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Abstract. The Extended Access Control (EAC) protocol allows to cre-
ate a shared cryptographic key between a client and a server. It is for
instance referenced by the International Civil Aviation Organization for
securing the communication between machine readable travel documents
and terminals, and is also deployed on current German identity cards.
Here we discuss how to enhance the EAC protocol by a so-called zero-
round trip time (0RTT) mode. Through this mode the client can, with-
out further interaction, immediately derive a new key from cryptographic
material exchanged in previous executions. This makes the 0RTT mode
attractive from an efficiency viewpoint such that the upcoming TLS 1.3
standard, for instance, will include its own 0RTT mode. Here we show
that the EAC protocol can be augmented to support a 0RTT mode, too.
Our proposed EAC+0RTT protocol is compliant with the basic EAC
protocol and adds the 0RTT mode smoothly on top. We also prove the
security of our proposal according to the common security model of Bel-
lare and Rogaway in the multi-stage setting.

1 Introduction

Electronic identity systems in the European Union were put on formal grounds
in July 2016, when regulation EU No 910/2014 about electronic identification,
authentication, and trust services for electronic transactions (eIDAS) came into
effect. While this regulation sets the framework for such systems, concrete im-
plementations yet need to be explored. A promising candidate is the joint effort
of the French and German IT security agencies [9] which in turn is based upon
the already existing German identity card systems [8] and also referenced by the
International Civil Aviation Organization for machine readable travel documents
[23].

At the core of the eIDAS proposal is the extended access control (EAC)
protocol between a client’s card (also called chip in this context) and a server
(or, terminal). The EAC protocol establishes an authenticated key between both
parties over a public channel. For this, both parties run a sophisticated Diffie-
Hellman key exchange protocol in which either party deploys its certified long-
term key. As such, the EAC protocol is amenable to cryptographic analysis as
an authenticated key exchange scheme. Indeed, it has already been confirmed by
Dagdelen and Fischlin [13] that the EAC provides strong security in the widely
accepted security model of Bellare and Rogaway [1].



1.1 Striving for Zero Round-Trip Time

The EAC protocol consists of two connected phases, the terminal authentication
(TA), followed by the chip authentication (CA). Both steps require only a mild
number of message exchanges to establish a session key. At the same time, recent
efforts in the area of key exchange protocols aim at modes of operations which
allow for even faster data delivery. More precisely, it should be possible for a
party to re-use cryptographic data from a previous connection to derive a fresh
session key without further interaction, thus allowing the party to transmit data
immediately. Such a mode is called zero round-trip time (0RTT).

The first proposal for a 0RTT-supporting protocol came from Google with
its QUIC protocol [19]. The 0RTT mode allows the client to send data to a
known server without having to wait for the server’s response. This idea was
then quickly adopted for the drafts of the new TLS version 1.3, and has been
included in the latest drafts in various versions [30,31,29]. Even on a network
layer level, the Windows Networking Team recently announced to support 0RTT
for TCP connections in order to reduce latency (see [10] for TCP Fast Open
description).

The rough idea of the approach taken by QUIC and TLS (for the Diffie-
Hellman version [30])1 is that, upon the first encounter, the server also sends
a semi-static public key gs as part of the authenticated key exchange. Unlike
an ephemeral key, which is used only within a single session, and a long-term
key which spans over a large amount of sessions, such a semi-static key is valid
for a very limited time only. This time period may range from a few seconds
to a couple of days. In particular, the semi-static key may be used in multiple
sessions.

The next time the client contacts the server, the client may combine a fresh
ephemeral key gc with the server’s semi-static key gs to immediately compute
a Diffie-Hellman key gcs and derive an intermediate session key. The client can
now send gc and already deliver data secured under the intermediate session key,
without round trip. For both QUIC and TLS the parties then continue the key
exchange protocol to switch to full session keys.

It is obvious that the non-interactive derivation of the 0RTT session key
comes at a price in terms of security: Since the server cannot contribute to such
a key in a per-session manner, an adversary can replay the client’s protocol
message and data to the server. This is inevitable, but accepted by the designers
of QUIC and TLS 1.3 as worthwhile to achieve the desired level of efficiency.

The EAC protocol is at foremost a general key exchange protocol, as QUIC
and TLS, such that a 0RTT mode for EAC may be desirable in some settings.
More importantly, the EAC protocol is increasingly adopted as an omnipotent
solution in related scenarios, for example to secure transactions [28] and for
attribute-based access control with smart cards [27]. Especially in the latter case,
if deployed in situations where user experience hinges on fast response times, e.g.,
1 The latest version of the TLS draft [29] focuses on a pre-shared key 0RTT version
and has for now dropped the Diffie-Hellman based version; the main EAC protocol
only supports a Diffie-Hellman based key exchange, though.
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turnstile access in subway stations [18], reducing the latency is important. This
requirement has led for instance to the development of the ISO/IEC 24727-6
and ANSI 504-1 standardized “Open Protocol for Access Control Identification
and Ticketing with privacY” (OPACITY) for smart cards [32], which uses a
related concept of persistent binding for speeding up the key generation process.
Unfortunately—and also underlining the importance of rigor—OPACITY has
been shown to display cryptographic weaknesses [14].2

1.2 Our Contribution and Related Work

Here we show that also the EAC protocol can be augmented to support a 0RTT
mode. Interestingly, the extension can be added on top with minimal changes to
the original protocol. As in the proposal of QUIC and TLS 1.3 we let the ter-
minal include an additional semi-static key pksemi

T in the regular EAC execution.
The key is transmitted as part of the auxiliary data field of the original EAC
description, and is thus also authenticated through the terminal’s signature in
the TA phase.

In the full run of the EAC protocol the semi-static key is still ignored for the
session key derivation. Instead, and as in the original EAC description, the chip
then receives the terminal’s ephemeral key and derives a session key from its
certified long-term key and this ephemeral key. The client authenticates through
a message authentication code under the session key. In this regard, the slightly
modified protocol complies with the original EAC protocol, using the auxiliary
data field to transfer an additional key.

If a chip later wants to reconnect to a terminal for which it already holds
the semi-static key, it only runs the CA phase again. But instead of receiving
a fresh ephemeral key from the terminal, it uses the semi-static key to build
the session key. Note that the semi-static key is already authenticated through
the previous execution of the EAC protocol. Omitting the transmission of the
terminal’s ephemeral key turns this step into a non-interactive protocol.

A straightforward idea to improve efficiency further may be to use the ter-
minal’s ephemeral key once more for 0RTT, instead of using the semi-static key.
The downside is that the terminal would need to store all ephemeral keys in a
certain time frame. This is why, both, we here as well as TLS [30] uses semi-
static keys instead. Nonetheless we discuss some potential variations of our basic
designs in Section 5.

We then show that our EAC+0RTT protocol, which consists of the (aug-
mented) EAC protocol run followed by any number of subsequent 0RTT EAC
protocol executions, meets the common security properties of an authenticated
key exchange protocol. But we, of course, need to account for the possibility of
replay attacks on the 0RTT data. Furthermore, it is convenient to model the
possibly many 0RTT EAC handshakes following a single EAC execution in a
2 Remarkably, the publication of this analysis pre-dates the latest version of SP800-
73-4 [11], dated May 2015, which lists OPACITY as a suitable solution for key
establishment.
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so-called multi-stage setting. To this end we adopt the multi-stage extension of
the Bellare-Rogaway model in [16].

The proof of security for the EAC+0RTT protocol does not rely on previous
results. Nevertheless, we wish to mention the many security analyses of the Ger-
man identity card protocols and certain eIDAS extensions [4,13,26,12,3,2,21,5,22].
Also, we remark general approaches to build low-latency protocols such as [20]
cannot be applied in the context of the EAC protocol without major changes to
the protocol.

