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Abstract. We propose new algorithms with small memory consump-
tion for the Learning Parity with Noise (LPN) problem, both classically
and quantumly. Our goal is to predict the hardness of LPN depending
on both parameters, its dimension k and its noise rate τ , as accurately
as possible both in theory and practice. Therefore, we analyze our algo-
rithms asymptotically, run experiments on medium size parameters and
provide bit complexity predictions for large parameters.
Our new algorithms are modifications and extensions of the simple Gaus-
sian elimination algorithm with recent advanced techniques for decoding
random linear codes. Moreover, we enhance our algorithms by the dimen-
sion reduction technique from Blum, Kalai, Wasserman. This results in a
hybrid algorithm that is capable for achieving the best currently known
run time for any fixed amount of memory.
On the asymptotic side, we achieve significant improvements for the run
time exponents, both classically and quantumly. To the best of our knowl-
edge, we provide the first quantum algorithms for LPN.
Due to the small memory consumption of our algorithms, we are able
to solve for the first time LPN instances of medium size, e.g. with k =
243, τ = 1

8
in only 15 days on 64 threads.

Our algorithms result in bit complexity prediction that require relatively
large k for small τ . For instance for small noise LPN with τ = 1√

k
, we

predict 80-bit classical and only 64-bit quantum security for k ≥ 2048.
For the common cryptographic choice k = 512, τ = 1

8
, we achieve with

limited memory classically 97-bit and quantumly 70-bit security.

Keywords: LPN key size, Information Set Decoding, Grover, BKW.

1 Introduction

With the upcoming NIST initiative for recommending quantum-secure public
key cryptosystems [1], it becomes even more urgent and mandatory to prop-
erly select cryptographic key sizes with a well-defined security level, both clas-
sically and of course also quantumly. Therefore, the cryptographic community
has to establish for the most prominent hardness problems, e.g. in the areas of
codes, lattices, multivariate and isogenies, predictions for solving cryptographic
instances with security levels of 128 bit and above.
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The choice of key sizes has naturally a conflict between efficiency and security.
On the one hand, one would like to choose small parameters that allow for
efficient implementations. On the other hand, one is usually quite conservative
in estimating which parameters can be broken within say 2128 steps. While giving
conservative security estimates is in general good, we believe that this practice
is often disproportionate in cryptographic research.

For instance, when selecting the best algorithm, cryptographers usually com-
pletely ignore memory consumption. And quite often, the best time complexity T
is only achieved with memory consumption as large as T . An example with such
huge memory requirement is the Blum-Kalai-Wasserman (BKW) algorithm [7]
for solving LPN. But when implementing an algorithm in practice, memory
consumption is the main limiting factor. While performing 260 steps is even
doable on smallish computing clusters in a reasonable amount of time, getting
an amount of 260 of RAM is clearly out of reach. If one has to use additional
hard disk space, then running time completely explodes.

An Internet investigation shows that nowadays the largest supercomputers1

have a RAM of at most 1.6 PB < 254 bits. Putting some safety margin, it seems
to be fair to say that any algorithm with memory consumption larger than 260

bits cannot be instantiated in practice.

Hence, there is a need for finding algorithms for post-quantum problems
that can be instantiated with small memory, in order to run them on medium
size instances for an accurate extrapolation to cryptographic key sizes. For the
selection of key sizes, one might safely restrict to algorithms that do not exceed a
certain amount of memory, like e.g. 260 bits. Beläıd et al [5] considered a related
model in which an attacker has limited LPN samples and memory. However, we
do not want to limit the number of LPN samples.

Ideally, we would design algorithms whose running time benefit from any
fixed amount of memory. Let us assume that we have M bits of RAM on our
computing facility. The main research question is then which optimal running
time can be achieved when (fully) using this amount.

Our goal is to answer this question for Learning Parity with Noise (LPN).
LPN is the basis for many code-based constructions and can be seen as a special
instance of Learning with Errors (LWE) [28]. In the LPN problem, one has to
learn a secret s ∈ Fk2 using access to an oracle that provides samples of the form
(ai, bi), where ai is uniformly at random from Fk2 , and bi = 〈ai, s〉+ ei for some
error ei ∈ {0, 1} with Pr[ei = 1] = τ . Hence, LPN is a two-parameter problem
with dimension k and error rate τ ∈ [0, 12 ).

Naturally, the problem becomes harder with increasing k and τ . For τ = 0
we can easily draw k samples with linearly independent ai and solve for s via
Gaussian elimination. This algorithm can simply be generalized to any τ ∈ [0, 12 ),
by drawing k samples in each iteration, computing a candidate s′, and test
whether s = s′. Notice that s = s′ iff in this iteration all samples are error-free.

1 e.g. the IBM 20-Petaflops cluster installed in Sequoia, Lawrence Livermore National
Laboratory, California [2]
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This algorithm, that we call Gauss, seems to be somewhat folklore. To the
best of our knowledge it was first used in 2008 by Carrijo et al. [11], and has
been e.g. analyzed in Bogos et al [8]. The benefits of Gauss are that it consumes
only small memory and performs well for small noise τ , e.g. for the currently re-
quired choice of τ = 1√

k
in the public key encryption schemes of Alekhnovich [3],

Damg̊ard, Park [12], Döttling, Müller-Quade, Anderson [13] and Duc, Vaude-
nay [14].

For constant noise τ , as used e.g. in the HB family of protocols [20, 21, 16]
and their extensions [22, 19], currently the best known algorithm is BKW, due to
Blum, Kalai and Wasserman [7] with running time, memory consumption and
sample complexity 2O(k/ log k). BKW has been widely studied in the cryptographic
literature and there are several improvements in practice due to Fossorier et
al. [15], Levieil, Fouque [23], Lyubashevsky [24], Guo, Johansson, Löndahl [18]
and Zhang, Jiao, Mingsheng [29]. While BKW offers for large τ the best running
time, it cannot be implemented even for medium size LPN parameters due it is
huge memory consumption. But without having any experimental results, it is
an error-prone process to predict security levels. This also led to some discussion
about the accuracy of predictions [9].

Gauss and BKW are the starting point of our paper. We revisit both in Sec-
tion 2, where we analyze them asymptotically and show that BKW has a very bad
dependency on τ with a running time of 2O(k/ log( kτ )). So even for τ as small as
τ = 1

k , the running time remains 2O(k/ log k).

Another drawback of Gauss and BKW is their large sample complexity, i.e. the
number of calls to an LPN oracle, which is for both algorithms as large as their
running time. Since the LPN oracle is by definition classical, this prevents any
possible speed-ups by quantum search techniques, e.g. by Grover search [17].

Therefore, we will first reduce the number of samples to a pool of only n =
poly(k) samples. Out of these n samples, we look for a set of k error-free samples
similar to Gauss. The resulting algorithm Pooled Gauss (Section 4) has the same
time and memory complexity as Gauss, while consuming way fewer samples. This
immediately gives rise to a quantum version, for which we save a square root in
the run time via Grover search.

Another benefit of having small sample complexity is that we can add some
preprocessing step that reduces the dimension of our LPN instances via excessive
use of the LPN oracle. The resulting algorithm that we call Well-Pooled Gauss

(Section 5.1) offers a significantly reduced time complexity.

In a nutshell, Well-Pooled Gauss has some simple preprocessing step that
decreases the LPN dimension, and then some simple decoding step via Gaussian
elimination. The preprocessing step can be improved by more sophisticated di-
mension reduction methods such as BKW. This comes at the cost of using some
memory, but we can control the amount of memory by the amount of dimension
reduction. Altogether, this results in Algorithm Hybrid (Section 5.3) that for
any given memory M first reduces the dimension with full memory use, and sec-
ond runs Gaussian elimination on the dimension-reduced, and thus easier, LPN
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instance. Another nice feature of Hybrid is that its preprocessing step allows to
easily include many of the recent BKW optimizations [18, 23, 29].

