
Computation of a 768-bit prime field discrete logarithm

Thorsten Kleinjung12,
Claus Diem2, Arjen K. Lenstra1, Christine Priplata2, and Colin Stahlke2

1 EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland
2 Universität Leipzig, Mathematisches Institut, D-04009 Leipzig, Germany

Abstract. This paper reports on the number field sieve computation of a 768-bit prime field
discrete logarithm, describes the different parameter optimizations and resulting algorithmic
changes compared to the factorization of a 768-bit RSA modulus, and briefly discusses the
cryptologic relevance of the result.
Keywords: Discrete logarithm, DSA, ElGamal, number field sieve

1 Introduction

Let p = [2766π] + 62762, which is the smallest 768-bit prime number larger than 2766π for
which p−1

2 is prime too?. Let g = 11, which is a generator of the multiplicative group F×p of
the prime field Fp. On June 16, 2016, we finished the computation of the discrete logarithm
of t = [2766e] with respect to g. We found that the smallest non-negative integer x for which
gx ≡ t mod p equals

32592361791827056223861598597862370912834133883372105854395081352176815629509

16383480306379202371756381173524422992340416587484710799119774978643019959726

38266781162575370644813703762423329783129621567127479417280687495231463348812.

By itself, this is a useless result. What is interesting is how we found it, that we did so with
much less effort than we expected, and what the result implies for cryptographic security that
relies on the difficulty of larger similar problems. These issues are discussed in this paper.

The result was obtained using the number field sieve (NFS, [28,14]). It required the equiva-
lent of about 5300 core years on a single core of a 2.2GHz Xeon E5-2660 processor, mostly
harvested during the period May to December, 2015, on clusters at the authors’ universities.
On average each additional discrete logarithm requires two core days. This result is a record
for computing prime field discrete logarithms. It closes the gap between record calculations
for general purpose integer factoring and computing arbitrary prime field discrete logarithms,
with the 768-bit integer factorization record [21] dating back to 2009. Although our effort was
substantial, we spent a fraction of what we originally expected. The purpose of this paper is
to describe how this was achieved.

Records of this sort are helpful to get an impression of the security offered by cryptographic
systems that are used in practice. The 768-bit number field sieve factorization from [21], for
instance, required about 1700 core years. Because factoring a single 1024-bit RSA modulus [34]

? Here [x] denotes the classical entier function, the largest integer less than or equal to x.

using the number field sieve is about three orders of magnitude more work (cf. end of Section 2),
an educated guess follows for the worst-case effort to break a 1024-bit RSA key. Interpretation
of the resulting estimate is another matter. Depending on one’s perception, applications,
incentives, taste, . . ., it may boost or undermine one’s confidence in the security of 1024-bit
RSA moduli.

The ratio is similar between the difficulties of computing 768-bit and 1024-bit prime field
discrete logarithms (cf. Section 2). It follows that even the nonchalant users of 1024-bit RSA,
ElGamal [11], or DSA [36] have no reason to be nervous anytime soon if their concern is
an “academic attack” such as the one presented here (cf. [6]). They have to be a bit more
concerned, however, than suggested by [2, Section 4.1]. Also, we explicitly illustrate in Section 3
that continued usage of 1024-bit prime field ElGamal or DSA keys is much riskier than it is
for 1024-bit RSA (all are still commonly used), because once a successful attack has been
conducted against a single well-chosen prime field all users of that prime field [27, Section 4]
may be affected at little additional effort [2].

As shown in Section 5 our result gives a good indication for the difficulty of computing discrete
logarithms in multiplicative groups of other 768-bit prime fields as well. One such group, the
so-called First Oakley Default Group, is of some historical interest as it was one of the groups
supported by the Internet Key Exchange standard from 1998 [16], a standard that has been
obsolete since 2005 [17]. In some cryptographic applications, however, one may prefer to use a
generator of a relatively small prime order subgroup of F×p that is chosen in such a way that
comparable efforts would be required by Pollard’s rho in the subgroup and by the number field
sieve in F×p . Our choice of p assures that no (published) shortcut can be taken for our discrete
logarithm computation. It also represents the most difficult case for the number field sieve, in
particular for its linear algebra step. It follows from the numbers presented below that, for a
discrete logarithm computation, our choice is overall more difficult than a subgroup order that
may sometimes be preferred for cryptographic applications. With independently optimized
parameters the two efforts are however of the same order of magnitude (cf. Section 4).

Two simple methods can be used to give an a priori estimate of the effort to solve our 768-bit
prime field discrete logarithm problem. The first is direct extrapolation (cf. Section 2): given
that solving a 596-bit prime field discrete logarithm problem took 130 core years (cf. [7]),
extrapolation suggests that our 768-bit problem should be doable in about thirty thousand
core years. For the second method we observe that the number field sieve for factoring or
for prime field discrete logarithms is essentially the same algorithm. When applied to 768-bit
composites or 768-bit prime fields and when using comparable number fields, they deal with
similar probabilities and numbers of comparable sizes, with the sole exception occurring in the
linear algebra step: although in both cases the matrix is very sparse and all non-zero entries are
(absolutely) very small, when factoring linear algebra is done in a matrix modulo two, but for
discrete logarithm problems the matrix elements are taken modulo the group order (a 767-bit
integer in our case). An opposite effect, however, is caused by the fact that, with proper care,
the number fields will not be comparable because modulo large primes polynomial selection
methods can be used that do not work modulo large composites.

It follows that the numbers reported in [21] can be used to derive an upper bound for the 768-bit
prime field discrete logarithm effort, simply by using a 767-fold increase (cf. Section 3) of the
linear algebra effort from [21] while leaving the other steps unchanged. With [21, Section 2.4]
we find that fifty thousand core years should suffice for our problem. If we would switch to a

2

768-bit prime that allows a much smaller but cryptographically still interesting subgroup this
rough overall estimate would be reduced by a factor of about five.