1.3 Discussion
We emphasize that the design choices of the original EAC protocol are beyond
our discussion here. Our goal is to show that a 0RTT version can be implemented
based on the existing infrastructure. In particular, it is important that such a
solution is “non-invasive” in the sense that it does not require major changes
to the existing protocol but is added “on top”. Of course, any extension brings
some modifications, e.g., in our case both the chip and the terminal must now
implement the 0RTT EAC protocol and store semi-static keys. Yet, our proposal
for the augmented EAC protocol complies with the original EAC description by
using the auxiliary data field for the semi-static key. Furthermore, the 0RTT
mode is identical to the plain execution of the CA phase, only that the semi-
static key identifier is used instead of the one for the ephemeral key.

We also stress that we do not comment on the security-efficiency trade-off
concerning 0RTT modes, but rather offer the option to have such a mode for the
EAC protocol in principle. Whether chips and terminals eventually support this
mode and tolerate for example the replay problem, is case dependent. Still, the
examples of QUIC and TLS 1.3 indicate that, from an engineering perspective,
the desire to have such modes exists, and we provide a potential technical solution
for EAC.

Finally, let us point out that 0RTT transfers inherently include the small
risk that the transmitted data cannot be recovered by the receiver, e.g., if the
receiver has switched the semi-static key in the meantime. For common client-
server scenarios the client may thus have to re-transmit the data. This problem
is often outweighed by the efficiency gain in the regular cases. For smart card
applications it may be preferable to have the terminal first signal its support
of 0RTT and to communicate the current identifier of the semi-static key, thus
saving the card from performing unnecessary operations. This can be done with
the transmission of the certificate in the first step of the TA protocol, allowing the
card to decide which mode to execute. Strictly speaking, this would effectively
support a “lightweight 1RTT” protocol mode, still with significant efficiency
advantages.

2 Protocol Description

We next present the Extended Access Control protocol and its extension to
support 0RTT. The 0RTT extension should be seen as a particular mode or sub
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protocol which co-exists with the original EAC protocol. In particular, many
instances of 0RTT EAC may follow a single full EAC protocol run (until pksemi

T

changes, in which case the terminal will most likely reject).

2.1 The Extended Access Protocol

The Extended Access Control protocol establishes a secure channel between a
chip and a terminal. It is divided in two phases: the Terminal Authentication
(TA) and Chip Authentication (CA) as depicted in Figure 1. We integrate the
0RTT EAC protocol to the existing EAC protocol smoothly by using the pre-
specified auxiliary data field in which any data can be sent in an authenticated
manner to the chip during the TA phase. The auxiliary data field has originally
been included to pass further information to the chip such as the current date,
and the original EAC protocol ignores any such data if sent under an unknown
object identifier. In our case, the terminal can utilize this field to transmit its
semi-static key pksemi

T to the chip to enable future 0RTT EAC executions.

Terminal Authentication. The terminal authentication lets the chip C verify
the terminal T ’s identity and its permissions to access sensitive data. This is
achieved via the certificate certT held by T . This certificate contains not only the
terminal’s signed public key but also its granted access rights. We assume that
each certificate cert contains some unique identifier certID which can either be
the serial number or an identifier like CertID or CertUID, and that certID allows
to determine the user identity. Furthermore, as mentioned earlier, the terminal
authentication can be used to distribute the terminal’s public semi-static key to
the chip, thereby permitting future 0RTT EAC executions.

In a first step, the terminal sends its certificate for verification to the chip,
which can then either abort, in case of an invalid certificate, or proceed by ex-
tracting the terminal’s public key pkT from the valid certificate. If the session was
not aborted by C, T generates its ephemeral key pair (epkT , eskT ) and sends the
compressed version of the ephemeral key epkT to C. This initiates a challenge-
response mechanism. The chip replies with a nonce rC chosen uniformly at ran-
dom. The terminal authentication is complete, if the chip can then successfully
verify the received signature sT ← Sig(skT , idC ||rC ||Compr(epkT )||pksemi

T ) over
the chip’s identity, chosen nonce and the compressed ephemeral key. Depending
on whether the terminal offers support for 0RTT executions, the signature may
contain the terminal’s semi-static public key pksemi

T .

Chip Authentication. In the second part of the EAC protocol, the chip is
authenticated to the terminal and a session key for subsequent encrypted and
integrity-protected communications between chip and terminal is established.
The chip transmits its credentials to the terminal and receives in response the
ephemeral public key epkT (if the terminal did not abort due to an invalid certifi-
cate). After checking epkT against the compressed value received during the TA
phase, the chip can compute the Diffie-Hellman value k from epkT and its own
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Chip : Terminal :
key pair skC , pkC key pair skT , pkT

certificate certC for pkC certificate certT for pkT

card identifier idC card identifier idC

semi-static key pair sksemi
T , pksemi

T

Setup: domain parameters DC , certification key pkCVCA
Terminal Authentication (TA)

certT←−−−−−−−−−−−−−−
check certT with pkCVCA
abort if certT invalid
extract pkT from certT generate (eskT , epkT ) for domain DC

Compr(epkT )
←−−−−−−−−−−−−−−

pick rC ← {0, 1}n

rC−−−−−−−−−−−−−−→ sT ←
Sig(skT , idC ||rC ||Compr(epkT ) ||pksemi

T )

sT , pksemi
T

←−−−−−−−−−−−−−−
abort if

SVf(pkT , sT , idC ||rC ||Compr(pkT ) ||pksemi
T ) = 0

Chip Authentication (CA)

pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA
abort if invalid

epkT←−−−−−−−−−−−−−−
check epkT against Compr(epkT )
abort if invalid
pick r′

C ← {0, 1}n

k = DHDC (skC , epkT )
(Kenc,Kmac,K

′
mac) = KDF(k, r′

C)

τ = MAC(K′
mac, epkT )

τ, r′
C−−−−−−−−−−−−−−→ k = DHDC (pkC , eskT )

(Kenc,Kmac,K
′
mac) = KDF(k, r′

C)
abort if MVf(K′

mac, τ, epkT ) = 0

K = (Kenc,Kmac) K = (Kenc,Kmac)
sid = (EAC, pkC , epkT , rC , r

′
C , certIDC , certIDT , DC , pksemi

T ) sid = same as for chip
pid = certIDT pid = certIDC

store (pksemi
T , certT )

accept accept

Fig. 1: Terminal Authentication (TA) and Chip Authentication (CA). All oper-
ations are modulo q resp. over the elliptic curve. The gray part shows the 0RTT
support inserted in the (optional) auxiliary data field.

long-term secret key skC . Together with a uniformly random value r′C , the DH
value k is used to derive an encryption key Kenc, as well as two authentication
keys Kmac,K

′
mac.3 For final authentication, the chip uses K ′mac to compute a

3 For the necessity of K′
mac in a proof in the Bellare-Rogaway-style we refer to the

discussion in [13].
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tag τ over the ephemeral public key of the terminal. The tag is then transmit-
ted to the terminal, alongside the random value r′C used in the key derivation.
The terminal is now able to derive the DH key k and subsequently the keys
(Kenc,Kmac,K

′
mac), where the session key K is given by (Kenc,Kmac). The ter-

minal aborts the CA phase prematurely if it is not able to verify τ . Otherwise
the session identifier and partner identifier are generated on both sides. If C has
received a semi-static key, it saves this key along with the terminal’s certificate
certT for further reference. The EAC protocol execution is completed successfully
if both parties terminate in accepting state.

2.2 The 0RTT EAC Protocol
Figure 2 shows the modified protocol supporting 0RTT between a chip C and a
terminal T . The chip now holds additional information in form of the semi-static
public key pksemi

T , which it obtained during a previous EAC protocol interaction
with T . In the 0RTT extension of the EAC protocol, C and T perform the
following actions, corresponding to a non-interactive version of the CA protocol
since the pksemi

T is used instead of epkT . Thus, the extra communication round in
the CA protocol in which T sends the (uncompressed) ephemeral key becomes
obsolete.

