
Fast Montgomery-like Square Root
Computation for All Trinomials

Yin Li and Yu Zhang

We introduce a new type of Montgomery-like square root formulae
in GF (2m) defined by an arbitrary irreducible trinomial, which is
more efficient compared with classic square root operation. By choosing
proper Montgomery factor for different kind of trinomials, the space and
time complexities of such square root computations match or outperform
the best results. A practical application of the Montgomery-like square
root in inversion computation is also presented.

Introduction: Field square root computation is an important building
block in the design of some elliptic curve primitives [1, 2] and a parallel
multiplicative inversion algorithm [3]. Consider a binary extension
field generated with an irreducible polynomial GF (2m)∼= F2[x]/(f(x))

where f(x) is irreducible over F2. Let A be an arbitrary element in the
field GF (2m). The field square root operation of A, denoted as

√
A or

A1/2, is to find D ∈GF (2m) such that D2 =A. When using normal base
representation, square root computation is simply a circular operation.
Hence, most previous works for square root computation focused on other
representations.

Until now, the square root computation can be obtained using Fermat
Little Theorem or pre-computation of x1/2 [4]. In [5], Rodríguez-
Henríquez et al. proposed an alternative method using the inversion of
the multiplicative matrix, which is constructed for squaring operation.
Their approach theoretically can be applied to any type of generating
polynomials. When the generating polynomial f(x) is a trinomial, the
worst case of their algorithm costs about 5m

2
XOR gates with the delay of

3TX . Compared with squaring operation for trinomials [6], the squaring
root computation is a little more complicated.

In this contribution, we consider a new type of square root by adding a
specific Montgomery-like factor. Explicit formulae of such operations are
presented in GF (2m) defined by an irreducible trinomial f(x) = xm +

xk + 1. We show these formulae are very simple and have smaller space
and time complexities in parallel implementation. Then, we describe the
application of this new type of square root in the domain of field inversion
computation.

Montgomery-like Square Root: Let A=
∑m−1

i=0 aix
i be an arbitrary

element of GF (2m) using polynomial basis representation. To compute
the square root of A, we first partition A into two parts according the
degree parity of its intermediate, i.e.,

A=A2
even + xA2

odd,

where Aeven =
∑(m−1)/2

i=0 a2ix
i and Aodd =

∑(m−3)/2
i=0 a2i+1x

i, if m
is odd, or Aeven =

∑m/2−1
i=0 a2ix

i and Aodd =
∑m/2−1

i=0 a2i+1x
i, if m

is even. Therefore, the square root of A is given by

A
1
2 =Aeven + x

1
2 Aodd. (1)

It is clear that the computation of x1/2 is crucial to the square root
computation. Actually, the element x1/2 is a constant that can be
pre-computed. Thus, the square root computation can be implemented
as performing a field multiplication between Aodd and x1/2 and
then adding with Aeven. However, this method requires a constant
multiplication, which is still an expensive operation. Therefore, we
introduce a Montgomery-like square root to simplify the calculation of
x1/2 and avoid previous complex operation by choosing proper a factor.
We first give the definition of this new square root.

Definition 1: Let A be an arbitrary element and ω be a fixed element
of GF (2m), respectively. Then the Montgomery-like square root of A is
defined as A1/2 · ω, while ω is named as the Montgomery-like factor.

The selection of the factor ω depends on the computation of x1/2.
Note that the generating polynomial here is f(x) = xm + xk + 1. We
have x= xm+1 + xk+1. Clearly, the formula of x1/2 varies according
to the parities of m and k. Four cases are considered:

Case 1: m even, k odd. In this case, we know that 2 |m, but 2 - k. Let
n=m/2, then we have

x
1
2 = xn · x

1
2 + x

k+1
2

⇒ x
k+1
2 = (1 + xn) · x

1
2 ,

⇒ x− 1
2 = (1 + xn) · x− k+1

2 ,

⇒ x
1
2 = (1 + xn) · x− k−1

2 .

Plug the above expression to (1), one can check that

A
1
2 =Aeven + x

1
2 Aodd =Aeven + (Aodd +Aoddx

n) · x− k−1
2 .

Note that Aodd consists of n terms, thus, there is no overlap between
Aodd and Aoddx

n. Let ω be x(k−1)/2, the Montgomery-like square root
of this case is

A
1
2 · ω=A

1
2 · x

k−1
2 =Aevenx

k−1
2 + (Aodd +Aoddx

n).

Since the degree of Aeven and Aodd are n− 1, deg(Aevenx(k−1)/2) =
n− 1 + (k − 1)/2≤ n+ (m− 1)/2 =m− 1 and deg(Aodd +

Aoddx
n) = n+ n− 1 =m− 1. Therefore, no further reduction is

needed in above expression. At this time, let D=
∑m−1

i=0 dix
i =

A1/2 · x(k−1)/2. Then,

di =


a2i+1, 0≤ i≤ k−3

2
,

a2i−k+1 + a2i+1,
k−1
2
≤ i≤ n− 1,

a2i−k+1 + a2i+1−m, n≤ i≤ n− 1 + k−1
2

,

a2i+1−m, n+ k−1
2
≤ i≤m− 1,

(2)

where 0< k≤m− 1.
Case 2: m even, k=m/2 odd. This case is actually a special case of

Case 1. It is easy to check that x1/2 = (1 + xk) · x−(k−1)/2. Also notice
that m= 2k and xm = xk + 1. Hence, the previous expression can be
rewritten as x1/2 = x2k−(k−1)/2. So,

A
1
2 =Aeven +Aoddx

k+ k+1
2 .