Thirty or fifty thousand core years would be a waste of resources for a calculation of this sort,
and the more doable small subgroup alternative would be of insufficient interest; independent
of our estimates, a very similar figure was derived in [2, Section 4.1]. All these estimates,
however, overlook several points. Direct extrapolation of the 596-bit effort turned out to be
meaningless due to software improvements and because the limited size did not allow an
optimization that applies to our case. But more importantly, the very different nature and
size of the moduli used in, respectively, the polynomial selection and linear algebra steps
imply a radical shift in the trade-off between the steps of the number field sieve, which in
turn leads to very different parameter and algorithmic choices compared to what is done for
factoring. We are not aware of a satisfactory theoretical analysis of this different trade-off and
the resulting parameter selection, or of a reliable way to predict the practical implication for
the relative hardness of integer factoring and prime field discrete logarithm problems. It is
clear, however, that the issue is more subtle than recognized in the literature, such as [31,26]
and, more recently, [2, Section 4.1].

As described in Section 3, adapting the parameter choices and algorithms to the case at hand –
and guided by multiple experiments – it was found that it should be possible to reduce the fifty
thousand core years estimate by almost an order of magnitude. This led to the conclusion that
actually doing the full calculation would be a worthwhile undertaking: in the first place because
it shows that for our current range of interest k-bit factoring and computing k-bit prime field
discrete logarithms require a comparable effort; and in the second place, and possibly more
interesting, because it required more than just a casual application of known methods.

The previous 596-bit and current 768-bit prime field discrete logarithm records should not
be confused with extension field discrete logarithm records. Due to recent developments, we
now have much better methods than the number field sieve to compute discrete logarithms
in small characteristic extension fields. As a consequence, those fields are no longer relevant
for basic cryptographic applications such as DSA. Indeed, recent extension field records imply
that impractically large extension fields would have to be used to get an appreciable level of
security: for instance, computing discrete logarithms in the multiplicative group of the 9234-
bit field F

22·35·19 took less than fifty core years [15], and in the 3796-bit group F×
35·479

the
problem was dealt with in less than a single core year [19]. On the other hand, the current
characteristic two prime extension degree record involved the much smaller finite field F21279

and took between three and four core years [20]: the advantage of the new methods over the
number field sieve strongly depends on properties of the extension degree, but for favorable
degrees the advantage is much bigger than the advantage for the number field sieve when
factoring special numbers (such as Mersenne or Fermat numbers) compared to general ones
(such as RSA moduli).

While the correctness of the outcome of our calculation can simply be verified, independent
validation of the other claims made in this paper requires access to suitable source code
and data. We have established a long-standing tradition of open collaborations [30] with
other leading researchers in this field (see [21,22] and the references therein) which applies to
anything relevant for the present project as well.

3

The paper is organized as follows. Section 2 presents the background for the rest of the paper.
Section 3 describes the impact of the parameter selection on the way one of the main steps of
the number field sieve is best implemented for the problem solved here and lists all relevant
details of our new record calculation. Section 4 gives more details about the trade-off between
the main steps of the number field sieve, and presents estimates for the effort required to solve
a discrete logarithm problem in a small subgroup. In Section 5 it is shown that our choice of
p = [2766π] + 62762 is not more or less favorable than other primes of the same size.

2 Algorithm overview

Descriptions of the number field sieve are available in the literature, ranging from the high
level narrative [33] to the somewhat simplified and fully detailed versions in [29] and [28],
respectively.

Index calculus method [24,25,1]. Let Fp be a finite field of cardinality p, identified with
{0, 1, . . . , p − 1} in the usual manner, and let g generate its multiplicative group F×p . To
compute discrete logarithms with respect to g, an index calculus method fixes a so-called
factor base B ⊂ F×p , collects more than #B multiplicative relations between the elements of
B ∪ {g}, and uses linear algebra modulo the order of g to determine for all elements of B
their discrete logarithm with respect to g. Given this information, the discrete logarithm of
any h ∈ F×p is then found by finding a multiplicative relationship between h and the elements
of B ∪ {g}.

Doing more or less the same modulo a composite N (as opposed to modulo p) and using
linear algebra modulo two (as opposed to modulo the order of g) an integer solution to x2 ≡
y2 mod N may be found, and thus a chance to factor N by computing gcd(N, x − y). This
explains the similarity in the algorithms for factoring and computing discrete logarithms as
well as the difference between the matrices for factoring and discrete logarithms that was
pointed out in the introduction. The effect of the prime p versus the composite N , as also
mentioned in the introduction, is touched upon below and in Section 3.

Different index calculus methods vary mostly in the way the multiplicative relations are found.
This affects the way B is chosen. For prime p for instance, relations may be collected by
considering ge for random integers e and keeping those that factor over B. With B the set of
primes up to some bound b one would thus be collecting b-smooth ge-values. Faster methods
increase the smoothness probabilities by generating smaller values in {1, 2, . . . , p − 1}; select
the values in an arithmetic progression so that sieving can be used to faster recognize smooth
values; allow in relations a few large primes between b and a large prime bound b`; or they
manage to combine those speedups. Dan Gordon [14] was the first to show how for prime p
the ideas from the number field sieve for integer factorization [28] can be included as well.
Many other variants have been proposed since then; the most accurate reference for the one
used here is [35].

