollback
protection system called ROTE that realizes integrity protection as
a distributed system among participating enclaves. We construct
a model that captures the ability of the adversary to schedule the
execution of protected applications, and show that our solution
achieves a strong security property that we call all-or-nothing
rollback: the only way to violate data integrity is to reset all
participating platforms to their initial state. We implement ROTE
and demonstrate that such a distributed rollback protection
mechanism can be very fast.

I. INTRODUCTION

Intel Software Guard Extensions (SGX) enables execution
of security-critical application code, called enclaves, in isola-
tion from the untrusted system software [10]. Protections in the
processor ensure that a malicious OS cannot read or modify
enclave memory at runtime. To protect enclave data across
executions, SGX provides a security mechanism called sealing
that allows each enclave to encrypt and authenticate data for
persistent storage. SGX-enabled processors are equipped with
certified cryptographic keys that can issue remotely verifiable
attestation statements on the software configuration of en-
claves. Through these security mechanisms (isolation, sealing,
attestation) SGX enables development of various applications
and online services with hardened security.

The architecture has also its limitations. While sealing
prevents a malicious OS from reading or arbitrarily modifying
persistently stored enclave data, rollback attacks [41], [39],
[30], [10] remain a threat. In a rollback attack a malicious
OS replaces the latest sealed data with an older encrypted
and authenticated version. Enclaves cannot easily detect this
replay, because the processor is unable to maintain persistent
state across enclave executions that may include platform
reboots. Another way to violate enclave state integrity is to

leverage an SGX feature that allows multiple instances of the
same enclave to exist on one platform. The OS can create two
enclave instances and route update request to one instance
and read requests to the other. To remote clients that perform
attestation, the two instances are indistinguishable.

Data integrity violation through rollback attacks can have
severe implications. Consider, for example, a financial ap-
plication implemented as an enclave. The enclave repeatedly
processes incoming transaction at high speed and maintains an
account balance for each user or a history of all transactions in
the system. If the adversary manages to revert the enclave to its
previous state, the maintained account balance or the queried
transaction history does not match the executed transactions.

To address rollback attacks, two basic approaches are
known. The first is to store the persistent state of enclaves
in a non-volatile memory element on the same platform. The
SGX architecture was recently updated to support monotonic
counters leveraging the use of non-volatile memory [19]. How-
ever, the security guarantees and the performance limits of this
mechanism are not precisely documented. Our experiments
show that writes of counter values to this memory are slow
(80-250 ms), which limits its use in high-throughput appli-
cations. More importantly, this memory allows only a limited
number of write operations. We show that this limit is reached
within just few days of continuous system use after which
the memory becomes unusable. Additionally, since the non-
volatile memory used to store the counters resides outside the
processor package, the mechanism is likely vulnerable to bus
tapping and flash mirroring attacks [38]. Similar limitations
apply also to rollback protection techniques that leverage
Trusted Platform Modules (TPMs) [41], [30], [39].

The second common approach is to maintain integrity
information for protected applications in a separate trusted
server [23], [44], [24]. The drawback of such solutions is that
they require the setup of additional computing infrastructure
and the server becomes an obvious target for attacks. Server
replication using standard Byzantine consensus protocols [7]
avoids a single point of failure, but requires high communica-
tion overhead and multiple replicas for each faulty node.

In this paper we propose a new approach to protect SGX
enclaves from rollback attacks. The intuition behind our solu-
tion is simple. A single SGX platform cannot prevent rollback
attacks efficiently, but in many practical scenarios the owner
or the owners of processors can assign multiple processors
to assist each other. Our approach realizes rollback protection

as a distributed system among multiple enclaves. When an
enclave updates its state, it stores a counter to a set of enclaves
running on assisting processors and saves its state data on
persistent storage. Later, when the enclave needs to recover
its state, it obtains counter values from assisting enclaves to
verify that the stored state data is of the latest version.

We consider a powerful adversary that controls the OS on
the target platform and on any of the assisting platforms.
Additionally, we assume that the adversary can break SGX
protections on some of the assisting processors, e.g., through
physical attacks. The adversary can also control all network
communication between the platforms. Our adversary model
combines commonly considered network control based on the
standard Dolev-Yao model [11] and Byzantine faults [32],
[25], but additionally captures the the ability of the adversary
to restart the execution of trusted processes from a previously
saved state, dictate the execution schedule of trusted processes,
and run multiple instances of the same trusted process on
all platforms. Such adversarial capabilities are crucial for the
security of our system, and we believe that the model is of
general interest.

Secure and practical realization of distributed rollback
protection under such a strong adversarial model involves
challenges. One of the main challenges is that when an
assisting enclave receives a counter, its own state changes,
which implies a set of new state updates that would in turn
propagate. To prevent endless update propagation, the counter
value must be stored in the volatile runtime memory of
enclaves. However, the assisting enclaves may be restarted at
any time. The adversary can also create multiple instances of
the same enclave on all assisting platforms and route counter
writes and reads to separate instances.

In this paper, we design and implement a rollback pro-
tection system called ROTE (Rollback Protection for Trusted
Execution). Our system distributes counter values to a set of
enclaves that we call the protection group. The size of the
group depends on desired level of security (the number of
tolerated compromised enclaves) and robustness (the number
of platforms that may be simultaneously unreachable). The
main components of our solution are a state update mechanism
that is an optimized version of consistent broadcast protocols
[33], [6], and a recovery mechanism that obtains lost counters
from the rest of the protection group upon enclave restart.
We design a session key update mechanism to address attacks
based on multiple enclave instances.

We show that our solution achieves a strong security prop-
erty that we call all-or-nothing rollback in the presence of a
strong adversary. Although the attacker can restart enclaves
freely, and thus implement subtle attacks where enclave state
updates and recovery are interleaved, the adversary cannot
roll back individually any enclave to their respective previous
states. The only way to violate data integrity is to reset the
entire group to its initial state. Similar to [30], [41], our
approach can provide crash resilience, assuming deterministic
enclaves and a slightly weaker notion of rollback prevention
(the latest input can be executed twice).

We implemented ROTE on SGX and evaluated its perfor-
mance on four SGX machines. We tested larger groups up
to 20 platforms using a simulated implementation over a local
network and geographically distributed protection groups. Our
evaluation shows that state updates in ROTE can be very fast
(1-2 ms). The number of counter increments is unlimited. This
is in contrast to solutions based on SGX counters and TPMs,
where state updates are approximately 100 times slower and
limited. Enclave developers can use our system through a
simple API. The TCB size increment of ROTE is moderate
(1100 LoC).

Contributions. We make the following contributions.
• New security model. We introduce a new security model

for reasoning about the integrity and freshness of SGX
applications.

• SGX counter experiments. We show that SGX counters
have severe performance limitations.

• Novel approach. We propose a novel way to protect SGX
enclaves. Our key idea is to realize rollback protection by
storing enclave-specific counters in a distributed system
encompassing a collaborative set of distinct nodes.

• ROTE. We propose and implement a system called ROTE
that effectively protects against rollback attacks. ROTE
ensures integrity and freshness of application data in a
powerful adversarial model.

• Experimental evaluation. We demonstrate that distributed
rollback protection incurs small performance overhead.
When deployed over a low-latency network, the state
update overhead is 1-2 ms.

The rest of this paper is organized as follows. In Section II
we provide background information on SGX. Section III
defines our adversarial model and explains rollbacks attacks.
Section IV describes our distributed rollback protection ap-
proach. Section V describes the ROTE system and Section VI
provides security analysis. Section VII provides performance
evaluation and Section VIII further discussion. We review
related work in Section IX. Section X concludes the paper.

II. SGX BACKGROUND

The SGX architecture consists of new instructions, protec-
tive mechanisms in the processor, and new processor-specific
cryptographic keys. The main goal of the architecture is
to prevent other applications and even the operating system
from subverting the control-flow integrity of an application or
observing its runtime state. The SGX architecture provides
such isolation of security-critical application execution, but
also gives rise to a new type of adversary, one that can
terminate, restart and dictate the schedule of enclave execution
(see Section III). Here we briefly describe the main protection
mechanisms of SGX. For a more elaborate explanation of the
architecture, we refer interested readers to [10].

Enclave creation. An enclave is created by the system soft-
ware. During enclave creation, the system software specifies
the enclave code. Security mechanisms in the processors create
a data structure called SGX Enclave Control Structure (SECS)
that is stored in a protected memory area (see below). Because

enclaves are created by the system software running on the
OS, their code cannot contain sensitive data. The start of the
enclave is recorded by the processor, reflecting the content of
the enclave code as well as the loading procedure (sequence
of instructions). The recording of an enclave start is called
measurement and it can be used for later attestation. Once an
enclave is no longer needed, the OS can terminate it and thus
erase its memory structure from the protected memory.

Runtime isolation. The SGX security architecture guar-
antees that enclaves are isolated from all software running
outside of the enclave, including the OS, other enclaves,
and peripherals. By isolation we mean that the control-flow
integrity of the enclave is preserved and other software cannot
observe its state. The isolation is achieved via protection
mechanisms that are enforced by the processor. The code and
data of an enclave are stored in a protected memory area
called Enclave Page Cache (EPC) that resides in Processor
Reserved Memory (PRM) [28]. PRM is a subset of DRAM that
cannot be accessed by the OS, applications or direct memory
accesses. The PRM protection is based on a series of memory
access checks in the processor. Non-enclave software is only
allowed to access memory regions outside the PRM range,
while enclave code can access both non-PRM memory and
the EPC pages owned by the enclave [10].

The untrusted OS can evict EPC pages into the untrusted
DRAM and load these back at a later stage. While the evicted
EPC pages are stored in the untrusted memory, SGX assures
their confidentiality, integrity and freshness via cryptographic
protections. The architecture includes the Memory Encryp-
tion Engine (MEE) which is a part of the processor uncore
(microprocessor function close to but not integrated into the
core [10]). The MEE encrypts and authenticates the enclave
data that is evicted to the non-protected memory, and ensures
enclave data freshness at runtime using counters and a Merkle-
tree structure. The root of the tree structure is stored on the
processor die. Additionally, the MEE is used to protect SGX’s
Enclave Page Cache against physical attacks and is connected
to the Memory Controller [2], [10].

Attestation. Attestation is the process of authenticating
that a particular piece of enclave code has been properly
instantiated. In local attestation both the prover and the chal-
lenger reside on the same platform. This is done using the
EREPORT mechanism which uses a report key, shared with
the challenger, to sign security critical attributes of the prover
enclave (e.g., its code hash and issuer key).

Remote attestation refers to a procedure where a remote
challenger gains confidence that a particular piece of enclave
code has been instantiated on a trusted platform. To accom-
plish this, the SGX architecture uses an Intel-provided Quoting
Enclave which can access a processor-specific attestation key
to sign security critical enclave data and measurements. This
signed report is returned to the challenger who uses an online
attestation verification service (operated by Intel) to verify that
the key being used is a valid Intel SGX attestation key. The
attestation key is a part of the group signature scheme called
EPID (Enhanced Privacy ID) used to sign objects without

OS
scheduling

Enclave

runtime
memory code, data

Create(), Delete()
Start(), Terminate()
Suspend(), Resume() OfferSeal()

storage

Write()
Read()

Seal()

e id = {code}

attestationsealing

communication

Enclave

i id = rand()

Fig. 1: SGX model. We model enclaves and the operating sys-
tem, their main functionality, and the operations (scheduling,
storage, communication) through which they interact.

uniquely identifying the platform (processor), thus protecting
end-user privacy [21], [10]. The challenger can verify the
responses from the Quoting Enclave and the online attestation
service, and confirm the indicated enclave code is running
on a genuine SGX processor. Once an enclave has been
authenticated using attestation, an external entity or another
enclave on the same platform can establish a secure channel
to it using an authenticated key exchange.

