Optimal Extension Protocols for Byzantine Broadcast and Agreement*

Chaya Ganesh ${ }^{1}$ and Arpita Patra ${ }^{2}$
${ }^{1}$ Department of Computer Science, New York University
ganesh@cs.nyu.edu
${ }^{2}$ Department of Computer Science \& Automation, Indian Institute of Science, India
arpita@iisc.ac.in

Abstract

The problem of Byzantine Broadcast (BB) and Byzantine Agreement (BA) are of interest to both distributed computing and cryptography community. Extension protocols for these primitives have been introduced to handle long messages efficiently at the cost of small number of single-bit broadcasts, referred to as seed broadcasts. The communication optimality has remained the most sought-after property of an extension protocol in the literature. In this paper, we prioritize both communication and round optimality. A concrete protocol from an extension protocol is obtained by replacing the seed broadcasts with a BB protocol for single bit. Towards building concrete protocols efficient both in terms of communication and round, we minimize the seed round complexity of the extension protocols, where this measure refers to the number of rounds in which seed broadcasts are invoked in an extension protocol.

In a setting with n parties and an adversary controlling at most t parties in Byzantine fashion, we present BB and BA extension protocols with $t<n, t<n / 2$ and $t<n / 3$ that are simultaneously optimal in terms of communication and round complexity. The best communication that an extension protocol can achieve in any setting is $\mathcal{O}(\ell n)$ bits for a message of length ℓ bits. The best achievable round complexity is $\mathcal{O}(n)$ for the setting $t<n$ and $\mathcal{O}(1)$ in the other two settings $t<n / 2$ and $t<n / 3$. The existing constructions are either optimal only in terms of communication complexity, or require more rounds as well as seed rounds than our protocols, or achieve optimal round complexity at the cost of sub-optimal communication. Specifically, we construct communication-optimal protocols in the following three settings with the following round and seed round complexities:

$-t<n / 3$: Our protocol requires three rounds and a single seed round. The best known protocol in this setting is only communication optimal and requires a round complexity and a seed round complexity of $\Omega\left(n^{3}\right)$.
$-t<n / 2$: Our protocol provides a round complexity of 5 and a seed round complexity of one. The best known protocol in this setting requires a round complexity of 6 and a seed round complexity of 3 .
$-t<n$: Our protocol has a round as well as a seed round complexity of $\mathcal{O}(n)$. The same complexities for the best known protocol in this domain are $\mathcal{O}\left(n^{2}\right)$.

[^0]
1 Introduction

In the Byzantine Broadcast (BB) problem, a designated party (called the sender) holds an input message m, and the goal is for all parties to learn m and agree on it. In the related Byzantine Agreement (BA) problem, every party P_{i} holds a message m_{i}, and the goal is for all parties to agree on a common message. BB and BA are important primitives used widely in Multi-Party Computation (MPC) and distributed computing protocols in order to reach agreement on some messages. Most often, these higher level protocols need agreement to be reached on longer messages rather than on single bits, which can be prohibitively expensive in terms of communication and round complexity. For instance, in a setting with n parties and an adversary controlling at most t parties in Byzantine fashion such that $t<n$, the best round complexity and communication complexity that can be achieved by a BB protocol for bit is $\Omega\left(\frac{n}{n-t}\right)$ GKKO07] and $\Omega\left(n^{2}\right)$ DS83 respectively. The BB and BA extension protocols ${ }^{1}$ are introduced and studied out of the need for communication-efficient BB and BA protocols for long messages. The extension protocols achieve agreement for long messages relying on point-to-point communications and a small number of oracle access to a single-bit broadcast. This is conceptually similar to Oblivious Transfer (OT) extension IKNP03 where a large number of OTs are obtained at the cost of a small number of seed OTs and cheap symmetric key operations. We recall that OT EGL85 is a fundamental building block of MPC - it is a protocol between a sender and a receiver where the sender with two inputs $\left(x_{0}, x_{1}\right)$ can transmit x_{σ} to the receiver without knowing σ, where σ is the choice bit of the receiver. Following the OT extension literature, we denote the single-bit broadcasts used in the BB and BA extension protocols as seed broadcasts.

Four important parameters of extension protocols are: (i) communication complexity, (ii) round complexity, (iii) seed round complexity and (iv) seed communication complexity. The communication complexity of a protocol Yao79] is defined to be the number of bits sent/received by the honest parties during the protocol execution. Note that, only the bits that should be received according to the protocol specification are counted. The round complexity refers to the number of rounds taken by the protocol to terminate. In any specific round, both point-to-point communication as well as seed broadcasts may be invoked. The latter two complexity measures refer to the number of rounds in which a seed broadcast is invoked and to the number of bits sent via seed broadcasts. The seed round and seed communication complexity as parameters relate only to an extension protocol which uses single-bit broadcasts as oracle calls, while the prior two complexity measures relate to a single-bit BB protocol, to an extension protocol, or to a concrete extension protocol that is derived from an extension protocol by replacing the seed broadcasts with a single-bit BB protocol.

1.1 Byzantine Broadcast (BB) and Agreement (BA)

BB and BA have been studied in two settings: with or without a trusted set-up assumption. In the model where no set-up is assumed, error-free (deterministic) and information-theoretic BA as well as BB is achievable if and only if the number of corrupt parties t is at most $t<n / 3$ where n is the total number of parties PSL80, CW92, BGP92. The bound cannot be improved with the help of cryptography or randomization [KY86]. In the model where there is a set-up among the parties, BA is achievable for $t<n / 2$ and BB is achievable for $t<n$ both cryptographically [DS83] and information theoretically PW96]. The popular set-up assumption is a public-key infrastructure

[^1](PKI) set-up among n parties. By a PKI set-up among n parties, we mean the following: All parties hold a set of n public keys for a signature scheme where the i th key corresponds to the i th party. Every honest party holds the honestly-generated secret key associated with its own public key. The corrupted parties may generate their keys arbitrarily. The PKI set-up has been considered in two variants- (i) information-theoretic: a PKI set-up for an information-theoretically secure pseudo-signature scheme PW96, and (ii) cryptographic or computational: a PKI set-up for a cryptographically secure unforgeable digital signature scheme [DS83].

The seminal result of DR85 shows that any BB or BA protocol must communicate $\Omega\left(n^{2}\right)$ bits. Since the message is at least a single bit, the lower bound on the communication complexity for single bit is $\Omega\left(n^{2}\right)$ bits. In many distributed computing applications, like reaching agreement on a large file in fault-tolerant distributed storage system, distributed voting where ballots containing gigabytes of data is to be handled CGS97], MPC GMW87] where many broadcasts and agreements are invoked, there is an inherent need for dealing with long messages for BB and BA protocols. One could, of course, broadcast a long message by just broadcasting the message bit-by-bit using a single-bit broadcast protocol. While this trivial approach requires $\Omega\left(\ell n^{2}\right)$ bits of communication (following the lower bound of DR85]), there are extension protocols that are specifically designed to handle long messages to beat the communication complexity of the trivial approach. In what follows, we summarize the results on extension protocols.

1.2 Extension Protocols

Extension protocols for BB and BA are constructions for long messages, built from single-bit seed broadcasts and point-to-point communications. Historically, gaining communication efficiency motivated the study of such protocols. In any BB extension protocol, since each honest party must learn the message, a correct protocol will incur a communication complexity of at least $\mathcal{O}(\ell n)$ where ℓ is the message length. The same lower bound on the communication complexity holds for BA extension FH06. It is now well known how to achieve communication optimality in the setting of $t<n / 3$ [LV11], $t<n / 2$ FH06 and $t<n$ HR14. In fact, except the first extension protocol of [TC84], the remaining protocols in the literature [FH06, LV11, PR11, PR, HR14] achieve communication optimality.

While it is known how to achieve optimal communication complexity in all the settings, the round and the seed round complexity have not been explored much. In some scenarios the latency associated with the communication rounds can be a huge bottleneck. The round complexity directly impacts the round efficiency of concrete extension protocols that are derived from extension protocols by replacing the seed broadcasts with single-bit BB protocols. Studying seed round complexity of extension protocols has more than one motivation. On one hand, this measure directly impacts the round complexity of concrete extension protocols. On the other hand, fewer seed rounds help avoid any compositional issues that arise from many sequential calls to the single-bit broadcasts. When an outer protocol uses multiple invocations of a broadcast oracle where the oracle is instantiated by a probabilistic protocol, several issues related to composition of the sub-protocols arise KK06]. If an extension protocol has the best possible seed round complexity of 1 , then there is only one invocation, and we may thus bypass the composition issues. The impact of the seed round complexity on the round complexity of concrete extension protocols are justified by the large round complexity and compositional issues of the single-bit broadcast protocols as stated next. Any deterministic BB (and BA) protocol necessarily requires $(t+1)$ rounds LF82, DR85). Using randomization, the bound can be made constant in the honest majority setting [FM97, KK06]. But
the round complexity is obtained in expected terms, and importantly, the constants are rather high for many practical purposes [KK06]. Specifically, the expected round complexity of the BB protocols of KK06] in the $t<n / 3$ setting is 23. If there are multiple sequential calls to the BB protocol, then, except the first call which takes expected 23 rounds, each additional call will cost expected 49 rounds. The corresponding figures in the honest majority setting of $t<n / 2$ are 56 and 89. The use of randomization does not help much in the dishonest majority setting which is considered to be the most practical setting. The proven lower bound on the round complexity for a BB protocol for bit is $\Omega\left(\frac{n}{n-t}\right)$ GKKO07. The best known upper bound presented in GKKO07 achieves expected $\mathcal{O}\left(k^{2}\right)$ round complexity when $t \leq n / 2+k$. The following results comprise the state-of-the-art of extension protocols in terms of round and seed round complexity.

The proven lower bound on the round complexity of an extension protocol is $\Omega(n)$ for the setting $t<n$ HR14] and constant when $t<n / 2$ FH06]. The communication-optimal extension protocol of HR14 for $t<n$ has a round complexity of $\mathcal{O}\left(n^{2}\right)$ which is non-optimal. The round complexity of the communication optimal extension protocol of LV11 for $t<n / 3$ is far from optimal. Namely, the round complexity of LV11 is $\mathcal{O}\left(\sqrt{\ell}+n^{2}\right)$ and it translates to $\Omega\left(n^{3}\right)$ as $\ell=\Omega\left(n^{6}\right)$.

The existing extension protocols have more than one round seed rounds. The protocol of HR14 for $t<n$ has a seed round complexity of $\mathcal{O}\left(n^{2}\right)$. The protocol of [FH06] for the $t<n / 2$ case has a seed round complexity of 3 . The protocol of [V11] for the $t<n / 3$ case has a seed round complexity of $\mathcal{O}\left(\sqrt{\ell}+n^{2}\right)$ which translates to $\mathcal{O}\left(n^{3}\right)$ when $\ell=\Omega\left(n^{6}\right)$. None of the existing protocols achieve the best possible seed round complexity of one without trivially replacing the seed broadcasts with single-bit broadcast protocols. We point out that while the naïve protocol of broadcasting bit-by-bit has a seed round complexity of 0 , it does not achieve optimal communication complexity. The notion of seed round complexity is interesting when considered in conjunction with optimal communication complexity.

In summary, while communication-optimal extension protocols have been well-studied in the literature, there are few examples of extension protocols that prioritize both communication and round optimality. Since the round complexity of a concrete protocol depends on the seed round complexity and round complexity of the extension protocol, the focus of this paper is to study and construct extension protocols that are optimal in communication and round complexities, along with minimal usage of seed rounds.

1.3 Our Results

We study BA and BB extension protocols with $t<n, t<n / 2$ and $t<n / 3$, and present protocols that are simultaneously communication and round optimal. The existing constructions are either optimal only in terms of communication complexity, or require more rounds as well as seed rounds than our protocols, or achieve optimal round complexity by giving up on optimal communication. All our constructions achieve $\mathcal{O}(\ell n)$ bits of communication, and are thus communication optimal (for different bounds on ℓ). Their round and seed round complexities are as discussed below.
$-t<n / 3$: Our protocol provides a round complexity of 3 and seed round complexity of 1 . Both the round and seed round complexity of the best known communication-optimal extension protocol in this setting LV11] is $\mathcal{O}\left(\sqrt{\ell}+n^{2}\right)$. Since $\ell=\Omega\left(n^{6}\right)$ in their protocol, the complexity translates to $\Omega\left(n^{3}\right)$.
$-t<n / 2$: Our protocol provides a round complexity of 5 and seed round complexity of 1 . The best known extension protocol that is communication-optimal, has a round complexity of 6
and a seed round complexity of 3 FH06.
$-t<n$: Our protocol has a round complexity and a seed round complexity of $\mathcal{O}(n)$. Our protocol beats the communication optimal extension protocol of HR14 by a factor of $\Omega(n)$ in terms of both round as well as seed round complexities.

The construction with $t<n / 3$ is error-free and information-theoretically secure. The latter implies that the protocol guarantees hold even in the face of a computationally unbounded adversary. The protocols in the other two settings are cryptographically secure assuming a collision resistant hash function. Cryptographic security guarantees that the security of the protocols hold against polynomially bounded adversaries. Our contributions put in context of other results are summarized in Table 1. We use κ to denote the cryptographic (statistical, respectively) security parameter for the cryptographic (information-theoretic, respectively) primitives. 'i.t' denotes information-theoretic and 'crypto' denotes cryptographic security. Let $\mathcal{B}(l)$ denote the communication complexity of broadcasting an l-bit message.

Table 1: BB and BA Extension Protocols.