At first, the chip C picks a random nonce r′′C and computes the DH shared
value k = DHDC

(skC , pksemi
T ). Using these two values, C then derives the keys

(Kenc,Kmac,K
′
mac) where, as in the EAC protocol, K ′mac is an additional au-

thentication key used internally in the 0RTT EAC key exchange (see [13] for
a discussion). The session key is then given by K = (Kenc,Kmac). Finally, C
computes the MAC-value over the semi-static public key

τ = MAC(K ′mac, pksemi
T )

and sends its first (and only) flight of data to T consisting of
– the authentication token τ ,
– the previously chosen nonce r′′C ,
– its public key pkC , as well as its certificate certC ,
– the domain parameter DC , and
– early application data encrypted under the previously derived key.

Upon receiving the chip’s message, T verifies the validity of pkC and certC , and
aborts if the verification is unsuccessful. Otherwise, T uses the public key, its
semi-static secret sksemi

T and the random nonce r′′C to derive K ′mac and the 0RTT
EAC session key K. T can then check the validity of the authentication token τ
and aborts if the tag cannot be verified. If τ is valid, T decrypts the attached
early application data. This completes the 0RTT EAC execution.

If the terminal does not support 0RTT, or the semi-static key provided by
the chip is outdated or otherwise invalid, the process is aborted and the chip
must initiate a fresh execution of the full EAC protocol in order to establish
an authenticated secure channel with the terminal. There are, of course, sev-
eral conceivable ways to recover from failures in the 0RTT handshake. Possible
alternatives are described in Section 5.3.
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Chip : Terminal :
key pair skC , pkC key pair skT , pkT

certificate certC for pkC certificate certT for pkT

card identifier idC card identifier idC

semi-static public key (pksemi
T , certT ) semi-static key pair sksemi

T , pksemi
T

Setup: domain parameters DC , certification key pkCVCA
Zero Round-Trip Time (0RTT)

pick r′′
C ← {0, 1}n

k = DHDC (skC , pksemi
T )

(Kenc,Kmac,K
′
mac) = KDF(k, r′′

C)

τ = MAC(K′
mac, pksemi

T )
τ, r′′

C , pkC , certC , DC−−−−−−−−−−−−−−→ check pkC , certC with pkCVCA
abort if invalid
k = DHDC (pkC , s)
(Kenc,Kmac,K

′
mac) = KDF(k, r′′

C)
abort if MVf(K′

mac, τ, pksemi
T ) = 0

K = (Kenc,Kmac) K = (Kenc,Kmac)
sid = (0RTT, r′′

C , pkC , pksemi
T , certIDC , certIDT , DC) sid = same as for chip

pid = certIDT pid = certIDC

accept accept

Fig. 2: 0RTT EAC. All operations are modulo q resp. over the elliptic curve.
Note that the fields sid and pid are used within the security proof and describe
partnered sessions and intended communication partners.

3 Security Model

In this section we present the security model underlying our analysis. As a basis
we use the common real-or-random model of Bellare and Rogaway [1] which
provides strong security guarantees against active attacks. To capture the notion
of zero round-trip time in a multi-stage setting we adapt the model proposed
for the analysis of Google’s QUIC protocol by Fischlin and Günther [16]. The
model will be suitable for protocols which have a special 0RTT mode in which
the initiator of a previous session can use a semi-static key of a responder to
create a shared session key with a single message.

3.1 Overview

As mentioned beforehand, the security model is situated within the game-based
approach of Bellare and Rogaway (BR) [1] in which an adversary, with full con-
trol over the network, must be able to distinguish real session keys from inde-
pendently drawn keys. To this end, the adversary can interact with protocol
participants and instances via oracles. To initiate a new session the adversary
can call the NewSession oracle, which takes a label to determine which of the two
modes (full EAC or 0RTT EAC) to execute. The adversary can query the Send
oracle to send protocol message to an instance, immediately getting the party’s
reply in return. The adversary is furthermore permitted to learn the long-term
secret keys of parties through a Corrupt oracle.

8



Leakage of session keys and semi-static secret keys, which are used to derive
0RTT session keys, is modeled through Reveal and RevealSemiStaticKey queries,
respectively. To engage with the BR game, the adversary may perform Test
queries for some session(s) of the protocol, resulting in either the receipt of the
corresponding session key or of an independently and uniformly chosen key, the
choice made at random. In order to win the game, the adversary must now
distinguish which kind of key it received. A detailed overview over the queries is
given in Section 3.3.

In order to avoid trivial attacks, some restrictions concerning the Test queries
apply. Foremost, the party of a tested session must not be corrupt, or else the
adversary is trivially able to compute the session key. Analogously, neither the
tested session key has been revealed to the adversary nor the party’s semi-static
secret key in case of the 0RTT mode. Since both communication parties are
supposed to derive the same session key in a key exchange protocol, we must also
rule out similar trivial attacks on the communication partner of a tested session.
Here, communication partners are usually identified through session identifiers
which determine sessions belonging together. Details follow.

3.2 Multi-Stage Key Exchange

A single execution of EAC between a chip and a terminal may be followed
by multiple 0RTT handshakes between the parties. To model this situation,
we adopt the notion of multi-stage key exchange as originally introduced in
the related QUIC analysis of Fischlin and Günther [16]. This model allows for
multiple keys to be established within a single session. As opposed to the multi-
stage setting encountered in e.g. QUIC, we can make use of a simplified setting
here, since no key derived within a session is used to secure communications in
further stages of the same session. Thus, all keys derived in a single session can
be seen as independent.

In order to describe sessions formally, the subsequent notations are used,
essentially following [16]. The participants in the key exchange protocol are given
by elements in the set U . Often, parties fulfill different roles, acting as clients
and servers, or in the EAC context both chips and terminals.

Chips are usually denoted by C ∈ U and terminals by T ∈ U . Each party
U ∈ U holds a long-term public key pkU with corresponding secret key skU and
certificate certU (under the certification authority’s public key pkCVCA). Addi-
tionally, terminals T can hold semi-static key pairs (pksemi

T , sksemi
T ). Since the semi-

static key may change during the attack (where we even let the adversary deter-
mine the point in time when the key is refreshed, via NewSemiStaticKey queries)
it is useful to introduce an identifier sskid for the current value. As the semi-
static keys can also be revealed to the adversary through a RevealSemiStaticKey
query we also introduce a flag stssk,sskid ∈ {fresh, revealed} to mark the current
state of the semi-static key sskid.

Each participant can run multiple instances of the key exchange protocol
in parallel. In the EAC+0RTT case each of these sessions is usually composed
out of one execution of the EAC protocol, followed by an arbitrary number of
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0RTT EAC executions. We call each of these sub protocol execution a stage. For
simplicity we assume that M is the maximum number of stages.4

Each session can be uniquely referred to by an administrative identifier
label = (U, k) ∈ LABELS, where U ∈ U denotes the owner of the session label
and k ∈ N is used to determine which of the potentially multiple sessions of U
is considered.

During the attack a list of sessions ListS is kept which contains a record for
any existing session. Each record is updated during the attack and holds the
following information:

- label ∈ LABELS is the (administrative) session label.
- role ∈ {initiator, responder} is the session owner’s role in this session. For the
EAC protocol this corresponds to the distinction between chip (= initiator)
and terminal (= responder).5

- stage ∈ {1, . . . ,M} specifies the current stage, where M is the maximum stage.
The stage changes from i− 1 to i once the state of execution stexec,i−1 changes
to either accepted or rejected.

- mode describes the order of the session’s sub protocols to be executed and
this vector with M entries is initialized upon creation of the session. For
EAC+0RTT case mode can either be (EAC, 0RTT, 0RTT, . . . ) or it can be
(0RTT, 0RTT, 0RTT, . . . ) to cover the cases that the session should first exe-
cute the EAC protocol and then 0RTT EAC runs, or start with 0RTT EAC
executions right away (e.g., if the chip already knows the semi-static key from
some other session). Each new EAC execution is captured by opening a new
session.

