
LARA

A Design Concept for Lattice-based Encryption

Rachid El Bansarkhani

Technische Universität Darmstadt
Fachbereich Informatik

Kryptographie und Computeralgebra,
Hochschulstraÿe 10, 64289 Darmstadt, Germany

elbansarkhani@cdc.informatik.tu-darmstadt.de

Abstract. Lattice-based encryption schemes still su�er from a low message throughput per
ciphertext and ine�cient solutions towards realizing enhanced security characteristics such as
CCA1- or CCA2-security. This is mainly due to the fact that the underlying schemes still follow
a traditional design concept and do not tap the full potentials of LWE. In particular, many
constructions still encrypt data in an one-time-pad manner considering LWE instances as random
vectors added to a message, most often encoded bit vectors. The desired security features are
also often achieved by costly approaches or less e�cient generic transformations.
Recently, a novel encryption scheme based on the A-LWE assumption (relying on the hardness
of LWE) has been proposed, where data is embedded into the error term without changing its
target distributions. By this novelty it is possible to encrypt much more data as compared to
the classical approach. Combinations of both concepts are also possible. In this paper we revisit
this approach and propose amongst others a standard model variant of the scheme as well as
several techniques in order to improve the message throughput per ciphertext. Furthermore,
we introduce a new discrete Gaussian sampler, that is inherently induced by the encryption
scheme itself, and present a very e�cient trapdoor construction of reduced storage size. More
precisely, the secret and public key sizes are reduced to just 1 polynomial, as opposed to O(log q)
polynomials following previous constructions. Finally, we give a security analysis as well as
an e�cient implementation of the scheme instantiated with the new trapdoor construction.
In particular, we attest high message throughputs (message expansion factors close to 1-2) at
running times comparable to the CPA-secure encryption scheme from Lindner and Peikert (CT-
RSA 2011). Our scheme even ensures CCA (or RCCA) security, while entailing a great deal of
�exibility to encrypt arbitrary large messages or signatures by use of the same secret key. This
feature is naturally induced by the characteristics of LWE.

Keywords: Lattice-Based Encryption, Lattice-Based Assumptions

1 Introduction

Lattice-based cryptography emerges as a promising candidate to replace classical systems in case
powerful quantum computers are built. Besides of its conjectured quantum resistance, lattice
problems have a long history in mathematics and gained, for instance in cryptography, a lot of
attention in recent years due to a series of seminal works. For instance, Ajtai's work [2] on worst-
case to average-case hardness of lattice problems represents a major cornerstone for lattice-based
cryptography in general as it opens up the possibility to build provably secure schemes based
on lattice-problems after some failed constructions such as GGH [27] and NTRU-Sign [29]. One
of the main contributions of his work is a proof that average-case instances of lattice problems
enjoy worst-case hardness. In particular for cryptography, the average-case problems SIS and
LWE form the foundation for almost all of the well-known lattice-based cryptosystems. LWE is
often used for primitives from Cryptomania such as provably secure encryption schemes [21, 33,

52] including chosen-ciphertext secure encryption [48, 24, 44, 1, 41], identity based encryption
[24, 15, 1, 41] and fully homomorhic encryption [13, 14, 23, 25]. Furthermore, it is applied for
building secure key exchange protocols [31, 30] and oblivious transfer [47]. The decision problem
of LWE asks a challenger to distinguish polynomially many samples (Ai,b

>
i) ∈ Zn×mq × Zmq ,

where Ai ←R Zn×mq , ei ←R χ and b>i = s>Ai + e>i mod q for s ∈ Znq and discrete Gaussian
distribution χ, from uniform random samples in Zn×mq × Zmq . Regev showed in [51] that solving
the search problem of LWE, where the challenger is supposed to �nd the secret, is at least
as hard as quantumly approximating SIVP resp. GapSVP to factors Õ(n/α) in n-dimensional
worst-case lattices for error vectors following the discrete Gaussian distribution with parameter
αq ≥ 2

√
n. The SIS problem, however, usually serves to build provably secure signature schemes

[8, 18, 28, 36, 24, 41], preimage sampleable trapdoor functions [24, 41, 5, 45, 52] and collision-
resistant hash functions [37, 6]. The corresponding ring variants represent a further milestone for
practical lattice-based cryptography as it allows for small key sizes while speeding up operations.
As a consequence, new problems were formulated (e.g. [21, 35, 12]) allowing for fast instantiations
of cryptographic schemes or solving open problems. The hardness of the new established problems
(e.g. k-SIS, k-LWE or PLWE problem) mostly stem from either the SIS or the LWE problem.

Recently, a novel lattice-based encryption scheme [21] has been proposed that encrypts data
in a way that di�ers from previous constructions following the one-time-pad approach. It is
equipped with many nice features such as a high message throughput per ciphertext as compared
to current state-of-the-art encryption schemes while simultaneously ensuring di�erent security
notions (e.g. CCA security) for many cryptographic applications, for instance utilized to secure
the transmission of bundles of keys as required for the provisioning of remote attestation keys
during manufacturing or data authentication, i.e. two keys in order to instantiate a symmetric
key cipher and a MAC. Public key encryption schemes also represent important building blocks
of sophisticated constructions such as group and ABS schemes. Thus, the argument of sole CPA-
secure hybrid encryption schemes does not hold, especially in case it is desired to ensure CCA1-
or CCA2-security. More speci�cally, the Augmented Learning with Errors problem (A-LWE) [21],
a modi�ed LWE variant, has been introduced that allows to inject auxiliary data into the error
term without changing the target distributions. In fact, the A-LWE problem has been proven to
be hard to solve in the random oracle model assuming the hardness of LWE. Using a suitable
trapdoor function as a black-box such as [41, 20], the owner of the trapdoor is empowered to
recover the secret resp. error-term and hence reveal the injected data. By this, it is possible
to exploit the error term as a container for the message or further information such as lattice-
based signatures following the distributions of the error-term. The high data load encryption
mode further allows for more �exibility as the message throughput can arbitrarily be increased
by use of additional uniform random polynomials (e.g. using a seed) and thus an extended
error term without generating new LWE secret vectors. This mechanism is indeed a property
inherited from LWE as it is possible to generate polynomially many samples using the same secret
vector. Following this approach, one bene�ts from the features of LWE and realize (R)CCA-secure
encryption algorithms that are not built upon the one-time-pad approach as before. Beside of
its presumed e�ciency due to the resemblance of ciphertexts to plain LWE samples, the scheme
further allows to be combined with the one-time-pad approach, hence, taking the best of both
worlds.

1.1 Our Contributions

In this paper we revisit the A-LWE problem and the implied encryption schemes from [21].
In particular, we provide several theoretical improvements, introduce new tools, and give an
e�cient software implementation of the scheme testifying its conjectured e�ciency. Below, we

give an overview of features that can be realized by our scheme LARA (LAttice-based encryption
of data embedded in RAndomness):

Flexibility. The encryptor of the scheme can arbitrarily increase the amount of encrypted data
in two ways without invoking the encryption engine several times. First, he can increase the
error size to at most ‖ei‖2 < q/4 depending on the parameters. Second, the encryptor can
generate from a uniform random seed a desired number of uniform random polynomials and
use them in order to encrypt/embed further data in the associated error terms while exploiting
the same secret. The respective error size can even be larger as the decryptor is applying the
trapdoor only once on the �rst 3 polynomials. Such a feature, that is inherited directly from
ring-LWE, may be desired when transmitting many session keys at once, consuming one
per session. In previous schemes, the encryptor has to invoke the encryption engine several
times. Alternatively, the decryptor would have to extend its public key to the desired size
(e.g. for [33]) resulting in a rather static scheme.

Signature embedding. Due to the coinciding distributions of the error term and lattice-
based signatures, the encryptor can exploit the signature as the error term. For instance,
(c2, c3) contains the signature on the message/error term encrypted in c1. This o�ers an
CCA2 like �avour as the decryptor can verify that the ciphertext has not been altered during
transmission and the source of the data is authenticated via the signature. In case the size
of the signature is too large, the encryptor can further exploit its �exibility.

Security. An increase of the error size already enhances the security of the scheme. However,
it is also possible to further lift the security from CPA or CCA1 to RCCA or CCA2 via the
transformations from [21].

Standard Model. We e�ciently convert the A-LWE problem and the related schemes into the
standard model, hence, removing the need for random oracles (RO). By our new technique we can
indeed replace ROs by PRNGs. All algorithms and schemes can immediately be transferred to
this setting without a�ecting its e�ciency and message throughput. More precisely, our technique
is based on the leakage resilience of LWE. Due to its robustness LWE instances do not get
signi�cantly easier when disclosing some information of the secret or error vector. Following the
extract-then-expand approach a fresh and uncorrelated seed is deduced, that is stretched via a
PRNG to the desired random output length.

Improved Message Throughput. We introduce new techniques in order to increase the mes-
sage throughput per ciphertext. In fact, we are able to exploit almost the full min-entropy of the
error term to embed arbitrary messages. Previously, only one bit of the message was injected
into a coe�cient of the error term. By our new method, we are able to inject about log2(αq/4.7)
bits per entry for an error vector sampled according to the discrete Gaussian distribution with
parameter αq. Encoding and decoding of the message requires only to reduce the coe�cients
modulo some integer. Following this approach we can revise the parameters from [21] according
to Table 1. When comparing our approach with the CPA-secure encryption scheme from Lindner
and Peikert [33], we attest an improvement factor of at least O(log(αq)). Via our new discrete
Gaussian sampler (see below) the performance does not su�er, when increasing the error size.

Improved Trapdoors, Scheme Instantiation and Security. We give an improved construc-
tion of trapdoors in the random oracle model, which allows to signi�cantly reduce the number of
ring elements in the public key by a factor O(log q), hence moving trapdoor constructions towards
practicality. Prior to a presentation of the concrete details, we �rst instantiate the CCA1-secure
encryption scheme in the ring setting for public keys being both statistically and computation-
ally indistinguishable from uniform. This is obtained by use of an e�cient ring variant [20] of

m = c · nk CCA CCA CCA CCA CPA
k = log q [41] [21] This work This work + [41] [33]

Ciphertext size m · k m · k m · k m · k m · k
Signature size nk c log(αq)nk c log(αq)nk (c log(αq) + 1)nk cnk − n
Message size nk c · nk c · nk log(αq/4.7) (c log(αq/4.7) + 1)nk cnk − n
Message Exp. c · k k k

log(αq/4.7)
k

log(αq/4.7)+1/c
k + k

ck−1

Table 1. Parameters

the most recent trapdoor candidate [41] (see also Toolkit [39]) ensuring CCA1-security almost
for free. Second and more importantly, we also give based on [20] an improved construction of
trapdoor algorithms (TrapGen, LWEGen, LWEInv), in case the secret vector is sampled uniformly
at random and can thus be selected s = F (r, H(r)) involving a deterministic function F and
a cryptographic hash function H modeled as random oracle. This is a crucial ingredient of our
construction and the resulting schemes. In particular, we achieve public and secret keys con-
sisting only of 1 polynomial. Hence, our construction improves upon previous proposals, where
the public key contains at least dlog qe polynomials (matrix dimension in [41] is n× n(1 + lg q),
see also [39]), and is thus comparable with the public key size of [34]. This makes the usage of
trapdoor based constructions more attractive for practice as it provides direct access to the secret
and error vector.
In addition to the possibility to increase the error size in order to encrypt more data, the proposed
high data load encryption mode (extension by uniform random polynomials) following [21] fur-
ther allows to encrypt large blocks of data (via an increased number of error vector entries) using
the same secret and at a minimal increase of the running time for encryption and decryption.
We, thus, obtain a �exible encryption engine. The system under scrutiny will, moreover, be ana-
lyzed in terms of security using state-of-the-art tools from cryptanalysis such as the embedding
approach from [4] and [8].

Improved LWE Inversion For Arbitrary Modulus. We introduce a new LWE inversion
subroutine for arbitrary moduli and hence generalize the algorithm from Micciancio and Peikert
[41] using a di�erent approach. There exist many application scenarios, where it is preferred to
have a modulus of a speci�c shape such as a prime modulus satisfying q ≡ 1 mod 2n in the
ring setting o�ering the possibility to apply the fast NTT transformation. The e�cient inversion
subroutine given in [41] to recover the secret vector from LWE instances is only suitable for moduli
of the form q = 2k. For moduli di�erent to this shape, generic approaches such as [7, 32, 24] have
to be applied, which are less e�cient for practice. Our algorithm, however, can e�ciently be
applied to LWE instances employing arbitrary moduli.

E�cient Tag Generation and Inversion of Ring Elements For generating tags used to
ensure CCA security (see [41]), we give a fast inversion algorithm for ring elements in special
classes of rings Rq = Zq[X]/ 〈Xn + 1〉, where ring elements correspond to polynomials with
n = 2l coe�cients and prime satisfying q ≡ 1 mod 2n. This setting is commonly used in lattice-
based crypto as it allows to use the fast NTT transformation when multiplying polynomials.
Our inversion algorithm, which relies on the CRT via the NTT, can check arbitrary ring ele-
ments with regard to invertibility by one NTT transformation. Thus, we can directly use the
structure of the unit group and provide explicit generators of tags without performing costly
checks. When working in the NTT representation, we are even not required to apply the NTT
forward and backward transformations. This will particularly be important in order to lift the
encryption scheme to CCA, where a tag is chosen uniformly at random from the ring of units
and is subsequently applied to the public key when encrypting messages. On the basis of recent

results we also use another e�cient ring alternative with q = 3k where a proper subset of binary
polynomials serves as the tag space. Inverting tags can also e�ciently be accomplished in this
setting.

Novel and E�cient Discrete Gaussian Sampler (FastCDT). For the proposed encryp-
tion schemes, we need to embed data into the error term of (A)LWE such that it still follows
the discrete Gaussian distribution. However, this method gives also rise to a new disrete Gaus-
sian sampler that is very e�cient in practice. Current state-of-the-art discrete Gaussian samplers
such as [24, 44, 19, 36] get less e�cient once the error size is increased. This is very crucial since
lattice-based schemes get more secure, if the error-size is increased, e.g. αq > 2

√
n for worst-case

to average-case hardness. In fact, a new approach towards building discrete Gaussian samplers
is desired such that sampling of discrete Gaussians with large parameters is essentially as e�-
cient as with small ones. We therefore designed a new and powerful discrete Gaussian sampler,
called FastCDT, that is more e�cient than previous samplers. The sampling procedure is almost
independent from the parameter and uses at runtime a CDT table of constant size containing at
most 44 entries with overwhelming probability for all βq = p · ω(

√
log n) and integers p > 0. We

will show that almost the whole probability mass is concentrated on the 10− 11 mid elements of
the table. As a result, we need to consider only 5− 6 entries most of the time. At the same time
FastCDT is capable of sampling from any desired partition Λ⊥i = i+pZ without any modi�cations
and even faster than from Z. In fact, this sampler is used to e�ciently embed data into the error
term of ALWE instances.

Implementation and Analysis. In order to attest the conjectured e�ciency of our scheme
that we call LARACPA, LARACCA1 or LARACCA2, we implement the random oracle variantes of
our CPA- and CCA-secure schemes in software for n = 512. This implementation is optimized
with respect to the underlying architecture using the AVX/AVX2 instruction set. To this end,
we applied adapted variants of the techniques introduced in [26] to our setting. In particular,
we adopt several optimizations for the polynomial representation and polynomial multiplication
by use of e�cient NTT/FFT operations. We implement our scheme and compare it with the
e�cient encryption scheme due to Lindner and Peikert [34]. First, we notice that applying the
FastCDT sampler to all considered schemes already leads to a signi�cant performance boost. We
observe improvement factors ranging between 1.3 and 2.6 as compared to the usage of current
state-of-the-art samplers such as the standard CDT sampler for the same set of parameters.
Moreover, we attest running times of 15.1−50.1 cycles per message bit for encryption and about
9.1 − 42 cycles per bit for decryption in the CPA- and CCA-secure setting. This represents an
improvement factor up to 26.3 and 7.8 for encryption and decryption when comparing with [34]
and even faster in comparison to the OpenSSL implementation of RSA. The absolute running
times are comparable to those of [34].

