
Efficient Differential Trail Searching Algorithm for ARX

Block Ciphers

Seojin Kim,1† HyungChul Kang,1 Deukjo Hong,2‡ Jaechul Sung,3 Seokhie Hong,1

1Graduate School of Information Security, Korea University

2Department of Information Technology, Chonbuk National University

3Department of Mathematics, University of Seoul

ABSTRACT

In this paper, we suggest an advanced method searching for differential trails of block cipher with ARX structure. We

use two techniques to optimize the automatic search algorithm of differential trails suggested by Biryukov et al. and obtain

2~3 times faster results than the previous one when implemented in block cipher SPECK.

Keywords: ARX structure, Differential trails, Automatic search algorithm, SPECK

I. Introduction

Differential Cryptanalysis is one of the

most powerful methods for the analysis of

block ciphers. It uses a differential

charateristic, which is a transition from

the input difference to the output

difference. The probability of a differential

characteristic is estimated as the product

of probabilities for nonlinear operations

like S-boxes. So, the attack begins with

computing differential distribution tables

of nonlinear operations.

ARX cipher consists of modular

Addition, Rotation, and eXclusive-or. Since

these computations are rather simple,

ARX cipher is commonly applied to a

variety of light-weight block ciphers[6, 7].

In this structure, modular addition takes

the role of non-linear computation like

S-box in other ciphers, so considering input

and output differences of modular addition

is needed. Calculating differential

probability of modular addition, unlike

simple S-box, two inputs and one output

differences should be considered, and input

and output bit size is much bigger than

S-box. As a result, calculating differential

probability of modular addition requires

much more complexity. Therefore

differential analysis of ARX cipher should

begin with another approach, and Biryukov

et al. suggested new method[2]. The

method suggested in [2] is fairly efficient,

but the more rounds are required to be

analyzed, the exponentially more time is

needed.

In the paper, we suggests an algorithm

that improves algorithm suggested by

Biryukov in aspect of computing time.

Suggesting algorithm uses two techniques

to reduce time complexity.

First, we introduce properties of

differential probability of modular



2 Efficient Differential Trail Searching Algorithm for ARX Block Cipher

addition, and describe block cipher SPECK

in Section 2. Then we explain the

algorithm suggested by Biryukov and new

improved algorithm in Section 3, and 4

respectively. Finally, we concludes the

paper in Section 5.

II. Related Works

2.1. Notation

The notation used in this paper is as

follows:

o ⊕: XOR(eXclusive-Or) computation

o ∧: And computation

o : Complementary

o  : Concatenation of bit string , 

o ≫  (≪ ): Bitwise shift operation

to the right (left) by i

o ⋙ ⋘ : Bitwise rotation operation

to the right (left) by i

o : Word size

o : -th bit of word 

o   : The sequence of bits

       

2.2. Block Cipher SPECK

SPECK is a family of lightweight block

ciphers publicly released by National

Security Agency (NSA) in June 2013[3].

SPECK supports a variety of block and

key sizes.

Fig. 1 shows round function of SPECK.

In this paper, we analyze SPECK32, and

SPECK48 that consist of 32, and 48 block

sizes respectively.

Fig. 1. Round Function of SPECK

In Fig. 1,  and  means 16-bit

word in SPECK32, and 32-bit word in

SPECK48.  means round key of -th

round.

-th round can be expressed as follows:


  

⋙⊞
⊕


  

⋘⊕


Rotation constant  and  are   ,

   in SPECK32, and   ,    in

rest of SPECK.

Since key schedule of SPECK has little

thing to do with searching differential path,

for more details about key schedule, see [3].

2.3. Properties of Modular Addition

Fig. 2. Input/Output difference

on S-box and modular addition

XOR difference of modular addition

requires two input difference and one

output difference unlike S-box requiring

one input and output difference. XOR

difference of S-box can be calculated



Efficient Differential Trail Searching Algorithm for ARX Block Cipher 3

through exhaustive search of input

difference and corresponding output

difference. This computation requires   

complexity for -bit input size. In case of

modular addition, since we need to

consider two inputs, complexity increases

to   
. Although the greater 

increases, the more complexity is required,

H. Lipmaa proposed an algorithm that

decreases complexity to [4].

First, we define eXclusive-or Differential

Probability, , of two input differences,

 and , and output difference , as

follows:

Definition 1. [4] Given two input

differences  and , and an output

difference ,  can be calculated as:

  →  

Pr⊕⊕⊕  

Also,  value an be found looking at

carries occurring when operating modular

addition and difference of carries.