Threshold	Security	Communication Complexity	Round Complexity	Seed Round Complexity	Reference
$t<n / 3$	i.t	$\mathcal{O}\left(\ell n+\left(n^{2} \sqrt{\ell}+n^{4}\right) \mathcal{B}(1)\right)$	$\mathcal{O}\left(\sqrt{\ell}+n^{2}\right)$	$\mathcal{O}\left(\sqrt{\ell}+n^{2}\right)$	LV11]
	i.t	$\mathcal{O}\left(\ell n+n^{2} \mathcal{B}(1)\right)$	3	1	This paper
$t<n / 2$	i.t	$\mathcal{O}\left(\ell n+n^{3} \kappa+\left(n^{2}+n \kappa\right) \mathcal{B}(1)\right)$	6	3	FH06]
	crypto	$\mathcal{O}\left(\ell n+n^{3} \kappa+n \kappa \mathcal{B}(1)\right)$	5	1	This paper
$t<n$	i.t	$\mathcal{O}\left(\ell n+\left(n^{4}+n^{3} \kappa\right) \mathcal{B}(1)\right)$	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(n^{3}\right)$	HR14
	crypto	$\mathcal{O}\left(\ell n+\left(n^{2}+n \kappa\right) \mathcal{B}(1)\right)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{2}\right)$	HR14
	crypto	$\mathcal{O}\left(\ell n+\left(n \kappa+n^{3} \log n\right) \mathcal{B}(1)\right)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	This paper

A trivial construction to broadcast a long message is to broadcast bit-by-bit using a singlebit broadcast protocol, incurring a communication complexity of $\ell \mathcal{B}(1)$ for an ℓ-bit message. In Table 2, we list the complexities of the single-bit broadcast protocols when used to broadcast a ℓ-bit message in various settings.

Table 2: BB protocols for bit.

Threshold	Security	Communication Complexity	Round Complexity	Reference
$t<n / 3$	$\begin{aligned} & \hline \text { i.t } \\ & \text { i.t } \end{aligned}$	$\begin{aligned} & \Omega\left(\ell n^{2}\right) \\ & \mathcal{O}\left(\ell n^{4}+n^{6}(\kappa+\log n)\right) \end{aligned}$	$\mathcal{O}(n)$ 23 (expected) for one call $23+49 c$ (expected) for $1+c$ calls	$\begin{array}{\|l\|} \hline \text { BGP92, CW92 } \\ \hline \text { KK06 } \\ \hline \end{array}$
$t<n / 2$	crypto / i.t	$\mathcal{O}\left(\ell n^{4}+n^{6}(\kappa+\log n)\right)$	56 (expected) for one call, $56+89 c$ (expected) for $1+c$ calls	KK06]
$t<n$	$\begin{aligned} & \text { i.t } \\ & \text { crypto } \end{aligned}$	$\begin{aligned} & \Omega\left(\ell n^{2}+n^{6} \kappa\right) \\ & \Omega\left(\ell n^{2}+n^{3} \kappa\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathcal{O}(n) \\ & \mathcal{O}(n) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { PW96 } \\ \hline \text { DS83 } \\ \hline \end{array}$
$t \leq n / 2+k$	crypto	$\mathcal{O}\left(\ell\left(n^{2} k^{2}+n^{3}\right)+n^{6}(\kappa+\log n)\right)$	$\mathcal{O}\left(k^{2}\right)$ (expected)	GKKO07]

The complexity costs of concrete extension protocols are summarized and compared with other protocols in Table 3. A concrete protocol inherits the assumptions from its underlying implementation of seed broadcasts, for example, a PKI when instantiated with [DS83]. The concrete protocols
resulting from our extension protocol for $t<n / 3$ needs no setup assumption when instantiated with single-bit broadcasts with $t<n / 3$. On the other hand, the concrete protocols resulted from the other two extension protocols require setup assumption, namely PKI. The security of a concrete protocol is the 'minimal' security provided by the single-bit BB protocol and the extension protocol. Namely, the concrete protocol will be information-theoretically secure if and only if both the singlebit BB and the extension protocol are information-theoretic. Otherwise, it will be cryptographically secure. The round complexity of concrete protocols in Table 3 is given by $\mathcal{O}(R+(s * r))$, where R is the round complexity of the extension protocol, s is the seed round complexity of the extension protocol, and r is the round complexity of the single-bit broadcast protocol used to instantiate the seed broadcasts.

Table 3: Concrete BB and BA protocols for ℓ-bit messages.

Threshold	Security	Communication Complexity	Total Round Complexity	Instantiation
$t<n / 3$	$\begin{aligned} & \text { i.t } \\ & \text { i.t } \\ & \text { i.t } \\ & \text { i.t } \end{aligned}$	$\begin{aligned} & \mathcal{O}\left(\ell n+n^{4} \sqrt{\ell}+n^{6}\right) \\ & \mathcal{O}\left(\ell n+n^{4}\right) \\ & \mathcal{O}\left(\ell n+n^{6}\left(\sqrt{\ell}+\kappa+n^{2}\right)\right) \\ & \mathcal{O}\left(\ell n+n^{6}(\kappa+\log n)\right) \end{aligned}$	$\begin{aligned} & \mathcal{O}\left(n \sqrt{\ell}+n^{3}\right) \\ & \mathcal{O}(n) \\ & \mathcal{O}\left(\sqrt{\ell}+n^{2}\right) \\ & 25(\text { expected }) \end{aligned}$	LV11] with BGP92. CW92 This paper with BGP92, CW92] LV11] with KK06. This paper with KK06.
$t<n / 2$	i.t crypto crypto / i.t crypto crypto	$\begin{aligned} & \mathcal{O}\left(\ell n+n^{7} \kappa\right) \\ & \mathcal{O}\left(\ell n+n^{4}(n+\kappa)\right) \\ & \mathcal{O}\left(\ell n+n^{7} \kappa(\kappa+\log n)\right) \\ & \mathcal{O}\left(\ell n+n^{4} \kappa\right) \\ & \mathcal{O}\left(\ell n+n^{7} \kappa(\kappa+\log n)\right) \end{aligned}$	$\mathcal{O}(n)$ $\mathcal{O}(n)$ 237 (expected) $\mathcal{O}(n)$ 60 (expected)	
$t<n$	$\begin{aligned} & \text { i.t } \\ & \text { crypto } \\ & \text { crypto } \end{aligned}$	$\begin{aligned} & \mathcal{O}\left(\ell n+n^{10} \kappa\right) \\ & \mathcal{O}\left(\ell n+n^{5} \kappa\right) \\ & \mathcal{O}\left(\ell n+n^{6} \kappa \log n\right) \end{aligned}$	$\begin{aligned} & \mathcal{O}\left(n^{4}\right) \\ & \mathcal{O}\left(n^{3}\right) \\ & \mathcal{O}\left(n^{2}\right) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { HR14 } & \text { with } \begin{array}{\|l\|} \text { PW96 } \\ \text { HR14 } \\ \text { with } \\ \hline \text { TS83 } \\ \hline \end{array} \\ \hline \end{array}$
$t \leq n / 2+k$	$\begin{aligned} & \text { crypto } \\ & \text { crypto } \end{aligned}$	$\begin{aligned} & \mathcal{O}\left(\ell n+n^{7} \kappa(\kappa+\log n)\right) \\ & \mathcal{O}\left(\ell n+\left(n^{3} k^{2} \kappa+n^{9} \log n\right)(\kappa+\log n)\right) \end{aligned}$	$\begin{aligned} & \mathcal{O}\left(n^{2} k^{2}\right) \text { (expected) } \\ & \mathcal{O}\left(n k^{2}\right) \text { (expected) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HR14 with GKKO07 } \\ & \text { This paper with GKKO } 07 \end{aligned}$

As seen from Table 3, our protocol in $t<n / 3$ setting leads to the the first instantiation without set-up assumption that provides optimal communication complexity and constant round complexity after replacing the seed broadcasts with the single-bit broadcast protocol of KK06. In the $t<n$ setting, our protocol leads to the first instantiation in dishonest majority setting with optimal communication complexity and round complexity of $\mathcal{O}(n)$ after replacing the seed broadcasts with the protocol of GKKO07] for some values of k (e.g. when $t \leq n / 2+k$ and k is a constant).

Our protocol for $t<n$ could only attain a seed round complexity of $\mathcal{O}(n)$. Designing protocols for $t<n$ that achieve a seed round complexity of one while preserving communication and round optimality is left as an interesting open question.

1.4 Organization

In Section 2, we discuss the model and definitions of BB and BA protocols. Our results for $t<n / 3$, $t<n / 2$ and $t<n$ appear in Section 3. Section 5 and Section 6 respectively. We summarize and conclude with questions for further work in Section 7 .

2 Models and Definitions

We work in the standard point-to-point network where the set of parties $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ are connected by pairwise authenticated channels and communicate in synchronous rounds. The faultiness of the parties is modeled in terms of a monolithic adversary A corrupting t out of the n parties in Byzantine fasion. A can make the corrupted parties deviate from the protocol in any desired manner. The parties who are not under the control of A are referred to as honest. We distinguish between cryptographic security and information-theoretic security. Information-theoretic security guarantees that the security properties of the protocol hold even in the presence of a computationally unbounded adversary. When the adversary is bounded, we write PPT to denote a probabilistic polynomial-time algorithm. We now recall some definitions.

Definition 2.1 (Byzantine Broadcast). A protocol for a set of parties $\mathcal{P}=\left\{P_{1}, \cdots, P_{n}\right\}$, where a distinguished party called the sender, $P_{s} \in \mathcal{P}$ holds an initial input $m,|m|=\ell$, is a broadcast protocol tolerating A, if the following properties are satisfied:

- Agreement. All the honest parties output the same value.
- Validity. If the sender is honest, all honest parties output the value m.
definition
Definition 2.2 (Byzantine Agreement). A protocol for a set of parties $\mathcal{P}=\left\{P_{1}, \cdots, P_{n}\right\}$, where each party $P_{i} \in \mathcal{P}$ holds an initial input $m_{i}\left(\left|m_{i}\right|=\ell\right)$ is a Byzantine Agreement protocol tolerating A, if the following properties are satisfied:
- Agreement. All the honest parties output the same value.
- Validity. If every honest party P_{i} hold the same message $m_{i}=m$, then all honest parties output the value m.

In $t<n$ setting, only BB is possible and so we design a BB extension protocol. In the honest majority settings (that includes $t<n / 2$ and $t<n / 3$), a BB protocol can be obtained by making one call to a BA protocol plus $\mathcal{O}(\ell n)$ bits of communication over point-to-point channels, where ℓ is the length of the message. Therefore, we design a BA extension protocol with various optimal complexity measures. This implies a BB protocol with the optimal complexities in the honest majority settings.

Our protocols in settings $t<n$ and $t<n / 2$ (where set-up assumption is required) are cryptographically secure tolerating any polynomially bounded adversary A. Cryptographic or computational security guarantees that the protocol is secure based on some computational assumptions. Our protocols rely on a cryptographic collision-resistant hash function Hash. Collision resistance property guarantees that it is hard for a polynomially bounded adversary to come up with two preimages of Hash that hash to the same value. Formal definition of collision-resistant hash functions is provided below.

Definition 2.3 (Collision Resistant Hash Functions). A family of functions $\left\{\operatorname{Hash}_{k}\right\}_{k \in I}$ is a collision resistant hash function family if the following conditions hold:

1. Efficient Sampling. There exists a PPT algorithm Gen that outputs an index s from the index set I given a security parameter $\kappa, s \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$.
2. Compression. The function Hash_{s} maps inputs of length n to outputs of length m such that $m<n$.
3. Easy to compute. There exists a PPT algorithm that takes an index s, an input $x \in\{0,1\}^{n}$ and computes $y=\operatorname{Hash}_{s}(x)$.
4. Collision resistance. For every PPT algorithm B,

$$
\operatorname{Pr}\left[\operatorname{Hash}_{s}(x)=\operatorname{Hash}_{s}\left(x^{\prime}\right), x \neq x^{\prime} \mid x, x^{\prime} \leftarrow B(s), s \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)\right]=\operatorname{neg}((\kappa)
$$

A set-up assumption is needed in the setting $t \geq n / 3$ for instantiating the seed broadcasts. Hence, our concrete extension protocols (after instantiation of the oracle) are secure assuming PKI and a collision-resistant hash function. On the other hand, our protocol in the $t<n / 3$ is information-theoretically secure. The security analysis of our protocol is for a static adversary that corrupts parties at the beginning of the protocol.

3 Extension Protocols for $t<n / 3$

In this section, we present an error-free and information-theoretic BA and BB extension protocol for the $t<n / 3$ setting with: (i) communication complexity: $\mathcal{O}(\ell n)$ bits, (ii) round complexity: 3 and (iii) seed round complexity: 1. We describe an extension protocol for BA. A BB extension protocol with the same complexity as that of the BA protocol can be achieved by letting the sender send the message to all the parties and then running a BA to reach agreement. This is the standard reduction in synchronous settings from BA to BB Lyn96].

Our protocol relies on techniques from coding theory and graph theory. Specifically, as technical tools, the protocol uses linear error correcting codes (e.g. Reed-Solomon Code) and a graph theoretic algorithm for finding some special structure ((n, t)-star) in an undirected graph. Our approach differs from all existing constructions in this setting which are constructed in playerelimination HMP00] or dispute-control BH06 framework. We start with a brief presentation of the tools that we use: (a) An algorithm for finding a graphical structure called ($n, t)$-star in an undirected graph; (b) Linear Error Correcting Code.

