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1 Introduction

Authenticated Encryption (AE) has arisen out of (practical) necessity: historic modes-of-operation for
symmetric encryption [40] implicitly target confidentiality against passive adversaries. However, in most
realistic threat models security against active adversaries is desired as well. Thwarting adversaries trying
to modify ciphertexts is best captured by requiring ciphertext integrity; encryption schemes that offer
both this and a suitable passive indistinguishability notion are said to provide authenticated encryption.
Today, authenticated encryption has become the primitive of choice to enable secure communication.
AE schemes can be constructed from components that individually provide either confidentiality or
authenticity, both in a traditional probabilistic setting [8] and a more modern nonce-based one [38]. As a
result, there exist several black-box constructions of authenticated encryption schemes based on simpler,
keyed primitives such as pseudorandom functions or permutations, including MACs and blockciphers.

Unfortunately, in practice neither the composition nor the underlying components behave as black-
boxes: side-channel attacks often leak additional information to an adversary, leading to real-life breaks [56].
Invariably, these attacks are possible by exploiting a discrepancy between the capabilities of a theoretical
adversary and an actual, real-life one. Thus, these attacks neither violate the security assumptions on the
primitive nor do they invalidate the security claims: rather, they render these claims insufficient and the
existing security models as inadequate.

In response, a number of works have tried to capture more closely how protocols behave when
implemented [13, 19, 23]. We are particularly interested in subtle authenticated encryption [4] which
augments the authenticated encryption security game with an implementation-dependent leakage oracle
that provides an adversary deterministic decryption leakage on invalid ciphertexts only. Subtle authenti-
cated encryption encompasses earlier notions such as multiple decryption errors [12] and the release of
unverified plaintexts [2]; it can be regarded as protocol leakage.

Orthogonally, primitives can leak. Kocher (et al.) [28, 29] showed how both timing and power mea-
surements lead to a side-channel, enabling the extraction of secret data out of cryptographic devices.
Primitives believed to be secure, such as AES, were broken without actually violating the assumption
that AES is a secure pseudorandom permutation. Such attacks are captured in the framework of leakage
resilient cryptography. Here an adversary can adaptively choose a leakage function that is restricted in
scope as only computation is assumed to leak information [37], and in size. The latter is captured by
leaking only a certain number of bits per call. If the overall leakage remains unbounded the model is
referred to as continuous leakage. For a variety of schemes and security notions, resilience against cer-
tain classes of leakage can be proven [15, 27, 54], but dealing with adaptivity that allows leakage after
an adversary has received a challenge is often problematic.

The current theory of authenticated encryption is not suited to take this additional leakage resource
into account. In this work we provide a framework for dealing with AE in the presence of leakage, which
then allows us to determine the constraints on primitives and constructions alike to yield AE secure
against classes of leakage functions. Moreover, we propose a concrete instantiation of a leakage-resilient
pseudorandom function suitable to be used to form the first leakage-resilient, nonce-based authenticated
encryption scheme.

1.1 Our contributions

Augmenting nonce-base authenticated encryption with leakage. We start with augmenting the nonce-
based authenticated encryption security notion (Section 2.1) with leakage (Section 3). This new notion,
which we will refer to as LAE, can be regarded as a generalization of the SAE framework by Barwell
et al. [4], yet it also captures leakage-resilience as introduced by Dziembowski and Pietrzak [17]. We
provide corresponding leakage notions for the primitives used by the composition results by Namprem-
pre et al. [38] (NRS), namely nonce- or iv-based encryption, pseudorandom functions, and message
authentication codes.

For the traditional AE notion by Rogaway and Shrimpton [49], an adversary has to distinguish
between a world with a real encryption and decryption oracle on the one hand, and a world with a
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random ciphertext generator and a rejection oracle on the other. In the LAE game the number of oracles
available to the adversary increased from two to four: both worlds are augmented with true encryption
and decryption oracles and we will allow (only) these additional oracles to leak.

For the leakage mechanism, we adopt the approach originally suggested by Micali and Reyzin [37]
and later adapted for leakage resilience [17] where an adversary can provide a leakage function to be
evaluated on the internal variables of the oracle, with the leakage output to be returned to the adversary
alongside the normal output. The model is very powerful, allowing the adversary to adaptively choose
which leakage function they would like evaluated on a query by query basis.

To avoid trivial wins, the leakage functions that are allowed need to be restricted, to prevent, for
instance, leaking the entire key in one go. We model this by explicitly defining security relative to a
class of leakage functions (as is common for instance in the contexts for related key or key-dependent
message attacks). By appropriately setting the class of leakage functions, we show that our notion gen-
eralises previous strengthened AE security notions, including SAE, RUP and distinguishable decryption
errors [2, 4, 12], and previous leakage notions, including the simulatable leakage, auxiliary input and
probing models [15, 24, 54].

Generic composition with leakage. Our second contribution (Section 5) is an investigation on how
to perform generic composition in the presence of leakage by extending the results of Namprempre
et al. [38] (henceforth NRS). We establish that schemes susceptible to release of unverified plaintext are
unsuitable even for much more modest types of leakage and we confirm modern folklore that this affects
all schemes that are roughly of the type Encrypt-and-MAC or MAC-then-Encrypt (cf. [2]). Conversely,
we show that Encrypt-then-MAC style schemes are secure against a large class of leakage functions,
where we express this class in terms of the leakage classes against which the underlying primitives are
secure. For this composition of leakage from different primitives, we effectively just concatenate the
leakage of the constituent parts, which implicitly assumes that only computation leaks (cf. [37]).

In particular, we show security of the N2 and A5 constructions of NRS against nonce-respecting
adversaries (Theorems 1 and 3), and of A6 against adversaries who never repeat a nonce and associated-
data pair (Theorem 4).

While the above result shows that none of the NRS schemes achieve misuse resistant LAE security,
we go on to give a generic construction that does meet this strongest definition of security, albeit at
the cost of further ciphertext expansion (Theorem 5). Our result gives ciphertexts that are two blocks
longer than the messages, we leave open whether mrlAE security can be achieved with less ciphertext
expansion.

Moreover, we show that instantiating CFB mode with a pseudorandom function yields a secure
iv-based encryption scheme even under leakage (Theorem 10). This allows us to apply our generic com-
position results to construct the first AE scheme secure against continuous leakage based on a pseudoran-
dom function actively secure against continuous leakage and a MAC scheme secure against continuous
leakage of both tagging and verification.

Instantiation using a new leakage resilient PRF. Our final contribution (Appendix B) is the construc-
tion of these latter two primitives. To this end, we extend the MAC of Martin et al. [34] in two directions.
First, we show how it can be adapted such that it may leak under verification (Theorem 9) answering an
open question from their work. While the MAC is a pseudorandom function when no leakage is present,
already small amounts of leakage are disastrous for the pseudorandomness property. It turns out that the
underlying key update mechanism due to Kiltz and Pietrzak [27] is intrinsically unsuitable to create an
actively secure pseudorandom function: the mechanism shares a key out in two which allows a form of
leak-in-the-middle attack. The solution we propose is to use three shares instead and we prove that the
resulting construction is indeed a pseudorandom function that is leakage-resilient even against adaptive
adversaries.
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1.2 Structure

In Section 2 we give our notation, and recall a host of security definitions without leakage. The reason
for the depth within this section is due to our definitions having a slightly different representation from
what is “standard”. Taking AE as an example, the adversary will have access to honest encryption and
decryption oracles, as well as challenge oracles for both functionalities. It is fairly straightforward to
show that the two definitions are equivalent. However, the more expressive definition will later become
important, when we will enhance the honest oracle to also provide leakage. If the reader is familiar with
these notions, the section may be skipped and referred back to as required.

Section 3 provides security definitions when the adversary is also allowed leakage from the com-
putation of a function. Before we can do this we formalise the distinction between a function and its
implementation. When leakage is involved we will discuss the security of a given implementation. An
implementation will be shown secure against particular classes of leakage functions which are also dis-
cussed here.

Section 4 demonstrates how our new leakage resilient framework using classes of leakage functions
captures a whole host of previous security models which involve some form of leakage. We also express
some recent attacks in terms of our model.

Section 5 considers general composition, of leakage resilient primitives, to construct leakage resilient
authenticated encryption. We consider the MAC-then-Encrypt, MAC-and-Encrypt and Encrypt-then-
MAC paradigms and demonstrate which compositions maintain security when leakage is allowed. The
section is concluded with a new generic composition which allows the construction of an authenticated
encryption scheme which is both leakage resilient and misuse resistant. An instantiation of the scheme
is touched upon, with the details being given in Appendix B.

1.3 Related work

Authenticated encryption. One of the earliest symmetric works on concrete security of AE was by Bel-
lare and Namprempre [8]. Working within the probabilistic model, they formalised what it meant to be
both confidential and authentic, and investigated how one could achieve this through generic compo-
sition, combining two schemes (one with each security property) such that their composition achieved
both. Yet, modern authenticated encryption is a stateless and deterministic notion, taking in any ran-
domness or state as an extra parameter termed the nonce. It was formalised across a number of papers,
culminating in Rogaway and Shrimpton’s 2006 work on DAE [49] and only recently a comprehensive
study of all the ways one could combine a PRF with an encryption scheme was completed in the nonce-
based setting [38].

The CAESAR competition [10] has driven further research into AE, and particularly into the concept
of robustness, namely the idea that a scheme should be more resistant to common problems faced in
the real-world. One branch of this research has been into designing schemes that are resistant to certain
forms of leakage. Prior to the competition, Boldyreva et al. [12] had investigated how to model a scheme
from which decryption failures are not identical, such as under a timing attack. Andreeva et al. [2] (RUP)
considered the release of unverified plaintexts, where the decryption oracle releases candidate plaintexts
even if they fail verification. The robust authenticated encryption notion of Hoang et al. [23] also implies
security against the leakage of these candidate plaintexts, among other goals. Barwell et al. [4] defined
the SAE framework as a generalisation of these notions, and used it to compare the three previous works.
However, in each of these cases the adversary only receives leakage from decryption, and this leakage
is modelled as a fixed, deterministic function, rather than a more general set of functions available to an
adaptive side-channel attacker.

Leakage resilient constructions. Within the leakage resilient literature, there are several works to-
wards providing leakage resilient encryption, but most of them have been in the bounded leakage
model [22, 44]. In the bounded retrieval model, Bellare et al. [7] proved the security of a symmetric
encryption scheme that provides authenticated encryption in the leak free case, and indistinguishability
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when leakage is involved. Pereira et al. [41] proposed what is, to our knowledge, the first and only leak-
age resilient encryption scheme in the simulatable leakage model. However, the construction requires a
leak free component, and work by Longo et al. [31] shows that there are currently no efficient simulators.

Another manner to ensure that the adversary can not progressively leak the key material is to update
the keys themselves (instead of their representation). Previous leakage resilient works in this direction
include the MAC of Schipper [51], or the DH-ratcheting concept (e.g. [42]). However, these tend to re-
quire that all parties to the communication hold modifiable state and remain perfectly in sync, a demand
we are able to avoid.

Each of these existing models severely restricts the information or computations that an adversary
may be able to perform, limiting their utility for modelling active side-channel attacks, problems miti-
gated by the continuous leakage model, on which we will focus. To our knowledge there are no leakage
resilient encryption schemes in the continuous leakage model.

Our generic composition results allow us to combine leakage resilient components, for which we
provide candidates built around a PRF secure against leakage. Currently there are two leakage resilient
PRGs, due to Pietrzak (and Dziembowski) [17, 43], from which it may be possible to build a leakage
resilient stream cipher, although issues arise with restarting using the same key. Works of Dodis and
Pietrzak [16], and Faust et al. [18] describe two PRFs secure under leakage. However, each requires that
the leakage (and inputs) be fixed before the start of the game. For a PRF to be used within a composition
theorem, adaptive security is required. Finally, Martin et al. [34] provide a MAC which is secure against
leakage on the tagging function only. We will use this as the basis of our instantiations, and extend it to
achieve security against leakage on verification queries, resolving an open question from their work.

2 Preliminaries

General notation. For assignment of a value U to the variable T we will write T ←U , where U may
also be the outcome of some computation. If the variable is a set, we use the shorthand S ←∪ U for
S←S ∪ {U}. To assign a value drawn uniformly at random from some finite set B to variable A, we
write A ←$ B. By convention, arrays and lists are initialised empty. We use = for equality testing. We
write A → b, to denote that adversary A outputs some value b. To define notions etc. we will write
X : =Y to say that X is defined as some expression Y . The distinguished symbol E denotes an invalid
query. The symbol || denotes an unambiguous encoding, meaning if Z←X||Y it must be possible given
Z to uniquely recover X and Y , notated X||Y ←Z, no matter what types X,Y may take. The length
|A| is the length of A when expressed as a string of elements of some underlying alphabet Σ (usually
Σ = {0, 1}).

Whenever a function is described with a subscript, this will define the first parameter, meaning
fk(·, ·) = f(k, ·, ·). For consistency and clarity of notation, we refer to security definitions in capitals
(e.g. IND–CPA) and typeset functions in calligraphic (E), spaces in sans serif (K), “secret” elements in
lower case (k), known elements in upper case (M ), and adversaries in blackboard bold (A). When we
introduce implementations, these will be denoted in bold (E).

Adversarial advantages. We will define our security notions through indistinguishability games where
an adversary is given access to one of two collections of oracles. The adversary A may make queries
to these oracles, and eventually outputs a bit. Instead of writing the games in code, we adopt shorthand
notation [2] so that the distinguishing advantage of A between two collections of n oracles (O1, . . . ,On)
and (P1, . . . ,Pn) is defined as

∆
A

(O1, . . . ,OnP1, . . . ,Pn
)
: =
∣∣Pr
[
AO1,...,On → 1

]
− Pr

[
AP1,...,Pn → 1

]∣∣ ,

where the probabilities are taken over the randomness of the oracles, and key k ←$ K (note that multiple
oracles will often use the same key). We may refer to the oracles by their numerical position: the ith

oracle implements either Oi or Pi depending which collection the adversary is interacting with.
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A scheme is considered secure with respect to a particular security goal if the relevant adversarial
advantage is small for all adversaries running within reasonable resources. We do not draw judgement as
to what “small” may mean, nor what constitutes “reasonable resources”, since these as heavily dependent
on context.

2.1 Authenticated Encryption

Core definitions. Early works on defining what entails symmetric encryption (cf. [25]) closely fol-
lowed the earlier formalisms for public key encryption. Over the years understanding of what should
be expected of symmetric encryption evolved considerably, both in terms of syntax and security. The
basis for our work will be the widely accepted nonce-based model using indistinguishability from ran-
dom bits for confidentiality [46–48]. After introducing this model, we will briefly refer back to an older,
non-authenticated version of encryption as it is one of the building blocks later on.