1.2 Organization

This paper is structured as follows.

Section 2 Provides the relevant background of our work.
Section 3 Introduces the A-LWE problem from [21] and presents our improvements to enhance

the message throughput.
Section 4 The A-LWE problem and the related algorithms are converted into the standard

model.
Section 5 A description of new trapdoor algorithms and the resulting encryption schemes is

proposed.

Section 6 Contains a security analysis of the scheme.
Section 7 Introduces a novel and e�cient discrete Gaussian sampler, that we call FastCDT.
Section 8 Presents our software implementation and experimental results.

2 Preliminaries

Notation We will mainly focus on polynomial rings R = Z[X]/ 〈Xn + 1〉 and
Rq = Zq[X]/ 〈Xn + 1〉 for integers q > 0 and n being a power of two. We denote ring ele-
ments by boldface lower-case letters e.g. p, whereas for vectors of ring elements we use p̂ and
upper-case bold letters for matrices (e.g., A). By ⊕ we denote the XOR operator.

Discrete Gaussian Distribution We de�ne by ρ : Rn → (0, 1] the n-dimensional Gaussian function

ρs,c(x) = e−π·
‖x−c‖22
s2 , ∀x, c ∈ Rn .

The discrete Gaussian distribution DΛ+c,s is de�ned to have support Λ + c, where c ∈ Rn and
Λ ⊂ Rn is a lattice. For x ∈ Λ+c, it basically assigns the probability DΛ+c,s(x) = ρs(x)/ρs(Λ+c) .

Let X = {Xn}n∈N and Y = {Yn}n∈N be two distribution ensembles. We say X and Y
are (computationally) indistinguishable, if for every polynomial time distinguisher A we have
|Pr[A(X) = 1]− Pr[A(Y) = 1]| = negl(n), and we write X ≈c Y (resp. X ≈s Y if we allow A to
be unbounded).

Lattices. A k-dimensional lattice Λ is a discrete additive subgroup of Rm containing all integer
linear combinations of k linearly independent vectors b1, . . . ,bk with k ≤ m and m ≥ 0. More
formally, we have Λ = { B · x | x ∈ Zk }. Throughout this paper we are mostly concerned with
q-ary lattices Λ⊥q (A) and Λq(A), where q = poly(n) denotes a polynomially bounded modulus
and A ∈ Zn×mq is an arbitrary matrix. Λ⊥q (A) resp. Λq(A) are de�ned by

Λ⊥q (A) = {x ∈ Zm | Ax ≡ 0 mod q}
Λq(A) = {x ∈ Zm | ∃s ∈ Zm s.t. x = A>s mod q} .

By λi(Λ) we denote the i-th successive minimum, which is the smallest radius r such there
exist i linearly independent vectors of norm at most r (typically l2 norm) in Λ. For instance,
λ1(Λ) = min

x 6=0
‖x‖2 denotes the minimum distance of a lattice determined by the length of its

shortest nonzero vector.

De�nition 1. For any n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter
ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε .

Lemma 1. ([24, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0 . We have

ηε(Λ) ≤‖ B̃ ‖ ·
√

ln(2n(1 + 1/ε))/π,

where B̃ denotes the orthogonalized basis.

Speci�cally, we have ηε(Λ) ≤ b ·
√

ln(2n(1 + 1/ε))/π for basis B = b · I of Λ .

Lemma 2 (Statistical,[21]). Let B ∈ Zn×mp be an arbitrary full-rank matrix and ε = negl(n).

The statistical distance ∆(DZm,r,DΛ⊥v (B),r) for uniform v←R Znp and r ≥ ηε(Λ⊥(B)) is negligi-
ble.

Lemma 3 (Computational,[21]). Let B ∈ Zn×mp be an arbitrary full-rank matrix. If the dis-
tribution of v ∈ Znp is computationally indistinguishable from the uniform distribution over Znp ,
then DΛ⊥v (B),r is computationally indistinguishable from DZm,r for r ≥ ηε(Λ⊥(B)).

Lemma 4. ([42, Lemma 4.4]). Let Λ be any n-dimensional lattice. Then for any ε ∈ (0, 1),
s ≥ ηε(Λ), and c ∈ Rn, we have

ρs,c(Λ) ∈ [
1− ε
1 + ε

, 1] · ρs(Λ) .

Lemma 5 ([10, Lemma 2.4]). For any real s > 0 and T > 0, and any x ∈ Rn, we have

P [| 〈x,DZn,s〉 | ≥ T · s ‖x‖] < 2exp(−π · T 2) .

Lemma 6 ([24, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis S, and let ε > 0. We have

ηε(Λ) ≤‖ S̃ ‖ ·
√

ln
(
2n
(
1 + 1

ε

))
/π. In particular, for any function ω(

√
log n), there is a negligible

ε(n) for which ηε(Λ) ≤‖ S̃ ‖ ·ω(
√

log n).

Below we give a description of the LWE distribution and the related problems of the matrix
variant.

De�nition 2 (LWE Distribution). Let n,m, q be integers and χe be distribution over Z. By
LLWE
n,m,αq we denote the LWE distribution over Zn×mq ×Zmq , which draws A←R Zn×mq uniformly at

random, samples e←R DZm,αq and returns (A,b>) ∈ Zn×mq ×Zmq for s ∈ Znq and b> = s>A+e>.

De�nition 3 (LWE Problem). Let u ∈ be uniformly sampled from Zmq .

� The decision problem of LWE asks to distinguish between (A,b>) ← LLWE
n,m,αq and (A,u>)

for a uniformly sampled secret s←R Znq .
� The search problem of LWE asks to return the secret vector s ∈ Znq given an LWE sample

(A,b)← LLWE
n,m,αq for a uniformly sampled secret s←R Znq .

3 Augmented Learning with Errors

In this section, we give a description of the message embedding approach as proposed in [21] and
how it is used in order to inject auxiliary data into the error term of LWE samples. This feature
represents the main building block of the generic encryption scheme from [21], which allows to
encrypt huge amounts of data without increasing the ciphertext size. In fact, it is even possible to
combine this concept with the traditional one-time-pad approach in order to take the best from
both worlds and hence increase the message size per ciphertext at almost no cost. In Section 4 we
convert the A-LWE distribution and the related problems into the standard model and thus get
rid of the need for ROs. To this end, we make use of the leakage resilience of LWE following [3,
Theorem 3] and destroy correlations even without ROs. All schemes remain as e�cient as with
ROs.

3.1 Message Embedding

The proposed technique aims at embedding auxiliary data into the error term e such that it still
follows the required error distibution. In particular, Lemma 2 and 3 are used, which essentially
state that a discrete Gaussian over the integers can be simulated by sampling a coset Λ⊥c (B) =
c +Λ⊥p (B) uniformly at random for any full-rank matrix B ∈ Zn×mp and then invoking a discrete

Gaussian sampler outputting a preimage x for c such that B·x ≡ c mod p. However, this requires
the knowledge of a suitable basis for Λ⊥q (B). In fact, the random coset selection can be made
deterministically by means of a random oracle H taking a random seed with enough entropy as
input.
The fact, that xoring a message m to the output of H does not change the distribution, allows
to hide the message within the error vector without changing its target distribution. As a result,
we obtain e ← DΛ⊥

H(µ)⊕m
(B),r, which is indistinguishable from DZm,r for a random seed µ and

properly chosen parameters.
Subsequently, based on the message embedding approach the Augmented LWE problem (A-

LWE) has been introduced, where A-LWE samples resemble ordinary LWE instances except for
the modi�ed error vectors. In particular, the A-LWE problem is speci�ed with respect to a speci�c
matrix G, which allows to sample very short vectors e�ciently according to the discrete Gaussian
distribution. We note that other choices are also possible as long as the parameter of the error
vectors exceed the smoothing parameter of the associated lattice. We now give a generalized
description of the A-LWE distribution using any preimage sampleable public matrix B.

De�nition 4 (Augmented LWE Distribution). Let n, n′,m,m1,m2, k, q, p be integers with

m = m1 +m2, where αq ≥ ηε(Λ⊥(B)). Let H : Znq ×Zm1 → {0, 1}n
′·log(p)

be a cryptographic hash

function modeled as random oracle. Let B ∈ Zn′×m2
p be a preimage sampleable full-rank matrix

(such as B = G from [41]). For s ∈ Znq , de�ne the A-LWE distribution LA-LWE
n,m1,m2,αq(m) with

m ∈ {0, 1}n
′ log p

to be the distribution over Zn×mq × Zmq obtained as follows:

• Sample A←R Zn×mq and e1 ←R DZm1 ,αq .

• Set v = encode(H(s, e1)⊕m) ∈ Zn′p .
• Sample e2 ←R DΛ⊥v (B),αq .

• Return (A,b>) where b> = s>A + e> with e = (e1, e2) .

In principal, for A-LWE one di�erentiates the decision problem
decision A-LWEn,m1,m2,αq from the corresponding search problem
search-s A-LWEn,m1,m2,αq, as known from LWE. Furthermore, there exists a second search prob-
lem search-m A-LWEn,m1,m2,αq, where a challenger is asked upon polynomially many A-LWE
samples to �nd in polynomial time the message m injected into the error vector. Note that the
error distribution could also di�er from the discrete Gaussian distribution. For instance, one
could use the uniform distribution, for which one obtains similar results.

All the proofs from [21] go through without any modi�cations, since the security proofs are
not based on the choice of B.

Theorem 1 (adapted [21]). Let n, n′,m,m1,m2, q, p be integers with m = m1 +m2. Let H be
a random oracle. Let αq ≥ ηε(Λ⊥q (B)) for a real ε = negl(λ) > 0 and preimage sampleable public

matrix B ∈ Zn′×m2
p . Furthermore, denote by χs and χe1 the distributions of the random vectors

s and e1 involved in each A-LWE sample. If H∞(s, e1) > λ, then the following statements hold.

1. If search LWEn,m,αq is hard, then search-s A-LWEn,m1,m2,αq is hard.
2. If decision LWEn,m,αq is hard, then decision A-LWEn,m1,m2,αq is hard.
3. If decision LWEn,m,αq is hard, then search-m A-LWEn,m1,m2,αq is hard.

One easily notes, that these hardness results also hold for the ring variant. We remark that for
encryption schemes the secret s is always resampled such that H(s) su�ces to output a random
vector and the complete bandwidth of e is exploited for data to be encrypted.

3.2 Improved Message Embedding

For the sake of generality, we used in all our statements an abstract matrix B ∈ Zn′×mp for
integers p, n′, and m. This is used to embed a message into the error term via e2 ←R DΛ⊥v (B),αq,

where v = encode(H(seed) ⊕m) ∈ Zn′p is uniform random. However, we can specify concrete
matrices that optimize the amount of information per entry with respect to the bound given in
Lemma 6.

In the following section we propose several techniques in order to enhance the message
throughput per discrete Gaussian vector. These techniques could also be applied to the error
vector involved in the A-LWE distribution. In other words, we aim at choosing an appropriate
preimage sampleable full-rank matrix B ∈ Zn′×mp such that n′ · log p is maximized. For now, we
will focus on how to apply this technique to the di�erent encryption schemes and omit the term
e1 when invoking the random oracle, since the secret s ∈ Znq is always resampled in encryption
schemes and hence provides enough entropy for each fresh encryption query. The �rst approach is
based on a method used to construct homomorphic signatures in [11]. We also propose a simpler
approach that avoids such complex procedures while entailing the same message throughput.

Intersection Method. The intersection method as proposed in [11] considers two
m-dimensional integer lattices Λ1 and Λ2 such that Λ1 + Λ2 = Zm, where addition is de�ned
to be element-wise. Therefore, let m1 and m2 be two messages, where m1 and m2 de�ne a
coset of Λ1 and Λ2 in Zm, respectively. As a result, the vector (m1,m2) de�nes a unique coset
of the intersection set Λ1 ∩ Λ2 in Zm. By the Chinese Remainder theorem one can compute a
short vector t such that t = m1 mod Λ1 and t = m2 mod Λ2 using a short basis for Λ1 ∩ Λ2.
In fact, it is easy to compute any vector t that satis�es the congruence relations. Subsequently,
by invoking a preimage sampler one obtains a short vector from Λ1 ∩ Λ2 + t. For instance, one
can e�ciently instantiate the scheme when choosing Λ1 = pZm and Λ2 = Λ⊥q (A) for a matrix
A ∈ Zl×mq with a short basis T and p coprime to q. Doing this, the message spaces are given by
m1 ∈ Zm/Λ1

∼= Zmp and m2 ∈ Zm/Λ2
∼= Zlq, where the isomorphisms are given by x 7→ (x mod p)

and x 7→ (A · x mod q). Due to the simple choice of Λ1, we obtain a short basis S = p · T for
Λ1∩Λ2 = p·Λ2, where ηε(Λ1∩Λ2) ≤ p·ηε(Λ2). So, if A corresponds to G ∈ Zm/k×mq for k = log q,
we have ηε(Λ1∩Λ2) ≤ p ·2 ·ω(

√
log n). In our schemes, however, we have to sample a short vector

e from (H(r)⊕ t) +Λ1∩Λ2 with parameter αq ≥ ηε(Λ1∩Λ2), where t is computed as above and
the (simpli�ed) description H : {0, 1}∗ → Zmq de�nes a random function taking a random string
r ∈ {0, 1}∗ with su�cient entropy as input. The error vector is then given by e← Db+Λ1∩Λ2,αq

with b = H(r)⊕ t. Due to ηε(Λ1 ∩ Λ2) ≤ p · 2 · ω(
√

log n) (e.g., αq = p · 2 · ω(
√

log n)), the error
vector is indistinguishable from DZm,αq following Lemma 2 and Lemma 3. This technique allows
to embed m log p+m bits of messages into the error term.

Lattices of the Form pZm. One realizes that for a given parameter αq for the distribution of
the error vector one can be much more e�cient, if one considers only the lattice Λ⊥p (I) = pZm.
In this case, the message space is simply de�ned by the set M = Zm/Λ⊥p (I) ∼= Zmp . When
comparing with the previous approach, for instance, it is only required to increase p by a factor
of 2 in order to obtain the same message throughput m log 2p = m · (log p+ 1). In Lemma 7 we
prove that a message throughput of size log p bits per entry is optimal for a given parameter
αq = p ·ω(

√
log n). Furthermore the decoding and encoding phase is much faster, since encoding

requires only to sample e← Db+pZm,αq for b = H(r)⊕m using fast discrete Gaussian samplers
such as the Knuth-Yao algorithm or the more e�cient FastCDT sampler that we present in
Section 7. Decoding is performed via H(r) ⊕ (e mod p). Optimizing the message throughput

requires to increase p such that ηε(Λ) ≤ p · const ≤ αq still holds for const =
√

ln(2(1 + 1/ε))/π.
Doing this, one can embed approximately m · log p bits of data, which almost coincides with the
min-entropy of a discrete Gaussian with parameter αq, since const ≈ 4.7. Therefore, one prefers
to choose a parameter αq = p · const with p = 2i and integer i > 0 in order to embed i bits of
data into the error term.

Lemma 7 (Optimal Message Bound). Let r = p · ω(
√

logm) for integers p,m > 0. Fur-
thermore, let a discrete Gaussian over Zm be sampled by selecting v ∈ Zn′p′ uniformly at random

and then sampling Dv+Λ⊥
p′ (B),r for a preimage sampleable matrix B ∈ Zn

′×m
p′ with p′, n′ > 0. An

optimal bound for the maximum number of bits, that can be injected into a discrete Gaussian (or
equivalently the size of v), is given by m · log p bits.