3.1 Building Blocks

Finding (n, t)-star in an Undirected Graph. We now describe an existing solution for a graph theoretic problem, called finding (n, t)-star in an undirected graph $G=(V, E)$. Let G be an undirected graph with the n parties in \mathcal{P} as its vertex set. A pair $(\mathcal{C}, \mathcal{D})$ of sets with $\mathcal{C} \subseteq \mathcal{D} \subseteq \mathcal{P}$ is an (n, t)-star Can96, BOCG93| in G, if: (i) $|\mathcal{C}| \geq n-2 t$; (ii) $|\mathcal{D}| \geq n-t$; (iii) for every $P_{j} \in \mathcal{C}$ and every $P_{k} \in \mathcal{D}$ the edge $\left(P_{j}, P_{k}\right)$ exists in G.

Following the idea of [GJ79], in BOCG93], the authors presented an elegant and efficient algorithm for finding an ($n, t)$-star in a graph of n nodes, provided that the graph contains a clique of size $n-t$. The algorithm, called STAR takes the complementary graph \bar{G} of G as input and tries to find (n, t)-star in \bar{G}, where (n, t)-star is a pair $(\mathcal{C}, \mathcal{D})$ of sets with $\mathcal{C} \subseteq \mathcal{D} \subseteq \mathcal{P}$, satisfying the following conditions: (a) $|\mathcal{C}| \geq n-2 t$; (b) $|\mathcal{D}| \geq n-t$; (c) There are no edges between the nodes in \mathcal{C} and nodes in $\mathcal{C} \cup \mathcal{D}$ in \bar{G}. Clearly, a pair $(\mathcal{C}, \mathcal{D})$ representing an (n, t)-star in \bar{G}, is an (n, t)-star in G. STAR outputs either an (n, t)-star, or a message noSTAR. Whenever the input graph \bar{G} contains an independent set of size $n-t$, STAR always outputs an (n, t)-star. For simplicity of notation, we denote \bar{G} by H. The algorithm STAR is presented in Figure 1 .

We instantiate the algorithm for finding maximum matching in a general graph with a deterministic algorithm (like Blu90]) and obtain a deterministic algorithm for finding star.

Algorithm STAR

- Input: An undirected graph H.
- Algorithm Required: An algorithm for the maximum matching problem on general graphs.

1. Find a maximum matching M in H. Let N be the set of matched nodes (namely, the endpoints of the edges in M), and let $\bar{N}=\mathcal{P} \backslash N$.
2. Compute output as follows:
(a) Let $T=\left\{P_{i} \in \bar{N} \mid \exists P_{j}, P_{k}\right.$ s.t $\left(P_{j}, P_{k}\right) \in M$ and $\left.\left(P_{i}, P_{j}\right),\left(P_{i}, P_{k}\right) \in E\right\}$. T is called the set of triangle-heads. Let $\mathcal{C}=\bar{N} \backslash T$.
(b) Let B be the set of matched nodes that have neighbors in \mathcal{C}. So $B=\left\{P_{j} \in N \mid \exists P_{i} \in\right.$ \mathcal{C} s. t. $\left.\left(P_{i}, P_{j}\right) \in E\right\}$. Let $\mathcal{D}=\mathcal{P} \backslash B$.
(c) If $|\mathcal{C}| \geq n-2 t$ and $|\mathcal{D}| \geq n-t$, output $(\mathcal{C}, \mathcal{D})$. Otherwise, output noSTAR.

Figure 1: Algorithm for Finding ($n, t)$-star.

Linear Error Correcting Code. We use Reed-Solomon (RS) codes RS60 in our protocols. We consider an $(n, t+1) \mathrm{RS}$ code in Galois Field $\mathbb{F}=G F\left(2^{c}\right)$, where $n \leq 2^{c}$. Each element of \mathbb{F} is represented by c bits. An $(n, t+1)$ RS code encodes $t+1$ elements of \mathbb{F} into a codeword consisting of n elements from \mathbb{F}. We denote the encoding function as ENC() and the corresponding decoding function as $\operatorname{DEC}()$. Let $m_{0}, m_{1}, \ldots, m_{t}$ be the input to ENC. Then ENC computes a codeword of length $n,\left(s_{1}, \ldots, s_{n}\right)$ as follows. It first constructs a polynomial of degree- $t, f(x)=$ $m_{0}+m_{1} x+\ldots+m_{t} x^{t}$ and then computes $s_{i}=f(i)$. We use the following syntax for ENC: $\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\operatorname{ENC}\left(m_{0}, m_{1}, \ldots, m_{t}\right)$. Each element of the codeword is computed as a linear combination of the $t+1$ input message elements, such that every subset of $(t+1)$ elements from the codeword uniquely determine the input message elements. Similarly, knowledge of any $t+1$ elements from the codeword suffices to determine the remaining elements of the codeword.

The decoding function DEC can be applied as long as $t+1$ elements from a codeword are available. A RS code is capable of error correction and detection. The task of error correction is to find the error locations and error values in a received vector. On the other hand, error detection means an indication that errors have occurred, without attempting to correct them. We will be concerned with Byzantine errors which are errors that are adversarial in nature. That is, c Byzantine errors means c elements of the codeword are arbitrarily changed. We recall the following well known result from coding theory MS78. DEC can correct up to c Byzantine errors and simultaneously detect up to additional d Byzantine errors in a vector of length N (where $N \leq n$) if and only if $N-t-1 \geq 2 c+d$. In our protocols, we invoke DEC on a vector of length $N \leq n$ with specific value of c and d. If c, d and N satisfy the above relation, then DEC returns the correct data elements corresponding to the vector. Otherwise, DEC returns 'failure'.

3.2 The BA Protocol

With the above tools, we are ready to present our BA extension protocol. Each party P_{i} with message m_{i} containing ℓ bits distributes the codeword of its message among the parties. Each party verifies the part of the codeword received from other parties against its codeword and announces the outcome in public. The public responses are turned into a consistency graph. Then a special structure in the graph that implies existence of an honest majority set holding the same message is looked for. Namely, the special structure is a quadruple $(\mathcal{C}, \mathcal{D}, \mathcal{F}, \mathcal{E})$ such that $(\mathcal{C}, \mathcal{D})$ is an (n, t)-star, $|\mathcal{F}| \geq 2 t+1$ and every party in \mathcal{F} has at least $t+1$ neighbors in $\mathcal{C},|\mathcal{E}| \geq 2 t+1$ and every party in \mathcal{E} has at least $2 t+1$ neighbors in \mathcal{F}. The novelty then lies in proving that the honest parties in \mathcal{E} hold the same message. The parties then rely on the error correction and detection of the RS code to compute and agree on the common message of the parties in \mathcal{E}. If such a set \mathcal{E} does not exist, all honest parties agree on some pre-determined message. The extension protocol is presented in Figure 2. The sm in our notation $\mathcal{P}_{\mathrm{sm}}$ stands for 'same message'.

Lemma 3.1. The honest parties in $\mathcal{P}_{\mathrm{sm}}$ hold same message of length ℓ.
Proof. The set $\mathcal{P}_{\text {sm }}$ is the \mathcal{E} component of a quadruple $(\mathcal{C}, \mathcal{D}, \mathcal{F}, \mathcal{E})$. We start with proving that the honest parties in \mathcal{C} hold the same message of length ℓ. We recall that \mathcal{D} contains at least $t+1$ honest parties and every $P_{i} \in \mathcal{C}$ is neighbor of every party in \mathcal{D}. Let $\left\{P_{i_{1}}, \ldots, P_{i_{\alpha}}\right\}$ be the set of α honest parties in \mathcal{D}, where $\alpha \geq t+1$. Then for every P_{i} in $\mathcal{C}, s_{i i_{k}}$ is same as $s_{i_{k} i_{k}}$ of all $k \in\{1, \ldots, \alpha\}$. Therefore the codewords corresponding to the messages of the honest parties in \mathcal{C} are same at least at $t+1$ locations corresponding to the identities of the honest parties in \mathcal{D}. Since the codewords belong to $(n, t+1)$ RS code, the messages of the honest parties in \mathcal{C} are same. Let the common message be $m,|m|=\ell$. Let $\left(s_{1}, \ldots, s_{n}\right)=\operatorname{ENC}\left(m_{0}, m_{1}, \ldots, m_{t}\right)$, where $m=m_{0}\left|m_{1}\right| \ldots, \mid m_{t}$. Now we show that every honest party $P_{i} \in \mathcal{F}$ holds s_{i}. Recall that P_{i} has at least $t+1$ neighbors in \mathcal{C} in which at least one is honest, say P_{j}. This implies that $s_{i i}$ of P_{i} is same as $s_{j i}$ of P_{j}. However, $s_{j i}=s_{i}$, since P_{j} holds m. Hence $s_{i i}=s_{i}$. Therefore every honest P_{i} in \mathcal{F} holds s_{i} which is same as $s_{i i}$. Finally, we show that every honest $P_{i} \in \mathcal{E}$ holds m. Recall that P_{i} has at least $2 t+1$ neighbors in \mathcal{F} in which at least $t+1$ are honest. Let $\left\{P_{i_{1}}, \ldots, P_{i_{\alpha}}\right\}$ be the set of α honest parties in \mathcal{F}, where $\alpha \geq t+1$. Then $s_{i i_{k}}$ of P_{i} is same as $s_{i_{k} i_{k}}$ of every honest $P_{i_{k}}$ for $k \in\{1, \ldots, \alpha\}$. Now $s_{i_{k} i_{k}}$ of $P_{i_{k}}$ is same as $s_{i_{k}}$. Therefore the codeword corresponding to the message of $P_{i} \in \mathcal{E}$ matches with $\left(s_{1}, \ldots, s_{n}\right)$ at least at $t+1$ locations corresponding to the identities of the honest parties in \mathcal{F}. This implies the codeword of P_{i} is identical to $\left(s_{1}, \ldots, s_{n}\right)$, since they belong to $(n, t+1)$ RS code. Hence $P_{i} \in \mathcal{E}$ holds m.

Lemma 3.2. If all honest parties start with same input m, then all the parties will agree on $\mathcal{P}_{\mathrm{sm}}$ where $\left|\mathcal{P}_{\text {sm }}\right| \geq 2 t+1$.

Proof. All honest parties start with the same input m. Therefore, all honest parties generate the same codeword, $\left(s_{1}, \ldots, s_{n}\right)=\operatorname{ENC}\left(m_{0}, \ldots, m_{t}\right)$, such that $m=m_{0}\left|m_{1}\right| \ldots \mid m_{t}$. This means that there will be an edge between every pair of honest parties. In other words, the edges in the complementary graph will be either (a) between an honest and a corrupted party OR (b) between two corrupted parties.

This implies that there will be a clique of size at least $2 t+1$ eventually. This guarantees the existence of (n, t)-star in G for an honest P_{i}, and the \mathcal{C} component of an (n, t)-star will contain at least $t+1$ honest parties. Subsequently, the \mathcal{F} and \mathcal{E} components will be of size at least $2 t+1$. In this case it is guaranteed that all honest parties find the same quadruple $(\mathcal{C}, \mathcal{D}, \mathcal{F}, \mathcal{E})$ (here we rely

Protocol $\left(\frac{n}{3}\right)-B A$

- Input of every P_{i} : An ℓ-bit message m_{i}.
- Oracle: Broadcast oracle for bits.

Every party P_{i} does the following:

1. Divide the ℓ-bit message m_{i} into $t+1$ blocks, $m_{i 0}, \ldots, m_{i t}$, each containing $\frac{\ell}{t+1}$ bits. Compute $\left(s_{i 1}, \ldots, s_{i n}\right)=\operatorname{ENC}\left(m_{i 0}, \ldots, m_{i t}\right)$. Send $s_{i i}$ to every party. Send $s_{i j}$ to P_{j} for $j=[1, n]$.
2. Construct a binary vector \mathbf{v}_{i} of length n. Assign $\mathbf{v}_{i}[j]=1$, if $s_{i j}=s_{j j}$ and $s_{i i}=s_{j i}$ where $s_{j j}$ and $s_{j i}$ are received from P_{j}. Otherwise assign $\mathbf{v}_{i}[j]=0$. Broadcast \mathbf{v}_{i}.
3. Construct graph G using parties in \mathcal{P} as the vertices. Add edge $\left(P_{j}, P_{k}\right)$ if $\mathbf{v}_{j}[k]=1$ and $\mathbf{v}_{k}[j]=1$. Invoke STAR (\bar{G}) and continue as follows.
(a) If $(\mathcal{C}, \mathcal{D})$ is returned by STAR, then find \mathcal{F} as the set of parties who have at least $t+1$ neighbours in \mathcal{C} in graph G. Find \mathcal{E} as the set of parties who have at least $2 t+1$ neighbours in \mathcal{F} in graph G. If $|\mathcal{F}| \geq 2 t+1$ and $|\mathcal{E}| \geq 2 t+1$, then set $\mathcal{P}_{\text {sm }}=\mathcal{E}$. Otherwise, agree on some predefined message m^{\star} of length ℓ and abort.
(b) If noSTAR is returned, then agree on some predefined message m^{\star} of length ℓ and abort.
4. Assign s_{i} to be the value $s_{j i}$ received from the majority of the parties in $\mathcal{P}_{\mathrm{sm}}$. Send s_{i} to every party.
5. Let $\left(s_{1}, \ldots, s_{n}\right)$ be the vector where s_{j} is received from P_{j}. Apply DEC on $\left(s_{1}, \ldots, s_{n}\right)$ with $c=t$ and $d=0$. Let $m_{0}, m_{1}, \ldots, m_{t}$ be the data returned by DEC. Output $m=m_{0}|\ldots| m_{t}$.

Figure 2: Error-free BA extension protocol in $t<n / 3$ setting.
on the determinism of STAR algorithm), and will never agree on predefined m^{\star}. From the same quadruple, all honest parties will reach agreement on $\mathcal{P}_{\text {sm }}$.