Syntax. An authenticated encryption scheme consists of a pair of deterministic functions Enc and Dec,
called encryption and decryption, respectively. Encryption Enc takes four inputs, resulting in a single
ciphertext C ∈ C. Besides the key k ∈ K and the message M ∈ M, the inputs are some associated
data A ∈ A that will be authenticated but not encrypted, and finally a nonce N ∈ N that will be used to
ensure that repeat encryptions will not result in repeat ciphertexts. Decryption Dec takes as input again
the key, the nonce, and the associated date, in addition to the ciphertext. It outputs a purported message
or an error message ⊥6∈ M.

This syntax can be summarized as

Enc : K× N× A×M→ C

Dec : K× N× A× C→ M ∪ {⊥} .

In practice, the key space K, nonce space N, associated data A, message space M, and ciphertext space
C are bitstrings of various lengths. It is common to have A = M = C = {0, 1}∗, and K = N = {0, 1}n
for some security parameter n. That said, our implementation in Section B is given with respect to more
general groups (linked to pairings) to instantiate the various spaces.

We require that an authenticated encryption scheme is both correct and tidy. These two properties
are satisfied if, for all k,N,A,M,C in the appropriate spaces:

Correctness : Dec(k,N,A,Enc(k,N,A,M)) =M
Tidiness : if Dec(k,N,A,C) 6=⊥ then Enc(k,N,A,Dec(k,N,A,C)) = C

Together, tidiness and correctness imply that decryption is wholly specified by the encryption routine.
Additionally, we require encryption to be length regular, which is satisfied if there exists some

stretch function τ : N→ N such that for all inputs |Enc(k,N,A,M)| = |M |+ τ(|M |).

Security notions. Ever since Rogaway and Shrimpton’s treatment of deterministic authenticated encryp-
tion, it is customary to capture both confidentiality and integrity requirements in a single game. Here the
adversary gets oracle access either to the “real” world or to the “ideal” world and needs to distinguish
between these two worlds. In the real world, oracle access consists of the encryption and decryption
functionalities Enck and Deck, using a randomly drawn and secret key k. In the ideal world, the encryp-
tion oracle is replaced with an oracle $ that generates randomly drawn ciphertexts and the decryption
oracle with an oracle ⊥ that rejects all ciphertexts. Irrespective of which world the adversary is in, we
will refer to the Enck vs. $ one as the challenge encryption oracle, (it will sometimes be referred to as the
first oracle based on the oracle ordering) and to the Deck vs. ⊥ one as the challenge decryption oracle.

We will use a slightly different, but equivalent, formulation where an adversary additionally has
access to the true encryption and decryption oracles in both worlds. Thus the adversary will have access
to four oracles in each world: the challenge encryption oracle, the challenge decryption oracle, the true
encryption oracle, and finally the true decryption oracle. Having these extra oracles will help us later on
to add leakage, which will only ever be on the true oracles and never on one of the challenge oracles. One
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function $F (X)
C0←F (X)
C1 ←$ Σ|C0|

return C1

function ⊥G(X)
return ⊥

Fig. 1: The generic oracles $F and ⊥G idealise the output of F as random bits, and of G as always
rejecting. They are used to define the reference world in our security definitions, for various choices
of (F,G), which will be omitted whenever clear. Usually Σ = {0, 1}, with |C0| the length of C0 as a
bitstring.

could even argue that the additional oracles provide a more representative and expressive framework:
the honest oracles describe how an adversary may “learn” about a system, while the challenge ones
allow them to “prove” they have done so (cf. a similar, more detailed argument for subtle authenticated
encryption [4]).

As our reference point we will use the oracles defined in Figure 1, with all probabilities taken over
randomness of the key and sampling within the oracle.

Queries. Already in the leak-free setting, certain combinations of queries will easily distinguish the two
worlds. To avoid these trivial wins, we will therefore prohibit certain queries—or in some cases simply
assume adversaries refrain from making prohibited queries. For example, if an adversary can send a
challenge encryption to decryption they can trivially win. As a general rule, we prohibit the same query
being made to oracles which take the same inputs (such as the honest and challenge encryption oracles),
and also prohibit performing the inverse of previous queries. For example, the ciphertext output from
the either oracle cannot be passed into the decryption oracle.

If a query has already been made, we refer to the process of later making an equivalent query as
forwarding the query. To forward a query is to make a second query who’s inputs were inputs or outputs
from the first query. Thus if an adversary has made a query (N,A,M) to an authenticated encryption
oracle Enc to receive output C, it would be forwarding this to later make a query (N,A,M) to any
oracle with syntax N × A ×M, or (N,A,C) to one with syntax N × A × C, such as Dec. Making the
same query again, repeating a query, can be thought as a special case of forwarding a query. When we
later introduce leakage, we will ignore this for the purposes of defining forwarding of queries, so in the
previous example the query (N,A,M,L) would also be considered forwarding.

Nonce selection requirements. Our security games will be agnostic over how the nonce is selected, with
this property enforced by restricting the adversary. An adversary against an (authenticated) encryption
scheme is called nonce respecting if whenever making a new query they do not use a nonce more
than once to any oracle matching the syntax of Enck or Ek. They are random-iv respecting, or simply
iv respecting, if for any new query with these oracles their nonce N (which we term an IV and will
generally write as I instead) is sampled uniformly from N immediately prior to querying the oracle (and
thus not involved in the logic used to select other elements of the query). These requirements do not
apply when interacting with oracles matching the syntax of Deck or Dk. A scheme is called (nonce)
misuse resistant if the adversary does not have to be nonce respecting, providing that the adversary does
not make multiple queries using the same (N,A,M) triple.

Definition 1 (nAE). Let Enc be an authenticated encryption scheme, A an adversary who does not
make forward queries to or from his first or second oracle (and thus does not repeat first oracle queries).
Then, the nAE advantage of an adversary A against Enc is

AdvAE
Enc(A) :=∆

A

(
Enck,Deck,Enck,Deck
$ , ⊥ ,Enck,Deck

)
.

It is a secure nAE scheme (or simply nAE) if this advantage is small for all nonce-respecting adver-
saries running within reasonable resources, and mrAE if it is small for all adversaries running within
reasonable resources.
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To aid clarity we offer an explanation of the definition of AE. The distinguishing advantage is taken
over two sets of oracles, (Enck,Deck,Enck,Deck) and ($,⊥,Enck,Deck), where the six keyed oracles
use the same key. The restriction that an adversary may not make repeat queries or ‘forward’ a query (or
its inverse) between oracles ensures that there are no trivial wins for the adversary.

Encryption. Authenticated encryption schemes are often constructed based on simpler encryption
schemes. From a security perspective, the latter typically only provide a form of passive confidentiality
and not integrity or authenticity. Consequently, these simpler encryption schemes do not take associated
data as input, leading to the following syntax:

E : K× N×M→ C

D : K× N× C→ M ∪ {⊥}

where E is length-regular and D is uniquely determined by E to ensure both correctness and tidiness.
The standard confidentiality notion for an encryption scheme is indistinguishability under chosen

plaintext attacks (Def. 2). For iv-based, or ivE, schemes, only iv-respecting adversaries are considered,
whereas for nonce-based, or nE, schemes only nonce-respecting adversaries are considered.

Definition 2 (Indistinguishability under chosen plaintext attacks). Let E be an encryption scheme,
and A an adversary who does not repeat first oracle queries or forward queries between his oracles.
Then, the IND–CPA advantage of A against E is

AdvIND−CPA
E (A) :=∆

A

(Ek, Ek
$ , Ek

)
.

The scheme E is nE (resp. ivE) if the IND–CPA advantage is small for all nonce-respecting (resp. iv-
respecting) adversaries running within reasonable resources.

Building blocks: MACs and PRFs. A Message Authentication Code (MAC) consists of a pair of
deterministic functions (T ,V), named for Tag and Verify, having the syntax:

T : K×M→ T

V : K×M× T→ {>,⊥}

where T is called the tag space.
We restrict ourselves to deterministic MACs since our overall objective is to define a scheme that

can be implemented in a deterministic way, and hence each component must be deterministic. In this
setting, it is common to omit V , since recomputating and comparing this with the candidate tag suffices
(similar to how as encryption defines decryption for any tidy encryption schemes). We opt for the more
descriptive setting and make V explicit, since later when we introduce leakage it will be important to
differentiate between the tagging and verification implementations. Indeed, when leakage is available,
simply recomputing the MAC is no longer sufficient to achieve security.

Definition 3 (Strong Existential Unforgeability under Chosen Message Attack). Let (T ,V) be a
(deterministic) MAC, and A an adversary who does not forward queries from his second oracle to the
first. The Strong Existential Unforgeability under Chosen Message Attack (sEUF-CMA) advantage of
A against (T ,V) is the probability A can distinguish between interacting with Vk and ⊥ when given
access to Tk and Vk. That is,

AdvsEUF−CMA
(T ,V) (A) :=∆

A

(Vk, Tk,Vk⊥ , Tk,Vk
)
.

The pair (T ,V) is a secure MAC if this advantage is small for all reasonably resourced adversaries.
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Fig. 2: Graphical representations of the encryption directions of generic composition mechanisms.
On the left, N2 converts a nonce-based encryption algorithm E and MAC scheme (T ,V) into an nAE
scheme. On the right, iv2n converts an iv-based encryption scheme ivE and a PRF into a nonce-based
encryption algorithm. Composing these yields A5, shown in the middle ignoring the dotted input, while
A6 includes the dotted input. Overall decryption of A5,A6, and N2 will recompute and verify the tag
first, only proceeding with further decryption of C if this verification is successful.

A keyed function F is called pseudorandom if for a random drawn secret key, it behaves as if it were
a random function. This is formalized in Def. 4 below. It is easy to build a MAC from a pseudorandom
function F , simply by setting Tk = Fk and Vk(M,T ) = > ⇐⇒ Fk(M) = T . In that case a dis-
tinguishing adversary against the MAC in the sEUF–CMA game can be turned in an equally successful
adversary against the PRF property of F (without incurring any significant overhead in the reduction).

Definition 4 (Pseudo Random Functions). Let F : K × M → T be a function, and A an adversary
who does not forward queries between their oracles. Then, the PRF advantage of A against F is

AdvPRF
F (A) :=∆

A

(Fk,Fk
$ ,Fk

)
.

We sayF is a PRF if the PRF advantage is small for all adversaries running within reasonable resources.

Generic composition for nAE. NRS [38] investigated how to construct an nAE scheme by compos-
ing two PRFs with an ivE scheme. The IV of the ivE scheme is derived from the nAE’s inputs using
the first PRF call; the optional second PRF call may be used to create an authentication tag. Different
schemes emerge by changing which variables are provided to each of the components. NRS identify
eight schemes, dubbed A1–A8, with strong security bounds. For a further four schemes (A9–A12) nei-
ther strong security bounds nor insecurity was established. Additionally, NRS investigated mechanisms
for combining a PRF with an nE scheme. Three schemes (N1–N3) were found secure, with that of a
fourth (N4) remaining unresolved.

Figure 2’s middle panel shows the schemes A5 and A6. For these two schemes, as well as for N2
(on the left), the ciphertext is input to the second PRF, which means they classify as Encrypt-then-MAC
(EtM). The schemes A4, A7–A12, as well as N3 and N4 only use a single PRF and release the IV as tag;
for that reason we refer to them as MAC-then-Encrypt (MtE). Finally, the schemes A1–A3 and N1 use
two PRFs that can be called in parallel, leading to their classification as Encrypt-and-MAC (E&M), (We
refer to NRS for full descriptions and graphical illustrations of all schemes mentioned above).

3 Security Notions in the Presence of Leakage

Authenticated encryption, as defined above, is deterministic. In a leakage-free setting, this is provides
a stronger notion than the older probabilistic notion of encryption (as implicitly still used for ivE).
When introducing leakage, deterministic schemes are problematic both from a practical and a theoretical
perspective.
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On the one hand, a practical side-channel attack such as differential power analysis can effectively
recover keys from unprotected blockciphers and their AE modes with near certainty. Randomized mask-
ing based on secret sharing is one of the main countermeasures against these attacks.

On the other hand, theoretical leakage is often modelled as a function on the inputs of the computa-
tion, which will include the key. If with each invocation of the scheme an adversary can let the scheme
leak a different key bit of its choice, the full key is easily recovered. To prevent such devastating yet
simple leakage, a typical design strategy is to split the key in two shares and update the shares on-the-fly
using fresh randomness, mimicking the practical approach.

One mechanism that can avoid relying on randomness is to instead use a leak-free component [57].
Our notation does support this (by suitable choice of leakage set), but such components are between
hard and impossible to instantiate in practice [33], so we do not wish to be restricted to this case. We
leave open potential solutions relying on synchronized states between encryption and decryption as such
synchronization can be difficult to maintain, thereby restricting applicability of the model. However, in
the specific context of secure channels, synchronization might not be too onerous.

3.1 Implementations versus Functions

In both the practical and the theoretical approach mentioned above a deterministic scheme is imple-
mented in a randomized fashion in order to provide resistance against leakage. Therefore, when arguing
about leakage, we will need to make a distinction between the scheme (a deterministic function) and its
implementation.

For our definition of the implementations of a function we take our cue from the secret-sharing
approach, where a redundant representation of the key is used and this representation is rerandomized as
part of the implementation. To enable this rerandomization, we provide the implementation of a function
with explicit randomness in Definition 5 below.

Definition 5 (Implementation of f ). An implementation of a function f : K×X → Y is a deterministic
function f : K×X × R→ K× Y along with a probabilistic key initialisation function ι : K→ K such
that ι(k) = ι(l) ⇐⇒ k = l. We define the inverse of ι as the function ι−1 : K → K such that
ι−1(k) = k if there exists k such that ι(k) = k, and ⊥ otherwise.

The implementation is correct iff for all k ∈ K, x ∈ X , and r ∈ R, setting k← ι(k) and
(k′, y)←f(k, x; r) guarantees both y = f(k, x) and ι−1(k′) = k.

To guide the reader, we use a bold font to denote either the implementation of a function or the
representation of a key used by the implementation. The initial representation of the key is generated
using the function ι, which maps a key k ∈ K to a suitable representation k ∈ K for the implementation.
We assume that ι is performed only once, and in a leak-free manner, during setup (straight after key
generation). Moreover, its inverse ι−1 induces an equivalence relation on the space K; in other words,
the implementation keys k can be thought of as alternative representations of the key.

Discussion. Correctness implies that an implementation is identical to the original function when re-
stricted to the second output and that the new key representation k′ is equivalent to the initial one k. We
make no demands of k or k′ beyond these, so it is permissible to set k = k′ = k and thus recover the
traditional syntax. Our security definitions will be such that for correct schemes and assuming ‘trivial’
leakage, the corresponding leak-free security notions from the preceding section will emerge.

Definition 5 can be linked to practice in a straightforward manner. Recall that practical implementa-
tions of blockciphers often use masking based on secret sharing schemes. In this case, the implementa-
tion of the blockcipher describes how to evaluate the blockcipher based on the shares of the key as well
as how the sharing is refreshed using external randomness r. Furthermore, ι is exactly the function that
creates the initial secret sharing of the key.