- pidi specifies the intended communication partner in stage i. The default value
is (⊥, . . . ,⊥) and for each stage the value may be set to an actual identifier
once during the execution.

- ownid identifies, similar to pid, the session owner but remains unchanged be-
tween stages.

- sskid is the key identifier for the semi-static key pair used in a session. Default
is ⊥. Note that we let the sskid remain identical among stages of a session since
we assume that the key is stored by the party throughout the session.

- stexec,i ∈ {running, accepted, rejected} denotes the current state of execution in
stage i. The default value upon creation of the session and after an increment
in stage is running

- sid ∈ ({0, 1}∗ ∪ {⊥})M indicates the session identifiers where sidi indicates the
session identifier for stage i ∈ {1, . . . ,M}. The default value is (⊥)M.

- stkey ∈ {fresh, revealed}M indicates the state of the session key Ki for stage
i ∈ {1, . . . ,M}. The default value for each stage is fresh.

- K ∈ ({0, 1}∗ ∪ {⊥})M where Ki indicates the established session key for stage
i ∈ {1, . . . ,M}. The default value for each stage is ⊥.

4 As in [16], the constant M for the maximum stage is introduced to facilitate the
notation. In fact, M may be arbitrarily large.

5 This is the point of view from the cryptographic protocol flow, although the terminal
may technically first need to power the card, of course.
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- tested ∈ {true, false}M keeps track of tested session keys, where testedi indicates
whether Ki has been tested or not. Default value for each key is false.

In order to be able to refer to a specific entry within the tuple for a session
in ListS, we use the notation label.〈entry〉. For example, label.ownid specifies the
owner of the session with unique identifier label. If we compare two sessions with
labels label, label′ then, if clear from the context, we sometimes simply write
sid, sid′ instead of label.sid and label′.sid, and similar for other entries.

Partnering of Sessions and Correctness. We call the session label owned by U
partnered with the session label′ owned by V (and vice versa), if

– the sessions share the same session identifier, i.e., for each stage i ∈ {1, . . . ,M}
sidi = sid′i,

– the partner identifiers of both sessions reflect the partnered instances ac-
cordingly, e.g., in the EAC protocol C has set pid = certIDT and T has set
pid′ = certIDC .

The pairing of partnered sessions is defined via the session identifiers. We
require that any execution between honest instances, that was not interfered
with, is correctly partnered. Furthermore, as a correctness criterion, partnered
sessions should have derived the same session key. We will later demand this
explicitly as part of the Match security property. Note, that the own id ownid
as well as the partner id pid is set in the EAC+0RTT protocol according to the
identities given in the certificates certC and certT , respectively.

3.3 Adversary Model

We model the adversary by a probabilistic polynomial time (PPT) Turing ma-
chine denoted by A. The adversary is active and in full control over the network.
This implies in particular that— additional to the interception of messages—the
adversary can schedule when (and if) message delivery occurs. Furthermore, the
adversary may alter and inject messages. We assume the adversary learns if a
participant in the protocol has terminated and/or accepted.

Forward Secrecy. The leakage of a party’s long-term secret(s) may result in
the insecurity of session keys that were derived using the then compromised key
material. Session keys that remain secure, even in the event of a long-term secret
compromise, are called forward secure. We note that in the 0RTT EAC protocol
the corruption of a terminal T and thereby the leakage of its long-term secret
key has no impact on the security of session keys derived by T (or its intended
partners). This is due to the fact that the long-lived secret skT is only involved
in the authentication when signing the ephemeral and semi-static key. The long-
term secrets of chips, however, are explicitly used to derive session keys, and
therefore these keys cannot support forward security. To reflect this one-sided
forward security we say that the 0RTT EAC protocol provides terminal forward
secrecy. More abstractly, we speak of responder forward secrecy in our model.
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Authentication. The authentication property of the EAC+0RTT protocol is mu-
tual in the sense that both parties authenticate themselves via certificates. Put
differently, none of the parties stays anonymous (as clients in some TLS sub
protocol versions do).

Adversarial Queries. As indicated before, in order to break key secrecy, the goal
of the adversary is to distinguish real from random-looking session keys. Not
all interactions of the adversary with the protocol are admissible at any point.
In particular, there are conditions under which the adversary trivially loses the
game, e.g. when both revealing and testing session keys of partnered sessions
as mentioned before. To keep track if one these cases has occurred, a flag lost
is introduced with initial value false. In order to interact with the protocol, the
adversary can issue the following queries to the oracles:

NewSession(U, role, prot): Establishes a new session with unique new label label
for U , stores the role value in label.role← role, and stores the specified type
of session prot to be established in label.mode, e.g., for EAC+0RTT we have
prot ∈ {EAC,0RTT} × {0RTT}M−1. Returns label.

NewSemiStaticKey(T ): Generates a fresh semi-static key pair (pksemi
T , sksemi

T ) for
terminal T ∈ U along with corresponding new unique identifier sskid. In par-
ticular, stssk,sskid ← fresh is set. Returns pksemi

T and sskid. We conservatively
assume that the adversary may still run executions with previous semi-static
keys, e.g., if servers in a distributed setting do not update the keys perfectly
simultaneously.

Send(label,m): Causes the message m to be sent to the session label. If there
exists no session with label label, the query outputs ⊥. Else the response of
the session owner U upon receipt of message m is returned, and the state of
execution stexec is updated.
- Should stexec,i change to accepted for some i, the current execution of the
protocol is suspended and accepted is returned. The adversary can now,
for example, decide whether to test the session key or not, and can later
resume the session by sending a special Send(label, cont) command.

- Should stexec,i change to accepted for some i and there exists a session
label′ with sidi = sid′j and st′key,j = revealed for some j with (label′, j) 6=
(label, i), then stkey,i is also marked as revealed. This captures for example
replay attacks in another session or even within this session here at a
different stage.

- Should stexec,i change to accepted for some i while there exists a session
label′ with sidi = sid′j such that tested′j = true for some j with (label′, j) 6=
(label, i), set label.Ki ← label′.Kj and testedi ← true.

- Should stexec,i change to accepted for some i with an intended commu-
nication partner pidi that was previously corrupted, then set stkey,i ←
revealed.

Reveal(label, i): Returns the session key Ki of the session with label label.
- If there exists no session labeled label, or if i > stage, or if the session
key Ki has already been tested, or if stexec,i 6= accepted, then return ⊥.
Otherwise, set stkey,i to revealed and return Ki to the adversary.
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- If there exists a session with label label′ in ListS with sidi = sid′j for some
j, then set st′key,j ← revealed.

RevealSemiStaticKey(sskid): If there exists a semi-static key pair (pksemi
T , sksemi

T )
corresponding to the identifier sskid, then sksemi

T is output and stssk,sskid is set
to revealed. To reflect the impact of the revealed semi-static key on sessions
that used this key, set label.stkey,i to revealed for all i ∈ {1, . . . ,M} and for
each session label with label.sskid = sskid.

Corrupt(U): Returns the long-term secret key skU of U to the adversary. Sessions
owned by U may not be queried any further.
- If U is a chip, forward secrecy is not given and all session keys must be
regarded as exposed. Therefore, label.stkey,i ← revealed for each session
label owned by U and for all i ∈ {1, . . . ,M}.

- If, on the other hand, U is a terminal, terminal forward secrecy is still
granted and, thus, no further measures need to be taken.

Test(label, i): Tests the session key of stage i in the session corresponding to
label. The oracle receives the test bit btest as state. This bit btest is chosen
randomly at the outset and then considered permanently set during the game
execution.
- If there exists no session with label label or if label.stexec,i 6= accepted,
the query returns ⊥.

- If stage i of the session with label label has been tested previously, i.e., if
testedi = true for this session, the session key Ki is returned once more.

