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ABSTRACT
In this paper, we put forward the first adaptively secure
recipient revocable broadcast encryption (RR-BE) scheme
in the standard model. The scheme is adaptively secure
against chosen plaintext attack (CPA) under the q-weaker
Decisional Augmented Bilinear Diffie-Hellman Exponent (q-
wDABDHE) assumption. Our scheme compares well with
the only existing RR-BE scheme of Susilo et al. which is
selectively secure in the random oracle model. More inter-
estingly, achieving adaptive security in the standard model
does not blow up the communication cost in our construc-
tion. To be more precise, the size of the ciphertext which is
broadcasted by the broadcaster is constant.

Keywords
recipient revocable broadcast encryption, chosen plaintext
attack, adaptive security.

1. INTRODUCTION
Broadcast encryption (BE) is a cryptographic primitive

for delivering encrypted content to a group of users enabling
only the subscribed users to recover the message from the
encrypted content. Large number of works have been done
[1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 12] since its formal intro-
duction by Fiat and Naor [9] in 1994. The versatility of
BE makes them useful tool for many natural applications,
spanning from protecting copyright content distributed as
stored media to managing digital subscription of satellite
TV. Recipient revocable broadcast encryption (RR-BE) is
a recently introduced variant of BE by Susilo et al. [15],
featuring a content provider to send encrypted content to
the broadcaster who in tern is capable of revoking some
user identities without decrypting the content. RR-BE is
a variant of identity based broadcast encryption (IBBE). A
private key generation centre generates the public parameter
and user secret key. A content provider and a broadcaster
agrees upon a common set of users (recipients). Instead of
the broadcaster, the content provider provides the encrypted

content. The broadcaster broadcasts a ciphertext by modi-
fying the original encrypted content received from the con-
tent provider in such a way that enables the broadcaster to
revoke intended subscribers. A subscribed user can decrypt
this modified content using its secret key and recover the
message.

RR-BE fits for several application scenarios. With the
advent of Internet-based distribution and immediate access
to content with low-cost delivery raise security threats and
risk of abusing intellectual property and copyrights. RR-BE
facilitates scalability in business model and allows to make
several business strategies. Consider the following scenarios
where RR-BE is useful:

• Suppose in an academic institute, the head wants to
send an important message to the current students.
He makes an encrypted message for all the enrolled
students. Some students may leave the institute as
they get jobs or for other reasons. Academic stuffs
make a list of current students and want to revoke the
students who are currently not present in the institute
without having eligibility of recovering the message.

• To increase the business, let Internet service provider,
such as CenturyLink, collaborates with movie content
provider CinemaNow and provides free access of Cine-
maNow to the subscribers. CinemaNow permits Cen-
turyLink to send the content upto a fixed number of
user according to their contract amount. CenturyLink
wants to distribute the content to as many users as
possible to increase its profit. Therefore, CinemaNow
cannot send the content in a plaintext form. It sends
the content in encrypted form. From users’ point of
view, a user may want to get revoked if he has already
seen the movies. Now the challenge for CenturyLink
comes to revoke users using the encrypted content pro-
vided by CinemaNow.

In this work, we obtain the first adaptively chosen plain-
text attack (CPA) secure recipient revocable broadcast en-
cryption scheme in the standard model. The starting point
of our construction is the identity based broadcast encryp-
tion scheme of Ren et al. [14]. The only existing RR-
BE scheme [15] has extended the identity based encryp-
tion scheme of Delerablee [6] to achieve the recipient re-
vocation property. The selective semantic security is under
the (f̂ , g, F )- General Decisional Diffie-Hellman Exponent

((f̂ , g, F )-GDDHE) assumption in the random oracle model.
Selective security [3] is a weaker model for broadcast en-
cryption where the adversary commits a target recipient set
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G of user indices before the setup phase. This is static se-
curity model and does not capture the powers of several
types of attackers. Adaptive security introduced by Gen-
try et al. [10], on the other hand is known as full security of
broadcast encryption. Here, the adversary can fix the target
recipient set after seeing the public parameter and compro-
mised private keys. It is the strongest security model. We
achieve security in the standard model in contrast to [15]
which uses random oracles for its security analysis. A proof
in the random oracle model can only serve as a heuristic
argument, as all parties in a random oracle model get black-
box access to a truly random function. Achieving adaptive
security in standard model is a challenging task in RR-BE
framework. Our RR-BE scheme is secure under the q-weaker
Decisional Augmented Bilinear Diffie-Hellman Exponent (q-
wDABDHE) assumption which is a variant of General De-
cisional Diffie-Hellman Exponent Problem [2]. We achieve
adaptive security in the standard model at the expense of in-
crease in secret key size. We emphasizes that other parame-
ter sizes, communication overhead and computation cost are
comparable to those in [15]. More specifically, the ciphertext
size broadcasted by the broadcaster is still constant.

Furthermore, new users can join any time without any up-
dation of pre-existing public key and secret key, provided the
number of subscribed users in the system does not exceed
the maximum number of users allowed in the system. More
interestingly, the broadcaster has the control to revoke any
user of the group (for which original content was created by
the content provider) without changing the existing setup.
Besides, the scheme is non-interactive in the sense that the
private key generation centre does not need to interact with
the subscribed users after issuing users’ private key.

Organization: The rest of the paper is organized as follows.
Section 2 provides necessary definitions and background ma-
terials. We describe our main construction in Section 3 and
its security in Section 4. Efficiency and comparison with the
existing work is presented in Section 5. We finally conclude
in Section 6.

2. PRELIMINARIES
Notation: Let [m] denotes integers from 1 to m and [a, b]
denotes integers from a to b. We use the notation x ∈R S
to denote x is a random element of S and λ to represent bit
size of prime integer p. Let ε : N→ R be a function, where N
and R are the sets of natural and real number respectively.
The function ε is said to be a negligible function if ∃ d ∈ N
such that ε(λ) ≤ 1

λd
. Let |G| denotes the number of elements

of group G. For sets A,B, let A+B denotes union of A,B
and A−B denotes set difference of A,B respectively.