Syntactically the implementation f may appear stateful: after all they take in some k and output an
updated k′ for the next invocation. However, since the implementation is of a stateless function f , there
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is no need to synchronize state between communication parties. Instead, each party can use its own,
independent representation of the key.

Implementation of an nAE Scheme. For concreteness, we now explicitly define the implementation
of an nAE scheme, where we assume that Enc and Dec use the same representations K and mapping ι
for the key, corresponding to them both being functionalities derived from the same device.

By correctness of the implementation, one can see that the ciphertext output by Enc (resp. mes-
sage by Dec) will always be independent of the randomness, since they are equal to the corresponding
output of Enc (resp. Dec). Definitions for the implementations of other security primitives are written
accordingly.

Definition 6 (AE Implementation). Let (Enc,Dec) be an authenticated encryption scheme. An AE
implementation is a pair of deterministic functions

Enc : K× N× A×M× R→ K× C

Dec : K× N× A× C× R→ K× (M ∪ {⊥})

along with ι : K× R→ K such that ι(k, r) = ι(l, s) iff k = l and ι−1 : K→ K such that ι−1(()k) = k
if there exists r ∈ R such that ι(k, r) = k. The implementation is correct iff for any k,N,A,M,C, r
from the appropriate spaces and k ←$ ι(k), setting

(k′, C ′)←Enc(k, N,A,M ; r) and (k′′,M ′)←Dec(k, N,A,C; r),

the following properties hold:

k = ι−1(k) = ι−1(k′) = ι−1(k′′)
C ′ = Enc(k,N,A,M) and M ′ = Dec(k,N,A,C) .

3.2 What Constitutes Leakage

The input syntax of a leakage function matches to the input syntax of the implementation f that it relates
to. A leakage set is a collection of leakage functions for an implementation.

Definition 7 (Leakage Functions). A leakage function of an implementation f : K×X ×R→ K× Y
is a function L : K×X × R→ L for some output leakage space L. A leakage set of an implementation
f is a set of leakage functions.

The choice of leakage set should contain all plausible (functions of) inputs to the implementation that
an adversary can compute, and may be probabilistic. This might include functions of any intermediate
variables, since these are computable from the inputs simply by simulating the construction. Broadly
speaking, the larger the leakage set the more powerful the adversary is likely to be. The leakage set
∅ allows us to model the leak-free case. Technically we define it to be the set containing just the null
function, meaning the adversary can always select a leakage function, thus maintaining the correct syntax
for our security games.

3.3 Security Notions including Leakage

We are now in a position to define the security of an implementation in the presence of leakage. We do so
by reframing the classical notions given to work on the implementation of a function, and by extending
the notions such that the honest oracles are allowed to leak. The adversary wins the game if they can
distinguish whether their leak-free challenge oracles implement the scheme honestly or are idealised.
We differentiate our notions from the classic variant by prefixing an “L”, for leakage.

In the classical setting, each oracle simply evaluates the appropriate function with the games secret
key. For an implementation, a similar, but slightly more complicated, approach is required. The oracle
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function `[E]k(M ;L)
r ←$ R
Λ←L(k,M ; r)
C,k←E(k,M ; r)
return (C,Λ)

function `[D]k(C;L)
r ←$ R
Λ←L(k, C; r)
M,k←D(k, C; r)
return (⊥, Λ)

function `[Enc]k(N,A,M ;L)
r ←$ R
Λ←L(k, N,A,M ; r)
C,k←Enc(k, N,A,M ; r)
return (C,Λ)

function `[Dec]k(N,A,C;L)
r ←$ R
Λ←L(k, N,A,C; r)
M,k←Dec(k, N,A,C; r)
return (M,Λ)

Fig. 3: Honest leakage oracles an adversary may use to help them distinguish. All inputs are taken
from the appropriate spaces, with leakage functions chosen from the relevant leakage set. For LE-
IND–CPLA, the adversary has access to `[E]k, and for the augmented notion (LE,LD)-IND-aCPLA
they are also given very limited access to `[D]k. LAE security, (LEnc,LDec)-LAE provides access to
(`[Enc]k, `[Dec]k).

function `[T ]k(M ;L)
r ←$ R
Λ←L(k,M ; r)
T,k←T (k,M ; r)
return (T,Λ)

function `[V]k(M,T ;L)
r ←$ R
Λ←L(k,M, T ; r)
V,k←V(k,M, T ; r)
return (V,Λ)

Fig. 4: Honest leakage oracles an adversary may use to help them distinguish. All inputs are taken from
the appropriate spaces, with leakage functions chosen from the relevant leakage set. (LT,LV)-LMAC
security gives access to (`[T ]k, `[V ]k). Since PRFs and the tagging function of a MAC have the same
syntax, the LPRF game provides access to `[F ]k, which is identical to `[T ]k.

must draw randomness, and provide this to the implementation to update the key representation. This
same randomness, along with all other inputs, must be provided to the leakage function. The new key
must then be stored, and the two outputs returned to the adversary. For any implementation f , the
corresponding leakage oracle is denoted `[f ]k, when initialised with key k. A code-based description of
this is given in Figure 3, along with examples for some standard primitives.

As in the leakage free definitions, security is taken over the randomness of the initial keys, and of
the oracles. Notice that this choice includes the sampling from R. We assume the adversary only ever
makes queries for which his inputs are selected from the appropriate spaces. For leakage, this means
some leakage set that will be specified in the security notion.

Definition 8 (AE security against leakage). Let (Enc,Dec) be an implementation of an authenticated
encryption scheme Enc,Dec, and A an adversary who does not forward queries to or from his first or
second oracles (and thus does not repeat such queries). Then, the (LEnc,LDec)–LAE advantage of an
adversary A against (Enc,Dec) under leakage (LEnc,LDec) is

AdvLAE
Enc,Dec;LEnc,LDec

(A) :=∆
A

(
Enck,Deck, `[Enc]k, `[Dec]k
$ , ⊥ , `[Enc]k, `[Dec]k

)
.

The implementation is (LEnc,LDec)-nLAE secure, or simply (LEnc,LDec)-nLAE, if this advantage is
small for all reasonably resourced, nonce-respecting adversaries, with (LEnc,LDec)-mrLAE defined
similarly.

Definition 9 (Encryption security against leakage). Let E be an implementation of an encryption
scheme E , and A an adversary who never forwards queries to or from his first oracle (and thus does not
repeat first oracle queries). The LE-IND–CPLA advantage (named for chosen-plaintext-with-leakage-
attack) of A against E is

AdvIND−CPLA
E;LE (A) :=∆

A

(
Ek, `[E]k
$ , `[E]k

)
.
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We say E is anLE-nLE implementation if theLE-IND–CPLA advantage is small for all nonce-respecting
adversaries running within reasonable resources, with LE-ivLE defined similarly.

We next provide an additional encryption notion, IND–aCPLA, that will be required for our com-
position results later. It describes a modified version of the IND–CPLA game in which the adversary is
also allowed leakage from the decryption implementation, but only on ciphertexts they have previously
received from `[E]k. At first glance, this appears to be more similar to an IND–CCA style notion, but we
emphasise this is not the case since the possible decryption queries are heavily restricted. Thus it should
thought of as IND–CPA under the most general form of leakage. Indeed, when the leakage sets are set
to be empty, the resulting security notion is equivalent to IND–CPA.

Definition 10 (Augmented CPLA security). Let (E,D) be an implementation of an encryption scheme,
A an adversary who does not forward queries to or from his first oracle, and only makes queries to their
third oracle that were forwarded from the second. Then the (LE,LD)-IND–aCPLA advantage of A
against E is

AdvIND−aCPLA
E,D;LE,LD (A) :=∆

A

(
Ek, `[E]k, `[D]k
$ , `[E]k, `[D]k

)
.

The implementation is (LE,LD)-nLE if the (LE,LD)-IND–aCPLA advantage is small for all nonce-
respecting adversaries running within reasonable resources, (LE,LD)-ivLE defined similarly.

The IND–aCPLA notion is required for the general composition. The goal is to construct an LAE
scheme from an ivLE scheme (and other components). However, for decryption of the LAE scheme to
leak (as we want the leakage to be as powerful as possible), the decryption of ivLE scheme would have
to leak. The IND–CPLA security notion does not capture this. Consider an IND–CPA scheme where
encryption does not leak, but the leakage from decrypting the zero string returns the key. Clearly the
scheme is also IND–CPLA but will trivially break when the adversary is given decryption leakage. The
IND–aCPLA notion is trying to capture that decryption “does not leak too much information”, so that
limited decryption queries made by the LAE scheme will be able to leak.

Against many natural choices of leakage sets, (LE,LD)-IND–aCPLA andLE-IND–CPLA are equiv-
alent, since the encryption oracle often suffices to simulate any leakage from decryption. In the nonce-
abusing setting, where the adversary is free to select nonces however they wish, there exists an explicit
reduction showing this.

In the nonce respecting or iv respecting scenarios such a general reduction is not possible, because
there is no way to allow the adversary to use the same nonce multiple times, something a decryption
oracle would allow. If the leakage is independent of the nonce (for example) similar results can be
recovered, but these are much more restrictive scenarios. It is an interesting open problem to describe
sets LED that are in some sense “minimal” for various pairs of leakage sets (LE,LD) taken from some
general function classes.

LMAC and LPRF. Here we give the PRF and MAC notions a similar treatment to the encryption defi-
nitions given previously, enhancing the standard definitions by allowing leakage off the honest oracles.

The strong Existential unforgibility under chosen message with leakage attack notion for LMAC
security strengthens both the classical definition, and the definition Martin et al. [34], who only allow
tagging to leak; setting LV = ∅ recovers their definition. They mention this more general definition
but do not explicitly define it. We cast it as a distinguishing game, rather than the more traditional
computational game (“adversary must forge a tag”), but it is straightforward to see this is equivalent
(even in the face of leakage).

The LPRF definition strengthens the definition of Dodis and Pietrzak [16], and Faust et al. [18] in
that both the leakage functions and the inputs can be chosen adaptively based on outputs already seen
by the adversary.
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Definition 11 (MAC security against leakage). Let (T ,V) be an implementation of a MAC (T ,V),
and A an adversary who does not forward queries from his second oracle to the first. Then the (LT,LV)-
sEUF-CMLA advantage of A against (T ,V) under leakage (LT,LV) is

AdvsEUF−CMLA
T ,V;LT,LV (A) :=∆

A

(
Vk, `[T ]k, `[V ]k⊥ , `[T ]k, `[V ]k

)
.

We say (T ,V) is a secure (LT,LV)-LMAC if this advantage is small for all adversaries running within
reasonable resources.

Definition 12 (PRF security against leakage). Let F be an implementation of a function F , and A an
adversary who never forwards or repeats queries. Then the LF-PRLF advantage of A against F under
leakage LF is

AdvPRLF
F ;LF (A) :=∆

A

(
Fk,`[F ]k
$ ,`[F ]k

)
.

We say F is a secure LF-LPRF if this advantage is small for all adversaries running within reasonable
resources.

4 Applying LAE to attacks in theory and practice

A security framework is not much use if it does not highlight the difference between schemes for which
strong security results are known, and those against which efficient attacks exist. In this section we
discuss the types of leakage normally considered within the literature. We show how previous leakage
models can be captured by our leakage set style notion. In the literature there is focus on two types
of leakage; protocol leakage (by the AE literature) and side channel leakage (by the leakage resilient
literature). We believe that these two notions are highly related and thus we discuss how to capture
both. For example, termination of an algorithm at different points (distinguishable decryption failures)
is normally detected by a side-channel; timing can be used to capture this if the failures terminate the
algorithm at different points in time and power can be used to detect if conditional branches were taken.

After first describing generic methods to recast existing leakage resilience work within our general
framework, we consider a few concrete examples of this, describing existing attacks within our setting.

4.1 Theoretical leakage models

We observe that our model is in many ways the most general possible, and that many previous leakage
notions can be captured as version of the (LE,LD)-LAE security game for suitable choice of leakage sets
(LE,LD). Reassuringly, by setting (LE,LD) = (∅, ∅) we recover the traditional leakage-free security
notions, with (∅, ∅)-nLAE equivalent to nAE, and both ∅-IND–CPLA and (∅, ∅)-IND–aCPLA equivalent
to IND–CPA, meaning a secure nE scheme is ∅-nLE secure.

The deterministic decryption leakage notions from the AE literature can be recovered by choosing
the appropriate leakage set. The SAE framework generalises both the RUP model, and the (nonce-based
analogues of the) Distinguishable Decryption Failure notions of Boldyreva et al. [2, 4, 12]. The security
notions are parametrised by a deterministic decryption leakage function Λ, corresponding to security
under the leakage sets (LE,LD) = (∅, {Λ}). Thus the strongest notions available in these settings are
equivalent to (∅, {Λ})–LAE. Several of their weaker notions translate to the corresponding weakening
of this, including authenticity under deterministic leakage, (known variously as CTI–sCPA, INT–RUP or
an extended form of INT–CTXT), which translates to a variant of (∅, {Λ})–LAE in which the adversary
cannot query the encryption challenge oracle (and thus does not interact with either Ek or $).

In the simulatable leakage model (e.g. [54]), the adversary receives leakage in addition to their query,
but is restricted to leakage functions that can be simulated without the key. The simulatable model
considered by Standaert et al. (for example) can be captured by our model by having set of leakage
functions contain the single function which provides the power trace to the adversary. The auxiliary
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function Enc(N,A,M )
A1|| . . . ||Aa← Parse(A)
M1|| . . . ||Mm← Parse(M)
ctr←N ||031||1
H←Ek(0

128)
T0← 0128

for i = 1, . . . , a do
Ti←(Ti−1 +Ai) •H

for i = 1, . . . ,m do
Ci←Mi ⊕ Ek(ctr + i)
Ta+i←(Ta+i−1 + Ci) •H

Ta+m+1←(Ta+m + (a||m)) •H
T ←Ta+m+1 ⊕ Ek(ctr)
C←C1|| . . . ||Cm||T
return C

function `[Enc]k(N,A,M ;L)
r ←$ R
A1|| . . . ||Aa← Parse(A)
M1|| . . . ||Mm← Parse(M)
ctr←N ||031||1
H←Ek(0

128)
T0← 0128

for i = 1, . . . , a do
Ti←(Ti−1 +Ai) •H

for i = 1, . . . ,m do
Ci←Mi ⊕ Ek(ctr + i)
Ta+i←(Ta+i−1 + Ci) •H

Ta+m+1←(Ta+m + (a||m)) •H
T ←Ta+m+1 ⊕ Ek(ctr)
C←C1|| . . . ||Cm||T
Λ←L(k,N,A,M ; r)
return (C,Λ)

function `[Dec]k(N,A,M ;L)
r ←$ R
C′||T ←C with |T | = 128
A1|| . . . ||Aa← Parse(A)
C1|| . . . ||Cm← Parse(C)
ctr←N ||031||1
H←Ek(0

128)
T0← 0128

for i = 1, . . . , a do
Ti←(Ti−1 +Ai) •H

for i = 1, . . . ,m do
Mi←Ci ⊕ Ek(ctr + i)
Ta+i←(Ta+i−1 + Ci) •H

Ta+m+1←(Ta+m + (a||m)) •H
if T 6= Ta+m+1 ⊕ Ek(ctr) then

M← ⊥
else

M←M1|| . . . ||Mm

Λ←L(k,N,A,C; r)
return (M,Λ)

Fig. 5: A standard implementation of GCM, with N = {0, 1}96, K = {0, 1}128 and M = C = A =
{0, 1}∗, providing the plaintext/ciphertext plus authenticated data is at most 232 blocks. The first column
defines the scheme, while the second and third give leakage oracles instantiating it. The function “Parse”
splits a string into blocks of 128 bits, with the final block possibly incomplete; Ek is AES–128 with key
k. The xor different length strings returns a string of the shorter length, while • and + denote the binary
operations of GF(2128).

input model [15] gives the adversary the output of a hard to invert function applied to the key, alongside
the normal security notion interactions. The only computation leaks model [37] (discussed in more detail
in Section 5.1) restricts the adversary to leakage functions that can be locally computed: any step of the
algorithm can only leak on variables being used at that point. In the following sections we show how
this leakage set can be defined for our given constructions.