- In any other case, testedi is set to true. If btest = 0, a key K $←− D is
sampled at random from the session key distribution D. If btest = 1, on
the other hand, K is set to the actual session key label.Ki of stage i.
Additionally, for a partnered session label′ with sidi = sid′j (if existent)
set label′.Kj ← label.Ki and label′.testedj ← true. Return K.

3.4 Multi-Stage BR Security of 0RTT Key Exchange Protocols

We adopt the approach of Brzuska et al. [7,6] and, Fischlin et al. [16], and
therefore separate the required security properties into Match security and BR
security. While the conditions on Match security guarantee that the session iden-
tifiers sid enable the correct identification of partnered sessions, Multi-Stage BR
security refers to Bellare-Rogaway-like key secrecy as introduced earlier in the
multi-stage setting.

The subsequent analysis of the EAC+0RTT protocol is based on the following
security notions as described in [15] and adapted to our particular setting:

Match Security. The Match security game GMatch
KE,A is defined as follows.

Definition 1 (Match security). Let n be the security parameter. Furthermore
let KE be a key exchange protocol and A a PPT adversary interacting with KE
via the queries defined in Section 3.3 in the following game GMatch

KE,A (n):
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Setup. The challenger generates long-term public/private-key pairs with certifi-
cates for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the
queries NewSession, NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey,
and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A (n) = 1, if at least one of the

following conditions hold:

1. There exist two labels label, label′ and stages i, j ∈ {1, . . . ,M} such that
(label, i) 6= (label′, j) but sidi = sid′j 6= ⊥, label.stage ≥ i, label′.stage ≥ j
and stexec,i 6= rejected, and st′exec[j] 6= rejected, but Ki 6= K′i. (Different session
keys in partnered sessions, either within the same session at different stages
or across two sessions.)

2. There exist two labels label, label′ such that sidi = sid′j 6= ⊥ for some stages
i, j ∈ {1, . . .M}, role = initiator, and role′ = responder, but label.ownid 6=
label′.pid or label.pid 6= label′.ownid. (Different intended partner.)

3. There exist at least three labels label, label′ and label′′ and stages i, j, k such
that (label, i), (label′, j), (label′′, k) are pairwise distinct, but sidi = sid′j =
sid′′k 6= ⊥ and for any two of the three sessions with role responder and mode
0RTT it holds that the owners are distinct.
(More than two sessions share a session id for some stage and this event
was not caused by a simple replay attack on the 0RTT protocol for the same
responder.)

We say KE is Match-secure if for all PPT adversaries A the following advantage
function is negligible in the security parameter n: AdvMatch

KE,A := Pr
[
GMatch

KE,A (n) = 1
]
.

Multi-Stage BR Key Secrecy. Next is the key secrecy in the multi-stage set-
ting:

Definition 2 (BR Key Secrecy). Let n be the security parameter. Further-
more let KE be a key exchange protocol with key distribution D and let A be a
PPT adversary interacting with KE via the queries defined in Section 3.3 within
the following game GBR,D

KE,A(n):

Setup. The challenger generates long-term public/private-key pairs and certifi-
cate for each participant U ∈ U , chooses the test bit btest

$←− {0, 1} at random,
and sets lost← false.

Query. The adversary A receives the generated public keys and has access to the
queries NewSession, NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey,
Corrupt, and Test. Note that these queries may set lost to true.

Guess. At some point, A stops and outputs a guess bguess.
Finalize. The challenger sets the ‘lost’ flag to lost← true if there exist two (not

necessarily distinct) labels label, label′ and stages i, j ∈ {1, . . . ,M} such that
sidi = sid′j, label.stkey,i = revealed, and label′.testedj = true. (Adversary has
tested and revealed the key in a single session or in two partnered sessions.)
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A wins the game, denoted by GBR,D
KE,A = 1, if bguess = btest and lost = false. We say

that Multi-Stage BR key secrecy holds for KE if for all PPT adversaries A the
advantage function

AdvBR,D
KE,A(n) := Pr

[
GBR,D

KE,A(n) = 1
]
− 1

2

is negligible in the security parameter n. A key exchange protocol KE is further
called Multi-Stage BR-secure if KE is both Match-secure and BR key secrecy for
KE holds.

We note that the winning conditions are independent of the forward secrecy
property of the KE protocol. Forward secrecy is already taken into account in
the formulation of the Reveal and Corrupt queries and the finalization step of the
game.

4 Security of the EAC+0RTT Protocol

In this section we will first describe the security assumptions on which we will
base the then following security proof of the EAC+0RTT protocol.

4.1 Security Assumptions

In the following we will provide definitions of the basic cryptographic assump-
tions underlying the security proof of the EAC+0RTT protocol. In particular, we
will introduce a double-sided (or symmetric) variant of the PRF-ODH assump-
tion, further referred to as dPRF-ODH. We start by recalling what it means for
signatures and certificates to be existentially unforgeable under chosen message
attacks:

Definition 3 (EUF-CMA assumption). Let n be the security parameter. Fur-
thermore let S = (SKG,Sig,SVf) be a signature scheme and let A be a PPT
algorithm. We define the following EUF-CMA security game GEUF-CMA

Sig,A (n):

Setup. Generate a key pair (pk, sk) $←− SKG(1n) and give pk to the adversary A.
Query Phase. In the next phase A can adaptively query messagesm1,m2, . . . ,mq ∈
{0, 1}∗ with q ∈ N arbitrary, which the signing oracle answers with σ1 ←
Sig(sk,m1), σ2 ← Sig(sk,m2), . . . , σq ← Sig(sk,mq).

Output. At some point, A outputs a message m∗ and a potential signature σ∗.
Output 1 iff SVf(pk,m∗, σ∗) = 1 and m∗ 6= mi for all i = 1, 2, . . . , q.

We define the advantage function

AdvEUF-CMA
S,A (n) := Pr

[
GEUF-CMA

Sig,A (n) = 1
]

We say that a signature scheme S is EUF-CMA secure, if for any A the advantage
function is negligible (as a function in n).
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The definitions for certification schemes work analogously. That is, a certifi-
cation scheme consists of three algorithms C = (CKG,CA,CVf) for creating the
authority’s key pair, the certification of a public key, and for verifying a public
key with respect to a certificate. We allow for multiple certifications of the same
public key but assume that each certification requests is accompanied by an
identifier id which will be included in certID. Then we can define unforgeability
as for signatures, implying that the adversary cannot forge a valid certificate for
a new public key or for a previously certified key under a new identity. We write
AdvEUF-CMA

C,A for the advantage of an adversary in the EUF-CMA game against a
certification scheme. In the EAC protocol the authority’s public key is given by
pkCVCA and the key generation, certificate creation and certificate verification
are often described implicitly only.

Furthermore, we can define message authentication codes (MACs) M =
(MKG,MAC,MVf) analogously, except that the key generation algorithm only
outputs a single secret key and the adversary does not receive any initial input
in the attack. We write AdvEUF-CMA

M,A for the advantage of an adversary A in this
game.

Finally, we need that the compression function Compr is collision-resistant.
That is, for an adversary A it should be infeasible to find group elements X 6= Y
such that Compr(X) = Compr(Y ). We write AdvCR

Compr,A to denote the advantage
of such an adversary A. We remark that we actually need a weaker requirement
from Compr, resembling second preimage resistance, namely that for a random
group element X it should be hard to find a colliding different Y , when given
the discrete logarithm of X with respect to the group.

Next, we define our version of the PRF-ODH assumption as a slight extension
of the original definition in [24,25]:

Definition 4 (dPRF-ODH assumption). Let G = 〈g〉 be a cyclic group of
prime order q with generator g, PRF : G× {0, 1}∗ → {0, 1}n be a pseudorandom
function with keys in G, input strings from {0, 1}∗, and output strings of length n,
let b ∈ {0, 1} be a bit, and A be a PPT algorithm.

