
Optimal Extension Protocols for Byzantine Broadcast and

Agreement∗

Chaya Ganesh1 and Arpita Patra2

1Department of Computer Science, New York University
ganesh@cs.nyu.edu

2Department of Computer Science & Automation, Indian Institute of Science, India
arpita@iisc.ac.in

Abstract

The problem of Byzantine Broadcast (BB) and Byzantine Agreement (BA) are of interest
to both distributed computing and cryptography community. Extension protocols for these
primitives have been introduced to handle long messages efficiently at the cost of small number
of single-bit broadcasts, referred to as seed broadcasts. The communication optimality has
remained the most sought-after property of an extension protocol in the literature. In this
paper, we prioritize both communication and round optimality. A concrete protocol from an
extension protocol is obtained by replacing the seed broadcasts with a BB protocol for single
bit. Towards building concrete protocols efficient both in terms of communication and round,
we minimize the seed round complexity of the extension protocols, where this measure refers to
the number of rounds in which seed broadcasts are invoked in an extension protocol.

In a setting with n parties and an adversary controlling at most t parties in Byzantine fash-
ion, we present BB and BA extension protocols with t < n, t < n/2 and t < n/3 that are
simultaneously optimal in terms of communication and round complexity. The best commu-
nication that an extension protocol can achieve in any setting is O(`n) bits for a message of
length ` bits. The best achievable round complexity is O(n) for the setting t < n and O(1)
in the other two settings t < n/2 and t < n/3. The existing constructions are either optimal
only in terms of communication complexity, or require more rounds as well as seed rounds than
our protocols, or achieve optimal round complexity at the cost of sub-optimal communication.
Specifically, we construct communication-optimal protocols in the following three settings with
the following round and seed round complexities:

– t < n/3: Our protocol requires three rounds and a single seed round. The best known protocol
in this setting is only communication optimal and requires a round complexity and a seed
round complexity of Ω(n3).

– t < n/2: Our protocol provides a round complexity of 5 and a seed round complexity of one.
The best known protocol in this setting requires a round complexity of 6 and a seed round
complexity of 3.

– t < n: Our protocol has a round as well as a seed round complexity of O(n). The same
complexities for the best known protocol in this domain are O(n2).

∗The results of this paper appeared in preliminary form in [GP16] and [Pat11].

1

1 Introduction

In the Byzantine Broadcast (BB) problem, a designated party (called the sender) holds an input
message m, and the goal is for all parties to learn m and agree on it. In the related Byzantine
Agreement (BA) problem, every party Pi holds a message mi, and the goal is for all parties to
agree on a common message. BB and BA are important primitives used widely in Multi-Party
Computation (MPC) and distributed computing protocols in order to reach agreement on some
messages. Most often, these higher level protocols need agreement to be reached on longer messages
rather than on single bits, which can be prohibitively expensive in terms of communication and
round complexity. For instance, in a setting with n parties and an adversary controlling at most
t parties in Byzantine fashion such that t < n, the best round complexity and communication
complexity that can be achieved by a BB protocol for bit is Ω(n

n−t) [GKKO07] and Ω(n2) [DS83]

respectively. The BB and BA extension protocols1 are introduced and studied out of the need for
communication-efficient BB and BA protocols for long messages. The extension protocols achieve
agreement for long messages relying on point-to-point communications and a small number of
oracle access to a single-bit broadcast. This is conceptually similar to Oblivious Transfer (OT)
extension [IKNP03] where a large number of OTs are obtained at the cost of a small number
of seed OTs and cheap symmetric key operations. We recall that OT [EGL85] is a fundamental
building block of MPC – it is a protocol between a sender and a receiver where the sender with
two inputs (x0, x1) can transmit xσ to the receiver without knowing σ, where σ is the choice bit
of the receiver. Following the OT extension literature, we denote the single-bit broadcasts used in
the BB and BA extension protocols as seed broadcasts.

Four important parameters of extension protocols are: (i) communication complexity, (ii) round
complexity, (iii) seed round complexity and (iv) seed communication complexity. The communica-
tion complexity of a protocol [Yao79] is defined to be the number of bits sent/received by the honest
parties during the protocol execution. Note that, only the bits that should be received according
to the protocol specification are counted. The round complexity refers to the number of rounds
taken by the protocol to terminate. In any specific round, both point-to-point communication as
well as seed broadcasts may be invoked. The latter two complexity measures refer to the number of
rounds in which a seed broadcast is invoked and to the number of bits sent via seed broadcasts. The
seed round and seed communication complexity as parameters relate only to an extension protocol
which uses single-bit broadcasts as oracle calls, while the prior two complexity measures relate to a
single-bit BB protocol, to an extension protocol, or to a concrete extension protocol that is derived
from an extension protocol by replacing the seed broadcasts with a single-bit BB protocol.

1.1 Byzantine Broadcast (BB) and Agreement (BA)

BB and BA have been studied in two settings: with or without a trusted set-up assumption. In the
model where no set-up is assumed, error-free (deterministic) and information-theoretic BA as well
as BB is achievable if and only if the number of corrupt parties t is at most t < n/3 where n is the
total number of parties [PSL80, CW92, BGP92]. The bound cannot be improved with the help of
cryptography or randomization [KY86]. In the model where there is a set-up among the parties,
BA is achievable for t < n/2 and BB is achievable for t < n both cryptographically [DS83] and
information theoretically [PW96]. The popular set-up assumption is a public-key infrastructure

1In the literature, they are known as multi-valued protocols.

2

(PKI) set-up among n parties. By a PKI set-up among n parties, we mean the following: All
parties hold a set of n public keys for a signature scheme where the ith key corresponds to the
ith party. Every honest party holds the honestly-generated secret key associated with its own
public key. The corrupted parties may generate their keys arbitrarily. The PKI set-up has been
considered in two variants- (i) information-theoretic: a PKI set-up for an information-theoretically
secure pseudo-signature scheme [PW96], and (ii) cryptographic or computational: a PKI set-up for
a cryptographically secure unforgeable digital signature scheme [DS83].

The seminal result of [DR85] shows that any BB or BA protocol must communicate Ω(n2) bits.
Since the message is at least a single bit, the lower bound on the communication complexity for
single bit is Ω(n2) bits. In many distributed computing applications, like reaching agreement on a
large file in fault-tolerant distributed storage system, distributed voting where ballots containing
gigabytes of data is to be handled [CGS97], MPC [GMW87] where many broadcasts and agreements
are invoked, there is an inherent need for dealing with long messages for BB and BA protocols.
One could, of course, broadcast a long message by just broadcasting the message bit-by-bit using
a single-bit broadcast protocol. While this trivial approach requires Ω(`n2) bits of communication
(following the lower bound of [DR85]), there are extension protocols that are specifically designed
to handle long messages to beat the communication complexity of the trivial approach. In what
follows, we summarize the results on extension protocols.

1.2 Extension Protocols

Extension protocols for BB and BA are constructions for long messages, built from single-bit
seed broadcasts and point-to-point communications. Historically, gaining communication efficiency
motivated the study of such protocols. In any BB extension protocol, since each honest party
must learn the message, a correct protocol will incur a communication complexity of at least O(`n)
where ` is the message length. The same lower bound on the communication complexity holds
for BA extension [FH06]. It is now well known how to achieve communication optimality in the
setting of t < n/3 [LV11], t < n/2 [FH06] and t < n [HR14]. In fact, except the first extension
protocol of [TC84], the remaining protocols in the literature [FH06,LV11,PR11,PR,HR14] achieve
communication optimality.

While it is known how to achieve optimal communication complexity in all the settings, the
round and the seed round complexity have not been explored much. In some scenarios the latency
associated with the communication rounds can be a huge bottleneck. The round complexity directly
impacts the round efficiency of concrete extension protocols that are derived from extension proto-
cols by replacing the seed broadcasts with single-bit BB protocols. Studying seed round complexity
of extension protocols has more than one motivation. On one hand, this measure directly impacts
the round complexity of concrete extension protocols. On the other hand, fewer seed rounds help
avoid any compositional issues that arise from many sequential calls to the single-bit broadcasts.
When an outer protocol uses multiple invocations of a broadcast oracle where the oracle is in-
stantiated by a probabilistic protocol, several issues related to composition of the sub-protocols
arise [KK06]. If an extension protocol has the best possible seed round complexity of 1, then there
is only one invocation, and we may thus bypass the composition issues. The impact of the seed
round complexity on the round complexity of concrete extension protocols are justified by the large
round complexity and compositional issues of the single-bit broadcast protocols as stated next.
Any deterministic BB (and BA) protocol necessarily requires (t + 1) rounds [LF82, DR85]. Using
randomization, the bound can be made constant in the honest majority setting [FM97,KK06]. But

3

the round complexity is obtained in expected terms, and importantly, the constants are rather
high for many practical purposes [KK06]. Specifically, the expected round complexity of the BB
protocols of [KK06] in the t < n/3 setting is 23. If there are multiple sequential calls to the BB
protocol, then, except the first call which takes expected 23 rounds, each additional call will cost
expected 49 rounds. The corresponding figures in the honest majority setting of t < n/2 are 56
and 89. The use of randomization does not help much in the dishonest majority setting which is
considered to be the most practical setting. The proven lower bound on the round complexity for
a BB protocol for bit is Ω(n

n−t) [GKKO07]. The best known upper bound presented in [GKKO07]

achieves expected O(k2) round complexity when t ≤ n/2 + k. The following results comprise the
state-of-the-art of extension protocols in terms of round and seed round complexity.

The proven lower bound on the round complexity of an extension protocol is Ω(n) for the setting
t < n [HR14] and constant when t < n/2 [FH06]. The communication-optimal extension protocol
of [HR14] for t < n has a round complexity of O(n2) which is non-optimal. The round complexity
of the communication optimal extension protocol of [LV11] for t < n/3 is far from optimal. Namely,
the round complexity of [LV11] is O(

√
`+ n2) and it translates to Ω(n3) as ` = Ω(n6).

The existing extension protocols have more than one round seed rounds. The protocol of [HR14]
for t < n has a seed round complexity of O(n2). The protocol of [FH06] for the t < n/2 case has a
seed round complexity of 3. The protocol of [LV11] for the t < n/3 case has a seed round complexity
of O(

√
` + n2) which translates to O(n3) when ` = Ω(n6). None of the existing protocols achieve

the best possible seed round complexity of one without trivially replacing the seed broadcasts with
single-bit broadcast protocols. We point out that while the näıve protocol of broadcasting bit-
by-bit has a seed round complexity of 0, it does not achieve optimal communication complexity.
The notion of seed round complexity is interesting when considered in conjunction with optimal
communication complexity.