Theorem 1. [4] Given two input difference

 and , and an output difference , for

 ∈ , if    ∈ ,

then   →  

Pr⊕⊕⊕  ⊕⊕

where   and  ∧⊕∧

⊕∧.

That is,  calculation requires 

complexity, for -bit  calculation

checks -bit information, .

Theorem 2. [4] Given two input difference

 and , an output difference , every

possible (every differential probability that

is not zero) differential probability

satisfies following equation. Also the

converse is true.

 ≪   ≪   ≪ ∧⊕⊕⊕ ≪   

where,     ⊕∧⊕.

(i.e.     ⇔   )

Therefore if  of two input difference

 and , and an output difference  is not

zero, then for ∈   ,   

  ⊕⊕.

Two theorems above is verified in [4],

and in [4], Lipmaa proposed an algorithm

calculating .

Algorithm 1. [4] Log-time Algorithm

for xdp

Input:   →

Output: 

1. If  ≪   ≪  ≪ ∧⊕⊕⊕

≪ ≠, then return 0;

2. Return 
  ∧

 

 : Hamming weight of 

III. Algorithm suggested by Biryukov[2]

Differential attack begins with

generating difference distribution table,

DDT, of non-linear operation. In case of

S-box, if input difference has -bit, and

output difference has -bit, then the size

of DDT is ×-bit. On the other hand,

DDT of modular addition requires two

input and on output difference of -bit,

making size of DDT -bit. If input and

output difference consist of more than 

-bit each, DDT should have more than 

elements, requiring more than TB

memory. Biryukov suggested new method

that can find differential trail not using

DDT[2].

Theorem 3. [2]  decreases, as size of

input and output difference increase.

Therefore, given input and output



4 Efficient Differential Trail Searching Algorithm for ARX Block Cipher

differences, , , and , the following

equation is satisfied.

 ≦ ≦≦ ,

where      →  

Biryukov et al. use theorem 3 to search

for differential trail bit by bit based on a

branch-and-bound search strategy. For 

-th round, given input difference, we can

calculate each  adding one bit into

output difference. If calculated  is

greater than the bound probability, we

add one more bit to output difference or

go to the next round. In case of first

round, we need to consider the input

differences also.

The bound probability, , is the best

probability of -th round differential trail

that is already known. For the first round,

we consider every input and output

difference pair that the differential

probability, , satisfies the inequality

 ×  ≧. For the     -th

round we consider output difference that

the  satisfies the inequality ×

×⋯×× ≧×× ≧.

Finally for the last round, consider the

output difference that satisfies inequality

××⋯× ≧, and if such

output difference exists, update the new

bound  and save the path obtained.

For unknown , set   and search

for the trail. If there exists no such trail,

then decrease  ← ×, and then do the

search algorithm repeatedly. The Algorithm

that Biryukov applied to SPECK can be

found in Appendix (Appendix A. Algorithm

2).


SPECK32 SPECK48

Prob.(log) time Prob.(log) time

1 0 0sec 0 0sec

2 -1 0sec -1 0sec

3 -3 0sec -3 0sec

4 -5 0sec -6 0sec

5 -9 0sec -10 1sec

6 -13 1sec -14 3sec

7 -18 1min -19 1min

8 -24 34min -

Table 1. Searching time of Algorithm 2[2]

(Intel CoreTM E5-2637 CPU 3.50GHz)

IV. Suggesting Algorithm

In this chapter, we introduce how to

reduce computation complexity of

algorithm 2 given in [2]. In particular, we

describe two techniques. One is reduce the

complexity by not calculating impossible

trails. The other is calculating 

bitwise.

4.1 Optimizing Differential Trail Searching

In order to take shorter time, one of the

main ideas suggested in this paper is to

discard impossible differential trails (zero

probability differential trails).

In Algorithm 2, one bit (0 or 1) is added

to a trail and check whether  is 0 or

not. If the probability is 0, then the

algorithm returns and consider the next

bit. For -bit word, the  computation

complexity, , is necessary.

However in Algorithm 1,  is first

calculated to check if  is zero or not

(1.). This part can be expressed as

following theorem.

Theorem 4. [5]   → ≠

iff ⊕⊕   and  

  ⊕⊕

for    ,  ∈  



Efficient Differential Trail Searching Algorithm for ARX Block Cipher 5

  bit  bit Prob.

(0, 0, 0)

(0, 0, 0)

1
(0, 1, 1)

(1, 0, 1)

(1, 1, 0)

(0, 0, 1)

All possible 1/2

(0, 1, 0)

(0, 1, 1)

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(0, 0, 1)

1
(0, 1, 0)

(1, 0, 0)

(1, 1, 1)

Table 2.  bit and corresponding  bit,

and probability which will be multiplied

According to Theorem 4, we can expect

the next possible bit by checking previous

bit(-th bit). For example, if -th bit of

input differences , , and output

difference  is   , then 

-th bit of input and output differences can

be one of these four occasions - ,

, , .