Relations in the number field sieve. A property of the number field sieve that sets it apart
from the earlier index calculus methods is that for a relation two distinct numbers must be
smooth (with both numbers asymptotically significantly smaller than the values considered
before). Let f and g be two coprime irreducible polynomials in Z[X] of degrees df and dg,
respectively, chosen in such a way that they have a root m in common modulo p (see Section 3

4

for how this may be done). A relation corresponds to a coprime pair of integers (a, b) with
b ≥ 0 such that the two integers Nf (a, b) = bdf f(ab) and Ng(a, b) = bdgg(ab) are smooth with
respect to appropriately chosen bounds.

This is, very briefly, explained as follows. The integer Nf (a, b) is essentially (except for the
leading coefficient of f) the norm of a − αfb ∈ Z[αf] ⊂ Q(αf), where αf denotes a zero
of f and Q(αf) is the algebraic number field Q[X]/(f(X)). The smoothness of Nf (a, b) then
implies a factorization into small prime ideals in Q(αf) of the ideal (a−αfb) (cf. [8]). Noting
that mapping αf to the common root m results in a ring homomorphism ϕf from Z[αf]
to Fp, and defining αg and ϕg in a similar manner for g, a relation (a, b) thus corresponds to
factorizations of the ideals (a− αfb) and (a− αgb) that map, via ϕf and ϕg, respectively, to
the same element a− bm ∈ Fp.

The 768-bit factorization from [21] used degrees df = 6 and dg = 1; consequently, the labels
algebraic or rational were used to distinguish values and computations related to f or g,
respectively. These intuitive labels can no longer be used here, because the primality of our
modulus (p) offers flexibility in the polynomial selection that is not available for composite
moduli and that resulted, as could be expected, in the “better” choices df = 3 and dg = 4
for the present paper. Though the f - and g-related parts here are thus both algebraic, it will
be seen that the g-part is easier to deal with, and thus, to some extent, corresponds to the
rational side in [21]. Because f and g have rather different properties, different considerations
come into play when selecting the factor bases for Nf (a, b) and Ng(a, b). The single factor
base B is therefore replaced by two distinct factor bases, denoted by Bf and Bg. For the
present purposes it may be assumed that Bf and Bg consist of the primes bounded by bf
and bg. We make no distinction between f and g for the large prime bound (which is thus
still denoted by b`, with #B` denoting the number of primes bounded by b`), but may allow
different numbers of large primes in Nf (a, b) and Ng(a, b), denoted by nf and ng.

Finding relations in the number field sieve. As each relation requires two numbers being
smooth, collecting relations is a two-stage process: in the first stage pairs (a, b) for which
Nf (a, b) is smooth are located; in the second stage, from the pairs found those for which
Ng(a, b) is smooth as well are selected. Thus, the first stage treats the numbers that are least
likely to be smooth, thereby minimizing the number of pairs to be considered for the second
stage: switching the roles of f and g would have led to more pairs to be treated in the second
stage. Depending on the factor base sizes, various methods may be used to find relations.

The search for relations is typically limited to a (large) rectangular region S of the lattice Z2.
For the first stage (and numbers in the current range of interest) index-q sublattices Lq of Z2

are identified such that q divides Nf (a, b) for all pairs (a, b) ∈ Lq and for primes q close to and
often somewhat larger than bf (these primes are referred to as special q primes). The process
described below is repeated for different special q primes until, after removal of unavoidable
duplicates, enough relations have been collected.

Given a special q prime, lattice sieving is conducted over a rectangular region Sq (which
roughly approximates Lq ∩ S), to locate (a, b) pairs for which Nf (a, b) is bf -smooth (except
for q and at most nf large primes ≤ b`). The number of “surviving” pairs thus found is denoted
by yf . If yf is large (and the pairs are not spread too widely as for instance in [9,22]), it is best
to again use lattice sieving in Sq to collect from those yf pairs the yg pairs that are actually
relations, i.e., for which Ng(a, b) is bg-smooth as well (again with at most ng large primes

5

≤ b`). This is the regular approach to the second stage, and was used in [21]. But there are
circumstances where the second stage is best done in another manner: in [22], for instance,
factorization trees (cf. [12, Section 4] and [4]) were used. This is also the approach taken here,
as further described in Section 3.

Effort required by the number field sieve. Let

E(x, c) = e

((
64
9

) 1
3

+c
)

(log x)
1
3 (log log x)

2
3

where logarithms are natural; this slight variation on a well-known and more common notation
allows us to focus on what is of greatest interest in the present context. The current best
heuristic expected effort to compute a discrete logarithm in F×p using the number field sieve
is E(p, o(1)), asymptotically for p → ∞ [14]. This is the same as the effort E(N, o(1)) (for
N →∞) to factor a compositeN using the number field sieve [8]. This “same” should, however,
be taken with a grain of salt because the o(1) hides different functions for the two cases.

Optimal factor base sizes. The smoothness probabilities, the number of relations to be col-
lected, and the dimension of the matrix handled by the linear algebra all increase with the
smoothness parameters bf , bg, b`, nf and ng. The resulting trade-off leads to optimal factor
base sizes #Bf and #Bg, namely E(p, o(1))

1
2 for discrete logarithms and E(N, o(1))

1
2 for fac-

toring. As noted above, even if [log p] = [logN], in a given model of computation the optimal
values for both factoring and discrete logarithm computation may be very different because
the two o(1)-functions behave quite differently. Moreover, in practice the situation is further
complicated because of the software and hardware actually used. Thus, naively using factor
base sizes that worked well for a factoring problem for a similarly sized prime field discrete
logarithm problem, as done in the introduction and despite the “correction” attempted there,
will at best result in a rough upper bound. Section 3 discusses this issue in more detail.