Sealing. Enclaves can save confidential data across exe-
cutions. Sealing is the process to encrypt and authenticate
enclave data for persistent storage [1]. Typically enclaves
perform sealing when their state has changed in such a way
that the new state should be recoverable on the next execution
of the enclave (possibly after a reboot). All local persistent
storage, such as the disk, is controlled by the untrusted OS.
For each enclave, the SGX architecture provides a sealing key
that is private to the executing platform and the enclave. The
sealing key is derived from a Fuse Key (unique to the platform,
not known to Intel) and an Identity Key that can be either the
Enclave Identity or Signing Identity. The Enclave Identity is a
cryptographic hash of the enclave measurement and uniquely
identifies the enclave. If data is sealed with Enclave Identity, it
is only available to this particular enclave version. The Signing
Identity is provided by an authority that signs the enclave prior
to its distribution. Data sealed with Signing Identity can be
shared among all enclave versions that have been signed with
the same Signing Identity.

III. PROBLEM STATEMENT

In this section we define models for the SGX architecture
and the adversary. After that, we explain rollback attacks,
limitations of known solutions, and our requirements.

A. SGX Model

Figure 1 illustrates our SGX model. We model enclaves
and the operating system, their main functionality, and the
operations through which they interact. Our model captures
the main SGX functionalities (isolation, attestation, sealing)
that are available on all SGX platforms.

Scheduling operations. Enclave execution is scheduled by
the OS.

• e← Create(code). The system software running on the
OS can create an enclave by providing its code. The SGX
architecture creates a unique enclave identifier e that is
defined by the code measurement.

• i ← Start(e). The system software can start a cre-
ated enclave using its enclave identifier e. The enclave
generates a random and unique instance identifier i for
the enclave instance that executes the code that was
assigned to it during creation. While an enclave instance
is running, the OS and other enclaves are isolated from
its runtime memory. Each enclave instances has its own
program counter and runtime memory.

• Suspend(i) and Resume(i). The OS can suspend the
execution of an enclave. When an enclave is suspended,
its program counter and runtime memory retain their
values. The OS can resume suspended enclave execution.

• Terminate(i). The OS can terminate the enclave exe-
cution. At termination, the enclave runtime memory is
erased by the SGX architecture and the enclave identity
e is rendered unusable.

Storage operations. The second set of operations that we
model are related to sealing data for local persistent storage.

• s ← Seal(data). An enclave can save data for local
persistent storage. This operation creates an encrypted
and authenticated data structure s that is passed to the
OS.

• OfferSeal(i, s). The OS can offer sealed data s. The
enclave can verify that it previously created the seal, but
the enclave cannot distinguish which seal is the latest.

Every enclave instance i can unseal data previously sealed
by an instance of the same enclave identity e.

Communication operations. An external client can com-
municate with an enclave through read and write operations.
Due to attestation, the client can write data such that only a
particular enclave identity can read it. Similarly, the client can
read data from an enclave and verify which enclave identity
wrote it. We model these primitives as single operations,
although the attestation is an interactive protocol between the
enclave and the client (see Section II).

• Write(me, i). The OS can write message me to an
enclave instance i. Only an enclave with enclave identity
e can read the written message me.

• me ← Read(i). The OS can read message me from an
enclave instance i. The read message me identifies the
enclave identity e that wrote the data.

We do not model platform reboots, as those have the same
effect as enclave restarts. Our model assumes that each enclave
instance has its own runtime memory that is perfectly isolated
from the untrusted OS and other enclaves. In reality, enclave
code and data are processed in shared processor caches.
Additionally, all enclave code and data may not reside in
the enclave runtime memory, but encrypted memory pages
can be evicted to the untrusted memory. The OS-controlled

paging mechanism has been demonstrated to leak information
about the control flow of the enclave [46]. Cache-based side-
channels are discussed in [10], [35]. We consider information
leakage through side-channel attacks a realistic threat, but an
orthogonal problem to rollback attacks, and thus outside of
our model.

B. Local Adversary Model

We consider a powerful adversary who, after an initial
trusted setup phase, controls all system software on the target
platform, including the OS. As specified above, the adversary
can schedule enclaves and start multiple instances of the
same enclave. The adversary can offer the latest and previous
versions of sealed data, and block, delay, read and modify all
messages sent by the enclaves.

The adversary cannot read or modify the enclave runtime
memory or learn any information about the secrets held in
enclave data (i.e., no leakage through side-channels). The
adversary has no access to processor-specific keys, such as
the sealing key or the attestation key, and the adversary
cannot break cryptographic primitives provided by the SGX
architecture (attestation, sealing). The enclaves may implement
additional cryptography, such as key exchange and message
signing, and the adversary cannot break those operations.

C. Rollback Attacks

The goal of the adversary is to violate the integrity of
the enclave’s state. This is possible with a simple rollback
attack. After an enclave has sealed at least two data elements
s1 ← Seal(d1) and s2 ← Seal(d2), the adversary performs
Terminate() and Start() to erase the runtime memory of
the enclave. When the enclave requests for the latest sealed
data d2, the adversary performs OfferSeal(i, s1) and the
enclave accepts d1 as d2. When the sealed data captures the
state of the enclave at the time of sealing, we say that the
rollback attack reverts the enclave back to its previous state.

Another approach is a forking attack, where the adversary
leverages two concurrently running enclave instances. The
adversary starts two instances i1 ← Start(e) and i2 ←
Start(e) of the same enclave e. The OS receives a request
from a remote client to write data me to enclave e. The OS
writes the data to the first enclave instance Write(me, i1)
which causes a state change. Another remote client sends
a request to read data from the enclave e. The OS reads
data from the second instance me ← Read(i2) which has
an outdated state and returns me to the client.

Such attacks can have severe implications, especially for
applications that maintain financial data, such as account
balances or transaction histories.

D. Limitations of SGX Counters

Intel has recently added support for monotonic counters [19]
as an optional SGX feature that an enclave developer may
use for rollback attack protection. However, the security and
performance properties of this mechanism are not well docu-
mented. Furthermore, they are not available on all platforms.

Below we describe the counter functionality and explain our
findings on experimenting with them.

SGX counter service. An enclave can query the availability
of counters from the Platform Service Enclave (PSE). If
supported, the enclave can create up to 256 counters. The
default owner policy is that only the enclaves with the same
signing key may access the counter. The counter creation
operation returns an identifier that is a combination of the
Counter ID and a nonce to distinguish counters created by
different entities. The enclave must store the counter identifier
to access the same counter later, as there is no API call to list
the existing counters. After a successful counter creation, the
enclave can increment, read, and delete the counter.

According to the SGX API documentation [19], the counter
operations involve writing to a non-volatile memory. Repeated
write operations can cause the memory to wear out, and thus
the counter increment operations may be rate limited. Based on
Intel developer forums [17], the counter service is provided by
the Management Engine on the Platform Control Hub (PCH).

Experiments. We tested the SGX counters on five differ-
ent platforms: Dell Inspiron 13-7359, Dell Latitude E5470,
Lenovo P50, Intel NUC and Dell Optiplex 7040. The counter
service was not available on Intel NUC. On the Dell laptops
a counter increment operation took approximately 250 ms,
while on the Lenovo laptop and Dell Optiplex increment
operations took approximately 140 ms and 80 ms, respectively.
Strackx et al. [41] report 100 ms for counter updates. Counter
read operations took 60-140 ms, depending on the platform.
As expected, the counter values remained unchanged across
enclave restarts and platform reboots. We tested the wear-out
characteristics of the counters and found out that on both of
the Dell laptops after approximately 1.05 million writes the
tested counter became unusable and other counters on the same
platform could not be created, incremented or read.

Additionally, we observed that reinstalling the SGX Plat-
form Software (PSW) or removing the BIOS battery deletes
all counters. Finally, to our surprise, we noticed that after
reinstalling the PSW the first usage of counter service triggered
the platform software to connect to a server whose domain is
registered to Intel. If Internet connection is not available, the
counter service is unavailable.

Performance limitations. An enclave developer could at-
tempt to use the SGX counters as a rollback mechanism.
When an enclave needs to persistently store an updated state,
it can increment a counter, include the counter value and
identifier to the sealed data, and verify the integrity of the
stored data based on the counter value at the time of unsealing.
However, such approach may wear out the used non-volatile
memory. Assuming a system that updates one of the enclaves
on the same platform once every 250 ms, the counters become
unusable in few days. Even with a modest update rate of one
increment per minute, the counters are exhausted in two years.
Services that need to process tens or hundreds of transactions
per second and update their state accordingly are not possible.

Weaker security model. According to Intel developer fo-
rums [17], the counter service is provided by the Management

Engine on the PCH (known as “south bridge” in older archi-
tectures). However, to the best of our knowledge, the actual
location of the non-volatile memory used to store the counters
is not publicly stated. Based on Intel specifications [18], [16],
the PCH typically does not host non-volatile memory, but it
is connected over an SPI bus to a flash memory that is also
used by the BIOS. Since the Management Engine is an active
component, the communication between the processor and the
Management Engine can be replay protected. However, the
SPI flash is a passive component, and therefore any counter
stored there is likely to be vulnerable to bus tapping and
flash mirroring attacks, as recently demonstrated in the case
of mobile devices (inspired by the FBI iPhone unlocking
debate) [38]. Although the precise storage location of the SGX
counters remains unknown at the time of writing, it is clear
that if the integrity of the enclave data relies on the SGX
counter feature, then additional hardware components besides
the processor must be considered trusted. This is a significant
shift from the enclave execution protection model, where the
security perimeter is the processor package [2, p. 30].

Other concerns. The current design of the SGX counter
APIs makes safe programming difficult. To demonstrate this
we outline a subtle rollback attack. Assume an enclave that
at the beginning of its execution checks for the existence of
sealed state, and if one is not provided by the OS, it creates
a new state and counter, and stores the state sealed together
with the counter value and identifier. Every time the state is
updated, the enclave increments the counter value. Later, the
OS no longer provides a sealed state to the restarted enclave.
The enclave assumes that this is its first execution and creates
a new (second) counter and new state. Recall that the SGX
APIs do not allow checking existence of previous counter.
The enclave updates its state again. Finally, the OS replays a
previous sealed state associated with the first counter. A careful
developer can detect such attacks by creating and deleting 256
counters (an operation that takes two minutes) to check if a
previous counter, and thus sealed state, exists. A crash before
counter deletion would render that particular enclave unusable.

We have no good explanation why a connection to an Intel
server is needed after the PSW reinstall. Similarly, we do not
know why the SGX counters become unavailable after BIOS
battery removal or PSW reinstall.

The above attack and availability issues could be probably
fixed with better design of the SGX APIs and system services,
but the performance limitations and the weaker security model
are hard to avoid in future versions of the SGX architecture.

E. Limitation of SGX Trusted Time

Another recently introduced and optional SGX feature is
the trusted time service [20]. As in the case of SGX counters,
also the time service is provided by the Management Engine.
The trusted time service allows an enclave developer to query
a time stamp that is relative to a reference point. The function
returns a nonce in addition to the timestamp, and according to
the Intel documentation, the timestamp can be trusted as long
as the nonce does not change [20].

We tested the time service and noticed that the provided
nonce remained the same across platform reboots. Reinstalling
the PSW resulted in a different nonce, but the provided time
was still correct. The reference point is the standard Unix time.

As a rollback protection mechanism the trusted time service
is of limited use. Including a timestamp to each sealed data
version allows an enclave to distinguish which out of two seals
is more recent. However, the enclave cannot know if the sealed
data provided by the OS is the latest one.

F. Limitations of Other Known Solutions

TPM solutions. TPMs provide monotonic counters and
NVRAM that can be used to prevent rollback attacks [30],
[39], [41]. The TPM counter interface is rate-limited (typically
one increment every 5 seconds) to prevent memory wear
out.1 Writing to NVRAM takes approximately 100 ms and
the memory becomes unusable after 300K to 1.4M writes
(few days of continuous use) [41]. Thus, similar to SGX
counters, TPM based solutions are unsuitable for applications
that require fast and continuous state updates.

Integrity servers. Another approach is to leverage a trusted
server to maintain state for protected applications [23], [44],
[24]. The drawback of this approach is that it requires setup
and maintenance of a new infrastructure and the centralized
integrity server becomes an obvious target for attacks. To
eliminate a single point of failure, the integrity server could be
replicated using a Byzantine consensus mechanism. However,
standard consensus protocols, such as PBFT [7], require sev-
eral rounds of communication, have high message complexity,
and require at least three replicas for each faulty node.