2.1 Recipient Revocable Broadcast Encryption
The concept of recipient revocable broadcast encryption

(RR-BE) was proposed by Susilo et al. [15] in 2016. Infor-
mally speaking, in a RR-BE, a private key generation centre
(PKGC) generates public parameter and secret key. A con-
tent provider provides encrypted content to the broadcaster.
The broadcaster will be able to revoke some users without
having the ability to decrypt it.
Syntax of RR-BE: A recipient revocable broadcast en-
cryption (RR-BE) scheme RR-BE = (RR-BE.Setup, RR-BE.
KeyGen, RR-BE.Encrypt, RR-BE.Revoke, RR-BE.Decrypt) con-
sists of three probabilistic polynomial time (PPT) algorithms

- RR-BE.Setup, RR-BE.KeyGen, RR-BE.Encrypt and two de-
terministic polynomial time algorithms - RR-BE.Revoke,
RR-BE.Decrypt. Formally, RR-BE is described as follows:

• (PP,MK)←RR-BE.Setup(N,λ): Taking as input the total
number of users N in the system and security param-
eter λ, the PKGC constructs the public parameter PP
and a master key MK. It makes PP public and keeps
MK secret to itself.

• (ski)←RR-BE.KeyGen(PP,MK, i): The PKGC takes as
input PP, MK and a subscribed user i and generates a
secret key ski of user i and sends ski to user i through
a secure communication channel between the PKGC
and user i.

• (CT)←RR-BE.Encrypt(S,PP, k,M): The content provider
takes as input PP, user set S of n (≤ N) users, mes-
sage M , maximum revocation number k (< n) and
produces a encrypted content CT (containing the set
S) for the set S. It sends CT securely to the broad-
caster.
Note that broadcaster and content provider shares the
information of set S. They can make the information
of set S public.

• (CT′)←RR-BE.Revoke(PP,CT, R): The broadcaster takes
as input PP, encrypted content CT, revocation set R of
l (≤ k) users and produces a ciphertext CT′ containing
the set G where G = S−R. The broadcaster broadcast
CT and makes G public.

• (M)←RR-BE.Decrypt(PP, ski,CT
′): A subscribed user i

with secret key ski outputs the message M using PP,
CT′.

Correctness: The correctness of the scheme RR-BE lies in
the fact that the message M can be retrieved from the ci-
phertext CT′ by any subscribed user inG. Suppose (PP,MK)
←RR-BE.Setup(N,λ), (CT)←RR-BE.Encrypt(S,PP, k,M),
(CT′)←RR-BE.Revoke(PP,CT, R). Then for every subscribed
user i ∈ G,

RR-BE.Decrypt
(
PP,RR-BE.KeyGen

(
PP,MK, i

)
,CT′

)
= M.

2.2 Security Framework
Message indistinguishability of RR-BE under CPA:

We describe the adaptive security of the scheme RR-BE as
a message indistinguishability game played between a chal-
lenger C and an adversary A, following Susilo et al. [15].
Let n (≤ N) be maximum size of the set of users in S and
t be the number of corrupted users. Both the challenger C
and adversary A are given as input n and t.

Setup: The challenger C generates (PP,MK)←
RR-BE.Setup(n, λ). It keeps the master key MK secret
to itself and sends public parameter PP to A.

Phase 1: Receiving key generation queries for users i1, . . . ,
im, the adversary A generates ski ← RR-BE.KeyGen
(PP,MK, i) for user i ∈ {i1, . . . , im} and sends to C.

Challenge: The adversary A sends a set G to C where
indices of G has not been queried before. It also sends
two equal length plaintext M0,M1, maximum revoca-
tion number k (≤ n) and a revocation set R to the
challenger C where no identity of R lies in G. Let
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S = G + R. The challenger C picks a bit b ∈R {0, 1}
and generates CT, CT′ as

(CT)← RR-BE.Encrypt(S,PP, k,Mb)

(CT′)← RR-BE.Revoke(PP,CT, R).

The adversary is given CT∗ = CT when R = φ else it
is given CT∗ = CT′.

Phase 2: This is identical to Phase 1 key generation queries
with a restriction that queried user indices does not lie
in G.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b
and wins if b′= b.

Adversary A is allowed to get reply up to t key generation
queries. The adversary A’s advantage in the above security
game is defined as AdvRR−BE−IND

A (t, n) = |Pr(b′ = b) − 1
2
|.

The probability is taken over random bits used by C and A.

Definition 1. The broadcast encryption scheme RR-BE is
said to be (t, n)-secure if AdvRR−BE−IND(t, n) = ε(λ), where
ε(λ) is a negligible function in security parameter λ.

This security model considers two type of scenarios:

• If R = φ, then no user revoke, adversary gets full en-
crypted content as challenge ciphertext. This model
guarantees that adversary who does not have secret
key cannot learn about plaintext. This is the prop-
erty of indistinguishability against selective identity
and chosen plaintext attack (IND-sID-CPA) of IBBE.

• If R 6= φ, adversary gets decryption key assistance for
users inR and challenge ciphertext forG = S−R. This
model guarantees that users who are revoked unable
to recover the plaintext.

2.3 Complexity Assumptions

Definition 2. (Bilinear Map). Let G and G1 be two
multiplicative groups of prime order p. Let g be a generator
of G. A function e : G × G −→ G1 is said to be bilinear
mapping if it has the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The function is non-degenerate, i.e., e(g, g) is a gener-

ator of G1.
3. e is efficiently computable.

The tuple S = (p,G,G1, e) is called a prime order bilinear
group system.

S = G + R. The challenger C picks a bit b ∈R {0, 1}
and generates CT, CT′ as

(CT)← RR-BE.Encrypt(S,PP, k,Mb)

(CT′)← RR-BE.Revoke(PP,CT, R).

The adversary is given CT∗ = CT when R = φ else it
is given CT∗ = CT′.

Phase 2: This is identical to Phase 1 key generation queries
with a restriction that queried user indices does not lie
in G.

Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b
and wins if b′= b.

Adversary A is allowed to get reply up to t key generation
queries. The adversary A’s advantage in the above security
game is defined as AdvRR−BE−IND

A (t, n) = |Pr(b′ = b) − 1
2
|.

The probability is taken over random bits used by C and A.
Definition 1. where maximum is taken over all PPT algo-

rithm running in poly(λ) (polynomial of λ) time. The broad-
cast encryption scheme RR-BE is said to be (t, n)-secure if
AdvRR−BE−IND(t, n) = ε(λ), where ε(λ) is a negligible func-
tion in security parameter λ.

This security model considers two type of scenarios:

• If R = φ, then no user revoke, adversary gets full en-
crypted content as challenge ciphertext. This model
guarantees that adversary who does not have secret
key cannot learn about plaintext. This is the prop-
erty of indistinguishability against selective identity
and chosen plaintext attack (IND-sID-CPA) of IBBE.

