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Abstract: We investigate the effect of inserting extra linearity in the Data 
Encryption Standard (DES) through appropriate singular linear encodings of the 
output of the individual S-boxes. More specifically, we examine the general 
situation when the output of each S-box of the DES is precoded separately into a 
properly constructed copy of the inherent even-weight code of length 4. The study is 
focused on finding multi-round linear characteristics for thus modified DES ciphers 
having maximal effectiveness. It turns out, depending on the particular encodings, 
that the effectiveness of interest may be larger but in most cases is smaller than that 
one for the original DES with the same number of rounds. The latter means that the 
complexity of successful linear cryptanalysis against these ciphers will mainly 
increase comparing to the DES itself. The present research extends in a natural 
way our previous work [Linear Cryptanalysis and Modified DES with Parity Check 
in the S-boxes, LNCS 9540 (2016), pp. 60 – 78]. 
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1. Introduction 

The DES is the first publicly available block encryption algorithm which was also 
adopted as an (nowadays former) USA standard. It is well-known that the strength 
of DES lies in its only non-linear part – the so-called S-boxes. However, at the 
beginning (in 1970's, due to some reasons concerning national security) design 
criteria for the S-boxes of DES were classified what arose out many controversies. 
Later on, in the paper [4] some of the original design criteria were published and it 
became clear that the chosen S-boxes were much more resistant to differential 
cryptanalysis (a general cryptanalytic technique already known in the public 
domain from [2]) than if they had been picked up at random. Although the main 
topic of [4] is to show some of the safeguards against differential cryptanalysis built 
into the algorithm from the beginning, its author has pointed out as well a design 
criterion  which is related to the just developed (at that time) new method known as 
"linear cryptanalysis" [8]. Hereinafter, for the reader's convenience we recall that 
criterion in its stronger form (S – 2′) [4, p. 250]: 

No linear combination of output bits of an S-box should be too close to a 
linear function of the input bits. (That is, if we select any subset of the four output 
bit positions and any subset of the six input bit positions, the fraction of inputs for 
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which the XOR of these output bits equals the XOR of these input bits should not be 
close to 0 or 1, but rather should be near 1/2.) 

Fortunately, this criterion (more precisely, the weaker form for a single output 
bit) was among the original requirements for DES and almost achieved in its final 
specification (see, also [6]). That is why, as pointed out in [4], the standard resisted 
in practice this new linear attack. 

An extremal particular case of the aforementioned criterion is the following: 
The XOR of the four output bits of any S-box must not be a constant. 
But, what if this constraint is violated artificially? For instance, when setting 

an output bit of original S-box of the DES to be the parity check of the other three 
output bits which are kept unchanged. 

What can be said at first glance about an S-box obtained in this way? Of 
course, considering such a box as a vectorial Boolean function, it is not onto the 
ambient binary space 4

2F  taking as values only even/odd weight 4-bit tuples. Also, 
its nonlinearity in terms of the definition given in [11], vanishes.  However, an S-
box of this kind possesses single error-detection capability and therefore it is 
immune (to a certain extent) against fault-injection attacks during the execution 
time of the algorithm. In addition, such S-box satisfies automatically the criteria 
concerning spectrum of Hamming distances between its outputs, relevant in case of 
differential cryptanalysis (see, for details [4] or in summary [7, p. 301]). 

In [3], we investigated the resistance against linear cryptanalysis of modified 
DES ciphers having S-boxes of the described type with parity check in a fixed (the 
same for all of them) position. It turns out, some-how in contrast to the common 
belief, that the complexity of successful analysis of that kind increases (in three out 
of four possibilities) compared to the case of original DES. After the presentation of 
[3] at BalkanCryptSec 2015, Prof. K. Nyberg asked what would be the behavior of 
such DES-like ciphers in the general situation when the described modifications are 
applied separately for each individual S-box. The results of our efforts in that 
direction are reported in the present paper. 

In Section 2 we give some background notions and summarize our results 
from [3]. The motivation for this research is explained in Section 3. Sections 4 and 
5 are devoted to our new results concerning the wider family of modified DES 
ciphers under consideration. 

2. Background 

Regarding modified DES ciphers, we advise the readers preferring mathematical 
description to check e.g. [5, Ch.7.5.1], while those who are interested more in 
implementations to consult [13] about details of the DES algorithm. 