In summary, while communication-optimal extension protocols have been well-studied in the
literature, there are few examples of extension protocols that prioritize both communication and
round optimality. Since the round complexity of a concrete protocol depends on the seed round
complexity and round complexity of the extension protocol, the focus of this paper is to study and
construct extension protocols that are optimal in communication and round complexities, along
with minimal usage of seed rounds.

1.3 Our Results

We study BA and BB extension protocols with t < n, t < n/2 and t < n/3, and present protocols
that are simultaneously communication and round optimal. The existing constructions are either
optimal only in terms of communication complexity, or require more rounds as well as seed rounds
than our protocols, or achieve optimal round complexity by giving up on optimal communication.
All our constructions achieve O(`n) bits of communication, and are thus communication optimal
(for different bounds on `). Their round and seed round complexities are as discussed below.

– t < n/3: Our protocol provides a round complexity of 3 and seed round complexity of 1. Both
the round and seed round complexity of the best known communication-optimal extension
protocol in this setting [LV11] is O(

√
`+n2). Since ` = Ω(n6) in their protocol, the complexity

translates to Ω(n3).

– t < n/2: Our protocol provides a round complexity of 5 and seed round complexity of 1. The
best known extension protocol that is communication-optimal, has a round complexity of 6

4

and a seed round complexity of 3 [FH06].

– t < n: Our protocol has a round complexity and a seed round complexity of O(n). Our protocol
beats the communication optimal extension protocol of [HR14] by a factor of Ω(n) in terms
of both round as well as seed round complexities.

The construction with t < n/3 is error-free and information-theoretically secure. The latter
implies that the protocol guarantees hold even in the face of a computationally unbounded ad-
versary. The protocols in the other two settings are cryptographically secure assuming a collision
resistant hash function. Cryptographic security guarantees that the security of the protocols hold
against polynomially bounded adversaries. Our contributions put in context of other results are
summarized in Table 1. We use κ to denote the cryptographic (statistical, respectively) secu-
rity parameter for the cryptographic (information-theoretic, respectively) primitives. ‘i.t’ denotes
information-theoretic and ‘crypto’ denotes cryptographic security. Let B(l) denote the communi-
cation complexity of broadcasting an l-bit message.

Table 1: BB and BA Extension Protocols.

Threshold Security Communication Round Seed Round Reference
Complexity Complexity Complexity

t < n/3
i.t O

(
`n+ (n2

√
`+ n4)B(1)

)
O(
√
`+ n2) O(

√
`+ n2) [LV11]

i.t O
(
`n+ n2B(1)

)
3 1 This paper

t < n/2
i.t O

(
`n+ n3κ+ (n2 + nκ)B(1)

)
6 3 [FH06]

crypto O
(
`n+ n3κ+ nκB(1)

)
5 1 This paper

t < n

i.t O
(
`n+ (n4 + n3κ)B(1)

)
O(n3) O(n3) [HR14]

crypto O
(
`n+ (n2 + nκ)B(1)

)
O(n2) O(n2) [HR14]

crypto O
(
`n+ (nκ+ n3 log n)B(1)

)
O(n) O(n) This paper

A trivial construction to broadcast a long message is to broadcast bit-by-bit using a single-
bit broadcast protocol, incurring a communication complexity of `B(1) for an `-bit message. In
Table 2, we list the complexities of the single-bit broadcast protocols when used to broadcast a
`-bit message in various settings.

Table 2: BB protocols for bit.

Threshold Security Communication Round Reference
Complexity Complexity

t < n/3
i.t Ω(`n2) O(n) [BGP92,CW92]
i.t O

(
`n4 + n6(κ+ log n)

)
23 (expected) for one call [KK06]
23 + 49c (expected) for 1 + c calls

t < n/2
crypto / i.t O

(
`n4 + n6(κ+ log n)

)
56 (expected) for one call, [KK06]
56 + 89c (expected) for 1 + c calls

t < n
i.t Ω

(
`n2 + n6κ

)
O(n) [PW96]

crypto Ω
(
`n2 + n3κ

)
O(n) [DS83]

t ≤ n/2 + k crypto O
(
`(n2k2 + n3) + n6(κ+ log n)

)
O(k2)(expected) [GKKO07]

The complexity costs of concrete extension protocols are summarized and compared with other
protocols in Table 3. A concrete protocol inherits the assumptions from its underlying implementa-
tion of seed broadcasts, for example, a PKI when instantiated with [DS83]. The concrete protocols

5

resulting from our extension protocol for t < n/3 needs no setup assumption when instantiated
with single-bit broadcasts with t < n/3. On the other hand, the concrete protocols resulted from
the other two extension protocols require setup assumption, namely PKI. The security of a concrete
protocol is the ‘minimal’ security provided by the single-bit BB protocol and the extension protocol.
Namely, the concrete protocol will be information-theoretically secure if and only if both the single-
bit BB and the extension protocol are information-theoretic. Otherwise, it will be cryptographically
secure. The round complexity of concrete protocols in Table 3 is given by O (R+ (s ∗ r)), where R
is the round complexity of the extension protocol, s is the seed round complexity of the extension
protocol, and r is the round complexity of the single-bit broadcast protocol used to instantiate the
seed broadcasts.

Table 3: Concrete BB and BA protocols for `-bit messages.

Threshold Security Communication Total Round Instantiation
Complexity Complexity

t < n/3

i.t O(`n+ n4
√
`+ n6) O(n

√
`+ n3) [LV11] with [BGP92,CW92]

i.t O(`n+ n4) O(n) This paper with [BGP92,CW92]

i.t O
(
`n+ n6(

√
`+ κ+ n2)

)
O(
√
`+ n2) [LV11] with [KK06]

i.t O
(
`n+ n6(κ+ log n)

)
25(expected) This paper with [KK06]

t < n/2

i.t O
(
`n+ n7κ

)
O(n) [FH06] with [PW96]

crypto O
(
`n+ n4(n+ κ)

)
O(n) [FH06] with [DS83]

crypto / i.t O
(
`n+ n7κ(κ+ log n)

)
237 (expected) [FH06] with [KK06]

crypto O
(
`n+ n4κ

)
O(n) This paper with [DS83]

crypto O
(
`n+ n7κ(κ+ log n)

)
60 (expected) This paper with [KK06]

t < n

i.t O
(
`n+ n10κ

)
O(n4) [HR14] with [PW96]

crypto O
(
`n+ n5κ

)
O(n3) [HR14] with [DS83]

crypto O
(
`n+ n6κ log n

)
O(n2) This paper with [DS83]

t ≤ n/2 + k
crypto O

(
`n+ n7κ(κ+ log n)

)
O(n2k2)(expected) [HR14] with [GKKO07]

crypto O
(
`n+ (n3k2κ+ n9 log n)(κ+ log n)

)
O(nk2)(expected) This paper with [GKKO07]

As seen from Table 3, our protocol in t < n/3 setting leads to the the first instantiation without
set-up assumption that provides optimal communication complexity and constant round complexity
after replacing the seed broadcasts with the single-bit broadcast protocol of [KK06]. In the t < n
setting, our protocol leads to the first instantiation in dishonest majority setting with optimal
communication complexity and round complexity of O(n) after replacing the seed broadcasts with
the protocol of [GKKO07] for some values of k (e.g. when t ≤ n/2 + k and k is a constant).

Our protocol for t < n could only attain a seed round complexity of O(n). Designing protocols
for t < n that achieve a seed round complexity of one while preserving communication and round
optimality is left as an interesting open question.

1.4 Organization

In Section 2, we discuss the model and definitions of BB and BA protocols. Our results for t < n/3,
t < n/2 and t < n appear in Section 3, Section 5 and Section 6 respectively. We summarize and
conclude with questions for further work in Section 7.

6

2 Models and Definitions

We work in the standard point-to-point network where the set of parties P = {P1, . . . , Pn} are con-
nected by pairwise authenticated channels and communicate in synchronous rounds. The faultiness
of the parties is modeled in terms of a monolithic adversary A corrupting t out of the n parties
in Byzantine fasion. A can make the corrupted parties deviate from the protocol in any desired
manner. The parties who are not under the control of A are referred to as honest. We distinguish
between cryptographic security and information-theoretic security. Information-theoretic security
guarantees that the security properties of the protocol hold even in the presence of a computation-
ally unbounded adversary. When the adversary is bounded, we write PPT to denote a probabilistic
polynomial-time algorithm. We now recall some definitions.

Definition 2.1 (Byzantine Broadcast). A protocol for a set of parties P = {P1, · · · , Pn}, where
a distinguished party called the sender, Ps ∈ P holds an initial input m, |m| = `, is a broadcast
protocol tolerating A, if the following properties are satisfied:

– Agreement. All the honest parties output the same value.
– Validity. If the sender is honest, all honest parties output the value m.

definition

Definition 2.2 (Byzantine Agreement). A protocol for a set of parties P = {P1, · · · , Pn}, where
each party Pi ∈ P holds an initial input mi (|mi| = `) is a Byzantine Agreement protocol tolerating
A, if the following properties are satisfied:

– Agreement. All the honest parties output the same value.
– Validity. If every honest party Pi hold the same message mi = m, then all honest parties output

the value m.

In t < n setting, only BB is possible and so we design a BB extension protocol. In the honest
majority settings (that includes t < n/2 and t < n/3), a BB protocol can be obtained by making
one call to a BA protocol plus O(`n) bits of communication over point-to-point channels, where `
is the length of the message. Therefore, we design a BA extension protocol with various optimal
complexity measures. This implies a BB protocol with the optimal complexities in the honest
majority settings.

Our protocols in settings t < n and t < n/2 (where set-up assumption is required) are crypto-
graphically secure tolerating any polynomially bounded adversary A. Cryptographic or computa-
tional security guarantees that the protocol is secure based on some computational assumptions.
Our protocols rely on a cryptographic collision-resistant hash function Hash. Collision resistance
property guarantees that it is hard for a polynomially bounded adversary to come up with two pre-
images of Hash that hash to the same value. Formal definition of collision-resistant hash functions
is provided below.

Definition 2.3 (Collision Resistant Hash Functions). A family of functions {Hashk}k∈I is a colli-
sion resistant hash function family if the following conditions hold:

1. Efficient Sampling. There exists a PPT algorithm Gen that outputs an index s from the index
set I given a security parameter κ, s← Gen(1κ).