Moreover, we are also able to improve on the decoding step by replacing
Gaussian elimination with more sophisticated information set decoding algo-
rithms, like Ball-Collision Decoding of Bernstein, Lange, Peters [6], MMT of
May, Meurer, Thomae [25], BJMM of Becker et at. [4] or May-Ozerov [26]. For
our purpose of decoding LPN instances, it turns out that the MMT algorithm
tuned to the LPN setting performs best. The resulting algorithm that we call
Well-Pooled MMT is studied in Section 5.4.

Table 1 provides a more detailed overview of our algorithms and results. For
ease of exposition, in Table 1 we omit all small error terms in run times, like
(1 + o(1))-factors or Õ-notation.

Table 1: Overview of our results, f(τ) := log2

(
1

1−τ

)
Algorithm Time Samples Memory Quantum

BKW

(Theorem 1)
2

k

log2( kτ ) =Time =Time inapplicable

Gauss

(Theorem 2)
2f(τ)k =Time k2 inapplicable

Pooled Gauss

(Theorem 3 & 4)
2f(τ)k k2 k3 2

f(τ)k
2

Pooled Gauss, τ(k)→ 0
(Corollary 1)

eτk k2 k3 e
τk
2

Well-Pooled Gauss

(Theorem 5 & 6)
2

f(τ)
1+f(τ)

k
=Time k3 2

f(τ)
2+f(τ)

k

Hybrid

(Theorem 7)
see Theorem 7 =Time variable applicable

Well-Pooled MMT

(Section 5.4)
less than Well-

Pooled Gauss
=Time <

√
Time applicable

2 Preliminaries and the LPN Problem

2.1 Preliminaries

Let us first fix some notation. For a positive integer n ∈ N we define [n] :=
{1, 2, . . . , n}. Let M be a set and k ∈ N. Then

(
M
k

)
is the set of all subsets of M

of size k. In particular,
(
[n]
k

)
is the set of size-k subsets of {1, . . . , n}.
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Let A ∈ Fn×k2 , b ∈ Fk2 and I = {i1, . . . , i`} ⊆ [k]. Then AI consists of the
rows indexed by I and b consists of the entries indexed by I, e.g.

AI :=

— ai1 —
...

— ai` —

 and bI := (bi1 , . . . , bi`)
t.

Let v = (v1, . . . , vn) ∈ Fn2 . Then we call wt(v) := ‖v‖1 = |{i ∈ [n] | vi 6= 0}|
the Hamming weight (or just weight) of v. A linear code C is a subspace of Fn2 .
If dim(C) = k and d := min

06=c∈C
{wt(c)}, then we call C an [n, k, d] code.

This implies C = im(G) for some matrices G ∈ Fn×k2 with rank k. We call G
a generator matrix of C. For a random matrix G we call C = im(G) a random
linear code.

For a finite set M we write the uniform distribution on M by U(M). More-
over, we denote by Berτ the Bernoulli distribution with parameter τ , i.e., e ∼
Berτ means that we draw a 0-1 valued random variable e with Pr[e = 1] = τ .

The binomial distribution is denoted as Binn,p, meaning if X ∼ Binn,p, we
have Pr [X = k] =

(
n
k

)
pk(1− p)n−k.

X ∼ Geop is geometrically distributed, if Pr[X = k] = (1 − p)k−1p. If
X1, . . . , Xn ∼ Geop are identically, independently distributed, their sum

∑n
i=1Xi

∼ NegBinn,p is negative-binomially distributed. In this case the event {X = k}
means that a Bernoulli experiment with success probability p succeeds for the
n-th time after exactly k trials, and its mean is E(X) = n

p .

The following lemma shows that we are at most a factor of c away from E(X)
with probability exponentially small in c.

Lemma 1. For X ∼ NegBinn,p we have Pr
[
X > dcnp e

]
≤ e−

1
2 (c−2)n. For the

special case n = 1, e.g. X ∼ Geop, we get a better bound of Pr
[
X > d cpe

]
≤ e−c.

Proof. The event {X > dcnp e} means that within dcnp e Berp trials, we could not

get to the n-th success. This is exactly the event {Y < n} for Y ∼ Bindcnp e,p. So

Pr

[
X > dcn

p
e
]

= Pr [Y < n] ≤ Pr [Y ≤ n]
Chernoff

≤ e−
1
2 (1−

1
c )

2cn ≤ e− 1
2 (c−2)n.

We can get the special case for n = 1 via the following direct calculation

Pr

[
X ≤ d c

p
e
]

= 1− (1− p)d
c
p e = 1− (1− p)

c
p (1− p)d

c
p e−

c
p ≥ 1− 1

ec
. ut

Setting c in Lemma 1 to 2
nω(log(k))+2 respectively ω(log(k)) for n = 1 gives

us bounds for negative-binomially random variables that are not exceeded with
overwhelming probability 1−k−ω(1). We will often instantiate these bounds with
log2

2(k) = ω(log(k)) in the course of this paper.
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2.2 The LPN Problem

Let us now formally define the LPN problem.

Definition 1 In the LPNk,τ problem, for some secret s ∈ Fk2 and error param-
eter τ ∈ [0, 12 ) we are given access to an oracle that provides samples of the
form

(ai, bi) := (ai, 〈ai, s〉+ ei), for i = 1, 2, . . .,

where ai ∼ U(Fk2) and ei ∼ Berτ , independently. Our goal is to recover s.
We call bi the corresponding label of ai.
Notation: Upon asking m queries, we write (A,b)← LPNm

k,τ meaning that

As = b + e, where the ith row of A ∈ Fm×k2 and b ∈ Fm2 present the ith sample.

Remark 1. We say that an algorithm A with overwhelming probability solves
LPNk,τ in running time T , if it both terminates within time T and outputs the
correct s with probability 1 − negl(k), where negl(k) = o( 1

poly(k) ). This means

that A might not terminate in time T or that A might output an incorrect s′, but
we bound both events by some negligible function in k. Notice that our notion is
stronger than just expected running time Te, where the real running time might
significantly deviate from Te with even constant probability.

The error-free case LPNk,0 can be easily solved by obtaining k sample (ai, bi)
with linearly independent ai, and computing via Gaussian elimination

s = A−1b. (1)

However, in case of errors we obtain s = A−1b + A−1e, with an accumu-
lated error of A−1e, where wt(A−1e) is usually large. In other words, Gaussian
elimination lets the error grow too fast by adding together too many samples.

The error growth can be made precise in terms of the number n of additions
via the following lemma, usually called Piling-up Lemma in the cryptographic
literature.

Lemma 2 (Piling-up Lemma). Let ei ∼ Berτ , i = 1, . . . , n be identically,
independently distributed. Then we have

∑n
i=1 ei ∼ Ber 1

2−
1
2 (1−2τ)n

.

Proof. n = 1 is immediate. Induction over n yields

Pr

[
n∑
i=1

ei = 1

]
= Pr

[
n−1∑
i=1

ei = 0

]
· Pr[en = 1] + Pr

[
n−1∑
i=1

ei = 1

]
· Pr[en = 0]

=

(
1

2
+

1

2
(1− 2τ)n−1

)
τ +

(
1

2
− 1

2
(1− 2τ)n−1

)
(1− τ)

=
1

2
− 1

2
(1− 2τ)n. ut
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3 Revisiting Previous Work

3.1 The BKW Algorithm

Blum, Kalai and Wasserman [7] proposed a variant of Gaussian elimination,
called BKW algorithm, that performs elimination of whole blocks instead of
single coordinates. This results in way less additions of samples, thus controlling
the error, at the cost of requiring way more initial LPN samples to perform
eliminations.

The following high-level description of BKW eliminates blocks of size d in
each of its c − 1 iterations, resulting in vectors that are sums of 2c−1 original
samples.

We describe only how to compute the first bit of s, the other bits are analo-
gous.