We define the following dPRF-ODH security game GdPRF-ODH,G,b
PRF,A :

Setup. The challenger chooses u $←− Zq at random and gives gu to A.
Query Phase 1. In the next phase A can ask queries of the form (A, x) ∈

G × {0, 1}∗ to oracle Ou which the challenger answers with the value y ←
PRF(Au, x) if A ∈ G. Otherwise the challenger returns ⊥.

Challenge. At some point A asks a challenge query x̂ ∈ {0, 1}∗ upon which
the challenger chooses v $←− Zq at random, sets y0 ← PRF(guv, x̂) and y1

$←−
{0, 1}n, and answers with (gv, yb).

Query Phase 2. As in the first query phase the adversary A can ask queries of
the form (A, x) ∈ G×{0, 1}∗ to the oracle Ou which the challenger answers
with the value y ← PRF(Au, x), except that now A is not allowed to query
the challenge pair (gv, x̂). Additionally,6 A can now ask queries of the form

6 This is the extra power which the adversary has in the double-sided version
dPRF-ODH over the plain PRF-ODH assumption.
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(B, x) ∈ G×{0, 1}∗ which are distinct from the pair (gu, x̂) to an oracle Ov.
The challenger answers such queries with the value y ← PRF(Bv, x).

Guess. Eventually, A stops and outputs a bit b′ which is also the game’s output,
denoted by GdPRF-ODH,G,b

PRF,A .

We define the advantage function AdvdPRF-ODH,G
PRF,A :=

∣∣∣Pr
[
GdPRF-ODH,G,0

PRF,A = 1
]
−

Pr
[
GdPRF-ODH,G,1

PRF,A = 1
] ∣∣∣ and, assuming a sequence of groups in dependency of the

security parameter, we say that the dPRF-ODH assumption holds for PRF with
keys from (Gn)n if for any A the advantage function is negligible (as a function
in n, assuming that we have a sequence of groups in n).

4.2 Match Security

In this section we show that the EAC+0RTT protocol achieves Match security,
satisfying basic partnering properties. Recall that we defined the session identi-
fiers in the main EAC protocol to be

sid = (EAC, pkC , epkT , rC , r
′
C , certIDC , certIDT , DC , pksemi

T ).

and in the 0RTT EAC protocol as

sid = (0RTT, r′′C , pkC , pksemi
T , certIDC , certIDT , DC).

Theorem 1. The EAC+0RTT protocol is Match-secure. For any efficient ad-
versary A we have

AdvMatch
EAC,A ≤ q2

p ·max{2−|nonce|, 1
q}

where qp is the maximum number of sub protocol executions, |nonce| is the bit-
length of each of the nonces rC , r

′
C , r

′′
C , and q is the order of the group from

which (ephemeral) keys are chosen.

Note that qp ≤ M · qs for the maximal number M of stages and the maximal
number qs of sessions.

Proof. In order to achieve Match Security (cf. Definition 1), we need to show
that the following three conditions hold:

(i) Partnered sessions derive the same session key in all stages.
(ii) Sessions are partnered correctly, i.e., with the intended communication

partner in all stages.
(iii) No more than two sessions share a session identifier for some stage.

Ad (i): Since partnered sessions share the same session identifiers sid by defi-
nition, and in particular the matching sub protocol mode, they necessarily also
agree on the session key. This is due to the fact that the session identifier al-
ready determines all inputs for key derivation: The entries epkT (in case of EAC)
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resp. pksemi
T (in case of 0RTT EAC), and pkC and DC . These values ensure the

correct computation of the DH key k on either side by specifying the DH shares
for computation in the domain DC . This DH key k is then used as input to
the key derivation function, along with the nonce r′C (for EAC) resp. r′′C (for
0RTT EAC). Since the corresponding nonce is also contained in the session
identifier, and thereby guaranteed to be identical in both the chip’s and termi-
nal’s key derivation, both sides will output the same value for the session key
K = (Kenc,Kmac).
Ad (ii): Both certificate identifiers certIDC and certIDT are included in the
session identifier. Therefore, agreement on the session identifier yields agreement
on the intended partner’s identity, as reflected in the respective certificate.
Ad (iii): We distinguish two cases, according to the sub protocol.

If all three session identifiers agree for the EAC protocol, then it must be that
any combination of two sessions of honest users with identical identifiers yields a
third collision only if the honest chip or honest terminal in the third session picks
its random value rC , r

′
C (in case of a chip) resp. epkT (in case of a terminal) such

that it collides. This can only happen with probability at most max{2−2n, 1/q}
for the length n of rC and r′C resp. the group size q. Since there are at most
q2

p many combinations of the initial two sessions, where qp denotes the maximal
number of sub protocol executions, we derive a bound of q2

p ·max{2−2n, 1/q} in
this case.

The other case is when the threefold collision occurs for 0RTT EAC sessions.
Note that the adversary can only win if at least two of the three sessions are
owned by a chip (with role = initiator). However, the probability that any two
sub executions in chip sessions match on r′′C is at most q2

p · 2−n. ut

Multi-Stage BR Key Secrecy. Similarly, we can show key secrecy, and even
argue forward secrecy with respect to subsequent terminal corruptions. We note
that forward secrecy with respect to chip corruptions is impossible to achieve for
EAC since the chip does not generate ephemeral keys for executions but rather
uses the long-term secrets:

Theorem 2. The EAC+0RTT protocol provides key secrecy (with responder for-
ward secrecy). That is, for any efficient adversary A there exist efficient adver-
saries B3,B4,B5,B10/11 such that

AdvBR,D
KE,A(n) ≤ 3q2

p ·max{2−|nonce|, 1
q}+ AdvCR

Compr,B3

+ AdvEUF-CMA
C,B4

+ qT · AdvEUF-CMA
S,B5

+ 4qp · qC ·max{qp, qsskid} · AdvdPRF-ODH
B10/11

where qp is the maximum number of sub protocol executions, qs is the maximal
number of sessions, qC is the maximal number of chips, qT is the maximal num-
ber of terminals, |nonce| is the bit-length of each of the nonces rC , r

′
C , r

′′
C , and q

is the order of the group from which (ephemeral) keys are chosen.
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Proof. In the proof it is convenient to make a restriction on the adversary to
make a single Test query only, and then distinguish between the cases that the
now unique test session is for a chip or for a terminal, and whether it happens in
an EAC execution or a 0RTT EAC execution. However, since all cases share a
common structure we first exclude some general attack strategies with a game-
hopping technique, starting with the original BR key secrecy.

Game 0. The original BR key secrecy game.

Game 1. As the original game, but this time abort the game, declaring the
adversary to lose, if there exist two stages in chip sessions with the same session
identifier. In particular, it follows that no chip sessions in mode EAC coincide
for rC , r

′
C , and in mode 0RTT EAC match on r′′C .

Similar to Match security we obtain

AdvG0
KE,A ≤ AdvG1

KE,A + q2
p · 2−|nonces|.

Game 2. Is identical to the previous game, only that the adversary this time
loses immediately, if there exist two stages in sessions of honest terminals picking
the same ephemeral key epkT or the same semi-static key pksemi

T .
Similar to Match security and considering the two options for collisions, we

obtain
AdvG1

KE,A ≤ AdvG2
KE,A + 2 · q2

p · 1
q .

Game 3. As the previous game, but this time the adversary loses if a stage in a
session of an honest terminal sends Compr(epkT ) for some ephemeral key epkT ,
but such that a session of an honest chip receives a value epk′T 6= epkT with
Compr(epkT ) = Compr(epk′T ).

Any such incidence can be used to break the collision-resistance of Compr. To
this end we construct an adversary B3 which runs a black-box simulation of the
key exchange attack of A according to game G2, generating all parameters with
known secrets. If the above happens, then B3 can easily output such a collision.
It follows that

AdvG2
KE,A ≤ AdvG3

KE,A + AdvCR
Compr,B3

.