Proof. The proof is essentially based on the bound given in Lemma 6. First, in order to sample
a discrete Gaussian vector over Zm, the condition r ≥ ηε(Λ

⊥
p′(B)) has to be satis�ed for a

negligible ε following Lemma 2 and Lemma 3. Based on Lemma 6 we have p ≥ ‖ S̃ ‖, where
S denotes a basis of B with B · S ≡ 0 mod q and S̃ its orthogonolization. We note, that it
su�ces to consider m = 1, since each component of a discrete Gaussian vector over Zm is
sampled independently containing the same amount of information and randomness. Following
this, n′ = 1 and subsequently S̃ = S ≤ p. Hence, for S = p = p′ we obtain the maximum bit size
amounting to log p bits for v such that Dv+Λ⊥p (B),r = Dv+pZ,r is identically distributed to DZ,r.

For m > 1 one takes, for instance, S̃ = S = p · Im resulting in m · log p bits for v ∈ Zmp . ut

In fact, based on the bound given in Lemma 6, for any αq > 0 and e2 ←R DZm,αq the
maximum number of bits that can be embedded into a component of the error term is bounded
by log(αq/ω(

√
log n)). This means that p′ = bαq/ω(

√
log n)c is the largest integer such that

e2 mod p′ is guaranteed with overwhelming probability to be uniform random (see Lemma 7).
Hence, we can choose B = I ∈ Zm×m with αq = p · const for p = 2k allowing for k-bits of
information. The data is recovered via the e�cient operation v = e2 mod p. For the sake of these
arguments, we will use B = I throughout this work.

Uniform Error. For uniformly distributed errors one can directly employ the output of the ran-
dom function H(·) as the error term. More speci�cally, suppose
e ∈ ([−p, p] ∩ Z)m, then let H(·) : {0, 1}∗ → ([−p, p] ∩ Z)m be a random function (e.g. RO)
such that e ← encode(H(r) ⊕ m) for m ∈ {0, 1}m log2(2p). As a result, one can use the full
bandwidth of the error term and inject m log2(2p) message bits.

4 A-LWE in the Standard Model

In this section, we introduce an A-LWE variant that is hard under standard assumptions. Pre-
viously, the A-LWE problem was de�ned by use of a random oracle, that helped to destroy
correlations between the secret and the output of H(·) and thus ensured the required distribu-
tions. Therefore, a straightforward approach to instantiate H(·) by a PRNG or a pseudorandom
function (PRF) is not obvious. In particular, by means of a random oracle the secret s and
the output of H(·) are both uniformly random and hence allow the distributions of the error
term and the secret behave following the basic LWE distributions such that it is not possible
to distinguish between A-LWE and original LWE samples. In this section we show how to get
rid of the random oracle leading to a standard model instantiation of the A-LWE problem. We
formulate the A-LWE problem, where H is replaced by a PRNG, hence avoiding the need for
a cryptographic hash function modeled as random oracle. Following this, we can prove security

in the standard model for many of the A-LWE based encryption schemes which are previously
shown to be secure in the random oracle model.

4.1 Tools

Prior to de�ning the A-LWE distribution and proving the related hardness statements, an e�-
cient mechanism is needed that allows to replace the random oracle by tools based on standard
assumptions but in such a way that the message can e�ciently be recovered from the error term.
Our approach is based on the idea of computational extractors following the extract-then-expand
design [16], where a statistical extractor is used to produce a seed as input to a PRNG expanding
the seed to the desired output length. We will prove that we can deterministically produce a seed
using the ingredients of LWE samples. In fact, we use a small part of the error term in order
to derive a seed statistically close to uniform given LWE samples. That is, we sample a random
matrix C ∈ Zt×nq for t < n and prove that C · e1 ≡ b mod q is indistinguishable from a random
vector in Ztq given A>s + e mod q for e = (e1, e2)> ← DZmq ,αq and random matrix A ∈ Zn×mq .

Lemma 8. ([3, Theorem 3]) For any integer n > 0, integer q ≥ 2, an error-distribution χn =
DZn,αq and any subset S ⊆ {0, . . . , n}, the two distributions (A,A>s+e, (si)i∈S) and (A,A>s+

e,U(Z|S|q)) are computationally indistinguishable assuming the hardness of decision LWEn−|S|,m,αq .

As a result, it follows

(A,A>s + e, (si)i∈S) ≈c (A,A>s + e,U(Z|S|q))

≈c (A,U(Zmq),U(Z|S|q)),

which proves the independence of (si)i∈S from the remaining parts of s = (si)i∈[n] for
S ⊆ [n]. As an immediate consequence, we obtain similar results, if s is sampled from the
error distribution χn.

Corollary 1. For any integer n > 0, integer q ≥ 2, an error-distribution χn = DZn,αq and any
subset S ⊆ {0, . . . , n}, the two distributions (A,A>s + e, (si)i∈S) and (A,A>s + e,DZ|S|q ,αq

) are

computationally indistinguishable assuming the hardness of decision LWEn−|S|,m,αq .

This is proven in a straightforward manner following the same proof steps as in Lemma 8.
However, in this case we have

(A,A>s + e, (si)i∈S) ≈c (A,A>s + e,DZ|S|q ,αq
)

≈c (A,U(Zmq),DZ|S|q ,αq
),

which is based on the hardness of decision LWEn−|S|,m,αq . In order to account for leakage of
coe�cients we give an alternative de�nition of the LWE distribution allowing for leakage of t
coe�cients either of the error term or secret vector. Such a notation is indeed required to sample
n-dimensional LWE instances based on the hardness of decision LWEn−t,m,αq. In particular, when
proving the hardness of the A-LWE problem it simpli�es the representation of such instances.

De�nition 5 (LWE Distribution with Leakage). Let n,m, q be integers and χe be the error

distribution over Z. By LLWE`(t)
n,m,αq we denote the LWE distribution over Zn×mq × Zmq , which draws

A←R Zn×mq uniformly at random, samples e←R DZm,αq and returns (A,b>, (si)i∈S) ∈ Zn×mq ×
Zmq × Z|S|q , where b> = s>A + e> and t = |S| > 0 coe�cients of s ∈ Znq are leaked.

We use the convention that the �rst t coe�cients are leaked if it is not explicitly speci�ed.
From Lemma 8 (or Corollary 1) it follows that it is hard to distinguish uniform random vectors

from samples following the L
LWE`(t)
n,m,αq distribution assuming the hardness of decision LWEn−t,m,αq.

The next theorem provides a description of how to deterministically deduce a vector statistically
close to uniform from LWE samples. This vector will serve as a seed in order to instantiate the
A-LWE distribution below.

Theorem 2. Let m,n be integers and s ←R DZm,αq. Furthermore, let
A2 ←R Zm×nq , A1 ←R Zt×nq and A′1 ←R Zt×mq be uniform random matrices with
t ≤ (d− 2λ)/ log q, where d = H∞(s) (resp. d = H∞(e)). Suppose that the decision LWEn−t,m,αq
assumption holds, then

1. (A1s,A2s + e) ≈c (U(Ztq),U(Zmq))
2. (A′1e,A2s + e) ≈c (U(Ztq),U(Zmq))

for e←R DZm,αq. Moreover, A′1e mod q (resp. A1s mod q) is a statistical extractor.

Proof. We prove the statement (A1s,A2s + e) ≈c (U(Ztq),U(Zmq)) by contradiction. Suppose
there exists a PPT distinguisher D that distinguishes between the aforementioned distributions,
then we construct a PPT algorithm A that breaks decision LWEn−t,m,αq .
We note here that it su�ces to prove the statements for any m as long as it is polynomially
bounded. In fact, if the underlying problem is hard for m = n samples, the same hardness
statement must also hold for less samples. And for m > n, one can easily reduce the problem to
m = n.
The input to A is an instance (A,A ·

[
0
e

]
+ s) of L

LWE`(t)
n,n,αq due to leakage of the �rst t zero

entries, where A =
[
A1

A2

]
∈ Zn×nq composed by the matrices A1 ∈ Zt×nq and A2 ∈ Zn−t×nq is a

uniform random matrix that is invertible over Zn×nq with non-negligible probability. For instance,

the probability to sample a full rank matrix from Zl×nq is equal to
l−1∏
i=0

qn−qi
qln

≥ (qn−ql−1)l

qln
=

(q
n−l+1−1
q(n−l+1))l for prime modulus and l ≤ n. If l = n, the matrix is invertible with probability at

least (q−1
q)n ≥ 1/e for q = O(n). Now, A computes

A−1 · (A
[
0
e

]
+ s) = A−1 · s +

[
0
e

]
,

which can be represented as (Bs,Cs+e) for A−1 =
[
B
C

]
. Subsequently, D is invoked which distin-

guishes the input (Bs,Cs+e) and hence A·
[
0
e

]
+s from uniform, thus solving decision LWEn−t,m,αq

as per Lemma 8 and Corollary 1. For the second statement, one observes that

(A1e,A2s + e) ≈c (U(Ztq),U(Zmq))

⇐⇒
(A1e,A

−1
2 e + s) ≈c (U(Ztq),U(Zmq))

for m = n and invertible matrix A2, which exists with non-negligible probability as shown before.
This particularly also proves the statement for m ≤ n.
As for m > n, suppose the upper n rows of A2 are linearly independent, otherwise we can �nd
n out of m > n rows with high probability and bundle them together in the upper part. The
matrix A2 can subsequently be extended to an invertible matrix Ae =

[
B A2

]
∈ Zm×mq with

B =

[
0
I

]
∈ Zm×m−nq by appending ones on the diagonal such that Ae

[
0
s

]
+ e = A2s + e mod q.

(A1e,A2s + e) = (A1e,Ae

[
0
s

]
+ e) ≈c (U(Ztq),U(Zmq))

⇐⇒

(A1e,A
−1
e e +

[
0
s

]
) ≈c (U(Ztq),U(Zmq))

Hence, our claim follows from the �rst case. We note that A1e mod q is a statistical extractor
by the Leftover Hash Lemma, if t ≤ (d− 2λ)/ log q for d = H∞(e). ut

Remark. The theorem above mainly states, that it is even possible to reveal the �rst t entries of
the error-term from LWE samples. This is equivalent to sampling a random matrix A1 ∈ Zt×nq

and outputting the vector A1s mod q, which is statistically close to the uniform distribution for
t ≤ (d − 2λ)/ log q according to the Leftover Hash Lemma. Applying the same argument, the

complete vector

[
A1

A2

]
s +

[
0
e

]
is statistically close to uniform if m+ t < n.

4.2 A-LWE Distribution

The tools introduced in the previous section will allow us to deterministically derive a uniform
random seed by means of the error term from LWE samples. Using this framework we start
de�ning the A-LWE distribution LA-LWE

n,m1,m2,αq(m) in the standard model. It looks very similar to
the random oracle variant introduced in the previous section.

De�nition 6 (Augmented LWE Distribution). Let n, n′, t,m,m1,m2, q, p be integers with
m = m1 + m2, where αq ≥ ηε(Λ

⊥(B)) for a preimage sampleable full-rank matrix B ∈ Zn′×m2
p

and a real ε = negl(λ) > 0. Let C ∈ Zt×m1
q be a random matrix and PRNG : Ztq → {0, 1}

n′·log p

be a secure pseudorandom generator. For s ∈ Znq , de�ne the A-LWE distribution LA-LWE
n,m1,m2,αq(m)

with m ∈ {0, 1}n
′·log p

to be the distribution over Zn×mq × Zmq obtained as follows:
� Sample A←R Zn×mq and e1 ←R DZm1 ,αq .
� Set seed = C · e1 mod q .
� Set v = encode(PRNG(seed)⊕m) ∈ Zn′p .
� Sample e2 ←R DΛ⊥v (B),αq .

� Return (A,b>) where b> = s>A + e> with e = (e1, e2) .

We note that we introduced many parameters in order to keep the problem as general as
possible. But for applications considered in the previous sections, it su�ces to set n′ = m2,
p = bαq/

√
ln(2(1 + 1/ε))/πc and Λ⊥(B) = pZm2 for B = I ∈ Zm2

p as discussed in Section 3.2.
For our constructions to work, it is possible to select small values for t such as t = 15 in or-
der to ensure a seed of size 15 · log q bits. In fact, the seed is statistically close to uniform for
t ≤ (d−2λ)/ log q and d = H∞(e1). In this case PRNG(seed) represents a computational extractor
providing enough pseudorandom bits in order to conceal the message.

4.3 A-LWE Hardness in the Standard Model

The following theorem shows that LWE samples are computationally indistinguishable from A-
LWE samples, when instantiated with a PRNG. As a result, this construction also depends on
the underlying computational problem of the PRNG.

Theorem 3. Denote by λ the security parameter and let n, t,m,m1,m2, q, p be integers with
m = m1 + m2, where αq = p ·

√
ln(2(1 + 1/ε))/π ≥ ηε(Λ

⊥(pZm2)) and a real ε = negl(λ) > 0.

Let C ∈ Zt×m1
q be a random matrix and PRNG : Ztq → {0, 1}

m2·log p
be a secure pseudorandom

number generator with t ≤ (d− 2λ)/ log q for d = H∞(e1) and e1 ←R DZm1 ,αq. Then, assuming
the hardness of decision LWEn−t,m,αq the distribution LA-LWE

n,m1,m2,αq(m) is computationally indis-

tinguishable from uniform for arbitrary m ∈ {0, 1}m2·log p.

Proof. Via a series of hybrids we will prove that samples from LA-LWE
n,m1,m2,αq(m) are indistinguish-

able from the uniform distribution over Zn×mq assuming that the decision LWEn−t,m,α,q problem
is hard to solve in polynomial time and the output distribution of the PRNG is indistinguishable
from uniform for PPT adversaries, where t ≤ (d− 2λ)/ log q with d = H∞(e1). This yields

LA-LWE
n,m1,m2,α,q(m) ≈c L

LWE`(t)
n,m,αq

for arbitrary m ∈ {0, 1}m2·log p. In the �rst hybrid, we modify the A-LWE samples in such a way
that we replace seed = Ce1 mod q with a uniformly sampled value u1. This follows from the
fact that (Ce1,A

>
1 s + e1) is indistinguishable from uniform according to Theorem 2 and Ce1 is

statistically close to uniform following the Leftover Hash Lemma for t chosen as above. In the
next hybrid we replace the output of the PRNG with a uniform random value u2 as a result of the
uniform random input u1 to the PRNG. Following this, the vector v = encode(u2⊕m) becomes
uniformly distributed. The �nal hybrid replaces e2 by a vector e∗2, which is sampled according
to DZm2 ,r as per Lemma 3. As a result, we obtain instances being identically distributed as the
original LWE distribution.

Hybrid1. In the �rst hybrid, in each A-LWE sample we replace the value seed = Ce1 mod q by
a uniformly sampled value u1 ∈ Ztq. This mainly follows from the Leftover Hash Lemma for
t ≤ (d − 2λ)/ log q with d = H∞(e1) and the fact that (Ce1,A

>
1 s + e1) is indistinguishable

from uniform assuming the hardness of decision LWEn−t,m,αq as per Theorem 2. We note here,
that the adversary never gets to see seed. Due to the high entropy of the seed a distinguisher
will guess the correct seed only with negligible probability or at most 2−O(λ). Also by the
same argument, the same seed will not be sampled except with negligible probability due to
the high min-entropy of e1.