Lemma 3.3. If $\mathcal{P}_{\mathrm{sm}}$ is agreed, all honest parties output the common message of the parties in $\mathcal{P}_{\mathrm{sm}}$.
Proof. By Lemma 3.1, all honest parties in $\mathcal{P}_{\text {sm }}$ hold the same message, say m. This means they hold the same codeword $\left(s_{1}, \ldots, s_{n}\right)=\operatorname{ENC}\left(m_{0}, m_{1}, \ldots, m_{t}\right)$, where $m=m_{0}\left|m_{1}\right| \ldots, \mid m_{t}$. Then every honest P_{i} in $\mathcal{P}_{\text {sm }}$ already holds s_{i}, the i th element in the codeword. Now every party P_{i} will receive s_{i} correctly as majority of the parties in $\mathcal{P}_{\text {sm }}$ are honest and they will send s_{i} to P_{i}. Once every honest P_{i} holds correct s_{i}, he sends that to everybody. Therefore a party will receive n values from n parties in which at most t can be wrong (sent by Byzantine corrupted party). However,

DEC of $(n, t+1)$ RS code with $n=3 t+1$ allows to correct t errors. Therefore DEC will return m_{0}, \ldots, m_{t} such that $m=m_{0}|\ldots| m_{t}$.

Theorem 3.1. The protocol $\left(\frac{\mathrm{n}}{3}\right)$-BA satisfies:
Agreement: Every honest party will output the same message.
Validity: If every honest party P_{i} holds the same message $m_{i}=m$, then all honest parties output m.
Complexity: The protocol has a round complexity of 3, seed round complexity of 1, communication complexity of $\mathcal{O}\left(\ell n+n^{2} \mathcal{B}(1)\right)$ bits and a seed communication complexity of $\mathcal{O}\left(n^{2}\right)$ bits.

Proof.

Agreement: If $\mathcal{P}_{\mathrm{sm}}$ is agreed, then all honest parties output the common message of the parties in $\mathcal{P}_{\text {sm }}$ (by Lemma 3.3). If $\mathcal{P}_{\text {sm }}$ is not agreed, then all honest parties agree on predefined m^{\star}. Hence, agreement is achieved.
Validity: If all the honest parties start with same m, then by Lemma 3.2, they agree on $\mathcal{P}_{\text {sm }}$ and output m (by Lemma 3.3).
Complexity: Every P_{i} sends two values $s_{i i}$ and $s_{i j}$ to every other party P_{j}. The values are $\frac{\ell}{t+1}$ bits long each. Therefore in total there are $\frac{\ell}{t+1} \mathcal{O}\left(n^{2}\right)=\mathcal{O}(n \ell)$ bits of communication. Every party P_{i} broadcasts n-length binary vector \mathbf{v}_{i}. This leads to total $\mathcal{O}\left(n^{2}\right)$ instances of broadcast for single bit. So the communication complexity is $\mathcal{O}\left(\ell n+n^{2} \mathcal{B}(1)\right)$ and the seed communication complexity is $\mathcal{O}\left(n^{2}\right)$.
The communication takes place in steps 1,2 and 4 of $\left(\frac{n}{3}\right)$-BA with step 2 invoking bit broadcast protocol. So the round and the seed round complexity of $\left(\frac{n}{3}\right)$-BA are 3 and 1 respectively.

4 Extension Protocols with Set-up Assumption

In this section, we present two extension protocols with set-up assumption in the setting of dishonest majority (i.e. $t<n$) and honest majority (i.e. $t<n / 2$) respectively.

5 Byzantine Agreement Extension for $t<n / 2$

We present a BA extension protocol for ℓ bit message in the honest majority setting with: (i) communication complexity: $\mathcal{O}(\ell n)$ bits, (ii) round complexity: 5 and (iii) seed round complexity: 1. Given a protocol for BA, a BB protocol can be constructed using the same folklore transformation mentioned in the previous section Lyn96.

At a high level, our BA protocol closely follows the protocol of FH06] (will be referred as FH protocol from now onwards) with the main difference being the seed round complexity. While FH06 requires three seed rounds, our protocol requires just one round of seed broadcast. A closer look will reveal that it is non-trivial to reduce the number of seed rounds in [FH06]. The FH protocol proceeds in three phases, where each phase brings the parties "closer" to agreement. The protocol may be aborted in the first two phases when some inconsistency is detected. In that case, the parties will output \perp. However, if the parties reach the third phase, agreement will be reached without any abort. In each of the first two phases, the parties must agree on whether to abort or
to continue to the next phase. Otherwise the BA protocol will have no agreement property. This calls for at least two seed rounds (one in each of the first two phases). FH protocol requires three seed rounds, one in the first phase and the other two in the second phase. Thus far, there is no known information-theoretic BA extension with optimal communication complexity and one seed round in the honest majority setting. In this paper, we propose a cryptographically secure protocol and leave open the design of an information-theoretic protocol with the same complexity.

Our protocol proceeds in two phases. The first phase denoted as the checking phase is similar to the first phase of the FH protocol. The parties check if there are at least $n-t$ parties who hold the same message, denoted as $\mathcal{P}_{\mathrm{sm}}$ (sm stands for 'same message'). If such a set does not exist, the parties output \perp and terminate the protocol. This phase consists of a single round and uses broadcast to reach agreement on $\mathcal{P}_{\text {sm }}$ if it exists or on \perp when no such set exists. The communication involves broadcasting the hashes of the individual party's messages and so the communication complexity remains independent of the message size. The second phase denoted as the agreement phase is initiated when the parties have agreed on $\mathcal{P}_{\text {sm }}$. Here, the parties who are not in $\mathcal{P}_{\mathrm{sm}}$ will obtain the common message held by the honest parties in $\mathcal{P}_{\mathrm{sm}}$. The idea is to come up with a set $\mathcal{P}_{\text {hmsm }}$ where the messages held by the honest parties in $\mathcal{P}_{\text {hmsm }}$ and $\mathcal{P}_{\text {sm }}$ are the same. Furthermore, $\mathcal{P}_{\text {hmsm }}$ is guaranteed to have honest majority (hmsm stands for 'honest majority same message'). Now the honest parties in $\mathcal{P}_{\text {hmsm }}$ can together transfer their common message to a party with just $\mathcal{O}(\ell)$ communication complexity using a simple yet clever technique suggested in [FH06]. Lastly, since this phase does not use any broadcast, the honest parties outside $\mathcal{P}_{\mathrm{sm}}$ may have different $\mathcal{P}_{\mathrm{hmsm}}$ sets. But for each such set, the honest majority will be guaranteed and thus the technique will work without any problem. The complete details of the protocol are presented in Figure 3.

We now proceed to the proofs.
Lemma 5.1. The checking phase satisfies the following three properties:
(a) If all the honest parties P_{i} start with the same message $m_{i}=m$, then the honest parties do not abort and output the same set $\mathcal{P}_{\mathrm{sm}}$. Moreover, every honest P_{i} will belong to $\mathcal{P}_{\mathrm{sm}}$.
(b) All honest parties in $\mathcal{P}_{\text {sm }}$ hold the same input message $m_{i}=m$ with very high probability.

Proof.

(a) If all the honest parties hold the same message m, then all honest parties broadcast $h=$ Hash (m). Since there are $n-t$ honest parties and all of them will broadcast a common hash value h, there will be a set of size at least $n-t$ parties whose broadcasted hash values will be the same. So the set $\mathcal{P}_{\text {sm }}$ will exist and the honest parties will not abort the checking phase. Since the hash values are broadcasted, all the honest parties will output the same and unique $\mathcal{P}_{\mathrm{sm}}$. The uniqueness of the agreed set $\mathcal{P}_{\mathrm{sm}}$ is argued as follows. There cannot be two sets of size $n-t$ parties such that one set broadcasts h and the other set broadcast h^{\prime} with $h \neq h^{\prime}$. If two such sets exist, it implies that one party has broadcasted both h and h^{\prime}. But since every party broadcasts one hash value, the set $\mathcal{P}_{\text {sm }}$ is unique and includes all the parties who broadcast h. Clearly the set $\mathcal{P}_{\mathrm{sm}}$ will include all the honest parties.
(b) If two honest parties P_{i} and P_{j} in $\mathcal{P}_{\mathrm{sm}}$ hold two different messages $m_{i} \neq m_{j}$, then by the collision resistance of the hash function, $\operatorname{Hash}\left(m_{i}\right) \neq \operatorname{Hash}\left(m_{j}\right)$ with high probability and therefore both P_{i} and P_{j} cannot belong to $\mathcal{P}_{\mathrm{sm}}$. Hence all honest parties in $\mathcal{P}_{\mathrm{sm}}$ hold the same message.

- Input of every $P_{i}:$ An ℓ-bit message m_{i}.
- Oracle: Broadcast oracle for bits.
- Cryptographic Assumption: A collision resistant hash function Hash.

Checking Phase. Every party P_{i} does the following:

1. Compute a hash of the message m_{i} as $h_{i}=\operatorname{Hash}\left(m_{i}\right)$ and broadcast h_{i}.
2. Check if at least $n-t$ broadcasted hashes are equal. If no $n-t$ broadcasted hashes are equal, output $o_{i}=\perp$ and terminate. Otherwise, let h denote the common hash value broadcasted by at least $n-t$ parties. Then form $\mathcal{P}_{\mathrm{sm}}$ as the set of parties broadcasting h.

Agreement Phase. Every party P_{i} does the following

1. If $P_{i} \in \mathcal{P}_{\text {sm }}$, set output message $o_{i}=m_{i}$.
2. Form an injective function from $\mathcal{P} \backslash \mathcal{P}_{\mathrm{sm}}$ to $\mathcal{P}_{\mathrm{sm}}$, by say, mapping the party with the smallest index in $\mathcal{P} \backslash \mathcal{P}_{\text {sm }}$ to the party with the smallest index in $\mathcal{P}_{\text {sm }}$ i.e. $\phi: \mathcal{P} \backslash \mathcal{P}_{\text {sm }} \rightarrow \mathcal{P}_{\text {sm }}$.
3. If $P_{i} \in \mathcal{P}_{\mathrm{sm}}$ and $P_{i}=\phi\left(P_{j}\right)$, then send o_{i} to P_{j}.
4. If $P_{i} \in \mathcal{P} \backslash \mathcal{P}_{\mathrm{sm}}$ and received a value say, o_{j}^{\prime} from $P_{j} \in \mathcal{P}_{\mathrm{sm}}$ in the previous round such that $P_{j}=\phi\left(P_{i}\right)$, then check if $\operatorname{Hash}\left(o_{j}^{\prime}\right)=h$. If the test passes, set happy ${ }_{i}=1$ and assign output message $o_{i}=o_{j}^{\prime}$, else set happy ${ }_{i}=0$. Send happy ${ }_{i}$ to all parties in \mathcal{P}.
5. If $P_{i} \in \mathcal{P} \backslash \mathcal{P}_{\text {sm }}$ and happy ${ }_{i}=0$, then construct a set $\mathcal{P}_{\text {conflict }}^{i}$ consisting of the parties $P_{j}, \phi\left(P_{j}\right)$ such that happy j_{j} received from P_{j} in the previous step is 0 and P_{j} belongs to $\mathcal{P} \backslash \mathcal{P}_{\text {sm }}$. Set $\mathcal{P}_{\text {hmsm }}^{i}=\mathcal{P} \backslash \mathcal{P}_{\text {conflict }}^{i}, d_{i}=\left\lceil\left(\left|\mathcal{P}_{\text {hmsm }}^{i}\right|+1\right) / 2\right\rceil$ and send d_{i} to all the parties belonging to $\mathcal{P}_{\text {hmsm }}^{i}$ and nothing to all the others.
6. If d_{j} is received from $P_{j} \in \mathcal{P} \backslash \mathcal{P}_{\mathrm{sm}}$,

- Transform the message o_{i} into a polynomial over $G F\left(2^{c}\right)$, for $c=\left\lceil\ell+1 / d_{j}\right\rceil$ denoted by f_{i} with degree $d_{j}-1$.
- Compute the c-bit piece $y_{i}=f_{i}(i), H_{i}=\left(\operatorname{Hash}\left(f_{i}(1)\right), \cdots, \operatorname{Hash}\left(f_{i}(n)\right)\right)$ and sends $\left(y_{i}, H_{i}\right)$ to P_{j}.

7. If $P_{i} \in \mathcal{P} \backslash \mathcal{P}_{\text {sm }}$ and happy ${ }_{i}=0$, check each piece y_{j} received from each $P_{j} \in \mathcal{P}_{\text {hmsm }}^{j}$ against the j th entry of every hash value vector H_{k} received from $P_{k} \in \mathcal{P}_{\text {hmsm }}^{i}$. If at least d_{i} of the hash values match a piece y_{j}, then accept y_{j}, otherwise reject it. Interpolate the polynomial f from the d_{i} accepted pieces y_{j}, and compute the message m corresponding to the polynomial f. Set $o_{i}=m$.
8. Output o_{i} and terminate.

Figure 3: Honest Majority BA

Lemma 5.2. The agreement phase satisfies the following properties:
(a) The majority of the parties in $\mathcal{P}_{\mathrm{hmsm}}^{i}$ are honest for every honest P_{i} in $\mathcal{P} \backslash \mathcal{P}_{\mathrm{sm}}$.
(b) The output messages of the honest parties in $\mathcal{P}_{\mathrm{sm}}$ and $\mathcal{P}_{\mathrm{hmsm}}^{i}$ are the same for every honest P_{i} in $\mathcal{P} \backslash \mathcal{P}_{\text {sm }}$.
(c) Every honest party holds the same output message m.