2. Compression. The function Hashs maps inputs of length n to outputs of length m such that
m < n.

7

3. Easy to compute. There exists a PPT algorithm that takes an index s, an input x ∈ {0, 1}n
and computes y = Hashs(x).

4. Collision resistance. For every PPT algorithm B,
Pr[Hashs(x) = Hashs(x

′), x 6= x′|x, x′ ← B(s), s← Gen(1κ)] = negl(κ).

A set-up assumption is needed in the setting t ≥ n/3 for instantiating the seed broadcasts.
Hence, our concrete extension protocols (after instantiation of the oracle) are secure assuming
PKI and a collision-resistant hash function. On the other hand, our protocol in the t < n/3 is
information-theoretically secure. The security analysis of our protocol is for a static adversary that
corrupts parties at the beginning of the protocol.

3 Extension Protocols for t < n/3

In this section, we present an error-free and information-theoretic BA and BB extension protocol
for the t < n/3 setting with: (i) communication complexity: O(`n) bits, (ii) round complexity: 3
and (iii) seed round complexity: 1. We describe an extension protocol for BA. A BB extension
protocol with the same complexity as that of the BA protocol can be achieved by letting the sender
send the message to all the parties and then running a BA to reach agreement. This is the standard
reduction in synchronous settings from BA to BB [Lyn96].

Our protocol relies on techniques from coding theory and graph theory. Specifically, as tech-
nical tools, the protocol uses linear error correcting codes (e.g. Reed-Solomon Code) and a graph
theoretic algorithm for finding some special structure ((n, t)-star) in an undirected graph. Our
approach differs from all existing constructions in this setting which are constructed in player-
elimination [HMP00] or dispute-control [BH06] framework. We start with a brief presentation of
the tools that we use: (a) An algorithm for finding a graphical structure called (n, t)-star in an
undirected graph; (b) Linear Error Correcting Code.

3.1 Building Blocks

Finding (n, t)-star in an Undirected Graph. We now describe an existing solution for a
graph theoretic problem, called finding (n, t)-star in an undirected graph G = (V,E). Let G be an
undirected graph with the n parties in P as its vertex set. A pair (C,D) of sets with C ⊆ D ⊆ P is
an (n, t)-star [Can96,BOCG93] in G, if: (i) |C| ≥ n− 2t; (ii) |D| ≥ n− t; (iii) for every Pj ∈ C and
every Pk ∈ D the edge (Pj , Pk) exists in G.

Following the idea of [GJ79], in [BOCG93], the authors presented an elegant and efficient
algorithm for finding an (n, t)-star in a graph of n nodes, provided that the graph contains a clique
of size n − t. The algorithm, called STAR takes the complementary graph G of G as input and
tries to find (n, t)-star in G, where (n, t)-star is a pair (C,D) of sets with C ⊆ D ⊆ P, satisfying the
following conditions: (a) |C| ≥ n− 2t; (b) |D| ≥ n− t; (c) There are no edges between the nodes in
C and nodes in C ∪D in G. Clearly, a pair (C,D) representing an (n, t)-star in G, is an (n, t)-star in
G. STAR outputs either an (n, t)-star, or a message noSTAR. Whenever the input graph G contains
an independent set of size n− t, STAR always outputs an (n, t)-star. For simplicity of notation, we
denote G by H. The algorithm STAR is presented in Figure 1.

We instantiate the algorithm for finding maximum matching in a general graph with a deter-
ministic algorithm (like [Blu90]) and obtain a deterministic algorithm for finding star.

8

Algorithm STAR

– Input: An undirected graph H.

– Algorithm Required: An algorithm for the maximum matching problem on general
graphs.

1. Find a maximum matching M in H. Let N be the set of matched nodes (namely, the
endpoints of the edges in M), and let N = P \N .

2. Compute output as follows:

(a) Let T = {Pi ∈ N | ∃Pj , Pk s.t (Pj , Pk) ∈ M and (Pi, Pj), (Pi, Pk) ∈ E}. T is called
the set of triangle-heads. Let C = N \ T .

(b) Let B be the set of matched nodes that have neighbors in C. So B = {Pj ∈ N | ∃Pi ∈
C s. t. (Pi, Pj) ∈ E}. Let D = P \B.

(c) If |C| ≥ n− 2t and |D| ≥ n− t, output (C,D). Otherwise, output noSTAR.

Figure 1: Algorithm for Finding (n, t)-star.

Linear Error Correcting Code. We use Reed-Solomon (RS) codes [RS60] in our protocols.
We consider an (n, t + 1) RS code in Galois Field F = GF (2c), where n ≤ 2c. Each element of
F is represented by c bits. An (n, t + 1) RS code encodes t + 1 elements of F into a codeword
consisting of n elements from F. We denote the encoding function as ENC() and the corresponding
decoding function as DEC(). Let m0,m1, . . . ,mt be the input to ENC. Then ENC computes a
codeword of length n, (s1, . . . , sn) as follows. It first constructs a polynomial of degree-t, f(x) =
m0 + m1x + . . . + mtx

t and then computes si = f(i). We use the following syntax for ENC:
(s1, s2, . . . , sn) = ENC(m0,m1, . . . ,mt). Each element of the codeword is computed as a linear
combination of the t + 1 input message elements, such that every subset of (t + 1) elements from
the codeword uniquely determine the input message elements. Similarly, knowledge of any t + 1
elements from the codeword suffices to determine the remaining elements of the codeword.

The decoding function DEC can be applied as long as t + 1 elements from a codeword are
available. A RS code is capable of error correction and detection. The task of error correction
is to find the error locations and error values in a received vector. On the other hand, error
detection means an indication that errors have occurred, without attempting to correct them. We
will be concerned with Byzantine errors which are errors that are adversarial in nature. That is, c
Byzantine errors means c elements of the codeword are arbitrarily changed. We recall the following
well known result from coding theory [MS78]. DEC can correct up to c Byzantine errors and
simultaneously detect up to additional d Byzantine errors in a vector of length N (where N ≤ n) if
and only if N − t− 1 ≥ 2c+ d. In our protocols, we invoke DEC on a vector of length N ≤ n with
specific value of c and d. If c, d and N satisfy the above relation, then DEC returns the correct
data elements corresponding to the vector. Otherwise, DEC returns ‘failure’.

9

3.2 The BA Protocol

With the above tools, we are ready to present our BA extension protocol. Each party Pi with
message mi containing ` bits distributes the codeword of its message among the parties. Each party
verifies the part of the codeword received from other parties against its codeword and announces
the outcome in public. The public responses are turned into a consistency graph. Then a special
structure in the graph that implies existence of an honest majority set holding the same message is
looked for. Namely, the special structure is a quadruple (C,D,F , E) such that (C,D) is an (n, t)-star,
|F| ≥ 2t+ 1 and every party in F has at least t+ 1 neighbors in C, |E| ≥ 2t+ 1 and every party in
E has at least 2t+ 1 neighbors in F . The novelty then lies in proving that the honest parties in E
hold the same message. The parties then rely on the error correction and detection of the RS code
to compute and agree on the common message of the parties in E . If such a set E does not exist,
all honest parties agree on some pre-determined message. The extension protocol is presented in
Figure 2. The sm in our notation Psm stands for ‘same message’.

Lemma 3.1. The honest parties in Psm hold same message of length `.

Proof. The set Psm is the E component of a quadruple (C,D,F , E). We start with proving that the
honest parties in C hold the same message of length `. We recall that D contains at least t+1 honest
parties and every Pi ∈ C is neighbor of every party in D. Let {Pi1 , . . . , Piα} be the set of α honest
parties in D, where α ≥ t + 1. Then for every Pi in C, siik is same as sikik of all k ∈ {1, . . . , α}.
Therefore the codewords corresponding to the messages of the honest parties in C are same at least
at t + 1 locations corresponding to the identities of the honest parties in D. Since the codewords
belong to (n, t + 1) RS code, the messages of the honest parties in C are same. Let the common
message be m, |m| = `. Let (s1, . . . , sn) = ENC(m0,m1, . . . ,mt), where m = m0|m1| . . . , |mt. Now
we show that every honest party Pi ∈ F holds si. Recall that Pi has at least t+ 1 neighbors in C
in which at least one is honest, say Pj . This implies that sii of Pi is same as sji of Pj . However,
sji = si, since Pj holds m. Hence sii = si. Therefore every honest Pi in F holds si which is same as
sii. Finally, we show that every honest Pi ∈ E holds m. Recall that Pi has at least 2t+ 1 neighbors
in F in which at least t + 1 are honest. Let {Pi1 , . . . , Piα} be the set of α honest parties in F ,
where α ≥ t+ 1. Then siik of Pi is same as sikik of every honest Pik for k ∈ {1, . . . , α}. Now sikik
of Pik is same as sik . Therefore the codeword corresponding to the message of Pi ∈ E matches with
(s1, . . . , sn) at least at t + 1 locations corresponding to the identities of the honest parties in F .
This implies the codeword of Pi is identical to (s1, . . . , sn), since they belong to (n, t+ 1) RS code.
Hence Pi ∈ E holds m.

Lemma 3.2. If all honest parties start with same input m, then all the parties will agree on Psm

where |Psm| ≥ 2t+ 1.

Proof. All honest parties start with the same input m. Therefore, all honest parties generate
the same codeword, (s1, . . . , sn) = ENC(m0, . . . ,mt), such that m = m0|m1| . . . |mt. This means
that there will be an edge between every pair of honest parties. In other words, the edges in the
complementary graph will be either (a) between an honest and a corrupted party OR (b) between
two corrupted parties.

This implies that there will be a clique of size at least 2t + 1 eventually. This guarantees the
existence of (n, t)-star in G for an honest Pi, and the C component of an (n, t)-star will contain at
least t+ 1 honest parties. Subsequently, the F and E components will be of size at least 2t+ 1. In
this case it is guaranteed that all honest parties find the same quadruple (C,D,F , E) (here we rely

10

Protocol (n
3)-BA

– Input of every Pi: An `-bit message mi.

– Oracle: Broadcast oracle for bits.

Every party Pi does the following:

1. Divide the `-bit message mi into t + 1 blocks, mi0, . . . ,mit, each containing `
t+1 bits.

Compute (si1, . . . , sin) = ENC(mi0, . . . ,mit). Send sii to every party. Send sij to Pj for
j = [1, n].

2. Construct a binary vector vi of length n. Assign vi[j] = 1, if sij = sjj and sii = sji where
sjj and sji are received from Pj . Otherwise assign vi[j] = 0. Broadcast vi.

3. Construct graph G using parties in P as the vertices. Add edge (Pj , Pk) if vj [k] = 1 and
vk[j] = 1. Invoke STAR (G) and continue as follows.