Hybrid2. In the second hybrid, we replace the output PRNG(u1) of the PRNG by a uniform
random string u2 ∈ {0, 1}m2·log p. As a result,v = encode(u2 ⊕m) becomes uniformly dis-
tributed as well. A potential (polynomial-time) adversary notices the di�erence between the
uniform distribution and the output of the PRNG only if he queries the PRNG with the
correct seed u1 or breaks the underlying hard computational problem. But in both cases,
the distinguisher succeeds only with negligible probability. Hence, this also holds, if many
samples are given to the distinguisher.
We comment on a distinguisher which queries the PRNG at a certain point on (s, e1) below
in the proof, and assume for now, that no such distinguisher exists.

Hybrid3. In the last hybrid, the error term e2 is replaced by e∗2 which is sampled according to
DZm2 ,r. This follows from Lemma 3 stating that DΛ⊥v (B),αq is statistically close to DZm2 ,r

for a uniform random vector v = encode(u2 ⊕m), where u2 is uniform random and αq ≥
ηε(Λ

⊥(pZm2)).

We stress that A-LWE samples from Hybrid3 are indistinguishable from LWE samples. The only
di�erence between A-LWE and LWE samples is the way the error term was constructed, which
we proved via the hybrids to be identically distributed. Hence, a distinguisher can only invoke the
PRNG with the correct seed either by guessing Ce1 mod q, which is 2−O(λ)-hard by the Leftover
Hash Lemma, or breaking A-LWE samples which is via the relation LA-LWE

n,m1,m2,α,q(m) ≈c L
LWE`(t)
n,m,αq

equivalent to breaking LWE samples or solving search LWEn−t,m,α,q and decision LWEn−t,m,αq,
respectively. By assumption such a distinguisher does not exist.

We conclude that the step from the original A-LWE samples to Hybrid1 will be unnoticeable
to a distinguisher, if search LWEn−t,m,α,q and decision LWEn−t,m,αq are hard, and both distribu-
tions LLWE

n−t,m,α,q and L
A-LWE
n,m1,m2,α,q(m) are computationally indistinguishable. ut

Theorem 4. Let n,m,m1,m2, q, p be integers with m = m1 + m2. Let
PRNG : Ztq → {0, 1}

m2·log p
be a PRNG taking seed = Ce1 mod q as input for a random ma-

trix C ∈ Zt×m1
q with t ≤ (d − 2λ)/ log q and d = H∞(e1). Let αq = p ·

√
ln(2(1 + 1/ε))/π ≥

ηε(Λ
⊥
q (pZm2)) for a real ε = negl(n) > 0. Furthermore, denote by χe1 the distribution of the error

vectors (e1)i involved in each A-LWE sample i. If H∞(e1) > λ, then the following statements
hold.

1. If search LWEn−t,m,αq is hard, then search-s A-LWESn,m1,m2,αq is hard.

2. If decision LWEn−t,m,αq is hard, then decision A-LWESn,m1,m2,αq is hard.

3. If decision LWEn−t,m,αq is hard, then search-m A-LWESn,m1,m2,αq is hard.

The proof for the second statement follows from 3. As for the remaining statements we refer
to the proof of Theorem 1, which proves the validity of the �rst and last statements using the
same argumentation line. We note here, that the seed is always kept hidden and hence believe
that the hardness of A-LWE is even stronger based on search LWEn,m,α,q and decision LWEn,m,αq.

5 Encryption Scheme based on Trapdoors

5.1 Setting

Prior to starting with the key ingredients of the encryption scheme, we de�ne the setting in which
we operate and explain how it contributes to the performance and usability of the scheme. We
give customized algorithms that make use of the features accompanying the scheme in consid-
eration. In particular, we operate in the ring setting, where lattices correspond to ideals in the
corresponding rings. This allows for more e�cient algorithms as compared to the unstructured
counterparts in Znq . More speci�cally, we will focus on cyclotomic rings Rq = Zq[X]/ 〈Xn + 1〉 for
integers q > 0 and n being a power of two, where Φ2n(X) = Xn + 1 is a cyclotomic polynomial
that is irreducible over Z[X]. Cyclotomic rings have very nice structures that allow for e�cient
and specialized algorithms [49] and furthermore provide similar worst-case to average-case hard-
ness results [38]. In some constructions one may wishes to operate with a power of two modulus
q = 2l, when considering the trapdoor construction and the corresponding LWE inversion algo-
rithm from [41, 20]. As already stated in many works, it might be more advantageous in certain
settings to select a prime q such that q = 1 mod 2n. In this case Φ2n(X) = Xn + 1 splits into
n linear factors over Zq[X] such that Rq ∼= Zq[X]/ 〈g1(X)〉 × . . .× Zq[X]/ 〈gn(X)〉, where gi(X)
denote linear polynomials in Zq[X]. Due to this fact, there exists an element ω ∈ Zq of order 2n
that satis�es Φ2n(ω) = 0 mod q since 2n|q − 1 and Z×q = Zq\{0} is a cyclic group. Therefore, we
can write gi(X) = X − ξi for some element ξi ∈ Zq and use the NTT [26] in order to e�ciently
perform polynomial multiplication. Thus, let ξ be an element of order n and ψ2 = ξ mod q. Then
two polynomials r,u ∈ Rq are multiplied by �rst transforming r = (r0, . . . , rn−1) resp. u to
T (r) = (r0, ψr1, . . . , ψ

n−1rn−1) resp. T (u) via the bijective map T : Rq → Rq and subsequently
computing T (c) = NTT−1

ξ [NTTξ(T (r))◦NTTξ(T (u))]. Following this approach, it is not required
to double the input length to the NTT [54] and there is no need to use the less e�cient FFT
on the complex numbers. Moreover, from the representation of Rq, we deduce that the number
of units in Rq is given by (q − 1)n = qn(1 − 1/q)n or simply by the ratio (1 − 1/q)n, which is

non-negligible for large enough values of q. In fact, selecting q = 8383489 and n = 512 results in
a ratio close to 1. Beyond that, we also introduce a fast way to generate ring elements and the
associated inverses required for tagged public keys in order to ensure CCA security. This method
is mainly possible due to the existence of the NTT. In addition, we present in Section 5.3 an
e�cient subroutine for the LWE inversion algorithm speci�ed in [41].

5.2 Generic Instantiation from Trapdoors for Ideal-Lattices

In general, trapdoor constructions for LWE represent powerful tools, as it allows the owner of the
trapdoor to get access to the error vector and the secret in LWE instances and analyze the re-
spective elements. In this paragraph we shortly recap the e�cient ring setting [20] of the trapdoor
generation algorithm [41] which is used in order to construct a public key that is indistinguish-
able from uniform and allows to invert LWE instances. An improved trapdoor construction is
introduced in Section 5.4. We will restrict to the e�cient ring variant [20]. Thus, let k = dlog qe
and m̄ > 0 be integers. The trapdoor generation algorithm takes as input an additional �ag that
is set either to t := statistical or t := computational invoking the respective trapdoor generation
algorithms for public keys being either statistically or computationally close to uniform.

Trapdoor Generation

� TrapGen(1n, t := computational) Sample a single polynomial a1 ∈ Rq uniformly at ran-
dom (m̄ = 1). Let fa1

(x,y) = a1 · x + y ∈ Rq be a function. Sample 2k random
polynomials ri,j according to DZn,αq viewing polynomials as coe�cient vectors with pa-
rameter αq (e.g., αq ≥ 2

√
n) for 1 ≤ i ≤ k and j ∈ {1, 2}. The secret key is given by

sk = [r1,1, . . . , rk,1] with the corresponding public key pk := A

A = [a1,g1 − fa1
(r1,1, r1,2), . . . ,gk − fa1

(rk,1, rk,2)] .

Analogously, if a tag tu is used, we obtain Au by multiplication of tu with gi for
1 ≤ i ≤ k.

� TrapGen(1n, t := statistical) Sample m̄ polynomials â = [a1, . . . ,am̄] ∈ Rm̄q uniformly at

random. By hâ(x̂) =
m̄∑
i=1

aixi we de�ne a generalized compact knapsack parametrized by

the elements in â. Sample k vectors of polynomials
r̂i = [ri,1, . . . , ri,m̄] ∈ Rm̄ according to some distribution D and de�ne am̄+i = hâ(r̂i)
for 1 ≤ i ≤ k. The public key is then given by pk := A with

A = [a1, . . . ,am̄,g1 − am̄+1, . . . ,gk − am̄+k] ,

where gi denotes the constant polynomial consisting only of zero coe�cients except for
the constant term 2i−1. The trapdoor polynomials de�ne the secret key
sk = [r̂1, . . . , r̂m̄]. If a tag tu is taken into account, we have

Au = [a1, . . . ,am̄, tu · g1 − am̄+1, . . . , tu · gk − am̄+k] .

There exist many choices of how to select the parameter m̄ and the distribution D such that
the polynomials am̄+i are statistically close to uniform over Rq. In general, there exists an in-
herent relationship, where a large number m̄ of random polynomials allows to select trapdoor
polynomials ri,j with small entries. Conversely, a small number of random polynomials leads to
larger values. In fact, one can apply the regularity bound from [53, Lemma 6], which essentially
states that the statistical distance of am̄+i = hâ(r̂i) from the uniform distribution over Rq is
upper bounded by

ε ≤ 1

2

√(
1 +

q

Bm̄

)n
− 1,

where D corresponds to the uniform distribution over a set [−b, b]n ∩ Zn with
B = 2b + 1. For instance, if one reconsiders the parameters q = 8383489
and n = 512 from above, it is possible to set m̄ = 46 and b = 24 in order to ensure a statistical
distance of about 2−100. This bound is impractical for a low value of m̄. A better regularity bound
is given by [52, Lemma 3.1] resp. [40, Corollary 7.5] for this case. We note that the parameters
have to be chosen small enough in order to e�ciently recover the secret when inverting LWE
instances. For a computational instantiation of the public key, only one single polynomial a1 is
sampled uniformly at random. The other polynomials are obtained via the ring-LWE distribution
using a1. Applying this approach requires to sample the secret vector according to the discrete
Gaussian distribution in order to correctly recover the error term. In the next section we present
a new LWE inversion algorithm that e�ciently works for arbitrarily selected moduli.

5.3 LWE Inversion for Arbitrary Modulus

In [41] an e�cient LWE inversion algorithm has been proposed. However, the subroutine recov-
ering the secret vector works very e�cient only for moduli q being a power of two. For other
choices one has to apply generic solutions [7, 32, 24] following [41], which are less e�cient and
hence not suitable for practice. Roughly speaking, the algorithm recovers the components of the
secret s bit-wise starting from the last polynomial. Shifting s, i.e. multiplication by powers of two,
to the left deletes the most signi�cant bits mod q. However, if the modulus is not of this form,
the scaled secret is wrapped around and this approach does not work any more. We propose a
new approach that works di�erently. The main steps are given in the table below. Let A be a
public key instantiated as above and ĉ = [c1, . . . , cm̄+k] = As + [e1, . . . , em̄+k] be an (A-)LWE
instance. The choice of the error size can be derived with the help of the following bound in order
to correctly recover the secret with overwhelming probability.

Lemma 9. Suppose that the secret key is sampled according to the discrete Gaussian distribution
or uniformly at random with parameter rsec. In order to correctly invert the LWE instance ĉ,
parameters for the error term are given by

αq ≤ q

4(1 + rsec
√
m̄n)

1√
n
.

Proof. Since pi = (ei+
m̄∑
j=1

ejrij), we have ‖pi‖ ≤ ‖ei‖+
√
m̄ ‖ej‖ ‖rij‖ ≤ q/4 . For instance, if rij

is chosen from a discrete Gaussian distribution with parameter rsec (or alternatively components
uniformly at random from [−rsec, rsec] ∩ Z). Then, it follows ‖rij‖ ≤ rsec

√
n and subsequently

‖ej‖ ≤ q

4(1+rsec
√
m̄n)

by rearrangement of the terms. This, however, implies that the parameter

αq of the error term is bounded by q

4(1+rsec
√
m̄n)

1√
n
, since ‖ej‖ ≤ αq

√
n. ut

LWE Inversion Algorithm For Arbitrary Modulus

� Step1: Set c̃m̄+i = cm̄+i −
m̄∑
j=1

cjri,j = gis + (ei +
m̄∑
j=1

ejri,j) = gis + pi.

� Step2: Let ‖p̂‖∞ ≤ b with overwhelming probability. When implementing the scheme,
one can decrease the bound b due to direct access to the secret key. The algorithm is
independently applied on each entry of s = (s1, . . . , sn). Therefore, we start by recovering

the bits of s1 =
k−1∑
i=0

ai2
i. One proceeds successively and recovers the most signi�cant

bits at the beginning.
1. For i = 0, i ≤ k: Let t = gis + pi and c = t1 − 2i(ak−12k−1 + . . . + al2

l) mod q,
where ak−1, . . . , al ∈ {0, 1} represent all bits of s1 recovered up to the i-th iteration.

2. Check the �rst bits of c− b and c+ b in terms of equality, since 2is1 ∈ [t1− b, t1 + b].
For instance, if the bit representation of c− b resp. c+ b is 10100 . . . resp. 10110 . . .,
then s1 (for i = 0) must have most signi�cant bits 101 with ak−1ak−2ak−3 = 101.
Case a: If the number of recovered bits in 2. is non-zero, then jump to 1. with

i = i + 1 and proceed with c = t1 − 2i(ak−12k−1 + . . . + al2
l) mod q, where

ak−1, . . . , al ∈ {0, 1} represent all bits recovered up to the i-th iteration.
Case b: If in Step 2 no bits could be recovered due to di�ering bit representations,

then c±b have bit representations 10000 . . . and 01111. Theoretically, both repre-
sentations are possible due to the perturbation vector, which is upper bounded by
b (e.g. log q− log b ≥ 6). Therefore, one creates two instances each for a di�erent
representation and continues the algorithm with al+1al+2al+3al+4al+5 = 10000
and al+1al+2al+3al+4al+5 = 01111, respectively.

If Case b occurs at least once, the correct secret s is attained, if all associated polyno-
mials e′i = ci−gis mod q lie in [−4.7 ·αq, 4.7 ·αq]n for 1 ≤ i ≤ k after normalization
of the entries of e′i to the range [−bq/2c, bq/2c + 1]n. For an incorrect secret there
must exist an integer i such that the normalized error term e′i violates this condition
due to the injectivitiy of gA(·, ·) for the chosen parameters.

In order to estimate the bound b, which a�ects the running time, we compute the exact value of
‖rij‖ due to direct access to the key material. In any case, b is upper bounded by b ≤ ‖pi‖∞ =
4.7 · αq ‖r̂i‖2 ≤ 4.7 · αq · rsec

√
m̄n+ 1. This mainly follows from Lemma [10, Lemma 2.4] where

r̂i = (ri,1, . . . , ri,m̄) is viewed as a vector of Znm̄q .

5.4 New Trapdoor Algorithms for Ideal-Lattices

In the previous sections we gave a generic approach [20] based on [41] of how to instantiate the
trapdoor construction in combination with an improved LWE inversion algorithm that allows to
retrieve the error term and the secret vector from A-LWE instances. However, the number of
public key polynomials in [20] is with m̄+ k polynomials and k = dlog qe rather large and hence
not suitable for practice. In fact, the trapdoor constructions [20, 41] require at least 2 public key
polynomials in order to generate signatures. For encryption, one requires even more as the LWE
inversion algorithm has to recover the correct secret from noisy ones. Thus, a new approach is

needed in order to tackle this issue.

In this section, we give new trapdoor algorithms and show how to reduce the size of the public
key to just 1 polynomial. It can further be extended by an arbitrary number of uniform random
polynomials (via the HDL mode). This is due to the fact that we can select the secret vector in
A-LWE instances to be of the form s = F (r, H1(r)) for a deterministic function F (·), where r is
a random bit string and H1 is a cryptographic hash function modeled as RO. Remarkably, the
secret key consists only of 1 polynomial, which improves upon the construction from Section 5.2.
We start with a description of the new trapdoor algorithms K = (TrapGen, LWEGen, LWEInv).
Lemma 10 shows that TrapGen outputs a public key that is computationally indistinguishable
from uniform random. In order to use tags for CCA-secure constructions, we need to modify the
way how tags are applied, which inherently relies on uniform random secrets.