Input: LPNk,τ oracle, τ
Output: First bit s1 of the secret s = (s1, . . . , sk)
Choose some very small ε > 0;

c := (1− ε) log2(kτ );

d := 1
1−ε ·

k
c ;

N :=
(
c− 1 +

log2
2(k)

(1−2τ)2c + log2(k)
)
2d;

(A, b)← LPNN
k,τ ;

for i = 1, . . . , c− 1 do
foreach j ∈ Fd2 do

Pick a row ak of A with suffix j|0(i−1)d (if any); add ak to all the
other rows of A with suffix j|0(i−1)d, also add corresponding
labels;

Remove the kth row from A and b;

end

end
I := {i ∈ [N ] | ai = u1 = (1, 0, . . . , 0)};
return s1 = the bit which is the majority of all bits in bI .

Algorithm 1: BKW

Blum, Kalai and Wasserman show that, for constant τ , instantiating their
algorithm with blocks of size (roughly) d = k

log k and c = log k iterations while

using N = 2O(k/ log k) samples results in running time and memory complexity
also 2O(k/ log k).

Since for concrete cryptographic instantiations, we are also interested in the
dependence on τ and the constant hidden in the O-notion, we give a slightly
more detailed analysis in the following.

Theorem 1. BKW solves LPNk,τ with overwhelming success probability in time,

memory and sample complexity 2
k

log2( k
τ

)
(1+o(1))

.
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Proof. By our choice in BKW we initially start with N :=
(
c − 1+

log2
2(k)

(1−2τ)2c +

log2(k)
)
2d samples. Every foreach loop reduces the number of samples by at most

2d, resulting in at least
( log2

2(k)

(1−2τ)2c + log2(k)
)
2d samples after loop termination.

Let u1 = (1, 0, 0, . . . , 0) be the first unit vector. Among the remaining samples

there will be at least r =
log2

2(k)

(1−2τ)2c samples of the form (u1, s1 + e) for some error

e ∈ {0, 1} with overwhelming probability according to Lemma 1. Since our r
remaining samples are generated as a sum of 2c−1 initial samples, the Piling-up
lemma (Lemma 2) yields e ∼ Ber 1

2−
1
2 (1−2τ)2

c−1 .

Hence, e has a bias of b̄ = 1
2 (1− 2τ)2

c−1

. An easy Chernoff bound argument
shows that having b̄−2 samples is sufficient to obtain s1 with constant success
probability by majority vote. Since our number r is larger than b̄−2 by a factor of
log2

2(k)
4 , we even obtain s1 with overwhelming success probability. By repeating

this process for all bits s1, . . . , sk a union bound shows that we lose a factor
of at most k in the success probability, meaning that we can recover s with
overwhelming success probability.

The algorithm’s run time and memory consumption is (up to polynomial
factors) dominated by its sample complexity, which by our choice of c, d is

N =
(
c− 1 +

log2
2(k)

(1−2τ)2c + log2(k)
)
2d = 2O(k1−ε)+ 1

1−ε ·
k
c = 2

k

log2( k
τ

)
(1+o(1))

. ut

We would like to point out that in Theorem 1 the running time 2k/ log2(
k
τ )

only very slowly decreases with τ . Notice that even for τ as small as O( 1
k ) we

still obtain a running time of 2
1
2k/ log2(k), while LPNk,O( 1

k )
clearly can be solved

in polynomial time via correcting O(1) errors and running Gaussian elimination.

3.2 Gauss

The following simple Algorithm 2, that we call Gauss, is the most natural ex-
tension of Gaussian elimination from Section 2, where one repeats sampling k
linearly independent ai until they are all error-free.

In each iteration of Gauss we simply assume error-freeness and compute a
candidate secret key s′ = A−1b as in Eqn. (1). We take fresh samples to test
our hypothesis, whether we were indeed in the error-free case and hence s′ = s.

Notice that we are in the error-free case with probability (1 − τ)k. Hence,
Algorithm 2 has up to polynomial factors expected running time ( 1

1−τ )k, pro-
vided that Test can be carried out in polynomial time. Thus in comparison to
BKW in Section 3.1, we obtain a much better dependence on τ . For instance for
τ = O( 1

k ), we obtain polynomial running time, as one would expect.
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Input: LPNk,τ oracle, τ
Output: secret s
repeat

repeat

(A,b)← LPNk
k,τ ;

until A ∈ GLk(F2);
s′ := A−1b;

until Test(s′, τ, 1
2k
, ( 1−τ

2 )k ) = Accept;
return s′;

Algorithm 2: Gauss

Basically our algorithm Test computes for sufficiently many fresh LPN sam-
ple (A,b) ← LPNm

k,τ whether As′ + b is closer to Berm,τ or to Berm, 12 via
checking whether its weight is close to τm or m

2 , respectively.

We have designed Test in a flexible way that allows us to control the two-
sided error probabilities Pr[Test rejects | s′ = s] for rejecting the right candidate
and Pr[Test accepts | s′ 6= s] for accepting an incorrect s′ via two parameters
α, β. Throughout this paper, we will tune these parameters α, β to guarantee
that all subsequent algorithms have overwhelming success probability 1−negl(k).

Input: s′, τ , error levels α, β ∈ (0, 1]
Output: Accept or Reject

m :=

(√
3
2 ln( 1

α )+
√

ln( 1
β )

1
2−τ

)2

;

(A,b)← LPNm
k,τ ;

c := τm+
√

3( 1
2 − τ) ln( 1

α )m ;

if wt(As′ + b) ≤ c then
return Accept;

end
else

return Reject;
end

Algorithm 3: Test

Notice that by our definition of m in Test even an exponentially small choice

of α = β = 1
2k

leads to only m = Θ
(

k
( 1
2−τ)2

)
samples, which is linear in k and

quadratic in
(
1
2 − τ

)−1
. Thus, our hypothesis test can be carried out efficiently

even for exponentially small error probabilities.

Lemma 3 (Hypothesis Testing). For any α, β ∈ (0, 1], Test accepts the
correct LPN secret s with probability at least 1− α, and rejects incorrect s′ with
probability at least 1− β, using m samples in time and space Θ(mk).
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Proof. Inputting the correct s to Test implies, that wt(As′ + b) ∼ Binm,τ . In
this case we have

Pr [wt(As′ + b) ≥ c]
Chernoff

≤ exp

(
−1

3
·min

(
c

τm
− 1,

( c

τm
− 1
)2)

· τm
)

≤ exp

(
−1

3
· τ

1
2 − τ

( c

τm
− 1
)2
· τm

)
!
= α.

We need that the last term is equal to α, which leads to the threshold weight of

c := τm+

√
3(

1

2
− τ) ln

(
1

α

)
m,

as defined in Test. If s′ 6= s, then wt(As′ + b) ∼ Binm, 12 . We want to upper
bound the acceptance probability in this case.

Pr [wt(As′ + b) ≤ c]
(C)

≤ exp

(
−1

2
·
(

1− 2c

m

)2

· m
2

)
!
= β

Using the c from above, the last equation holds, if

m :=


√

3
2 ln

(
1
α

)
+

√
ln
(

1
β

)
1
2 − τ


2

. ut

Remark 1 As defined, Test takes fresh m samples on every invocation for
achieving independence. However, for efficiency reasons we will in practice use
the same m samples for Test on every invocation. Our experiments confirm that
the introduced dependencies do not noticeably affect the algorithms’ performance
and success probability.

Now that we are equipped with an efficient hypothesis test, we can carry
out the analysis of Gauss. For ease of notation, we use for the running time
soft-Theta notion Θ̃ to suppress factors that are polynomial in k.

Theorem 2. Gauss solves LPNk,τ with overwhelming success probability in time

and sample complexity Θ̃
(

1
(1−τ)k

)
using Θ(k2) memory.

Proof. We already noted that the outer repeat loop of Gauss takes an expected
number of 1

(1−τ)k to produce a batch of k error-free LPN samples. In particular,

Lemma 1 tells us that we will find an error-free batch after at most
log2

2(k)
(1−τ)k trials

with overwhelming probability.
The inner loop is executed an expected number of O(1) times until A ∈

GLk(F2). Here again, after at most O
(
log2

2(k)
)

iterations it is ensured that we
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get an invertible A with overwhelming probability. This already proves the upper
bound on the running time.

Since, we only have to store k samples for A of length Θ(k) each, our memory
consumption is Θ(k2). In Test we do not necessarily have to store our m =
Θ(k) samples, since we can process them on the fly. However, in practice (see
Remark 1) it is useful to reserve for them another Θ(k2) memory cells.