Remark on using E(x, c) in practice. The uncertain function hiding in the o(1) makes it
challenging to use E(p, o(1)) to give an absolute estimate for the effort to solve a discrete
logarithm problem in F×p . It turns out, however, that a somewhat pessimistic indication can
be obtained for the relative effort for F×p̄ compared to F×p , for p̄ not much bigger than p (say,
p̄ ≤ p

4
3), by dropping the o(1). Obviously, this assumes similar software that suffers no ill

side-effects nor profits from new optimizations when moving to the larger p̄. The same works
for factoring.

As an example, the three orders of magnitude difference between the efforts of factoring 768-
bit and 1024-bit moduli, as mentioned in the introduction, follows from E(21024,0)

E(2768,0)
≈ 1200; the

jump from 130 core years for a 596-bit prime field discrete logarithm problem to about thirty
thousand core years for 768 bits follows from E(2768,0)

E(2596,0)
≈ 275 – an extrapolation that failed to

be useful because of the reasons mentioned in the introduction.

3 Computational details

This section provides some background on our parameter choices. For comparison, we also
provide the parameters that were used for the 768-bit factoring effort from [21].

Polynomial selection. To get an initial impression of the feasibility of the calculation an exten-
sive search was conducted using the method from [18]. First all integer polynomials g of degree

6

four with coefficients absolutely bounded by 165 (and noting that g(X), g(−X), and X4g(1
X)

and thus X4g(−1
X) are equivalent) were inspected, by using, for all the roots of g modulo p,

lattice reduction to find a corresponding degree three integer polynomial f , and measuring
the overall quality of all resulting pairs (f, g) (as usual with respect to their small modular
roots and size properties). For the second search, with bound 330, roots and size properties
of g were first considered and only for the most promising candidates the roots of g modulo p
were calculated and, if any, the polynomial f was derived. The best pair was found during the
first search:

f(X) = 370863403886416141150505523919527677231932618184100095924X3

− 1937981312833038778565617469829395544065255938015920309679X2

− 217583293626947899787577441128333027617541095004734736415X
+ 277260730400349522890422618473498148528706115003337935150,

g(X) = 140X4 + 34X3 + 86X2 + 5X − 55.

Because it requires root finding modulo p, the above search does not work to find polynomials
for the number field sieve for integer factorization. There one is limited to more restrictive
methods that cannot be expected to result in polynomials of comparable “quality”, with respect
to the metric used in this context: indeed, the above pair is noticeably better than the degree
(6,1) pair used for the slightly smaller 768-bit modulus factored in [21]. A more quantitative
statement requires a more careful analysis than we are ready to provide here. No significant
amount of time was spent on searching for pairs (f, g) of other degrees than df = 3 and dg = 4.

Parameter selection background. The two main steps of the number field sieve after the poly-
nomial selection, relation collection and linear algebra, are of a very different nature. Relation
collection is long-term but low-maintenance: core years are easily harvested on any number
of otherwise idle independent cores on any number of clusters that one can get access to,
progress will be steady, and the process requires almost no human interaction. The results
can easily be checked for correctness (cf. [22, Section 6]) and results that are lost or forgotten
are easily replaced by others. Compared to this almost “happy-go-lucky” relation collection
process, the linear algebra is tedious and cumbersome, despite the elegance of the block Wiede-
mann method used for it [37,10]. It involves careful orchestration of a (modest number of)
substeps each of which requires as many tightly coupled cores as needed to store the data
(easily on the order of hundreds of GB), frequent checkpointing, and a central step that is
even more memory-demanding but otherwise fortunately relatively swift. Overall, based on
past experience core years are collected at about half the rate compared to relation collection.

For both main steps the required effort is well understood:
• Given relation collection software and any choice of smoothness parameters a small number
of experiments suffices to get an accurate indication for the effort required to collect any
specified number of relations (it follows from the description in Section 5 how this may be
done).
• Similarly, given block Wiedemann software and any matrix dimension, weight, and modulus-
size, the overall linear algebra effort can be reliably estimated based on the effort required for
a few matrix× vector multiplications on the processor network of one’s choice.

However, the relations as collected are never directly used for the linear algebra, because
doing so would be hugely inefficient. Instead, a linear algebra preprocessing step is applied to
the relations in order to reduce the dimension of the matrix while keeping its weight under
control, thereby (substantially) reducing the linear algebra effort. This preprocessing becomes

7

more effective as more relations are available (cf. Section 4) but the precise behavior of both
dimension and weight depends on how (large) primes in a relation can be matched with
the same primes in other relations and is thus uncertain. In practice one collects relations
while occasionally doing a preprocessing attempt, and stops when the resulting linear algebra
effort is within the targeted range. When to stop is a judgment call as more often than not the
additional effort invested in relation collection is more than the expected linear algebra savings:
it thus serves more to reduce the linear algebra headaches than to reduce the overall effort. As
an example, for the current 768-bit factoring record about twice the strictly necessary relation
collection effort was spent to make the linear algebra more manageable, an extra effort that
was commented on as being “well spent” (cf. [21, Introduction]). These “negative returns” are
further illustrated in Section 4.

Based on consistent past behavior of the preprocessing and given specific smoothness parame-
ters, it can be roughly estimated how many relations have to be collected for a targeted matrix
dimension and weight. Given the uncertainty alluded to above, this estimate can only be a
guess, though it is a mildly educated one. With the known behavior of the software, an overall
effort estimate assuming those specific smoothness parameters can be derived. Repeating this
for different smoothness parameters, the “best” – despite a lack of clear optimization criteria
– overall effort then follows.

Parameter selection. Our starting point was that on current equipment the linear algebra effort
for the 768-bit modulus factored in [21] would be about 75 core years. Given the similarity
of the algorithms and sizes, and using the same smoothness parameters as in [21], the overall
effort to solve our discrete logarithm problem can be estimated as 1500+767 ·75 = 59025 core
years; due to the small entries of the matrix the linear algebra effort only depends linearly
on the size of the group order. The fifty thousand core years estimate mentioned in the
introduction then follows from the expected favorable comparison of polynomials found using
the method from [18] compared to the method used in [21]; we refer to the papers involved
for an explanation of this effect.