E�cient Trapdoors for A-LWE

� TrapGen(1n) Sample two polynomials a1,a2 ∈ Rq uniformly at random. Sample 2 ran-
dom polynomials ri according to DZn,αq with parameter αq (e.g., αq ≥ 2

√
n) (via the

coe�cient embedding) for i ∈ {1, 2}. The secret key is given by sk = [r1, r2] with the
corresponding public key pk := A

A = [a1,a2,g − (a1 · r1 + a2 · r2)] .

• For q = 2k, we set g = 2k−1.
• For q = 3k, we set g = 3k−1.
This approach can be generalized to q = pk such that g = pk−1.

• For all other moduli, we set g = 1.

If a tag tu is applied, we obtain Au via tu ·g. Tagging works di�erently for LWE instances
(see below).

� LWEGen(1n) In order to generate an (A-)LWE instance, we let H1 be a cryptographic
hash function modeled as a random oracle. The public key is given by

A = [a1,a2,g − (a1 · r1 + a2 · r3)] .

• For q = pk (p is usually a small integer), each coe�cient is of the form

si = ci,0 + ci,1 · p++ ci,k−1 · pk−1

for ci,j ∈ {0, . . . , p−1} and i ∈ {1, . . . , n}. Sample for each coe�cient si the variable
ci,0 ←R {0, . . . , p − 1} uniformly at random. Then invoke d = H(c1,0, . . . , cn,0) →
Znpk−1 and set si = ci,0 + p · di.

− For the special case q = 2k, the last bit of each coe�cient is sampled uniformly
at random. That is LSB(si) ←R {0, 1}, where LSB denotes the least signi�cant
bit. Then, invoke c = H1(LSB(s1), . . . , LSB(sn)) ∈ Zn2k−1 in order to set the
remaining bits of si. As a result, si = ci||LSB(si) ∈ Zq.

− For the special case q = 3k, we sample ci,0 ←R {0, 1, 2} uniformly at random,
generate d = H(c1,0, . . . , cn,0)→ Zn3k−1 and �nally set si = ci,0 + 3 · di.

• For q 6= pk we sample the most signi�cant bits of the �rst ` coe�cients (e.g. ` = 160
coe�cients) based on the relative occurrence in Zq. This is, for instance, accom-
plished by �rst sampling the resp. coe�cients uniformly at random from Zq and
subsequently taking MSB(si) as input to the random oracle

H : {0, 1}` → ZMSB(s1)q−2k−1 × · · · × ZMSB(s`)q−2k−1 × Zn−`q

such that s = F (MSB(s1), . . . ,MSB(s`)). There are also other choices possible such
as less input bits or 2 bits per coe�cient etc. The output is then used to sample the
remaining coe�cients as well as the remaining bits of the input coe�cients.

The error polynomials ê can now be sampled from the discrete Gaussian distribution
(or in general from the error distribution χe). The (A-)LWE instance is then given by
b̂ = A · s + ê ∈ R3

q .

� LWEInv(b̂, sk) We �rst compute

v = g · s + t = b3 + b1 · r1 + b2 · r2

for some small error t.

• For q = pk, the closest integer c0,i · pk−1 to each coe�cient vi is recovered. This is
possible if |ti| < pk−1/2.
− For q = 2k as a special case, the least signi�cant bit of si is recovered as follows

LSB(si) = 1 for vi closer to q/2 than to 0,

LSB(si) = 0 else .

Once having recovered all LSB(si), the hash function is invoked
c = H1(LSB(s1), . . . , LSB(sn)) ∈ Zn2k−1 such that si = ci||LSB(si).

− For q = 3k as a special case, ci,0 of si is recovered as follows:

di,0 = 0 for vi closer to 0 than to 3k−1 or 2 · 3k−1,

di,0 = 1 for vi closer to 3k−1 than to 0 or 2 · 3k−1

di,0 = 2 else .

The secret is then computed as s = H(d1,0, . . . , dn,0).

• For q 6= pk one obtains v = s+t such that the most signi�cant bit of the coe�cients
can be recovered very easily due to an error of small size and uniform random s.
Let d = ||t||∞ (see Lemma 9), then it is required to check the most signi�cant bit of
vi+d and vi−d in terms of equality, since si ∈ [vi+d, vi−d]. If not equal, the correct
representation is searched using brute force and the fact that the coe�cients of the
error term are always small. If the correct bits have been recovered, one invokes the
random oracle on these bits.

The error vector is subsequently retrieved via ê = b̂−A · s.

Lemma 10. Let a1,a2 ∈ Rq be uniform random polynomials and r1, r2 be sampled according to
DR,αq = DZn,αq (via the coe�cient embedding) for αq > 2

√
n. The public key

A = [a1,a2,a1 · r1 + a2 · r2]

is computationally indistinguishable from uniform.

Proof. For simplicity, we can assume that a1 is a unit in Rq, since the ring of units R×q represents
a non-negligible subset of Rq for the rings in consideration. Then

A = a1 · [1, ā, ā · r2 + r1] ,

where [ā, ā · r2 + r1] is a ring-LWE instance with a uniform random polynomial ā = a−1
1 a2, since

a2 is uniform random. As a result and due to the independence of a1 from a2 the public key is
indistinguishable from uniform. ut

Tagging the public key in this setting works slightly di�erent to the generic approach as
described in Section 5.2. This is due to the random oracle instantiation, which prevents from
recovering the tag tu in a straightforward way, because the inversion algorithm only recovers the
most signi�cant bits (for q 6= pk) or di,0 (for q = pk) of the coe�cients from tu · s. However, via a
trick we can circumvent this obstacle in a computationally indistinguishable way. This is mainly
possible, since tu is a unit and multiplication with a uniform random vector is again uniform.
We consider the case, where q 6= pk, k = dlog qe and s = F (MSB(s1), . . . ,MSB(sn)) is uniform
random for P [MSB(si) = 0] = 2k−1/q and P [MSB(si) = 1] = 1− 2k−1/q following LWEGen as
above. Here we denote Au = [a1,a2, tu · g − (a1r1 + a2r2)] in accordance to Section 5.2.

Theorem 5. Assuming the hardness of (A-)LWE, the distribution of Au · s + ê, where s, u are
chosen uniformly at random and ê is sampled according to the discrete Gaussian distribution,
is computationally indistinguishable from Au · (t−1

u s̄) + ê for s̄ = F (MSB(s̄1), . . . ,MSB(s̄n)) and
function F (·) as described in LWEGen.

Proof. In Figure 5.4 we proceed via a sequence of games, where Game 1 (original scheme) di�ers
from Game 2 only in the way the secret polynomial is generated. In Game 1 we generate s̄ =
tu ·s = F (MSB(s̄1), . . . ,MSB(s̄n)) uniformly at random, since multiplication of a random element
with a unit does not change its distribution. Therefore, we can directly generate tu · s uniformly
at random and subsequently divide tu out of s̄ prior to the generation of an (A-)LWE instance.
More precisely, we select MSB(s̄i) with probability distribution Q de�ned as

P [MSB(s̄i) = 0] = 2k−1/q

P [MSB(s̄i) = 1] = 1− 2k−1/q .

following LWEGen. The coe�cients s̄i are uniform random modulo q, if the remaining bits
are sampled uniformly at random from ZMSB(s̄i)q−2k . This can easily be veri�ed, since 1/q =

P [MSB(s̄i) = x]·|1/(x·q−2k−1)|. In both cases, we obtain samples from Zq with probability 1/q
as required. Therefore, we let c = H(MSB(s̄1), . . . ,MSB(s̄n)) and s̄i = MSB(s̄i)||ci. Therefore, in
Game 2 we replace
F (MSB(s̄1), . . . ,MSB(s̄n)) by a uniform element s̄ = v ←R Znq . All other steps remain exactly
the same. Therefore, Game 1 is computationally indistinguishable from Game 2. An adversary
will notice a di�erence only with negligible probability. Finally, in Game 3 (ideal game) we simply

Game 3 Game 2 Game 1

u←R {0, 1}n u←R {0, 1}n u←R {0, 1}n
Generate tu Generate tu Generate tu
Sample s←R Znq MSB(si)←Q {0, 1} MSB(si)←Q {0, 1}

s̄=v←R Znq s̄= tu · s=F (MSB(s̄1), . . . ,MSB(s̄n))

b̂=Aus+ ê b̂=Au(t−1
u v) + ê b̂=Au · (t−1

u s̄) + ê

Fig. 1. Game hops

make use of the fact that multiplication of a uniform random element with a unit does not change
its distribution such that t−1

u v is replaced by a uniform random vector s resulting in an tagged
(A-)LWE instance. Thus, Game 3 is indistinguishable from Game 2. As a result, an adversary
is not able to distinguish between the original scheme and the ideal game unless he breaks an
(A-)LWE instance. This proves our claim. ut

Remark 1. For q = pk, the proof works similar. For a coe�cient si, the terms ci,0 ←R {0, . . . , p−
1} are picked uniformly at random serving as input to the random oracle outputting uniform
random ci,k−1 ∈ {0, . . . , p− 1} resulting in uniform random coe�cients si = ci,0 + ci,1 · p++
ci,k−1 · pk−1.

5.5 Fast Tag Generation and Inversion

E�cient constructions of CCA and RCCA secure encryption schemes [21, 41] are often realized
based on the so-called tag approach, where a random tag[41, 1, 46] is applied to the public key
prior to encryption. This has been realized in several works such as [41, 21]. To this end, a large
tag space T has to be de�ned, out of which the tag is drawn uniformly at random. An element
is called a tag, if it is a unit and satis�es the unit di�erence property. That is, for two units u,v
the di�erence u − v is again a unit. Beside of these properties, a further objective is to specify
e�cient algorithms that allow to sample elements from T uniformly at random. We describe two
practical ways of doing this.

Tag Generation via NTT. Our �rst approach allows to e�ciently generate tags and the
corresponding inverses by use of the NTT, which is a key determinant for e�ciency in many
works. Furthermore, it o�ers a simple way to e�ciently check, if an element belongs to the ring
of units R×q . Conceptually, it relies on the NTT transform that acts as an isomorphism mapping

polynomials f from Rq to f̃ from Zq[X]/ 〈g1(X)〉 × . . .×Zq[X]/ 〈gn(X)〉 via f̃ = A · T (f) mod q,

i.e. f̃i =
n−1∑
k=0

fkψ
kξik, for A = (ξij)1≤i,j≤n �lled with powers of an element ξ ∈ Zq of order n [54].

Multiplying two polynomials is accomplished componentwise by use of the NTT transform applied
to each polynomial.

Theorem 6 (Fast Inversion of Elements via the NTT). Let q be a prime and n be a power
of two s.t. q ≡ 1 mod 2n. Moreover, let Rq = Zq[X]/ 〈Xn + 1〉 and f̃ = A·T (f) mod q for f ∈ R×q
and T (f) = (f0, ψf1, . . . , ψ

n−1fn−1) with NTT transformation matrix A = (ξij)1≤i,j≤n, where
f0, . . . , fn−1 denote the coe�cients of the polynomial f (coe�cient embedding). The inverse of f
is then given by f−1 = g, where

T (g) = n−1A−1g̃

and g̃i · f̃i = 1 mod q with 1 ≤ i ≤ n. Moreover, an element f possesses an inverse if only if
f̃i 6= 0 mod q ∀i.

Proof. By a simple calculation one veri�es that the polynomial c with constant 1 and zero
coe�cients elsewhere has NTT transform c̃ = (1, . . . , 1). Hence, two elements f and g are inverses
of each other in case g̃i · f̃i = 1 mod q for 1 ≤ i ≤ n due to componentwise multiplication
T (c) = NTT−1

ξ [NTTξ(T (f))◦NTTξ(T (g))] = NTT−1
ξ (c̃). This can be attributed to the fact that

the NTT maps polynomials to the ring Zq[X]/ 〈g1(X)〉 × . . .× Zq[X]/ 〈gn(X)〉, where inversion
is performed componentwise over Zq. As a result, one can e�ciently check that an element is
invertible, if f̃i 6= 0 mod q ∀i is satis�ed.

Lemma 11 (Generators of the Unit Group). Let q be a prime satisfying q ≡ 1 mod 2n and
p a primitive root of unity in Z×q such that pq−1 ≡ 1 mod q. Then, the elements ci = NTT

−1
ξ (c̃i)

for
c̃i = (1, . . . , 1, p, 1, . . . , 1)>

with p at the i-th position are generators of R×q .

Proof. Consider the elements cx1,...,xn = cx1
1 · · · cxnn . Using the NTT transformation and compo-

nentwise multiplication, we obtain

cx1,...,xn = NTT−1
ξ [(px1 , . . . , pxn)],

which is invertible for all xi ∈ N. Since p generates the whole group Z×q , the elements ci generate
R×q = NTT−1

ξ ((Zq\{0})n). ut

From Theorem 6 and Lemma 11 it follows that the unit group
R×q = NTT−1

ξ ((Zq\{0})n) contains (q − 1)n elements such that the di�erence g − f of two
random polynomials g, f ∈ R×q lies again in R×q with probability (1 − 1

q−1)n. More precisely,
the di�erence g− f is invertible, if all components of A · T (f − g) mod q are non-zero. For large
enough q the unit di�erence property, that is only employed in the security proof, holds with
overwhelming probability. For practice, however, other choices for q are also possible. We there-
fore de�ne the tag space T = R×q . Since multiplication always involves the NTT transform and
the tag approach further requires to multiply the tag or its inverse, we generate from a seed the
components of f̃ rather than coe�cients of f . This approach has two major advantages over the
standard approach, since one NTT transformation is saved and it is moreover very e�cient to
generate elements from R×q as it only involves the generation of n random elements from Zq\{0}.
Generating elements directly from Rq and testing them for invertability is apparently not as
practical. Following the proposed approach inverting f̃ is also accomplished in the NTT. That
is, the corresponding g̃ is computed following Theorem 6. Such a strategy reduces the e�orts
from computing inverses in R×q to inversion in Zq, which provides an e�ciency advantage over
standard techniques.

Tag Generation in the Ring Rn
3e . Another appropriate choice of a ring, which allows to

ensure all properties of tags as described above, is Rnq for n = 2l, l ∈ N and q = 3e. However,
the associated algorithms are less e�cient than in the former approach, since the NTT is no
more applicable. On the other hand, in [17] a tag space has been de�ned, that satis�es the unit
di�erence property (not only statistically).

Corollary 2 (Corollary 4, [17]). Let n ≥ 4 be a power of 2, q ≥ 3 a power of 3 and Rq =
Zq[X]/ 〈Xn + 1〉. Then any non-zero polynomial t ∈ Rnq of degree d < n/2 and coe�cients in
{0,±1} is invertible in Rq.

Following Corollary 2 we can set the tag space T to contain all non-zero polynomials t ∈ Rnq of
degree d < n/2 with coe�cients in {0, 1}. Then, the di�erence of two distinct polynomials is also
a non-zero polynomial of degree d < n/2 with coe�cients in {0,±1}, which is due to Corollary 2
invertible. Sampling elements from the tag space T containing 2n/2−1− 1 tags is straightforward
as a uniform random string of size n/2 − 1 bits su�ces to represent a tag. Inversion of a tag is
e�ciently accomplished by use of the FFT similar to Theorem 6. Since T contains units t, where
both elements t, t−1 ∈ Rnq , it is possible to invert t just in the FFT similar to Theorem 6 but
for complex numbers. The FFT backward transformation will output t−1.

In general, Corollary 2 gives rise for other rings with similar features.