Architecture modifications. Finally, the SGX architecture
could be modified such that the untrusted OS cannot erase
the enclave runtime memory. However, this approach would
prevent the OS from performing resource management and the
architecture would not scale to many enclaves. Additionally,
rollback attacks through forced reboots and multiple enclave
instances would remain possible. Another approach would
be to enhance the processor with a non-volatile memory
element. Such architecture changes are costly and the cur-
rent NVRAM technologies have the performance limitations
discussed above.

G. Rollback Protection Requirements

The goal of our work is to design a rollback protection
mechanism that overcomes the performance and security
limitations of SGX counters and other known solutions. In
particular, our solution should support unlimited and fast state
updates without weakening the enclave protection model. We
seek to find a solution that does not require expensive hardware
modifications or setup of new computing infrastructure, allows

1The TPM 2.0 specifications introduce high-endurance non-volatile mem-
ory that enables rapidly incremented counters [14]. The counter value is main-
tained in RAM and the value is flushed to non-volatile memory periodically
(e.g., mod 100) and at controlled system shutdown. However, if the system
is rebooted without calling TPM Shutdown, the counter value is lost and at
start-up the TPM assumes the next periodic value. Therefore, such counters
do not prevent attacks where the adversary reboots the system.

easy data migration for flexible resource use, and does not have
a single point of failure for high level of security.

IV. OUR APPROACH

The intuition behind our approach is that a single SGX
platform cannot prevent rollback attacks, but the owner or
the owners of SGX platforms can enroll multiple processors
to assist each other. Thus, our goal is to design rollback
protection for SGX as a distributed system between multiple
enclaves running on separate processors. Instead of using a
standard state replication protocol, our distributed system is
customized for the task of rollback protection to reduce the
number of required replicas and the communication overhead.

To realize rollback protection, the distributed system should
provide, for each participating platform, an abstraction of a
secure counter storage that consists of two operations:

• WriteCounter(value). An enclave can use this opera-
tion to write a counter value to the secure storage.

• value/empty ← ReadCounter(). An enclave can use
this operation to read a counter value from the secure
storage. The operation returns the last written value or
an empty value if no counter was previously written.

When an enclave performs a security-critical state update
operation (e.g., modifies an account balance or extends a
transaction history), it distributes a monotonic counter over the
network to a set of enclaves running on assisting processors
(WriteCounter), stores the counter value to its runtime
memory and seals its state together with the counter value
for local persistent storage. When the enclave is restarted,
it can recover its latest state by unsealing the saved data,
obtaining the counter values from enclaves on the assisting
processors (ReadCounter) and verifying that the sealed state
is of the latest version. The same technique allows potentially
concurrently running instances of the same enclave identity to
determine that they have the latest state. When an enclave
needs to verify its state freshness (e.g., upon receiving a
request to return the current account balance or transaction
history a remote client), it obtains the counter value from the
network (ReadCounter) and compares it to the one in its
runtime memory.

By using enclaves on the assisting platforms, we reduce the
required trust assumptions on the assisting platforms.

A. Distributed Model

We assume n SGX platforms that assist the target platform
in rollback protection. The platforms can belong to a single
administrative domain or they could be owned by private indi-
viduals who all benefit from collaborative rollback protection.
We model each platform using the SGX model described in
Section III-A. The distributed system can be seen as a compo-
sition of n+ 1 SGX instances (target platform included) that
are connected over a network. We make no assumptions about
the reliability of the communication network, messages may be
delayed or lost completely. We assume that while participating
in collaborative rollback protection, some platforms may be
temporarily down or unreachable.

B. Distributed Adversary Model

On each platform, the adversary has the capabilities listed
in Section III-B. Additionally, we assume that the adversary
can compromise the SGX protections on f < n participating
nodes, excluding the target platform. Such compromise is
possible, e.g., through physical attacks. On the compromised
SGX nodes the adversary can freely modify the runtime
memory (code and data) of any enclave, and read all enclave
secrets and the SGX processor keys.

This adversarial model combines a standard Dolev-Yao
network adversary [11] with adversarial behaviour (Byzantine
faults) on a subset of participating platforms [32], [25]. Ad-
ditionally, the adversary can schedule the execution of trusted
processes, replay old versions of their persistently stored data,
and start multiple instances of the same trusted process on
the same platform. In Section VI we explain subtle attacks
enabled by such additional adversarial capabilities.

C. Challenges

Secure and practical realization of our approach under a
strong adversarial model involves challenges.

Network partitioning. A simple solution would be to store
a counter with all the assisting enclaves, and at the time
of unsealing require that the counter value is obtained from
all assisting enclaves. However, if one of the platforms is
unreachable at the time of unsealing (e.g., due to network
error, maintenance or reboot), the operation would fail. Our
goal is to design a practical system that can proceed even if
some of the participating enclaves are unreachable. In such
a system, some of the assisting enclaves may have outdated
counter values, and the system must ensure that only the latest
counter value is ever recovered, assuming an adversary that
can block message, and partition the network by choosing
which nodes are reachable at any given time.

Coordinated enclave restarts. When an enclave seals data,
it sends a counter value to a set of enclaves running on
assisting platforms and each enclave must store the received
counter. However, sealing the received counter for persistent
storage would cause a new state update that would propagate
endlessly. Therefore, the enclaves must maintain the received
counters in their runtime memory. The participating enclaves
may be restarted at any time, which causes them to lose
their runtime memory. Thus, the rollback protection system
must provide a recovery mechanism that allows the assisting
enclaves to restore the lost counters from the other assisting
enclaves. Such a recovery mechanism opens up a new attack
vector. The adversary can launch coordinated attacks where he
restarts assisting enclaves to trigger recovery while the target
platform is distributing its current counter value.

Multiple enclave instances. Simple approaches that store
a counter to a number of assisting enclaves and later read
the counter from sufficiently many of the same enclaves are
vulnerable to attacks where the adversary creates multiple
instances of the same enclave. Assume that a counter is saved
to the runtime memory of n assisting enclaves. The adversary
that controls the OS on all assisting platforms starts second

Counter Security Enclave Crash
technique property type resilience
inc-then-store no any rollback any no
store-then-inc no arbitrary rollback, deterministic yes

last input twice

TABLE I: Comparison of counter increment techniques. inc-
then-store provides strong security, but no crash resilience.
store-then-inc supports crash resilience, but enables the latest
input to be executed twice.

instances of the same enclave on n platforms. The target
enclave updates its state and sends an incremented counter to
the second instances. Later, the target enclave obtains an old
counter value from the first instances and recovers a previous
state from the persistent storage.

V. ROTE SYSTEM

In this section we describe ROTE (Rollback Protection for
Trusted Execution), a distributed system for state integrity
and rollback protection on SGX. We start by explaining the
rationale behind the chosen counter increment technique, our
system architecture, group assignment and system initializa-
tion. After that, we describe the rollback protection protocols.

A. Counter Increment Technique

Two common techniques for counter-based rollback protec-
tion exist (see Table I). The first technique is inc-then-store,
where the enclave first increments the trusted counter and after
that updates its internal state and stores the sealed state to-
gether with the counter value on disk. This approach provides
a strong security property (no rollback to any previous state),
but if the enclave crashes between the increment and store
operations, the system cannot recover from the crash.

The second technique is store-then-inc, where the enclave
first saves its state on the disk together with the latest input
value, after that increments the trusted counter, and finally
performs the state update [30], [41]. If the system crashes,
it can recover from the previous state using the saved input.
This technique requires a deterministic enclave and provides
a slightly weaker security property: arbitrary rollback is not
possible, but the last input may be executed twice on the same
enclave state [41].

The stronger security guarantee is needed, for example, in a
financial enclave that withdraws randomized digital coins and
maintains account balances. If the enclave executes the same
input twice on the same state, the adversary can withdraw
double the coins accounted. The weaker security guarantee is
sufficient in applications where the execution of the same input
on the same state provides no advantage for the adversary (e.g.,
appending a transaction to a transaction history).

Our distributed rollback protection approach is agnostic to
the choice of the counter increment technique. We design and
implement ROTE using inc-then-store, because of its stronger
security guarantees. However, our system could be easily
adapted to provide crash resilience using store-then-inc.

Fig. 2: The ROTE system architecture. Application-Specific
Enclaves (ASEs) verify the integrity of their sealed data using
the Master Enclave (ME) that distributes its own state to
assisting platforms.

B. System Architecture

Figure 2 shows our system architecture. Each platform
may run multiple user applications that have a matching
Application-Specific Enclave (ASE). The ROTE system con-
sists of a system service that we call the Master Enclave (ME)
and a library that ASEs can use for rollback protection. When
an ASE needs to update its state, it calls a counter increment
function from the ROTE library. Once the ME returns a counter
value, the ASE can safely update its state, save the counter
value to its memory and seal any data together with the counter
value. When an ASE needs to verify the freshness of its state,
it can again call a function from the ROTE library to obtain
the latest counter value to verify the freshness of unsealed seal
data (or state in its runtime memory).

To provide state integrity for ASEs, the ME needs to protect
its own state. The ME maintains a Monotonic Counter (MC),
increases it for every ASE update, distributes it to MEs running
on assisting platforms, and includes the counter value to its
own sealed data. When the ME needs to verify the freshness
of its own state, it obtains the latest counter value from the
assisting nodes. The ME realizes the secure counter storage
functionality (WriteCounter and ReadCounter).

The design choice of introducing a dedicated system ser-
vice (ME) hides the distributed counter maintenance from
the applications. Having a separate ME increases the TCB
of our system slightly, but we consider easier application
development more important.

The ROTE system has three configurable parameters:
• n is the number of assisting platforms,
• f is the number of compromised processors, and
• u is the maximum number of assisting platforms that can

be unreachable or non-responsive at the same time for
the system to proceed.

These parameters have a dependency n = f + 2u + 1
(see Section VI). As an example, a system administrator can
select the desired level of security f and robustness u which
together determine the required number of assisting platforms
n. Alternatively, given n assisting platforms, the administrator
can pick f and u.

C. Group Assignment and System Initialization

Our system is agnostic to the way the n assisting SGX
platforms are chosen. Here we explain an example approach

Fig. 3: ROTE system state structures. The ME maintains a local
ASE counter table in its persistent state and a group counter
table in its runtime memory. The group configuration table is
set up during system initialization.

based on a trusted offline authority. Such group assignment is
practical in scenarios where all assisting platforms belong to
a single administrative domain (e.g., multiple servers in the
same data center). In Appendix C we discuss group updates
and group assignment alternatives.

We call the trusted authority that selects the assisting nodes
the group owner. The group owner can be a fully offline
entity to reduce its attack surface. To establish a protection
group, the group owner selects n platforms. We assume that
the operating systems on these platforms are trusted at the time
of system initialization (e.g., freshly installed OS version).
During its first execution, the ME on each platform generates
an asymmetric key pair SKME/PKME , and exports the
public key. The public keys are delivered to the group owner
securely, and the group owner issues a certificate by signing all
group member keys. The group certificate can be verified by
the ME on each selected platform by hard-coding the public
key of the group owner to the ME implementation.

The ME is started a second time with the certified list of
public keys and an initialization key as input parameters. The
purpose of the initialization key is to indicate a legitimate
group establishment operation and to prevent a later, parallel
group creation by compromised operating systems on the same
certified platforms. The initialization key is hard coded to the
ME implementation in hashed format and the ME verifies the
correctness of the provided key by hashing it. If the correct key
is not provided, the ME aborts initialization. The ME proceeds
by generating a random instance ID. A fresh instance ID is
generated every time an ME is started and the purpose of the
instance ID is to enable other nodes to distinguish specific
ME instances and invalidate old ones. The ME saves the list
of certified public keys PKMEi to a group configuration table
and runs an authenticated key agreement protocol to establish
pair-wise session keys kMEi with other MEs, and adds them
and their respective instance IDs to the group configuration
table. Finally, the ME creates a monotonic counter (MC), sets
it to zero, and seals its state.