In the probing model [24] the adversary can gain access to the values of t of the internal wires from
the computation. A scheme is secure if an adversary with the knowledge of t internal wires can do no
better than if they had access to the function in a black box manner. If there are n internal wires, this
leakage can be captured by our set notation by constructing a set with n choose t leakage functions, each
giving the complete value of the relevant wires.

Our leakage sets incorporate the bounded leakage model (e.g. [22, 26, 30]) by restricting the set of
allowable adversaries to those who only make sufficiently few queries to the leakage oracles.

4.2 A practical example from the literature

As a concrete example of how to set an existing attack within the framework, consider the attack against
the well-known AES–GCM [36] AEAD mode by Belaïd, Fougue and Gérard [5]. The authors observe
that that the least significant bit (lsb) of a vector’s Hamming weight is simply a linear combination
of its bits. Therefore, if the Hamming weight (or an approximation of it) is available, then (some ap-
proximation) of this linear combination can be deduced. Based on this, they construct an attack on the
authentication key, using leakage from the first polynomial multiplication.

The GCM encryption routine and the relevant leakage oracle are given in Figure 5. Note that as the
implementation under attack was not randomised, the oracle’s randomness r is not used. To apply the
attack, we require that L(k,N,A,M ; r) = HW(A1 • Ek(0128)) ⊕ ε is an element of the encryption
leakage set LE, or that the corresponding function L(k,N,A,C; r) is in LD. Within GCM, the value
H = Ek(0

128) is the authentication key, so this leakage function calculates its Hamming weight (HW)
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after multiplication by a known quantity A1, before adding some Gaussian noise ε to better describe
experimental error.

The adversary makes a series of queries to their honest oracles to acquire this leakage, and then
collects the least significant bit of the each leakage query, along with the corresponding value A1, to
form a system of (noisy) linear equations. In the most naive case, if it is possible to guess where the noise
causes errors in the linear equations, they can be solved in the standard manner to find H = Ek(0

128),
which completely breaks the security of the scheme. For 6 errors this requires approximately 232 effort.
Other elements of the original work expand upon this, providing more involved techniques for reducing
the amount of work required to solve this noisy system.

Overall then, this attack demonstrates that the implementation of AES-GCM described in Figure 5
is neither (∅, {L})–nLAE nor ({L}, ∅)–nLAE.

5 Generic Composition for LAE

5.1 Modelling Composed Leakage

Our challenge is to establish to what extent the NRS schemes remain secure when taking leakage into
account.3 Ideally, we would like to claim that if both the ivE and the PRFs are secure in the presence
of leakage, then so will the composed nAE be. To make such a statement precise, the leakage classes
involved need to be specified. We opt for an approach where the leakage classes for the components are
given (and can be arbitrary) and then derive a leakage class for the resulting nAE for which we can prove
security.

Encryption leakage. In a nutshell, we define the leakage of the composition as the composition of the
leakage. As an example, consider A5 (Figure 2). When encrypting, the leakage may come from any
of the components: the PRF F may leak some information LF (kF , N ; rF ); the IV-encryption routine
ivE might leak some information LE(kE , I,M ; rE); the Tag function T may leak some information
LT (kM , N,A,Ce; rM ). To ease notation, we will use the shorthand LF (?), LE(?), and LT (?) respec-
tively for these leakages. In that case, we say that the leakage on the authenticated encryption operation
as a whole consists of the triple (LF (?), LE(?), LT (?)). Under the hood, this implies some parsing and
forwarding of the AE’s key (kF ,kE ,kM ), randomness (rF , rE , rM ) and inputs N,A,M , including the
calculated values I and Ce, to the component leakage functions LF , LE , and LT .

Expanding the above to classes of functions is as follows. Let LF,LE, and LT be the respective leak-
age classes for F , ivE, and T . Then the leakage class LEnc for the resulting authenticated encryption
scheme is defined as {(LF , LE , LT )|LF ∈ LF, LE ∈ LE, LT ∈ LT}. Since an adversary has to select a
leakage function in LEnc the moment it queries the encryption oracle, it will not be possible to adaptively
select for instance the leakage function LT based on the leakage received from LE of that encryption
query.

Decryption leakage. In order to describe leakage from decryption, we take a closer look at the role of
the two PRFs in the generic constructions. The first one, F , computes the initial vector which is needed
both for encryption and decryption. This makes it inevitable that during decryption it is again computed
as a PRF, presumably using the same implementation F . On the other hand, the second PRF, T , is used
to create a tag T during encryption. Normally during decryption one would recompute the tag (again
using T ) and check whether the recomputed tag T ′ equals the received tag T . Yet, in the leakage setting
this approach is problematic: T ′ is the correct tag and its recomputation might well leak it, even when
used (repeatedly) to check an incorrect and completely unrelated T . Hence, during decryption we will
not use a recompute-and-check model, but rather refer directly to a tag-verification implementation V
(that hopefully leaks less).

When considering the decryption leakage of A5, we will assume that, on invalid ciphertexts, the
computation terminates as soon as the verification algorithm returns ⊥. This implies that for invalid

3 Obviously, leakage is not suddenly going to promote any of the insecure schemes into a secure one.
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Structure Leakage Inverse Inverse Leakage
MtE LT (?), LF (?), LE(?) DtV LF (?), LD(?), LV (?)M&E LT (?), LF (?), LE(?)

D&V LF (?), LD(?), LV (?)

EtM LF (?), LE(?), LT (?) VtD

{
LV (?) if V(?) = ⊥
LV (?), LF (?), LD(?) if V(?) = >

Fig. 6: The structure of a leakage function from a composition scheme based on the order of its prim-
itives. The exact input parameters to the leakage function vary per scheme, so have been replaced with
?: the different ? variables are not the same. On the left are the encryption structures MtE, M&E and
EtM, along with the associated leakage function. The right gives the associated inverse: DtV (Decrypt
then Verify) is the only way of inverting MtE or M&E schemes. EtM schemes can be inverted in any
order, as DtV, D&V (Decrypt and Verify) or VtD (Verify then Decrypt). All constructions have the same
encryption leakage, and most have the same decryption leakage. The only one that is different is an
EtM–VtD scheme, where the decryption leakage format depends on the validity of the ciphertext.

ciphertexts only leakage on V will be available, whereas for valid ciphertexts all three components
(V ,F , and ivE) might leak.

Overview and interpretation. Recall that we divided the NRS schemes in three categories: MtE, M&E,
and EtM. Figure 6 shows how the composed leakage will leak for each of these schemes. For complete-
ness, we also listed the leakage for the EtM scheme (such as A5) in case full decryption will always take
place, even for invalid ciphertexts (where one could have aborted early).

Our choice to model the leakage from the authenticated encryption scheme as completely separate
components from the three underlying primitives is rooted in the assumption that only computation
leaks. This assumption was first formalized by Micali and Reyzin [37] and, although there are coun-
terexamples to the assumption at for instance the gate level [45], we believe that implementations of the
three primitives result in large enough physical components, which can be suitably segragated to avoid
cross-leakage.

Leakage on the wire (for instance of the initial vector I) can be captured as leakage of the PRF
computing the I or alternatively as that of the ivE. In particular, by letting the decryption of the ivE
component leak its full output (while not allowing any further leakage), we capture the release of unver-
ified plaintext. Furthermore, distinguishable decryption failures on MtE and M&E schemes invariably
arise from verification, which might incorporate a padding check as well. This is modelled by allowing
V to leak, but not any of the other components.

5.2 MAC-and/then-Encrypt are Brittle under Leakage

For schemes where the plaintext is input to the MAC (i.e. MtE and M&E schemes), decryption is in-
evitably of the form DtV. Consequently, during decryption a purported message M is computed before
the tag can be verified. Leaking this message M corresponds to the release of unverified plaintext [2],
but even more modest leakage, such as the first bit of the candidate message, can be insecure as we show
by the following example.

Let us assume for a moment that the encryption routine ivE is online, so that reencrypting a slightly
modified plaintext using the same I will only affect a change in the ciphertext after the modification
in the plaintext. CBC and CFB modes are well-known examples of online ivE schemes. Additionally,
assume that ivE’s decryption routine indeed leaks the first bit of the message. Then the authenticated
encryption scheme is not secure in the presence of leakage (for the leakage class derived according to
the principles from the previous subsection), which an attack demonstrates.

The adversary first submits a message M to its challenge encryption oracle, receiving either a ci-
phertext C which either is an encryption Ek(M ||T ) or (in the ideal world) a uniformly random string.
The adversary subsequently queries its decryption-with-leakage oracle on C with its final bit flipped. In
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the real world, where C = Ek(M ||T ), the leakage will then equal the first bit of M with probability 1.
Yet in the ideal world, C is independent of M , so the leakage will equal the first bit of M with proba-
bility half. Thus, testing whether the decryption leakage equals the first bit of M leads to a distinguisher
with a significant advantage. However, this does not invalidate IND–CPLA security of the encryption
scheme since it is a new ciphertext.

The result of the above observation is that no fully generic composition result granting security in
the presence of leakage is possible for schemes where decryption follows a DtV or D&V structure.
This affects the NRS compositions A1–A4, A7–A12, N1, N3 and N4; none of which can be regarded as
generically secure under leakage.

Less general composition results might still be possible, for instance by restricting the leakage
classes of the primitives. After all, in the trivial case that the leakage classes are all ∅, the original NRS
results hold directly. We leave open whether significantly larger realistic leakage classes exist leading to
secure MtE constructions.

Alternatively, stronger assumptions on E could help. For instance, if E’s security matches that of a
tweakable (variable input length) cipher, the MAC-then-Encrypt constructions become a sort of encode-
then-encipher. The latter is secure against release of unverified plaintext [23]. We leave open the identi-
fication of sufficient conditions on E for a generic composition result in the presence of leakage to pull
through for EtM or E&M; relatedly, we leave open the extension of our work to the encode-then-encipher
setting.

5.3 Encrypt-then-MAC is Secure under Leakage

The iv-based schemes A5 and A6, as well as the nonce-based N2, all fall under the EtM design. The
inverse of an EtM scheme can be D&V or VtD, but due to the reasons discussed in the previous section
it is only possible to achieve meaningful security if decryption obeys the VtD ordering. These schemes,
along with the iv2n mechanism for building a nonce-based encryption scheme out of an iv-based one,
are all represented in Figure 2. Before proving their security, we begin with some observations about
EtM–VtD designs in the face of leakage.

Initial Observations. Since the final ciphertext will be formed from an encryption ciphertext and a
tag, if the overall output is to be indistinguishable from random bits, then so must the tag. Thus we
require both that (T ,V) is a secure (LT,LV)-LMAC, and that T is a secure LT-LPRF. Shrimpton and
Terashima [53] defined a (weaker) authenticated encryption notion where the ‘recovery information’
does not need to be random, only the ciphertext, in which case one may drop the second requirement.

In the traditional case, it is possible to build secure EtM schemes from an encryption scheme that
is IND–CPA secure. This is because (by assumption on the security of the MAC), the only output the
adversary can ever receive from the internal decryption function D is a plaintext corresponding to a
previous E query. However, in the leakage setting, this no longer holds, because such a query also allows
the adversary to evaluate a leakage function L ∈ LD, albeit on a (N,C) pair that they already know. If
LD contained functions that revealed sufficient information about the key, this would leave the composed
scheme completely broken, despite being secure in the IND–CPLA game. The augmented IND–aCPLA
game, in which the adversary is allowed to make these decryption queries, is sufficiently nuanced to
prevent this.

Security of EtM Composition Schemes. We now describe the security of the composition schemes
A5, A6 and N2, and the iv2n construction. Working under the assumption of OCLI-style leakage, as
described in Section 5.1, we will reduce the security of the composition to the security of its components.
Technically we also have a term quantifying any additional weaknesses due to the composition scheme,
but in all cases this will be zero. The proofs can be found in Appendix A. We begin with N2, and show
it is essentially as secure as the weakest of its components, by constructing explicit adversaries against
each.
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Theorem 1 (nLAE from nLE and LPRF via N2 composition). Let (LE,LD,LT,LV) be leakage sets
for the appropriate primitives, and define (LEnc,LDec) as in Section 5.1. Let A be an adversary against
the (LEnc,LDec)-nLAE security of N2[E,D;T ,V ]. Then, there exist adversaries ACPA,AMAC,APRF

(with similar complexity to A) against the (LE,LD)-nLE security of (E,D), the (LT,LV)-LMAC secu-
rity of (T ,V) and the LT-LPRF security of T respectively, such that:

AdvnLAE
N2;LEnc,LDec

(A) ≤
AdvIND−aCPLA

E,D;LE,LD (ACPA) +AdvLPRF
T ;LT (APRF) +AdvEUF−CMLA

T ,V;LT,LV (AMAC)
.

As the following result shows, the intuitive mechanism for building a nLE scheme from a secure
ivLE scheme and a secure LPRF is itself secure. While unsurprising, this will allow us to instantiate the
N2 construction with the more common object of an ivLE scheme.

Theorem 2 (nLE from ivLE and LPRF). Let (LivE,LivD,LF) be leakage sets for the appropriate
primitives, and define (LE,LD) as in Section 5.1. Let A be an adversary against the (LivE,LivD)-nLE
security of iv2n[ivE, ivD;F ]. Then, there exist adversaries ACPA, APRF (with similar complexity to
A) against the (LivE,LivD)-ivLE security of (ivE, ivD), and the LF-LPRF security of F respectively,
such that:

AdvIND−aCPLA
iv2n;LE,LD (A) ≤AdvLPRF

F ;LF (APRF) +AdvIND−aCPLA
ivE,ivD;LivE,LivD(ACPA),

Pulling these two results together, we are able to prove the security of the A5 construction. The
security of A6 against adversaries who never repeat the pair (N,A) can be easily recovered from this by
considering it as an equivalent representation of the A5 scheme acting on nonce space N′ = N × A but
with no associated data.