• If R �= φ, adversary gets decryption key assistance for
users inR and challenge ciphertext forG = S−R. This
model guarantees that users who are revoked unable
to recover the plaintext.

2.3 Complexity Assumptions
Definition 2. (Bilinear Map). Let G and G1 be two

multiplicative groups of prime order p. Let g be a generator
of G. A function e : G × G −→ G1 is said to be bilinear
mapping if it has the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The function is non-degenerate, i.e., e(g, g) is a gener-

ator of G1.
3. e is efficiently computable.

The tuple S = (p,G,G1, e) is called a prime order bilinear
group system.

The l-wDABDHE Assumption [14]:

Input :
〈
Z = (S, h, hαl+2

, . . . , hα2l

, g, gα, . . . , gα
l

),K
〉
, where

S = (p,G,G1, e) is a bilinear group system, g is a generator

of G, h ∈R G, α ∈R Zp, K is either e(g, h)α
l+1

or a random
element X ∈ G1.

Output : 0 if K = e(g, h)α
l+1

; 1 otherwise.

Definition 3. The l-wDABDHE assumption holds with (T, ε)
if for every PPT adversary A with running time at most T ,
the advantage of solving the above problem is at most ε, i.e.,

Advl−wDABDHE
A

= |Pr[A(Z,K = e(g, h)α
l+1

) = 0]− Pr[A(Z,K = X) = 0]|
≤ ε(λ),

where ε(λ) is a negligible function in security parameter λ.

Note that, cryptographic hardness of l-wDABDHE assump-
tion follows from General Decisional Diffie-Hellman Expo-
nent (GDDHE) problem of Boneh et al. [2].

3. OUR RR-BE CONSTRUCTION
The communication model of our RR-BE construction in-

volves a PKGC, a content provider, a broadcaster and sev-
eral users. The PKGC runs RR-BE.Setup to generate PP and
MK and runs RR-BE. KeyGen to generate ski of user i. A
content provider and a broadcaster agrees upon a common
set of users. The content provider provides an encrypted
content to broadcaster. From this encrypted content the
broadcaster revokes a subset of users which it wants to re-
voke. Legal users uses their secret keys to recover the con-
tent. Our recipient-revocable broadcast encryption scheme
RR-BE = (RR-BE.Setup, RR-BE. KeyGen, RR-BE.Encrypt,
RR-BE.Revoke, RR-BE.Decrypt) is described as follows:

• (PP,MK)←RR-BE.Setup(N,λ): Given the security pa-
rameter λ and public identity ID = {ID1, ID2, . . . , IDN} ∈
(Zp)

N of a group of N users, the PKGC generates the
public parameter PP and a master key MK as follows:

1. Chooses a prime order bilinear group system S =
(p,G,G1, e), where G,G1 are groups of prime or-
der p and e : G×G→ G1 is a bilinear mapping.

2. Selects α, β ∈R Zp, and sets MK, PP as
MK = (α, β),

PP = (S, l0, lα0 , . . . , lα
N

0 , g, gα, . . . , gα
N

, gαβ , . . . , gα
N+1β ,

e(g, g), e(g, l0), ID),
where g is generator of G and l0 is random non-
identity element of G.

3. Keeps MK secret to itself and makes PP public.

Note that the public identity of the user i is IDi ∈ Zp

for i ∈ [N ].

• (ski)←RR-BE.KeyGen(PP,MK, i): For each user i ∈ [N ],
the PKGC selects hi ∈R G, ri ∈R Zp and generates
a secret key ski = (d1,i, d2,i, d3,i, labeli), using MK =
(α, β), g, l0 and IDi, by setting

d1,i = (hig
ri)

1
αβ(α+IDi) , d2,i = ri,

d3,i = (hil
ri
0 )

1
αβ , labeli = (hi, h

α
i , . . . , h

αN

i ).

Here IDi is extracted from ID given in PP. It sends
ski to user i through a secure communication channel
between them.

• (CT)←RR-BE.Encrypt(S,PP, k,M): The content provider
performs the following to produce an encrypted con-
tent for the user set S ⊆ [N ] of n users, using PP,
maximum revocation number k (< n) and message M :

1. Sets a polynomial F (x) =
∏

ij∈S
(x+IDij ) =

n∑
i=0

Fix
i,

where Fi’s are function of IDj for j ∈ S.

Figure 1: l-wDABDHE assumption.

Definition 3. The l-wDABDHE assumption holds with
(T, ε) if for every PPT adversary A with running time at

most T , the advantage of solving the above problem is at
most ε, i.e.,

Advl−wDABDHE
A

= |Pr[A(Z,K = e(g, h)α
l+1

) = 0]− Pr[A(Z,K = X) = 0]|
≤ ε(λ),

where ε(λ) is a negligible function in security parameter λ.

Note that, cryptographic hardness of l-wDABDHE assump-
tion follows from General Decisional Diffie-Hellman Expo-
nent (GDDHE) problem of Boneh et al. [2].

3. OUR RR-BE CONSTRUCTION
The communication model of our recipient-revocable broad-

cast encryption (RR-BE) construction involves a PKGC,
a content provider, a broadcaster and several users. The
PKGC runs RR-BE.Setup to generate PP and MK and runs
RR-BE. KeyGen to generate ski of user i. A content provider
and a broadcaster agree upon a common set of users. The
content provider provides an encrypted content to the broad-
caster. From this encrypted content the broadcaster revokes
a subset of users which it wants to revoke. Legal users uses
their secret keys to recover the content. Our scheme RR-
BE = (RR-BE.Setup, RR-BE. KeyGen, RR-BE.Encrypt, RR-
BE.Revoke, RR-BE.Decrypt) is described as follows:

• (PP,MK)←RR-BE.Setup(N,λ): Given the security pa-
rameter λ and public identity ID = {ID1, ID2, . . . ,
IDN} ∈ (Zp)N of a group of N users, the PKGC gen-
erates the public parameter PP and a master key MK
as follows:

1. Chooses a prime order bilinear group system S =
(p,G,G1, e), where G,G1 are groups of prime or-
der p and e : G×G→ G1 is a bilinear mapping.

2. Selects α, β ∈R Zp, and sets MK, PP as
MK = (α, β),

PP = (S, l0, lα0 , . . . , lα
N

0 , g, gα, . . . , gα
N

, gαβ , . . . ,

gα
N+1β , e(g, g), e(g, l0), ID),

where g is generator of G and l0 is random non-
identity element of G.

3. Keeps MK secret to itself and makes PP public.

Note that the public identity of the user i is IDi ∈ Zp
for i ∈ [N ].