Proof.
(a) Now we show that $\mathcal{P}_{\text {hmsm }}^{i}$ has honest majority for every honest $P_{i} \in \mathcal{P} \backslash \mathcal{P}_{\text {sm }}$. Consider the set $\mathcal{P}_{\text {conflict }}^{i}=\mathcal{P} \backslash \mathcal{P}_{\text {hmsm }}^{i}$. This set consists of pairs of parties $\left(P_{j}, \phi\left(P_{j}\right)\right)$. It is not possible that both the parties $\left(P_{j}, \phi\left(P_{j}\right)\right)$ are honest. If $\phi\left(P_{j}\right)$ is honest, by Lemma 5.1, he holds a message m that matches with h and he will send m to P_{j}. If P_{j} was honest too, its check $\operatorname{Hash}(m)=h$ will verify and it will send happy ${ }_{j}=1$. Since the pair $\left(P_{j}, \phi\left(P_{j}\right)\right)$ is included in $\mathcal{P}_{\text {conflict }}^{i}, P_{j}$ had sent happy ${ }_{j}=0$ to P_{i}. This implies either P_{j} is corrupt and sent happy ${ }_{j}=0$, or $\phi\left(P_{j}\right)$ is corrupt and sent a message not matching h to P_{j}. Therefore, at least half of $\mathcal{P}_{\text {conflict }}^{i}$ are corrupted parties. Since we have honest majority in \mathcal{P}, we have that the majority of the parties in $\mathcal{P}_{\text {hmsm }}^{i}$ are honest.
(b) By Lemma 5.1, all the honest parties in $\mathcal{P}_{\text {sm }}$ hold the same input message, say m. So o_{i} for every honest party P_{i} in $\mathcal{P}_{\mathrm{sm}}$ is equal to m. Now consider an arbitrary honest party $P_{j} \in \mathcal{P}_{\text {hmsm }}^{i}$. If $P_{j} \in \mathcal{P}_{\mathrm{sm}}$, then $o_{i}=m_{i}=m$. If $P_{j} \notin \mathcal{P}_{\mathrm{sm}}$ but in $\mathcal{P}_{\text {hmsm }}^{i}$, then P_{j} must have sent happy ${ }_{j}=1$ to honest P_{i}. This implies that P_{j} had received some message, say m^{\prime} from $\phi\left(P_{j}\right) \in \mathcal{P}_{\mathrm{sm}}$ and $h=\operatorname{Hash}\left(m^{\prime}\right)$ where h is the hash of the common output message m held by the honest parties in $\mathcal{P}_{\mathrm{sm}}$. This implies $m=m^{\prime}$ with high probability by collision resistance of the hash function. Since P_{j} sets $o_{i}=m^{\prime}$, the output messages of all the honest parties in $\mathcal{P}_{\mathrm{sm}}^{i}$ and $\mathcal{P}_{\mathrm{hmsm}}^{i}$ are the same message.
(c) We will show that every honest party P_{j} outputs $o_{j}=m$, where m is the common input message of the honest parties in $\mathcal{P}_{\text {sm }}$. Consider an arbitrary honest party P_{j}. We have already proved that if $P_{j} \in \mathcal{P}_{\text {sm }}$ or $P_{j} \in \mathcal{P}_{\text {hmsm }}^{i}$ for an honest P_{i}, then $o_{j}=m$. If P_{j} neither belongs to $\mathcal{P}_{\mathrm{sm}}$ or nor to $\mathcal{P}_{\mathrm{hmsm}}^{i}$ for any honest P_{i}, then it implies that happy ${ }_{j}$ must be 0 and P_{j} has received a message that is not equal to m from $\phi\left(P_{j}\right)$. We now show that P_{j} will retrieve m from the parties in $\mathcal{P}_{\text {hmsm }}^{j}$. Recall that since P_{j} is honest, $\mathcal{P}_{\text {hmsm }}^{j}$ has honest majority and all the honest parties in it have $o_{i}=m$. This implies that every honest party P_{i} 's transformed polynomial f_{i} are identical and correspond to m. We refer to the polynomial as f. If P_{j} receives d_{j} correct y_{i} values on f, then it can reconstruct f that is a $d_{j}-1$ degree polynomial. There are at least d_{j} honest parties in $\mathcal{P}_{\text {hmsm }}^{j}$ whose hash vectors will be the hash values of $f(1), \ldots, f(n)$. So a piece y_{i} that is same as $f(i)$ will be accepted by P_{j}. Whereas y_{i}^{\prime} that is not $f(i)$ will be rejected by P_{j} with high probability. Since there are at least d_{j} honest parties in $\mathcal{P}_{\text {hmsm }}^{j}, P_{j}$ will always receive $d_{j} y_{i}$ pieces and will reconstruct f and m.

Theorem 5.1. The protocol $\left(\frac{n}{2}\right)$-BA satisfies the following properties.
Agreement: All honest parties output the same value.
Validity: If every honest party P_{i} hold the same message $m_{i}=m$, then all the honest parties output m.
Complexity: The protocol has a round complexity of 5, seed round complexity of 1, a communication complexity of $\mathcal{O}\left(\ell n+n^{3} \kappa+n \kappa \mathcal{B}(1)\right)$ bits and seed communication complexity of $\mathcal{O}(n \kappa)$ bits.

Proof.
Agreement: If the protocol aborts in the checking phase, then all the parties output \perp. Otherwise, all the parties output the same message at the end of agreement phase (Lemma 5.2(c)).

Validity: By Lemma 5.1(a), if all honest parties hold the same message, then all honest parties are in $\mathcal{P}_{\mathrm{sm}}$ and output the same message m.
Complexity: The checking phase communicates $n \mathcal{B}(\kappa)$ bits. In the agreement phase, at most t parties who are outside $\mathcal{P}_{\mathrm{sm}}$ receive messages from the parties in $\mathcal{P}_{\mathrm{sm}}$ as per the mapping ϕ. This requires $\mathcal{O}(\ell n)$ bits of communication. After this step, every party in $\mathcal{P} \backslash \mathcal{P}_{\text {sm }}$ sends a bit happy ${ }_{i}$ to every other party. This requires $\mathcal{O}\left(n^{2}\right)$ bits of communication. Next the parties who are in $\mathcal{P} \backslash \mathcal{P}_{\text {sm }}$ and did not receive a message that matches with h yet will send d_{j} to all the parties in $\mathcal{P}_{\text {hmsm }}^{j}$. This step incurs $\mathcal{O}\left(n^{2} \log n\right)$ bits of communication (every d_{j} can be represented by $\log n$ bits). Finally, for a party P_{i}, the set of parties in $\mathcal{P}_{\mathrm{hmsm}}^{i}$ makes $\mathcal{O}\left(\ell+n^{2} \kappa\right)$ bits of communication. Since there can be at most t parties in $\mathcal{P} \backslash \mathcal{P}_{\mathrm{sm}}$, the total communication required is $\mathcal{O}\left(\ell n+n^{3} \kappa\right)$ bits. The total communication complexity of ($\frac{\mathfrak{n}}{2}$)-BA protocol is $\mathcal{O}\left(\ell n+n^{3} \kappa+n \kappa \mathcal{B}(1)\right)$ bits. The seed communication complexity is $\mathcal{O}(n \kappa)$. The checking phase requires one round which is also the sole seed round. The agreement phase requires four rounds of point-to-point communication. So the round complexity and the seed round complexity of $\left(\frac{n}{2}\right)$-BA are 5 and 1 respectively.

6 Byzantine Broadcast Extension for $t<n$

We present a BB extension protocol for ℓ bit message in the dishonest majority setting with: (i) communication complexity: $\mathcal{O}(\ell n)$ bits, (ii) round complexity: $\mathcal{O}(n)$. The protocol has a seed round complexity of $\mathcal{O}(n)$. In the same setting, the only known communication optimal BB extension protocol was given by HR14 (will be referred as HR protocol henceforth). Both the round complexity and seed round complexity of the HR protocol are $\mathcal{O}\left(n^{2}\right)$. Our protocol is the first protocol that optimizes two significant parameters of a BB extension protocol simultaneously.

Like the HR protocol, our construction broadcasts the long message block by block sequentially using dispute control framework [BH06]. While overall communication complexity is guaranteed to be optimal, broadcasting each block may not be done with optimal communication complexity. Our dispute control framework ensures that a corrupted party gets a single chance to misbehave with an honest party. Once it is detected for wrong behaviour by an honest party in some execution of block broadcast, the corrupted party will be ignored by the honest party for the rest of the protocol. By maintaining a history of deviating behaviours across block broadcasts, the dispute control framework help save expensive block communications between parties in dispute. At the heart of dispute control framework lies the art of maintaining history and using it carefully. Such a paradigm calls for sequential execution, and hence, often, the framework trades round complexity for communication complexity. When both the round and the communication overheads are of concern, the framework may not seem to be a wise choice. However, we hit the optimal communication and round complexity at the same time by implementing dispute control framework with overlapped sequential execution. At this point, we note a clear difference between our construction and HR construction. While the HR block broadcasts run sequentially without any overlap, our construction intertwines the block broadcasts cleverly, yet maintaining the optimal communication complexity. The result is our construction runs just for $\mathcal{O}(n)$ rounds beating the non-optimal $\mathcal{O}\left(n^{2}\right)$ round complexity of HR protocol.

Specifically, we divide the input message into n blocks. A seed broadcast round is then used to broadcast the hash values of the n blocks. The usage of broadcast ensures all the honest parties hold
the same copies for the hash values. In an honest block broadcast protocol where everyone behaves honestly, it just requires $n-1$ point-to-point communication of the block in order to propagate it from the sender to the rest of the parties given that the hash value of the message block is already agreed upon and the underlying hash function is collision resistant. But the corrupted parties may behave arbitrarily. Although it may result in requiring more than $n-1$ point-to-point block communications, the honest parties will identify the corrupted parties who misbehaved and will ignore them for the rest of the protocol. Our protocol (n)-BB is given in Figure 4 which constitutes of two phases: (i) Hash Agreement Phase: It consists of just one round where P_{s} broadcasts the hashes $h^{(1)}, \ldots, h^{(n)}$ of the n message blocks using oracle access to broadcast bits so that the parties agree on the hash values of the blocks.; (ii) Block Agreement Phase: In this phase, the parties try to obtain the blocks from parties who already received it using only point-to-point communication such that the blocks verify against the agreed hash values.

We now concentrate on the block agreement phase where the agreement of blocks are done sequentially yet in an overlapped fashion. Specifically, a party P_{i} starts requesting for k th message block only when it has received the $(k-1)$ th one. This reflects the sequential nature. The overlapping comes from the fact that the k th block agreement for P_{i} may run in parallel with the $(k-1)$ th block agreement for P_{j}. This stems from the fact that a party P_{i} proceeds to k th block agreement once it receives the $(k-1)$ th block and without waiting for others to receive the same. The protocol runs for $t+n$ rounds, where the earliest round to start asking for k th message block and the latest round to reach agreement on k th block are set to k and $t+k$ respectively. If no block matching the k th hash is received by the end of round $(t+k)$ round, then an honest party exits the while loop and outputs \perp. Our protocol guarantees that either all or none of the honest parties will get the message.

Every party maintains three kinds of sets. A local corrupt set \mathcal{C}_{i} is used by party P_{i} to log the corrupted parties discovered across the blocks. For the k th block, every party P_{i} locally maintains a set of happy parties $\mathcal{H}_{i}^{(k)}$ and a set of unhappy parties $\overline{\mathcal{H}}_{i}^{(k)}$. From P_{i} 's point of view, a party is happy if it declares to hold/receive a message block matching with the hash value $h^{(k)}$ and it broadcasts certain 'proof' along with the declaration. A party P_{i} promotes P_{j} to its happy set only when 'the proof verifies correctly'. Only P_{s} is considered to be happy initially for all the blocks.

Now let us understand how a particular block agreement is done. Consider the k th block. A party P_{i} who has received $(k-1)$ th block and is still unhappy for the k th block checks if there is a party in its k th happy set $\mathcal{H}_{i}^{(k)}$ who it can ask for the k th message block. An unhappy (and honest) party P_{i} never requests a party for the message block more than once. Similarly, a happy (and honest) P_{j} does not entertain anyone more than once. To prevent the corrupted parties from making block request from multiple honest parties in a round, every party is made to broadcast the identity of its chosen party. A happy (and honest) P_{j} sends its message block to P_{i} over the point-to-point channel if and only if it receives a request from P_{i} via broadcast for the first time for a block. A matrix $\mathbf{T}^{(k)}$ is maintained by each party to detect repeated message send requests. A party who asks for the message block more than once from the same party is identified as corrupted. Next P_{i}, on receiving a message block from P_{j} can check if it matches with $h^{(k)}$. As $h^{(k)}$ is generated from a collision-resistant hash function, a corrupted P_{j} cannot trick an honest P_{i} by sending a wrong message block and yet pass the consistency check with $h^{(k)}$. Once P_{i} is happy, it prepares its proof and broadcasts the same. Intuitively, when P_{s} is corrupted, the proof enables to reach agreement on a block within the round limit fixed for the block. Namely, for the k th round, it is $k+t$. It ensures that the more the adversary delays the receipt of the block by the honest parties, the more

- Input of P_{s} : An ℓ bit message m.
- Oracle: Broadcast oracle for bits.
- Cryptographic Assumption: A collision resistant hash function Hash.

Hash Agreement Phase: The sender P_{s} does the following:

1. Break the message m into n pieces by padding the end of the message if necessary so that all pieces are of the same length. Denote the n messages by $m^{(1)}, \cdots, m^{(n)}$.
2. For $k=1, \ldots, n$, compute $h^{(k)}=\operatorname{Hash}\left(m^{(k)}\right)$ and broadcast $h^{(k)}$ to all parties.