All that is clear at this point is that attempts to lower this estimate must focus on lowering
the linear algebra effort; thus the smoothness parameters must be reduced, but by how much
and what the overall effect is going to be is unclear. Because the block Wiedemann effort is
roughly proportional to the product of the matrix dimension and weight, reducing the matrix
dimension by a factor of c while keeping the same average row-weight, cuts the linear algebra
effort by a factor of c2. Thus, given any targeted linear algebra effort a reduction factor c
for the dimension follows. Assuming that, for our problem, a thousand core years would be
acceptable for the linear algebra effort, a dimension reduction factor of about 7.6 follows,
because 767·75

7.62
≈ 1000. Compared to the parameters used in [21], such a drastic reduction

requires severely cutting the smoothness parameters and the number of special q primes one
may use. This in turn entails a more than proportional increase in the search space and thus
a substantial increase in the overall relation collection effort compared to the 1500 core years
spent in [21]. A priori, however, and as argued above, the effect of any of the changes that one
may wish to consider cannot be accurately predicted.

While conducting experiments with a 640-bit example to better understand the increase in
the relation collection effort depending on various possible combinations of smaller smooth-
ness parameters and larger search spaces, we observed a mildly beneficial side-effect which –
once observed – is obvious, but which was unanticipated: in the notation of Section 2, if Bf

8

decreases, the number yf of bf -smooth norms Nf (a, b) becomes smaller too, at a given point to
an extent that it becomes more efficient to replace sieving for the second search stage (as used
in [21]) by factorization trees. For the 640-bit example the effect was still small, i.e., yf was
still relatively large. But for our 768-bit prime the impact soon turned out to be considerable,
almost halving the (inflated, compared to [21]) relation collection effort.

The resulting “best” parameters that we settled for are listed in Table 1 (though for some
special q primes larger factor bases were used), along with the parameters used in [21] for the
768-bit number field sieve factorization. The clear difference is that the choices for 768-bit
factoring were optimized for speed during relation collection (collecting relations until the
after-preprocessing matrix dimension and weight were found to be acceptable), whereas our
choices try to squeeze as many relations as possible out of every special q prime under a
relatively restrictive smoothness regime. Compared to [21], #Bf is reduced by a factor of a
bit more than two, the number of special q primes is reduced by a factor of more than twenty,
the number of large primes per relation is cut from 4 + 3 to 2 + 2 with a large prime bound
that is reduced by a factor of 24 from 240 to 236, while #Bg remains unchanged and the
search space is on average (forced to be) more than 28 times larger. As a result the number
of relations per core unit of time drops by a factor of about sixteen compared to [21].

The first preprocessing attempt that resulted in the hoped-for matrix dimension and weight
occurred when 1.09e10 relations had been collected, i.e., about six times fewer relations than
in [21]. The resulting overall relation collection effort thus became 16

6 ·1500 = 4000 core years.
With 920 core years the linear algebra effort was close to but less than the thousand core years
that we had hoped to achieve. A much smaller set of relations would in principle have sufficed
too, but it would have resulted in a larger linear algebra effort; Section 4 below describes the
trade-off in more detail.

Some of the details in Table 1 are listed for completeness; for explanations we refer to [21]. Like
most of our computational number theory colleagues, we missed the fact (which apparently
had not escaped numerical analysts) that the evaluation stage of the block Wiedemann method
can be sped up considerably using Horner’s rule [13]; it would have reduced our overall effort
to approximately 5000 core years.

Database. The linear algebra step resulted in the (virtual) logarithms of 24 million prime ideals.
Spending less than 200 core years for additional sieving and further processing, a database
was built containing the about 3e9 logarithms of all prime ideals of norms up to 235.

Individual logarithms. Using the database and q-descent, the logarithm of the target t from
the introduction was computed in approximately 115 core hours. Similar computations for
t+ 1, t+ 2, . . . , t+ 10 took on average about 96 core hours per logarithm.

With improved software any individual logarithm can now be computed at an average effort
of 43 core hours (and a rather large variation, cf. Table 1). Further software enhancements
are easily conceivable, but this already insignificant effort underscores the point made in
the introduction that once a single number field sieve based attack has been carried out
successfully, other attacks against the same prime field are straightforward.

9

Table 1: Comparison of 768-bit factoring and computing 768-bit prime field discrete logarithms.
768-bit factorization from [21] 768-bit discrete logarithm

polynomial selection 2005 and 2007 2015:02:14 – 2015:05:04

more than 2e18 pairs
(f, g) were considered, |gmax| ≤ 165

{
all 5.9e11 g-candidates
110 core years

spending 40 core years
(20 in 2005 and 20 in 2007) |gmax| ≤ 333

{
best 2e13 g-candidates
90 core years

df , dg 6, 1 3, 4

relation collection 2007:08 – 2009:04 2015:05:04 – 2015:12:13

method lattice sieving for both f and g lattice sieving for f (> 98% of effort)
factorization tree for g (< 2% of effort)

smoothness bounds
≥ 2GBRAM

{
bf = min(q, 1.1e9) bg = 2e8
#Bf = 5.6e7 #Bg = 1.1e7

{
bf = min(q, 4.4e8) bg = 2e8
#Bf = 2.3e7 #Bg = 1.1e7

< 2GBRAM
{
bf = 4.5e8 bg = 1e8
#Bf = 2.4e7 #Bg = 5.8e6

large primes parameters b` = 240(#B` = 4.1e10), nf = 4, ng = 3 b` = 236(#B` = 2.9e9), nf = 2, ng = 2