5.6 CCA-secure Encryption Scheme from A-LWE

By use of our improved message embedding technique in combination with the new trapdoor
construction from Section 5.2, we provide a description of the modi�ed CCA1 secure encryption
scheme from [21] adapted to the ring setting. Therefore, we call our encryption scheme LARA
(LAttice-based encryption of data embedded in RAndomness), which re�ects the fact that the
data is embedded in the randomness used to ensure the security of the scheme.
We highlight that in case the public key is extended by random polynomials (HDL mode), the
related error term can be sampled with an arbitrary large error size or can even be chosen to be
uniform random. In fact, the trapdoor is only applied to the part of an A-LWE instance, which
is associated to A′.

To this end, the scheme is operated with two di�erent parameters αq and βq (if l > 0) with
an improved message expansion factor. Furthermore, de�ne Rq = Zq[X]/ 〈Xn + 1〉 for n a power
of two

� αq = 2k1 ·
√

ln(2(1 + 1/ε))/π with p1 = 2k1

� βq = 2k2 ·
√

ln(2(1 + 1/ε))/π with k2 = blog(q
2·4.72)c and p2 = 2k2 .

The CCA1-secure encryption scheme allows to encrypt data m of size c = 3n log p1+l ·n log p2

bits in the error term. For a ring Rq not containing an appropriate tag space, the tag is omitted
resulting in a scheme ensuring only CPA-security following [21]. For the generic approach with
the trapdoor construction described in Section 5.2 one proceeds analogously, however by use of
the LWE inversion algorithm from Section 5.3 for decryption.

We note that the unrestricted and �exible error term ê2 can serve to transport lattice-based
signatures due to coinciding distributions [21]. That is, signatures can directly be exploited as
the error term without any initial transformations or encodings. This enhances the security of
the scheme as it additionally provides an authentication mechanism for encrypted messages.

In Theorem 7 we prove CCA2-security of our encryption scheme in the random oracle model.

Theorem 7. In the random oracle model the encryption scheme LARACCA2 from below is CCA2-
secure assuming the hardness of decision ring ALWE.

Proof (sketch). In the description below, we also show how to obtain CCA2-secure constructions
by use of an additional hash function H3, where h = H3(s, ê, u) is appended to the ciphertext.
Since it already guarantees CCA1 security (see [21] for further details), it is only needed to prove
security of the second stage in the CCA2 game similar to [21] as h is uniform random and does not
change the view of the adversary when appended to the ciphertext. A PPT-adversary is no more
able to alter the ciphertext without the knowledge of the correct input (of high min-entropy) to

H3. This can be seen as s, ê, u uniquely determine a ring-(A)LWE instance and modifying the
ciphertext changes any of these elements. But in order to succeed the adversary needs also to
update h, which is only possible with the correct input to H3 (see [21]). ut

LARACCA:CCA-secure Encryption Scheme - Ring Variant

KGen(1n): Generate A = [A′ | A′′] ∈ R3+l
q , where (A′, r̂)← TrapGen(1n) (see Section 5.4)

and A′ = [a1,a2,a3] ∈ R3
q with pk := a3 and sk := r̂ = [r1, r2].

� HDL mode: High data load encryption l > 0 with A′′ ← H1(seed), else l = 0.

Enc(pk,m ∈ {0, 1}c with c = 3n log p1 + l · n log p2): Sample a uniform random tag tu ∈ T
(see Section 6) and generate A′u following Section 5.4. The secret

tu · s = F (s)

is generated according to LWEGen(1n) (see Section 5.4). Compute

v̂ = (v1, . . . ,v3+l) = encode(H2(s)⊕m) ∈ Z3
p1 × Zlp2 ,

where H2 : {0, 1}∗ → {0, 1}c is a cryptographic hash function modeled as random oracle.
Finally, sample
� ei ←R Dp1Zn+vi,αq for 1 ≤ i ≤ 3
� ei ←R Dp2Zn+vi,βq for 4 ≤ i ≤ l + 3

viewing the error polynomials ê = [e1, . . . , el+3] as vectors via the coe�cient embedding.
The ciphertext (tagged A-LWE instance) is then given by

ĉ = (ĉ1, ĉ2) = Au · s + ê, u .

• (CCA2 security) Output ĉ, u, h = H3(s, ê, u) ∈ {0, 1}λ .

Dec(sk, (ĉ, u, h)) : Compute A′u = [a1,a2, tu · g − (a1 · r1 + a2 · r2)], then
1. If parsing ĉ causes an error or u = 0 output ⊥, otherwise invoke

tu · s← LWEInv(ĉ1, sk),

where ĉ1 = (c1, c2, c3) and compute

ê = ĉ− [A′u |A′′] · s.

2. If ‖ ê1 ‖> αq
√

3n or ‖ ê2 ‖> βq
√
ln, output ⊥.

3. (CCA2 security) Check that h = H3(s, ê, u), else output ⊥ .
4. The message is retrieved via

m = decode(ê1 mod p1, ê2 mod p2)⊕H(s).

5.7 Remark: Lindner-Peikerts Encryption Scheme is not CCA-secure

In the following section, we brie�y discuss why the encryption scheme due to Lindner and Peikert
does only provide CPA security and not CCA. By allowing the adversary oracle access to the
decryption algorithm in the �rst phase of the CCA game, he can prepare ciphertexts in such a
way that the oracle will send the secret key as its decryption to the adversary. Therefore, suppose
�rst the secret polynomial r1 is binary. Then, the adversary proceeds as follows. Here, the public
key is given by p = r2 − ar1, where r1 ∈ R2.

� (c1, c2) will be sent to the decryption oracle, where c1 = a + q/2 and c2 = p
� The decryption oracle will respond by computing d(c1r1 +c2)/ q2c = d(q2r1 + r2)/ q2c = r1 and
sending the message r1 to the adversary.

If the error and the secrets are coming from a wider distribution such that ‖ri‖∞ ≤ b the
adversary can obtain the secret key by at most k = log q queries to the decryption oracle. For
simplicity, let q = 2k. Then, the adversary proceeds as follows.

For i = 1 to k − 1 :

� (c
(i)
1 , c

(i)
2) will be sent to the decryption oracle, where c

(i)
1 = a + q

2i and c
(i)
2 = p − q

2i · r̄
(i)
1 ,

and r∗1 accumulates all recovered bits of r1 up to the i-th iteration (r̄(1)
1 = 0).

� The oracle will decrypt to t(i) = d(c(i)
1 ·r1+c

(i)
2)/ q2c = d(q2i ·(r1− r̄

(i)
1)+r2)/ q2c. The adversary

will then compute r̄
(i+1)
1 = r̄

(i)
1 + 2i−1 · t(i) mod q

After the (k − 1)-th iteration the advesary obtains r̄
(k−1)
1 = r1.

6 Security Analysis

In order to estimate the security of the scheme, we mainly adopt the embedding approach, which
is more appropriate for a bounded number of samples as observed in [8]. The distinguishing
attack, however, provides better results if the number of available LWE samples is large. In
principal, the embedding approach proceeds by reducing the LWE problem to the unique shortest
vector problem (u-SVP). One mainly di�erentiates the standard embedding approach [4] with
the variant that has recently been shown to be more e�cient especially for a small number of
samples [8]. In the following, we give a description of the main ingredients of the embedding
approach for the matrix variant. Our analysis is based on the fact that (A-)LWE instances with
a uniform random secret are not harder than with secrets sampled from the error distribution.

6.1 Embedding Approach

Let (A>,b) be an LWE sample with b = A>s + e mod q, where e← DZm,s follows the discrete
Gaussian distribution. The idea of this attack is to turn the problem of �nding a closest lattice
point (CVP) to the target vector b into a unique-SVP problem. Therefore, the authors start with

a carefully crafted matrix Ae =

[
A> b
0 1

]
and the corresponding q-ary embedding lattice

Λq(Ae) = {u ∈ Zm+1 | ∃x ∈ Zn+1 s.th. Aex ≡ u mod q} .

A short lattice point is given by u =

(
e
1

)
= Ae

(
−s
1

)
. Its length is upper bounded by s

√
m. In

[22] it was conjectured that a lattice basis reduction algorithm will �nd a shortest vector with
high probability if

λ2(Λ)/λ1(Λ) ≥ δn(Λ) · τ (1)

is satis�ed for an algorithm characteristical Hermite-factor δ and a lattice or algorithm speci�c
constant τ ≈ 0.4. One observes by this relationship that the gap between the �rst and second
successive minimum of the lattice Λ plays an important role for the success probability of the
underlying algorithm. In order to estimate the successive minima we need the determinant of
the lattice, which is given by det(Λq(Ae)) = qm−n with overwhelming probability for a random
lattice. Subsequently, by use of the Gaussian heuristic one can deduce estimations for the lengths
of the successive minima

λi(Λ) ≈ Γ (1 + n(Λ)/2)1/n(Λ)

√
π

det(Λ)1/n(Λ). (2)

Substitution of λ1 and λ2 in equation (1) by equation (2) and rearrangement of the terms provides

δ ≈

(
Γ (1 + m+1

2)1/(m+1)

√
π ·m · τ · s

q
m+1−n
m+1

)1/(m+1)

for the required Hermite factor in order to break LWE samples via the embedding attack, where
dim(Λq(Ae)) = m + 1. Now, it is possible to estimate the time required to successfully mount
an attack on LWE and subsequently derive the bit security of the underlying LWE instances.
In particular, it is needed to preprocess the lattice basis by a strong basis reduction algorithm
such as BKZ or the more advanced BKZ 2.0 in order to achieve the required Hermite factor. In
[34] a model has been proposed that is deduced by a limited set of experiments and subsequent
extrapolations

log2(T (δ)) = 1.8/ log2(δ)− 110 . (3)

These experiments were performed on a computer allowing for 2.3 · 109 operations per second.
The standard embedding approach from above is not so e�cient in case one is given only a

few LWE samples. As a result, the optimal attack dimension is never reached. To circumvent this
situation, one changes the embedding lattice as follows

Λ⊥q (Ao) = {v ∈ Zm+n+1 | Ao · v = 0 mod q}

and hence allows for a �ner analysis, where Ao =
[
A> | I | b

]
. Following this approach, one

increases the dimension from m + 1 to m + n + 1. By a trivial computation one veri�es that
u =

(
s, e,−1

)T ∈ Λ⊥q (Ao). The length of this vector is bounded by s
√
m+ n+ 1. Using the

framework from above with det(Λ⊥q (Ao)) = qm one obtains the estimated security level. The
ring variant requires to multiply the number of polynomials by n, i.e. m = t · n for A ∈ Rtq.

6.2 Analysis of Key Recovery Attacks

The encryption schemes presented in the previous sections give rise to a new discrete Gaussian
sampler that Instead of breaking the encryption scheme by attacking the ciphertext, it is possible
to recover the key. Therefore, we have to di�erentiate between the statistical and computational
instantiation of the public key. We, therefore, restrict to the ring variant.

• Statistical Instantiation: In order to recover the key, we have to solve the ring-ISIS
problem for k instances am̄+i = hâ(r̂i) with 1 ≤ i ≤ k and uniform random vector of
polynomials â = [a1, . . . ,am̄] ∈ Rm̄q . In this case, we have to �nd preimages x̂i such that

am̄+i = hâ(x̂i) and the inequality ‖pi‖ =‖ ei +
m̄∑
j=1

ejxij ‖≤ ‖ei‖ + ‖ej‖ ‖xij‖
√
m̄ ≤ q/4

is satis�ed for 1 ≤ i ≤ k (see Section 5.3). Lemma 9 gives a reasonable upper bound
on the length ‖x̂i‖2 for 1 ≤ i ≤ k. Then, we have to �nd a short vector in the lattice

Λ⊥(ĉi) = {x̂ ∈ Rm̄+1 |
m̄+1∑
i=1

cixi ≡ 0 mod q}, where ĉi = [â,−hâ(x̂i)]. In fact, the vector

[r̂i, 1] is contained in the lattice, which is by construction a solution to the ring-SIS problem.
By means of of the embedding approach explained in the previous section one derives the bit
security.

• Computational Instantiation: Here, the public key is composed by a uniform random
polynomial a1 and k ring-LWE instances (Section 5.4) or one ring-LWE instance (Section 5.2)
following the improved construction. For each sample in the public key a new secret and
error has been generated. Therefore, we are required to consider each sample independently
within the security analysis. To this end, we can use the embedding approach from above or
alternatively the approach from [43] in order to estimate its security.

7 A Fast Discrete Gaussian Sampler - FastCDT

In this section we introduce a novel discrete Gaussian sampler that we call FastCDT that is
tailored to respect the way of embedding data into the error term during encryption. It is highly
e�cient and outperforms even the currently most e�cient CDT based Gaussian samplers in
terms of running time and working memory. The respective tables of our new sampler can also be
generated on the �y at the cost of a slight increase of running time due to the generation of at most
44 elements (statistical distance ε ≤ 2−100), almost the whole probability mass is concentrated
on the 11 mid elements in most cases. It is therefore e�ciently applicable in constrained devices
characterized by low resources. This sampler may be combined with other techniques such as
guided tables or the convolution method described in [50].

In fact, the basic tool required to realize such a sampler is given by Lemma 3 instantiated
with a lattice of the form Λ = p · Zm, for an integer p > 0. In order to sample a vector e ∈ Zm
statistically close to DZm,αq with ηε(Λ) ≤ p ·

√
ln(2(1 + 1/ε))/π ≈ 4.7 · p = αq, one samples a

vector b ←R Zmp uniformly at random and subsequently a discrete Gaussian from Db+pZm,αq
following Lemma 3. This seems to be more expensive due to two sampling steps, but a closer look
reveals that almost the whole entropy of e is coming from a uniform random source, which is far
more e�cient than sampling discrete Gaussians. This is particularly interesting for constrained
devices preferring uniformly sampled vectors over other distributions. The remaining entropy is
obtained via the sampling step Db+pZm,αq. The support supp = {b + pZm} of this distribution
consists of at most 44 elements supp∩ [−4.72p, 4.72p] with overwhelming probability, which allows
to be generated dynamically rather than in the key generation step since the number of required
CDT table entries amounts to 44 elements at most. But almost the whole probability mass is
concentrated on the 10 mid elements (one case with 11 elements) following Lemma 12, since two
neighboring elements of b + pZm have a large relative distance of p decreasing the corresponding
probabilities rapidly. This makes the sampler very �exible allowing to be instantiated following
one of the 3 approaches presented below, which provide di�erent trade-o�s between �exibility,
storage requirements and running time. This is not possible when using Knuth-Yao or the stan-
dard CDT technique, which depends on p with a table containing 4.7 ·αq ≈ d4.72 ·pe entries. Our
algorithm requires a constant table size of 44 elements for arbitrary p. As another performance
advantage, one observes based on the shape of the support that almost the whole probability
mass lies on the set Si = [−5p, 5p]∩{bi+pZ} (see Lemma 12), making binary search less e�cient
than testing the CDT table entries of Si via linear search starting with bi or p − bi. Only with
small probability, one looks into the remaining table entries. In the following, we highlight the
various trade-o�s between �exibility, storage requirements and running time.

6p 5p 4p 3p 2p p 0 p 2p 3p 4p 5p 6p

≈ 0.99

Fig. 2. FastCDT: Probability Distribution Db+pZ,αq for all p > 0, b = 0 and αq = p · 4.7.

1. Generate the whole table at the beginning. This will occupy as much memory as the standard
CDT approach. The algorithm will start to operate on the dedicated 10 − 11 elements, out
of which only 5 (either left or right) are considered via linear search once having sampled
the partition b ∈ Zmp . This set of elements encompasses almost the whole probability mass.
In case CDT does not �nd the correct value within this range, the standard binary search
algorithm or linear search is invoked on the remaining elements out of 22. The expected value
for the number of table look ups is approximately 2.