• (ski)←RR-BE.KeyGen(PP,MK, i): For each user i ∈ [N ],
the PKGC selects hi ∈R G, ri ∈R Zp and generates
a secret key ski = (d1,i, d2,i, d3,i, labeli), using MK =
(α, β), g, l0 and IDi, by setting

d1,i = (hig
ri)

1
αβ(α+IDi) , d2,i = ri,

d3,i = (hil
ri
0 )

1
αβ , labeli = (hi, h

α
i , . . . , h

αN

i ).

Here IDi is extracted from ID given in PP. It sends
ski to user i through a secure communication channel
between them.

• (CT)←RR-BE.Encrypt(S,PP, k,M): The content provider
performs the following to produce an encrypted con-
tent for the user set S ⊆ [N ] of n users, using PP,
maximum revocation number k (< n) and message M :
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1. Sets a polynomial F (x) =
∏
ij∈S

(x+IDij ) =
n∑
i=0

Fix
i,

where Fi’s are function of IDj for j ∈ S.

2. Picks r ∈R Zp and generates the encrypted con-
tent CT = (S, c1, c2, ĉ1, . . . , ĉk+1, cM ) by setting

c1 =

n∏

i=0

(gα
i+1β)rFi = g

n∑
i=0

βαi+1rFi
= gαβF (α)r,

c2 = e(g, g)−r, ĉ1 = (gα)−r = g−rα,

ĉi = (gα
i

)
r

= gα
ir for 2 ≤ i ≤ k + 1,

cM = Me(g, l0)r.

Here gα, . . . , gα
k

, gα
k+1

, gαβ , . . . , gα
nβ , gα

n+1β ,
e(g, g), e(g, l0) are extracted from PP.

3. Sends CT to the broadcaster through a secure
communication channel between the broadcaster
and the content provider.

Note that, the broadcaster and the content provider
shares the information of set S. They can make the
information of set S public.

• (CT′)←RR-BE.Revoke(PP,CT, R): Using PP, CT =
(S, c1, c2, ĉ1, . . . , ĉk+1, cM ) for the user set S, revoca-
tion set R = {i1, i2, . . . , il} ⊆ S, (l ≤ k) the broad-
caster generates ciphertext for the set G = S −R as:

1. If R = φ, sets C1 = c1, C2 = c2, Ĉ1 = ĉ1, CM =
cM .

2. If R 6= φ, then

(a) Computes

∏
j∈R

(x+IDj)∏
j∈R

IDj
=

l∑
i=0

fix
i, where fi, 0 ≤

i ≤ l are function of IDj for j ∈ R. Note that
f0 = 1.

Also computes X =
l∏
i=2

ĉfii = g
r

l∑
i=2

fiα
i

.

(b) Implicitly sets s = r
l∑
i=0

fiα
i and generates

C1, C2, Ĉ1, CM as

C1 = c

{
1∏

j∈R
IDj

}

1

= g
rαβ

{ ∏
j∈R

(α+IDj)
∏
j∈G

(α+IDj)∏
j∈R

IDj

}

= g
αβ

{
s

∏
j∈G

(α+IDj)

}

,

C2 = c2e(g, ĉ
f1
1 X

−1)

= e(g, g)−re(g, g)−r(αf1+α
2f2+α

3f3+...+α
lfl)

= e(g, g)−r(1+αf1+α
2f2+α

3f3+...+α
lfl)

= e(g, g)−s,

Ĉ1 = ĉ1(

l+1∏

i=2

ĉ
fi−1

i )−1

= (g−αr)(g−α
2r)f1(g−α

3r)f2 . . . (g−α
l+1r)fl

= g−αr(1+αf1+α
2f2+α

3f3+...+α
lfl) = g−αs,

CM = cMe(ĉ
{−f1}
1 X, l0)

= Me(g, l0)re(g, l0)r(αf1+α
2f2+α

3f3+...+α
lfl)

= Me(g, l0)r(1+αf1+α
2f2+α

3f3+...+α
lfl)

= Me(g, l0)s.

In this computation, g, l0, IDj(j ∈ G) are ex-
tracted from PP and fi, 0 ≤ i ≤ l are com-
puted as in step 2(a).

3. Finally, publishes CT′ = (G,C1, C2,

Ĉ1, CM ) as ciphertext where G = S −R.

• (M)←RR-BE.Decrypt(PP, ski,CT
′): A subscribed user

i with the secret key ski =
(
d1,i, d2,i, d3,i, labeli =

(hi, h
α
i , . . . , h

αN

i )
)

uses PP, the ciphertext CT′ = (G,C1,

C2, Ĉ1, CM ), and computes e(g, hig
ri)s, e(g, hi)

s,
e(g, hil

ri
0 )s,K = e(g, l0)s to recover the message M as

follows:

e(g, hig
ri)s =





[
e(C1, d1,i)e

(
Ĉ1, (hig

d2,i)Ai,G,α
)]

{
1∏

j∈G,j 6=i
IDj

}

if |G| > 1

e(C1, d1,i)e(Ĉ1, g)d2,i if |G| = 1

e(g, hi)
s = e(g, hig

ri)sC
d2,i
2

e(g,hil
ri
0 )s =

[
e(C1, d3,i)e

(
Ĉ1, (hil

d2,i
0 )BG,α

)]
{

1∏
j∈G

IDj

}

,

K =
{e(g, hilri0 )s

e(g, hi)s

} 1
d2,i = e(g, l0)s,M =

CM
K

.

where

Ai,G,α =
1

α

{ ∏

j∈G,j 6=i
(α+ IDj)−

∏

j∈G,j 6=i
IDj

}
,

BG,α =
1

α

{ ∏

j∈G
(α+ IDj)−

∏

j∈G
IDj

}
.

We explain below how a user i ∈ G can compute

(hig
d2,i)

Ai,G,α , (hil
d2,i
0 )

BG,α
without knowing α.

Note that the polynomial 1
x

{ ∏
j∈G,j 6=i

(x+ IDj)−

∏
j∈G,j 6=i

(IDj)
}

=
n−l−2∑
i=0

aixi is of degree (n − l − 2)

in x where |G| = n − l > 1. With the knowledge
of G, the user i ∈ G can compute the co-efficients
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ai, i ∈ [0, n− l − 2] which are functions of IDj where

j ∈ G, j 6= i. Since gα
j

for j ∈ [0, n−l−2] are available

in public parameter PP and hα
j

i for j ∈ [0, n − l − 2]
are extractable from ski, user i ∈ G can compute

n−l−2∏

j=0

(h
αj
i )

aj
n−l−2∏

j=0

(gα
j

)
d2,iaj

= h

{
n−l−2∑
j=0

ajα
j

}

i g
d2,i

{
n−l−2∑
j=0

ajα
j

}

= (hig
d2,i)

Ai,G,α

without the knowledge of α.