Considering the success probability, Gauss solves LPNk,τ when it rejects all
false candidates s′, and accepts the secret key s (if it appears). The first event
happens by Lemma 3 with probability at least 1−β = ( 1−τ

2 )k for each incorrect
candidate by our choice in Gauss. The second event happens by Lemma 3 with
probability at least 1− α = 1− 2−k.

Let X be a random variable for the number of iterations of the outer loop
until we are for the first time in the error-free case. Then

Pr[Success] =

∞∑
i=1

Pr[Success | X = i] · Pr[X = i]

≥
∞∑
i=1

(1− β)
i−1

(1− α) ·
(
1− (1− τ)k

)i−1
(1− τ)k

=
(1− α) (1− τ)k

1− (1− β) (1− (1− τ)k)

≥ (1− α)(1− τ)k

β + (1− τ)k
= 1− negl(k). ut

Notice that Gauss’ sample complexity is as large as its running time by
Theorem 2. We will show in the following section that the sample complexity
can be decreased to poly(k) without affecting run time. This will be the starting
point for further improvements.

4 LPN and its Relation to Decoding

Let us slightly modify the Gauss algorithm from Section 3.2. Instead of taking
in each iteration a fresh batch of k LPN samples, we initially fix a large enough
pool of n samples. Then in each iteration we take k out of our pool of n samples,
with linearly independent ai. This results in the following Algorithm 4 that we
call Pooled Gauss.
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Input: LPNk,τ oracle, τ
Output: secret s
n := dk2 log2 ke;
(A,b)← LPNn

k,τ ;

repeat
repeat

I ← U(
(
[n]
k

)
);

until AI ∈ GLk(F2);

s′ := A−1I bI ;

until Test(s′, τ, 1
2k
, ( 1−τ

2 )k ) = Accept;
return s′;

Algorithm 4: Pooled Gauss

Before we analyze Pooled Gauss, we want to clarify its connection to the
decoding of random linear codes. Notice that we fix a sample matrix A ∈ Fn×k2

with uniformly random entries. A can be considered a generator matrix of some
random linear [n, k] code C, which is the column span of C. The secret s ∈ Fk2 is
a message and the label vector b ∈ Fn2 is an erroneous encoding of s with some
error vector e ∈ Fn2 having components ei ∼ Berτ . Thus, decoding the codeword
b to the original message s solves LPNk,τ .

Decoding such a codeword b can be done by finding an error-free index
set as in Pooled Gauss. In coding theory language, such an error-free index
set is called an information set. Thus, our Pooled Gauss algorithm is in this
language an information set decoding algorithm, namely it resembles the well-
known algorithm of Prange [27] from 1962. One should notice however that as
opposed to the decoding scenario, we can fix the length n of C ourselves.

Theorem 3. Pooled Gauss solves LPNk,τ with overwhelming success probabil-

ity in time Θ̃
(

1
(1−τ)k

)
using Θ̃(k2) samples and Θ̃(k3) memory.

Proof. Pooled Gauss’ run time follows with the same reasoning as for Gauss’
running time. The outer loop will with overwhelming probability be executed

at most
log2

2(k)
(1−τ)k times, and all other parts can be performed in time O(k3). The

sample complexity follows by our choice of n in Pooled Gauss. Storing n samples
requires Θ̃(k3) memory.

For the success probability, we would first like to notice that the probability
for drawing k linearly independent vectors out of a pool even as small as n′ = 2k
without replacement can easily be lower-bounded by 1

4 . We will see, that the
pool in our algorithm will be even bigger than that in the following. Therefore,
by our choice of n and similar to the reasoning in the proof of Theorem 2, the
inner loop of Pooled Gauss will always find an invertible AI with overwhelming
probability. So we condition our further analysis on this event.

Let Y be the number of error-free samples in the pool of n vectors. On
expectation, we have E[Y ] = (1− τ)n. By using a Chernoff bound, we can show
that we deviate by a factor of 1 − 1

k from the expectation with probability at
most
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Pr[Y ≥ (1− 1
k )(1− τ)n] ≥ 1− e−

(1−τ)n
2k2 .

By our choice of n = ω
(
k2 log k

)
the right hand side is 1 − k−ω(1), which is

overwhelming.
We call any pool with at least (1− 1

k )(1− τ)n error-free samples good. Con-
ditioned on the event G that our pool is good, we draw a batch of k error-free
samples with probability

p ≥
k−1∏
i=0

(1− 1
k )(1− τ)n− i

n
≥
(

(1− 1
k )(1− τ)n− k

n

)k

= (1− 1

k
)k(1− τ)k

(
1− k

n(1− 1
k )(1− τ)

)k
= Ω

(
(1− τ)k

)
.

Now, following the same arguments with p instead of (1− τ)k as in Theorem 2
gives us an overwhelming probability of success. ut

4.1 Low-Noise LPN

Some interesting cryptographic applications require that the LPN error ei ∼ Berτ
has an error term τ = τ(k) depending on k. E.g. public key encryption seems to
require some τ(k) as small as 1√

k
.

As a corollary from Theorem 3, we obtain that for any τ(k) that approaches 0
for k → ∞, our Pooled Gauss algorithm runs – up to polynomial factors – in
time eτ(k)k(1+o(1)). This implies that for τ(k) = o( 1

log k ) the run time of Pooled
Gauss asymptotically outperforms the run time of BKW from Theorem 1.

Corollary 1 (Low Noise) Let τ(k)
k→∞−→ 0. Pooled Gauss solves LPNk,τ(k)

with overwhelming success probability in time Θ̃
(
eτk(1+o(1))

)
using Θ̃(k2) sam-

ples and Θ̃(k3) memory.

Proof. The run time statement follows by observing that(
1

1− τ

)k
=

(
1

(1− τ)
1
τ

)τk
=

(
1

1
e − o(1)

)τk
= (e+ o(1))

τk
= eτk(1+o(1)). ut

For small noise τ(k) = Ω( 1√
k

), i.e. a case that covers the mentioned en-

cryption application above, we can also remove the error term (1 + o(1)) in the
exponent, meaning that Pooled Gauss achieves – up to polynomial factors –
run time eτ(k)k.

Corollary 2 (Really Low Noise) Let τ(k) = 1
kc for c ≥ 1

2 . Pooled Gauss

solves LPNk,τ with overwhelming success probability in time Θ̃
(
ek

1−c
)

, using

Θ̃(k2) samples and Θ̃(k3) memory.
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Proof. Since ln( 1
1−x ) = x+ x2

2 +O
(
x3
)

for x ∈ [−1, 1) we get

(
1

1− 1
kc

)k
= e

ln

(
1

1− 1
kc

)
k

= ek
1−c+ k1−2c

2 +O(k1−3c).

We see, that for c ≥ 1
2 , the last term is in O

(
ek

1−c
)

and for c < 1
2 it is not. ut

4.2 Quantum Pooled Gauss

In a nutshell, Pooled Gauss runs until it finds an error-free batch of k LPN
samples from a pool of n samples. The expected number of error-free samples
in such a pool is (1− τ)n. Hence, we search for an index set I in a total search

space of size
(
n
k

)
, in which we expect

(
(1−τ)n

k

)
good index sets. Therefore, we

expect

T =

(
n
k

)(
(1−τ)n

k

)
iterations of Pooled Gauss until we hit an error-free batch. It is not hard to
show that T equals up to polynomials the run time from Theorem 3.

The event of hitting an error-free batch can be modeled by the function
f :
(
[n]
k

)
→ {0, 1} that takes value f(I) = 1 iff I is an index set of k error-free

LPN samples. More formally, we can define

f :

(
[n]

k

)
→ {0, 1}, I 7→

{
1A−1

I bI=s, AI ∈ GL(Fk2)

0, AI /∈ GL(Fk2)
. (2)

Here, the characteristic function 1A−1
I bI=s takes value 1 iff we compute the cor-

rect secret key s, which is equivalent to I being an index set of k error-free LPN
samples. In our algorithm Pooled Gauss the evaluation of 1A−1

I bI=s is done by

Test, which may err with negligible probability. But assume for a moment that
we have a perfect instantiation of f .