240

1.9e8 < q < 3e8
5.7e6
≈ 8750 seconds
(7.9e5, 590)

#Sq

bounds on q
#q
time per q
(yf , yg) per q

231

4.5e8 < q < 1.1e10
4.8e8
< 100 seconds
((yf large and irrelevant), 134)

239

3e8 < q < 6e8
1.5e7
≈ 4950 seconds
(7.3e5, 480)

totals:

238

6e8 < q < 6.3e8
1.5e6
≈ 2550 seconds
(4.6e5, 300)

number of special q primes 4.8e8 2.2e7

yield

with duplicates & unfactored
unique & factored
free relations

64 334 489 730
47 705 019 942

57 223 462

10 802 334 123†

9 060 739 382
19 967 617

effort ≈ 1500 core years ≈ 4000 core years

linear algebra preprocessing

duplicate & singleton removal 2009:05 2015:08:11 – 2015:12:20
filtering 2009:06 2015:12:21 – 2015:12:25

result

dimensions
weight
average non-zeros per row

192 796 550× 192 795 550
27 797 115 920 “one” bits

144

23 504 483× 23 504 413
3 140 911 353 entries of 767 bits

134
effort a few core years a few core years

linear algebra

block Wiedemann parameters m = 16× 64, n = 8× 64 m = 32, n = 16

scalar products

 2009:08:10 – 2009:11:03
8 independent sequences
43 core years (current cluster)

 2015:12:28 – 2016:03:23
16 independent sequences
560 core years

Berlekamp-Massey

2009:11:03
17.3 hours on 224 of 672 cores
896GB RAM
0.5(+1 idle) core years (old cluster)

2016:04:03 – 2016:04:04
33.85 hours on 256 of 4096 cores
8TB RAM
1(+15 idle) core years

evaluation

 2009:11:05 – 2009:12:09
many independent jobs
30 core years (current cluster)

 2016:04:05 – 2016:05:18
480 independent jobs
about 355 core years

effort 75 core years (current cluster) 920 core years

final calculation 2009:12:07 – 2009:12:12 2016:05:18 – 2016:06:16
20 core hours

per square root attempt
200 core years to build database;
43 core hours on average (was 100)
per individual logarithm, varying
between 3 and 220 core hours†: this excludes about 1e8 forgotten relations

10

4 Trade-off

During relation collection occasional preprocessing attempts were made, until the resulting
matrix was found to be acceptable. Data about the non-final attempts were not kept, so for
the purpose of the present paper part of this work was redone to be able to give an impression
how the linear algebra effort decreases as more relations become available.

Table 2 summarizes the results of these “after the fact” preprocessing attempts of the sets
of relations found for special q primes up to increasing bounds bq, along with the resulting
extrapolations of the block Wiedemann efforts (not using Horner’s rule for the evaluation
stage). Estimates are also listed for the effort required for a discrete logarithm problem in a
160-bit subgroup of the multiplicative group of a 768-bit prime field. For each set of relations
up to five preprocessing attempts were made, and the best was selected depending on the
subgroup size; this explains why for five of the 160-bit subgroup entries the matrix dimension
and weight are different from those in the 767-bit subgroup entry. The last two rows show the
effect of the 1e8 forgotten relations (cf. Table 1): including those and spending more time on
constructing the matrix could have reduced the matrix effort by 20 (or 5) core years.

Table 2: Relation collection effort, matrix dimension and weight as a result of preprocessing, estimated linear
algebra effort, and the combined effort (all efforts are in core years), when using special q primes up to bq
and both for 767-bit and 160-bit subgroup orders. The overshoot factor is the ratio of the number of relations
and the number of relations for the least bq (2.8e8) for which enough relations had been found. Relations are
unique and factored and include the free relations.

relation collection 767-bit subgroup order (our problem) 160-bit subgroup order

bq
relation effort overshoot dimension nodes matrix combined dimension nodes matrix combined
count factor and weight effort effort and weight effort effort

2.70e8 2.33e9 insufficient
2.80e8 2.58e9 1300 1.000 5.62e7 9.5e9 25 6575 7875 5.62e7 9.5e9 9 1780 3080
3.06e8 3.24e9 1625 1.255 3.27e7 6.2e9 12 2095 3720 4.00e7 4.7e9 4 500 2125
3.35e8 3.90e9 1850 1.508 2.96e7 4.5e9 9 1420 3270 2.96e7 4.5e9 4 325 2175
3.67e8 4.52e9 2100 1.751 2.62e7 4.4e9 9 1120 3220 2.76e7 3.9e9 4 270 2370
4.03e8 5.15e9 2400 1.995 2.47e7 4.2e9 9 1000 3400 2.57e7 3.8e9 4 240 2640
4.75e8 6.50e9 2975 2.516 2.36e7 3.7e9 9 870 3845 2.48e7 3.3e9 4 210 3185
5.37e8 7.74e9 3475 2.997 2.41e7 3.1e9 6 790 4265 2.41e7 3.1e9 4 190 3665
6.30e8 9.15e9 4000 3.542 2.17e7 3.6e9 6 740 4740 2.08e7 4.0e9 4 180 4180
(used) 9.08e9 4000 3.515 2.35e7 3.1e9 6 760 4760 2.35e7 3.1e9 4 185 4185

The difference between the linear algebra estimate in the last row for the matrix as actually
used and the effort listed in Table 1 is due to a lower number of nodes on which the experiment
was run: for a full execution it would lower the linear algebra effort, but increase the calendar
time. The effort required for polynomial selection and individual logarithms is independent of
the bq-value, and is not included in the “combined effort”. The database building effort may
be up to three times larger for the smallest feasible bq-value, but is not included either.