Similarly, the polynomial 1
x

{ ∏
j∈G

(x+IDj)−
∏
j∈G

(IDj)
}

=

n−l−1∑
i=0

bixi is of degree (n−l−1) in x where |G| = n−l.
With the knowledge of G, the user i ∈ G can compute
the co-efficients bi, i ∈ [0, n− l−1] which are functions

of IDj where j ∈ G. Since lα
j

0 for j ∈ [0, n − l − 1]

are available in public parameter PP and hα
j

i for j ∈
[0, n − l − 1] are extractable from ski, user i ∈ G can
compute

n−l−1∏

j=0

(h
αj
i )

bj
n−l−1∏

j=0

(lα
j

0 )
d2,ibj

= h

{
n−l−1∑
j=0

bjα
j

}

i l
d2,i

{
n−l−1∑
j=0

bjα
j

}

0 = (hil
d2,i
0 )

BG,α

without the knowledge of α.

Correctness: The correctness of decryption procedure is
provided below:

if |G|>1,

[
e(C1, d1,i)e

(
Ĉ1, (hig

d2,i)Ai,G,α
)]
{

1∏
j∈G,j 6=i

IDj

}

=
[
e(C1, d1,i)e(Ĉ1, hig

d2,i)Ai,G,α
]
{

1∏
j∈G,j 6=i

IDj

}

=
[
e
(
g
sαβ

∏
j∈G

(α+IDj)

, (hig
ri)

1
αβ(α+IDi)

)
×

e(g−αs, hig
ri)

1
α

{ ∏
j∈G,j 6=i

(α+IDj)−
∏

j∈G,j 6=i
IDj

}]
{

1∏
j∈G,j 6=i

IDj

}

=
[
e(g, hig

ri)
s
{ ∏
j∈G,j 6=i

(α+IDj)
}
×

e(g, hig
ri)
−s
{ ∏
j∈G,j 6=i

(α+IDj)−
∏

j∈G,j 6=i
IDj

}]
{

1∏
j∈G,j 6=i

IDj

}

=
[
e(g, hig

ri)
s

∏
j∈G,j 6=i

IDj]
{

1∏
j∈G,j 6=i

IDj

}

= e(g, hig
ri)s,

if |G| = 1, e(C1, d1,i) = e
(
gsαβ(α+IDi), (hig

ri)
1

αβ(α+IDi)

)

= e(g, hig
ri)s,

=⇒ e(g, hig
ri)sC

d2,i
2 = e(g, hig

ri)se(g, g)−sri

= e(g, hi)
s,

Similarly,

[
e(C1, d3,i)e

(
Ĉ1, (hil

d2,i
0 )BG,α

)]
{

1∏
j∈G

IDj

}

=
[
e(C1, d3,i)e(Ĉ1, hil

d2,i
0 )BG,α

]
{

1∏
j∈G

IDj

}

=
[
e
(
g
sαβ

∏
j∈G

(α+IDj)

, (hil
ri
0 )

1
αβ

)
×

e(g−αs, hil
ri
0 )

1
α

{ ∏
j∈G

(α+IDj)−
∏
j∈G

IDj

}]
{

1∏
j∈G

IDj

}

=
[
e(g, hil

ri
0 )

s
{ ∏
j∈G

(α+IDj)
}
×

e(g, hil
ri
0 )
−s
{ ∏
j∈G

(α+IDj)−
∏
j∈G

IDj

}]
{

1∏
j∈G

IDj

}

=
[
e(g, hil

ri
0 )

s
∏
j∈G

IDj]
{

1∏
j∈G

IDj

}

= e(g, hil
ri
0 )s,

Hence, K =
{e(g, hilri0 )s

e(g, hi)s

} 1
d2,i =

{e(g, hi)se(g, lri0 )s

e(g, hi)s

} 1
ri

= e(g, l0)s,

M =
CM
K

.

Remark 1. We can remove the secure communication
between the content provider and the broadcaster as follows:
In key generation phase the PKGC takes a random number
r ∈ G1 and sends securely to both the content provider and
the broadcaster. The content provider makes the following
encrypted content public

CT = (G, c1, c2, ĉ1, . . . , ĉk+1, Er(cM )).

Here Er(cM ) is symmetric key encryption of cM using r.
The broadcaster has the secret key r, he recovers cM by de-
crypting Er(cM ). Now the broadcasted can run the revoca-
tion algorithm as previous. Note that except cM other com-
ponents don’t involve the content M , thereby don’t require
encryption to make it public.

Remark 2. If the content provider sends different en-
crypted content then the broadcaster will broadcast a cipher-
text which is different from original ciphertext. As a re-
sult subscribed user will unable to recover actual content.
Users will complain to the broadcaster that they are not get-
ting desired content. The broadcaster informs to the content
provider that information are wrongly provided. Now an at-
tacker can also change the encrypted content. To prevent
this we need to use an unforgeable signature scheme which
will sign on ciphertext and will also make verification key
public as in the chosen ciphertext attack secue construction
of Boneh et. al. [3]. Each subscribed user will verify the
signature, if the verification succeeds then it will decrypt the
content. As we are discussing CPA security, we did not in-
cluded signature and its verification in our RR-BE scheme.

4. SECURITY
We prove semantic security of our scheme under q-wDABDHE

(q ≥ 2n) assumption. We achieve adaptive security in stan-
dard model, whereas the existing scheme achieves selective
semantic security in random oracle model.
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Theorem 1. Our proposed scheme RR-BE described in
Section 3 achieves adaptive semantic (indistinguishability
against CPA) security as per the message indistinguisha-
bility security game of Section 2.2 under the q-wDABDHE
(q ≥ 2n) hardness assumption where n (≤ N) is the maxi-
mum size of the set of users in S.

Proof. Assume that there is a PPT adversary A that
breaks the adaptive semantic security of our proposed RR-
BE scheme with a non-negligible advantage. We construct a
PPT distinguisher C that attempts to solve the q-wDABDHE
problem using A as a subroutine. Let C be given a q-
wDABDHE (q ≥ 2n) instance

〈
Z,X

〉
with

Z = (S, ĝ, ĝα
q+2

, . . . , ĝα
2q

, g, gα, . . . , gα
q

),

where S = (p,G,G1, e) is a prime order bilinear group sys-
tem, g is generator of group G, ĝ ∈R G, α ∈R Zp, X is either

e(ĝ, g)α
q+1

or a random element of G1. We describe below
the interaction of A with the distinguisher C who attempts

to output 0 if X = e(ĝ, g)α
q+1

and 1 otherwise.