Using this technique, we can delete 

computation in (11.), (18.), (22.), (34.) of

Algorithm 2. This removes  complexity for

-bit word.

To sum up, given input differences, if 

-th bit of input and output differences are

one of these form -    or   , we

can expect only one bit possible for the

next bit. Total complexity decreases by

× ((Probability of    or

  ) × (Possible next output bit)).

4.2 Bitwise  computation

For -th round, to add one more round

to differential trail, 




 computation

complexity is required since we need to

calculate  every time one more bit is

added. For total  round, ×

computation complexity is needed.

Look at -bit of two input differences

and output difference,   ,   ,

  . Then we can expect possible next

bit , , and  by 4.1 section. If we

check -th bit of differences, , , and

, we can conclude      

→    is equal to      

→    multiplied by 1 or 1/2. This

procedure is same as find out whether for

 such that ≦   , the equation

   is true or not. Let total number

of  that makes the equation false . Then

the  is . In other words, to compute

      →   , first

see if the equation   is true or

not. If that is false, then we can compute

      →   

      →   ×. In

conclusion, to add one more round to the

trail, we can calculate it with 




 that is

bitwise calculation, not 




.

Thus, for total  round and -bit word,

total complexity is ×.

Table 2 shows -th bit and

corresponding -th bit of input and

output differences possible and probability

which will be multiplied

By Table 2, if  -th bit of input and

output differences are same, the

probability remains still, and -th bit is

determined as four cases. If not, all cases

are possible and the probability decreases

by 1/2. Applying this method lets not to

search for the zero probability trails, and

lets to compute bitwise.

4.3 Results

Biryukov used HPC cluster to reduce



6 Efficient Differential Trail Searching Algorithm for ARX Block Cipher

the computing time for more than 7

rounds. However we failed to make same

system environment, so we compared the

time in less than 8 rounds of SPECK32,

and 7 rounds of SPECK48.


SPECK32 SPECK48

Prob. time time’ Prob. time time’

1 0 0sec 0sec 0 0sec 0sec

2 -1 0sec 0sec -1 0sec 0sec

3 -3 0sec 0sec -3 0sec 0sec

4 -5 0sec 0sec -6 0sec 0sec

5 -9 0sec 0sec -10 1sec 1sec

6 -13 1sec 1sec -14 3sec 3sec

7 -18 1min 26sec -19 1min 33sec

8 -24 34min 11min -

Prob. = log

Table 3. Time comparison of Algorithm 2 and 3

(time: Intel CoreTM E5-2637 CPU 3.50GHz

time’: Intel CoreTM i7-2600 CPU 3.40GHz)

Table 3 shows that despite poor

computer specifications, the results are

two to three times better. Thus if we use

same computer specifications or HPC

cluster, it is obvious that we can get

better results.

V. Conclusion

In this paper, we proposed more

efficient algorithm than algorithm that

Biryukov suggested. However for more

than 8 rounds, time took too long to get

better trails in SPECK48. So we suggested

some ways to reduce time by 1/2 to 1/3

(Algorithm 3). If we apply this method, we

are sure that we can get longer

differential trail.

Algorithm 3 can be applied to many

different ARX cipher.

References

[1] Biham, Eli, and Adi Shamir.

"Differential cryptanalysis of DES-like

cryptosystems," Journal of

CRYPTOLOGY vol. 4, no. 1, pp. 3-72,

Jan. 1991.

[2] Biryukov, Alex, Vesselin Velichkov,

and Yann Le Corre. "Automatic

search for the best trails in arx:

Application to block cipher speck,"

Fast Software Encryption–FSE. pp.

268-288, Mar. 2016.

[3] Beaulieu, Ray, et al. "The SIMON

and SPECK lightweight block

ciphers," Proceedings of the 52nd

Annual Design Automation

Conference. ACM, 2015

[4] Lipmaa, Helger, and Shiho Moriai.

"Efficient algorithms for computing

differential properties of addition,"

International Workshop on Fast

Software Encryption. Springer Berlin

Heidelberg, 2001

[5] Fu, Kai, et al. "MILP-Based

Automatic Search Algorithms for

Differential and Linear Trails for

Speck," Fast Software Encryption–

FSE. pp. 289-310, Mar. 2016.