(a) If (C,D) is returned by STAR, then find F as the set of parties who have at least
t+1 neighbours in C in graph G. Find E as the set of parties who have at least 2t+1
neighbours in F in graph G. If |F| ≥ 2t + 1 and |E| ≥ 2t + 1, then set Psm = E .
Otherwise, agree on some predefined message m? of length ` and abort.

(b) If noSTAR is returned, then agree on some predefined message m? of length ` and
abort.

4. Assign si to be the value sji received from the majority of the parties in Psm. Send si to
every party.

5. Let (s1, . . . , sn) be the vector where sj is received from Pj . Apply DEC on (s1, . . . , sn)
with c = t and d = 0. Let m0,m1, . . . ,mt be the data returned by DEC. Output
m = m0| . . . |mt.

Figure 2: Error-free BA extension protocol in t < n/3 setting.

on the determinism of STAR algorithm), and will never agree on predefined m?. From the same
quadruple, all honest parties will reach agreement on Psm.

Lemma 3.3. If Psm is agreed, all honest parties output the common message of the parties in Psm.

Proof. By Lemma 3.1, all honest parties in Psm hold the same message, say m. This means they
hold the same codeword (s1, . . . , sn) = ENC(m0,m1, . . . ,mt), where m = m0|m1| . . . , |mt. Then
every honest Pi in Psm already holds si, the ith element in the codeword. Now every party Pi will
receive si correctly as majority of the parties in Psm are honest and they will send si to Pi. Once
every honest Pi holds correct si, he sends that to everybody. Therefore a party will receive n values
from n parties in which at most t can be wrong (sent by Byzantine corrupted party). However,

11

DEC of (n, t + 1) RS code with n = 3t + 1 allows to correct t errors. Therefore DEC will return
m0, . . . ,mt such that m = m0| . . . |mt.

Theorem 3.1. The protocol (n
3)-BA satisfies:

Agreement: Every honest party will output the same message.
Validity: If every honest party Pi holds the same message mi = m, then all honest parties output

m.
Complexity: The protocol has a round complexity of 3, seed round complexity of 1, communication

complexity of O
(
`n+ n2B(1)

)
bits and a seed communication complexity of O(n2) bits.

Proof.
Agreement: If Psm is agreed, then all honest parties output the common message of the parties

in Psm (by Lemma 3.3). If Psm is not agreed, then all honest parties agree on predefined m?.
Hence, agreement is achieved.

Validity: If all the honest parties start with same m, then by Lemma 3.2, they agree on Psm and
output m (by Lemma 3.3).

Complexity: Every Pi sends two values sii and sij to every other party Pj . The values are `
t+1 bits

long each. Therefore in total there are `
t+1O(n2) = O(n`) bits of communication. Every party

Pi broadcasts n-length binary vector vi. This leads to total O(n2) instances of broadcast for
single bit. So the communication complexity is O(`n+ n2B(1)) and the seed communication
complexity is O(n2).
The communication takes place in steps 1, 2 and 4 of (n

3)-BA with step 2 invoking bit broadcast
protocol. So the round and the seed round complexity of (n

3)-BA are 3 and 1 respectively.

4 Extension Protocols with Set-up Assumption

In this section, we present two extension protocols with set-up assumption in the setting of dishonest
majority (i.e. t < n) and honest majority (i.e. t < n/2) respectively.

5 Byzantine Agreement Extension for t < n/2

We present a BA extension protocol for ` bit message in the honest majority setting with: (i)
communication complexity: O(`n) bits, (ii) round complexity: 5 and (iii) seed round complexity: 1.
Given a protocol for BA, a BB protocol can be constructed using the same folklore transformation
mentioned in the previous section [Lyn96].

At a high level, our BA protocol closely follows the protocol of [FH06] (will be referred as FH
protocol from now onwards) with the main difference being the seed round complexity. While [FH06]
requires three seed rounds, our protocol requires just one round of seed broadcast. A closer look
will reveal that it is non-trivial to reduce the number of seed rounds in [FH06]. The FH protocol
proceeds in three phases, where each phase brings the parties “closer” to agreement. The protocol
may be aborted in the first two phases when some inconsistency is detected. In that case, the
parties will output ⊥. However, if the parties reach the third phase, agreement will be reached
without any abort. In each of the first two phases, the parties must agree on whether to abort or

12

to continue to the next phase. Otherwise the BA protocol will have no agreement property. This
calls for at least two seed rounds (one in each of the first two phases). FH protocol requires three
seed rounds, one in the first phase and the other two in the second phase. Thus far, there is no
known information-theoretic BA extension with optimal communication complexity and one seed
round in the honest majority setting. In this paper, we propose a cryptographically secure protocol
and leave open the design of an information-theoretic protocol with the same complexity.

Our protocol proceeds in two phases. The first phase denoted as the checking phase is similar
to the first phase of the FH protocol. The parties check if there are at least n − t parties who
hold the same message, denoted as Psm (sm stands for ‘same message’). If such a set does not
exist, the parties output ⊥ and terminate the protocol. This phase consists of a single round
and uses broadcast to reach agreement on Psm if it exists or on ⊥ when no such set exists. The
communication involves broadcasting the hashes of the individual party’s messages and so the
communication complexity remains independent of the message size. The second phase denoted
as the agreement phase is initiated when the parties have agreed on Psm. Here, the parties who
are not in Psm will obtain the common message held by the honest parties in Psm. The idea is to
come up with a set Phmsm where the messages held by the honest parties in Phmsm and Psm are
the same. Furthermore, Phmsm is guaranteed to have honest majority (hmsm stands for ‘honest
majority same message’). Now the honest parties in Phmsm can together transfer their common
message to a party with just O(`) communication complexity using a simple yet clever technique
suggested in [FH06]. Lastly, since this phase does not use any broadcast, the honest parties outside
Psm may have different Phmsm sets. But for each such set, the honest majority will be guaranteed
and thus the technique will work without any problem. The complete details of the protocol are
presented in Figure 3.

We now proceed to the proofs.

Lemma 5.1. The checking phase satisfies the following three properties:
(a) If all the honest parties Pi start with the same message mi = m, then the honest parties do

not abort and output the same set Psm. Moreover, every honest Pi will belong to Psm.
(b) All honest parties in Psm hold the same input message mi = m with very high probability.

Proof.
(a) If all the honest parties hold the same message m, then all honest parties broadcast h =

Hash(m). Since there are n− t honest parties and all of them will broadcast a common hash
value h, there will be a set of size at least n− t parties whose broadcasted hash values will be
the same. So the set Psm will exist and the honest parties will not abort the checking phase.
Since the hash values are broadcasted, all the honest parties will output the same and unique
Psm. The uniqueness of the agreed set Psm is argued as follows. There cannot be two sets of
size n− t parties such that one set broadcasts h and the other set broadcast h′ with h 6= h′.
If two such sets exist, it implies that one party has broadcasted both h and h′. But since
every party broadcasts one hash value, the set Psm is unique and includes all the parties who
broadcast h. Clearly the set Psm will include all the honest parties.

(b) If two honest parties Pi and Pj in Psm hold two different messages mi 6= mj , then by the
collision resistance of the hash function, Hash(mi) 6= Hash(mj) with high probability and
therefore both Pi and Pj cannot belong to Psm. Hence all honest parties in Psm hold the
same message.

13

(n
2)-BA

– Input of every Pi: An `-bit message mi.

– Oracle: Broadcast oracle for bits.

– Cryptographic Assumption: A collision resistant hash function Hash.

Checking Phase. Every party Pi does the following:

1. Compute a hash of the message mi as hi = Hash(mi) and broadcast hi.

2. Check if at least n − t broadcasted hashes are equal. If no n − t broadcasted hashes are equal,
output oi = ⊥ and terminate. Otherwise, let h denote the common hash value broadcasted by at
least n− t parties. Then form Psm as the set of parties broadcasting h.

Agreement Phase. Every party Pi does the following

1. If Pi ∈ Psm, set output message oi = mi.

2. Form an injective function from P \Psm to Psm, by say, mapping the party with the smallest index
in P \ Psm to the party with the smallest index in Psm i.e. φ : P \ Psm → Psm.

3. If Pi ∈ Psm and Pi = φ(Pj), then send oi to Pj .

4. If Pi ∈ P \ Psm and received a value say, o′j from Pj ∈ Psm in the previous round such that
Pj = φ(Pi), then check if Hash(o′j) = h. If the test passes, set happyi = 1 and assign output
message oi = o′j , else set happyi = 0. Send happyi to all parties in P.

5. If Pi ∈ P \ Psm and happyi = 0, then construct a set Pi
conflict consisting of the parties Pj , φ(Pj)

such that happyj received from Pj in the previous step is 0 and Pj belongs to P \ Psm. Set

Pi
hmsm = P \Pi

conflict, di = d(|Pi
hmsm|+ 1)/2e and send di to all the parties belonging to Pi

hmsm and
nothing to all the others.

6. If dj is received from Pj ∈ P \ Psm,

– Transform the message oi into a polynomial over GF (2c), for c = d`+ 1/dje denoted by fi with
degree dj − 1.

– Compute the c-bit piece yi = fi(i), Hi = (Hash(fi(1)), · · · ,Hash(fi(n))) and sends (yi, Hi) to
Pj .

7. If Pi ∈ P \Psm and happyi = 0, check each piece yj received from each Pj ∈ Pj
hmsm against the jth

entry of every hash value vector Hk received from Pk ∈ Pi
hmsm. If at least di of the hash values

match a piece yj , then accept yj , otherwise reject it. Interpolate the polynomial f from the di
accepted pieces yj , and compute the message m corresponding to the polynomial f . Set oi = m.

8. Output oi and terminate.

Figure 3: Honest Majority BA

Lemma 5.2. The agreement phase satisfies the following properties:
(a) The majority of the parties in P ihmsm are honest for every honest Pi in P \ Psm.
(b) The output messages of the honest parties in Psm and P ihmsm are the same for every honest

Pi in P \ Psm.

14

(c) Every honest party holds the same output message m.

Proof.
(a) Now we show that P ihmsm has honest majority for every honest Pi ∈ P \Psm. Consider the set
P iconflict = P \ P ihmsm. This set consists of pairs of parties (Pj , φ(Pj)). It is not possible that
both the parties (Pj , φ(Pj)) are honest. If φ(Pj) is honest, by Lemma 5.1, he holds a message
m that matches with h and he will send m to Pj . If Pj was honest too, its check Hash(m) = h
will verify and it will send happyj = 1. Since the pair (Pj , φ(Pj)) is included in P iconflict, Pj
had sent happyj = 0 to Pi. This implies either Pj is corrupt and sent happyj = 0, or φ(Pj)

is corrupt and sent a message not matching h to Pj . Therefore, at least half of P iconflict are
corrupted parties. Since we have honest majority in P, we have that the majority of the
parties in P ihmsm are honest.