Setup: The challenger C generates the public parameter
PP and master key MK as follows:

• Chooses b0,j ∈R Zp, j ∈ [0, n − 1] and sets the
polynomials P 0(x), Q0(x) as

P 0(x) =
n−1∑
j=0

b0,jx
j , Q0(x) = xP 0(x) + 1.

• Using g, gα, . . . , gα
q

(q ≥ 2n) computes lα
i

0 , i ∈
[0, n] as

lα
i

0 = gα
i n−1∏
j=0

(gα
j+i+1

)
b0,j

= gα
i(1+αP0(α))

= gα
iQ0(α), for i ∈ [0, n].

• Sets PP = (S, l0, lα0 , . . . , lα
n

0 , g, gα, . . . , gα
N

, gαβ , . . . ,

gα
N+1β , e(g, g), e(g, l0), ID), where β ∈ Zp, ID =

{ID1, ID2, . . . , IDn} ∈ (Zp)n is the set of public
identities of n users. Sets MK = (α, β), where α
is not known to C explicitly.

As Q0(x), β is random, the distribution of the pub-
lic parameter PP is identical to that in the original
scheme.

Phase 1: The adversary A issues m key generation queries
on {IDij}mj=1. The challenger C generates the private
key ski for users i ∈ {i1, . . . , im} ⊆ [n] as follows:

• Chooses bi,j , bi ∈R Zp, j ∈ [0, n− 2] and sets

P i(x) =
n−2∑
j=0

bi,jx
j ,

Qi(x) = x(x+ IDi)P
i(x) + bi.

• Computes

d1,i =
( n−2∏

j=0

(gα
j

)
bi,j
) 1
β

=
(
g

n−2∑
j=0

bi,jα
j) 1

β
= g

Pi(α)
β ,

d2,i = −Qi(−IDi)
= IDi(−IDi + IDi)P

i(−IDi)− bi
= −bi,

d3,i =

( n−1∏

j=0

(gα
j

)
−bib0,j

n−2∏

j=0

{(gαj+1

)
bi,j

(gα
j

)
bi,jIDi}

) 1
β

=
( n−1∏

j=0

g−bib0,jα
j
n−2∏

j=0

g{bi,j(α+IDi)α
j}
) 1
β

=
(
g
−bi

n−1∑
j=0

b0,jα
j

g
{(α+IDi)

n−2∑
j=0

bi,jα
j}) 1

β

=
(
g−biP

0(α)+(α+IDi)P
i(α)
) 1
β
,

hα
k

i = (gα
k

)
bi
n−2∏

j=0

{(gαk+j+2

)
bi,j

(gα
k+j+1

)
bi,jIDi}

= g
αk
(
α(α+IDi)P

i(α)+bi

)
= gα

kQi(α).

• Sets labeli = (hα
k

i , k ∈ [0, n]) and sends ski =
(d1,i, d2,i, d3,i, labeli) to the adversary A.

As bi, Q
i(x) are random, d2,i, labeli have identical dis-

tribution to those in the original scheme. It is left
to show that d1,i, d3,i follow the original distribution.

d1,i = g
Pi(α)
β = g

Qi(αβ)−bi
α(α+IDi) = g

Qi(αβ)+d2,i
α(α+IDi)

= (hig
d2,i)

1
αβ(α+IDi) ,

Now, −biP 0(α) + (α+ IDi)P
i(α)

=
1

α

{
− biαP 0(α) +Qi(α)− bi

}

=
1

α

{
− bi(Q0(α)− 1) +Qi(α)− bi

}

=
1

α

{
− biQ0(α) +Qi(α)

}

⇒ d3,i =
(
g−biP

0(α)+(α+IDi)P
i(α)
) 1
β

= g
1
αβ

{
−biQ0(α)+Qi(α)

}

=
(
gQ

i(α)g−biQ
0(α)

) 1
αβ

= (hil
d2,i
0 )

1
αβ .

Thus d1,i, d3,i are identical to original scheme.

Challenge: The adversary A sends a set of user indices
G to C, where identities of users of G has not been
queried before. It also sends two equal length messages
M0,M1, maximum revocation number k (< n) and a
revocation set R to the challenger C where no identity
in the set R lies in G. Let S = G+R. The challenger
C does the following:
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• Computes
n−1∏
i=0

(gα
i

)b0,i = g

n−1∑
i=0

b0,iα
i

= gP
0(α) by

extracting gα
i

values from the given instance
〈
Z,X

〉
.

• Selects Mb, b ∈R {0, 1} and sets CMb as, CMb =

MbXe(ĝ
αq+2

, gP
0(α)), where X is extracted from〈

Z,X
〉
. Here X is either e(ĝ, g)α

q+1

or a random

element of G1. If X= e(ĝ, g)α
q+1

then the simu-
lated CMb(= cMb) has the same distribution as in
the original scheme as

CMb = MbXe(ĝ
αq+2

, gP
0(α))

= Mbe(ĝ, g)α
q+1

e(ĝα
q+2

, gP
0(α))

= Mbe(ĝ
αq+1

, g)e(ĝα
q+1

, gαP
0(α))

= Mbe(ĝ
αq+1

, gαP
0(α)+1)

= Mbe(ĝ
αq+1

, gQ
0(α))

= Mbe(g
s, l0) = Mbe(g, l0)s

where s is implicitly set as s = αq+1 logg ĝ.

• Sets λ(x) =
∏
j∈G

(x + IDj) =
|G|∑
i=0

λix
i, where λi

are function of IDj for j ∈ G.

• Computes
|G|∏
i=0

(ĝα
q+2+iβ)λi = (ĝα

q+2β)

|G|∑
i=0

λiα
i

=

(ĝα
q+2β)

∏
i∈G

(α+IDi)

.

Note that ĝα
i

, i ∈ [q + 2, 2q], q ≥ 2n are available
to C through the given instance

〈
Z,X

〉
.