It is easy to check that there are at most (k + 1)/2 terms of which degrees
are out of the range [0,m− 1] and the reduction is very easy. Thus, let
ω= 1 and D=

∑m−1
i=0 dix

i =A1/2, we have

di =


a2i + a2i+k, 0≤ i≤ k−1

2
,

a2i,
k+1
2
≤ i≤ k − 1

a(2i+k) mod m, k≤ i≤m− 1.

(3)

This formula simply coincide with the result present in [5].
Case 3: both m and k are odd. Let n= m+1

2
, then

x
1
2 = xn + x

k+1
2 .

One can check that the above formula is very easy and the corresponding
square root computation needs no ω to simplify its computation.
Analogous with Case 2, let ω= 1 and D=

∑m−1
i=0 dix

i =A
1
2 , then

di =

 a2i, 0≤ i≤ k−1
2

,

a2i + a2i−k,
k+1
2
≤ i≤ m−1

2
,

a2i−k, k≤ i≤m− 1.

(4)

Case 4: m odd, k even. Let n= m−1
2

, then

x
1
2 = xn+1 + x

k
2 · x

1
2

⇒ xn+1 = (1 + x
k
2 ) · x

1
2 ,

⇒ x− 1
2 = (1 + x

k
2 ) · x−(n+1),

⇒ x
1
2 = (1 + x

k
2 ) · x−n.

Plug the above expression to (1), then

A
1
2 = Aeven + x

1
2 Aodd

= Aeven + (Aodd +Aoddx
k
2 ) · x−n

Let ω be xn, then the Montgomery-like square root is

A
1
2 · ω=A

1
2 xn =Aevenx

n +Aodd +Aoddx
k
2 .

Please note that Aodd consists of n terms and Aeven consists
of n+ 1 terms. Thus, Aevenxn and Aodd are non-overlapping
with each other. Also notice that degAodd = n− 1, degAeven = n

and k <m, so degAoddx
k
2 = n− 1 + k/2≤ n+ (m−1)/2 =m− 1,



degAevenxn = 2n=m− 1. Therefore, no further reduction is required
for A1/2xn. Let D=

∑m−1
i=0 dix

i =A
1
2 · xn, then

di =


a2i+1, 0≤ i≤ k

2
− 1,

a2i+1 + a2i+1−k,
k
2
≤ i≤ n− 1,

a2i+1−k + a2i−m+1, n≤ i≤ n+ k
2
− 1,

a2i−m+1, n+ k
2
≤ i≤m− 1.

(5)

where 0< k <m− 1. If k=m− 1, then

di =

 a2i+1, 0≤ i≤ n− 1,

a2i−m+1 + a2i−m+2, n≤ i≤m− 2,

a2i−m+1, i=m− 1.

(6)

According to expression (2) to (6), we summarize the space and time
complexity of the Montgomery-like square root computation in Table 1.
It is clear that, by choosing proper factor ω, the Montgomery-like square

Table 1: Comparison between Montgomery-like and ordinary square root
Montgomery-like ordinary

Case ω #XOR Delay #XOR Delay

1. m even, k odd x
k−1
2 m

2 1 TX
m+k−1

2 2 TX

2. m even, k=m
2 odd 1 m+2

4 1 TX
m+2

4 1 TX

3. m, k odd 1 m−1
2 1 TX

m−1
2 1 TX

4. m odd, k even x
m−1

2 m−1
2 1 TX

m+k−1
2 3 TX

root costs are at most m/2 (or (m−1)/2) XOR gates with only 1 TX gate
delay, which outperforms or matches the best square root computation
algorithms [5].
Example: Consider a finite field GF (29) defined by x9 + x4 + 1.
According to previous description, since x9 + x4 + 1 satisfies case 4,
we have ω= x(9−1)/2 = x4. Given an arbitrary element A=

∑8
i=0 aix

i,
the Montgomery-like square root of A is A1/2 · x4 =

∑8
i=0 dix

i, where

d0 = a1, d3 = a7 + a3, d6 = a4,

d1 = a3, d4 = a0 + a5, d7 = a6,
d2 = a5 + a1, d5 = a2 + a7, d8 = a8.

The computation of above coefficients di requires 4 XOR gates and 1 TX

in parallel.

Application: In [5], the authors proposed an efficient algorithm for
exponentiation using square root over GF (2m). Their algorithm mainly
utilized the equation

A2m−i
=A2−i

, i= 1, 2, · · · ,m− 1,

where A∈GF (2m) is an arbitrary nonzero element. The above equation
can be easily proved using Fermat Little Theorem. Hence, the squaring
operation based exponentiation can also be implemented using square
root operation. Let e= (em−1, · · · , e1, e0)2 be a m-bit nonzero integer.
Then, the exponentiation Ae can be written as

Ae =

m−1∏
i=0

A2iei =

m−1∏
i=0

A2−(m−i)ei =

m−1∏
i=1

A2−(m−i)ei ·Ae0 .