(b) By Lemma 5.1, all the honest parties in Psm hold the same input message, say m. So oi
for every honest party Pi in Psm is equal to m. Now consider an arbitrary honest party
Pj ∈ P ihmsm. If Pj ∈ Psm, then oi = mi = m. If Pj 6∈ Psm but in P ihmsm, then Pj must have
sent happyj = 1 to honest Pi. This implies that Pj had received some message, say m′ from
φ(Pj) ∈ Psm and h = Hash(m′) where h is the hash of the common output message m held by
the honest parties in Psm. This implies m = m′ with high probability by collision resistance
of the hash function. Since Pj sets oi = m′, the output messages of all the honest parties in
P ism and P ihmsm are the same message.

(c) We will show that every honest party Pj outputs oj = m, where m is the common input
message of the honest parties in Psm. Consider an arbitrary honest party Pj . We have
already proved that if Pj ∈ Psm or Pj ∈ P ihmsm for an honest Pi, then oj = m. If Pj neither
belongs to Psm or nor to P ihmsm for any honest Pi, then it implies that happyj must be 0
and Pj has received a message that is not equal to m from φ(Pj). We now show that Pj
will retrieve m from the parties in Pjhmsm. Recall that since Pj is honest, Pjhmsm has honest
majority and all the honest parties in it have oi = m. This implies that every honest party
Pi’s transformed polynomial fi are identical and correspond to m. We refer to the polynomial
as f . If Pj receives dj correct yi values on f , then it can reconstruct f that is a dj − 1 degree

polynomial. There are at least dj honest parties in Pjhmsm whose hash vectors will be the hash
values of f(1), . . . , f(n). So a piece yi that is same as f(i) will be accepted by Pj . Whereas
y′i that is not f(i) will be rejected by Pj with high probability. Since there are at least dj
honest parties in Pjhmsm, Pj will always receive dj yi pieces and will reconstruct f and m.

Theorem 5.1. The protocol (n
2)-BA satisfies the following properties.

Agreement: All honest parties output the same value.
Validity: If every honest party Pi hold the same message mi = m, then all the honest parties

output m.
Complexity: The protocol has a round complexity of 5, seed round complexity of 1, a communica-

tion complexity of O
(
`n+ n3κ+ nκB(1)

)
bits and seed communication complexity of O(nκ)

bits.

Proof.
Agreement: If the protocol aborts in the checking phase, then all the parties output ⊥. Otherwise,

all the parties output the same message at the end of agreement phase (Lemma 5.2(c)).

15

Validity: By Lemma 5.1(a), if all honest parties hold the same message, then all honest parties
are in Psm and output the same message m.

Complexity: The checking phase communicates nB(κ) bits. In the agreement phase, at most t
parties who are outside Psm receive messages from the parties in Psm as per the mapping φ.
This requires O(`n) bits of communication. After this step, every party in P \ Psm sends
a bit happyi to every other party. This requires O(n2) bits of communication. Next the
parties who are in P \ Psm and did not receive a message that matches with h yet will send
dj to all the parties in Pjhmsm. This step incurs O(n2 log n) bits of communication (every dj
can be represented by log n bits). Finally, for a party Pi, the set of parties in P ihmsm makes
O(`+ n2κ) bits of communication. Since there can be at most t parties in P \ Psm, the total
communication required is O(`n+n3κ) bits. The total communication complexity of (n

2)-BA
protocol is O

(
`n+ n3κ+ nκB(1)

)
bits. The seed communication complexity is O(nκ).

The checking phase requires one round which is also the sole seed round. The agreement
phase requires four rounds of point-to-point communication. So the round complexity and
the seed round complexity of (n

2)-BA are 5 and 1 respectively.

6 Byzantine Broadcast Extension for t < n

We present a BB extension protocol for ` bit message in the dishonest majority setting with: (i)
communication complexity: O(`n) bits, (ii) round complexity: O(n). The protocol has a seed round
complexity of O(n). In the same setting, the only known communication optimal BB extension
protocol was given by [HR14] (will be referred as HR protocol henceforth). Both the round com-
plexity and seed round complexity of the HR protocol are O(n2). Our protocol is the first protocol
that optimizes two significant parameters of a BB extension protocol simultaneously.

Like the HR protocol, our construction broadcasts the long message block by block sequentially
using dispute control framework [BH06]. While overall communication complexity is guaranteed to
be optimal, broadcasting each block may not be done with optimal communication complexity. Our
dispute control framework ensures that a corrupted party gets a single chance to misbehave with
an honest party. Once it is detected for wrong behaviour by an honest party in some execution
of block broadcast, the corrupted party will be ignored by the honest party for the rest of the
protocol. By maintaining a history of deviating behaviours across block broadcasts, the dispute
control framework help save expensive block communications between parties in dispute. At the
heart of dispute control framework lies the art of maintaining history and using it carefully. Such a
paradigm calls for sequential execution, and hence, often, the framework trades round complexity for
communication complexity. When both the round and the communication overheads are of concern,
the framework may not seem to be a wise choice. However, we hit the optimal communication and
round complexity at the same time by implementing dispute control framework with overlapped
sequential execution. At this point, we note a clear difference between our construction and HR
construction. While the HR block broadcasts run sequentially without any overlap, our construction
intertwines the block broadcasts cleverly, yet maintaining the optimal communication complexity.
The result is our construction runs just for O(n) rounds beating the non-optimal O(n2) round
complexity of HR protocol.

Specifically, we divide the input message into n blocks. A seed broadcast round is then used to
broadcast the hash values of the n blocks. The usage of broadcast ensures all the honest parties hold

16

the same copies for the hash values. In an honest block broadcast protocol where everyone behaves
honestly, it just requires n− 1 point-to-point communication of the block in order to propagate it
from the sender to the rest of the parties given that the hash value of the message block is already
agreed upon and the underlying hash function is collision resistant. But the corrupted parties
may behave arbitrarily. Although it may result in requiring more than n− 1 point-to-point block
communications, the honest parties will identify the corrupted parties who misbehaved and will
ignore them for the rest of the protocol. Our protocol (n)-BB is given in Figure 4 which constitutes
of two phases: (i) Hash Agreement Phase: It consists of just one round where Ps broadcasts the
hashes h(1), . . . , h(n) of the n message blocks using oracle access to broadcast bits so that the parties
agree on the hash values of the blocks.; (ii) Block Agreement Phase: In this phase, the parties try
to obtain the blocks from parties who already received it using only point-to-point communication
such that the blocks verify against the agreed hash values.

We now concentrate on the block agreement phase where the agreement of blocks are done
sequentially yet in an overlapped fashion. Specifically, a party Pi starts requesting for kth message
block only when it has received the (k − 1)th one. This reflects the sequential nature. The
overlapping comes from the fact that the kth block agreement for Pi may run in parallel with the
(k − 1)th block agreement for Pj . This stems from the fact that a party Pi proceeds to kth block
agreement once it receives the (k − 1)th block and without waiting for others to receive the same.
The protocol runs for t+ n rounds, where the earliest round to start asking for kth message block
and the latest round to reach agreement on kth block are set to k and t + k respectively. If no
block matching the kth hash is received by the end of round (t + k) round, then an honest party
exits the while loop and outputs ⊥. Our protocol guarantees that either all or none of the honest
parties will get the message.

Every party maintains three kinds of sets. A local corrupt set Ci is used by party Pi to log the
corrupted parties discovered across the blocks. For the kth block, every party Pi locally maintains

a set of happy parties H(k)
i and a set of unhappy parties H(k)

i . From Pi’s point of view, a party
is happy if it declares to hold/receive a message block matching with the hash value h(k) and it
broadcasts certain ‘proof’ along with the declaration. A party Pi promotes Pj to its happy set only
when ‘the proof verifies correctly’. Only Ps is considered to be happy initially for all the blocks.

Now let us understand how a particular block agreement is done. Consider the kth block. A
party Pi who has received (k− 1)th block and is still unhappy for the kth block checks if there is a

party in its kth happy set H(k)
i who it can ask for the kth message block. An unhappy (and honest)

party Pi never requests a party for the message block more than once. Similarly, a happy (and
honest) Pj does not entertain anyone more than once. To prevent the corrupted parties from making
block request from multiple honest parties in a round, every party is made to broadcast the identity
of its chosen party. A happy (and honest) Pj sends its message block to Pi over the point-to-point
channel if and only if it receives a request from Pi via broadcast for the first time for a block. A
matrix T(k) is maintained by each party to detect repeated message send requests. A party who
asks for the message block more than once from the same party is identified as corrupted. Next Pi,
on receiving a message block from Pj can check if it matches with h(k). As h(k) is generated from
a collision-resistant hash function, a corrupted Pj cannot trick an honest Pi by sending a wrong
message block and yet pass the consistency check with h(k). Once Pi is happy, it prepares its proof
and broadcasts the same. Intuitively, when Ps is corrupted, the proof enables to reach agreement
on a block within the round limit fixed for the block. Namely, for the kth round, it is k + t. It
ensures that the more the adversary delays the receipt of the block by the honest parties, the more

17

(n)-BB

– Input of Ps: An ` bit message m.

– Oracle: Broadcast oracle for bits.

– Cryptographic Assumption: A collision resistant hash function Hash.

Hash Agreement Phase: The sender Ps does the following:

1. Break the message m into n pieces by padding the end of the message if necessary so that all
pieces are of the same length. Denote the n messages by m(1), · · · ,m(n).

2. For k = 1, . . . , n, compute h(k) = Hash(m(k)) and broadcast h(k) to all parties.

Block Agreement Phase: Each party Pi does the following:

1. Initialize

– Ci to ∅, ci to 1 and r to 1.

– T
(k)
i [j, l] = 1 for j, l, k ∈ {1, . . . , n}

– H(k)
i ,H(k)

i to Ps and P \ Ps respectively for k ∈ {1, . . . , n}
– o

(k)
i to ⊥ if Pi 6= Ps, o

(k)
i = m

(k)
i otherwise for k ∈ {1, . . . , n}

2. While r ≤ (n+ t)

(a) If Pi ∈ H
(ci)
i , ∃ Pj ∈ H(ci)

i \ Ci and |H(ci)
i ∪ Ci| ≥ r − ci + 1, then broadcast (send, j, ci).