Block Agreement Phase: Each party P_{i} does the following:

1. Initialize
$-\mathcal{C}_{i}$ to $\emptyset, \mathrm{c}_{i}$ to 1 and r to 1.

- $\mathbf{T}_{i}^{(k)}[j, l]=1$ for $j, l, k \in\{1, \ldots, n\}$
- $\mathcal{H}_{i}^{(k)}, \overline{\mathcal{H}}_{i}^{(k)}$ to P_{s} and $\mathcal{P} \backslash P_{s}$ respectively for $k \in\{1, \ldots, n\}$
$-o_{i}^{(k)}$ to \perp if $P_{i} \neq P_{s}, o_{i}^{(k)}=m_{i}^{(k)}$ otherwise for $k \in\{1, \ldots, n\}$

2. While $r \leq(n+t)$
(a) If $P_{i} \in \overline{\mathcal{H}}_{i}^{\left(\mathrm{c}_{i}\right)}, \exists P_{j} \in \mathcal{H}_{i}^{\left(\mathrm{c}_{i}\right)} \backslash \mathcal{C}_{i}$ and $\left|\mathcal{H}_{i}^{\left(\mathrm{c}_{i}\right)} \cup \mathcal{C}_{i}\right| \geq r-\mathrm{c}_{i}+1$, then broadcast (send, j, c_{i}).
(b) Let (send, x, y) be the output of the broadcast initiated by $P_{j} \notin \mathcal{C}_{i}$.
i. if $\mathbf{T}_{i}^{(y)}[x, j]=1$ and there is only one broadcast initiated by P_{j}, then set $\mathbf{T}_{i}^{(y)}[x, j]=0$. If $x=i$ and $P_{i} \in \mathcal{H}_{i}^{\left(\mathrm{c}_{\mathrm{c}}\right)}$, then send $o_{i}^{\left(\mathrm{c}_{i}\right)}$ to P_{j} over point-to-point channel.
ii. else add P_{j} to \mathcal{C}_{i}.
(c) If P_{i} broadcasted (send, j, c_{i}) in step 2a. let $\overline{o_{j}^{\left(\mathrm{c}_{i}\right)}}$ denote the message block received from P_{j} over point-to-point channel.
i. if $h^{\left(\mathrm{c}_{i}\right)}=\operatorname{Hash}\left(\overline{o_{j}^{\left(\mathrm{c}_{i}\right)}}\right)$, then increment c_{i} by one, set $o_{i}^{\left(\mathrm{c}_{i}\right)}=\overline{o_{j}^{\left(\mathrm{c}_{i}\right)}}$ and finally broadcast (happy, $\left.\mathcal{H}_{i}^{\left(\mathrm{c}_{i}\right)}, \mathcal{C}_{i}, \mathrm{c}_{i}\right)$.
ii. otherwise broadcast (unhappy, c_{i}), add P_{j} to \mathcal{C}_{i}.
(d) Let v be the output of the broadcast done by $P_{j} \notin \mathcal{C}_{i}$ in step 2 c who broadcasted (send, $*, *$) in step 2a earlier this round:
i. if $v=\left(\right.$ happy $\left., \mathcal{H}_{j}^{(x)}, \mathcal{C}_{j}, x\right), \mathcal{H}_{j}^{(x)} \cup \mathcal{C}_{j} \subseteq \mathcal{H}_{i}^{(x)} \cup \mathcal{C}_{i}$ and $\left|\mathcal{H}_{j}^{(x)} \cup \mathcal{C}_{j}\right| \geq r-x+1$, then move P_{j} from $\overline{\mathcal{H}}_{i}^{(x)}$ to $\mathcal{H}_{i}^{(x)}$ and set $\mathcal{H}_{i}^{(x)}=\mathcal{H}_{i}^{(x)} \cup \mathcal{H}_{j}^{(x)}$.
ii. if $v=$ (unhappy, x), then do nothing.
iii. else add P_{j} to \mathcal{C}_{i}.
(e) If $r=\mathrm{c}_{i}+t$ and $P_{i} \in \overline{\mathcal{H}}_{i}^{\left(\mathrm{c}_{i}\right)}$, then exit while loop.
3. If $o_{i}^{(k)} \neq \perp$ for all $1 \leq k \leq n$, then output $o_{i}^{(1)}|\cdots| o_{i}^{(n)}$. Else, output \perp.

Figure 4: Broadcast Protocol in Dishonest Majority Setting
it needs to expose the identities of the corrupted parties. We show that an honest party that moves to the k th happy set in round r will know at least $r-k$ corrupted parties. The proof further ensures that the delay cannot be beyond a limit. For the k th block, the first honest party must be allowed to be happy before round $k+t$. Otherwise all the honest parties will remain unhappy and would output a \perp at the end of round $k+t$. More details follow.

Specifically, the proof of P_{i} for k th block in r th round is a happy set and corrupt set such that $\left|\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}\right| \geq r-k+1$ (excluding itself). If P_{s} is honest, then every honest party will get promoted to the k th happy sets of all the honest parties in the k th round itself as each one them can prepare a proof where the happy sets consists of P_{s}. For a corrupted P_{s}, the proof ensures that the first entry of an honest party in the k th happy sets of the honest parties cannot be in $(k+t)$ th round. It must be in one of the previous rounds, because the proof in $(k+t)$ th round requires $t+1$ distinct parties in the union of happy set and the corrupt set. Since an honest party will not belong to the corrupt set of another honest party, apart from self, the first honest entrant must include another honest party in its k th happy set. Therefore, there must be some other honest party who has become happy before $(k+t)$ th round. We then show that if an honest party becomes happy in round r for the k th block such that $k \leq r<k+t$, then all the honest parties will be happy after running round $(k+t)$.

Lastly, to ensure that a corrupted party does not fake its proof by including parties that are not happy or corrupt, the proof is verified by checking if it is a subset of the union of the happy set and corrupt set of the verifier. An honest party's proof will always get verified by another honest party. We show that there is a one-to-one correspondence between the sets $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ and $\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}$ of two honest parties P_{i} and P_{j}.

We now proceed to the proofs.
Lemma 6.1 (Complexity). Protocol (n)-BB has:
(i) a round complexity of $\mathcal{O}(n)$,
(ii) a seed round complexity of $\mathcal{O}(n)$,
(iii) a communication complexity of $\mathcal{O}\left(\ell n+\left(n \kappa+n^{3} \log n\right) \mathcal{B}(1)\right)$ bits and
(iv) a seed communication complexity of $\mathcal{O}\left(n \kappa+n^{3} \log n\right)$ bits.
for a message of ℓ-bit length.
Proof. It is easy to verify the round complexity and the seed round complexity of the protocol.
We now compute the communication complexity by considering the communication received by each party. First, let us consider the communication received by an honest party. For every block of message, if an honest party eventually moves to the happy set, then it receives $\frac{\ell}{n}$ bits of message in order to move from the unhappy set to happy set. Across all the message blocks, it may in addition receive $\frac{\ell}{n}$ bits of wrong message block from each of the t corrupted parties. However, each such receipt will reveal the identity of one corrupted party. Thus, in total, the amount of communication received by an honest party in the protocol is $\mathcal{O}(\ell)$ bits. Now consider the communication received by a corrupted party. We need to focus on the communication made by the honest parties since a corrupted party can communicate as many bits as it wants to another corrupted party. A corrupted party cannot make an honest party to communicate any message block twice. Every honest party P_{i} keeps track of the list of parties it sends a message block to in the array T. Once it sends the k th message block to P_{x}, it sets $\mathbf{T}^{(k)}[i, x]$ to 0 . Thus, a corrupted party either moves to the happy set or creates a conflict with the honest party P_{i}. Irrespective of the case, the honest party P_{i} will not communicate the same message block to the same corrupted party for the second time. Thus,
across all message blocks, a corrupted party can receive $\frac{\ell}{n}$ bits of message from each honest party to create conflicts with them. To move from unhappy set to happy set for each message block, it may receive $\frac{\ell}{n}$ bits of message from some honest party. Overall it counts to receipt of $\mathcal{O}(\ell)$ bits. Now counting over all parties, we get that the overall received message complexity is $\mathcal{O}(\ell n)$ bits. Since the communication complexity is same as the received bit complexity, we conclude that the communication complexity is $\mathcal{O}(\ell n)$ bits.

We now count the part of the communication complexity that is independent of ℓ and is broadcasted. In the Hash Agreement phase, P_{s} broadcasts n hash values corresponding to n message blocks. This requires a communication of $\mathcal{B}(n|h|)$ bits. Next, we consider the communication involved in the Block Agreement phase. For k th block, every party P_{i} will broadcast (happy, $\left.\mathcal{H}_{i}^{(k)}, \mathcal{C}_{i}, k\right)$ only in the round when it moves from its unhappy set to happy set. In the worst case, it may broadcast (send, j, c_{i}) and (unhappy, c_{i}) in every round. We may assume the size of $\mathcal{H}_{i}^{(k)}$ and \mathcal{C}_{i} to be $\mathcal{O}(t)$. This results in a communication of $\mathcal{B}(n \log n)$ bits per party per message block. Summing over all the blocks and all the parties, we get that a communication of $\mathcal{B}\left(n^{3} \log n\right)$ bits is required. Assuming $\left|h^{(k)}\right|=\kappa$, the communication that is independent of ℓ turns out to be $\mathcal{B}\left(n \kappa+n^{3} \log n\right)$ bits. Thus the ℓ independent communication complexity is $\mathcal{O}\left(\left(n \kappa+n^{3} \log n\right) \mathcal{B}(1)\right)$ bits.

The communication complexity of protocol (n$)-\mathrm{BB}$ is, thus, $\mathcal{O}\left(\ell n+\left(n \kappa+n^{3} \log n\right) \mathcal{B}(1)\right)$ bits and the seed communication complexity is $\mathcal{O}\left(n \kappa+n^{3} \log n\right)$ bits.

Lemma 6.2 (Validity). Assume that Hash is a collision-resistant hash function. In protocol (n)-BB, if P_{s} is honest then every honest party will output sender's message.

Proof. The validity follows from the fact that all the honest parties ask for and receive the k th message block from P_{s} in the k th round of the while loop and move to the k th happy set $\mathcal{H}^{(k)}$ of all the honest parties. Formally, the proof goes as follows. Before the start of the while loop, $\mathcal{H}_{i}^{(k)}$ is set to P_{s} for all $k \in\{1, \ldots, n\}$. Consider the k th message block. In the k th round of the while loop, the condition $\left|\mathcal{H}_{i}^{(k)}\right| \geq r-k+1$ will hold for any honest party P_{i}, since both $\left|\mathcal{H}_{i}^{(k)}\right|$ and $r-k+1$ are equal to 1 . The latter is true because we are considering the k th round and hence $r=k$. Every honest party P_{i} does the following in the given order (i) It asks for the k th message block from P_{s} and will receive the same; (ii) It broadcasts (happy, $\mathcal{H}_{i}^{(k)}, \mathcal{C}_{i}, k$) where, $\mathcal{H}_{i}^{(k)}=\left\{P_{s}\right\}$, sets $o_{i}^{(k)}$ to $m^{(k)}$ and increments block count c_{i} by one; (iii) At the end of k th round, it outputs $o_{i}^{(k)}$ which is the same as $m^{(k)}$, since P_{s} is honest. At the end of protocol (n)-BB, every honest P_{i} will output $m^{(1)}|\ldots| m^{(n)}$ which is same as the sender's message m.

We now prove the agreement property via a sequence of lemmas on the (n)-BB protocol.
Lemma 6.3. In the start of any round r for $1 \leq r \leq n+t$, the condition $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i} \subseteq \mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}$ is true for any two honest parties P_{i} and P_{j} for any $k \in\{1, \ldots, n\}$.

Proof. Consider any party P_{α} that enters $\mathcal{H}_{i}^{(k)}$ in round r for $1 \leq r \leq n+t$. We show that P_{α} will belong to $\mathcal{H}_{j} \cup \mathcal{C}_{j}$ in the same round r. Since P_{α} enters \mathcal{H}_{i} in round r, the following must be true: (i) P_{i} has received P_{α} 's broadcast (send, x, y) such that $\mathbf{T}_{i}^{(y)}[x, \alpha]=1$ and there is only one broadcast initiated by P_{α} in this round; and (ii) P_{i} has received P_{α} 's broadcast (happy, $\mathcal{H}_{\alpha}^{(k)}, \mathcal{C}_{\alpha}, k$) such that the conditions $\mathcal{H}_{\alpha}^{(k)} \cup \mathcal{C}_{\alpha} \subseteq \mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ and $\left|\mathcal{H}_{\alpha}^{(k)} \cup \mathcal{C}_{\alpha}\right| \geq r-k+1$ hold. P_{j} will also receive P_{α} 's broadcast (send, x, y) such that $\mathbf{T}_{i}^{(y)}[x, \alpha]=1$ and this will be the only broadcast initiated
by P_{α} in this round. Furthermore, P_{j} also receives P_{α} 's broadcast (happy, $\mathcal{H}_{\alpha}^{(k)}, \mathcal{C}_{\alpha}, k$). Now, if $\mathcal{H}_{\alpha}^{(k)} \cup \mathcal{C}_{\alpha} \subseteq \mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}$, then P_{j} will move P_{α} to its happy set. Otherwise, P_{j} will add P_{α} to \mathcal{C}_{i}. It can never happen that P_{α} is moved to $\mathcal{H}_{i}^{(k)}$ by P_{i}, but P_{j} has neither moved it to $\mathcal{H}_{j}^{(k)}$ nor added to \mathcal{C}_{j}.