Using f , the task of Pooled Gauss is to find an index set I∗ among all index
sets from

(
[n]
k

)
such that f(I∗) = 1, which can be done classically in expected

time

T =

(
n
k

)
|f−1(1)|

.

We can now speed up Pooled Gauss quantumly by applying Boyer et al’s [10]
version of Grover search [17], which results in run time

√
T . It is worth to point

out that Boyer et al.’s algorithm works even in our case, where we do not know
the number |f−1(1)| of error-free index sets. All that the algorithm requires is
oracle access to the function f , for which we show that this oracle access can be
perfectly simulated by Test. This results in Algorithm 5 that we call Quantum
Pooled Gauss.
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Input: LPNk,τ oracle, τ
Output: secret s
n := dk2 log2 ke;
(A,b)← LPNn

k,τ ;
Define

f̃ :
(
[n]
k

)
→ {0, 1}, I 7→

{
Test(A−1I bI , τ,

(
n
k

)−2
,
(
n
k

)−2
), AI ∈ GL(Fk2)

0, AI /∈ GL(Fk2)
;

I∗ ← Grover(f̃);

return s = A−1I∗ bI∗ ;
Algorithm 5: Quantum Pooled Gauss

Theorem 4. Quantum Pooled Gauss quantumly solves LPNk,τ with overwhel-

ming probability in time Θ̃

((
1

1−τ

) k
2

)
, using Θ̃(k2) queries and Θ̃(k3) memory.

Proof. According to [10], Grover succeeds with overwhelming success proba-
bility. Hence, the proof of Theorem 3 essentially carries over to the quantum
setting.

However, it remains to show that we can safely replace oracle access to the
function f as defined in Eqn (2) by Test, which in turn defines some function

f̃ :

(
[n]

k

)
→ {0, 1}, I 7→

{
Test(A−1I bI , τ,

(
n
k

)−2
,
(
n
k

)−2
), AI ∈ GL(Fk2)

0, AI /∈ GL(Fk2)
.

We will show that by our choice of α = β =
(
n
k

)−2
with overwhelming

probability f(I) = f̃(I) for all I, i.e. we perfectly simulate f . Let us define a
random variable X that counts the number of inputs in which f and f̃ disagree,
i.e.

X :=

∣∣∣∣{I ∈ ([n]

k

)
| f̃(I) 6= f(I)}

∣∣∣∣ ∼ Bin(nk),≤α
.

Notice that X ∼ Bin(nk),≤α
, since by Lemma 3 Test errs with probability (at

most) α = β for all of the
(
n
k

)
sets I. We obtain

Pr[f̃ = f ] = Pr[X = 0] ≥

(
1− 1(

n
k

)2
)(nk)

≥ 1− 1(
n
k

) ,
where we use Bernoulli’s inequality for the last step. Since we chose n = ω(k2),

we have
(
n
k

)
≥
(
n−k
k

)k
= ω(kk). This implies Pr[f̃ = f ] = 1 − negl(k), as

required. ut

Remark 2. Notice that our slight modification from Gauss to Pooled Gauss

enables the use of quantum techniques. While both algorithms Gauss and Pooled

Gauss achieve the same running time T , Gauss also requires (roughly) T samples.
But any algorithm with sample complexity T has automatically run time lower
bound Ω(T ), since our LPN oracle is by Definition 1 classical and each oracle
access costs Ω(1).
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So while there is good motivation to reduce the number of samples, it is
somewhat unsatisfactory from a cryptanalysts’ point of view to make only limited
use of an LPN oracle by restricting to a polynomial number of samples. In the
next section, we will show how more extensive queries give rise to a better suited
pool of vectors that will further speed up Pooled Gauss.

5 Decoding LPN with Preprocessing

Our idea is to add some preprocessing to Pooled Gauss that produces LPN sam-
ples with ai of smaller dimension k′ by zeroing some columns in the A-matrix.
This may come at the cost of slightly increasing the noise parameter τ . This idea
gives rise to the following meta algorithm Dim-Decode.

Input: LPNk,τ oracle, τ
Output: secret s
(1) Modify : Use a large number of samples to produce a small number of
dimension-reduced samples, resulting in a new LPNk′,τ ′ instance with
k′ < k and τ ′ ≥ τ ;

(2) Decode: Use a decoding algorithm to solve LPNk′,τ ′ , e.g. use Pooled

Gauss;
(3) Complete: Recover the remaining coordinates of s, e.g. via
enumeration or by iterating (1) and (2) accordingly;

Algorithm 6: Dim-Decode

In the following, we give different instantiations of Dim-Decode. We start by
looking at techniques for the Modify step for dimension reduction.

5.1 Improvements Using Only Polynomial Memory

Our first simple technique is to keep only those LPN samples (a, b) that have
zeros in the last k − k′ coordinates of a. We will balance the running time for
steps Modify and Decode by choosing k′ accordingly. This results in Algorithm 7
that we call Well-Pooled Gauss.

Notice that by our choice of k′, Well-Pooled Gauss reduces the dimension
to a 1

1+log2(
1

1+τ )
-fraction of k. Since τ ∈ [0, 12 ) we have

1

1 + log2( 1
1−τ )

∈ (
1

2
, 1],

meaning that k′ ≥ k
2 or in other words that Pooled Gauss in its first run recovers

at least the first half of the bits of s, and in its second run the remaining half.
Hence the run time of Pooled Gauss’s first application dominates the run

time of its second application. Since Pooled Gauss’s run time depends exponen-
tially on k, we can gain up to a square root in the running time when we reduce
the dimension up to k

2 .
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Input: LPNk,τ oracle, τ
Output: secret s
k′ := d 1

1+log2(
1

1−τ )
ke;

Set parameters n,m as in Pooled Gauss for an LPNk′,τ instance;
(1) Modify
repeat

(a, b)← LPNk,τ ;

if a{k′+1,...,k} = 0k−k
′
then

Add (a{1,...,k′}, b) to sample pool;
end

until pool contains more than n+m elements;
(2) Decode
(s1, . . . , sk′)←Run Pooled Gauss on the pool containing the first n LPNk′,τ

samples, while taking the remaining m samples for Test;
(3) Complete
(A,b)← LPNn+m

k,τ . Reduce A’s dimension to k − k′ using (s1, . . . , sk′);
(sk′+1, . . . , sk)← Run Pooled Gauss on the pool containing the first n
LPNk−k′,τ samples, while taking the remaining m samples for Test;

return s;
Algorithm 7: Well-Pooled Gauss

Theorem 5 (Well-Pooled Gauss). Well-Pooled Gauss solves LPNk,τ with
overwhelming probability in time and query complexity

Θ̃

((
1

(1− τ)k

) 1

1+log2( 1
1−τ )

)

using Θ̃(k3) memory.

Proof. Pooled Gauss’s first application runs in time T := Θ̃
(

1
(1−τ)k′

)
, which is

the claimed total running time. Furthermore, by Lemma 1 with overwhelming
probability the run time of the Modify step for finding n+m samples with last
k − k′ 0-coordinates is bounded by

2k−k
′ (
n+m+ log2

2(k)
)

= Θ̃
(

2k−k
′
)

= Θ̃

(
2

(
1− 1

1+log2( 1
1−τ )

)
k
)

= Θ̃

2

log2( 1
1−τ )

1+log2( 1
1−τ )

k

 = T. ut

5.2 Quantum Improvements with Polynomial Memory

In the quantum version of Well-Pooled Gauss, called Quantum Well-Pooled

Gauss, we simply replace in Algorithm 7 the Pooled Gauss procedure by its
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quantum version. Notice that by Remark 2 we cannot provide a quantum version
of our Modify step. So we cannot expect to gain another full square root by going
to the quantum version of Well-Pooled Gauss.

The following theorem shows that in Quantum Well-Pooled Gauss one should
take the parameter choice k′ = d 2

2+log2( 1
1−τ )

ke > 2
3k. The Quantum Pooled

Gauss routine then runs in time

T := Θ̃

( 1

1− τ

) k′
2

 .