(b) Let (send, x, y) be the output of the broadcast initiated by Pj 6∈ Ci.

i. if T
(y)
i [x, j] = 1 and there is only one broadcast initiated by Pj , then set T

(y)
i [x, j] = 0.

If x = i and Pi ∈ H(ci)
i , then send o

(ci)
i to Pj over point-to-point channel.

ii. else add Pj to Ci.

(c) If Pi broadcasted (send, j, ci) in step 2a: let o
(ci)
j denote the message block received from Pj

over point-to-point channel.

i. if h(ci) = Hash(o
(ci)
j), then increment ci by one, set o

(ci)
i = o

(ci)
j and finally broadcast

(happy,H(ci)
i , Ci, ci).

ii. otherwise broadcast (unhappy, ci), add Pj to Ci.
(d) Let v be the output of the broadcast done by Pj 6∈ Ci in step 2c who broadcasted (send, ∗, ∗)

in step 2a earlier this round:

i. if v = (happy,H(x)
j , Cj , x), H(x)

j ∪ Cj ⊆ H
(x)
i ∪ Ci and |H(x)

j ∪ Cj | ≥ r− x+ 1, then move

Pj from H(x)

i to H(x)
i and set H(x)

i = H(x)
i ∪H(x)

j .

ii. if v = (unhappy, x), then do nothing.

iii. else add Pj to Ci.

(e) If r = ci + t and Pi ∈ H
(ci)
i , then exit while loop.

3. If o
(k)
i 6= ⊥ for all 1 ≤ k ≤ n, then output o

(1)
i | · · · |o

(n)
i . Else, output ⊥.

Figure 4: Broadcast Protocol in Dishonest Majority Setting

18

it needs to expose the identities of the corrupted parties. We show that an honest party that moves
to the kth happy set in round r will know at least r−k corrupted parties. The proof further ensures
that the delay cannot be beyond a limit. For the kth block, the first honest party must be allowed
to be happy before round k + t. Otherwise all the honest parties will remain unhappy and would
output a ⊥ at the end of round k + t. More details follow.

Specifically, the proof of Pi for kth block in rth round is a happy set and corrupt set such that

|H(k)
i ∪Ci| ≥ r− k+ 1 (excluding itself). If Ps is honest, then every honest party will get promoted

to the kth happy sets of all the honest parties in the kth round itself as each one them can prepare
a proof where the happy sets consists of Ps. For a corrupted Ps, the proof ensures that the first
entry of an honest party in the kth happy sets of the honest parties cannot be in (k+ t)th round. It
must be in one of the previous rounds, because the proof in (k + t)th round requires t+ 1 distinct
parties in the union of happy set and the corrupt set. Since an honest party will not belong to the
corrupt set of another honest party, apart from self, the first honest entrant must include another
honest party in its kth happy set. Therefore, there must be some other honest party who has
become happy before (k + t)th round. We then show that if an honest party becomes happy in
round r for the kth block such that k ≤ r < k + t, then all the honest parties will be happy after
running round (k + t).

Lastly, to ensure that a corrupted party does not fake its proof by including parties that are
not happy or corrupt, the proof is verified by checking if it is a subset of the union of the happy set
and corrupt set of the verifier. An honest party’s proof will always get verified by another honest

party. We show that there is a one-to-one correspondence between the sets H(k)
i ∪ Ci and H(k)

j ∪ Cj
of two honest parties Pi and Pj .

We now proceed to the proofs.

Lemma 6.1 (Complexity). Protocol (n)-BB has:
(i) a round complexity of O(n),
(ii) a seed round complexity of O(n),
(iii) a communication complexity of O

(
`n+ (nκ+ n3 log n)B(1)

)
bits and

(iv) a seed communication complexity of O(nκ+ n3 log n) bits.
for a message of `-bit length.

Proof. It is easy to verify the round complexity and the seed round complexity of the protocol.
We now compute the communication complexity by considering the communication received by

each party. First, let us consider the communication received by an honest party. For every block of
message, if an honest party eventually moves to the happy set, then it receives `

n bits of message in
order to move from the unhappy set to happy set. Across all the message blocks, it may in addition
receive `

n bits of wrong message block from each of the t corrupted parties. However, each such
receipt will reveal the identity of one corrupted party. Thus, in total, the amount of communication
received by an honest party in the protocol is O(`) bits. Now consider the communication received
by a corrupted party. We need to focus on the communication made by the honest parties since a
corrupted party can communicate as many bits as it wants to another corrupted party. A corrupted
party cannot make an honest party to communicate any message block twice. Every honest party
Pi keeps track of the list of parties it sends a message block to in the array T. Once it sends the
kth message block to Px, it sets T(k)[i, x] to 0. Thus, a corrupted party either moves to the happy
set or creates a conflict with the honest party Pi. Irrespective of the case, the honest party Pi will
not communicate the same message block to the same corrupted party for the second time. Thus,

19

across all message blocks, a corrupted party can receive `
n bits of message from each honest party

to create conflicts with them. To move from unhappy set to happy set for each message block, it
may receive `

n bits of message from some honest party. Overall it counts to receipt of O(`) bits.
Now counting over all parties, we get that the overall received message complexity is O(`n) bits.
Since the communication complexity is same as the received bit complexity, we conclude that the
communication complexity is O(`n) bits.

We now count the part of the communication complexity that is independent of ` and is
broadcasted. In the Hash Agreement phase, Ps broadcasts n hash values corresponding to n
message blocks. This requires a communication of B(n|h|) bits. Next, we consider the commu-
nication involved in the Block Agreement phase. For kth block, every party Pi will broadcast

(happy,H(k)
i , Ci, k) only in the round when it moves from its unhappy set to happy set. In the

worst case, it may broadcast (send, j, ci) and (unhappy, ci) in every round. We may assume the

size of H(k)
i and Ci to be O(t). This results in a communication of B(n log n) bits per party per

message block. Summing over all the blocks and all the parties, we get that a communication
of B(n3 log n) bits is required. Assuming |h(k)| = κ, the communication that is independent of
` turns out to be B(nκ + n3 log n) bits. Thus the ` independent communication complexity is
O((nκ+ n3 log n)B(1)) bits.

The communication complexity of protocol (n)-BB is, thus, O
(
`n + (nκ + n3 log n)B(1)

)
bits

and the seed communication complexity is O(nκ+ n3 log n) bits.

Lemma 6.2 (Validity). Assume that Hash is a collision-resistant hash function. In protocol (n)-BB,
if Ps is honest then every honest party will output sender’s message.

Proof. The validity follows from the fact that all the honest parties ask for and receive the kth
message block from Ps in the kth round of the while loop and move to the kth happy set H(k)

of all the honest parties. Formally, the proof goes as follows. Before the start of the while loop,

H(k)
i is set to Ps for all k ∈ {1, . . . , n}. Consider the kth message block. In the kth round of the

while loop, the condition |H(k)
i | ≥ r− k+ 1 will hold for any honest party Pi, since both |H(k)

i | and
r − k + 1 are equal to 1. The latter is true because we are considering the kth round and hence
r = k. Every honest party Pi does the following in the given order (i) It asks for the kth message

block from Ps and will receive the same; (ii) It broadcasts (happy,H(k)
i , Ci, k) where, H(k)

i = {Ps},
sets o

(k)
i to m(k) and increments block count ci by one; (iii) At the end of kth round, it outputs o

(k)
i

which is the same as m(k), since Ps is honest. At the end of protocol (n)-BB, every honest Pi will
output m(1)| . . . |m(n) which is same as the sender’s message m.

We now prove the agreement property via a sequence of lemmas on the (n)-BB protocol.

Lemma 6.3. In the start of any round r for 1 ≤ r ≤ n+ t, the condition H(k)
i ∪ Ci ⊆ H

(k)
j ∪ Cj is

true for any two honest parties Pi and Pj for any k ∈ {1, . . . , n}.

Proof. Consider any party Pα that enters H(k)
i in round r for 1 ≤ r ≤ n + t. We show that Pα

will belong to Hj ∪ Cj in the same round r. Since Pα enters Hi in round r, the following must be

true: (i) Pi has received Pα’s broadcast (send, x, y) such that T
(y)
i [x, α] = 1 and there is only one

broadcast initiated by Pα in this round; and (ii) Pi has received Pα’s broadcast (happy,H(k)
α , Cα, k)

such that the conditions H(k)
α ∪Cα ⊆ H(k)

i ∪Ci and |H(k)
α ∪Cα| ≥ r− k+ 1 hold. Pj will also receive

Pα’s broadcast (send, x, y) such that T
(y)
i [x, α] = 1 and this will be the only broadcast initiated

20

by Pα in this round. Furthermore, Pj also receives Pα’s broadcast (happy,H(k)
α , Cα, k). Now, if

H(k)
α ∪ Cα ⊆ H(k)

j ∪ Cj , then Pj will move Pα to its happy set. Otherwise, Pj will add Pα to Ci. It

can never happen that Pα is moved to H(k)
i by Pi, but Pj has neither moved it to H(k)

j nor added
to Cj .

Consider any party Pα that enters Ci in round r for 1 ≤ r ≤ n + t. We show that Pα belongs
to Hj ∪ Cj in the same round r. Pα may enter Ci for an honest Pi because of one of the following
reasons:

(i) Pi has received Pα’s broadcast (send, x, y) such that one of the following is true. Either T
(y)
i [x, α]

is already set to 0 (i.e. Pα has asked for the kth message block from Px earlier) or there is
more than one broadcast initiated by Pα in this round. In either case Pj will also add Pα to
its corrupt set Cj .

(ii) Pi has received Pα’s broadcast (happy,H(k)
α , Cα, k) such that either of the conditions H(k)

α ∪Cα ⊆
H(k)
i ∪ Ci and |H(k)

α ∪ Cα| ≥ r − k + 1 are not true. Pj will also receive the same broadcast.
Based on whether the conditions are true for Pj or not, Pj will either add Pα to Cj or move

it to H(k)
j . But it cannot happen that Pj has not added Pα to either of the two sets.

(iii) Pi had requested Pα for the kth message block but has not received one matching with h(k).

Then it must be the case that Pα belongs to the set H(k)
i of Pi in the end of (r − 1)th round

itself. By the first part of our proof, Pj contains Pα in Hj ∪ Cj by the end of round (r − 1)
too.

Together, we can conclude that every Pα belonging to H(k)
i ∪ Ci belongs to H(k)

j ∪ Cj for honest

parties Pi and Pj at the start of any given round. Thus, the condition H(k)
i ∪ Ci ⊆ H

(k)
j ∪ Cj is true

for any two honest parties Pi and Pj for any k ∈ {1, . . . , n}.