Consider any party P_{α} that enters \mathcal{C}_{i} in round r for $1 \leq r \leq n+t$. We show that P_{α} belongs to $\mathcal{H}_{j} \cup \mathcal{C}_{j}$ in the same round $r . P_{\alpha}$ may enter \mathcal{C}_{i} for an honest P_{i} because of one of the following reasons:
(i) P_{i} has received P_{α} 's broadcast (send, x, y) such that one of the following is true. Either $\mathbf{T}_{i}^{(y)}[x, \alpha]$ is already set to 0 (i.e. P_{α} has asked for the k th message block from P_{x} earlier) or there is more than one broadcast initiated by P_{α} in this round. In either case P_{j} will also add P_{α} to its corrupt set \mathcal{C}_{j}.
(ii) P_{i} has received P_{α} 's broadcast (happy, $\left.\mathcal{H}_{\alpha}^{(k)}, \mathcal{C}_{\alpha}, k\right)$ such that either of the conditions $\mathcal{H}_{\alpha}^{(k)} \cup \mathcal{C}_{\alpha} \subseteq$ $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ and $\left|\mathcal{H}_{\alpha}^{(k)} \cup \mathcal{C}_{\alpha}\right| \geq r-k+1$ are not true. P_{j} will also receive the same broadcast. Based on whether the conditions are true for P_{j} or not, P_{j} will either add P_{α} to \mathcal{C}_{j} or move it to $\mathcal{H}_{j}^{(k)}$. But it cannot happen that P_{j} has not added P_{α} to either of the two sets.
(iii) P_{i} had requested P_{α} for the k th message block but has not received one matching with $h^{(k)}$. Then it must be the case that P_{α} belongs to the set $\mathcal{H}_{i}^{(k)}$ of P_{i} in the end of $(r-1)$ th round itself. By the first part of our proof, P_{j} contains P_{α} in $\mathcal{H}_{j} \cup \mathcal{C}_{j}$ by the end of round $(r-1)$ too.

Together, we can conclude that every P_{α} belonging to $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ belongs to $\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}$ for honest parties P_{i} and P_{j} at the start of any given round. Thus, the condition $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i} \subseteq \mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}$ is true for any two honest parties P_{i} and P_{j} for any $k \in\{1, \ldots, n\}$.

Definition 6.1 (Validity of \mathcal{C}_{i}). We say that a set \mathcal{C}_{i} is valid if for honest P_{i}, and for all honest parties $P_{j} P_{j} \notin \mathcal{C}_{i}$.

Below we prove that protocol (n)-BB ensures \mathcal{C}_{i} remains valid throughout for an honest P_{i}.
Lemma 6.4. The set \mathcal{C}_{i} is valid for an honest party P_{i}.
Proof. We note that an honest party adds a party P_{j} in corrupt set \mathcal{C}_{i} when either of the following are true: (i) it receives multiple broadcasts from P_{j} of the form (send, x, y) in different rounds or in the same round or (ii) it receives multiple broadcasts from P_{j} of the form (send, x, y) and (send, x^{\prime}, y^{\prime}) in the same round where $x \neq x^{\prime}$ or (iii) it did not receive a message block from P_{j} upon request that matches with the corresponding hash value or (iv) it receives (happy, $\mathcal{H}_{j}^{(k)}, \mathcal{C}_{j}, k$) for some k from P_{j} in round r such that either $\left|\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}\right|<r-k+1$ or $\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j} \nsubseteq \mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$. P_{j} is clearly corrupted when any of the conditions stated in (i)-(iii) hold. Now, for the conditions in (iv), if P_{j} was honest it would not broadcast (happy, $\left.\mathcal{H}_{j}^{(k)}, \mathcal{C}_{j}, k\right)$ such that $\left|\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}\right|<r-k+1$. By Lemma 6.3. for any two honest parties P_{i} and $P_{j}, \mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j} \subseteq \mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ is true at the beginning of the round when (happy, $\left.\mathcal{H}_{j}^{(k)}, \mathcal{C}_{j}, k\right)$ is broadcasted. If it is not true, then P_{j} is corrupted.

The next lemma makes the following statements equivalent: For any k, in the k th block broadcast (i) an honest party moves from its k th unhappy set to k th happy set in round r (ii) an honest party moves from the k th unhappy set to the k th happy set of every honest party in round r.

Lemma 6.5. For any k, if an honest party P_{i} moves from $\overline{\mathcal{H}}_{\alpha}^{(k)}$ to $\mathcal{H}_{\alpha}^{(k)}$ for an honest party P_{α} in rth round, then it moves from $\overline{\mathcal{H}}_{\beta}^{(k)}$ to $\mathcal{H}_{\beta}^{(k)}$ for every other honest party P_{β} in the same round.

Proof. We note that the test done by P_{α} and P_{β} for promoting P_{i} to their happy sets are identical: P_{α} checks $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i} \subseteq \mathcal{H}_{\alpha} \cup \mathcal{C}_{\alpha}$ while P_{β} checks $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i} \subseteq \mathcal{H}_{\beta}^{(k)} \cup \mathcal{C}_{\beta}$. It follows from Lemma 6.3 that both will hold.

We now prove the following lemma: For any k, if an honest and unhappy party moves a party to its k th happy set in r th round, then it will know at least $r-k+1$ corrupted parties by the end of r th round where $k \leq r \leq k+t$.

Lemma 6.6. For any k, if an honest party P_{i} is in $\mathcal{H}_{i}^{(k-1)}$ before rth round but in $\overline{\mathcal{H}}_{i}^{(k)}$ till the end of r th round and moved a party from $\overline{\mathcal{H}}_{i}^{(k)}$ to $\mathcal{H}_{i}^{(k)}$ in the rth round where $k \leq r \leq k+t$, then $\left|\mathcal{C}_{i}\right| \geq r-k+1$.

Proof. We prove the lemma using strong induction on r. We start with the following observation. Let P_{j} be the party that moved from $\overline{\mathcal{H}}_{i}$ to \mathcal{H}_{i} in the r th round. This implies that the conditions $\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j} \subseteq \mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ and $\left|\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}\right| \geq r-k+1$ are true. From these two conditions, we can conclude that $\left|\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}\right| \geq r-k+1$ in the beginning of r th round itself (excluding P_{j}).

Base Case. Assume r to be the first round when P_{i} moved at least one party from $\overline{\mathcal{H}}_{i}^{(k)}$ to $\mathcal{H}_{i}^{(k)}$ and P_{i} is in $\overline{\mathcal{H}}_{i}$ till the end of r th round. We have $k \leq r \leq k+t$. Since before r th round no party has moved to $\mathcal{H}_{i}^{(k)}, \mathcal{H}_{i}^{(k)}$ consists of only P_{s}. Furthermore, P_{s} must be corrupted as P_{i} is still unhappy. Therefore, all the parties in $\mathcal{H}_{i}^{(k)}$ are corrupted. Since we have $\left|\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}\right| \geq r-k+1$ in the beginning of r th round, we can conclude that $\left|\mathcal{C}_{i}\right| \geq r-k+1$ in round r.

Induction Step. Assume the lemma statement is true for all the rounds starting from k to $r-1$. We will prove the statement for round r.

Now, assume that r^{\prime} is the last round before r when P_{i} moved at least one party from $\overline{\mathcal{H}}_{i}^{(k)}$ to $\mathcal{H}_{i}^{(k)}$. We have $r^{\prime}<r$. Since P_{i} must have been unhappy in round r^{\prime} too, we have $\left|\mathcal{C}_{i}\right| \geq r^{\prime}-k+1$ by the end of round r^{\prime} via induction hypothesis. According to the protocol, the following condition will be satisfied for P_{i} in the end of round $r^{\prime}:\left|\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}\right| \geq r^{\prime}-k+2$ after moving P_{j} to the happy set. Now we have two cases to consider.
(i) First, if P_{i} asks for the k th message block from some party in its happy set $\mathcal{H}_{i}^{(k)}$ in every round starting from round r^{\prime} until round r, then P_{i} discovers $r-\left(r^{\prime}-1\right)+1=r-r^{\prime}$ additional corrupt parties since it remains unhappy in the end of r th round. We therefore conclude that $\left|\mathcal{C}_{i}\right| \geq\left(r^{\prime}-k+1\right)+\left(r-r^{\prime}\right)=r-k+1$ in this case.
(ii) The other possibility is that P_{i} asks for the k th message block for some rounds starting from round $r^{\prime}+1$ but stops asking before round r. By assumption, the happy set $\mathcal{H}_{i}^{(k)}$ of P_{i} did not grow between r^{\prime} th and r th round. In this case, we can conclude that all the parties that
belong to $\mathcal{H}_{i}^{(k)}$ until the beginning of round r are corrupted since none of them delivered P_{i} a message block that is consistent with $h^{(k)}$. Since we have $\left|\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}\right| \geq r-k+1$ in the beginning of r th round and all the parties in $\mathcal{H}_{i}^{(k)}$ until the beginning of round r are corrupted, we have $\left|\mathcal{C}_{i}\right| \geq r-k+1$.

We now prove a lemma that captures the fact that, the more an honest party is delayed in receiving a message block, the more the number of corrupted parties it discovers.

Lemma 6.7. For any k, if an honest party P_{i} moves to $\mathcal{H}_{i}^{(k)}$ in rth round where $k \leq r \leq k+t$, then $\left|\mathcal{C}_{i}\right| \geq r-k$.

Proof. We first prove the lemma assuming that P_{i} has not moved any party to $\mathcal{H}_{i}^{(k)}$ before round r. This means $\mathcal{H}_{i}^{(k)}$ contains P_{s} alone and P_{i} must have become happy on receiving the k th message block from P_{s}. This implies two things: first, it must have received all the previous message blocks from P_{s} too; second, r must be k. In this case, P_{i} knows zero corrupted parties. Since $r=k$, we have $\left|\mathcal{C}_{i}\right| \geq r-k$ at the end of round r. We now prove the lemma for the case when P_{i} does not receive the message blocks from P_{s} and has moved some party to $\mathcal{H}_{i}^{(k)}$ before r th round. We prove the lemma using induction on k.

Base Case. Assume $k=1$. That is, we are considering the first message block. P_{i} has moved some party to $\mathcal{H}_{i}^{(k)}$ before r th round. Let r^{\prime} be the last round when P_{i} does so. We have $1 \leq r^{\prime}<r$. By Lemma 6.6. P_{i} knows at least $r^{\prime}-k+1=r^{\prime}$ corrupted parties by the end of r^{\prime} th round. According to the protocol, by the end of round $r^{\prime},\left|\mathcal{H}_{i}^{(1)} \cup \mathcal{C}_{i}\right| \geq r^{\prime}-k+2=r^{\prime}+1$. Therefore, P_{i} will have parties in $\mathcal{H}_{i}^{(1)}$ that are not in \mathcal{C}_{i} to ask for the message block. Since P_{i} has become happy in r th round, it must have been asking distinct parties for the message block, starting from round $\left(r^{\prime}+1\right)$ and upto round r. None of the parties that it asked for the message until round $r-1$ delivered it a message block matching $h^{(1)}$. This implies it discovers $(r-1)-\left(r^{\prime}+1\right)+1=\left(r-r^{\prime}-1\right)$ corrupted parties starting from round $\left(r^{\prime}+1\right)$ and until round $(r-1)$. These identities are distinct from the r^{\prime} parties it knew by the end of round r^{\prime}. In total, P_{i} knows at least $r^{\prime}+\left(r-r^{\prime}-1\right)=r-1$ corrupted parties by the end of round r. Since $k=1$, we have $\left|\mathcal{C}_{i}\right| \geq r-1=r-k$ at the end of round r.

Induction Step. Assume the lemma is true for all the message blocks upto $k-1$. We now prove the lemma for the k th message block. Say, P_{i} moves to $\mathcal{H}_{i}^{(k-1)}$ in r_{k-1} th round where $(k-1) \leq$ $r \leq(k-1+t)$. By induction hypothesis, $\left|\mathcal{C}_{i}\right| \geq r_{k-1}-(k-1)$ by the end of r_{k-1} th round. Now we consider two cases based on when P_{i} moves some party to $\mathcal{H}_{i}^{(k)}$ before round r.
(i) The last time P_{i} moves some party to its happy set $\mathcal{H}_{i}^{(k)}$ is in or before r_{k-1} th round. P_{i} had been asking for k th message block starting from round $\left(r_{k-1}+1\right)$ to r th round. It has become happy only in round r. Until round $(r-1)$, it discovers $(r-1)-\left(r_{k-1}+1\right)+1=r-r_{k-1}-1$ corrupted parties which are different from $r_{k-1}-k+1$ corrupted parties it knew by the end of round r_{k-1}. In total P_{i} now knows $\left(r-r_{k-1}-1\right)+\left(r_{k-1}-k+1\right)=r-k$ corrupted parties at the end of r th round.
(ii) The last time P_{i} moves some party to its happy set $\mathcal{H}_{i}^{(k)}$ is after r_{k-1} th round, say, in round r^{\prime} such that $r_{k-1}<r^{\prime}<r$. By Lemma 6.6, P_{i} knows at least $r^{\prime}-k+1$ corrupted parties by the end of r^{\prime} th round. According to the protocol, by the end of round $r^{\prime},\left|\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}\right| \geq r^{\prime}-k+2$. Hence, P_{i} will have parties in $\mathcal{H}_{i}^{(k)}$ that are not in \mathcal{C}_{i} to ask for the message block starting from round $\left(r^{\prime}+1\right)$. Now, since P_{i} became happy in r th round, it must have been asking distinct parties for the message block starting from round $\left(r^{\prime}+1\right)$ and upto round r. None of the parties that it asked for the message until round $r-1$ delivered it a message block matching with $h^{(k)}$. This implies it discovers $(r-1)-\left(r^{\prime}+1\right)+1=\left(r-r^{\prime}-1\right)$ corrupted parties starting from round $\left(r^{\prime}+1\right)$ and until round $(r-1)$. These identities are distinct from the r^{\prime} parties it knew by the end of round r^{\prime}. In total, P_{i} knows at least $\left(r^{\prime}-k+1\right)+\left(r-r^{\prime}-1\right)=r-k$ corrupted parties by the end of round r. We have $\left|\mathcal{C}_{i}\right| \geq r-k$ at the end of round r.