Theorem 3 (nLAE from ivLE and LPRF via A5 composition). Let (LivE,LivD,LT,LV,LF) be leak-
age sets for the appropriate primitives, and define (LEnc,LDec) as in Section 5.1. Let A be an ad-
versary against the (LEnc,LDec)-nLAE security of A5[ivE, ivD;F ;T ,V ]. Then, there exist adver-
saries ACPA,APRF,AMAC,A′PRF (with similar complexity to A) against the (LivE,LivD)-ivLE security
of (ivE, ivD), the LF-LPRF security of F , the (LT,LV)-LMAC security of (T ,V) and the LT-LPRF
security of T respectively, such that:

AdvnLAE
A5;LEnc,LDec

(A) ≤AdvIND−aCPLA
E,D;LivE,LivD(ACPA) +AdvLPRF

F ;LF (APRF)

+AdvLPRF
T ;LT (A

′
PRF) +AdvsEUF−CMLA

T ,V;LT,LV (AMAC),

Theorem 4 (nLAE from ivLE and LPRF via A6 composition). Let (LivE,LivD,LT,LV,LF) be leak-
age sets for the appropriate primitives, and define (LEnc,LDec) as in Section 5.1. Let A be an adversary
against the (LEnc,LDec)-LAE security of A6[ivE, ivD;F ;T ,V ] who does not make two encryption
queries with the same (N,A) pair. Then, there exist adversaries ACPA,APRF,AMAC,A′PRF (with simi-
lar complexity to A) against the (LivE,LivD)-ivLE security of (ivE, ivD), the LF-LPRF security of F ,
the (LT,LV)-sEUF-CLMA security of (T ,V) and the LT-LPRF security of T respectively, such that:

AdvnLAE
A6;LEnc,LDec

(A) ≤AdvIND−aCPLA
E,D;LivE,LivD(ACPA) +AdvLPRF

F ;LF (APRF)

+AdvLPRF
T ;LT (A

′
PRF) +AdvsEUF−CMLA

T ,V;LT,LV (AMAC),

5.4 Achieving Misuse Resistant LAE security

In Section 5.2 we discussed why no composition scheme can be (generically) secure against leakage if
it begins by calculating a candidate plaintext. This meant ruling out every NRS construction secure in
the nonce misuse model, an important feature for a modern robust AE schemes [10, 23, 49]. Roughly
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Fig. 7: The Synthetic-IV-and-Tag (SIVAT) scheme. On the left, the encryption routine runs from top to
bottom, outputting a ciphertext I||C||T . Decryption (on the right) runs from bottom to top. If during de-
cryption verification fails, and Vkm returns ⊥, no further computations are performed. In the decryption
direction, the PRF F is not required.

speaking, to be MRAE a scheme must be MtE (to ensure maximum diffusion) and to be leakage resilient
it must be EtM (to ensure minimal leakage).

The Synthetic IV and Tag (SIVAT) scheme, defined in Figure 7, addresses the combined mrLAE
goal, and can be seen as MtEtM. It be seen as composing the SIV construction [49] (referred to as A4
in NRS) with a secure MAC, or alternatively as the natural strengthening of A6 towards nonce misuse
security, by adding the message to the IV calculation and making the appropriate modifications this leads
to.

This additional feature does come at a cost. While schemes in the traditional setting achieve misuse
resistance for the same ciphertext expansion as non-resistant schemes, the SIVAT scheme requires es-
sentially double that. It also has a large number of internal wires, with each function taking in a large
number of inputs, although removing any one leads to incorrectness or insecurity. For encryption calls,
all inputs must go into the LPRF (for misuse resistance) and for decryption they must go into verification
(to prevent RUP attacks).

The proof is very similar to that for A5 or A6 (Theorems 3 and 4), since the additional element of a
SIVAT ciphertext (I) is present in those settings, and might already be available to the adversary through
leakage.

Theorem 5 (mrLAE from ivLE and LPRF via SIVAT composition). Let (LivE,LivD,LT,LV,LF)
be leakage sets for the appropriate primitives, and define (LEnc,LDec) as in Section 5.1. Let A be an
adversary against the (LEnc,LDec)-mrLAE security of SIVAT[ivE, ivD;F ;T ,V ]. Then, there exist
adversaries ACPA, APRF, AMAC and A′PRF (with similar complexity to A) against the (LivE,LivD)-
ivLE security of (ivE, ivD), the LF-LPRF security of F , the (LT,LV)-EUF-CLMA security of (T ,V)
and the LT-LPRF security of T respectively, such that:

AdvLAE
SIVAT;LEnc,LDec

(A) ≤AdvIND−aCPLA
E,D;LivE,LivD(ACPA) +AdvLPRF

F ;LF (APRF)

+AdvLPRF
T ;LT (A

′
PRF) +AdvEUF−CMLA

T ,V;LT,LV (AMAC).

6 A mrLAE scheme

The A5 and SIVAT composition mechanisms can be instantiated with any suitably secure primitives to
yield secure nLAE or mrLAE schemes. In Appendix B, we provide an example of this, proven secure in
the generic group model, and with leakage following the OCLI paradigm. A thorough discussion of the
design choices, specifications, and security justification can be found in the relevant appendices, but for
completeness we provide a brief descriptions here, along with the final theorem statement.

Our construction is bootstrapped from an alternative implementation of the MAC of Martin et al. [34].
We prove that, by using three shares rather than the original two, the tagging function is also a LPRF,
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and demonstrate how to achieve security against verification leakage. We show that CFB mode is a se-
cure IND–aCPLA scheme when built around a LPRF that is suitably secure. Together, these allow us to
construct a secure mrLAE scheme through the SIVAT mechanism.

Theorem 6. Let (LEnc,LDec) be the SIVAT mechanism instantiated with the implementations described
in Appendix B, over a generic group of p elements, and assume that each share of the internal PRF leaks
at most λ per call. Let A be an adversary making at most g direct queries to the generic group oracle, h
queries to the hashing oracle, and q construction queries totalling σ blocks.

AdvLAE
SIVAT;LEnc,LDec

(A) ≤ 27 · 24λ · (g · σ + 1) · (9q + 5σ + g)2

p
.

To get a feel for the practical security level, let’s look at parameters if the schemes are instantiated
over a 512 bit elliptic curves, and we want the keep the attack success probability below 2−60 (a common
limit in the real world, e.g. [32]). Let’s assume that each internal leakage function leaks at most λ =
85 bits, which is approximately a sixth of a group element. Then the scheme would remain secure
until the adversary has encrypted or decrypted 226 blocks, and made a similar number of queries to
the generic group. If Shrimpton and Terashima’s [53] (weaker) notion were considered to be sufficient,
where “recovery information” is not required to be random and hence the LMAC’s tagging algorithm
need not also be a LPRF, we would get even better bounds.

This result comes with a few caveats, covered in more detail by Appendix B.1. In the leakage-free
setting, the scheme is secure in the random oracle model [9], and the leakage resilience security is proven
in the generic group model [52]. Moreover, to ensure security against the leakage of arbitrary functions
of the key, to process q queries of total σ blocks the construction must sample 4q + σ random group
elements in a leakage-resilient manner, which can be complicated [34]. That said, the example provided
is sufficient to demonstrate such schemes can (and indeed, do) exist: improving upon this result is an
obvious candidate for future work.

7 Conclusions and Open Problems

We introduced notions for strengthened AE when considering leakage, discussed generic composition
under leakage, and showed the EtM type constructions can be proven secure in this context. We give a
new scheme, SIVAT, that achieves misuse resistance and leakage resilience simultaneously and give a
concrete instantiation for it. Our research unveils several interesting open problems, which we summarise
subsequently.

IND–aCPLA. We conjecture that for many reasonable leakage sets LE, LE-IND–CPLA implies
(LE,LE)-IND–aCPLA, up to some minor bookkeeping to ensure correct syntax. We leave it as an inter-
esting question to prove this or find a counter-example. More generally, is there some way of defining
LED as a function of some general setsLE,LD such thatLED-IND–CPLA =⇒ (LE,LD)-IND–aCPLA.
A trivial result exists if one allows nonce-reuse (since repeated E-queries can simulate any valid D-
queries), but the nonce or iv respecting cases remain open.

MtE with restricted leakage sets. The insecurity of the majority of the MtE schemes when considering
leakage comes from a generic attack against any schemes whose inverse follows the decrypt-then-verify
or decrypt-and-verify structure. We leave it as an interesting open question to investigate the leakage
security under other more restricted leakage sets.

Misuse resistance without message expansion. We demonstrate that misuse resistance can be achieved
through generic composition, at the cost of additional message expansion, using a MAC-then-Encrypt-
then-MAC structure (leading to SIVAT). We believe that dedicated constructions are likely to be exist
that can achieve mrLAE security with minimal expansion, or more generally LAE without requiring
independent keys.
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A Security Proof for Generic Composition

Proof (Of Theorem 1). We will split into two cases, based on whether the adversary constructs a forgery
against the MAC or not. The first of these will be dealt with by constructing an adversary AMAC against
the LMAC security of the MAC. Then, under the assumption that this does not happen, we reduce to the
IND–aCPLA security of E , before finally using the PRLF security of T to complete the proof. This is
formalised using the oracles of Figure 8.

Using an identical-until-bad argument with variable forge and the event that forge → true, we first
simplify the real and ideal worlds.

∣∣∣Pr
[
AEnck,Deck,`[Enc]k,`[Dec]k → 1 | forge

]
· Pr

[
AEnck,Deck,`[Enc]k,`[Dec]k sets forge

]

−Pr
[
A$,⊥,`[Enc]k,`[Dec]k → 1 | forge

]
· Pr

[
A$,⊥,`[Enc]k,`[Dec]k sets forge

]∣∣∣
≤ max(Pr

[
AEnck,Deck,`[Enc]k,`[Dec]k sets forge

]
,Pr

[
A$,⊥,`[Enc]k,`[Dec]k sets forge

]
).

Until forge occurs, Dk is identical to ⊥, because the adversary may not forward queries from `[Enc]k to
their challenge decryption oracle (or this would provision a trivial win). So, the only difference between
these two terms is whether the first oracle is honest (Enck) or ideal ($). We cannot in general determine
which of these terms is larger since for any A there exists an B who simply runs A and inverts the answer
of A as his own.

We bound these by constructing an adversary AfMAC against the LMAC security of (T ,V), where
f ∈ {Ek, $} defines which of these two worlds AfMAC will simulate. AfMAC begins by sampling a
key for the encryption scheme (E,D) and instantiates her internal f oracle as either Ek or a random
function $ as required. She runs A on an instantiation of the N2 construction, and forwarding any LMAC
related queries to her own oracles. For challenge encryption queries, she answers with f , and any other
encryption-related queries are answered by her own version of E . If A completes without triggering
forge, they return 0. If A triggers forge through a `[Dec]k query, AfMAC resets forge and repeats the
query to D. Then, AfMAC returns 1 if the D set forge. This can only happen if V returned >, meaning
they have distinguished the honest verification. Since LEnc and LDec obey the OCLI assumption, at no
point does A ask a leakage query that it is impossible for AfMAC to answer, and at no point does A ask
any other query AfMAC forbidden from asking. Thus AfMAC is always able to run A in this manner, and
so

Pr
[
Af,Deck,`[Enc]k,`[Dec]k sets forge

]
= AdvEUF−CMLA

T ,V;LT,LV (AfMAC).

Since we are interested in simply an existence result, define AMAC to be whichever of A$
MAC and AEkMAC

maximises this term. So,

AdvLAE
N2;LEnc,LDec

(A) :=∆
A

(
Enck,Deck, `[Enc]k, `[Dec]k
$ , ⊥ , `[Enc]k, `[Dec]k

)

≤ ∆
A

(
Enck,Deck ,`[Enc]k, `[Dec]k
$ , ⊥ ,`[Enc]k, `[Dec]k

)
+AdvEUF−CMLA

T ,V;LT,LV (AMAC).

So, consider now the remaining advantage term. Since the adversary is prohibited from passing
queries from his honest `[Enc]k oracle to his challenge decryption oracle, Deck is identical to ⊥. Thus
we are left just to bound the term

∆
A

(
Enck,⊥, `[Enc]k, `[Dec]k
$ ,⊥, `[Enc]k, `[Dec]k

)
≤ ∆

A

(
Enck ,⊥, `[Enc]k, `[Dec]k
Enck ,⊥, `[Enc]k, `[Dec]k

)
+∆

A

(
Enck ,⊥, `[Enc]k, `[Dec]k
$ ,⊥, `[Enc]k, `[Dec]k

)

.

(1)

Moreover, `[Dec]k can be simplified slightly, since the final else section is entered if and only if
(N,A,C) ∈ X . That is, the adversary is only provided with leakage on the internal decryption function
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function Enck(N,A,M )
ke||km← k
Ce←E(ke, N,M)
Ce← $(N,M)
T ←T (km, N ||A||Ce)
C←Ce||T
return C

function Deck(N,A,C)
ke||km← k
Ce||T ←C
v←V(km, N ||A||Ce, T )
if (N,A,C) /∈ X ∧ v = > then

forge← true
v← ⊥

if v = ⊥ then
return ⊥

M←D(ke, N,A,Ce)
return M

function `[Enc]k(N,A,M ;L)
ke||km←k
Le||Lt←L
re||rm ←$ R
Ce,k

′
e←E(ke, N,M ; re)

Λe←Le(ke, N,M ; re)
T,k′m←T (km, N ||A||Ce; rm)
Λt←Lt(km, N ||A||Ce; rm)
k←k′e||k′m
C←Ce||T
X ←∪ (N,A,C)
return (C,Λe||Λt)

function `[Dec]k(k, N,A,C;L)
ke||km←k
Lv||Ld←L
re||rm ←$ R
Ce||T ←C
v,k′m←V(km, N ||A||Ce, T ; rm)
Λv←Lv(km, N ||A||Ce, T ; rm)
if (N,A,C) /∈ X ∧ v = > then

forge← true
v← ⊥

if v = ⊥ then
k←ke||k′m
return (⊥, Λv)

else
M,k′e←D(ke, N,A,Ce; re)
Λe←Ld(ke, N,A,Ce; re)
k←k′e||k′m
return (M,Λv||Λd)

Fig. 8: The oracles used in the proof of security for composition scheme N2[E,D;T ,V ]. The oracles
Enck,Deck implement the scheme honestly and do not include the boxed code. Oracles `[Enc]k, `[Dec]k
implement the leakage oracle and split the leakage function following the OCLI paradigm, again not
including the boxed code. In each case, including the boxed code leads to a variant used in the proof,
which we denote with a box. Thus Enck is Enck with the boxed code included.
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D if making a query equivalent to a previous encryption query. Define ACPA to be an IND–aCPLA
adversary, interacting with E,D. They will run A on a simulation of N2, where the compositions en-
cryption queries are forwarded to their own oracles, and the tagging queries are run locally by picking a
fresh key and verification queries are always⊥. If ACPA is in the real world and their challenge oracle is
honest, the oracles they provide are precisely Enck,⊥, `[Enc]k, `[Dec]k . If they are in the ideal world,
then the first oracle provided to A is instead Enck . Thus they distinguish if and only if A does, and so

∆
A

(
Enck ,⊥, `[Enc]k, `[Dec]k
Enck ,⊥, `[Enc]k, `[Dec]k

)
= AdvIND−aCPLA

E,D;LE,LD (ACPA).