Definition 6.1 (Validity of Ci). We say that a set Ci is valid if for honest Pi, and for all honest
parties Pj Pj /∈ Ci.

Below we prove that protocol (n)-BB ensures Ci remains valid throughout for an honest Pi.

Lemma 6.4. The set Ci is valid for an honest party Pi.

Proof. We note that an honest party adds a party Pj in corrupt set Ci when either of the following
are true: (i) it receives multiple broadcasts from Pj of the form (send, x, y) in different rounds
or in the same round or (ii) it receives multiple broadcasts from Pj of the form (send, x, y) and
(send, x′, y′) in the same round where x 6= x′ or (iii) it did not receive a message block from Pj

upon request that matches with the corresponding hash value or (iv) it receives (happy,H(k)
j , Cj , k)

for some k from Pj in round r such that either |H(k)
j ∪ Cj | < r − k + 1 or H(k)

j ∪ Cj 6⊆ H
(k)
i ∪ Ci. Pj

is clearly corrupted when any of the conditions stated in (i)-(iii) hold. Now, for the conditions in

(iv), if Pj was honest it would not broadcast (happy,H(k)
j , Cj , k) such that |H(k)

j ∪ Cj | < r − k + 1.

By Lemma 6.3, for any two honest parties Pi and Pj , H(k)
j ∪Cj ⊆ H

(k)
i ∪Ci is true at the beginning

of the round when (happy,H(k)
j , Cj , k) is broadcasted. If it is not true, then Pj is corrupted.

21

The next lemma makes the following statements equivalent: For any k, in the kth block broad-
cast (i) an honest party moves from its kth unhappy set to kth happy set in round r (ii) an honest
party moves from the kth unhappy set to the kth happy set of every honest party in round r.

Lemma 6.5. For any k, if an honest party Pi moves from H(k)
α to H(k)

α for an honest party Pα in

rth round, then it moves from H(k)
β to H(k)

β for every other honest party Pβ in the same round.

Proof. We note that the test done by Pα and Pβ for promoting Pi to their happy sets are identical:

Pα checks H(k)
i ∪ Ci ⊆ Hα ∪ Cα while Pβ checks H(k)

i ∪ Ci ⊆ H
(k)
β ∪ Cβ. It follows from Lemma 6.3

that both will hold.

We now prove the following lemma: For any k, if an honest and unhappy party moves a party
to its kth happy set in rth round, then it will know at least r− k+ 1 corrupted parties by the end
of rth round where k ≤ r ≤ k + t.

Lemma 6.6. For any k, if an honest party Pi is in H(k−1)
i before rth round but in H(k)

i till the

end of rth round and moved a party from H(k)
i to H(k)

i in the rth round where k ≤ r ≤ k + t, then
|Ci| ≥ r − k + 1.

Proof. We prove the lemma using strong induction on r. We start with the following observa-
tion. Let Pj be the party that moved from Hi to Hi in the rth round. This implies that the

conditions H(k)
j ∪ Cj ⊆ H

(k)
i ∪ Ci and |H(k)

j ∪ Cj | ≥ r − k + 1 are true. From these two condi-

tions, we can conclude that |H(k)
i ∪Ci| ≥ r−k+1 in the beginning of rth round itself (excluding Pj).

Base Case. Assume r to be the first round when Pi moved at least one party from H(k)
i

to H(k)
i and Pi is in Hi till the end of rth round. We have k ≤ r ≤ k + t. Since before

rth round no party has moved to H(k)
i , H(k)

i consists of only Ps. Furthermore, Ps must be

corrupted as Pi is still unhappy. Therefore, all the parties in H(k)
i are corrupted. Since we have

|H(k)
i ∪Ci| ≥ r−k+1 in the beginning of rth round, we can conclude that |Ci| ≥ r−k+1 in round r.

Induction Step. Assume the lemma statement is true for all the rounds starting from k to r − 1.
We will prove the statement for round r.

Now, assume that r′ is the last round before r when Pi moved at least one party from H(k)
i to

H(k)
i . We have r′ < r. Since Pi must have been unhappy in round r′ too, we have |Ci| ≥ r′ − k + 1

by the end of round r′ via induction hypothesis. According to the protocol, the following condition

will be satisfied for Pi in the end of round r′: |H(k)
i ∪ Ci| ≥ r′ − k+ 2 after moving Pj to the happy

set. Now we have two cases to consider.

(i) First, if Pi asks for the kth message block from some party in its happy set H(k)
i in every round

starting from round r′ until round r, then Pi discovers r − (r′ − 1) + 1 = r − r′ additional
corrupt parties since it remains unhappy in the end of rth round. We therefore conclude that
|Ci| ≥ (r′ − k + 1) + (r − r′) = r − k + 1 in this case.

(ii) The other possibility is that Pi asks for the kth message block for some rounds starting from

round r′ + 1 but stops asking before round r. By assumption, the happy set H(k)
i of Pi did

not grow between r′th and rth round. In this case, we can conclude that all the parties that

22

belong to H(k)
i until the beginning of round r are corrupted since none of them delivered

Pi a message block that is consistent with h(k). Since we have |H(k)
i ∪ Ci| ≥ r − k + 1 in

the beginning of rth round and all the parties in H(k)
i until the beginning of round r are

corrupted, we have |Ci| ≥ r − k + 1.

We now prove a lemma that captures the fact that, the more an honest party is delayed in
receiving a message block, the more the number of corrupted parties it discovers.

Lemma 6.7. For any k, if an honest party Pi moves to H(k)
i in rth round where k ≤ r ≤ k + t,

then |Ci| ≥ r − k.

Proof. We first prove the lemma assuming that Pi has not moved any party to H(k)
i before round r.

This means H(k)
i contains Ps alone and Pi must have become happy on receiving the kth message

block from Ps. This implies two things: first, it must have received all the previous message blocks
from Ps too; second, r must be k. In this case, Pi knows zero corrupted parties. Since r = k, we
have |Ci| ≥ r − k at the end of round r. We now prove the lemma for the case when Pi does not

receive the message blocks from Ps and has moved some party to H(k)
i before rth round. We prove

the lemma using induction on k.

Base Case. Assume k = 1. That is, we are considering the first message block. Pi has moved some

party to H(k)
i before rth round. Let r′ be the last round when Pi does so. We have 1 ≤ r′ < r. By

Lemma 6.6, Pi knows at least r′−k+ 1 = r′ corrupted parties by the end of r′th round. According

to the protocol, by the end of round r′, |H(1)
i ∪ Ci| ≥ r′ − k + 2 = r′ + 1. Therefore, Pi will have

parties in H(1)
i that are not in Ci to ask for the message block. Since Pi has become happy in rth

round, it must have been asking distinct parties for the message block, starting from round (r′+ 1)
and upto round r. None of the parties that it asked for the message until round r− 1 delivered it a
message block matching h(1). This implies it discovers (r− 1)− (r′+ 1) + 1 = (r− r′− 1) corrupted
parties starting from round (r′ + 1) and until round (r − 1). These identities are distinct from the
r′ parties it knew by the end of round r′. In total, Pi knows at least r′ + (r − r′ − 1) = r − 1 cor-
rupted parties by the end of round r. Since k = 1, we have |Ci| ≥ r−1 = r−k at the end of round r.

Induction Step. Assume the lemma is true for all the message blocks upto k − 1. We now prove

the lemma for the kth message block. Say, Pi moves to H(k−1)
i in rk−1th round where (k − 1) ≤

r ≤ (k − 1 + t). By induction hypothesis, |Ci| ≥ rk−1 − (k − 1) by the end of rk−1th round. Now

we consider two cases based on when Pi moves some party to H(k)
i before round r.

(i) The last time Pi moves some party to its happy set H(k)
i is in or before rk−1th round. Pi had

been asking for kth message block starting from round (rk−1+1) to rth round. It has become
happy only in round r. Until round (r− 1), it discovers (r− 1)− (rk−1 + 1) + 1 = r− rk−1− 1
corrupted parties which are different from rk−1 − k + 1 corrupted parties it knew by the end
of round rk−1. In total Pi now knows (r− rk−1−1) + (rk−1−k+ 1) = r−k corrupted parties
at the end of rth round.

23

(ii) The last time Pi moves some party to its happy set H(k)
i is after rk−1th round, say, in round r′

such that rk−1 < r′ < r. By Lemma 6.6, Pi knows at least r′− k+ 1 corrupted parties by the

end of r′th round. According to the protocol, by the end of round r′, |H(k)
i ∪ Ci| ≥ r′− k+ 2.

Hence, Pi will have parties in H(k)
i that are not in Ci to ask for the message block starting from

round (r′ + 1). Now, since Pi became happy in rth round, it must have been asking distinct
parties for the message block starting from round (r′ + 1) and upto round r. None of the
parties that it asked for the message until round r− 1 delivered it a message block matching
with h(k). This implies it discovers (r−1)−(r′+1)+1 = (r−r′−1) corrupted parties starting
from round (r′ + 1) and until round (r − 1). These identities are distinct from the r′ parties
it knew by the end of round r′. In total, Pi knows at least (r′ − k + 1) + (r − r′ − 1) = r − k
corrupted parties by the end of round r. We have |Ci| ≥ r − k at the end of round r.

The following lemma states that for any k, if one honest party moves to the kth happy sets of
the honest parties in rth round where k ≤ r < k + t, then every honest party will move to the kth
happy sets of the honest parties before round (k + t). This lemma will let us prove that either all
or none of the honest parties will be happy for the kth message block which in turn will lead us to
the proof of the agreement property of our protocol (n)-BB.

Lemma 6.8. For any k, if some honest party Pi moves from H(k)
j to H(k)

j for every honest party

Pj in round r such that k ≤ r < k + t, then every honest party will move from H(k)
j to H(k)

j before
(k + t)th round.