The following lemma states that for any k, if one honest party moves to the k th happy sets of the honest parties in r th round where $k \leq r<k+t$, then every honest party will move to the k th happy sets of the honest parties before round $(k+t)$. This lemma will let us prove that either all or none of the honest parties will be happy for the k th message block which in turn will lead us to the proof of the agreement property of our protocol (n)-BB.

Lemma 6.8. For any k, if some honest party P_{i} moves from $\overline{\mathcal{H}}_{j}^{(k)}$ to $\mathcal{H}_{j}^{(k)}$ for every honest party P_{j} in round r such that $k \leq r<k+t$, then every honest party will move from $\overline{\mathcal{H}}_{j}^{(k)}$ to $\mathcal{H}_{j}^{(k)}$ before $(k+t)$ th round.

Proof. Let P_{i} be the first honest party that moves to the k th happy set $\mathcal{H}_{j}^{(k)}$ of honest P_{j}. Also let P_{i} moves to the happy set $\mathcal{H}_{j}^{(k)}$ of P_{j} in round r such that $k \leq r<k+t$. We now show that P_{j} will move to the k th happy sets of all the parties in or before $(k+t)$ th round. Let r_{k-1} be the round number when P_{j} has moved to $\mathcal{H}_{j}^{(k-1)}$ where $(k-1) \leq r_{k-1} \leq(k-1)+t$. Now we complete our proof by considering the following two possible cases:
(i) $r_{k-1}<r$: By Lemma 6.6, P_{j} knows at least $r-k+1$ corrupted parties by the end of r th round. At the end of r th round, honest P_{j} will have $\left|\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{i}\right| \geq r-k+2$ after including P_{i}. Therefore, P_{j} will have at least one party to ask for the message block in $(r+1)$ th round. Now, if P_{j} talks to P_{i} in some round in or before $(k+t)$ th round, then it moves to its happy set $\mathcal{H}_{j}^{(k)}$ after receiving the message block. So let us assume that P_{j} does not ask for the k th message block from P_{i}. This implies that P_{j} was requesting for the message block from parties other than P_{i} in each of the rounds starting from the $(r+1)$ th round. It is not possible that P_{j} has not asked for the block from anyone in some round after the r th round. This is because P_{i} will be in its happy set post r th round and by Lemma 6.4, P_{i} will not be in \mathcal{C}_{j} as both P_{i} and P_{j} are honest. We therefore conclude that P_{j} talks to some party in its k th happy set in each of the rounds starting from the $(r+1)$ th round and until $(k+t)$ th round. Now P_{j} talks to $(k+t)-(r+1)+1=k+t-r$ parties in its happy set starting from $(k+x)$ th round to $(k+t)$ th round. These $k+t-r$ parties are different from the $r-k+1$ corrupted parties P_{j} had in its corrupt list \mathcal{C}_{j} at the end of r th round. If all the $k+t-r$ parties are corrupted, then total number of corrupted parties will be $x+t-x+1=t+1$. This is a
contradiction. One out of the $k+t-r$ parties must, therefore, be honest and belong to P_{j} 's happy set $\mathcal{H}_{j}^{(k)}$. After getting the message block from the honest party in its happy set $\mathcal{H}_{j}^{(k)}$, P_{j} will move to its happy set too.
(ii) $r_{k-1} \geq r$: By Lemma 6.7, P_{j} will know at least $r_{k-1}-(k-1)$ corrupt parties by the end of round r_{k-1}. At the start of round $\left(r_{k-1}+1\right), P_{i}$ has $\left|\mathcal{C}_{j}\right| \geq r_{k-1}-(k-1)$ and its happy set $\mathcal{H}_{j}^{(k)}$ contains honest P_{i} that cannot belong to \mathcal{C}_{j} by Lemma 6.4. So clearly $\left|\mathcal{H}_{j}^{(k)} \cup \mathcal{C}_{j}\right| \geq$ $r_{k-1}-(k-1)+1=\left(r_{k-1}+1\right)-k+1$ holds good in the beginning of round $\left(r_{k-1}+1\right)$. This implies P_{j} will ask for k th message block starting from round $\left(r_{k-1}+1\right)$. Now if it asks for the k th message block from P_{i} in some round before $k+t$, then it gets promoted to $\mathcal{H}_{j}^{(k)}$. If it does not ask P_{i}, then it must be asking other parties in its k th happy set in every round starting from round $\left(r_{k-1}+1\right)$ and until round $(k+t)$. By the end of $k+t$ rounds, if it has not got promoted to the k th happy set, then it discovers $(k+t)-\left(r_{k-1}+1\right)+1=k+t-r_{k-1}$ corrupted parties. These are different from $r_{k-1}-(k-1)$ corrupt parties P_{j} knew by the end of round r_{k-1}. Therefore, the total corrupted parties will have to be $k+t-r_{k-1}+r_{k-1}-(k-1)=t+1$. This is a contradiction. Hence, we conclude P_{j} will talk to some honest party and get promoted to $\mathcal{H}_{j}^{(k)}$ by the end of round $(k+t)$.
Recall that by Lemma 6.5, an honest party will be promoted to the k th happy set respectively by all honest parties in the same round. P_{j}, will therefore, be promoted to the k th happy sets of all the honest parties. Now every honest P_{j} will move to the k th happy sets of all the parties since honest P_{i} will move to the k th happy set of every honest P_{j} in the same round (again due to Lemma 6.5.

Lemma 6.9. For any k, either all or none of the honest parties will be in the k th happy sets of the honest parties.

Proof. By Lemma 6.8, if one honest party moves to the k th happy sets of the honest parties in r th round where $k \leq r<k+t$, then every honest party will move to the k th happy sets of the honest parties on or before $(k+t)$ th round of the while loop. We now show that if at all an honest party moves to the k th happy set of the honest parties, the first such move happens in round r where $k \leq r<k+t$. Assume that P_{i} is the first honest party to enter to the k th happy sets of the honest parties. Also assume that P_{i} is moved to the k th happy sets in the $(k+t)$ th round. Then P_{i} must have at least $(k+t)-k+1=t+1$ parties in $\mathcal{H}_{i}^{(k)} \cup \mathcal{C}_{i}$ excluding itself during the broadcast of (happy, $\left.\mathcal{H}_{i}^{(k)}, \mathcal{C}_{i}, k\right)$. Since there are at most t corrupted parties, there is already one honest party included in $\mathcal{H}_{i}^{(k)} \mathcal{C}_{i}$. By Lemma 6.4, the honest party cannot belong to \mathcal{C}_{i}. So it must be in $\mathcal{H}_{i}^{(k)}$. This contradicts our assumption that P_{i} is the first honest party to move to the k th happy set of every honest party.

We conclude that if one honest party moves to the k th happy set of the honest parties before $(k+t)$ th round, then all the honest parties move to the k th happy sets by the end of $(k+t)$ th round. Otherwise, none of the honest parties enter in the k th happy sets of the honest parties.

Lemma 6.10. Assume that Hash is a collision-resistant hash function. For any k, all the honest parties in $\mathcal{H}_{i}^{(k)}$ for an honest P_{i} hold the same value.
Proof. This follows from the fact that Hash is a collision-resistant hash function and every honest party has an identical copy of $h^{(k)}$ (since it is broadcasted). Even a corrupted party cannot find a
different image of $h^{(k)}$. Therefore, even if an honest party receives the k th message block from a corrupted party, the message block must be the same as the k th message block possessed by the honest parties in the happy set of an honest party (with very high probability).

We are now ready to prove the agreement property of (n)-BB protocol.
Lemma 6.11 (Agreement). In protocol (n)-BB, every honest party will output the same message.
Proof. By Lemma 6.9, either all or none of the honest parties are present in the k th happy sets of all the honest parties for any k. If all of them are present, then by Lemma 6.10 they will hold the same block. If none of them are present, then they will hold \perp. Agreement, therefore, holds for every block of message. Agreement over the entire message follows easily.

Theorem 6.2. Assume that Hash is a collision-resistant hash function. The protocol (n)-BB satisfies:

Agreement: Every honest party will output the same message.

Validity: If the sender is honest, all honest parties output the sender's message m.
Complexity: A round complexity and seed round complexity of $\mathcal{O}(n)$. A communication complexity and a seed communication complexity of $\mathcal{O}\left(\ell n+\left(n \kappa+n^{3} \log n\right) \mathcal{B}(1)\right)$ and $\mathcal{O}\left(n \kappa+n^{3} \log n\right)$ bits respectively.

Proof. The agreement, validity and complexity follows from Lemma 6.11, Lemma 6.2 and Lemma 6.1 respectively.

7 Conclusion

We studied extension protocols that are optimal simultaneously in more than one complexity measure. We introduce seed round complexity as a measure of the number of rounds in which a single-bit broadcast protocol is invoked. We presented a BA extension protocol in the $t<n / 3$ setting that is simultaneously communication and round optimal and requires a single seed round. Our protocol does not require any set-up, is error-free and information-theoretically secure. The existing protocols in this realm achieve only communication optimality and incur $\Omega\left(n^{3}\right)$ round as well as seed round complexity. Then, in the setting with a set-up assumption, we gave constructions of two extension protocols. Our extension protocol in the $t<n / 2$ setting also achieves optimal communication and round complexity with a single seed round. Finally, in the $t<n$ setting, we presented a BB extension protocol optimal in both communication and round complexity. Our $t<n$ extension protocol improves the state-of-the-art in this setting which is only communication optimal and a non-optimal $\mathcal{O}\left(n^{2}\right)$ round complexity. We leave as open questions, designing protocols that are optimal simultaneously in communication and round complexity and requires a seed round of 1 for the more interesting and challenging $t<n$ setting.

References

[BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus. In Computer science, pages 313-321. Springer, 1992.
[BH06] Zuzana Beerliová-Trubíniová and Martin Hirt. Efficient multi-party computation with dispute control. In Theory of Cryptography, pages 305-328. Springer, 2006.
[Blu90] Norbert Blum. A new approach to maximum matching in general graphs. In Automata, Languages and Programming, 17 th International Colloquium, ICALP90, Warwick University, England, July 16-20, 1990, Proceedings, pages 586-597, 1990.
[BOCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 52-61. ACM, 1993.
[Can96] Ran Canetti. Studies in secure multiparty computation and applications. PhD thesis, The Weizmann Institute of Science, 1996.
[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-authority election scheme. In Advances in Cryptology - EUROCRYPT 1997, pages 103-118. Springer, 1997.
[CW92] Brian A Coan and Jennifer L Welch. Modular construction of a byzantine agreement protocol with optimal message bit complexity. Information and Computation, 97(1):6185, 1992.
[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. J. ACM, 32(1):191-204, 1985.
[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on Computing, 12(4):656-666, 1983.
[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. Communications of the ACM, 28(6):637-647, 1985.
[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzantine agreement. In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing, pages 163-168. ACM, 2006.
[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agreement. SIAM Journal on Computing, 26(4):873-933, 1997.
[GJ79] MR Garey and DS Johnson. Computers and intractability: a guide to the theory of np-completeness. 1979.
[GKKO07] Juan Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of authenticated broadcast with a dishonest majority. In Foundations of Computer Science, 2007. FOCS'07, pages 658-668. IEEE, 2007.
[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 218-229. ACM, 1987.
[GP16] Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and round complexity. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages 371-380. ACM, 2016.
[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party computation. Advances in CryptologyASIACRYPT 2000, pages 143-161, 2000.
[HR14] Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The $t<n$ case. In Advances in Cryptology-ASIACRYPT 2014, pages 448-465. Springer, 2014.
[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In Advances in Cryptology-CRYPTO 2003, pages 145-161. Springer, 2003.
[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In Advances in Cryptology - CRYPTO 2006, pages 445-462, 2006.
[KY86] Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for byzantine agreement. Technical report, Manuscript, 1986.
[LF82] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit protocols. Technical report, Technical Report 62, SRI International, 1982.
[LV11] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with byzantine failures. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing, pages 11-20. ACM, 2011.
[Lyn96] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
[MS78] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. NorthHolland Publishing Company, 1978.
[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal communication complexity. In Proceedings of Principles of Distributed Systems - 15th International Conference, OPODIS 2011, pages 34-49, 2011.
[PR] Arpita Patra and C Pandu Rangan. Communication optimal multi-valued asynchronous broadcast protocol. Progress in Cryptology-LATINCRYPT 2010, page 162.
[PR11] Arpita Patra and C Pandu Rangan. Communication optimal multi-valued asynchronous byzantine agreement with optimal resilience. In Proceedings of the 5th international conference on Information theoretic security, pages 206-226. Springer-Verlag, 2011.
[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal of the ACM (JACM), 27(2):228-234, 1980.
[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and byzantine agreement for $t \geq n / 3$. Technical Report RZ 2882, IBM Research, 1996.
[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the society for industrial and applied mathematics, 8(2):300-304, 1960.
[TC84] Russell Turpin and Brian A Coan. Extending binary byzantine agreement to multivalued byzantine agreement. Information Processing Letters, 18(2):73-76, 1984.
[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing(preliminary report). In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC '79, pages 209-213. ACM, 1979.

[^0]: *The results of this paper appeared in preliminary form in GP16 and Pat11.

[^1]: ${ }^{1}$ In the literature, they are known as multi-valued protocols.