Hence in comparison with Well-Pooled Gauss (Theorem 5) we gain at most an
additional factor of 2

3 in the exponent.

Theorem 6 (Quantum Well-Pooled Gauss). Quantum Well-Pooled Gauss

quantumly solves LPNk,τ with overwhelming probability in time and query com-
plexity

Θ̃

((
1

(1− τ)k

) 1

2+log2( 1
1−τ )

)
,

using Θ̃(k3) space.

Proof. Analogous to the proof of Well-Pooled Gauss’ run time (Theorem 5),
in its quantum version the run time of the first Quantum Pooled Gauss routine

is T = Θ̃(( 1
1−τ )

k′
2 ), which is the claimed total run time. T dominates the run

time of the second call for Quantum Pooled Gauss, since k′ > 2
3k. T also upper

bounds the run time of the Modify step, since by Lemma 1 with overwhelming
probability for obtaining n+m of the desired form it takes at most time

2k−k
′ (
n+m+ log2

2(k)
)

= Θ̃(2k−k
′
) = Θ̃

2

log2( 1
1−τ )

2+log2( 1
1−τ )

k

 = T. ut

5.3 Using Memory – Building a Bridge Towards BKW

Up to now, for instantiating Algorithm 6 in Well Pooled Gauss we made only
somewhat naive use of our LPN oracle by storing only those vectors in the stream
of all oracle answers that were already dimension-reduced. The reason for this
was our restriction to polynomial memory consumption in order to achieve highly
efficient algorithms in practice.

Optimally, we could tune our LPN algorithm by the memory that is available
on our machine. Let us say, we have memory M and we are looking for the fastest
algorithm that uses at most M memory cells. In this scenario, we are free to store
more LPN samples and to add them until they provide us dimension-reduced
samples, at the cost of a growing error τ ′ > τ determined by the Piling-up
Lemma (Lemma 2).
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Notice that this is exactly the strategy of BKW. But as opposed to the BKW
algorithm, which basically reduces the dimension k all the way down to 1, we
allow – due to our constraint memory M – only limited dimension reduction
down to some k′. Since afterwards, we will in Algorithm 6 resort again to a
Decoding step, the optimal choice of k′ is not determined by the size of M alone,
but also by the growth of the error τ ′ that our decoding procedure can handle.

More precisely, the following Algorithm 8, called Hybrid, in a first step uses
the naive strategy of Well-Pooled Gauss to decrease the dimension by k1, while
leaving τ unchanged. Then in a second step it uses c BKW-iterations on blocks
of size d to further reduce the dimension by k2, thereby increasing to error τ ′

which grows double-exponentially in c.

Input: LPNk,τ oracle, τ , memory k3 log2
2(k) ≤M ≤ 2

k
log2(k/τ)

Output: secret s

c := b log2(k/τ)·(M−k
3 log22(k))

2
k

log2(k/τ)−k3 log22(k)

c;

τ ′ = 1
2
− 1

2
(1− 2τ)2

c

;

Choose k2 ∈ N s.t. max
(
k2
c
, 2c log2( 1

(1−2τ)2
)
)
≈ log (M);

k1 :=
log2

(
1

1−τ′
)
(k−k2)+2c log2

(
1

(1−2τ)2

)
−log2(M)

1+log2

(
1

1−τ′
) ;

d := k2
c

;
k′ := k − k1 − k2;
Set parameters n,m as in Pooled Gauss for an LPNk′,τ ′ instance;
(1) Modify
repeat

(a, `)← LPNk,τ ;

if a{k−k1+1,...,k} = 0k1 then
Add (a1,...,k−k1 , b) to sample pool;

end

until pool contains more than n+m+ c2d samples;
for i = 1, . . . , c do

foreach j ∈ Fd2 do

Pick a row ak of A with suffix j|0(i−1)d (if any); add ak to all the other
rows of A with suffix j|0(i−1)d, also add corresponding labels;

Remove the kth row from A and b;

end

end 2
Decode
(s1, . . . , sk′)←Run Pooled Gauss on the pool containing the first n LPNk′,τ ′

samples, while taking the remaining m samples for Test;
(3) Complete
While there are still unknown bits of s go to (1), using the known bits of s to
create smaller dimension samples;

return s;
Algorithm 8: Hybrid
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Hybrid instantiated with only polynomial memory leaves out all BKW-iterations
and boils down to Well-Pooled Gauss. Hybrid instantiated with sufficiently

memory achieves BKW’s time complexity 2O(k/ log( kτ )). Thus, Hybrid provides a
perfect interpolation between both algorithms.

Theorem 7 (Hybrid). Using Θ̃(M) space, Hybrid solves LPNk,τ with over-

whelming probability in time and query complexity Θ̃(M · 2k1), where k1 is as
defined in Hybrid.

For M = k3 log2
2(k) we get the same time, memory and sample complexity

as in Well-Pooled Gauss (Theorem 5).

Choosing M = 2k/ log2(
k
τ ) gives us the complexities of BKW (Theorem 1).

Proof. The number of samples that we have to produce for the BKW step is

N = m + n + c2d = Θ̃

(
2
max

(
k2
c ,2

c log2(
1

(1−2τ)2
)
))

, since m = Θ̃
(

1
( 1
2−τ ′)2

)
=

Θ̃
(

1

(1−2τ)2c+1

)
, n = poly(k) and cd = k2. With overwhelming probability the

Modify and Decoding steps in Hybrid take time Θ̃

(
N · 2k1 +

(
1

1−τ ′

)k′
m

)

= Θ̃

(
2
k1+max

(
k2
c ,2

c log2(
1

(1−2τ)2
)
)

+ 2
log2

(
1

1−τ′

)
(k−k1−k2)+2c log2

(
1

(1−2τ)2

))
,

using Θ̃
(
N · 2k1

)
samples and Θ̃ (N) memory. Our choice of k1 in Hybrid bal-

ances both run time summands. Our choice of k2 then gives us the stated time,
sample and memory complexity. Notice that the Complete step takes less time,
queries and memory, since here we solve smaller LPN instances.

It remains to show that Hybrid contains as special cases Well-Pooled Gauss

and BKW. For some ε > 0, let us define similar to Hybrid

c(k, τ,M) :=
(1− ε) log2

(
k
τ

)
·
(
M − k3 log2

2(k)
)

2

1
1−ε ·

k

log2( kτ ) − k3 log2
2(k)

.

For the choice M = k3 log2
2(k) we get c = 0⇒ k2 = 0, which means that we do

not perform any BKW steps. Thus, Hybrid is identical Well-Pooled Gauss. For

the choice M = 2

1
1−ε ·

k

log2( kτ ) we obtain c = (1 − ε) log2(kτ ), k1 = 0 and k2 ≈ k,
giving us the complexities of BKW from Theorem 1. ut

5.4 Using Memory – Advanced Decoding Algorithms

In the previous Section 5.3 we provided a time-memory tradeoff for Algorithm 6
Dim-Decode by looking at the Modify step only. In this section, we will focus
on the Decode step. So far, we only used the quite naive Gauss decoding proce-
dure, which resembles Prange’s information set decoding algorithm [27]. How-
ever, within the last years there has been significant progress in information set
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decoding, starting with Ball-Collision Decoding [6], then followed by a series
of papers, MMT [25], BJMM [4] and May-Ozerov [26], using the so-called represen-
tation technique.

In principle, one can freely choose the preferred decoding procedure in De-
code. Our starting point was a simplified version of BJMM, but then on optimizing
the BJMM parameters we found out that for the LPN instances under consider-
ation (see Section 6), MMT performs actually best. Since BJMM offers asymptoti-
cally a better run time than MMT, the situation should however change for (very)
large LPN dimension k. We also did not consider the Nearest Neighbor algo-
rithm May-Ozerov, since its large polynomial run time factor currently prevents
speedups in the parameter ranges that we consider.

Instantiating Dim-Decode with MMT decoding results in Algorithm 9, called
Well-Pooled MMT.