The only difference between $ and Enck is that in the second case the tag is not sampled uniformly
at random. We construction a PRLF adversary APRF against the PRLF security of T in the obvious
manner. They run A on a simulated version of N2 and forward As result as their own. To answer oracle
queries from A, APRF samples a key and uses this to simulate all the encryption-related functionality.
Queries made to T via the Enck oracle are answered by their own challenge oracle, and queries made
through `[Enc]k by their own leakage oracle. Thus

∆
A

(
Enck ,⊥, `[Enc]k, `[Dec]k
$ ,⊥, `[Enc]k, `[Dec]k

)
= AdvPRLF

T ;LT (APRF).

Collecting these bounds together gives the claimed result. ut

Proof (Of Theorem 2). By triangle inequality,

AdvIND−aCPLA
iv2n;LE,LD (A) = ∆A

(
Ek,`[E]k, `[D]k
$ ,`[E]k, `[D]k

)

≤ ∆A

(
Ek ,`[E]k, `[D]k
Ek ,`[E]k, `[D]k

)
+∆A

(
Ek ,`[E]k, `[D]k
$ ,`[E]k, `[D]k

)
.

Let APRF be a PRLF adversary against F . She runs A on a simulated version of the construction. To
answer As challenge queries, they use their challenge oracle for F and a random key to instantiate ivE .
Since the leakage sets follow the OCLI paradigm, any leakage function Lf is a valid query to make to
their own leakage oracle, so the first half of the leakage oracle can be simulated using their own leakage
oracles. For the second half of the leakage oracles, they use their ivE key to evaluate ivE, ivD and Le.
Finally, they forward As answer as their own. If their challenge oracle is honest, this perfectly matches
(Ek, `[E]k, `[D]k), whereas if their challenge oracle is ideal this exactly matches ( Ek , `[E]k, `[D]k).
Thus,

∆
A

(
Ek ,`[E]k, `[D]k
Ek ,`[E]k, `[D]k

)
= AdvPRLF

F ;LF (APRF)

Conversely, let ACPA be an adversary against the (LivE,LivD)-ivLE security of (ivE, ivD). He
runs A, answering any encryption-related queries with his own oracles, and evaluating the rest locally.
Then, he forwards As response as his own. At no point does A ask a query that he is himself forbidden
from asking his oracles, and the leakage sets (`[E]k, `[D]k) follow the OCLI paradigm, meaning any
leakage queries he forwards are valid. Moreover, since the variable I is randomly sampled, he is an
iv-respecting adversary. The fact A has access to I , the IV, through leakage does not prevent this since
it is only available after the fact, and not in advance. In the real world, the oracles he proves A match
Ek , `[E]k, `[D]k, and in the ideal case they match $, `[E]k, `[D]k. Thus,

∆
A

(
Ek , `[E]k, `[D]k
$ , `[E]k, `[D]k

)
= AdvIND−CPLA

ivE,ivD;LivE,LivD(ACPA)

Substituting these into the above expansion competes the proof. ut
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function Ek(N,M )
kf ||ke← k
I←F(kf , N,M)
I← $(N,M)
C← ivE(ke, I,M)
return C

function `[E]k(N,M ;L)
kf ||ke←k
Lf ||Le←L
rf ||re ←$ R
I,k′f←F(kf , N,M ; rf )
Λf←Lf (kf , N,M ; rf )
C,k′e← ivE(ke, I,M ; re)
Λe←Le(ke, I,M ; re)
k←k′f ||k′e
return (C,Λf ||Λe)

function `[D]k(N,M ;L)
kf ||ke←k
Lf ||Ld←L
rf ||re ←$ R
I,k′f←F(kf , N,M ; rf )
Λf←Lf (k, N,M ; rf )
C,k′e← ivD(ke, I,M ; re)
Λd←Ld(ke, I,M ; re)
k←k′f ||k′e
return (C,Λf ||Λd)

Fig. 9: Oracles from the security proof of iv2n. On the left Ek describes the scheme, and does not include
the boxed code. Ek , which does, is an intermediate step used in the proof. The centre and right are `[E]k
and `[D]k, with the leakage function and implementation written out in full as per their definitions. The
leakage from `[E]k is Lf ||V ||Le, and leakage from `[D]k is Lf ||V ||Ld.

Proof (Of Theorem 3). Chain Theorems 1 and 2. ut

Proof (Of Theorem 5). We immediately observe that the SIVAT construction contains no wires that
are not given to the adversary as output, or themselves inputs. Thus the leakage can be expressed very
succinctly as leakage of the internal primitives alone, (along with the order in which this occurs). With
this in mind, the proof proceeds in a similar, manner to that of Theorems 1 and 2 above, if anything
being simpler. Let A be an adversary against the mrLAE security of SIVAT, and recall that this means he
never repeats the triple (N,A,M) on an encryption query, nor forwards queries to/from his challenge
oracles.

We begin almost identically to the proof of Theorem 1, performing an identical-until-bad switch on
both real and ideal worlds. We define the event forge as whether the adversary can make a decryption
query (N,A, I||Ce||T ) that is not the result of a previous encryption query but that Vkm(N,A, I||Ce||T ) =
> when interacting with oracles (f,D, `[Enc]k, `[Dec]k) for f ∈ {Enc, $}. By the same logic as be-
fore exist explicit adversaries AfMAC such that the probability the adversary A triggering forge in either
setting is less than that of AMAC winning the EUF–CMLA game.

Next, define an adversary against the PRLF security of F , analogous to that in 2. They build the
SIVAT construction around their own challenge and leakage oracles, instantiated the ivE and tagging
schemes with internally sampled primitives: after the previous switch verification can be idealised to
reject all non-forwarded queries. They run A on this, and output As result as their own. Since A never
repeats a triple (N,A,M), every query made to the PRF is unique, making APRF a valid PRF adversary.
So, A can distinguish whether F has been replaced with an idealised version if and only if APRF wins
the PRLF game.

Third, we replace E with the idealised form $. As with Theorem 1, we construct the adversary ACPA

against the IND–aCPLA security of (E,D) who builds this scheme by choosing the other primitives
himself, runs A on it and forwards As result as his own. He is able to do this because the only decryption
queries that call D or `[D]k are those which are repeats of previous queries, due to the earlier switch of
V . Then A distinguishes between these cases if and only if ACPA wins the IND–aCPLA game.

Finally, we construct an adversary A′PRF against the PRLF security of T , who simply runs A on an
implementation of SIVAT in which every component has been idealised other than T and its associated
leakage. This completes a chain of game hops which have taken us from the real to the ideal world,
leaving just to collect the terms to form the final bound. ut

B An instantiation of the SIVAT mechanism

In this section we describe how one can instantiate our generic scheme with concrete functions, again
within the OCLI paradigm. At the lowest level, we construct PRLF and LMAC implementations where
each algorithm consists of three phases. These implementations are secure as long as the phases leak
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function Tk(M )
Yi← e(k,H(M))
return Yi

function Vk(M,T ; ri+1)
Y ← e(k,H(M))
return (Y = T )

function T 2(M ; ri+1)

S H#

i+1,W, Y

H#

i ←T H# (S H#
i ,M ; ri+1)

S G#

i+1, Yi←T G# (S G#

i ,W, Y
H#

i ; ri+1)
return Yi

function T H#

2 (S H#

i ,M ; ri+1)
W ←H(M)

Y H#

i ← e(S H#

i ,W )

S H#

i+1←S H#

i · ri+1

return (S H#

i+1,W, Y

H#

i )

function T G#

2 (S G#

i ,W, Y

H#

i ; ri+1)

Y G#

i ← e(S G#

i ,W )

Yi←Y H#

i · Y G#

i

S G#

i+1←S G#

i · r−1
i+1

return (S G#

i+1, Yi)

Fig. 10: The MOSW MAC Construction [34]. On the left are the tagging and verification functions Tk
and Vk. Below them is T 2, a secure (LT2 , ∅)-LMAC implementation of the tagging function. The key
and computation are split into two shares shown on the right, which can be assumed to leaks indepen-
dently.

independently, and no phase leaks more than λ bits. On top of this PRLF, we construct an ivE scheme
secure against arbitrary leakage from the composition and the same PRLF leakage as above.

We begin by restating the MAC of Martin et al. [34], on which our constructions are based. We prove
that using three shares, the tagging implementation is a PRLF (but two shares are not sufficient). Next,
we enhance the MAC by adjusting the verification routine such that it remains secure under leakage.
Then, we show that a PRLF in CFB mode is a secure (iv-based) leakage resilient encryption scheme.
Finally we combine these primitives within the A5 and SIVAT structures to form LAE and mrLAE
schemes.

B.1 Recalling the MOSW MAC

Martin et al. [34] designed a MAC that computes the pairing of the key with a hash of the message.
Using a technique of Kiltz and Pietrzak [27], they demonstrate how to split the tagging oracle into two
shares. We will refer to it as the MOSW construction and this tagging implementation as T 2. It has been
reproduced in Figure 10, using slightly different notation to the original.

They prove it secure against adaptive leakage on tagging queries from the leakage set LT2 , the set
containing all functions of the form

LT2((S

H# , S G# ),M ; r) = (L H# (S H# ,M ; r), L G# (S G# , H(M), Y H# ; r))

where L H# and L G# output λ bits, S H# and S G# is the secret information used by each half, r is the
randomness, and Y H# is the information passed from the first half of the function to the second half. It
will form the basis for our constructions, but is not itself suitable for any of our requirements, since the
authors do not provide an implementation secure under verification leakage, nor is it a PRLF (in the next
section we will show that it is a PRF, but not a PRLF).

A note on notation. The symbols H# , G# and later 	 will be used to refer to the different shares and
subroutines used within the function. They are run sequentially from “top to bottom”.

In the MOSW work, T H#

2 generated the randomness it required and passed it to T G#

2 . Here, we have
T 2 generate all randomness and pass it into the functions. This is to match our definition of an imple-
mentation and keep the functions themselves more concise. However, as discussed in the MOSW work,
how randomness is generated effects the amount of information that an adversary can extract from a
device, and thus it must still be taken into consideration. Instead of giving the leakage function access to
W , we write H(M), to show how the input to the leakage function relates to the inputs of the functions.
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B.2 Modelling Discussion

Before giving the details of the primitives used to instantiate the generic constructions from Sect. 5, we
describe any assumptions that will be required for the remainder of this work. We explicitly detail any
subtleties that arise from the interaction of leakage and well studied models.

Model assumptions. In the leakage free case, our constructions are secure in the random oracle model [9].
When leakage is available, we will extend to the generic group model, allowing us to model internal
curve points. This is in contrast to the other works in the literature [20,27] that require the generic group
model to achieve security even without leakage.

The generic group model [35, 39, 52] was designed to model groups where the adversary cannot
exploit the structure of the underlying group. The model we follow here, due to Shoup [52], achieves this
by representing group elements as random bit strings. The bilinaer GGM [14] extends this to provision a
bilinear pairing e between groups, acting in a similar way. The only operation an adversary can perform
locally is equality testing (by comparison of bitstrings), while to perform the group operation or bilinear
pairing they must interact with their oracles. A result of using the GGM to model a group, it implicity
assumes that the group operations themselves do not leak. Therefore, in practice, the group operations
would have to be implemented using counter-measures.

We also assume the existence of a secure hash function, which we model in the random oracle
model [9]. The random oracle is publicly accessible, and so we provide both the adversary and their
leakage functions implicit access to it. We need not consider additional leakage from random oracle
queries, since in every use case their inputs will already be known to the adversary or the leakage
function.

Caveats and limitations. Our proofs also assume evaluation of an arbitrary sized input hash function
takes a fixed amount of effort. If the hash did not support this functionality, the advantage of our two
general constructions would be slightly different as the PRLF and MAC hash more data in SIVAT than
in A5.

Another caveat to our results is that this particular instantiation provides indistinguishability from
a stream of random elliptic curve group elements, and not indistinguishability from random bit strings.
While this is a slightly weaker notion of security, it still implies the key requirements of traditional
left-or-right, real-or-random security [6]. Work by a number of authors on “Elligators” [3,11,55] has in-
vestigated how to efficiently convert pseudo-random elliptic curve points into pseudo-random bitstrings,
but are not without issue.

B.3 A Leakage-resiliant PRF

Since at the base level a PRLF instantiates the majority of our components for the generic composition,
we begin by constructing this. There have been two leakage resilient PRFs in the continuous leakage
model [16, 18], but neither provides adaptive security. We claim that T is a secure PRF in the classical
setting, and can be implemented as a PRLF. Thus we begin by showing that the output is indeed pseudo
random in the leakage-free case. The proof is extremely similar to that for the original MAC, except the
reduction goes to a decisional bilinear Diffie-Hellman assumption, rather than the computational version
used in their work.

Theorem 7. Let A be an adversary against the query PRF security of T : G1 ×G2 → G3. Then there
exists an adversary B (of similar complexity to A) who can break the DTBDH assumption for BG, such
that

AdvPRF
T (A) ≤ qh · qr ·AdvDTBDH

BG (B),

where qh is the number of queries made to the random oracle and qr is the number of queries to the
challenge oracle.
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adversary AO, `[T ]k

M,M ′ ←$ G1

Query Y ←O(M)

Set L H# (S H#

i ,M ; ri+1) := |e(S H#

i , H(M))|λ
Set L G# (S G#

i , H(M), Y H#

i , r

H#

i+1) = |Y · e(S G#

i , H(M))−1|λ
Query Y ′, Λ H# , Λ G# ← `[T ]k(M

′, L H# , L G# )

return (Λ H# = Λ G# )

Fig. 11: An adversary A against the LT2–PRLF security of T . With two generic group elements and two
oracle queries the adversary distinguishes whether O implements T or is ideal with probability 1−2−λ.

function T (M ; r H#

i+1, r
	
i+1)

S H#

i+1,W, Y

H#

i ←T H# (S H#

i ,M ; r H#

i+1)

S	i+1, Y
	
i ←T

	(S	i ,W ; r	i+1)

S G#

i+1, Yi←
T G# (S G#

i ,W, Y

H#

i , Y
	
i ; r H#

i+1, r
	
i+1)

return Yi

function T H# (S H#

i ,M ; r H#

i+1)
W ←H(M)

Y H#

i ← e(S H#

i ,W )

S H#

i+1←S H#

i · r H#

i+1

return (S H#

i+1,W, Y

H#

i )

function T 	(S	i ,W ; r	i+1)
Y	i ← e(S	i ,W )

S	i+1←S	i · r
	
i+1

return (S	i+1, Y
	
i )

function T G# (S G#
i ,W, Y

H#

i , Y
	
i ; r H#

i+1, r
	
i+1)

Y G#

i ← e(S G#
i ,W )

Yi←Y H#

i · Y	i · Y
G#

i

S G#

i+1←S G#

i · (r H#

i+1 · r	i+1)
−1

return (S G#

i+1, Yi)

Fig. 12: A secure PRLF implementation T using three shares.