When an ASE wants to use the ROTE system for the

ASEA1ASEA1
Master

EnclaveB

Master
EnclaveB

EchoB

Master
Enclavei

Master
Enclavei

signed (MCA,IDA)

...

updateGroupCounterTable()

Echoi

REQUEST

RESPONSE

5

2

4

Master
EnclaveA

Master
EnclaveA

incrementASEA1Counter();

readyToUpdateState();

updateLocalASECounterTable();
increaseMC();3

signed (MCA,IDA)

6

verify final ACKs();
acceptNewState();

store&seal();

10
9

ACK

acceptNewState();
store&seal();

REQUEST LOCAL ENTITY EXTERNAL ENTITY

1

verify Echoes
returned EchoB

check returned
Echoi for
valididity

returned Echoi

final ACKB

final ACKi

7

8

Fig. 4: ASE state update protocol. The ASE sends a counter
increment request to the ME that increments the ASE specific
counter in its table and increments its MC to distribute it to the
assisting MEs. If the ME receives sufficient number of echoes
and ACKs, both the ME and ASE seal their respective states.

first time, it performs an attestation of the ME. The code
measurement of the ME can be hard-coded to the ASE
implementation or provisioned by the ASE developer. The
ASE runs an authenticated key establishment protocol with
the ME. The ME adds the established shared key kASEi to a
local ASE counter table together with a locally unique enclave
identifier idASEi and adds the same key to its own state. The
used state structures are shown in Figure 3.

D. ASE State Update Protocol

When an ASE is ready to update its state (e.g., a financial
application has received a new transaction and is ready to
process it and update maintained account balances), it starts
the state update protocol shown in Figure 4. This protocol
can be seen as an customized version of the Echo broadcast
[33]. We discuss the differences between our state update
mechanism and Byzantine broadcast in Section IX. In all
of our protocols the communication between the enclaves is
encrypted and authenticated using the shared session keys. We
add nonces and end point identifiers to each message to prevent
message replay. The protocol proceeds as follows:

1) The ASE is ready to perform a security-critical state
update that needs to be protected.

2) The ASE triggers a counter increment using the ME.
3) The ME increments a counter for the ASE, increases its

own MC, and signs the MC and its instance ID using

SKME . The counter is signed to preserve its integrity
in the case of compromised assisting MEs.

4) The ME sends the signed counter and the instance ID
to all MEs in the protection group.

5) Upon receiving the signed MC and the instance ID, each
ME updates its group counter table. The table is kept in
the runtime memory, and not sealed after every update,
to avoid endless propagation.

6) The MEs that received the counter send an echo message
that contains the received signed MC and the instance
ID. The MEs also save the echo in runtime memory for
later comparison.

7) After receiving a quorum q = u+f+1 = n+f+1
2 echos,

the ME returns the echos to their senders. The second
round of communication is needed to prevent attacks
based on ME restarts during the update protocol.

8) Upon receiving back the echo, each ME finds the self-
sent echo in its memory and checks if the MC value
from it matches the one in the group counter table and
the one received from the target ME. If this is the case,
the ME replies a final ACK message.

9) After receiving q final ACKs, the ME seals its own state
together with the MC value to the disk.

10) The ME returns the incremented ASE counter value.
The ASE can now safely perform the state update (e.g.,
update account balance), save the counter value to its
runtime memory for later comparison, and seal its state
with the counter.

E. ME Restart Protocol

Figure 5 shows the protocol that the ME runs after a restart.
The protocol performs three main functions. First, the ME
joins an existing protection group with a new instance ID.
Second, the ME retrieves its counter value from the group. And
third, the restarted ME obtain the lost MCs of other nodes.

In restart the ME loses all previously established session
keys. The ME generates a new, random instance ID for
itself and establishes new pairwise session keys with other
platforms in the protection group. In order to preserve our
security guarantee, the target ME waits until it establishes new
session keys with all other MEs residing in the protection
group. All assisting MEs update their group configuration
tables with the new session key and instance ID. The session
key refreshing mechanism prevent nodes from communicating
with multiple ME instances on one platform (see Section
VI). Another condition for successfully joining the protection
group is that sufficiently many nodes return non-zero counter
values (step 6 below). This check prevents simultaneously
restarted MEs from establishing a second, parallel protection
group. Additionally, after obtaining its counter value, the ME
increments its own counter (step 7). This allows other nodes
to determine which instance ID is the latest in cases where the
protection group has multiple instance IDs for the same node.

The protocol proceeds as follows:
1) Session key establishment with other nodes and update

of the group configuration table.

Master
EnclaveA

Master
EnclaveA

Master
EnclaveB

Master
EnclaveB

getMC()

signed MC,ID(MEA), signed MC,ID(all)

Operating
system

Operating
system

requestLocalState()

OfferSeal(MEA,seal)
unsealState(); extract MC

Master
Enclavei

Master
Enclavei

...

getMC()

...

checkGroupCounterTable()

signed MC,ID(MEA), signed MC,ID(all)

compare MC from sealed state
with max(MC) and local ID with ID

received from network

REQUEST
RESPONSE

8

2
3

4

5

LOCAL ENTITY

EXTERNAL ENTITY

verify final ACKs(); acceptNewState();
store&seal(); continueOperation();

6

ASE state update protocol
STEPS 4-9

7

Session key(s) establishment 1

Fig. 5: ME restart protocol. The ME obtains the latest MC
value from the assisting MEs and verifies the integrity of the
unsealed data using it.

2) The ME queries the OS for the sealed state.
3) The ME unseals the state (if received) and extracts the

MC.
4) The ME sends a request to all other MEs in the protec-

tion group to retrieve its MC.
5) The assisting MEs check their group counter table. If

the MC is found, the enclaves reply the signed MC and
the associated instance ID. Additionally, the complete
table of other signed MCs and instance IDs that the
responding node has in its memory.

6) When the ME receives q responses from the group it
selects the maximum value and verifies the signature
over it. We select the maximum value because some
MEs might have an old counter value or they may
have purposefully sent one. Additionally, the target ME
verifies signatures and compares all the group counter
table entries with received values for other nodes. For
each assisting ME, the target ME picks the highest MC
and updates its own group counter table with the value
and the associated instance ID. The ME also verifies
that at least f +1 of the received counter values are not
zero to prevent creation of the parallel network. If the
obtained counter value matches the one in the unsealed
data, the unsealed state can be accepted.

7) The ME initiates a MC update using steps 4-9 from the
ASE state update protocol, Figure 4.

8) The ME stores and seals the updated state together with
the incremented counter value. The ME will also save
the counter value to its runtime memory.

The ME now has an updated group counter table that reflects
the latest counters for each node in the group.

ASEA1ASEA1
Master

EnclaveA

Master
EnclaveA

getASEA1Counter()

CounterASEA1

Operating
system

Operating
system

requestLocalState()

unsealState(); retrieveASEcounter()

compare counter from the unsealedl state
with counter received from MEAREQUEST

RESPONSE

1
2

3

5

6

Master
Enclavei

Master
Enclavei

...

LOCAL ENTITY

EXTERNAL ENTITY

OfferSeal(ASEA1,seal)

checkLocalASECounterTable()

ME start/read protocol
STEPS 4-7

4

Fig. 6: ASE start/read protocol. An ASE obtains the latest
data state counter from the ME and verifies the integrity of
the unsealed data using it.

F. ASE Start/Read Protocol

When an ASE needs to verify the freshness of its state, it
performs the protocol shown in Figure 6. This is needed to
verify the freshness of unsealed state after an ASE restart or
when an ASE replies a client request asking its current state
(e.g., account balance). The ASE must verify that another ASE
instance does not have a newer state (e.g., updated account
balance).

1) The ASE queries the OS for the sealed data.
2) The ASE unseals the state (if received) and obtains a

counter value from it.
3) The ASE issues a request to the local ME to retrieve its

latest ASE counter value.
4) To verify the freshness of its runtime state, the ME

performs the steps 4-7 from the ME Restart protocol,
with the following exceptions. When receiving counter
values from the assisting nodes, the ME additionally
checks if the highest counter value is associated with
a different instance ID than what is stored in the group
configuration table. This indicates that another node is
running a newer ME instance. The old session key must
be deleted and a new one established. If the obtained
MC does not match the MC residing in the memory of
the ME, the state of the ME is not the latest, and the
ME must abort and be restarted. If the values match,
the current data is fresh and ME can continue normal
operation. Step 7 from the ME Restart protocol only
occurs if the data in the enclave memory was not fresh.

5) If all verification checks are successful, the ME returns
a value from the local ASE counter table.

6) The ASE compares the received counter value to the one
obtained from the sealed data.

If the counter values match, the ASE successfully loads the
previously sealed state or completes the security-critical client
request. Otherwise, the ASE refuses to load the unsealed state

unseal

1

2

Start()

ReadCounter()7

value

ask seal

fail

halt

4

OfferSeal
(latest)

5

6

OfferSeal
(arbitrary)

OfferSeal
(previous)

8

9

10

increment

Write-
Counter()

fail
ok

Seal()

ok

3

ready to
update state

normal
operation

counter
mismatch

fail

counter
match

unseal

unseal

check counter

counter match
empty

fail

Fig. 7: State transition diagram showing enclave execution
states using an ideal secure counter storage functionality. We
show that the enclave can only accept the latest state or halt
its execution.

or perform the client request.

VI. SECURITY ANALYSIS

Our system is designed to provide the following security
property: an ASE cannot be rolled back to a previous state.
In this section we first show that given a secure storage
functionality (Section IV), the ME can verify that its state is
the latest. After that, we show that the MEs realize the secure
counter storage functionality as a distributed system. Finally,
we show that ASEs cannot be rolled back if the ME cannot be
rolled back. Our system achieves a security guarantee that we
call all-or-nothing rollback. Enclave data integrity violation
may only occur if the entire protection group is reset to its
initial state.

A. Rollback Protection with Secure Storage

Given the ideal secure counter storage functionality defined
in Section IV, rollback attacks can be prevented using the inc-
then-store technique. In Figure 7 we illustrate a state transition
diagram that represents ME states during sealing, unsealing
and memory reading of security-critical data using the ideal
storage functionality. The notion of state in this section is
an execution state, in contrast to enclave data states created
and stored using sealing. We show that any combination of
adversary operations, in any of the enclave execution states,
cannot make the master enclave accept a previous version of
sealed data.

First start. After creating an enclave, e← Create(code)

the OS can start it using i← Start(e), and the ME execution
begins from State 1. The counter MC is set to zero in the
runtime memory and the ME proceeds to State 2 to determine
if it has previously saved sealed state. The ME reads the
counter value from the secure storage using ReadCounter().
On the first execution the operation returns empty and the ME

continues to State 7, where it continues normal operation. If
the ReadCounter() operation fails, the ME halts.

Sealing. When the ME needs to seal data for local persistent
storage (save its current state), it proceeds to State 8. The
ME increments the monotonic counter MC, and performs the
WriteCounter() operation to write it to the secure storage
in State 9. If the writing operation succeeds, the ME continues
to State 10. If counter writing fails, the ME halts. In State 10,
the ME seals the data (s ← Seal(data)) that represents its
current state together with the counter value. OS confirmation
moves the enclave back to normal operation in State 7.

Unsealing. When the ME needs to unseal data (recover its
state) and the counter MC in the runtime memory has a non-
zero value, the ME proceeds from State 7 to State 3. The ME
asks the OS for the latest seal. The adversary can offer the
correct sealed data (OfferSeal(latest ≡ s)) which moves the
execution to State 4. Unsealing is successful and the counter
value in the seal matches the MC value in the runtime memory,
and the ME proceeds back to State 7. The adversary can also
offer a previously sealed state (OfferSeal(previous)) which
moves the execution to State 6. The unsealing is successful, but
the counter value in the unsealed data does not match the MC
value in the runtime memory and the ME halts. Finally, the
adevrsary can offer any other data (OfferSeal(arbitrary))
which moves the ME to State 5. In this case the unsealing
fails and the ME halts.

Security-critical memory read. The adversary can start
more than one ME instance The SGX architecture does not
enable one enclave instance to check if another instance of the
same enclave code is already running [12].

When the ME needs to read its runtime state (e.g., to
complete a client request), the ME proceeds from State 7 to
State 2. This check is needed to guarantee that another instance
of the same enclave does not have a newer state (forking
attack). The ME reads the counter from the secure storage and
compares the counter value to the one residing in its memory.
If the counters are the same the ME concludes that it has
the latest internal memory state and proceeds back to State 7.
However, if the counter obtained from the secure storage is
higher than the local monotonic counter in the memory, ME
knows the freshness is violated and continues to State 3 in
order to obtain the latest seal (see above).