Input: LPNk,τ oracle, τ
Output: secret s
Set parameters n,m as in Pooled Gauss for a LPNk′,τ instance;
(1) Modify
Use the same procedure as in Well-Pooled Gauss (Algorithm 7).
(2) Decode
(s1, . . . , sk′)←Run MMT on the pool containing the first n LPNk′,τ

samples, while taking the remaining m samples for Test;
(3) Complete
(A,b)← LPNn+m

k,τ . Reduce A’s dimension to k − k′ using (s1, . . . , sk′);
(sk′+1, . . . , sk)← Run MMT on the pool containing the first n LPNk−k′,τ
samples, while taking the remaining m samples for Test;

return s;
Algorithm 9: Well-Pooled MMT

Unfortunately, [25] does not provide a closed run time formula for MMT. There-
fore, we cannot give a theorem for Well-Pooled MMT that provides a precise
bound for the time complexity as a function of k, τ as in the previous sections.
However, we are able to optimize the run time of Well-Pooled MMT for every
fixed τ as a function of k.

Let us conjecture that Well-Pooled MMT’s time complexity is 2c(τ)k. Recall
from Theorem 5 that Well-Pooled Gauss’s time complexity is

Θ̃

(
2

log2( 1
(1−τ) )

1+log2( 1
1−τ )

k
)

= Θ̃
(

2c
′(t)k

)
.

We can plot both functions c(τ) and c′(τ) as a function of τ . The following
graph in Fig. 1 visualizes that the run time exponent c(τ) of Well-Pooled MMT

is smaller than the run time exponent c′(τ) of Well-Pooled Gauss for every
τ ∈ [0, 12 ), as one would expect. The largest gap appears at τ = 1

4 , where
Well-Pooled MMT achieves time 20.282k, whereas Well-Pooled Gauss requires
time 20.293k.
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Fig. 1: Gauss and MMT

Remark 3. Since we and the authors of [25] do not know how to express the
running time of MMT as a closed formula, a function that approximates c(τ)
reasonably well is

log2

(
1

1− 7
6 τ

)
log2

(
12
5

)
+ log2

(
1

1− 7
6 τ

) .
It is worth to notice that MMT, as opposed to Prange, consumes exponential

memory. However, the memory consumption is still quite moderate. For the LPN

instances that we considered the memory never exceeded 2
c(τ)k

2 .
Notice that one can of course enhance Well-Pooled MMT with the Modify

techniques from the previous Section 5.3.
Currently however, we do not know whether quantum search speeds up our

Decode step. The reason is that it is unknown whether MMT with quantum search
is superior to Quantum Gauss. In all our attempts, any quantum MMT had the
same running time as Quantum Gauss.

6 Classical and Quantum Bit Security Estimates

In LPN cryptanalysis, it is currently practice to give estimated bit complexities,
that is the binary logarithm of the running time, for newly developed algorithms
in table form. In order to allow some comparison with existing work and to
give an impression how our algorithms might perform for LPN parameters of
cryptographic interest, we also give tables in the following. However, at the
same time we want to express a clear warning that all LPN tables should be
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taken with care, since the given bit security levels might over- or underestimate
the real performance in practice.

Therefore, we also provide experimental results in Section 7 on medium-size
LPN parameter, which we extrapolate to cryptographic size by our asymptotic
formulas. In our opinion, this is the only reliable way of predicting key sizes with
good accuracy. Nevertheless, experimental results might not be possible even for
medium-size parameters in some cases, e.g. when an algorithm consumes large
memory or when we predict quantum running-times. Hence, performance tables
are in these cases useful.

Since in this work, we care about practical memory consumption, we en-
force an upper limit of M ≤ 260 bits on the allowed memory to compute LPN
instances.

For this upper bound of M , we computed the bit complexities of our algo-
rithms and compare them to the Covering Codes BKW [18] table from Bogos
et al [8]. For our following computations, let n′ = k′2 log2

2(k′) the (reduced)

number of samples, m =
(

log2(k)
1
2−τ

)2
the test size for unchanged error τ and

m′ =
(

2 log2(k)
(1−2τ)2c

)2
the test size for increased τ . TGE = 1

6k
′3 + 1

3k
′ is the ex-

pected complexity for using Gaussian elimination. In our computations, we use
for Well-Pooled Gauss the formula

(n′ +m+ log2(k)) 2k1+1k1 + log2(k)

(
1

1− τ

)k′
(TGE + k′ ·m) ,

where k′ = k − k1. For Hybrid we use

(N+log2(k))2k1+1k1+cN(k−k1)+log2(k)

(
1

1
2 + 1

2 (1− 2τ)2c

)k′
(TGE + k′ ·m′) ,

with k′ = k − k1 − k2 and N = c2
k2
c + m′ + n′. The memory was computed as

N · k. For the quantum version, we substitute the last summand by

2 · π
4
·
(

1
1
2 + 1

2 (1− 2τ)2c

) k′
2

(TGE + k′ ·m′) ,

where the π
4 term emerges from the running time of Grover’s algorithm. The

MMT running time is a bit more involved. Let ` and p be the optimization

parameters, r = blog2

((
p
p
2

))
c, S2 =

( k′+`
2
p
4

)
, S1 =

S2
2

2r , S0 =
S2
1

2`−r
and T =(

n′

τn′

)
/
((
k′+`
p

)
·
(
n′−k′−`
τn′−p

))
as in [25]. Then we used the following formula for the

running time:

T · (8S2 · (k′ + `) + 2S1 · (2`+ k′) + S0 · (2`+ k′ + TGE + k′ ·m))

with memory (2` + k′) · (4S2 + 2S1) and the proper constraints for ` and p.
We tried to take any polynomial factor into consideration here, but also small
changes should not affect the tables much.
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Notice that our algorithms succeed with overwhelming success, as opposed
to [8], who consider only constant success probability. Moreover, the cost of the
Complete step is not taken into account in all tables. Taking both issues into
account would however not significantly change the following tables.

Table 2: Covering Codes BKW [8]

τ
k

256 384 448 512 576 640 768 1280

1√
k

44 55 59 - - - - -

0.05 42 54 59 - - - - -

0.125 52 - - - - - - -

0.25 - - - - - - - -

0.4 - - - - - - - -

Table 3: Hybrid

τ
k

256 384 448 512 576 640 768 1280

1√
k

46 53 56 59 62 64 68 82

0.05 42 53 58 63 68 73 82 120

0.125 60 88 99 110 121 132 154 239

0.25 81 139 158 178 197 216 255 407

0.4 108 174 207 240 273 300 355 575

Table 4: Well-Pooled MMT

τ
k

256 384 448 512 576 640 768 1280

1√
k

37 42 45 47 48 51 54 66

0.05 33 43 48 57 58 62 70 102

0.125 57 77 88 97 102 118 138 219

0.25 92 128 148 166 185 204 242 392

0.4 129 183 211 238 265 292 347 568

Table 5: Quantum Hybrid

τ
k

256 384 448 512 576 640 768 1280

1√
k

34 38 40 41 43 44 47 55

0.05 31 38 41 43 46 49 54 75

0.125 45 58 64 70 77 83 95 142

0.25 67 90 102 114 125 137 159 250

0.4 90 128 146 164 182 199 235 375

One already sees in Table 2 that for our chosen LPN parameters only 6
parameter sets can be done with Covering Codes BKW within the memory limit
of 260. In comparison to our classical algorithms, only the LPN256, 18

instance of
Covering Codes BKW yields better running time. Of course, we could also use
the Covering Codes BKW technique in our Modify step which would result in an
improved version of Hybrid.

In Table 3 we marked those entries in bold, which are actually achieved by
Well-Pooled Gauss, i.e., our optimization shows that we should not include any
BKW steps for these LPN parameters. Hence, for the bold entries we use only
O(k3) memory. As one can see, the smaller the error τ , the smaller is also the
break-even point where Hybrid collapses into Well-Pooled Gauss.
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Asymptotically, Well-Pooled MMT outperforms Well-Pooled Gauss as shown
in Section 5.4. Hence, it might not be a big surprise that all Well-Pooled Gauss

instances from Table 3 are outperformed by the corresponding entries in Table 4.
However, we were not expecting that this happens even for parameters as small
as k = 256, since compared to Gaussian elimination MMT incorporate somewhat
larger polynomial factors. That Well-Pooled MMT outperforms Well-Pooled

Gauss in practice even for very small k is supported by our experiments in
Section 7.