Given the traditional similarities between a MAC and a PRF, it would be reasonable to expect that,
given that T is both a PRF and (LT2 , ∅)-LMAC secure, it might also be LT2-PRLF. However, this is not
the case, once again highlighting the surprising effects of allowing adaptive leakage. Figure 11 defines an
adversary that can distinguish between a real and random challenge (even in the GGM) when the leakage
set is all leakage functions which output λ bits from each half of the computation (while obeying the
OCLI assumption).

When the challenge is a real PRF call, Y = e(k,H(M)) and so Λ H#

i is λ bits of e(S H#

i , H(M))

and Λ G#

i is λ bits of Y · e(S G#

i , H(M))−1 = e(S H#

i , H(M)) and therefore the two leakage results are

equal with probability one. However, when Y is from $, Λ G#

i will provide λ bits of a random element
and therefore the two outputs are the same with probability 2−λ. Hence the adversary can win the PRLF
game with probability 1− 2−λ.

Constructing a secure PRLF. While it is not possible to show PRLF security for an implementation
with two sections, we are able to recover security with just one further share, forming the three share
implementation shown in Figure 12. The proof reduces from the leakage setting to the leak-free case,
which we already proved secure. Following the OCLI assumption, it is proven secure for leakage set LT
containing all functions of the form:

LT ((S

H# , S	, S G# ),M ; (r H# , r	))
= (L H# (S H# ,M ; r H# ), L	(S	, H(M); r	), L G# (S G# , H(M), Y H# , Y	; r H# , r	)),
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function Vk(M,T ; r H#

i+1, r
	
i+1)

S H#
i+1,W, T

H#

i ←V H# (S H#

i ,M ; r H#

i+1)

S	i+1, h
	
i ←V

	(S	i ,W, T

H#

i ; r	i+1)

S G#

i+1, bi←
V G# (S G#

i ,W, h
	
i , T ; r

H#

i+1, r
	
i+1)

return bi

function V H# (S H#

i ,M ; r H#

i+1)
W ←H(M)

T H#

i ← e(S H#

i ,W )

S H#

i+1←S H#

i · r H#

i+1

return (S H#

i+1,W, T

H#

i )

function V	(S	i ,W, T

H#

i ; r	i+1)

T	i ←T H#

i · e(S	i ,W )

h	i ←H ′(T	i )

S	i+1←S	i · r
	
i+1

return (S	i+1, h
	
i )

function V G# (S G#

i ,W, h
	
i , T ; r

H#

i+1, r
	
i+1)

T G#

i ←T · e(S G#

i ,W )−1

h G#

i ←H ′(T G#

i )

bi←(h	i = h G#

i )

S G#

i+1←S G#

i · (r H#

i+1 · r	i+1)
−1

return (S G#

i+1, bi)

Fig. 13: A secure implementation V . The two-share version V2 merges V H# and V	.

where L H# , L	 and L G# output λ bits, S H# , S	 and S G# is the secret information used by each part,
r H# , r	 is the randomness, and Y H# , Y	 is the information passed from the first two parts of the function
to the final part.

Theorem 8. Let A be an adversary against the LT-PRLF security of T in the generic group model,
then there exists an adversary APRF (of similar complexity to A) against the PRF security of T such
that

AdvPRLF
T ;LT (A) ≤ 24·λ ·AdvPRF

T (APRF) +
γ2

p
,

where γ is the number generic group elements, p is the size of the group and λ is the amount of leakage
allowed per share of the PRF, giving 3 · λ bits leakage per function call.

B.4 A fully Leakage-resilient MAC

The MOSW verification routine uses the classical method of recomputing a tag to verify correctness.
However, this is not secure under verification leakage, since an attacker may leak (functions of) the
candidate tag. Thus providing a MAC secure under verification leakage was left as an open problem.

In this work we answer this, providing a secure verification implementation V in Figure 13. Instead
of calculating a candidate tag, we invert the final pairing step, and surrounding the comparison in a
random oracle query, meaning the candidate tag is never available to the adversary.

For simplicity, consider the (also secure) two share version V2. If T is a valid tag on messageM un-
der key k = S H# ·S G# , then T = e(k,H(M)). Instead of calculating T ′ = e(S H# , H(M)) ·e(S G# , H(M))

and testing whether T ′ = T , we calculate the two pairings and check whether e(S H# , H(M)) =

T · e(S G# , H(M))−1. However, rather than doing this final comparison directly, we enclose each side
in a random oracle call to ensure the adversary can never leak on both parts of the tag in unison. This
results in the comparision of H ′(e(S H# , H(M))) = H ′(T · e(S G# , H(M))−1) This allows us to recover
security even under a large set of verification leakage functions, meaning both (T 2,V2) and (T ,V)
define secure LMAC implementations under the OCLI assumption.

For our overall implementation, we require that the tagging algorithm is a PRLF, and so use the
three share variant V , since key updating agrees with T . To prove security under OCLI, we define the
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V M[1] M[2] M[3] M[4]

Ek Ek Ek Ek

⊕ ⊕ ⊕ ⊕

C[1] C[2] C[3] C[4]

Fig. 14: CFB Mode of Operation. The message M is parsed into blocks M [1]|| . . . ||M [m], and fed
through with the routine to output ciphertextC[1]|| . . . ||C[m]. It is secure if the initial value V is random
and Ek is a PRF.

verification leakage set LV to be the set of functions of the form:

LV ((S

H# , S G# ),M, T ; (r H# , r	))
= (L H#

V (S

H# ,M ; r H# ), L	V (S	, H(M), T H# ; r	), L G#

V (S

G# , H(M), T, T	; r H# , r	))

where L H# , L	 and L G# each output λ bits, S H# , S	 and S G# is the secret information used by each share,
r H# , r	 the randomness, and T H#

i , T	i the information passed between the shares. This allows us to state
the following theorem, reducing to the security in the leakage-free case, shown secure by MOSW.

Theorem 9. Let A be an adversary against the (LT,LV)-sEUF–CMLA security of (T ,V) in the generic
group model, forH ′ a random permuation. Then, there exists an adversary AMAC (of similar complexity
to A) against the sEUF–CMLA security of (T ,V) such that

AdvsEUF−CMLA
T ,V;LT,LV (A) ≤ 24·λ ·AdvsEUF−CMA

T ,V (AMAC) +
γ2

p
,

where γ is the total number of group elements, p is the size of the group and λ is the amount of leakage
output by each of the three parts of the leakage function.

B.5 A Leakage-resiliant IV-based Encryption Scheme

The final component required is an IND–aCPLA secure encryption ivE . We find that CFB mode (Fig-
ure 14) is secure against leakage when instantiated with a PRLF, using a proof that follows the original
proof for CFB without leakage [1]. To instantiate it, we use T , since it is a PRLF secure against leakage
setLT. Then, we define the leakage setLivE to be the collection of all functionsLCFB : K×N×M×R→
{0, 1}∗ that are of the form

LCFB(K,V,M ;R) = {Li(K,Ci;Ri)}n−1i=0

where for i > 0 Ci is the ith block of ciphertext C = ivEk(S, V,M) and C0 = V , M is an n block
message, Ri is the randomness passed to the ith PRLF call and Li ∈ LT is some leakage function of the
PRLF.

This corresponds to applying the OCLI assumption to the design of CFB encryption. It is easy to see
from the diagram above that this includes every internal computation, but does not allow the adversary to
compute functions of variables not used together. Since the number of components of a leakage function
is only bounded by the length of the associated message, leakage means that the longer message, the
more leakage the adversary receives, modelling the fact the longer a device runs the more leakage might
can be captured from it (e.g. a longer power trace).

Being a stream cipher, CFB mode encryption and decryption are extremely similar. Encryption takes
the previous ciphertext block (starting with the IV), runs it through the PRF and xors it to the plaintext
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block to produce the next ciphertext block. Decryption takes in the previous ciphertext block (starting
with the IV), runs it through the PRF and xors it to the current ciphertext block to produce the plaintext
block. Due to the similarities, it makes sense that both encryption and decryption leak the same. Thus
we fix the decryption leakage set to be the same as the encryption leakage, LivD = LivE.

Theorem 10. Let (ivE, ivD) be the symmetric encryption scheme formed from running the PRLF T in
CFB mode. Let A be an adversary against the (LivE,LivD)-IND–aCPLA security of (ivE, ivD). Then
there exists an adversary B (of similar complexity to A) against the LT-PRLF security of T such that

AdvIND−aCPLA
ivE,ivD;LivE,LivD(A) ≤AdvPRLF

T ;LT (APRF) +
q2e · s2
|T| ,

where σ is the total number of blocks encrypted and |T| is the blocksize.

B.6 nLAE and mrLAE constructions in the generic group model

Collecting together the bounds for each component with the security of the A5 and SIVAT composition
mechanisms, we are able to give the first provably secure leakage resilient AE scheme. Carefully count-
ing the number of generic group queries γ made by the different elements of the construction, we find
that γ ≤ 26q+14σ+3g, where g is the total number of direct queries the adversary makes to the generic
group or random oracle, q the number of AE oracle queries (honest or challenge) of total σ blocks.

Theorem 11. Let ivE, ivD,T ,V be the primitives defined in this section, and A5 = A5[ivE, ivD;T ;T ,V ].
Then for any adversary A,

AdvLAE
A5;LEnc,LDec

(A) ≤ 24λ · (g · (2q + σ) + 3) · γ2 + σ2

p

≤ 27 · 24λ · (g · σ + 1) · (9q + 5σ + g)2

p
.

Theorem 12. Similarly, SIVAT[ivE, ivD;T ;T ,V ] is mrLAE secure, with the same bound as Theo-
rem 11.

If Shrimpton and Terashima’s [53] (weaker) notion were considered to be sufficient, where “recovery
information” is not required to be random and hence the LMAC’s tagging algorithm need not also be a
LPRF, we would get even better bounds.

C Security Proofs for Leakage Resilient Components

In this section we provide the proofs (and any supporting material) for all the theorems given in Sec-
tion B.

Before we do so, we first introduce a bilinear Diffie-Hellman problem.. The problem introduced is
the decisional variant of the problem used to prove the security of the MAC by Martin et al. [34].

Definition 13 (Decisional Target Bilinear Diffie–Hellman Problem (DTBDH)). Let BG = (G1,G2,G3, e, p)
be a set of groups with a pairing between them. The decisional target bilinear Diffie-Hellman problem
is then defined as; given g1, g2, gx2 , g

y
3 , g

z
3 determine if gz3 = gx·y3 or gz3 = gr3, where x, y, r are chosen

uniformly at random from Zp and z = x · y if b = 1 and r otherwise for b chosen uniformly at random
from {0, 1}. Given an adversary A, their advantage is defined as:

AdvDTBDH
BG (A) :=Pr[A(g1, g2, gx2 , g

y
3 , g

xy
3 ) = 1]− Pr[A(g1, g2, gx2 , g

y
3 , g

r
3) = 1].

Now that the definition is in place we are able to give the proof of the theorem statements.
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adversary B(g1, g2, gx2 , g
y
3 , g

z
3 )

j← 0
m← 0
s ←$ [qh]
b′←AH(·),RR(·,·)()
return b′

simulator H(X)
m←m+ 1
if m == s then

W [X]←×
return gx2

else
if W [X] ==⊥ then

W [X] ←$ Zp
return gW [X]

2

simulator RR(X)
j← j + 1
if j > i then

Y ←$ G3

else if j == i then
if W [X] == × then

Y ← gz3
else

ABORT
else

if W [X] == × then
ABORT

if W [X] ==⊥ then
W [X] ←$ Zp

Y ←(gy3 )
W [X]

return Y

Fig. 15: Adversary B simulates the hybrid games Hi−1, Hi for adversary A

Proof (Of Theorem 7). Let A be an adversary against the query PRF security of T (assume without loss
of generality the adversary makes unique queries), then it is possible to construct a series of hybrid games
(given in Fig. 15). In game Hi the first i queries correspond to real queries, while the remaining queries
are responded to with random queries. Game Hqr corresponds to the real world while H0 corresponds
to the random world. If A can distinguish between these two games with probability ε there exists two
consecutive games Hi−1, Hi that they can distinguish between, with probability at least ε

qr
. Figure 15

shows how an adversary B against the DTBDH assumption can simulate these two games for adversary
A.

Assume without loss of generality that the value X sent to the PRF on the ith query was sent to the
random oracle beforehand. If B can guess which query to the random oracle the value X was sent, the
reduction will behave as expected. As the oracle will return gz3 , which is either gxy3 or gr3 corresponding
to the two hybrids Hi or Hi−1. The probability that this happens is 1

qh
.

When the adversary B can guess which oracle query the ith challenge query is, all queries j > i
return random results, while if j < i the RR oracle returns real values (it will not trigger the abort since
the X which has the flag set is query i). Query i in this scenario returns the DTBDH challenge. It then
follows that z is real or random depending if the adversary is playing hybrid Hi or Hi−1 respectively.
Thus, if adversary A can distinguish between these two hybrid games, B can win the DTBDH game.
Putting it all together gives the desired result. ut

Proof (Of Theorem 8). The proof is given in the Generic Group Model and shows that the use of leakage
does not allow the adversary to learn any elements that they would be unable to learn if no leakage had
been involved. Once this has been shown, it follows that the adversary’s advantage can at most be
increased by the number of bits that can be learnt about a single element. By showing that each element
is only leaked, at most, four times, the adversary’s advantage can, at most, be increased by 24·λ over the
advantage in the game where no leakage is involved.

Group elements will be represented by polynomials, which will be instantiated at the end of the
computation. The polynomials allow the game to keep track of which elements the adversary has asked
for in a straightforward manner and because they are instantiated at the end of the computation, the
adversary’s decisions clearly cannot depend on the actual values of the elements. It must be shown that
the chance of these polynomials colliding when evaluated is small (it will be shown to be q2

p ). Since the
PRLF involves three groups, polynomials will be tracked per group.