Game 4. As the previous game, but this time we abort the game with a loss
for the adversary if a stage of a session of an honest party accepts a certificate
for a long-term key pkC or pkT and identifier certID as valid, even though the
certificate authority has not issued a certificate for that pair.

This can be straightforwardly used to mount a successful attack against the
certificate scheme. That is, one builds via a black-box reduction an adversary
B4 against the certificate scheme C by letting this adversary B4 simulate all
other steps of the key exchange protocol internally, and only using the scheme’s
public key pkCVCA and the oracle to create certificates. If there is some session
where a new pair (pk, id) for cert is verified as valid, then we have B5 output the
corresponding certificate as a forgery. It follows that

AdvG3
KE,A ≤ AdvG4

KE,A + AdvEUF-CMA
C,B4

.
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Game 5. As the previous game, but this time we abort if a stage of a chip
session accepts a signature for value idC ||rC ||Compr(epkT )||pksemi

T which has not
yet been signed by an honest terminal at this point.

This time we construct an adversary B5 against the unforgeability of the
underlying signature scheme. Adversary B5 receives a public key pk as input and
initially guesses the index of a terminal for which a forgery should happen. It
creates all other parameters for the key exchange internally, but sets pkT = pk
for the guessed index. Any signature creation for this terminal is performed by
querying the signature oracle, all other steps can be carried out by B5 itself. If
at some point a chip accepts a signature for a previously unsigned message, then
B5 outputs this message-signature pair as a forgery attempt. With probability
1/qT this will be for the predicted index of the terminal, such that

AdvG4
KE,A ≤ AdvG5

KE,A + qT · AdvEUF-CMA
S,B5

.

Game 6. Identical to the previous game but in which the adversary makes only
a single Test query and announces the stage and index of the only test session
according to the order of NewSession queries at the beginning of its attack; if
the adversary later tests a different session we declare a loss for the adversary.

A straightforward hybrid argument, guessing the index in advance, shows
that this can decrease the adversary’s success probability by a factor 1/qp of the
total number of stages in sessions. Hence, we have

AdvG5
KE,A ≤ qp · AdvG6

KE,A.

Game 7. As the previous game, but this time let the adversary also announce
in advance if the unique Test query is for an EAC execution or for a 0RTT EAC
execution.

Since we can guess which of the two cases happens with probability at least
1
2 we obtain

AdvG6
KE,A ≤ 2 · AdvG7

KE,A.

Game 8. As the previous game, but this time let the adversary also announce
in advance a chip (and thus its long-term public key) such that a stage key of a
session of the chip is tested, or partnered with a terminal stage which is tested.

Since we can guess the right chip index with with probability at least 1
qC

we
obtain

AdvG7
KE,A ≤ qC · AdvG8

KE,A.

Game 9. As the previous game, but this time let the adversary also announce
the following in advance:

– In case it declares at the beginning to test an EAC execution (according
to game G7), the adversary announces the stage and index of a terminal
session (hence determining the terminal’s ephemeral key) which is tested, or
partnered with the tested chip session; and
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– In case it declares to test a 0RTT EAC execution, the index of semi-static
key of a terminal according to the order of NewSemiStaticKey queries such
that the terminal’s session is tested or partnered to a tested session.

Once more, a guessing strategy yields

AdvG8
KE,A ≤ max{qp, qsskid} · AdvG9

KE,A.

Now we can make our case distinction. Note that at this point A makes a
single Test query and announces in advance the corresponding key indices and
the type of session. By the above games, if a chip session gets tested, then it has at
most one (honest) partner. If it is a terminal session, it may have more than one
partner, in case of a replay attack on a terminal. However, the partnered sessions
all compute the same session key due to the identical session identifiers. Also,
the adversary cannot make a Reveal query to either of the partnered sessions
without forcing a loss. In this sense we say that each test session has at most
one partner, meaning that all partners compute the same secret key.

Furthermore, if the owner of the tested session is an (at that point uncorrupt)
terminal, then we may assume that the partnered chip, if existing, is not corrupt
either. The reason is that, otherwise, the chip’s session key would be set to
revealed through the Corrupt query and the adversary would lose the game. It
follows that the Diffie-Hellman key used to compute the session key is based
on an uncorrupt long-term chip key pkC and a genuine ephemeral key epkT

resp. semi-static key pksemi
T of the honest terminal. The latter holds by the above

game hopping, since the adversary can no longer at this point have sent an
invalid epkT (since the signature in the TA phase ranges over Compr(epkT ) and
one can only transmit the actual epkT in the CA phase), nor an invalid pksemi

T

(which is signed in clear in the TA phase). Moreover, any RevealSemiStaticKey
query for pksemi

T would set the session key to be revealed (and ephemeral keys
cannot be leaked).

Analogously, if the owner of the tested session is an honest chip then the
partnered terminal (if existing) must have honestly completed its execution, else
the session identifier on the terminal side would not have been set. In particular,
the contribution to the deployed Diffie-Hellman key is an authenticated key epkT

or pksemi
T . Note that a subsequent corruption of the terminal does not reveal either

of the two types of keys, and a RevealSemiStaticKey for the semi-static key would
cause the adversary to lose anyway.

In summary, the shares of the Diffie-Hellman key in the test session (and
the potentially partnered sessions) are picked by honest parties and are never
revealed in the course of the attack. This allows us now to replace the key
triple (Kenc,Kmac,K

′
mac) in the at most two sessions by random elements via

the dPRF-ODH assumption. We start with the case that the test session is in a
0RTT EAC execution.

Case A: Test of a session key in a 0RTT EAC execution.
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Game A.10. As Game 9, but in this step we replace the tuple (Kenc,Kmac,K
′
mac)

in the tested stage of the session and in any partnered session by the same
independent random values (K̃enc, K̃mac, K̃

′
mac).

We show that if there exists an adversary A that can distinguish Game 9
from Game A.10, then there necessarily exists an adversary B10 which can win
the dPRF-ODH game with non-negligible advantage. The dPRF-ODH adversary
B10, which will simulate the BR challenger for A, is constructed as follows:

– Algorithm B10 first obtains a group element gu in the dPRF-ODH game.
Algorithm B10 skips the first query phase and directly asks a challenge query
x̂ = r′′C for random r′′C . It receives the dPRF-ODH challenge (gv, yb) where
y0 = PRF(guv, x̂) and y1

$←− {0, 1}n and b $←− {0, 1} are chosen uniformly at
random by the challenger.

– To simulate the environment for A, algorithm B10 must provide the long-
term public keys of all participants. To this end, B10 generates keys (in-
cluding pkCVCA) and corresponding certificates for all users U ∈ U . For the
partnered chip identity which was output by A at the outset, algorithm B10
sets the respective public key to the previously received value gu.

– A has now access to the queries specified in Definition 2. In particular,
A may trigger the generation of semi-static keys for any terminal T via
NewSemiStaticKey(T ). Algorithm B10 uses gv as the semi-static key of the
tested session announced by A.

– Whenever B10 then has to execute a key derivation, i.e., to answer a Reveal
query of A, or to compute or verify the final MAC with K ′mac —the case of a
Test query is dealt with below— then B10 acts as follows. If B10 holds at least
one of the secret keys for computing the Diffie-Hellman key of the session,
then B10 computes the keys locally and performs the requested action.
If it lacks knowledge of both secret keys then it must be either the case that
they correspond to the keys gv, gu from the challenge, or one or both of the
keys have been picked by the adversary A. In the first case, if the nonce
in the session also equals x̂ then B uses the challenge value yb as keys. In
any other case it can query the corresponding dPRF-ODH oracle to get the
actual value for the keys.
We remark that the following inconsistency of an unpartnered session, which
“accidentally” derives the same keys but where B10 falsely uses the possibly
random challenge value yb, cannot happen: If the session is not partnered
then it must be because of the certificate identifier certIDC or certIDT and
then the (verified) certificate is for a different party. In this case, however,
adversary B10 has chosen the secret key itself (which happens to coincide
with the challenge key) and uses the secret key to correctly compute the
session keys.