2. Generate everything on the �y. Whenever a partition has been sampled, the algorithm starts
generating the associated 44 elements, out of which an element is sampled by �rst considering
the 10− 11 mid elements via linear search. This approach is interesting for high performance
processors maintaining a low working memory. But also for constrained devices with low
memory capacities it can be useful if the parameter is huge.

3. Generate only the 10 − 11 elements per partition b ∈ Zmp . This is done at the start of the
algorithm (or on the �y). The remaining ones out of 22 (only half of the elements are needed)
are generated in case the algorithm gets out of the range (see Lemma 12).

In summary, our approach is identical to the standard CDT approach for p = 1 or equivalently
αq = ω(

√
log n) ≈ 4.7. However, if p > 0 our approach requires only to sample an additional

uniform vector b ∈ Zmp , whereas the other steps remain exactly as e�cient as for p = 1. In the
case of the standard CDT sampler the table size increases and hence the number of table lookups.
For instance, FastCDT requires to sample 2 uniform random elements and about 2 table lookup (5
look-ups in the worst-case) as compared to the standard CDT sampler with one uniform random
element and about log(4.7p) ≈ 2 + log(p) table look ups in the worst-case. Furthermore, our
approach can generate the table elements (only 44 elements) dynamically, if required, as opposed
to �ll the complete table with 4.7 · αq elements in the key generation phase. The most �exible
approach can be advantageous, if αq is large. It is also noteworthy to mention, that FastCDT
combines many sub-samplers, because it can also be utilized to sample a discrete Gaussian vector
from any given partition modulo p. Remarkably, both the standard CDT and FastCDT samplers
claim the same total storage size for the respective tables. In the �gures above, we illustrate the
algorithms of FastCDT, where Algorithm 1 initializes the respective tables, Algorithm 2 samples
a coset b ∈ Zmp uniformly at random and Algorithm 3 selects an element from the induced table
via linear search starting with the mid element.

Lemma 12. Let p ∈ Z and s = p·
√

ln(2(1+1/ε))
π ≈ p·4.7. Then, |Si| ≤ 11 and ρ(Si)/ρ(Λ⊥p) ≈ 0.99

for Λ⊥i = i+ pZ and Si = {i+ pZ} ∩ [−5p, 5p] .

Proof. First, we obtain ρ(Λ⊥i) = ρ(Λ⊥p) ± negl(n) as per Lemma 4, since ρs,−i(Λ
⊥
p) =

ρs(Λ
⊥
p + i) = ρs(Λ

⊥
i) and ηε(Λ⊥p) ≤ p ·

√
ln(2(1 + 1/ε))/π for a negligible parameter ε ≤ 2−100

according to Lemma 6. Furthermore, it su�ces to consider the restricted set Λ⊥p ∩ [−4.7s, 4.7s]
with at most 45 elements, which are assigned the overwhelming portion of the probability mass.
One easily obtains the following interesting identity

ρ(Λ⊥p) =

∞∑
j=−∞

e
−π· (j·p)2

(4.7·p)2 = −1 + 2

∞∑
j=0

e
−π· (j·p)2

(4.7·p)2

= −1 + 2

∞∑
i=0

(e−π/4.7
2

)j
2

= 4.7

with high probability for all p. This series represents a theta function independent from p and
can hence be computed using only a small number of representatives. Furthermore, one easily
veri�es the inequality |Si| ≤ 11 such that we have only to show that ρ(Si)/ρ(Λ⊥p) ≈ 0.99. There
are only two cases to be considered, i = 0 and i > 0. As for i = 0, we obtain a �nite series
independent from p:

ρ(Si)/ρ(Λ⊥p) =
1

ρ(Λ⊥p)

5∑
j=−5

e
−π· (j·p)2

(4.7·p)2 =
1

ρ(Λ⊥p)

5∑
j=−5

e−π·
j2

4.72 ≈ 0.997 .

For i > 0, we have |Si| = 10 and

ρ(Si)/ρ(Λ⊥p) =
1

ρ(Λ⊥p)

4∑
j=−5

e
−π· (j·p+i)

2

(4.7·p)2 =
1

ρ(Λ⊥p)

4∑
j=−5

e−π·(
j+i/p
4.7)2

≥ 1− 2 · 1

ρ(Λ⊥p)

22∑
j=5

e−π·
j2

4.72 ≈ 0.985

ut

Algorithm 1: Building CDT Arrays

Data: Integer p, αq = p · ω(
√

logn) ≈ p · 4.7

suppi = {i+ pZ} ∩ (−4.7αq, 4.7αq)
c = max

0≤i≤p−1
|suppi| ≤ 45

for i = 0→ p− 1 do
for j = −22→ 22 do

CDTbi(j) =
j∑

l=−22

ρ(i+ l · p)/ρ(suppi)

end

end

Algorithm 2: FastCDT

Data: Integer p, αq = p · ω(
√

logn) ≈ p · 4.7
Sampling from DZn,αq :

b←R Znp
z←R Db+pZn,αq via Algorithm 3 for b, p, n

Output z

Algorithm 3: CDT Sampling
Data: p ∈ Z, n ∈ N,b ∈ Znp

Given CDTbi : [−22, 22] ∩ Z→ [0, 1] for 1 ≤ i ≤ n
for i = 1→ n do

r ←R [0, 1]

linear search

for j = 0→ ±5

zi ← linSearch(r,CDTbi(j))

if zi =⊥

binary search

for j = ±6→ ±22

zi ← binSearch(r,CDTbi(j))
end

Previous works relied on the entropy of normally distributed variables and argued based on
experiments that the equation also holds for discrete Gaussians. In Lemma 13 we deduce a closed
expression for the entropy of discrete Gaussian distributed vectors.

Lemma 13. Let p ∈ Z and s = p ·
√

ln(2(1+1/ε))
π ≈ p · 4.7. Then, the entropy of a discrete

Gaussian r ←R DZ,s is given by H∞(r) = log(e1/2s) (with overwhelming probability).

Proof. We can restrict the support of the sampler to Z ∩ [−4.7s, 4.7s] which is assigned the
overwhelming portion of the probability mass following Lemma [10, Lemma 2.4]. From Lemma 2
and the algorithms for FastCDT, we have to sample an integer b uniformly at random from
Zp. Subsequently, we sample a discrete Gaussian via the distribution Db+pZ,s. We note that
ρ(Λ⊥i) = ρ(Λ⊥p)± negl(n) as per Lemma 4 and Lemma 12. The entropy is then given by

H∞(r) = −
∞∑

i=−∞
P (i) · logP (i) = −

p−1∑
i=0

∞∑
j=−∞

ρ(i+ j · p)
p · ρ(Λ⊥i)

· log

(
ρ(i+ j · p)
p · ρ(Λ⊥i)

)

= − 1

p · ρ(Λ⊥p)

p−1∑
i=0

∞∑
j=−∞

ρ(i+ j · p) · log(ρ(i+ j · p)) + log(p · ρ(Λ⊥p))

For the left term of the last equation, we can deduce a simple series with parameter 4.7 for
all p. In fact, we have

−
∞∑

j=−∞
ρ(x+ j · p) · log(ρ(x+ j · p)) =

∞∑
j=−∞

e−π
(x+j·p)2

s2 · π (x+ j · p)2

s2
log e

=

∞∑
j=−∞

e−π
(x/p+j)2

4.72 · π (x/p+ j)2

4.72
log e

A trivial computation shows that the maximum of ρ(x) · log(ρ(x)) is at x = s√
π
with ρ(x) ·

log(ρ(x)) = 1/e. Furthermore, we see from the last equation that we need only to consider

x ∈ [0, p] ∩ Z or equivalently y = x/p ∈ [0, 1] ∩Q for arbitrary p. Thus, we have

∞∑
j=−∞

e−π
(y+j)2

4.72 · π (y + j)2

4.72
log e = 2.35 · log e,

which is deduced from the expectation value via
π·ρ(Λ⊥p)·log e

4.72 E[x2], since

E[(x+ c)2] = E[x2] =

∞∑
j=−∞

e−π
x2

4.72

ρ(Λ⊥p)
· x2 =

4.72

2 · π
,

where the �rst equation follows from [42] for c ∈ R. In fact, it has been shown that E[x2] = 4.72

2π

and E[(x−c)2] ≤ 4.72·
(

1
2π + ε′

1−ε′

)
for 4.7 ≥ 2ηε′(Z). Following this, we need to solve the equation

4.7 = 2 ·
√

ln(2(1+1/ε′))
π with respect to ε′. Since ε′ is negligible, we still obtain an expression very

close to E[x2].
Using this, we deduce the following expression for the term of equation (3)

1

p · ρ(Λ⊥p)

p−1∑
i=0

∞∑
j=−∞

ρ(i+ j · p) · log(ρ(i+ j · p)) =
p · 2.35 · log e

p · ρ(Λ⊥p)
= 0.5 log e

Hence, we have H∞(r) = log(p · ρ(Λ⊥p)) + 0.5 log e = log(e1/2s), where ρ(Λ⊥p) = 4.7 with high
probability following Lemma 12. ut

Table 2 compares di�erent state-of-the-art discrete Gaussian samplers such as the standard CDT
sampler and Knuth-Yao versus FastCDT. In fact, by use of FastCDT we realize improvement
factors of about 1.7 − 2.0 as compared to Knuth-Yao and even 1.5 − 2.6 in comparison to the
standard CDT sampler. Theoretically, one would expect the FastCDT sampler to be for a large
p essentially as fast as with small parameters for a given e�cient uniform random source. This
observation is due to the constant table size at runtime. However, the small cache memory of
today's architectures causes delays in case a requested table is moved into the cache. This occurs
when p becomes large and hence the number of tables increases.

Parameter Knuth-Yao CDT FastCDT
p Timings in sec. Timings in sec. Timings in sec.

16 5.6 5.1 3.3
128 6.6 7.3 3.4
1024 7.7 9.6 3.7
4096 8.4 11.3 4.3

Improvement Factor ×1.7− ×2.0 ×1.5− ×2.6 -

Table 2. Comparison of di�erent samplers for 108 samples

We note that using the Rény divergence [9] in place of the statistical distance one might
further decrease the table size and thus improve the sampler. We also observe that our sampler
might be resistant against side channel attacks due to the uniform random vector of high entropy,
that is drawn during the sampling procedure. Moreover, the discrete Gaussian sampler can also
be applied for any real parameter αq ≥ 4.7 at a slight increase of the table size. In this case, we
set p = bαq/4.7c with const = αq/p. Now, for each coset b + pZ the table is �lled with a few
additional entries.

8 Software Implementation and Performance Analysis

At the implementation front we consider several optimizations and present a description of the
main ingredients in Section 8.1. As for the polynomial representation and optimizations with
respect to the NTT we also refer to the work [26], which provides a description of an optimized
implementation exploiting the single-instruction multiple-data (SIMD) instructions of the AVX
instruction set extension in modern chipsets. Accordingly, we give an optimized FFT implemen-
tation for q = pk. Furthermore, we applied our FastCDT sampler from Section 7 whenever a
discrete Gaussian is consumed.

Lemma 14 (Lemma 2, [20]). Let v ∈ Zn be a vector with ‖ v ‖2< b ·
√
n. Then the maximal

bit size needed to store this vector is bounded by n · (1 + dlog2(b)e) bits.

Parameter Description Used for

n Dimension n = 512

q Modulus q ≡ 1 mod 2n or q = 2k

Rq Cyclotomic ring Rq = Zq[X]/ 〈Xn + 1〉
p1, p2 Message range pi = 2xi , xi bits/coe�.
αq Error distribution DZn,αq associated to A′ αq = 4.7 · p1
βq Error distribution DZn,βq associated to A′′ βq = 4.7 · p2
m Number of polynomials in A′ A′ ∈ Rmq , e.g. m = 3

l High data load encryption mode: l > 0 A′′ ∈ Rlq
µ Seed to generate A′′ ∈ Rlq
rsec Parameter of the secret key distribution DZn,rsec or U([−rsec, rsec]n)
m̄ Number of random polynomials generating A′ ∈ Rmq e.g. m̄ = 2

For m = 3 (Section 5.4)
Message size 3 · n log2 p1 + l · n log2 p2
Ciphertext size (3 + l)n log2(q)
Public key size µ+ n log2(q)
Secret key size 2n(1 + dlog2(rsec)e)

Table 3. Parameters

8.1 Optimizations

Polynomial Representation The polynomial representation mainly follows the work [26], which is
optimized for n = 512. In particular, polynomials are stored in an array of 512 double-precision
�oating point values. Using the single instruction multiple-data (SIMD) instructions of AVX
allows to operate on vectors of 4 double precision �oating points in the 256-bit ymm registers such
that 4 double-precision multiplications and 4 additions of polynomial coe�cients are performed
within each cycle via the instructions vmultpd resp. vaddpd. In fact, only 64 polynomial coe�cients
�t into the available 16 ymm registers.

Polynomial Multiplication and NTT/FFT For polynomial multiplication we use the NTT trans-
formation, which exists due to the choice of primes satisfying q ≡ 1 mod 2n for n = 512 as already
discussed in Section 5.1. The NTT bene�ts from the fact, that the root of unity is an element of
Zq, thereby avoiding to operate with complex numbers required for the standard FFT. We also
provide an e�cient self-made implementation of the FFT by use of AVX/AVX2, which is almost
as e�cient as the NTT. In fact, the NTT performance factor is as low as 1.7 in comparison to
the FFT. The FFT transform is used for instantiations with non-prime moduli such as q = pk,
where the NTT is not applicable. Similar to [26], we precompute tables of the relevant constants
prior to protocol execution.

Tag Generation As for generating the tag in the setting q = 1 mod 2n, we sample a uniform seed
and expand it to the desired length by use of a PRNG in order to generate the coe�cients of
its NTT representation NTTξ(T (u)) as described in Section 5.5. We note that it will never be
transformed back to the polynomial representation u, hence saving one transformation. Inverting
NTTξ(T (u)) in the decryption step is performed componentwise over Zq rather than over Rq.
This leads to a remarkable speed up.

Storing in the NTT representation Due to the existence of the NTT with ξ ∈ Zq, we can store the
whole public key A in its NTT representation without increasing the storage requirements. This
even leads to a faster encryption and decryption engine, since one NTT forward transformation
is saved regarding multiplications with the public key. The way tags are generated as indicated
in Section 5.5 is perfectly tailored to this setting.

Sampling Discrete Gaussians The error term and potentially also the secret of A-LWE and LWE
instances are sampled according to the discrete Gaussian distribution. In our implementation we
use the FastCDT sampler, which outperforms current state-of-the-art samplers. This is discussed
in Section 7.

High Data Load Encryption In order to allow for high data load encryption, the number of
polynomials l > 0 in A′′ ∈ Rlq have to be non-zero. These polynomials (and 2 polynomials in A′)
are completely uniform and can hence be generated from a random seed (or just the respective
NTT representations). Therefore, it su�ces to store only A′ ∈ R3

q and a seed for A′′. But it is
also possible to store A′′ in its NTT representation allowing for fast operations. One observes
that increasing l does not decrease the bit security, since the optimal dimension has already been
exceeded by A′. Furthermore, the error size associated to A′′ is larger than the error size related
to A′.

Generation of Random Polynomials Seeds are produced by means of the Linux kernel random-
generator /dev/urandom. We instantiate the random oracle H(·), when encrypting messages, by
an e�cient pseudo-random generator such as Salsa20 or ChaCha20. This allows to produce as
many random bits as required.

8.2 Performance Analysis and Implementation Results

We implemented both our CPA/CCA secure schemes and the CPA-secure construction LP11 on
a machine that is speci�ed by an

� Intel Core i5-6200U processor operating at 2.3GHz and 8GB of RAM. We used a gcc-5.4
compiler with compilation �ags Ofast, msse2avx and march=core-avx-2.

