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Abstract

Shor’s algorithm factors an integer N in two steps. The quantum step computes the
order of a mod N where a is relatively prime to N . The classical step uses this order
to factor N . Descriptions of the classical step require the order, s, to be even and that
as/2 6≡ −1 mod N . If s is odd or as/2 ≡ −1 mod N , then the quantum step is repeated.
This paper describes how each prime divisor of the order s, not just 2, can be used to factor
N .

1 Sketch of Shor’s Algorithm

Shor’s[4] algorithm factors a composite integer N , which is not a non-trivial power, in two

steps. The first step uses quantum computing to find the order of some integer a modulo N ,

where gcd(a,N) = 1. In other words, this step finds the smallest positive integer s such that

as ≡ 1 mod N .

The second step uses the order, s, and classical techniques to factor N . If s is odd or

as/2 ≡ −1 mod N , then the quantum step is repeated. Otherwise, let b2 ≡ as/2 mod N , and

notice that b2 has order 2 modulo N . In other words, b22 ≡ 1 mod N and(
b22 − 1

)
≡ (b2 − 1) (b2 + 1) ≡ 0 mod N.

A non-trivial factorization of N is

N = gcd((b2 − 1) , N) gcd((b2 + 1) , N) .
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2 How the Classical Step Works

The classical step can be understood in two ways:

1. Factorization of a simple quadratic: Since (b2)
2−1 ≡ 0 mod N , we know that (b2+1)(b2−

1) ≡ 0 mod N . b2 is not 1 or −1, so neither is 0 mod N and their GCD’s must completely

factor N .

2. Da Yen (Sun Tsu’s theorem/Chinese remainder theorem): Let N factor into two non-

trivial, relatively prime integers N = AB. This is guaranteed by the fact that N is

composite and not a non-trivial power.

The da yen [1][2] states that Z/NZ is isomorphic to Z/AZ × Z/BZ. Integers modulo N

can be represented as a pair of integers, one modulo A and one modulo B:

v mod N ∼= [vA mod A, vB mod B] .

Operations modulo N are equivalent to operations [modA,modB].

For every prime p dividing N , b2 ≡ ±1 mod p. It is fairly easy to show that for every

pk dividing N , if b2 ≡ 1 mod p then b2 ≡ 1 mod pk, and if b2 ≡ −1 mod p then b2 ≡
−1 mod pk. Let N = AB where A is the product of all prime powers with b2 ≡ 1 and B

the product of all prime powers with b2 ≡ −1. Then

(b2 − 1) mod N ∼= [0 mod A,−2 mod B]

(b2 + 1) mod N ∼= [2 mod A, 0 mod B]

and gcd((b2 − 1 mod N), N) = A and gcd((b2 + 1 mod N), N) = B.

3 Beyond Even Orders

Using the da yen, any prime factor of s (the order of a mod N), not just 2, can be used in a

similar way to factor N . If r is a prime divisor of s, we can compute an element of order r:

br ≡ as/r mod N . For any divisor of N , the order of br must be either r or 1 since r is prime.

Just as was done for r = 2, N can be factored into the prime powers for which br have order 1
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and the prime powers which have order r. If N = AB where br ≡ 1 mod A and br 6≡ 1 mod B,

then:

br − 1 mod N ∼= [0 mod A, h− 1 mod B] (1)

where h 6≡ 1 mod B. Just as before,

gcd((br − 1), N) = A. (2)

Unlike the case when r = 2, taking the GCD of (br + 1) and N will not yield a factor.

Instead of throwing out the order s if it is odd or if as/2 ≡ −1 mod N , elements br for other

prime divisors should be computed and used to factor (equation 2). This significantly reduces

the probability that the very expensive quantum step of the algorithm will have to be repeated,

thus significantly reducing the overall cost of the algorithm.

4 A Probabilistic Problem

A problem arose when r = 2 and as/2 ≡ −1 mod N . In this case the A portion of the factoriza-

tion was trivial: A = 1 and B = N . The same problem can happen for other prime divisors r

of s. However if r does not divide N , the probability of this problem occurring goes to zero as r

goes to infinity. In other words, larger prime divisors of s have probability near 1 of generating

a factor of N .

An element of order r exists modulo N if and only if r divides λ(N)1. Assume that r does

not divide N and that br ≡ as/r mod N is an element of order r. Then:

• r divides (p− 1) for at least one prime divisor of N .

• If r does not divide (q − 1) for some prime factor q of N , then there are no elements in

Z/qtZ, for any qt |N , which have order r. This implies that the order of br mod qt is one,

and that br ≡ 1 mod qt.

Failure to factor using an element of order r (including the case where r = 2), br, implies

that there does not exist a non-trivial factor A of N such that br ≡ 1 mod A. This implies

1Recall that Euler’s totient function of a prime power is φ(pe) = (p− 1) pe−1 and the reduced totient function

is λ(N) = LCM
({
φ
(
p
ej
j

)})
= LCM

({
(pj − 1)p

ej−1

j

})
, where pj are all prime divisors of N and p

ej
j ‖N .
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that for every prime q dividing N , r divides (q − 1). If r = 2 and N is odd, then r will divide

(q − 1) for every factor q of N . But when r > 2, the probability of r dividing (q − 1) is 1
r .

The probability of failure goes to zero as the the size of r and/or the number of distinct prime

divisors of N increases.

Factorization will succeed using an element of order s only if there exists a prime factor r

of s such that br is a factorable r-th root of unity modulo N .