• If R 6= φ, sets the challenge ciphertext CT∗ as,

CT∗ =
(
G, (ĝα

q+2β)

∏
i∈G

(α+IDi)

, X−1, ĝ−α
q+2

, CMb

)

= (G,C1, C2, Ĉ1, CMb).
else if R = φ (i.e. G = S), sets CT∗ as

CT∗ =
(
G, (ĝα

q+2β)

∏
i∈G

(α+IDi)

, X−1, ĝ−α
q+2

,

ĝα
q+3

, . . . , ĝα
q+k+1

, CMb

)

= (G, c1, c2, ĉ1, ĉ2, . . . , ĉk+1, cMb).

If X= e(ĝ, g)α
q+1

, then as s is implicitly set to be

s = αq+1 logg ĝ, we have

C1 = c1 = (ĝα
q+2β)

∏
i∈G

(α+IDi)

= (gβ logg ĝ
αq+2

)

∏
i∈G

(α+IDi)

= (gβαα
q+1 logg ĝ)

∏
i∈G

(α+IDi)

= (gαβ)
s

∏
i∈G

(α+IDi)

,

C2 = c2 = X−1 = e(ĝ, g)−α
q+1

= e(glogg ĝ, g)−α
q+1

= e(g, g)−α
q+1 logg ĝ = e(g, g)−s,

Ĉ1 = ĉ1 = ĝ−α
q+2

= g−(logg ĝ)α
q+2

= g−αα
q+1 logg ĝ = g−αs,

ĉi = ĝα
q+1+i

= gα
iαq+1 logg ĝ = gα

is, 2 ≤ i ≤ k.
Consequently, distribution of CT∗ is similar to our
real construction from A’s point of view.

• Returns CT∗ to A.

Note that in our RR-BE (see Section 3), components
c1, c2, ĉ1, cM generated for messageM in RR-BE.Encrypt

are identical to C1, C2, Ĉ1, CM of RR-BE.Revoke re-
spectively except from randomness. Therefore in this
Challenge phase, from adversary A’s point of view
there is no difference between (c1, c2, ĉ1, cMb) and (C1,

C2, Ĉ1, CMb). Consequently we can take C1 = c1, C2 =

c2, Ĉ1 = ĉ1, CMb = cMb as challenge ciphertext in
R 6= φ case.

Phase 2: This is similar to Phase 1 key generation queries.
The adversary A sends key generation queries for
{im+1, . . . , it} ⊆ [n] with a restriction that ij /∈ G and
receives back secret keys {skij}tj=m+1 simulated in the
same manner by C as in Phase 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} of b to C and
wins if b′ = b. If b′ = b, C outputs 0, indicating that

X = e(ĝ, g)α
q+1

; otherwise, it outputs 1, indicating
that X is a random element of G1.

The simulation of C is perfect when X= e(ĝ, g)α
q+1

. There-
fore, we have

Pr[C(Z,X = e(ĝ, g)α
q+1

) = 0] =
1

2
+AdvRR−BE−IND

A ,

where AdvRR−BE−IND
A is the advantage of the adversary A in

the above indistinguishability game. On the other hand, Mb

is completely hidden from the adversary A when X = R is
random, thereby

Pr[C(Z,X = R) = 0] =
1

2
.

Hence, the advantage of the challenger C in solving q-wDABDHE
is

Advq−wDABDHE
C (t, n)

= |Pr[C(Z,X = e(ĝ, g)α
q+1

) = 0]− Pr[C(Z,X = R) = 0]|

=
1

2
+AdvRR−BE−IND

A − 1

2
= AdvRR−BE−IND

A .
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Table 1: Comparative summaries of storage, communication bandwith and security of RR-BE schemes.

Scheme |PP| |SK| |CT| |CT′| SM Random Oracle SA

[15] (2N+1)|G|+1|G1| (1)|G| (k + 2)|G|+1|G1| 2|G|+1|G1| Selective Yes (f̂ , g, F )-GDDHE
Our

RR-BE (3N+3)|G|+2|G1| (N+3)|G|+1|Zp| (k + 2)|G|+2|G1| 2|G|+2|G1| Adaptive No q-wDABDHE

|PP| = public parameter size, |SK| = secret key size, |CT| = encrypted content size, |CT′| = ciphertext size, N = total number of
users, |G| = bit size of an element of G, |G1| = bit size of an element of G1, |Zp| = bit size of an element of Zp, SM = security

model, SA = security assumption, (f̂ , g, F )-GDDHE = (f̂ , g, F )- general decisional diffie-hellman exponent, q-wDABDHE = q-weaker
decisional augmented bilinear diffie-hellman exponent, q ≥ 2n, n = number of users used in RR-BE.Encrypt phase.

Table 2: Comparative summary of computation cost of parameter generation, encryption and decryption
algorithm for RR-BE schemes.

Scheme PP SK Enc Revoke Dec
#exp #pr #exp #exp # inv #exp #pr # inv #exp #pr # inv

[15]
2N
in G 1 1 in G

n + k+2 in G,

1 in G1 0 2l+1 in G 1 0

n′ in G,

1 in G1 2 1 in G1

Our
RR-BE

3N+1
in G 2

N + 4
in G

n + k+2 in G,

2 in G1

1 in G,

1 in G1 2l+1 in G 2
3 in
G

4n′-2 in G,

4 in G1 4 1 in G1

PP = public parameter, SK = secret key, Enc = encryption, Revoke = revocation, Dec = decryption, N = total number of users,
k = maximum number of revoked users, l = actual number of revoked users, n = number of users used in RR-BE.Encrypt phase,
n′ = n− l, #exp = number of exponentiations in G and G1,#pr = number of pairings, #inv = number of inversions in G and G1.

Therefore, if A has non-negligible advantage in correctly

guessing b′, then C predicts X= e(ĝ, g)α
q+1

or random ele-
ment of G1 (i.e., solves q-wDABDHE (q ≥ 2n) instance given
to C) with non-negligible advantage. Hence the theorem fol-
lows.

5. EFFICIENCY
We have compared our RR-BE construction with the only

known recipient revocable broadcast encryption scheme of
Susilo et al. [15] in Table 1 and Table 2. We emphasize the
following facts:

• Our scheme achieves adaptive security in the standard
security model, while [15] is selectively secure in the
random oracle model.

• Both the schemes are semantically secure under sim-
ilar type of assumptions. Note that security of both
(f̂ , g, F )-GDDHE, q-wDABDHE (q ≥ 2n) follow from
the General Decisional Diffie-Hellman Exponent
(GDDHE) problem of Boneh et al. [2].

• Parameter sizes and computation costs asymptotically
matches with those in [15] except from the secret key
which is linear to the number of users (i.e. O(N)) in
our scheme in contrast to constant size (i.e. O(1))
secret key in [15]. This trade-off is due to achieve
the adaptively secure RR-BE scheme in the standard
model.