It is also worth to note that according to our predictions, 80-bit security on
classical computers for LPN 1√

k
,k can only be achieved for k ≥ 2048. This makes

current applications of LPN for encryption quite inefficient.

Table 5 finally states the quantum bit security levels when taking Quantum

Well-Pooled Gauss inside Hybrid. Here again, the bold marked entries – which
are all but one – are those where the optimization lets Quantum Hybrid boil down
to Quantum Well-Pooled Gauss. That is, for the bold entries we only consume
O(k3) memory. We see that the prominent cryptographic choice LPN512, 18

offers
only 70-bit security on quantum computers.

NIST’s Post-Quantum Call. NIST [1] asks for classical security levels of
128, 192, 256 bit and quantum security levels of 64, 80, 128 bit. Tables 6, 7 and
8 define the minimal k that fulfill these levels for τ taking values 1√

k
, 1

8 , 1
4 ,

respectively.

Table 6: τ = 1√
k

k Classic Quantum

6050 128 92
14900 192 128
24600 256 155
2100 81 64
4100 107 80
15100 194 128

Table 7: τ = 1
8

k Classic Quantum

715 128 90
1115 192 127
1520 256 164
450 86 64
615 112 80
1130 194 128

Table 8: τ = 1
4

k Classic Quantum

386 128 91
602 192 130
810 256 167
243 87 64
330 112 80
594 190 128

Choice of k for security levels 128, 192, 256 (classic) and 64, 80, 128 (quantum)

7 Experiments

All our implementations are available via
https://github.com/Memphisd/LPN-decoded.
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Our experiments were done on a server with four 16-core-processors, allowing
a parallelization of 64 threads, using 256GB < 241 bit RAM.

We implemented Well-Pooled Gauss and Well-Pooled MMT for τ = 1
8 ,

1
4

and various k. In order to get reliable run times for τ = 1
8 and k < 170, respec-

tively τ = 1
4 and k < 100, we averaged the run time over 30 instances. For larger

k, we solved only a single instance.
The results for τ = 1

8 and τ = 1
4 are shown in Fig. 2 and 3, respectively.

Here we plot the logarithm of the running time in msec as a function of k. Hence
negative values mean that it takes only a fraction of a msec to solve the instance.
For Well-Pooled Gauss we plotted as a comparison the asymptotic line with
slope

log2( 1
1−τ )

1 + log2( 1
1−τ )

,

which follows from Theorem 5. For Well-Pooled MMT we numerically computed
the slopes 0.177 and 0.381 for τ = 1

8 and τ = 1
4 , respectively, similar to the

computation in Fig. 1.
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Fig. 2: Experimental results for τ = 1
8

As can be seen in Fig. 2 and 3, as expected the experiments take slightly
longer than the asymptotic prediction, since the asymptotic hides polynomial
factors. But especially for Well-Pooled MMT large values of k are close to the
asymptotic line, which means that the asymptotic quite accurately predicts the
running time.

Since Well-Pooled MMT’s run time includes quite large polynomials factors,
due to MMT, we expected that it outperforms Well-Pooled Gauss only for large
values of k. To our surprise, the break even point for both algorithms was only
k = 78 for τ = 1

8 , and k = 9 for τ = 1
4 . Hence, for these error rates τ one

should always prefer Well-Pooled MMT over Well-Pooled Gauss even for rela-
tively small sizes of k.
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Fig. 3: Experimental results for τ = 1
4

Largest instances. The largest instances that we solved with Well-Pooled

MMT were k = 243, τ = 1
8 and k = 135, τ = 1

4 . Let us provide more details for
these computations.

For k = 243, τ = 1
8 , we first computed in almost 7 days a pool of samples

(ai, bi) where the ai had their last 35 coordinates equal to zero. The resulting
LPN208, 18

was solved with MMT in 8 days, resulting in a total of 15 days. This
recovers already 208 coordinates of s. The Complete step in Well-Pooled MMT

that recovers the remaining 35 coordinates took less than a second.
For k = 135, τ = 1

4 , the preprocessing step on again 35 coordinates took al-
most 6 days, the decoding step 8 days and Complete less than a second, resulting
in a total of 14 days.

Table 9: Solved instances

Algorithm k τ Pool gen. BKW Decoding Total

Well-Pooled MMT 243 0.125 6.73 d - 8.34 d 15.07 d

Well-Pooled MMT 135 0.25 5.65 d - 8.19 d 13.84 d
Hybrid 135 0.25 2.21 d 1.72 h 3.41 d 5.69 d

Well-Pooled Gauss 113 0.25 0.77 d - 1.21 d 1.98 d
Well-Pooled MMT 113 0.25 1.64 h - 2.18 h 3.82 h

Hybrid 113 0.25 0.13 h 0.98 h 0.57 h 1.68 h

Extrapolation to k = 512. Let T (k, τ) be the time to solve an LPNk,τ instance
via Well-Pooled MMT as computed numerically in Fig. 1. Then it would take us a

factor of
T (512, 18 )

T (243, 18 )
≈ 249 longer to break an LPN512, 18

than an LPN243, 18
instance.
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For τ = 1
4 we would even need an additional factor of

T (512, 14 )

T (135, 14 )
≈ 2131. Hence,

both instances seem to provide sufficient classical security, but also recall from
Section 6 that LPN512, 18

only offers 70-bit quantum security.

Hybrid implementation. We solved LPN113, 14
in less than 2 hours, which in

comparison took for Well-Pooled Gauss around 2 days and for Well-Pooled

MMT still almost 4 hours. We were also able to solve LPN135, 14
using Hybrid

in 5.69 days. In comparison, solving this instance with Well-Pooled MMT took
13.84 days.

Let us provide some more details of both computations, starting with LPN113, 14
.

We first computed a pool of 233 samples with k1 = 3 bits fixed in 8 min. BKW
then eliminated k2 = 93 bit in c = 3 iterations with block-size d = 31 in 56 min.
This gave an LPN17, 255512

instance, which Gauss solved in 9 min.
Thus, we recovered the first 17 bits of s, which we then eliminated from our

pool, resulting in an LPN93, 14
instance. In a second iteration, BKW eliminated

k2 = 78 bit in c = 3 iterations with block-size d = 26 in 3 min. The resulting
LPN15, 255512

instance was solved by Gauss in 6 min.
After eliminating these further 15 bits from our pool, we are left with an

LPN78, 14
instance, which was directly solved by MMT in another 19 min. The

remaining k1 = 3 bits were brute-forced in 125 msec.
Thus, in total it took us only 101 min to solve LPN113, 14

with Hybrid.

For solving LPN135, 14
, we computed again a pool of 233 samples with k1 =

10 coordinates fixed in 1.47 days. BKW then eliminated k2 = 99 bits in c = 3
iterations taking 36 min, which resulted in 221.4 samples with k1 + k2 = 109
coordinates fixed.

This amount of samples is not yet sufficient to achieve a good success prob-
ability for solving the remaining LPN26, 255512

by Gauss. In order to increase the

input samples to Gauss we computed a new pool of 232 samples with k1 = 10
coordinates fixed in 0.74 days, and exchanged half of the samples of the bigger
pool that we compute in the beginning. This altered pool of size 233 was then
used as input to BKW to eliminate again k2 = 99 bits in c = 3 iterations in
another 35 min. This allowed us to double the size of the input pool for Gauss

while increasing the runtime only by a factor of ≈ 1.5.
After acquiring enough input samples, solving LPN26, 255512

by Gauss took 3.12
days. The remaining LPN109, 14

instance could be solved by another iteration and
subsequent execution of MMT in less then 7 hours. In total, solving LPN135, 14

took
us 5.69 days with Hybrid.
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