Let K , {R H#

j }qRj=0{R	j }
qR
j=0, {Hi}

qH
j=1, {Uj}2·qOj=1 , {Vj}

2·qO
j=1 , {Wj}2·qOj=1 , {Yj}

qR
j=0 be indeterminants where

qH is the number of hash queries, qR is the number of calls to the challenge oracle, qF is the number
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of calls made to the PRF oracle and qO is the number of group oracle calls (by the adversary). The in-
determinants represent the following; K is the secret key, {R H#

j }qRj=0, {R	j }
qR
j=0 are the randomness used

to update the key, {Yj}qRj=0 is the output from the challenge oracle, {Hi}qHj=1 represent any hash func-
tion queries and {Uj}2·qOj=1 , {Vj}

2·qO
j=1 , {Wj}2·qOj=1 represent any elements that are guessed in G1,G2,G3

respectively. Let q = qH + 8 · qR + 8 · qF + 3 · qO, the factor 3 arises from the fact the adversary can
guess the representation of two elements being passed into a binary operation and learns another from
the output, thus adding, at most, 3 elements to the list per oracle call. Calling either the challenge or PRF
oracle adds 8 polynomials to the list; the 3 updated shares, the PRF output and an extra element (since
the calculuation requires two multiplications) and the three intermediate values Y H# , Y	, Y G# . The lists
L1,L2,L3 are used to keep track of polynomials and their representations in G1,G2,G3 respectively.
They are initialised as follows:

L1 = {(1, ξ11)} ∪ {(R H#
j , ξ

1
i+2)}qRj=0 ∪ {(R	j , ξ1i+qR+2)}qTj=0

L2 = {(1, ξ21)}
L3 = {(1, ξ31)}

where the ξij are chosen uniformly at random from Ξi, such that all polynomials have a unique repre-
sentation. The sets the representations are drawn from Ξ1, Ξ2, Ξ3 (for G1,G2,G3 respectively) are all
disjoint. All three lists are initially instantiated with the identity. Note that it is not strictly necessary to
instantiate the identity in G3 since it can be calculated using the other information provided. We pre-
compute the representations of the randomness used for the key update, the r H#

i ’s and r	i ’s, but since the
adversary does not have access to this list of elements, this does not effect the game.

The Adversary A outputs a bit b′ and is said to have won if:

1. F l
i = F l

j for l ∈ {1, 2, 3} and i 6= j

2. b′ = b

The first case corresponds to the adversary being able to create two polynomials which evaluate to the
same value. If this occurs then a single group element has two representations. The adversary is said
to have won because the simulation has been broken. The second case corresponds to the adversary
being able to distinguish which world they are in. The only way (beyond guessing) that an adversary can
distinguish between the two worlds is if they can construct a polynomial F 3

i such that F 3
i − K · H = 0.

Where H is the indeterminant corresponding to the hash of an X that has not been sent to the PRF
oracle. This corresponds to the adversary winning the PRLF game. We first bound the chance of a
collision and then go on to bound the chance of winning the game.

All polynomials originally in L1,L2,L3 are of degree one and the only operation that increases the
degree is the pairing operation which can only be called on elements in G1,G2. This means that degree
two polynomials can be in G3 but not the other two lists (since there is no way to get an element of
G3 into either of the other two groups). Hence, by the Schwartz-Zippel lemma, the probability of two
(non-zero) polynomials evaluating to the same value is 2

p . Since there are, at most, q polynomials, there

are
(
q
2

)
≤ q2

2 pairs of polynomials that could collide and thus the probability of any two polynomials
colliding is q2

p .
Without loss of generality, we will now only look at leakage in the target group G3 since any element

from G1,G2 calculated by the leakage can be transferred over to G3 using a pairing, with the correspond-
ing generator, and any elements known to the adversary can easily be embedded into the leakage by the
adversary as required. Since, any element which can be leaked upon from L1 or L2 can be leaked on
from L3, by transferring the element to G3 with a pairing, this does not weaken the adversary.

While only the leakage from L3 needs to be considered, due to the OCLI assumption F H# , F	 and
F G# will have access to different secret information and, due to the randomness used to update the key,
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each iteration will have access to different secret information. The lists L H#

i , L	i and L G#

i will represent

all elements which can be calculated by L H#

i , L	i and L G#

i respectively.

Let L H#
i be the set of elements that could be computed by the leakage function L H#

i . Then, utilising
the leakage functions from the theorem statement:

L H#

i = {A · S H#

i +B · R H#

i+1 + C}

Where A,B ∈ Fp[{Hj}qHj=1, {Vj}
2qO
j=1] and C ∈ Fp[K {Hj}i−1j=1, {Hj}

qH
j=1, {Yj}

qR
j=1, {Uj}2qOj=1,

{Vi}2qOi=1 , {Wi}qOi=1] and S H#

i denotes
∑i

j=0 R H#

j (corresponding to the definition of S H#

i in the PRLF).

Let L	i be the set of elements that could be computed by the leakage function L	i . Therefore:

L	i = {A · S	i +B · R	i+1 + C}

Where S	i denotes
∑i

j=0 R	j (corresponding to the definition of S	i in the PRLF).

Let L G#

i be the set of elements that could be computed by the leakage function L G#

i . Therefore:

L G#

i = {A · S G#

i +B H# · R H#

i+1 +B	 · R	i+1 + C + d H# · S H#

i · Hi + d H# · S	i · Hi}

Where d H# , d	 ∈ Fp, B H# , B	 ∈ Fp[{Hj}qHj=1, {Vj}
2qO
j=1] and S G#

i denotes K − ∑i
j=0(R

H#

j + R	j )

(corresponding to the definition of S G#

i in the PRLF). Without loss of generality we will assume that ith

PRF call maps to Hi.
The adversary can win if they can leak H · K where H corresponds to some unqueried value X .

However, there is no such linear combination within the leakage sets that allows this to be possible.
To bound the leakage per element, we will only consider leakage functions which contains at least

one unknown group element. Since, while completely known elements can be leaked on multiple times,
they do not give the adversary any new information. By showing that each element can only leak a
bounded number of times (4 times), the adversary cannot learn any group elements which they would
not be able to learn when leakage is not involved and thus the advantage will be increased by at most the
number of bits the adversary can learn.

– S H#

i can be leaked on twice; once in L H#

i−1 since S H#

i−1 is passed in and r H#

i is generated internally

(represented by the polynomials S H#

i−1 and R H#

i ), and once in L H#

i since it is passed in.
– S	i can be leaked on twice; once in L	i−1 since S	i−1 is passed in and r	i is generated internally

(represented by the polynomials S	i−1 and R	i ), and once in L	i since it is passed in.

– S G#

i can be leaked on twice; once each in L G#

i−1 and L G#

i due to a similar argument as above.

– R H#

i+1 can be leaked on twice; once each in L H#

i and L G#

i since it is generated in F H# and then passed

into F G# on the ith iteration.
– R	i+1 can be leaked on twice; once each in L	i and L G#

i since it is generated in F	 and then passed

into F G# on the ith iteration.
– S H#

i · Hi, the intermediated state, can be leaked on 4 times, once in each of; L H#

i−1, L H#

i , L G#

i−1, L G#

i

using the argument above for calculating the next share and the fact for input Xi, on the ith tag call
the intermediate state is generated in F H# and passed into F G# . To leak on this four times will require
querying the same input twice.

– S	i · Hi, the intermediated state, can be leaked on 4 times, once in each of; L	i−1, L	i , L G#

i−1, L G#

i

using the argument above for calculating the next share and the fact for input Xi, on the ith tag call
the intermediate state is generated in F	 and passed into F G# . To leak on this four times will require
querying the same input twice.
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Since each element can only be leaked on, at most, four times, the adversary can only learn up to
4 · λ bits of information per unknown group element. Therefore, the adversary’s advantage can be at
most 24·λ times the advantage of playing the standard non-leakage game. This results in the bound given
in the theorem statement. ut
Proof (Of Theorem 9). In this proof we use the same initial setup of representing group elements as the
PRLF proof, with the same indeterminants. In this game the adversary A outputs the pair (M,T ) and is
said to have won if:

1. F l
i = F l

j for l ∈ {1, 2, 3} and i 6= j
2. K · H ∗ − T = 0 where H ∗ is the indeterminant corresponding to the hash of M , T is the corre-

sponding polynomial for T and T was not output from the tag oracle

The first case corresponds to the adversary being able to create two polynomials which evaluate to the
same value. Two distinct polynomials evaluating to the same value, means that a single group element
has two distinct representations. This breaks the simulation and therefore the adversary is said to have
won the game. As previously this can be bounded as q2

p (for q = qH+12·qR+8·qT+12·qV +3·qO). The
second case corresponds to the adversary being able to create a forgery on the MAC. The polynomial
given in the second case evaluating to zero implies that the adversary output a valid forgery for the MAC.
Therefore, they have won the sEUF–CMLA game.

As before we consider what the ith leakage function can leak on. We now have to consider leakage
sets for both tag and verify queries. The tagging query leakage is the same as the leakage for the PRLF
above but is recapped below.

L H#

i = {A · S H#

i +B · R H#

i+1 + C}

L	i = {A · S	i +B · R	i+1 + C}

L G#

i = {A · S G#

i + B H# · R H#

i+1 + B	 · R	i+1 + C + d H# · S H#

i · Hi + d	 · S	i · Hi}

We then give the leakage sets for verify. It is important to note the extra element in the J G#

i set

(which was added on in the L G#

i set). This cannot be added on in this set because it was passed through
the second hash function H ′ first and therefore is no longer in the group.

J H#

i = {A · S H#

i +B · R H#

i+1 + C}

J	i = {A · S	i +B · R	i+1 + C + d · S H#

i · Hi}

J G#

i = {A · S G#

i + B H# · R H#

i+1 + B	 · R	i+1 + C, d H# · S H#

i · Hi + d	 · S	i · Hi}
The adversary can win if they can leak H · K where H corresponds to some unqueried value X .

However, there is no such linear combination within the leakage sets that allows this to be possible.
To bound the leakage per element, we will only consider leakage functions which contains at least

one unknown group element. Since, while completely known elements can be leaked on multiple times,
they do not give the adversary any new information. By showing that each element can only leak a
bounded number of times, the adversary cannot learn any group elements which they would not be able
to learn when leakage is not involved and thus the advantage will be increased by at most the number of
bits the adversary can learn.

A similar approach, to the one given for the PRLF, can be used to show that each (unknown) element
can be leakage on at most four times. Since each element can only be leaked on, at most, four times,
the adversary can only learn up to 4 · λ bits of information per unknown group element. Therefore,
the adversary’s advantage can be at most 24·λ times the advantage of playing the standard non-leakage
game. This results in the bound given in the theorem statement. ut
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function O1(M )
M1, · · · ,Mn←M
C0 ←$ T
for i = 1 to n do

Fi←Fk(Ci−1)
Ci←Fi ? Mi

C←C0, . . . , Cn
return C

function O2(M )
M1, · · · ,Mn←M
C0 ←$ T
for i = 1 to n do

Fi← $(Ci−1)
Ci←Fi ? Mi

C←C0, . . . , Cn
return C

function O3(M )
M1, · · · ,Mn←M
C0 ←$ T
for i = 1 to n do

Fi ←$ T
Ci←Fi ? Mi

C←C0, . . . , Cn
return C

Fig. 16: The oracles for the games G1, G2, G3, used to prove IND$-CPLA security of CFB mode

adversary APRF
O

b′←AS(·),`[E]k(·,·)

return b′

simulator S(M )
M1, · · · ,Mn←M
C0 ←$ T
for i = 1 to n do

Fi←O(Ci−1)
Ci←Fi ? Mi

C←C0, . . . , Cn
return C

simulator `[E]k(M, l)
M1, · · · ,Mn←M
l1, · · · , ln← l
C0 ←$ T
for i = 1 to n do

Fi, Λi← `[F ]k(Ci−1, li)
Ci←Fi ? Mi

C←C0, . . . , Cn
Λ←Λ0, . . . , Λn
return (C,Λ)

Fig. 17: A PRLF adversary APRF constructed using a distinguisher A for G1, G2, depending if the
oracle O is a real or random PRLF call depends which game the adversary A sees.

Proof (Of Theorem 10). Since CFB mode is a stream cipher, IND–CPLA and IND–aCPLA security
coincide if (as in our setting) the leakage sets are identical. Thus we need only prove the IND–CPLA
security.

The proof of security follows as a series of game hops between games G1 and G3. It can be seen
that game G1 (oracles left of Fig. 16) is exactly the real world of the IND–CPLA game when encryption
is instantiated with CFB mode. The game G3 (oracles right of Fig. 16) is the random world of IND–
CPLA. The randomness is generated in blocks for clarity but this does not change the result compared
to generating the entire ciphertext at once. Bounding the advantage of an adversary between G1 and G3

also bounds the advantage of the adversary winning the IND–CPLA game. To help bound this term we
introduce an intermediate game G2 (oracles middle of Fig. 16) in which the calls to the PRF have been
replaced with calls to a truly random function (with memory).

To complete the proof, the advantage of distinguishing G1 from G2 and G2 from G3 needs to be
bounded. An adversary will be able to distinguishG2 andG3 only when they can cause a collision in the
random function calls, which happens with probability σ(σ−1)2

|T| (by the birthday bound), where σ is the
total number of blocks. If an adversary can cause a collision, it means the same value will be input into
the random function twice, but since, in game G3 the random function has no memory, it will return two
different values. This will allow the adversary to distinguish between the two games. An adversary who
can distinguish between if they are playing game G1 or game G2 can be used to distinguish between the
real and random world of a PRLF: the reduction is given in Fig. 17. ut

To close, we provide justification for the number of generic group elements used, as a function of
the number of queries made by the adversary.

Proof (Of Theorems 11 and 6). Apply almost all the previous theorems to oneanother, and collect terms
to generate the first bound, given in terms of γ. Thus we are left to bound this quantity, the total number
of generic group elements constructed by the adversary. This is just a tedious calculation, and proceeds
as follows.

First we note that for each query to the oracle, inputting just arbitrary strings of their own choice
they may discover said strings were valid and thus learn three new elements. Thus the g oracle queries
made yield up to 3g group elements.
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Consider now the evaluations of the tagging or PRF function T . Assuming all variables are new,
two new elements r must be sampled (2, prior to calling), one hash value (1 operation), 3 partial outputs
(3 pairings), 1 actual output (2 operations), and three updated key shares computed (5 operations). Thus
in total there are 13 new elements for each call to T .

Suppose the adversary makes qe encryption queries of total σe blocks, and to decryption define
qd, σd equivalently. In total across their encryption queries they make qe PRF queries creating the IVs,
σe generating the stream, and qe on tagging queries, along with σe new elements from the chaining
mode. Thus the total number of elements created during encryption is 13(2qe + σe) + σe.

On decryption things are slightly more complicated. Consider a PRF call on an input that has al-
ready been queried. Such a query repeats the hash call, and the final ciphertext call, thus taking 11 new
elements. Verification costs two hash calls more than tagging, but recall invalid queries stop processing
at this point. So, invalid queries (which have new content) cost 15 elements. Valid queries do not create
so many new elements, but do proceed to complete the whole encryption routine. Thus a valid query
requires just 11 new elements per PRF query, but makes as many as the decryption routine. In total then,
a valid query of length σv creates 11(2 + σv). Thus the number of elements created on a decryption
query is maximised by making valid queries, creating a total of 11(2qd + σd) elements.

Overall, the bound is maximised by making just encryption queries, leading to the claimed bound. ut
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