6. CONCLUSION
We have proposed the first adaptively secure RR-BE scheme

which is secure in standard model under q-wDABDHE (q ≥
2n) assumption. The proposed scheme compares favourably
with the existing similar work [15] which is selectively secure
in random oracle model.

7. REFERENCES

[1] A. Barth, D. Boneh, and B. Waters. Privacy in
encrypted content distribution using private broadcast
encryption. In Proceedings of the 10th International
Conference on Financial Cryptography and Data
Security, FC’06, pages 52–64, Berlin, Heidelberg, 2006.
Springer-Verlag.

[2] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical
identity based encryption with constant size
ciphertext. In Advances in Cryptology—EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer
Science, pages 440–456. Berlin: Springer-Verlag, 2005.
Available at
http://www.cs.stanford.edu/~xb/eurocrypt05a/.

[3] D. Boneh, C. Gentry, and B. Waters. Collusion
resistant broadcast encryption with short ciphertexts
and private keys. In Proceedings of the 25th Annual
International Conference on Advances in Cryptology,
CRYPTO’05, pages 258–275, Berlin, Heidelberg, 2005.
Springer-Verlag.

[4] D. Boneh, B. Waters, and M. Zhandry. Low overhead
broadcast encryption from multilinear maps. In
J. Garay and R. Gennaro, editors, Advances in
Cryptology - CRYPTO 2014, volume 8616 of Lecture
Notes in Computer Science, pages 206–223. Springer
Berlin Heidelberg, 2014.

[5] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In
Proceedings of the 14th Annual International
Cryptology Conference on Advances in Cryptology,
CRYPTO ’94, pages 257–270, London, UK, 1994.
Springer-Verlag.

[6] C. Delerablée. Identity-based broadcast encryption
with constant size ciphertexts and private keys. In
Proceedings of the Advances in Crypotology 13th
International Conference on Theory and Application
of Cryptology and Information Security,
ASIACRYPT’07, pages 200–215, Berlin, Heidelberg,
2007. Springer-Verlag.

[7] C. Delerablée, P. Paillier, and D. Pointcheval. Fully

8



collusion secure dynamic broadcast encryption with
constant-size ciphertexts or decryption keys. In
T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto,
editors, Pairing, volume 4575 of Lecture Notes in
Computer Science, pages 39–59. Springer, 2007.

[8] Y. Dodis and N. Fazio. Public key broadcast
encryption for stateless receivers. In J. Feigenbaum,
editor, Digital Rights Management, volume 2696 of
Lecture Notes in Computer Science, pages 61–80.
Springer Berlin Heidelberg, 2003.

[9] A. Fiat and M. Naor. Broadcast encryption. In
Proceedings of the 13th Annual International
Cryptology Conference on Advances in Cryptology,
CRYPTO ’93, pages 480–491, New York, NY, USA,
1994. Springer-Verlag New York, Inc.

[10] C. Gentry. Practical identity-based encryption without
random oracles. In Proceedings of the 24th Annual
International Conference on The Theory and
Applications of Cryptographic Techniques,
EUROCRYPT’06, pages 445–464, Berlin, Heidelberg,
2006. Springer-Verlag.

[11] A. Lewko, A. Sahai, and B. Waters. Revocation
systems with very small private keys. In Security and
Privacy (SP), 2010 IEEE Symposium on, pages
273–285, May 2010.

[12] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In J. Kilian,
editor, Advances in Cryptology - CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science,
pages 41–62. Springer Berlin Heidelberg, 2001.

[13] D. H. Phan, D. Pointcheval, S. Shahandashti, and
M. Strefler. Adaptive cca broadcast encryption with
constant-size secret keys and ciphertexts. International
Journal of Information Security, 12(4):251–265, 2013.

[14] Y. Ren, S. Wang, and X. Zhang. Non-interactive
dynamic identity-based broadcast encryption without
random oracles. In Proceedings of the 14th
International Conference on Information and
Communications Security, ICICS’12, pages 479–487,
Berlin, Heidelberg, 2012. Springer-Verlag.

[15] W. Susilo, R. Chen, F. Guo, G. Yang, Y. Mu, and
Y.-W. Chow. Recipient revocable identity-based
broadcast encryption: How to revoke some recipients
in ibbe without knowledge of the plaintext. In
Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS
’16, pages 201–210, New York, NY, USA, 2016. ACM.

APPENDIX
A. GENERAL DECISIONAL DIFFIE-

HELLMAN EXPONENT PROBLEM [2]
We give an overview of General Decisional Diffie-Hellman

Exponent problem in symmetric case. Let S = (p,G,G1, e)
is a bilinear group system. Let g be generator of group
G and set g1 = e(g, g). Let P,Q ∈ Fp[X1, . . . , Xn]s be
two s tuple of n variate polynomials over Fp. We write
P = (p1, . . . , ps), Q = (q1, . . . , qs) and impose that p1 =
1, q1 = 1. For a set Ω, a function h : Fp → Ω and a vector
(x1, . . . , xn) ∈ Fpn we write,
h(P (x1, . . . , xn)) =

(
h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))

)
∈ Ωs.

We use similar notation for the s-tuple Q. A polynomial f ∈
Fp[X1, . . . , Xn] depends on P,Q if there exists ai,j , bi ∈ Zp
such that

f =
∑

1≤i,j≤s
ai,jpipj +

∑

1≤i,j≤s
biqi.

Otherwise, f is independent of P,Q. The (P,Q, f)-General
Decisional Diffie-Hellman Exponent ((P,Q, f)-GDDHE) prob-
lem is defined as follows:

Definition 4. ((P,Q, f)-GDDHE:) GivenH(x1, . . . , xn) =

(gP (x1,...,xn), g
Q(x1,...,xn)
1 ) and T ∈ G1, decide whether T =

g
f(x1,...,xn)
1 .

Boneh et al. [2] have proved that (P,Q, f)-GDDHE is in-
tractable, if f does not depend on P,Q.
Hardness of l-wDABDHE assumption: Let us consider
h = gβ . If we formulate l-wDABDHE problem of Section
2.3 as the (P,Q, f)-GDDHE problem then

P = (1, α, α2, . . . , αl, β, βαl+2, . . . , βα2l)

Q = (1)

f = (βαl+1)

Following the technique of [6], it is easy to show that f
does not depend on P,Q. So, cryptographic hardness of
l-wDABDHE assumption follows.
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