Definition 4.1 (Factorable r-th root of Unity): A factorable r-th root of unity is an element

br mod N of prime order r such that

1. N = AB with gcd(A,B) = 1;

2. br ≡ 1 mod A and br 6≡ 1 mod B.

5 Probability of Factorable Order for RSA Moduli

For simplicity, this probability lemma applies only to RSA moduli of the form N = pq where

p, q are distinct primes.

Lemma 5.1 (Probability of factorable r-th root of Unity): Let N = pq, br be a non-trivial

r-th root of unity mod N with p, q, r prime integers and p, q > 2. Then the probability that br

is a factorable r-th root of unity is:

pr(br is factorable) =


2
3 r = 2

r2(
r2+

(r−1)
2

) r > 2

Proof. Since the order of br is r and N = pq with p, q, r prime, we know that r divides (p− 1)

and/or (q − 1).

• The probability that r divides both (p − 1) and (q − 1), given that r > 2 (it will divide

both if r = 2) and it divides at least one of them, is

pr
(

(r |p− 1)
⋂

(r |q − 1)
∣∣∣(r |p− 1)

⋃
(r |q − 1)

)
=

(
1
r2

)(
2r−1
r2

)
=

1

2r − 1

4



• If r divides both (p− 1) and (q − 1), the probability that br is a factorable root of unity

is pr(brfactorable |(r |(p− 1))
⋂

(r |(q − 1))) = 2
r+1 :

– the number of br ∈ Z/NZ where br has order r, hp ≡ 1, hq 6≡ 1 is (r − 1);

– the number of br ∈ Z/NZ where br has order r, hp 6≡ 1, hq ≡ 1 is (r − 1);

– the number of br ∈ Z/NZ where br has order r is (r2 − 1);

– pr(brfactorable |(r |(p− 1))
⋂

(r |(q − 1))) = 2(r−1)
r2−1

= 2
r+1

• If r does not divide both (p − 1) and (q − 1), then it is a factorable r-th root of unity.

The only orders (br mod p) and (br mod q) can have is r or 1 since the order of br is r

and r is prime. If r does not divide (p − 1) then there is no element of order r in Fp,

and br ≡ 1 mod p. br 6≡ 1 mod q, otherwise br ≡ 1, and br must be factorable. The same

argument holds if r does not divide (q − 1).

Therefore

pr(br is factorable) =

{
0 + 2

2+1 r = 2
(2r−2)
(2r−1) · 1 +

(
1

(2r−1)

)(
2

(r+1)

)
r > 2

=


2
3 r = 2

r2(
r2+

(r−1)
2

) r > 2

5.1 Comment for Sophie Germain Primes or Unfactorable Orders

If the RSA modulus was generated with Sophie Germain primes and N = pq, p = 2p1 + 1,

q = 2q1 + 1 where p1, q1 are both prime. For these moduli, most elements have order divisible

by both p1 and q1. If the order returned one of the large primes, say p1, then you know

p = 2p1 + 1 and can factor. If the order returned is s = p1q1, then p1 + q1 = N−4s−1
2 and you

can factor:

q1 ∈


N−4s−1

2 ±
(
(N−4s−1)2

4 − 4s
)1/2

2


What if N is not the product of two Sophie-Germain primes but returned order s is a large

composite with no small prime factors? In this case, we still have that s is a large factor of the
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reduced totient function λ(N). Alternate classical methods can use this information to factor.

For example, Pollard’s (p− 1) algorithm [3] can be run using this knowledge to insure the large

prime factor does not divide the order of the element used. The resulting element is guaranteed

to have a smaller order, significantly improving the run time of the algorithm.

6 Examples

The following small examples show how to factor if the quantum step of Shor’s algorithm returns

an odd order or a previously unusable even order. The first example assumes the quantum step

returned an even order for which b2 fails to factor. The second example uses the more common

base of 2, but the quantum step returns an odd order.

6.1 Factor N = 3304283

Assume the quantum step of the algorithm returned the order of 751228 as 78 = 2 · 3 · 13. This

order is even, however 75122878/2 ≡ −1 mod N .

Three primes (2, 3, 13) divide the factorization the order: 78 = 2 · 3 · 13. This gives three

possible factorable roots of unity. While b2 fails to factor, b3 and b13 return factors of N .

r br gcd(br − 1, N)

2 75122839 ≡ 3304282 ≡ −1 1

3 75122826 ≡ 1590268 1847

13 7512286 ≡ 1511706 1789

6.2 Factor N = 152942113

Assume the quantum step of the algorithm returned the order of 2 as 4247705 = 5 ·7 ·112 ·17 ·59.

Five primes (5, 7, 11, 17, 59) divide the order. This gives five possible factorable roots of unity.

r br gcd(br − 1, N)

5 2849541 ≡ 84438464 12343

7 2606815 ≡ 3702901 12343

11 2386155 ≡ 121345064 12391

17 2249865 ≡ 93564442 12391

59 271995 ≡ 124763045 12343
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7 Conclusion

This paper described an extension of the classical step of Shor’s algorithm. Previous recom-

mendations have been to re-run the costly quantum step of the algorithm if it returned an odd

order or an unusable even order.

This paper explains how to use any odd prime divisor of the order in the classical step,

minimizing the need to repeat the quantum step. Not only is there no need to throw out odd

orders returned by the quantum step, but a single returned order, depending on its factorization,

allows multiple attempts at factoring N .
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