Restart. After an ME restart, the execution proceeds to
State 2. If the ReadCounter() operation returns a non-empty
value, the ME proceeds to State 3, and if it returns empty we
proceed to State 7, from where we follow the same steps as
above.

If in any of these states the ME is terminated or restarted,
its execution continues from State 1. Deleting and creating
the same enclave again has the same effect. Suspend() and
Resume() have no effect, i.e., the enclave remains in the same
execution state. We conclude that, assuming the ideal secure
storage functionality, the adversary cannot rollback the state
of the ME.

Fig. 8: Network partitioning example. On first state update the
adversary blocks the left side of the group. On second state
update she blocks the right side. To obtain the latest state,
write to and read from a quorum of q = u+ f + 1 = n+f+1

2
platforms.

B. Distributed Secure Storage Realization

Next, we show that ROTE realizes the secure counter storage
functionality as a distributed system. When obtaining a counter
value from the distributed protection group (ReadCounter),
the enclave receives the latest value that was successfully
sent to the protection group (WriteCounter). We divide the
analysis into four parts: quorum size, platform resets, two-
phase counter writing, and forking attacks.

Quorum size. As defined in Section V, the ROTE system
has three parameters: the number of assisting nodes n, the
number of compromised nodes f , and the number of unre-
sponsive nodes u. The required quorum for responses at the
time of counter writing and reading is q = f+u+1 = n+f+1

2 .
Figure 8 illustrates that this is the optimal quorum size. We
consider an example where the adversary performs network
partitioning by blocking messages during writing and reading.

On the first write, the attacker allows the counter value 1 to
reach the right side of the group by blocking the messages sent
to the left side. On the second write, the adversary allows the
counter value 2 to reach the left side of the group by blocking
the right side. Finally, on counter read, the adversary blocks the
left side again. If the counter is successfully written to q = f+
u+1 nodes, there always exists at least u+1 honest platforms
in the group that have the latest counter value. Because counter
reading requires the same number of responses, at least one
correct counter value is obtained upon reading. The maximum
number of tolerated compromised platforms is f < n. If we
set u = 0, and therefore q = n, we can tolerate f = n − 1
compromised processors. However, with such parameters the
system does not proceed if even one platform is not reachable
at the time of sealing or master enclave restart.

Platform resets. If the counter is successfully written to
q nodes, then at least u + 1 honest assisting MEs have the
latest MC value in their runtime memory. If an assisting ME
is restarted, it attempts to recover the lost MC values (its own
counter and counters for other nodes) from the rest of the
protection group.

Three distinct cases are possible. The first case is that the
number of restarted MEs is at most u. Since the number of
not restarted nodes is u+f+1 = q there is sufficient available
platforms with the correct MC for the counter retrieval,
concerning network partitioning. All restarted platforms will
recover the correct MC. The second case is that more than

u platforms, but not the entire protection group, are rebooted
at the same time. The number of remaining platforms is not
sufficient for ME recovery and the distributed system no longer
provides successful MC reading or writing, but no rollback is
possible. The third case is all n+1 nodes are restarted at the
same time, in which case new system configuration has to be
deployed again by the group owner to re-initialize the system.

Two-phase counter writing. The above analysis showed
that if the counter is successfully written to at least q nodes,
then at least u + 1 honest nodes have the latest counter
value, and during reading at least one correct value is always
received. We also showed that the system can maintain the
counter, if the adversary resets assisting MEs after successful
counter writing. What remains to be shown is that our two-
phase status update protocol successfully writes the counter to
q nodes, despite possible ME resets during the protocol.

We illustrate the challenges of counter writing in this
particular setting through an example attack on a single-phase
variant of the status update protocol. This variant completes
after the ME has received q echos. In this attack, during state
update, the adversary blocks all communication and performs
sequential passing of the messages. First, the attacker allows
the message delivery to only one node that saves the counter
and returns an echo. After that, the attacker restarts the ME on
that node, which initiates the lost counter recovery procedure
from the rest of the protection group. The adversary blocks the
communication to the target platform, and the restarted ME
recovers the previous counter value, because all the reachable
MEs have not yet received the new value. The adversary
repeats the same process for all other platforms. As a result,
the target node has received q echos and accepts the state
update, but all the assisting nodes have the previous counter
value. Rollback is possible.

The second communication phase of our state update proto-
col prevents such attacks. Below we show that no combination
of ME restarts during the state update protocol allows the
target ME to complete the protocol, unless the counter was
written to q nodes and at least u + 1 honest nodes saved the
counter value. There are four distinct cases to consider. (Below
we assume that the adversary restarts at most u platforms si-
multaneously. If more than u platforms are restarted, recovery
is not possible, as explained above.)

• Case 1: Echo blocking. If the attacker blocks communi-
cation or restarts assisting MEs so that q nodes cannot
send the echo, the target ME does not receive enough
responses and the protocol does not complete.

• Case 2: No echo blocking. If the attacker allows at least
q echoes to pass, the target ME can start returning these
echoes to the original senders. Depending on the attacker
actions on the assisting MEs after they have sent the
echoes, the following two cases are possible.

• Case 2a: No restarts during first round. If none of the
assisting MEs were rebooted during the first protocol
round, then at least u+1 nodes have the updated MC of
the target ME in their runtime memory. If the adversary
restarts assisting MEs before they sent the final ACK

and after they received the self-sent echo returned from
the target ME, the protocol will not complete, because
less than q final ACKs will be received. The adversary
can also restart assisting MEs after they have sent the
final ACK which will result in successful state update,
and successful state recovery of the restarted ME since
sufficient number of the assisting nodes already have the
updated counter value.

• Case 2b: Restarts during first round. If the adversary
restarts assisting MEs during the first round, the update
protocol will either successfully complete (q final ACKs
received) or halt execution depending on the number of
simultaneously restarted nodes. Sequential node restarts,
as discussed in the example attack above, are detected.
Upon receiving q echoes, the ME sends each of the
received echoes to the original sender from the assisting
nodes. Because of sequential ME restarts, all assisting
nodes have the previous MC value in their runtime
memory, and thus the protocol will fail upon comparison
of the echoes and the MC values. None of the assisting
MEs will deliver the final ACK, and the protocol will not
complete.

We conclude that the successful completion of the two-
phase state update protocol guarantees that at least q nodes
received and at least u + 1 honest nodes saved the counter
value.

Forking attacks. Finally, we consider forking attacks in
our distributed setting. We prevent the above forking attack
by requiring that the ASE start/read and ME restart protocol
include ME connecting to the assisting nodes and verifying its
latest counter and seal. This adds a small delay to every ASE
start and read operations. If the latest counter is correct along
with the associated instance ID, ME can be certain that it has
been the one that made the last update. If the comparison
fails, or the sessions keys are outdated thereby preventing
communication with other nodes, ME knows another version
has been running and proceeds with new key establishment,
unsealing and retrieving its latest state, outlined in the ME
restart protocol. This ensures that performing any execution in
the system is done on the latest and fresh data that was sealed
and protected. Additionally, in order to uniquely identify the
latest running instance of the ME, every read of the state
initiates a state update protocol, thereby increasing the value
of the MC and making the forked ME instance outdated (only
maximum values of the MC are accepted, and having an
instance running on the old MC and its associated instance
ID indicates to the protection group to remove sessions keys
for it).

The session key refreshing mechanism allows us to uniquely
identify the latest running instance and prevents parallel com-
munication with two instance running on one platform. After
every instantiation or restart of the ME, new instance ID is
generated and keys have to be established with all nodes from
the protection group. When the ME start the key establishment
protocol with any of the other nodes, they delete the old
session key that they shared with the previous instance residing

on the same platform, rendering its communication unusable.
If at least q nodes communicate with the latest instance of
the ME on a platform, the previous instance does not have a
quorum of other MEs available to communicate to in order to
perform any operations (read or write) that would violate our
security properties. If this previous instance starts establishing
new keys with other nodes, it is forced to read and load
the latest, fresh state along with increasing the MC thereby
making it the latest instance (and at the same time making the
other one to lose the quorum). With the addition of the MC
increase outlined above, we always have only one instance
with the latest state (and the highest MC) on each platform.
The protocol requires ME to always verify freshness of its
own memory when an ASE request a state retrieval, thereby
preventing any other instance running on the platform to roll
back the ASE.

Another attack is to form a parallel network by instantiating
new MEs on all of the platforms in the protection group and
make the ASEs to communicate with MEs that formed the
rogue system, causing rollback. However, our system prevents
it since upon first start, the ME will receive all zero MCs
from other nodes in the group and prevent forming of the
network if there is no password entered. Hence, a new network
may only be created under supervision of the group owner, by
distributing the initialization key.

Lastly, we require all nodes to be reachable when a restart
of the ME occurs, while establishing new session keys, to
prevent the attacker from instantiating new MEs on different
platforms in a one-by-one manner while keeping some of the
nodes disconnected. This would result with a node that has
no notion of the newly created instances and thus connecting
to the old ones, enabling rollback. However, if all nodes are
available during session key establishment, everyone in the
protection group has a notion of the latest ME instances and
would refuse to communicate with deprecated instances that
hold an old data state.

C. Security Analysis Summary

If the target ME has the latest MC that it sent, it is able to
distinguish its latest sealed state, and if the latest sealed state
is loaded, all the ASEs state counters kept within are fresh.
Upon retrieval, the ASE always receives the latest counter, and
thus each ASEs will only accept the latest sealed state they
produced. The adversary may only cause a complete system
reset if all the nodes are restarted at the same time.

VII. PERFORMANCE EVALUATION

In this section we describe our implementation and experi-
mental evaluation.

A. Implementation

Our implementation consists of the following components.
First, we implemented the ME and an accompanying master
relay application. Second, we implemented the ROTE library,
a simple test ASE, and a matching test relay application.
The purpose of the relays is to mediate enclave-to-enclave

component LoC
test relay 100
master relay 1600
test ASE 100
ROTE library 150
Master Enclave (ME) 950
TCB size 1100

TABLE II: ROTE prototype implementation size.

communication (enclaves cannot communicate directly). We
implemented all components in C++, the relays were imple-
mented for the Windows platform. Table II shows the sizes of
implemented components.

Communication. The communication between the relay
applications and enclaves takes place using function calls from
the Intel SGX API. The local communication between the
relay applications was implemented using Windows named
pipes. The communication across platforms was implemented
using the standard Windows networking stack. When an ME
sends a message to another ME, it first passes the data to the
local master relay that sends it to the remote master relay over
the network where it is passed to the remote ME.

Cryptography. The enclaves use asymmetric keys for sign-
ing and key establishment. We implemented the asymmetric
cryptography using 256-bit ECC keys. For signing we use
ECDSA. Our implementation establishes shared keys using
authenticated Diffie-Hellman key exchange. For symmetric
message encryption and MAC generation we use 128-bit
AES-GCM. The implemented operation mode of authenticated
encryption is encrypt-then-MAC. All of the used cryptographic
primitives are provided by the standard Intel SGX libraries.

B. State Update and Read Delay

Experiments. The main performance metric that we mea-
sure is the ASE state update and state retrieval delay at the
time of sealing and unsealing. In this case we disregard disk
I/O, which we consider later (Section VII-C). This operation
includes counter distribution/retrieval to and from the protec-
tion group over the network, and thus the delay depends on
the size of the protection group and the network. Depending
on the ASE, such updates may be needed frequently. The ASE
unsealing is a local operation, and thus constant time and fast
(e.g., 10 µs depending on the size of the sealed data). The
ME start would be normally performed only once per platform
boot, and thus the operation is not time-critical.

In our implementation, all the messages passed between the
nodes were 224 bytes, where 200 bytes indicate the encrypted
payload and the remaining 24 bytes is the header containing
routing information and sent in plaintext. We report state
average update delays over 100,000 executions for the first
and second experimental setup, and 100 executions for the
third experimental setup (due to larger networking times).