When e= 2m − 2 = (1, 1, · · · , 1, 0)2, the exponentiation Ae compute
the inversion of A. By substituting the ordinary square root with
Montgomery-like square root, we give a new inversion algorithm.

Algorithm 1 Inversion based on Montgomery-like Square root
Input: A∈GF (2m), f(x), e= (1, 1, · · · , 1, 0)2
Output: B =A−1 =Ae mod f(x)

1: B =A;
2: for i= 1 to m− 2 do
3: B =B

1
2 · ω;

4: B =B ·A mod f(x);
5: end for
6: B =B

1
2 · ω;

7: B =B · ω∗;
8: return B;

Since we use the Montgomery-like square root computation to
substitute the original one, ω∗ in step 8 is a compensatory parameter

that used to correct the final exponentiation (for case 1 and 4 of Table
1). According to step 2 and 3 of Algorithm 1, we totally perform m− 1
Montgomery-like square root computation. Therefore, to make the final
result correct, we have

(ω∗)−1 = ω · ω
1
2 · ω

1
4 · · ·ω

1
2m−2

= ω1+2−1+2−2+···+2−(m−2)
= ω2−2−(m−2)

.

Please notice that ω2−(m−2)
actually equals ω2m−(m−2)

= ω22 . So

ω∗ = (ω2−22 )−1 = ω22−2 = ω2.

The constant multiplication B · ω∗ can be performed using Mastrovito
approach. According to Table 1, it is known that ω= x(k−1)/2 (or
x(m−1)/2, then ω∗ = xk−1 (or xm−1). Therefore, the Mastrovito matrix
constructed from ω∗ is actually sparse. Only a few XOR gates are
required by corresponding matrix-vector multiplication 1, which leads to
no more than dlog2 me XOR gate delay. If m, k satisfy case 1 and case
4, our algorithm can save at least 1 TX for each square root computation
and finally has at least m− dlog2 me − 1TX gain. If m, k satisfy case 2
and 3, our algorithm is the same as the classic one.

In practical application, given a fixed irreducible trinomial, the space
and complexities of B · ω∗ can be even lower. For example, consider
irreducible trinomial x233 + x74 + 1 proposed by NIST [7], we have
ω∗ = x232. The constant multiplication B · ω∗ can be obtained using
205 XOR gates with 2TX delay in parallel. Therefore, the inversion
algorithm based on Montgomery-like square root can save m− 2 =

231 TX compared with the classic inversion algorithm that use square
root computation.

Conclusion: In this paper, we have proposed a new type Montgomery-
like square root computation algorithm. By choosing a proper factor, the
proposed scheme has only one TX delay and its space complexity at least
as good as the best results. We also show an important application of this
type of square root, which improves the computation efficiency compared
with classic algorithm using ordinary square root.

Acknowledgment: This work has been supported by the National
Natural Science Foundation of China (Grant No. 61402393,
61601396)

Yin Li and Yu Zhang (Department of Computer Science and Technology,
Xinyang Normal University, Henan, P.R.China)

E-mail: yunfeiyangli@gmail.com

References

1 Hankerson, D., Menezes, A. and Vanstone, S.: ‘Guide to Elliptic
Cryptography’, (Springer-Verlag, 2004)

2 Schroeppel, R., Beaver, C., Gonzales, R., Miller, R. and Draelos, T.: ‘A
Low-Power Design for an Elliptic Curve Digital Signature Chip’, Proc.
Fourth Int’l Workshop Cryptographic Hardware and Embedded Systems,
2002, pp. 366-380

3 Rodríguez-Henríquez, F., Morales-Luna, G., Saqib, N. and CruzCortés,
N.: ‘Parallel Itoh-Tsujii Multiplicative Inversion Algorithm for a Special
Class of Trinomials’, Reconfigurable Computing: Architectures, Tools and
Applications, LNCS 4419, 2007, pp. 226-237

4 K. Fong, D. Hankerson, J. López, and A. Menezes, ‘Field Inversion and
Point Halving Revisited’, IEEE Trans. Computers, 2004, 53, (8), pp. 1047-
1059

5 Rodríguez-Henríquez, F., Morales-Luna, G. and Lópz, J.: ‘Low-
Complexity Bit-Parallel Square Root Computation over GF (2m) for All
Trinomials’, IEEE Transactions on Computers, 2008, 57, (4), pp. 1-9

6 Wu, H.: ‘Montgomery multiplier and squarer for a class of finite fields’,
IEEE Transactions on Computers, 2002, 51, (5), pp. 521-529

7 ‘Recommended Elliptic Curves for Federal Government Use’,
special publication, Nat’l Inst. Standards and Technology, http://
csrc.nist.gov/csrc/fedstandards.html, July 1999.

1 Since the Mastrovito multiplicative matrix is fixed, no AND gate is needed.

2