The numbers in the “combined effort” columns of Table 2 illustrate the negative returns men-
tioned in Section 3: with more patience to deal with a larger linear algebra problem (that
would have required disproportionally more calendar time), our overall effort could have been
reduced from 5300 to less than 4000 core years. As in [21], the additional relation collection
effort was well spent, because a large block Wiedemann job requires constant attention and
any way to reduce the calendar time is welcome.

Note that for the smaller subgroup problem the overall least effort is reduced by a factor
smaller than two.

11

5 Other prime fields

To convince ourselves that our results were not due to unexpected, lucky properties of our
choice of prime field, we tested ten other similarly chosen 768-bit primes and roughly compared
them to our p with respect to their sieving yield. Define the following eleven transcendental
or supposed-to-be transcendental numbers:

ρ0 = π;
ρ1 = e, Euler’s number;
ρ2 = γ, the Euler-Mascheroni constant;

ρ3 =
√

2
√

2;
ρ4 = ζ(3), where ζ is the Riemann zeta function;
ρ5 = log(1+

√
5

2), the regulator of the “smallest” real quadratic number field;
ρ6 = ΩX0(11), the real period of the “smallest” elliptic curve, namely X0(11)

given by y2 + y = x3 − x2 − 10x− 20;
ρ7 = ĥX0(37)(P37), the canonical height of a generator P37 = (0, 0) of the “smallest” elliptic

curve of rank 1, namely X0(37) given by y2 + y = x3 − x;
ρ8 = t0, the imaginary part of the first zero 1

2 + t0i on the critical strip of ζ;
ρ9 = πe;
ρ10 =

∑∞
i=1 10−i!, Liouville’s constant.

For 0 ≤ i ≤ 10 let εi = 767 − [log ρi
log 2] and let pi be the least prime larger than 2εiρi for which

pi−1
2 is prime as well. Then p0 = p. Let πj be the number of primes in [j · 1e7, (j + 1) · 1e7];

for 19 ≤ j ≤ 62 these intervals cover our range of special q primes (cf. Table 1).

For each of the eleven primes pi with 0 ≤ i ≤ 10 the following calculation was carried out:
Polynomial selection. Find the best pair (fi, gi) for pi among the first 5e9 candidate polyno-
mials for gi. (This requires about one core year.)
Sieving experiments. For 19 ≤ j ≤ 62 find the number rj of relations when sieving with the
parameters as in Table 1 but with the polynomials fi and gi and the prime pi and for the least
special q prime larger than j · 1e7 + 5e6. (This requires less than four core days, cf. Table 1.)
Overall yield estimate. Let Ri =

∑62
j=19 πjrj .

Table 3: Relative performance of p = p0 compared to ten other choices.
p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

pi/p0 1.000 0.865 0.735 1.039 0.765 1.225 0.808 1.041 1.125 0.894 1.120
Ri/R 0.844 0.821 0.847 0.820 0.864 0.800 0.795 0.884 0.848 0.798 0.823
Ri/R0 1.000 0.973 1.004 0.972 1.024 0.948 0.942 1.048 1.005 0.946 0.975

We also carried out the same sieving experiments for the polynomial pair (f, g) from Section 3
and p = p0, finding an overall yield estimate R = 1.02e10. This is less than the 1.09e10
relations reported in Table 1, because there some of the sieving jobs used a larger factor base
bound than reported in Table 1, thus producing more duplicates. But it is more than R0

(which was found to be 8.6e9), matching the expectation that (f, g) is considerably better
than (f0, g0). Table 3 lists the relative performance of our p compared to the ten new choices:
as can be seen in the final row, four of the ten perform better and six are worse, but they
are all within a 6% margin from p. It also follows that the core years spent on polynomial
selection for our p were well spent.

12

Although our tests counter suspicions about p being special, it may be argued that in practice
primes used in cryptography would be chosen with high entropy [5]. Testing a few “random”
primes as well might strengthen our argument. It is unclear to us, however, how such primes
may be obtained in a manner that is sufficiently convincing to any suspicious reader, without
input from that reader [32].

6 Conclusion

We presented the computation of a discrete logarithm in the multiplicative group of a 768-
bit prime field. This is a new record in its category, beating the previous 596-bit record. We
showed the beneficial effect of judicious choice of parameters and algorithms, and highlighted
the differences with integer factorization. Based on our findings we may conclude that for sizes
that are currently within reach of an academic effort, the hardness of factoring and computing
prime field discrete logarithms is comparable, though discrete logarithms are harder. Although
this was always suspected to be the case, the gap between the two problems is quite a bit
smaller than we expected. Compared to the 768-bit factoring record (which required 1700 core
years as opposed to our 5300 core years) we used less calendar time and a smaller collaborative
and less heterogeneous effort [23]. We also conclude that the explicit 1024-bit estimates from [2,
Section 4.1] should be redone, as they require not entirely straightforward re-optimization
efforts.

Unless algorithmic improvements are proposed or new insights may be expected, pushing
for actual new factoring or prime field discrete logarithm records – as opposed to studies that
result in reliable estimates – is mostly a waste of energy. We are not aware of any developments
based on which we could realistically expect publication of a 1024-bit record within the next,
say, five years. As usual, this may change at any moment, but so far the predictions made
back in 2009 (cf. [6]) have already turned out to be accurate, or remain valid. In this context
it is relevant to note that the project embarked on in [3] is still ongoing.

Acknowledgements. We thank Rob Granger and the anonymous Eurocrypt 2017 reviewers
for their useful comments. Part of the computation was carried out on equipment sponsored
by the Swiss National Science Foundation under grant number 206021-144981.

References

1. L. Adleman. A subexponential algorithm for the discrete logarithm problem with applications to cryptog-
raphy. In FOCS, pages 55–60, 1979.

2. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann. Imper-
fect forward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM Conference on Computer and
Communications Security, Oct. 2015.

3. D. V. Bailey, B. Baldwin, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, G. van Damme, G. de Meu-
lenaer, J. Fan, T. Güneysu, F. Gurkaynak, T. Kleinjung, T. Lange, N. Mentens, C. Paar, F. Regazzoni,
P. Schwabe, and L. Uhsadel. The Certicom challenges ECC2-X. Special-purpose Hardware for Attacking
Cryptographic Systems – SHARCS 2009, 2009. http://www.hyperelliptic.org/tanja/SHARCS/record2.
pdf.

4. D. J. Bernstein. How to find small factors of integers. http://cr.yp.to/papers.html, june 2002.
5. D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange, R. Niederhagen, and C. van Vre-

dendaal. How to manipulate curve standards: a white paper for the black hat. Cryptology ePrint Archive,
Report 2014/571, 2014. http://eprint.iacr.org/2014/571.

13

6. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. On the security of
1024-bit RSA and 160-bit elliptic curve cryptography. Cryptology ePrint Archive, Report 2009/389, 2009.
http://eprint.iacr.org/.

7. C. Bouvier, P. Gaudry, L. Imbert, H. Jeljeli, and E. Thomé. Discrete logarithms in GF(p) – 180 digits.
NMBRTHRY list, 11/6/2014.

8. J. P. Buhler, H. W. Lenstra Jr., and C. Pomerance. Factoring integers with the number field sieve. pages
50–94 in [28], 1992.

9. D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology, 6(3):169–180, 1993.
10. D. Coppersmith. Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm.

Mathematics of Computation, 62(205):333–350, 1994.
11. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. Blakley

and D. Chaum, editors, Crypto 1984, volume 196 of Lecture Notes in Computer Science, pages 10–18.
Springer, Heidelberg, 1985.

12. J. Franke, T. Kleinjung, F. Morain, and T. Wirth. Proving the primality of very large numbers with
fastECPP. In D. A. Buell, editor, Algorithmic Number Theory – ANTS-VI, volume 3076 of Lecture Notes
in Computer Science, pages 194–207. Springer, Heidelberg, 2004.

13. P. Gaudry, September 2016. Private communication: A nice trick by Emmanuel Thomé.
14. D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM Journal on Discrete

Mathematics, 6:124–138, 1993.
15. R. Granger, T. Kleinjung, and J. Zumbrägel. Discrete Logarithms in GF (29234). NMBRTHRY list,

31/1/2014.
16. IETF. RFC 2409. https://tools.ietf.org/html/rfc2409, November 1998.
17. IETF. RFC 4306. https://tools.ietf.org/html/rfc4306, December 2005.
18. A. Joux and R. Lercier. Improvements to the general number field sieve for discrete logarithms in prime

fields. A comparison with the Gaussian integer method. Mathematics of Computation, 72(242):953–967
(electronic), 2003.

19. A. Joux and C. Pierrot. Improving the Polynomial time Precomputation of Frobenius Representation
Discrete Logarithm Algorithms, pages 378–397. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

20. T. Kleinjung. Discrete logarithms in GF(21279). NMBRTHRY list, 17/10/2014.
21. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L.

Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zimmermann. Factorization of a 768-bit RSA
modulus. In T. Rabin, editor, Crypto 2010, volume 6223 of Lecture Notes in Computer Science, pages
333–350. Springer, Heidelberg, 2010.

22. T. Kleinjung, J. W. Bos, and A. K. Lenstra. Mersenne factorization factory. In Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 358–
377, 2014.

23. T. Kleinjung, J. W. Bos, A. K. Lenstra, D. A. Osvik, K. Aoki, S. Contini, J. Franke, E. Thomé, P. Jermini,
M. Thiémard, P. Leyland, P. L. Montgomery, A. Timofeev, and H. Stockinger. A heterogeneous computing
environment to solve the 768-bit RSA challenge. Cluster Computing, (15):53–68, 2012.

24. M. Kraitchik. Théorie des nombres, Tome I. Gauthiers-Villars, Paris, 1922.
25. M. Kraitchik. Recherches sur le théorie des nombres, Tome I. Gauthiers-Villars, Paris, 1924.
26. A. K. Lenstra. Unbelievable security: Matching AES security using public key systems. In C. Boyd, editor,

ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 67–86. Springer, Heidelberg,
2001.

27. A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron was wrong, Whit
is right. Cryptology ePrint Archive, Report 2012/064, 2012. http://eprint.iacr.org/2012/064.

28. A. K. Lenstra and H. W. Lenstra Jr. The Development of the Number Field Sieve, volume 1554 of Lecture
Notes in Mathematics. Springer-Verlag, 1993.

29. A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The factorization of the ninth Fermat
number. Mathematics of Computation, 61(203):319–349, 1993.

30. A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. In J.-J. Quisquater and J. Vandewalle,
editors, EUROCRYPT 1989, volume 434 of Lecture Notes in Computer Science, pages 355–371. Springer,
Heidelberg, 1990.

31. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology, 14(4):255–293,
2001.

32. A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive,
Report 2015/366, 2015. http://eprint.iacr.org/2015/366, to appear in the International Journal of
Applied Cryptology as Trustworthy public randomness with sloth, unicorn, and trx.

14

33. C. Pomerance. A tale of two sieves. Notices of the AMS, 43(12):1473–1485, December 1996.
34. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signature and public-key

cryptosystems. Communications of the Association for Computing Machinery, 21(2):120–126, 1978.
35. O. Schirokauer. Virtual logarithms. J. Algorithms, 57(2):140–147, 2005.
36. U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Stan-

dard (DSS). FIPS-186-4, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.
37. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information

Theory, 32:54–62, 1986.

15