Our first experimental setup consisted of four SGX-enabled
laptops connected via local network (1-GBit Ethernet, off-the-
shelf router). The laptops had Windows 10 OS, Intel i7-6500U
processor and 8GB RAM. The round-trip time between the

nodes locations
2 US (West), Europe
3 US (West), Europe, Asia
4 US (West), Europe, Asia, South America,
5 US (West), Europe, Asia, South America, Australia
6 US (West), Europe, Asia, South America, Australia, US (East)

TABLE III: Geographically distributed protection groups.

nodes state update delay state read delay
2 2.00 ms (±1.5 µs) 1.34 ms (±1.0 µs)
3 2.02 ms (±1.3 µs) 1.35 ms (±1.1 µs)
4 2.03 ms (±1.4 µs) 1.37 ms (±1.0 µs)

TABLE IV: State update delay on local network.

laptops was measured at ≤ 1ms. For this setup, we used the
ROTE prototype implementation.

Our second experimental setup consisted 20 identical desk-
top computers connected via local network (1-Gbit Ethernet,
university network). All desktops had Windows 10 OS, Intel
i7-6700T processor and 8GB RAM. The round-trip time
between the computers was measured at ≤ 1ms. For this
setup, we used a simulated implementation that is otherwise
identical but does not run the protocol as enclaves.

Our third experimental setup was a geographically dis-
tributed protection group of sizes from two to six nodes that
we tested on Amazon AWS EC2 instances with Windows
Server 2016, Intel Xeon-E5-2686 processor, 16GB RAM and
dedicated 750 Mbit Internet connections. We distributed the
platforms across different continents as shown in Table III.
Also for this setup we used the simulated implementation.

Results. The state update delay consists of two components:
networking overhead and SGX processing. In Appendix A
we provide measurements on the cryptographic operations
on SGX, measured on an average laptop (Intel i7-6500U
processor and 8GB RAM). Context switching to enclave
execution is fast (few microseconds). Symmetric encryption
used in the protocol is also fast (less than a microsecond).
The only computationally expensive operation that the state
update protocol requires is asymmetric signatures (0.46 ms
per signing operation). The ASE state update protocol has
one signature creation, the signature is verified later in the ME
start/read and ASE start/read protocol. The required processing
time of the state update protocol is less than 0.6 ms on an
average laptop, where the creation of the first protocol message
takes 0.51 ms (due to signing operation) and the creation of
the second, third and forth messages is fast (approximately
5 µs). The state reading protocol requires the master enclave
to perform 1 round trip to retrieve the latest counter and the
verification of the signature which takes 0.84 ms.

Table IV shows the results from our first experimental setup
using the ROTE prototype. The state update delay was approx-
imately 2 ms, while the state read delay was approximately
1.3 ms for group sizes from two to four nodes. (The round-trip
time using a 1-Gbit router took ≤ 1ms and with 4 messages
passed between the nodes it equals 2 ms with a maximum
deviation of 3.2 µs measured across 100,000 repetitions).

2 4 6 8 10 12 14 16 18 20
Number of nodes in the group

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

T
im

e
(m

s)

Response Time Update
Response Time Read

(a) State update delay (local group)

2 3 4 5 6
Number of nodes in the group

200

400

600

800

1000

1200

1400

T
im

e
(m

s)

Response Time Update
Response Time Read

(b) State update delay (global group)

Fig. 9: Experimental results. The first figure shows ROTE performance (update and read delay) for protection groups that are
connected over a local network. The second figure shows performance for geographically distributed protection groups.

Figure 9 shows the results from our second and third
experiments using simulated implementation for larger groups.
Figure 9a illustrates the status update delay for group sizes up
to 20 platforms in the local network (round-trip time less than
a millisecond). We see an increase in the delay as the group
size grows. This is as expected, since the target platform needs
to communicate with more platforms. For a group size of five
nodes, the update delay is 1.82 ms, read delay is 1.52 ms and
for group size of 20 nodes, the delay is 2.98 ms and 2.13 ms,
respectively.

Figure 9b illustrates the status update time for geographi-
cally distributed group sizes up to six platforms (see Table III).
The observed increases in delay is less systematic, due to
the dependency on network connections between various ge-
ographic locations in the protection group. The update time
between two locations takes 654 ms while distributing it over
five locations gives us the update time of 1.37 seconds. The
read delay equals to 342 ms and 810 ms, respectively to the
number of different location.

We draw two conclusions from these experiments. First,
the performance overhead imposed by our rollback protection
mechanism is defined largely by the network connections
between the platforms. Second, if the nodes are connected
over a low-delay network, ROTE can support applications
that require frequent state updates (e.g., over 380 updates per
second). For applications that can tolerate larger sealing delays
(e.g., more than 600 ms per state update), the ROTE system
can be run on geographically distant protection groups.

C. Example Application Performance

In addition to state update delay, we measured the through-
put of an example financial enclave with no rollback protec-
tion, using ROTE, and using SGX counters (see Table V).

Our example application is a financial enclave that processes
incoming transactions from a buffer that is never empty. The
experimental setup was a protection group of four nodes. We
used the Intel NUC for disk operations due to its fast NVMe
SSD; we used the two Dell laptops and the Lenovo laptop as

Request State no rollback ROTE SGX counter
type size protection system protection

(KB) (ms) (ms) (ms)
Write 1 3.85 (± 0.06) 5.17 (± 0.03) 160.7 (± 0.7)
state 10 4.65 (± 0.05) 6.03 (± 0.03) 162.7 (± 1.6)

100 6.49 (± 0.04) 7.83 (± 0.05) 169.1 (± 2.1)
Read 1 0.06 (± 0.00) 1.41 (± 0.02) 61.04 (± 3.1)
state 10 0.19 (± 0.00) 1.53 (± 0.01) 61.17 (± 3.1)

100 1.76 (± 0.05) 3.1 (± 0.02) 62.74 (± 3.2)

TABLE V: Performance comparison for the example appli-
cation w/o ROTE, using ROTE and using SGX monotonic
counters.

the assisting nodes; lastly, we used the Lenovo laptop to test
the SGX counters. For every processed update transaction, the
enclave updates its state, creates a new seal, and writes it to the
disk, while the read transaction includes reading from the disk,
unsealing and retrieving the counter for comparison. In case
of ROTE and SGX counter variants, the enclave also performs
a counter increment. We tested three different enclave state
sizes (1 KB, 10 KB, 100 KB) since the transaction processing
and local state of the app can differ based on the exact use
case scenario. In all three cases the ROTE system provides
significantly better state update performance than using SGX
counters (e.g., 190 over 6 tx/s for 1KB) while suffering a
20-25% performance drop in comparison to systems which
have no rollback protection (e.g., 260 over 190 tx/s for 1KB).
Additionally we tested the ROTE system with two, three and
four nodes as protection group members and the difference
in the results varies between 1-3% covered by the standard
deviation of the results itself.

VIII. DISCUSSION

In this section we discuss data migration, performance
optimizations, and information leakage.

A. Data Migration

Although sealing binds encrypted enclave data to a specific
processor, our solution enables easy data migration within

the protection group. Migration is especially useful before
planned hardware replacements and group updates (e.g., node
removal). In a migration operation, an ASE first unseals its
persistent data and passes it to the ME. The ME sends the
enclave data to another master within the same protection
group together with the measurement of the ASE. The com-
munication channel between the master enclaves is encrypted
and authenticated. On the receiving processor, the ME passes
the enclave data to an instance of the same ASE (based on
attestation using the received measurement) which can seal it.
Combined with group updates (see Appendix C), such enclave
data migration enables flexible management of available com-
puting resources. Similar data migration is discussed in [40].

B. Information Leakage

As explained in Section III, our model excludes execution
side-channels, such as page faults and measurements on shared
caches. Here we briefly discuss additional information leakage
that our solution may add. Each local enclave state update
causes network communication. An adversary that can observe
the network, but does not have access to the local persistent
storage, can use the information leakage to determine the
timing of sealing and unsealing events. Also the reboot of
the target platform causes an observable network pattern. We
consider such information leakage a minor threat. If the exact
timing of such events should be hidden, the master enclave
can generate network traffic that mimics state updates and
master enclave restarts at random intervals. Communication
between the enclaves is encrypted and authenticated to prevent
eavesdropping.

C. Performance Optimizations

The main performance characteristic of our solution, the
state update overhead, is dominated by the networking time
and the asymmetric signature operation required for the first
message of the state update protocol. In case of a local network
and an average laptop, the networking takes approximately 1
ms and the signature operation 0.5 ms. A possible optimization
is to pre-compute the asymmetric signatures. Since the signed
data is predictable counter values, we can pre-compute and
store them. This pre-computation may be done at times when
the expected load is low or at system initialization depending
on the specific application scenario.

Alternatively, because symmetric MAC operations are sig-
nificantly faster (approximately 1 µs), the protocol could
be optimized by replacing the asymmetric signature with n
MACs that are calculated using the pair-wise keys established
during system initialization. As malicious nodes can create
fake MACs, it is no longer sufficient to receive q responses
from any of the n nodes and pick the maximum value during
counter read (as explained in Section VI-B). Instead at least
q responses must be received from the same nodes as written
previously and at least q responses must have the same value
for the read operation to succeed. Such optimization can make
state updates approximately 0.5 ms faster, but it can prevent

the system from proceeding in environments with high node
unavailability or network partitioning.

D. Consensus Applications

In the specific case that all the participating enclaves imple-
ment a distributed application whose purpose is to maintain
a consensus (e.g., a permissioned blockchain), our rollback
protection mechanism can be optimized further. In such an
application, all participating enclaves have a shared, global
state and the state update protocol can be replaced with a
suitable Byzantine agreement protocol. When an enclave is
restarted (or needs to determine its latest state), it queries its
latest state from the participating enclaves similar to our ME
start protocol. We leave a detailed design as future work.

E. Forking prevention

Along with the novel approach that we implement, a second
possible approach might be used by leveraging a TPM. After
system boot, the started ME instance could extend a PCR that
has a known value at boot. If a second ME instance is started, it
can check if the PCR value differs from its known initial value
[41]. This approach might be more practical than involving the
whole system to perform verification, however it increases the
system security perimeter to be outside of the processor.

IX. RELATED WORK

SGX counters and TPMs. Ariadne [41] uses TPM
NVRAM or SGX counters for enclave rollback protection.
The counter is incremented using store-then-inc technique that
provides crash resilience, but allows two executions of the
latest input on the same state. Ariadne minimizes the TPM
NVRAM wear out using counter increments that only require
a single bit flip. This work has three main differences to our
solution. The first is service availability. SGX counters are an
optional feature, not supported by all platforms, while our so-
lution leverages functionality available on all SGX platforms.
The second is performance. SGX counter increments take 80-
250 ms and make the non-volatile memory unusable after
few days of continuous use. Similar performance limitations
apply to TPM NVRAM as well. Our solution performs counter
increments in 1-2 ms (local network) and imposes no limits
on the number of state updates. The third difference is the
security model. Solutions that rely on SGX counters are likely
vulnerable to bus tapping and flash mirroring attacks [38]. In
our solution the trust perimeter is the processor package.

Memoir [30] leverages TPM NVRAM for rollback protec-
tion of isolated applications. The main drawback is as above:
NVRAM updates are slow for high-throughput applications
and continuous use will wear out the memory in few days.
An optimized variant of Memoir assumes the availability of
an Uninterrupted Power Supply (UPS). This variant stores
the state updates to volatile Platform Configuration Registers
(PCRs) and at system shutdown writes the recorded update
history to the NVRAM.

The ICE system [39] enhances the CPU with protected
volatile memory, a power supply and a capacitor. At system

ROTE state consistent Byzantine
update broadcast agreement

Echo broadcast [33] PBFT [7]
stored value counters arbitrary arbitrary
sender trusted untrusted untrusted
provides total order no no yes
replicas f + 1 3f + 1 3f + 1
message complexity O(n) O(n) O(n2)

TABLE VI: Comparison between ROTE state update protocol
and common Byzantine broadcast and agreement primitives.

boot, a base value is written to NVRAM in the TPM. After
that, a non-reversible update history (hash chain) is recorded
in the processor protected memory and at system shutdown
the capacitor flushes the latest history version. After reboot
or crash, the unsealed data is only accepted if it matches the
latest history version and the base value in the TPM. Both the
optimized Memoir and ICE require hardware changes.