[6] Hong, Deukjo, et al. "HIGHT: A new

block cipher suitable for low-resource

device," International Workshop on

Cryptographic Hardware and

Embedded Systems. Springer Berlin

Heidelberg, 2006

[7] Mouha, Nicky, et al. "Chaskey: an

efficient MAC algorithm for 32-bit

microcontrollers," International

Workshop on Selected Areas in

Cryptography. Springer International

Publishing, 2014



Efficient Differential Trail Searching Algorithm for ARX Block Cipher 7

Algorithm 2. [2] Search for the Best Differential Trail in ARX (Application to SPECK)

Input - : number of rounds

: word size in bits

, : right and left rotation constant

: current round (≧ ≧ )

: current bit position (  ≧ )

    : probabilities of the best trails for rounds 1, 2, ..., (n-1) (global)

: underestimate of the best probability for n rounds: ≦

      ,       ,   → , ≦  

   : input and output differences to the modular addition at round 

: probability of the partial differential         →   

Output -  : the best probability for  rounds and corresponding trail

1. // Initialization : ←  ←  ←  ←  ←

2. procedure best_diff_search(    ) do

3. //Fisrt round

4. if  ∧≠ then

5. if   then

6.  ←   →   ;  ←     ; add to 

7. ← ; ←  ⋙ ; ← ⊕ ⋘ ; ← ;

8. call best_diff_search    

9. else

10. for   ∈  do

11.   ← ;  ←  ;  ← ;
←        →     ;

12. if × ≧
 then

13. cal best_diff_search     

14. //Intermediate rounds

15. if  ∧≠ then

16. if   then

17.  ←   →   ;  ←     ; add to 

18. ← ; ←  ⋙ ; ← ⊕ ⋘ ; ← ;

19. call best_diff_search    

20. else

21. for ∈  do

22.  ← ;
←        →     ;

23. if × ≧
 then

24. call best_diff_search     

25. //Last round

26. if   then

27. if   then

28.  ←   →   ;  ←     ; add to 

29. if ××  ≧
 then

30. //Update bound and return to upper round

VI. Appendix A



8 Efficient Differential Trail Searching Algorithm for ARX Block Cipher

31. ← ××× 

32. else

33. for ∈  do

34.  ← ;
←        →     ;

35. if × ≧
 then

36. cal best_diff_search     

37. return

Algorithm 3. Advanced Search for the Best Differential Trail in ARX (Application to SPECK)

Input - : number of rounds

: word size in bits

, : right and left rotation constant

: current round (≧ ≧ )

: current bit position (  ≧ )

    : probabilities of the best trails for rounds 1, 2, ..., (n-1) (global)

: underestimate of the best probability for n rounds: ≦

      ,      , ≦  

   : input and output differences to the modular addition at round 

Output -  : the best probability for  rounds and corresponding trail

1. // Initialization : ←  ←  ←  ←  ←, ←

2. procedure best_diff_search(     ) do

3. //Fisrt round

4. if  ∧≠ then

5. if   then

6.  ←   →   ;  ←   ; add  to 

7. ← ; ←  ⋙; ← ⊕ ⋘ ; ← ;

8. call best_diff_search    

9. else if   

10. for ∈

11.  ←;  ←;  ←⊕ 
12. else

13.                 ;

14. if   

15. if × ≧
 then

16. for   ∈  do

17.   ← ;  ←  ;  ← ; call best_diff_search     ×

18. else

19. for ,  ∈

20.  ←;  ←;  ←⊕⊕; call best_diff_search

VII. Appendix B

Algorithm 3 is an improved version of Algorithm 2 as explained in Section 4. Different

parts are highlighted.



Efficient Differential Trail Searching Algorithm for ARX Block Cipher 9

21. //Intermediate rounds

22. if  ∧≠ then

23. if   then

24.  ←   →   ;  ←    ; add to 

25. ← ; ←  ⋙ ; ← ⊕ ⋘ ; ← ;

26. call best_diff_search     

27. else if   

28.     ⊕ ; call best_diff_search

29. else

30.               ;

31. if   

32. if ××  ≧
 then

33. for ∈  do

34.    ; call best_diff_saerch×

35. else

36.     ⊕ ⊕; call best_diff_search

37. //Last round

38. if   then

39. if   then

40.  ←   →   ;  ←    ; add to 

41. if ≧ then

42. //Update bound and return to upper round

43. ← 

44. else if   

45.     ⊕ ; call best_diff_search

46. else

47.               ;

48. if   

49. if ××  ≧
 then

50. for ∈  do

51.    ; call best_diff_saerch×

52. else

53.     ⊕ ⊕; call best_diff_search

54. return