– At some point, the BR adversary A issues a Test(label, i) query to the BR
challenger (simulated by B10). The dPRF-ODH adversary B10 forwards its
previously received challenge yb (with K ′mac removed) as challenge to A.

– Eventually, A stops and outputs a guess bguess. Algorithm B10 outputs 1 if
and only if bguess = btest (for the random value btest chosen by B10 as part
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of the attack on the key exchange protocol) as its output in the dPRF-ODH
game.

Since we presumed that A can efficiently distinguish between Game 9 and
Game A.10, adversary A is able to detect whether ŷb is a random value or the
output of a pseudorandom function. Thus, by simply running A and simulating
all other involved parties faithfully, algorithm B10 will be able to efficiently win
the dPRF-ODH game with non-negligible advantage. Hence, we can bound the
advantage by

AdvG9
KE,A ≤ AdvGA.10

KE,A + AdvdPRF-ODH
B10

The final step is now to “undo” the replacement of the extra MAC key
K ′mac—recall that we only aim to replace the actual session keys Kenc,Kmac by
random values. This requires another game hop, as before:

Game A.11. As Game A.10, but in this step we replace only the pair (Kenc,Kmac)
in the tested stage of the session and by any partnered session by the same in-
dependent random values (K̃enc, K̃mac).

We construct another adversary B11 as in the previous game, only this time
we let B11 always replace the components for Kenc and Kmac in the challenge
value ŷb by random values K̃enc, K̃mac. If ŷb is random then we still get random
values (as in Game A.10), and if yb we now get only random entries inKenc,Kmac
(as in Game A.11). It follows again by the dPRF-ODH assumption that

AdvGA.10
KE,A ≤ AdvGA.11

KE,A + AdvdPRF-ODH
B11

We recall that in this game, tested and partnered session key pairs (only) are
consistently replaced by independent random values. This implies in particular,
that the adversary A can gain no additional information on the bit btest encoded
in the challenge as the response to the Test query is independent of it. Thus,
A can perform no better than to guess, i.e., AdvGA.11

KE,A ≤ 0, which completes the
proof for this case.

Case B: Test of a session key in an EAC execution. The case of a test happening
in an EAC sub protocol execution is almost identical to 0RTT EAC case. The
only difference is that A now announces the terminal’s ephemeral key and we
inject the challenge key in the dPRF-ODH assumption as an ephemeral key.

AdvG9
KE,A ≤ 2 · AdvdPRF-ODH

B10/11

This proofs the bound for the other case and therefore the bound for the
overall protocol. ut

Remark 1. It may come as a surprise that the unforgeability of the MAC does
not enter the security bound. This is due to the fact that we are “only” interested
in key secrecy in the above theorem, stating that at most the intended partner
can compute the session key and that seeing other session keys does not facilitate
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this task. The former is ensured by the certification of the chip’s long-term key
and the fact that one cannot corrupt the chip, and the latter is already captured
by the dPRF-ODH assumption, saying that learning related values of the PRF
does not help to distinguish the challenge value from random.
Remark 2. Note that our analysis does not provide any form of key confirmation
nor entity authentication. Indeed, the final MAC can be seen as providing exactly
these properties [17].

5 Variations
There exist several alternatives to implement 0RTT executions. For example,
the 0RTT keys may be established either in the fashion of a Diffie-Hellman key
exchange or—forgoing forward secrecy— rather from pre-shared keys (derived as
additional key material in the previous round). It is also interesting to investigate
different ways of handling negotiation failures in the 0RTT case. In the following,
we therefore present different choices for the 0RTT flow.

5.1 Diffie-Hellman Variant
The 0RTT EAC extension presented in Section 2.2 is based on a Diffie-Hellman
style key agreement. Similar implementations can also be found in Google’s
QUIC protocol and in earlier draft versions of TLS 1.3 (draft 12 [30] and earlier).

5.2 Pre-Shared Key Variant
From draft 13 [31] onward, TLS 1.3 replaces the DH-based variant of 0RTT
handshakes by a pre-shared key (PSK) alternative. The pre-shared key is estab-
lished either out of band or, more commonly, in a preceding interaction between
server and client. Once a full handshake has been completed, the client receives
a so-called PSK identity from the server. The PSK was derived in the initial
handshake and can then be used by the client to derive keys for future (0RTT)
handshakes. To initiate a 0RTT handshake, the client simply incorporates the
early_data and pre_shared_key extension in the ClientHello, followed by
the application data. After the successful processing of the data, the server then
responds with the ServerHello and a forward-secret key is then derived as in
the ordinary handshake.

In principle, one could also imagine a similar approach for the EAC protocol,
using the pre-shared keying material instead of the shared Diffie-Hellman key.
Note, however, that this may require further changes to the EAC protocol (for
the additional keying material) and that, unlike the Diffie-Hellman version, this
does not provide any (terminal) forward secrecy.

5.3 Error Handling
Zero Round-Trip Time may not be supported by all servers, or there may occur
errors in trying to decrypt the early data. Here we discuss how such problems
are dealt with in other settings, and how one can proceed in the EAC case.
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Google’s QUIC Protocol. From a design perspective, all handshakes in QUIC
are also 0RTT handshakes, of which some may fail. The server replies with a
ServerHello if all necessary information to complete the handshake was con-
tained in the preceding ClientHello. If this was not the case, the server sends
a rejection message encompassing information that allows the client to make
progress in a next handshake attempt. The type and extent of information sent
along with the rejection message can be chosen individually by the server but
must not prevent clients from establishing a valid handshake within a reasonable
time frame.

TLS 1.3 Draft 18. Upon receiving a 0RTT handshake request with encrypted
early data, the server can answer in three ways: It may either disregard the 0RTT
extension and return no response, causing the client to fall back to the standard
1RTT handshake. Or it may return the empty extension, thereby signalling
to the client that prior validation checks were successful and that the server
intends to process the received early data. Furthermore, the server may send a
HelloRetryRequest to the client asking it to send a ClientHello without the
early_data extension.

0RTT EAC. In case of failure, we expected the client to fall back to a full EAC
protocol execution consisting of terminal and chip authentication. This may seem
like an expensive step in view of performance, especially if the semi-static key
used by the client is simply outdated. If the terminal does not support 0RTT,
fall back to full EAC is clearly inevitable.

Furthermore, we emphasize that it is in general not possible for terminals to
identify outdated keys. In order for a terminal to detect this (i.e., to distinguish
unknown keys from outdated keys), it must keep at least the last used value of
pksemi

T when updating to a new value pksemi
T

′. Keeping state is commonly seen
as not recommendable, if not infeasible, in most use cases. However, we note
that a chip receives all the data it needs to initiate future 0-RTT handshakes
with a 0RTT-supporting terminal during the terminal authentication phase of
the EAC protocol. Therefore, it is sufficient for the chip to carry out the TA
phase before the 0RTT handshake can be re-tried. In light of this, it is also
conceivable for terminals to proceed similarly to the mechanism deployed in the
QUIC protocol and to reply with the current authenticated semi-static key, i.e.,
to send certT , pksemi

T , sT where sT ← Sig(skT , pksemi
T ).

6 Conclusion

The extended access control (EAC) protocol is an omnipotent solution for key
establishment between two parties. In this work, we presented a 0RTT mode
for the EAC protocol which allows to reduce the latency of recurring connec-
tions. It is noteworthy that this 0RTT mode can be added as an extension with
minimal changes to the original protocol. We further showed that EAC+0RTT
can be proven secure in the multi-stage setting of the Bellare-Rogaway model.
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Thus, the modified protocol still achieves the common security properties of an
authenticated key exchange protocol.
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