Integrity servers. Another common approach is to store
data integrity information on a separate server. For example,
the Verena system [23] maintains authenticated data structures
for web applications and stores integrity information (hashes)
for these stuctures on a separate, trusted server. Another use
case is to prevent the usage of disabled credentials on mobile
devices by storing counters on an integrity-protected server
[24]. In contrast to our system, such solutions requires setup
and maintenance of new infrastructure and the integrity server
becomes an obvious attack target.

Byzantine broadcast and agreement. Our state update
protocol resembles well-known Byzantine broadcast primi-
tives [6]. Echo broadcast [33] is an example of a consistent
broadcast that ensures that non-malicious nodes do not receive
different values. Bracha broadcast [4] is an example of a
reliable broadcast that ensures that all non-malicious nodes
receive the same value. Practical BFT [7] is an example of a
Byzantine agreement (or total-order broadcast) protocols that
additionally ensures that all the nodes receive the broadcasted
values in the same order [6].

Our state update mechanism requires that the target platform
only accept the update and creates the seal if a sufficient
number of assisting nodes have received the counter value.
Thus, our state update protocol follows the approach of Echo
broadcast [33] with an additional confirmation message in the
end. Like broadcast primitives, our state update protocol has
O(n) message complexity. Byzantine agreement protocols typ-
ically require O(n2) messages. Another significant difference
is the number of required replicas. Byzantine broadcast and
agreement protocol operate on arbitrary values and assume
a potentially malicious sender. Thus such protocols require
3f + 1 replicas. In our system the sender (i.e., the target
platform) is trusted and the distributed data is a signed counter
value. Thus f+1 replicas are sufficient. Table VI summarizes
the comparison.

Byzantine adversary models. Classical works on Byzan-
tine agreement [25], [32] consider a model where f processes
behave arbitrarily and the other processes behave as expected.

The main difference to our model is that the attacker can
control the execution schedule of the trusted processes as well.
Researchers have also considered agreement under models
where the Byzantine faulty nodes have some trusted func-
tionality (e.g., an unmodifiable hardware primitive) available.
Such approaches reduce the number of required replicas to
2f + 1 [8], [26], [9] or f + 1 [22]. In our model we have
no trust assumptions on the compromised nodes. Byzantine
agreement has also been considered with so called dual failure
models [29], [13], [37] where the adversary can fully control
the faulty processes and can read the secrets of other pro-
cesses (but not affect their control-flow integrity). In our case,
the adversary cannot read secrets from trusted enclaves but
can restart them. Lastly, recent development showed a novel
message aggregation technique that couples hardware-based
TEE with lightweight secret sharing resulting in FastBFT
protocol, which has better scalability and performance than
the previously developed BFT protocols [27].

SGX adversary models. Several recent research papers
consider adversaries against SGX-based systems [42], [47],
[45], [34], [15], [5]. These works typically consider individual
adversarial capabilities, such as platform restarts, but to the
best of our knowledge none of them defines all operations
through which the OS or the adversary can control enclave
execution schedule. Additionally, Pass et al. present a formal
abstraction of the attestation verification model enabling se-
cure and composable two-party computation [31], while Sinha
et al. introduce MOAT, a tool for verifying confidentiality
properties of applications running in SGX covering several
distinct SGX attacker models, yet different from the one
presented in this paper [36].

X. CONCLUSION

In this paper we have proposed a new approach for rollback
protection on Intel SGX. Our key idea is to implement integrity
protection as a distributed system across collaborative enclaves
running on separate processors. We consider a powerful ad-
versary that controls the OS on all participating platforms and
has even compromised a subset of the assisting processors. We
constructed a model that captures the adversarial capabilities to
schedule enclaves and show that our system provides a strong
security guarantee that we call all-or-nothing rollback. Our
experiments demonstrate that distributed rollback protection
is practical even if applications require fast or frequent state
updates.

REFERENCES

[1] Introduction to intel sgx sealing, 2016. https://software.intel.com/en-us/
blogs/2016/05/04/introduction-to-intel-sgx-sealing.

[2] Intel software guard extensions, reference number: 332680-002, 2015.
https://software.intel.com/sites/default/files/332680-002.pdf.

[3] Trusted platform module library part 1: Architecture, familiy
2.0, level 00 revision 01.16 october 30, 2014, 2015.
https://www.trustedcomputinggroup.org/wp-content/uploads/
TPM-Rev-2.0-Part-1-Architecture-01.16.pdf.

[4] G. Bracha. Asynchronous byzantine agreement protocols. Information
and Computation, 75(2), Nov. 1987.

[5] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. Pietzuch, and R. Kapitza. Securekeeper: Confidential zookeeper
using intel sgx. In Middleware 2016: 17th International Middleware
Conference Proceedings. ACM, 2016.

[6] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and
secure distributed programming. Springer Science & Business Media,
2011.

[7] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[8] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In ACM
SIGOPS Operating Systems Review, volume 41-6, 2007.

[9] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate half less
one byzantine nodes in practical distributed systems. In International
Symposium on Reliable Distributed Systems (SRDS), pages 174–183,
2004.

[10] V. Costan and S. Devadas. Intel sgx explained. Technical report,
Cryptology ePrint Archive, Report 2016/086, 20 16. http://eprint. iacr.
org, 2016.

[11] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198–208, 1983.

[12] I. S. S. Forum. Ensuring only a single instance of
enclave, 2017. https://software.intel.com/en-us/forums/
intel-software-guard-extensions-intel-sgx/topic/709552.

[13] J. A. Garay and K. J. Perry. A continuum of failure models for
distributed computing. In International Workshop on Distributed Al-
gorithms, pages 153–165. Springer, 1992.

[14] T. C. Group. Trusted platform module library, part 1: Architecture,
family 2.0, 2014.

[15] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor. Using
intel software guard extensions for efficient two-party secure function
evaluation. In Proceedings of the 2016 FC Workshop on Encrypted
Computing and Applied Homomorphic Cryptography, 2016.

[16] Intel. Intel 9 series chipset family platform controller hub
(pch), 2015. http://www.intel.com/content/www/us/en/chipsets/
9-series-chipset-pch-datasheet.html.

[17] Intel. Developer zone forums, 2016. https://software.intel.com/en-us/
forums/intel-software-guard-extensions-intel-sgx/topic/607330.

[18] Intel. Intel 100 series and intel c230 series chipset family platform
controller hub (pch), 2016. http://www.intel.com/content/www/us/en/
chipsets/100-series-chipset-datasheet-vol-1.html.

[19] Intel. SGX documentation: sgx create monotonic counter, 2016. https:
//software.intel.com/en-us/node/696638.

[20] Intel. SGX documentation: sgx get trusted time, 2016. https://software.
intel.com/en-us/node/696636.

[21] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mck-
een. Intel software guard extensions: Epid provisioning and at-
testation services. Technical report, Intel Corporation, Whitepa-
per 2016. https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-
epid-provisioning-and-attestation-services, 2016.

[22] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel. Cheapbft: resource-efficient
byzantine fault tolerance. In European conference on Computer Systems
(EuroSys), pages 295–308, 2012.

[23] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun. Verena: End-to-
end integrity protection for web applications. In IEEE Symposium on
Security and Privacy (SP), 2016.

[24] K. Kostiainen, N. Asokan, and J.-E. Ekberg. Credential disabling from
trusted execution environments. In Nordic Conference on Secure IT
Systems (Nordsec), 2010.

[25] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3), July 1982.

[26] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. Trinc: Small
trusted hardware for large distributed systems. In Network Systems
Design and Implementation (NSDI), volume 9, pages 1–14, 2009.

[27] J. Liu, W. Li, G. O. Karame, and N. Asokan. Scalable byzan-
tine consensus via hardware-assisted secret sharing. arXiv preprint
arXiv:1612.04997, 2016.

[28] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In HASP@ ISCA, page 10, 2013.

[29] F. J. Meyer and D. K. Pradhan. Consensus with dual failure modes.
IEEE Transactions on Parallel and Distributed Systems, 2(2):214–222,
1991.

[30] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical state continuity for protected modules. In IEEE
Symposium on Security and Privacy (SP), 2011.

[31] R. Pass, E. Shi, and F. Tramer. Formal abstractions for attested execution
secure processors. Technical report, Cryptology ePrint Archive, Report
2016/1027, 2016.

[32] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[33] M. K. Reiter. Secure agreement protocols: Reliable and atomic group
multicast in rampart. In Proceedings of the 2nd ACM Conference on
Computer and Communications Security, pages 68–80. ACM, 1994.

[34] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-nfv: Securing
nfv states by using sgx. In Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network Func-
tion Virtualization, pages 45–48. ACM, 2016.

[35] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page
faults from telling your secrets. In ACM Asia Conference on Computer
and Communications Security (ASIACCS), 2016.

[36] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying
confidentiality of enclave programs. In ACM Conference on Computer
and Communications Security (CCS), 2015.

[37] H.-S. Siu, Y.-H. Chin, and W.-P. Yang. A note on consensus on dual
failure modes. IEEE Transactions on Parallel and Distributed Systems,
7(3):225–230, 1996.

[38] S. Skorobogatov. The bumpy road towards iphone 5c NAND mirroring,
2016. http://arxiv.org/abs/1609.04327.

[39] R. Strackx, B. Jacobs, and F. Piessens. Ice: A passive, high-speed,
state-continuity scheme. In Annual Computer Security Applications
Conference (ACSAC), 2014.

[40] R. Strackx and N. Lambrigts. Idea: State-continuous transfer of state
in protected-module architectures. In International Symposium on
Engineering Secure Software and Systems (ESSoS), 2015.

[41] R. Strackx and F. Piessens. Ariadne: A minimal approach to state
continuity. In USENIX Security Symposium, 2016.

[42] F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi. Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge.
Cryptology ePrint Archive, Report 2016/635, 2016. http://eprint.iacr.
org/2016/635.

[43] Trustonic. Trusted execution environment (tee), 2016. https://www.
trustonic.com/technology/trusted-execution-environment.

[44] M. van Dijk, J. Rhodes, L. F. G. Sarmenta, and S. Devadas. Offline
untrusted storage with immediate detection of forking and replay attacks.
In ACM Workshop on Scalable Trusted Computing (STC), 2007.

[45] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves. In European
Symposium on Research in Computer Security, pages 440–457. Springer,
2016.

[46] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In IEEE Symposium
on Security and Privacy (S&P), 2015.

[47] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An
authenticated data feed for smart contracts. In Conference on Computer
and Communications Security (CCS), 2016.

APPENDIX A
ADDITIONAL PERFORMANCE MEASUREMENTS

Operation Time
enclave switching time 2.6 (± 0.0) µs
SHA256 2.4 (± 0.0) µs
Opening and closing ECC context 2.4 (± 0.0) µs
ECDSA signing (0.5KB) 457.5 (± 0.3) µs
ECDSA verfication (0.5KB) 843.6 (± 0.9) µs
Sealing (1KB) 9.6 (± 0.1) µs
Unsealing (1KB) 4.5 (± 0.1) µs
Rijndael AES-CTR128 encryption (0.5KB) 0.63 (± 0.0) µs
Rijndael AES-CTR128 decryption (0.5KB) 0.62 (± 0.0) µs
Rijndael AES-GCM encryption + MAC (1KB) 1.05 (± 0.0) µs
Rijndael AES-GCM decryption + verification (1KB) 1.07 (± 0.0) µs

TABLE VII: Cryptographic operations on SGX.

Table VII provides measurements of cryptographic opera-
tions on SGX. We report average time over 1M repetitions. All
enclave operations are reported switching time excluded. The
test platform was running Windows 10 OS, Intel i7-6500U
processors, 8GB RAM and a 256GB SSD.

Along with the state update and read delay we measure the
theoretical system throughput, measured as the number of state
update operations that one platform or an entire protection
group can process (encompassing only the system protocol
overhead).