Proof. Let Pi be the first honest party that moves to the kth happy set H(k)
j of honest Pj . Also

let Pi moves to the happy set H(k)
j of Pj in round r such that k ≤ r < k + t. We now show that

Pj will move to the kth happy sets of all the parties in or before (k + t)th round. Let rk−1 be the

round number when Pj has moved to H(k−1)
j where (k− 1) ≤ rk−1 ≤ (k− 1) + t. Now we complete

our proof by considering the following two possible cases:

(i) rk−1 < r: By Lemma 6.6, Pj knows at least r − k + 1 corrupted parties by the end of rth

round. At the end of rth round, honest Pj will have |H(k)
j ∪ Ci| ≥ r − k + 2 after including

Pi. Therefore, Pj will have at least one party to ask for the message block in (r+ 1)th round.
Now, if Pj talks to Pi in some round in or before (k + t)th round, then it moves to its happy

set H(k)
j after receiving the message block. So let us assume that Pj does not ask for the

kth message block from Pi. This implies that Pj was requesting for the message block from
parties other than Pi in each of the rounds starting from the (r+1)th round. It is not possible
that Pj has not asked for the block from anyone in some round after the rth round. This is
because Pi will be in its happy set post rth round and by Lemma 6.4, Pi will not be in Cj
as both Pi and Pj are honest. We therefore conclude that Pj talks to some party in its kth
happy set in each of the rounds starting from the (r + 1)th round and until (k + t)th round.
Now Pj talks to (k+ t)− (r+1)+1 = k+ t−r parties in its happy set starting from (k+x)th
round to (k + t)th round. These k + t− r parties are different from the r − k + 1 corrupted
parties Pj had in its corrupt list Cj at the end of rth round. If all the k + t − r parties are
corrupted, then total number of corrupted parties will be x + t − x + 1 = t + 1. This is a

24

contradiction. One out of the k + t− r parties must, therefore, be honest and belong to Pj ’s

happy set H(k)
j . After getting the message block from the honest party in its happy set H(k)

j ,
Pj will move to its happy set too.

(ii) rk−1 ≥ r: By Lemma 6.7, Pj will know at least rk−1 − (k − 1) corrupt parties by the end of
round rk−1. At the start of round (rk−1 + 1), Pi has |Cj | ≥ rk−1 − (k − 1) and its happy set

H(k)
j contains honest Pi that cannot belong to Cj by Lemma 6.4. So clearly |H(k)

j ∪ Cj | ≥
rk−1−(k−1)+1 = (rk−1+1)−k+1 holds good in the beginning of round (rk−1+1). This implies
Pj will ask for kth message block starting from round (rk−1 + 1). Now if it asks for the kth

message block from Pi in some round before k+t, then it gets promoted to H(k)
j . If it does not

ask Pi, then it must be asking other parties in its kth happy set in every round starting from
round (rk−1+1) and until round (k+t). By the end of k+t rounds, if it has not got promoted
to the kth happy set, then it discovers (k+ t)− (rk−1 +1)+1 = k+ t−rk−1 corrupted parties.
These are different from rk−1 − (k − 1) corrupt parties Pj knew by the end of round rk−1.
Therefore, the total corrupted parties will have to be k+t−rk−1+rk−1−(k−1) = t+1. This
is a contradiction. Hence, we conclude Pj will talk to some honest party and get promoted

to H(k)
j by the end of round (k + t).

Recall that by Lemma 6.5, an honest party will be promoted to the kth happy set respectively
by all honest parties in the same round. Pj , will therefore, be promoted to the kth happy sets
of all the honest parties. Now every honest Pj will move to the kth happy sets of all the parties
since honest Pi will move to the kth happy set of every honest Pj in the same round (again due to
Lemma 6.5).

Lemma 6.9. For any k, either all or none of the honest parties will be in the kth happy sets of
the honest parties.

Proof. By Lemma 6.8, if one honest party moves to the kth happy sets of the honest parties in rth
round where k ≤ r < k + t, then every honest party will move to the kth happy sets of the honest
parties on or before (k + t)th round of the while loop. We now show that if at all an honest party
moves to the kth happy set of the honest parties, the first such move happens in round r where
k ≤ r < k+ t. Assume that Pi is the first honest party to enter to the kth happy sets of the honest
parties. Also assume that Pi is moved to the kth happy sets in the (k + t)th round. Then Pi must

have at least (k + t) − k + 1 = t + 1 parties in H(k)
i ∪ Ci excluding itself during the broadcast of

(happy,H(k)
i , Ci, k). Since there are at most t corrupted parties, there is already one honest party

included in H(k)
i Ci. By Lemma 6.4, the honest party cannot belong to Ci. So it must be in H(k)

i .
This contradicts our assumption that Pi is the first honest party to move to the kth happy set of
every honest party.

We conclude that if one honest party moves to the kth happy set of the honest parties before
(k + t)th round, then all the honest parties move to the kth happy sets by the end of (k + t)th
round. Otherwise, none of the honest parties enter in the kth happy sets of the honest parties.

Lemma 6.10. Assume that Hash is a collision-resistant hash function. For any k, all the honest

parties in H(k)
i for an honest Pi hold the same value.

Proof. This follows from the fact that Hash is a collision-resistant hash function and every honest
party has an identical copy of h(k) (since it is broadcasted). Even a corrupted party cannot find a

25

different image of h(k). Therefore, even if an honest party receives the kth message block from a
corrupted party, the message block must be the same as the kth message block possessed by the
honest parties in the happy set of an honest party (with very high probability).

We are now ready to prove the agreement property of (n)-BB protocol.

Lemma 6.11 (Agreement). In protocol (n)-BB, every honest party will output the same message.

Proof. By Lemma 6.9, either all or none of the honest parties are present in the kth happy sets of
all the honest parties for any k. If all of them are present, then by Lemma 6.10 they will hold the
same block. If none of them are present, then they will hold ⊥. Agreement, therefore, holds for
every block of message. Agreement over the entire message follows easily.

Theorem 6.2. Assume that Hash is a collision-resistant hash function. The protocol (n)-BB sat-
isfies:

Agreement: Every honest party will output the same message.
Validity: If the sender is honest, all honest parties output the sender’s message m.
Complexity: A round complexity and seed round complexity of O(n). A communication complexity

and a seed communication complexity of O
(
`n + (nκ + n3 log n)B(1)

)
and O(nκ + n3 log n)

bits respectively.

Proof. The agreement, validity and complexity follows from Lemma 6.11, Lemma 6.2 and
Lemma 6.1 respectively.

7 Conclusion

We studied extension protocols that are optimal simultaneously in more than one complexity mea-
sure. We introduce seed round complexity as a measure of the number of rounds in which a single-bit
broadcast protocol is invoked. We presented a BA extension protocol in the t < n/3 setting that is
simultaneously communication and round optimal and requires a single seed round. Our protocol
does not require any set-up, is error-free and information-theoretically secure. The existing pro-
tocols in this realm achieve only communication optimality and incur Ω(n3) round as well as seed
round complexity. Then, in the setting with a set-up assumption, we gave constructions of two
extension protocols. Our extension protocol in the t < n/2 setting also achieves optimal communi-
cation and round complexity with a single seed round. Finally, in the t < n setting, we presented a
BB extension protocol optimal in both communication and round complexity. Our t < n extension
protocol improves the state-of-the-art in this setting which is only communication optimal and a
non-optimal O(n2) round complexity. We leave as open questions, designing protocols that are
optimal simultaneously in communication and round complexity and requires a seed round of 1 for
the more interesting and challenging t < n setting.

References

[BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus.
In Computer science, pages 313–321. Springer, 1992.

[BH06] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation with
dispute control. In Theory of Cryptography, pages 305–328. Springer, 2006.

26

[Blu90] Norbert Blum. A new approach to maximum matching in general graphs. In Automata,
Languages and Programming, 17th International Colloquium, ICALP90, Warwick Uni-
versity, England, July 16-20, 1990, Proceedings, pages 586–597, 1990.

[BOCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation.
In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pages 52–61. ACM, 1993.

[Can96] Ran Canetti. Studies in secure multiparty computation and applications. PhD thesis,
The Weizmann Institute of Science, 1996.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Advances in Cryptology - EUROCRYPT
1997, pages 103–118. Springer, 1997.

[CW92] Brian A Coan and Jennifer L Welch. Modular construction of a byzantine agreement
protocol with optimal message bit complexity. Information and Computation, 97(1):61–
85, 1992.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. J. ACM, 32(1):191–204, 1985.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Communications of the ACM, 28(6):637–647, 1985.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzantine agreement.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, pages 163–168. ACM, 2006.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

[GJ79] MR Garey and DS Johnson. Computers and intractability: a guide to the theory of
np-completeness. 1979.

[GKKO07] Juan Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity
of authenticated broadcast with a dishonest majority. In Foundations of Computer
Science, 2007. FOCS’07, pages 658–668. IEEE, 2007.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
218–229. ACM, 1987.

[GP16] Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication
and round complexity. In Proceedings of the 2016 ACM Symposium on Principles of
Distributed Computing, pages 371–380. ACM, 2016.

27

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party compu-
tation. Advances in CryptologyASIACRYPT 2000, pages 143–161, 2000.

[HR14] Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The t < n case. In
Advances in Cryptology–ASIACRYPT 2014, pages 448–465. Springer, 2014.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology-CRYPTO 2003, pages 145–161. Springer, 2003.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzan-
tine agreement. In Advances in Cryptology - CRYPTO 2006, pages 445–462, 2006.

[KY86] Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds for byzantine
agreement. Technical report, Manuscript, 1986.

[LF82] Leslie Lamport and Michael Fischer. Byzantine generals and transaction commit pro-
tocols. Technical report, Technical Report 62, SRI International, 1982.

[LV11] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with byzantine
failures. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pages 11–20. ACM, 2011.

[Lyn96] Nancy A Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[MS78] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes. North-
Holland Publishing Company, 1978.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal
communication complexity. In Proceedings of Principles of Distributed Systems - 15th
International Conference, OPODIS 2011, pages 34–49, 2011.

[PR] Arpita Patra and C Pandu Rangan. Communication optimal multi-valued asynchronous
broadcast protocol. Progress in Cryptology–LATINCRYPT 2010, page 162.

[PR11] Arpita Patra and C Pandu Rangan. Communication optimal multi-valued asynchronous
byzantine agreement with optimal resilience. In Proceedings of the 5th international
conference on Information theoretic security, pages 206–226. Springer-Verlag, 2011.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and
byzantine agreement for t ≥ n/3. Technical Report RZ 2882, IBM Research, 1996.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[TC84] Russell Turpin and Brian A Coan. Extending binary byzantine agreement to multival-
ued byzantine agreement. Information Processing Letters, 18(2):73–76, 1984.

28

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive comput-
ing(preliminary report). In Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, STOC ’79, pages 209–213. ACM, 1979.

29

	Introduction
	Byzantine Broadcast (BB) and Agreement (BA)
	Extension Protocols
	Our Results
	Organization

	Models and Definitions
	Extension Protocols for t < n/3
	Building Blocks
	The BA Protocol

	Extension Protocols with Set-up Assumption
	Byzantine Agreement Extension for t<n/2
	Byzantine Broadcast Extension for t<n
	Conclusion