Scheme PK Size Random Poly SK Size
m = 3 (# polynomials) (# polynomials from one seed) (# polynomials)

LARA
l = 0 1 2 1
l = 2 ·m 1 8 1
l = 5 ·m 1 17 1
l = 10 ·m 1 29 1

LP11 [33] 1 1 1

Table 4. Comparison of key sizes in terms of number of polynomials

In Table 4 we provide an overview of the key sizes. We compare the CPA secure construc-
tion LP11 with our CPA/CCA secure construction from Section 5.6 using the e�cient trapdoor
candidate from Section 5.4. We observe that the key sizes are identical in terms of number of
polynomials. We need only to store one secret key and retrieve the other one from the public
key. In our setting we require only one additional uniform random polynomial for the standard
instantiation l = 0. In practice, however, all uniform random polynomials can be generated just
from a seed such that the e�ective sizes are equal. We note that other CCA-secure constructions
are less e�cient and thus not included in the tables below.

In terms of performance, the most time critical operations are polynomial multiplications,
which take about 14922 cycles including three NTT transformations consuming the major block
of the running time. Our performance results are given in Table 5, Table 6 and Table 7. In
particular, Table 5 contains the implementation results for our CPA-, CCA1- and CCA2-secure
schemes presented in Section 5.6 at a security level of 128 bits. Table 7 and Table 6 depict the
results of the NTT and FFT implementations at a security level of approximately 90− 100 bits
by use of the LWE estimator1. We provide timings, bit security, message sizes and message ex-
pansion factors (ciphertext size/message size ratio) depending on di�erent parameters de�ned in
Table 3.

(FFT)
Parameters Sizes (bits) Timings (cycles/bit) Security (bits)

rsec p1 p2 Message Message Exp. Encrypt Decrypt [4]

LARACPA (q = 220)

l = 0 23 27 - 10752 2.8 21.7 14.8 128
[0.09 ms] [0.06 ms]

l = 2 ·m 23 27 211 44544 2.0 16.0 7.2 128
[0.29 ms] [0.13 ms]

l = 10 ·m 23 27 211 179712 1.8 14.0 5.3 128
[1.05 ms] [0.40 ms]

LARACCA1 (q = 312)

l = 0 23 26 - 9216 3.1 29.1 22.2 128
[0.11 ms] [0.08 ms]

l = 2 ·m 23 26 211 43008 2.0 17.0 8.8 128
[0.30 ms] [0.15 ms]

l = 10 ·m 23 26 211 178176 1.8 14.7 6.1 128
[1.09 ms] [0.45 ms]

LARACCA2 (q = 312)

l = 0 23 26 - 9216 3.1 50.1 42.0 128
[0.19 ms] [0.16 ms]

l = 2 ·m 23 26 211 43008 2.0 22.0 13.0 128
[0.39 ms] [0.23 ms]

l = 10 ·m 23 26 211 178176 1.8 16.8 7.4 128
[1.23 ms] [0.54 ms]

LP11 [33] (q = 220) 23 - - 512 46 444 65 128
[0.09 ms] [0.01 ms]

Table 5. Comparison of our CPA-, CCA1-, and CCA2-secure scheme with LP [33] using FFT

At the �rst glance, one observes for l = 0 that the message expansion factor of LP11 is
larger than in our setting by a factor of 2 · log p1. More speci�cally, LP11 generates ciphertexts
of size 2n log q bits for n message bits, meaning that in average a half bit is encrypted per entry,
whereas in our scheme we encrypt data of log p1 = log(αq/4.7) bits per entry at a ciphertext size

1 https://bitbucket.org/malb/lwe-estimator

of 3n log q bits. This results in message expansion factors of approximately 2 in case we encrypt
11 bits per entry (of size 23 bits) as compared to a factor of 46 for LP11. Our CPA-secure scheme
(see Table 6) consisting of 3 ciphertext polynomials (l = 0) requires 255272 and 155328 cycles to
encrypt and decrypt 16896 bits of data or equivalently 11 bits per entry (i.e. 15.1 resp. 9.1 cycles
per bit), whereas LP11 consisting of 2 polynomials encrypts only 512 bits of data within 204093
cycles, i.e. 398.6 cycles per message bit. However, the fast decryption procedure of LP11 requires
only 36383 cycles. By use of the NTT approximately 151771 and 149735 cycles are required in
order to encrypt and decrypt 7680 bits of data, whereas LP11 accomplishes the same operations
for 512 data bits within 150269 and 11217 cycles (see Table 7). This corresponds to 19.5 and
19.4 cycles per bit for encryption and decryption as opposed to 293.1 and 21.9 cycles per bit in
case of LP11. Increasing the parameter l strongly reduces the number of cycles per bit due to
two reasons. First, similar to standard LWE the same secret vector can be used to generate a
large number of A-LWE instances, thus increasing the number of error polynomials containing
data. Second, since the error size associated to ê2 is not crucial for decryption, we can make it
arbitrary large and pack a large portion of the data into this part. This approach improves the
e�ciency and �exibility of the scheme as it is not needed to invoke the encryption engine several
times. For instance, ê2 can play the role of a signature on the data embedded into ê1. We note
that it is also possible to use a uniform random error term, which would allow us to use the full
bandwidth.

q = 223 Parameters Sizes (bits) Timings (cycles/bit) Security (bits)

(FFT) rsec p1 p2 Message Message Exp. Encrypt Decrypt [4]

LARACPA

l = 0 10 211 - 16896 2.1 15.1 9.1 ≈ 90
[0.10 ms] [0.06 ms]

l = 2 ·m 10 211 212 53760 2.0 13.5 5.7 ≈ 90
[0.30 ms] [0.12 ms]

l = 10 ·m 10 211 212 201216 1.9 13.1 4.7 ≈ 90
[1.10 ms] [0.39 ms]

LP11 [33] 10 − − 512 46 398.6 71.0 ≈ 95
[0.08 ms] [0.01 ms]

Table 6. Comparison of our CPA-secure scheme with LP [33] using q = 2k (FFT)

q = 8383489 Parameters Sizes (bits) Timings (cycles/bit) Security (bits)

(NTT) rsec p1 p2 Message Message Exp. Encrypt Decrypt [4]

LARACPA

l = 0 20 25 - 7680 4.6 19.5 19.4 ≈ 100
[0.06 ms] [0.06 ms]

l = 2 ·m 20 25 212 44544 2.3 10.7 4.3 ≈ 100
[0.20 ms] [0.08 ms]

l = 10 ·m 20 25 212 192000 2.0 9.5 2.1 ≈ 100
[0.76 ms] [0.17 ms]

LP11 [33] 20 − 512 46 293.4 21.9 ≈ 100
[0.06 ms] [0.004 ms]

Table 7. Comparison of our CPA-secure scheme with LP [33] for q prime (NTT)

In fact, when comparing the absolute timings of both schemes, we observe that the running
time of LARACPA, LARACCA and LP11 are in the same order or even equal. However, the decryption

routine of LP11 is faster than in our setting. In terms of cycles per message bits, LARA realizes
improvement factors up to 26.3 and 7.8 for encryption and decryption. Even larger factors are
achieved in the high data load encryption mode for l > 0, because we can extend the public key
by random polynomials and encrypt messages using the same secret in its NTT/FFT transfor-
mation. The overhead is solely restricted to generating new error polynomials and multiplying
the secret with the random polynomials from A′′. Indeed, beside of the theoretical evidence
our implementation also con�rms that the discrete Gaussian sampler FastCDT allows to sample
discrete Gaussians with a large error size almost as e�cient as with a small one. Much better
improvement factors are obtained, if l is increased and the error polynomials associated to A′′

are sampled from a wider discrete Gaussian distribution βq = p2 · 4.7 and hence encrypt more
bits per entry. For decryption no length conditions are imposed on the error polynomials related
to A′′.

Bibliography

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. E�cient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, Advances in Cryptology � EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 553�572. Springer, May 2010.

[2] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th
Annual ACM Symposium on Theory of Computing, pages 99�108. ACM Press, May 1996.

[3] Adi Akavia, Sha� Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, TCC 2009: 6th Theory of
Cryptography Conference, volume 5444 of Lecture Notes in Computer Science, pages 474�
495. Springer, March 2009.

[4] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the e�cacy of solving lwe
by reduction to unique-svp. In ICISC 2013, 2013.

[5] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In STACS,
volume 3 of LIPIcs, pages 75�86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many, 2009.

[6] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and
Alon Rosen. SWIFFTX: A proposal for the SHA-3 standard, 2008. In The First SHA-3
Candidate Conference.

[7] László Babai. On Lovász' lattice reduction and the nearest lattice point problem. Combi-
natorica, 6(1):1�13, 1986.

[8] Shi Bai and StevenD. Galbraith. An improved compression technique for signatures based on
learning with errors. In Josh Benaloh, editor, CT-RSA 2014, LNCS, pages 28�47. Springer,
2014.

[9] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved
security proofs in lattice-based cryptography: using the rényi divergence rather than the
statistical distance. Cryptology ePrint Archive, Report 2015/483, 2015.

[10] W. Banaszczyk. Inequalities for convex bodies and polar reciprocal lattices in rn. Discrete
Computational Geometry, 13(1):217�231, 1995.

[11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In Kenneth G. Paterson, editor, Advances in Cryptology � EUROCRYPT 2011, volume 6632
of Lecture Notes in Computer Science, pages 149�168. Springer, May 2011.

[12] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary
�elds and new tools for lattice-based signatures. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International Workshop on Theory
and Practice in Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science,
pages 1�16. Springer, March 2011.

[13] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryp-
tion, arithmetic circuit abe and compact garbled circuits. In PhongQ. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, LNCS. Springer, 2014.

[14] Zvika Brakerski and Vinod Vaikuntanathan. E�cient fully homomorphic encryption from
(standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of
Computer Science, pages 97�106. IEEE Computer Society Press, October 2011.

[15] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, Advances in Cryptology � EUROCRYPT 2010,
volume 6110 of Lecture Notes in Computer Science, pages 523�552. Springer, May 2010.

[16] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational
extractors and pseudorandomness. In Ronald Cramer, editor, TCC 2012: 9th Theory of
Cryptography Conference, volume 7194 of Lecture Notes in Computer Science, pages 383�
403. Springer, March 2012.

[17] Léo Ducas and Daniele Micciancio. CRYPTO 2014, chapter Improved Short Lattice Signa-
tures in the Standard Model, pages 335�352. Springer, 2014.

[18] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures
and bimodal gaussians. In Ran Canetti and JuanA. Garay, editors, CRYPTO 2013, volume
8042 of LNCS, pages 40�56. Springer Berlin Heidelberg, 2013.

[19] NagarjunC. Dwarakanath and StevenD. Galbraith. Sampling from discrete gaussians for
lattice-based cryptography on a constrained device. Applicable Algebra in Engineering, Com-
munication and Computing, 25(3):159�180, 2014.

[20] Rachid El Bansarkhani and Johannes Buchmann. Improvement and e�cient implementation
of a lattice-based signature scheme. In Tanja Lange, Kristin Lauter, and Petr Lison¥k,
editors, SAC 2013, LNCS. Springer, 2014.

[21] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes Buchmann. Augmented learning
with errors: The untapped potential of the error term. In Financial Crypto 2015, LNCS.
Springer, 2015. http://eprint.iacr.org/2015/042.

[22] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor,
Advances in Cryptology � EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer
Science, pages 31�51. Springer, April 2008.

[23] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169�178. ACM Press,
May / June 2009.

[24] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
Annual ACM Symposium on Theory of Computing, pages 197�206. ACM Press, May 2008.

[25] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and
JuanA. Garay, editors, CRYPTO 2013, volume 8042 of LNCSe, pages 75�92. Springer, 2013.

[26] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software speed
records for lattice-based signatures. In Philippe Gaborit, editor, Post-Quantum Cryptogra-
phy, volume 7932 of LNCS. Springer, 2013.

[27] Oded Goldreich, Sha� Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice
reduction problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology � CRYPTO'97,
volume 1294 of Lecture Notes in Computer Science, pages 112�131. Springer, August 1997.

[28] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In Emmanuel Prou� and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems � CHES 2012, volume
7428 of Lecture Notes in Computer Science, pages 530�547. Springer, September 2012.

[29] Je�rey Ho�stein, Nick Howgrave-Graham, Jill Pipher, JosephH. Silverman, and William
Whyte. Ntrusign: Digital signatures using the ntru lattice. In Topics in Cryptology �
CT-RSA 2003, volume 2612 of LNCS, pages 122�140. SPRINGER, 2003.

[30] Xiaodong Lin Jintai Ding. A simple provably secure key exchange scheme based on the
learning with errors problem. Cryptology ePrint Archive, Report 2012/688, 2012. http:

//eprint.iacr.org/.

[31] Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based
authenticated key exchange from lattices. In Mitsuru Matsui, editor, Advances in Cryptology
� ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 636�652.
Springer, December 2009.

[32] Philip N. Klein. Finding the closest lattice vector when it's unusually close. In SODA 2000,
pages 937�941. ACM, 2000.

[33] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In CT-RSA, volume 6558 of LNCS, pages 319�339. Springer, 2011.

[34] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In Aggelos Kiayias, editor, Topics in Cryptology � CT-RSA 2011, volume 6558 of Lecture
Notes in Computer Science, pages 319�339. Springer, February 2011.

[35] San Ling, DuongHieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-lwe and
applications in traitor tracing. In JuanA. Garay and Rosario Gennaro, editors, CRYPTO
2014, volume 8616 of LNCS. Springer, 2014.

[36] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology � EUROCRYPT 2012, volume 7237 of
Lecture Notes in Computer Science, pages 738�755. Springer, April 2012.

[37] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swi�t: A modest
proposal for FFT hashing. In FSE, volume 5086 of LNCS, pages 54�72. Springer, 2008.

[38] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Henri Gilbert, editor, Advances in Cryptology � EUROCRYPT 2010,
volume 6110 of Lecture Notes in Computer Science, pages 1�23. Springer, May 2010.

[39] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit for Ring-LWE Cryptogra-
phy, pages 35�54. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[40] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryptography.
In Thomas Johansson and PhongQ. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 35�54. Springer, 2013.

[41] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology � EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700�718. Springer,
April 2012.

[42] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaus-
sian measures. In 45th Annual Symposium on Foundations of Computer Science, pages

372�381. IEEE Computer Society Press, October 2004.

[43] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In DanielJ. Bernstein,
Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptography. Springer,
2009.

[44] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: ex-
tended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory
of Computing, pages 333�342. ACM Press, May / June 2009.

[45] Chris Peikert. An e�cient and parallel gaussian sampler for lattices. In Tal Rabin, edi-
tor, Advances in Cryptology � CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 80�97. Springer, August 2010.

[46] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs
for lattice problems. In David Wagner, editor, Advances in Cryptology � CRYPTO 2008,
volume 5157 of Lecture Notes in Computer Science, pages 536�553. Springer, August 2008.

[47] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for e�cient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology �
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554�571. Springer,
August 2008.

[48] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium on The-
ory of Computing, pages 187�196. ACM Press, May 2008.

[49] John M. Pollard. The Fast Fourier Transform in a �nite �eld. Mathematics of Computation,
25(114):365�374, 1971.

[50] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced Lattice-Based Signatures
on Recon�gurable Hardware, pages 353�370. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[51] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84�93. ACM Press, May 2005.

[52] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems over ideal
lattices. In Advances in Cryptology � EUROCRYPT 2011, volume 6632 of LNCS, pages
27�47. Springer, 2011.

[53] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. E�cient public key
encryption based on ideal lattices. In Mitsuru Matsui, editor, Advances in Cryptology �
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 617�635.
Springer, December 2009.

[54] Franz Winkler. Polynomial Algorithms in Computer Algebra (Texts and Monographs in
Symbolic Computation). Springer, 1 edition, 1996.