The throughput per node in the local network is shown in
Figure 10a. For a group size of 10 nodes, we measure over 435
updates and 570 read operations per second. The throughput
for the entire group is shown in Figure 10b. For a group
size of 20 platforms, we measure more than 6,700 updates
and over 9400 read operations per second. We emphasize that
these numbers represents the best-case scenario, as there is no
significant other traffic in the network and no significant other
computation on the platforms during our measurements. The
observed increases in delay, and decreases in throughput, is
less systematic, due to the dependency on network connections
between various geographic locations in the protection group.

The throughput per node and the throughput of the entire
group in the geographically distributed setting are shown in
Figures 10c and 10d. For a group size of six platforms, we
measure 0.73 updates and 1.2 read operations per second for
a single node, while the entire group consequently achieves
4.4 updates and 7.1 read operations per second.

APPENDIX B
ADDITIONAL DISCUSSIONS

A. Deployment Scenarios

Here we discuss briefly two types of deployment settings.
The first type is a shared computing resource such as a
cloud platform. The computing resource consists of multiple
platforms that belong under the same administrative domain
(e.g., cloud platform provider), and thus the domain owner
can assign multiple processors to participate in collaborative
rollback protection. The ASEs may originate from different
third-party developers. The second type is a deployment where
the participating platforms are owned by private individuals.
Each user benefits from rollback protection for their own
enclaves and platforms, and is therefore willing to provide
resources for other users in a collaborative system.

Depending on the deployment setting, the adversary could
be a malicious administrator that can compromise operating
systems, control the networking between the nodes, and phys-
ically tamper with a small number of processors. If the system
is deployed among private individuals, the adversary could
be a malicious user that has compromised his own processor
locally through physical attacks and operating systems of other
users remotely.

B. System Robustness

In this paper we consider a powerful adversary that controls
the OS on all platforms, all network communication, and has

compromised a subset of the processors. Such adversary can,
obviously, cause a denial of service. Examples include deleting
sealed data instead of placing it on the local persistent storage
or by blocking all network communication during master
enclave restart. While our system cannot prevent denial of
service completely, it should be robust in the sense that benign
program crashes or minor networking errors should not place
the system in a state form which it cannot recover (without
losing the previously sealed data).

Crash resilience. If the master enclave crashes after a
sufficient number of assisting platforms have confirmed a state
update (Step 8 in Figure 4), but before it has provided an
updated sealed state to the OS (Step 9), the master enclave is
left in a state from which it cannot recover (i.e., the distributed
secure storage has a higher counter value than any existing
seal). We consider such master enclave crashes unlikely. The
master enclave is a system component that can be extensively
analyzed (e.g., our prototype implementation is only 1000
LoC). Sudden power loss or OS bugs are other possible causes
for ME crashes. Another critical time point is if an ASE
crashes after an update request (Step 1 in Figure 4) and before
sealing (Step 10). Although the crashing time window is very
limited, assuming that all third-party enclaves are free of errors
is more problematic.

To provide crash resilience we could adopt a technique from
the Memoir system [30]. The intuition behind this technique
is that a deterministic enclave can be safely rolled back to
a previous state, if it will only execute the same input data
after the recovery as during the crash. Because the input
is the same, the enclave will not leak any new information
to the adversary on the execution following the crash and
rollback. The technique requires that a history of input values
(a hash chain) is included to the sealed data and verified during
possible claimed crash recovery.

To support crash resilience our system would require the
following modifications. Each ASE would need to record all
inputs to a hash chain: h(h(h(i1)‖i2)...). Similarly, the ME
would need to form an aggregated hash with every state hash
received from the ASEs. The aggregated hashes should be
sealed prior to MC sending, and the message with the signed
MC should include the last aggregated hash. This would allow
the enclaves to recover from system crashes at critical time
points. For example, the ME could accept the previous version
of sealed state and compare the provided input to match the
aggregated hash. If the inputs match, it is safe to proceed. The
same principle is valid for the ASEs. The limitation of this
approach is that enclave applications must be deterministic.

Network errors. Similarly, if there is a network problem
that allows echo lists to reach assisting nodes, but prevents q
final ACKs from reaching the target node (Step 8 in Figure 4),
the system is left in a state from which it cannot recover. To
reduce the possibility of such events, the system parameter u
can be increased and the assisting nodes can be chosen from
different locations.

2 4 6 8 10 12 14 16 18 20
Number of nodes in the group

300

400

500

600

700

800

900

T
hr

ou
gh

pu
t

(u
pd

at
es

/s
ec

on
d) Throughput Update

Throughput Read

(a) Single platform throughput (local)

2 4 6 8 10 12 14 16 18 20
Number of nodes in the group

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
hr

ou
gh

pu
t

(u
pd

at
es

/s
ec

on
d) Throughput Update

Throughput Read

(b) Group throughput (local)

2 3 4 5 6
Number of nodes in the group

0.5

1.0

1.5

2.0

2.5

3.0

T
hr

ou
gh

pu
t

(u
pd

at
es

/s
ec

on
d) Throughput

Throughput Read

(c) Single platform throughput (global)

2 3 4 5 6
Number of nodes in the group

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

T
hr

ou
gh

pu
t

(u
pd

at
es

/s
ec

on
d) Throughput Update

Throughput Read

(d) Group throughput (global)

Fig. 10: Experimental results. The first two graphics shows ROTE throughput performance for protection groups that are
connected over a local network. The second row two graphics show performance for geographically distributed protection
groups.

C. Other Security Architectures (TrustZone)

We have designed our rollback protection system for SGX.
However, a similar approach could be adapted for other secu-
rity architectures. ARM TrustZone realizes isolation through
a dedicated processor mode and access control enforcements
on the system hardware. The OS and the applications are
executed in the Normal World mode, while security-critical
code can be run in the isolated Secure World mode. In the
TrustZone architecture, the hardware protections do not isolate
applications running inside the Secure World from each other.
Instead, a small security kernel within the Secure World
can provide isolation between protected applications [43].
The security kernel can also measure the target application
and issue signed statements over it (attestation). Like Intel
SGX, TrustZone is vulnerable to rollback attacks. The runtime
memory of Secure World does not typically provide non-
volatile storage due to high manufacturing cost.

To implement our solution on TrustZone, the functionality
of the master enclave could be implemented as part of the
security kernel. The secure communication between appli-
cation enclaves and master enclaves could be implemented
as function calls within the Secure World. The attestation
between master enclaves could be implemented by the security
kernel. The security kernel could measure its own code and
verify that another TrustZone platform is running the same
security kernel configuration.

APPENDIX C
GROUP MANAGEMENT

In Section V we described the ROTE system using a trusted
offline authority: the group owner. In this appendix we discuss
how groups can be updated and established without trust on
first use assumption or a trusted authority.

A. Group Updates

The group owner issues a signed list of public parts of
the public-private key pairs generated by each master enclave
that define the protection group. Assume that later one or
more processors in the group are found compromised or need
replacement. The group owner should be able to update the
previously established group (i.e., exclude old members and

add new ones) without disabling access to the already rollback-
protected sealed data.

During system initialization, the ME verifies the signed
list of group member keys and seals the group configuration.
When a group update is needed, the group owner can issue an
updated list that will be processed and again sealed by the ME.
Note that this approach does not need password entry such as
in first group establishment. However, the adversary should
not be able to revert the group to its previous configuration
(e.g., one that includes compromised nodes) by replaying the
previous sealed group configuration. Since group updates are
typically infrequent, they can be protected using SGX or TPM
counters.

At system initialization, the master enclave creates a mono-
tonic counter using SGX counter service or on a local TPM. If
this is done using TPM, establishing a shared secret with the
TPM (see session authorization in [3]) is necessary. The group
owner includes a version number to every issued group config-
uration. When the ME processes the signed list, it increments
the SGX or TPM counter to match the group version, and
includes the version number in the sealed data. For every group
update, the ME increments either of these counters (depending
which of those two solutions is implemented). Additionally,
the ME establishes shared keys with the new group members
and sends its MC to them. When the ME is restarted, it verifies
that the version number in the unsealed group configuration
matches the counter. The NVRAM memory available in TPMs
is expected to support approximately 100K write cycles, while
in the case of SGX counter we showed it supports 1M write
cycles, a sufficient number for most group management needs.
For example, if group updates are issued once a week, the
NVRAM would last 2000 years using TPMs and 20000 year
using SGX counters.

Usage of TPM counters requires trust on first use, otherwise
a malicious OS could redirect the TPM session establishment
to another TPM (e.g., one in possession of the adversary).
Usage of SGX counters does not have similar requirement.

B. Group Establishment Without Trust On First Use

The group establishment described in Section V-C requires
trust on first use, because a malicious OS could modify the
exported ME public key. This assumption may be removed,

if the group owner can perform remote attestation of the
group member MEs such that the member platforms have
no network connection besides to the group owner (i.e., the
malicious OS cannot redirect the attestation session to another
platform). However, in this case, the group owner has to
deliver the password for establishing the system via an out-
of-band channel to each node. Note that a compromised OS
can always block the communication, re-direct the password
to another enclave or read it from input. Thus, the group owner
is responsible of tracking all the initial enclave and instance
IDs and deliver them to securely to all participating nodes
- enabling verification that the initial group establishment is
secured.

C. Group Establishment Without Trusted Authority

Distributed rollback protection does not necessarily require
a trusted authority. Alternatively, the participating platforms
can decide the protection group configuration directly them-
selves. In the presence of potentially malicious nodes, such
group establishment can be done using a Byzantine agreement
protocol [25], [32] and remote attestation. Another alterna-
tive is to establish asymmetric groups where each platform
distributes its state to a freely chosen and attested set of
assisting platforms that in turn choose their assisting platforms
independently.

Symmetric groups. An enclave that requires rollback pro-
tection chooses n SGX processors that should form the protec-
tion group. The enclave can discover the assisting nodes from a
public directory, peer-to-peer manner etc. The enclave broad-
casts the proposed group configuration to all chosen nodes
using a Byzantine agreement protocol (total-order broadcast)
that tolerates malicious nodes and guarantees that all non-
malicious nodes agree on the same value. After the group is
established, attestation is performed to verify the correctness
of the code running and that it is running inside SGX. When an
update to the group configuration is needed, the leader repeats
the same process. Byzantine agreement protocols have high
message complexity. Because byzantine agreement requires
3f + 1 replicas, the rollback protection mechanism can no
longer tolerate f < n compromised nodes. Because Byzantine
agreement protocols have higher message complexity O(n2),
this group establishment is not applicable to very large groups.

Asymmetric groups. Another alternative is that each plat-
form distributes its state to a freely chosen set of assisting

platforms that in turn choose their assisting platforms indepen-
dently. The set of platforms can be even selected for each state
update separately. We call such protection groups asymmetric.
Asymmetric groups offer flexible deployment, as every node
is free to choose where it distributes its state at any given time.
However, the different trust model requires minor changes
to the rollback protection system, and it provides slightly
different security and liveness properties. We discuss these
differences briefly below.

The first main difference is the recovery of master en-
clave’s own counter (MC) after restart. We illustrate this
with an example. Assume that a node distributes its counter
to one set of nodes s1. At the next state update the node
distributes its counter to another set of nodes s2. The rollback
protection system must prevent attacks, where the adversary
causes counter recovery form s1 which would result in a
rollback. To prevent such attacks, the node can request s1 to
remove the saved counter from their memory and only after
a successful confirmation the node proceeds with the state
update to s2. The list of nodes to communicate is stored in
sealed format on the disk, and after master enclave restart the
master enclave unseals the list and contacts the nodes on it. If
the adversary replays an old sealed data, the master enclave
gets no responses (as the counter has been deleted) and aborts
unsealing.

Another difference is the recovery of stored counters after
master enclave restart. The master enclave maintains counters
for other nodes in its runtime memory (no sealing to pre-
vent endless update propagation). When a master enclave is
restarted, it needs to obtain its own counter value, and addi-
tionally the lost counter values of other nodes. In asymmetric
groups, stored counter recovery must be handled differently.
One option is to request the counter back from the sender,
after a master enclave restart. This requires that the processor
identity for each stored counter is saved on the local persistent
storage.

Lastly, there is no mutual trust between the nodes, since
they are running under different administrators. Hence, the
participating entities have to be aware that this approach does
not guarantee the same properties as in the symmetric group
establishment.