2.1.  Some basics of linear cryptanalysis 

Linear cryptanalysis is a powerful technique for cryptanalysis of the modern block 
ciphers developed in the early 1990s. The attack in its full form was introduced by 
Matsui in 1993 [8] and was first applied to the DES. Speaking in brief, this attack 



 
 

 

relies on the existence of linear probabilistic approximations of the cipher having 
the form: 

P[χP] + C[χC] = K[χK], 
where P, C and K denote the plaintext, the corresponding ciphertext and the secret 
key, respectively, while B[χB] stands for B

mbbb BBB ⊕⊕⊕ L
21

 with χBB = 
{b1,b2,…,bm} a subset of positions in the bit array B. Among these relations (also 
called characteristics), the most valuable for cryptanalysis are those, effective ones, 
that hold true with probability deviating significantly from 1/2. In practice, for the 
iterative block ciphers based on S-boxes, e.g. Feistel or SP networks, effective 
characteristics can be obtained by fixing, at first, the generic firmed correlations 
between the inputs and outputs of the individual S-boxes, and then concatenating 
these local 1-round linear dependencies through the involved round functions in 
multi-round ones. 

A bit more formally, when a linear approximation holds with probability 
2/1≠p  for randomly given plaintext P and the corresponding ciphertext C, the 

magnitude of the bias 2/1−p , represents the effectiveness of that approximation. A 
linear characteristic is called best characteristic when the effectiveness of 
corresponding linear approximation is maximal. 

It is deserved mentioning that the number of plaintext/ciphertext pairs needed 
for a linear attack with sufficiently high probability of success, is proportional to 

2−e , where e denotes the effectiveness of the exploited characteristic. So, the 
effectiveness influences directly on the complexity of this kind of attacks.  

The following definition, given for arbitrary S-box, is of vital importance for 
our considerations: 

Definition 1. (see, e.g. [12]) For given nm ×  S-box regarded as mapping 
nmS 22 FF a: , and given integers α and β, such that 0 ≤ α ≤ 2m–1 and 0 ≤ β ≤ 2n–1, 

let NS(α,β) be the number of times when the XOR-sum of the input bits masked by 
α coincides with the XOR-sum of the output bits masked by β. The table, where the 
vertical and the horizontal axes indicate α and β respectively, and each entry 
contains the "centered" value 

12),(),( −−= mNSLS βαβα  
is referred to as Linear Approximation Table (LAT) for the S-box S. 

Note that in case of the DES there are eight S-boxes, S1,…,S8, m = 6 and n = 4. 
The effectiveness of a linear approximation of an S-box is deduced directly 

from its LAT, while the effectiveness of a round approximation which involve  two 
or more S-boxes can be computed applying in suitable way the following lemma: 

Lemma 1 (Pilling-up Lemma, [9]). Let Zi (1 ≤ i ≤ r) be independent random 
variables whose values are 0 with probability pi or 1 with probability 1 – pi. Then 
the probability that Z1 ⊕ Z2 ⊕ … ⊕ Zr = 0 is 
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The next proposition, stated as lemma by Matsui (see, e.g. [9]), expresses the 
main properties of the LATs in the DES. 



 
 

 

Proposition 1. Let Sk be an S-box of the DES. 
(i) NSk(α,β) is even. 
(ii) If α = 1, 32 or 33, then  NSk(α,β) = 32 for all β. 
Apart from analyzing the properties of those LATs, in his seminal papers [8]–

[10], Matsui has found best linear characteristics for 3 to 20 rounds of the DES 
algorithm, and demonstrated different approaches (Algorithm 1 and Algorithm 2) 
for mounting attacks against various number of rounds of the cipher. The first 
experimentally verified cryptanalytic attack against the original (16-round) DES 
[10] was an improved variant of Algorithm 2 using two best statistically 
independent 14-round linear characteristics both having effectiveness of 21219.1 −× . 
This maximal effectiveness is one amongst the other numerical results for 3 to 20 
rounds [9, p. 33] which should be compared with the maximal effectiveness 
obtained for the same number of rounds in modified DES ciphers considered here. 

2.2.  Summary on linear cryptanalysis of DES with embedded parity check into the 
S-boxes 

The goal of our previous work [3] was to clarify more comprehensively the 
intuition behind the claim that embedding parity check in the outputs of the S-boxes 
of DES will weaken this cipher facilitating significantly a linear cryptanalysis in the 
spirit of Matsui's classic one.  

Before describing the results from [3] we recall some necessary conventions 
and notations. Without loss of generality we may assume even parity embedding. 
Parity bit masks can take values 1, 2, 4 and 8 or their 4-bit representations. For 
instance, the mask 1000 (or mask with value 8) shows presence of a parity bit at the 
left-most position in the output of some S-box. Also, we will denote by ),;( βαπLS  
the LAT's values of the S-box obtained through embedding a parity bit with mask π 
into the box S. 

The following proposition summarizes main properties of the considered S-
boxes: 

Proposition 2 ([3]). Let Sk be an S-box of DES, π be a parity bit mask, and & 
denotes tuple-wise AND operator. Then 

if 0≠α  and 0≠β  it holds: 
(i) ),(),;( βαβαπ kk LSLS =  for all α  and β  such that 0& =πβ ; 
(ii) )15,(),;( βαβαπ −= kk NSLS  for all α  and 15<β  such that 0& ≠πβ ; 
(iii) 0)15,;( =απkLS  for all α ; 
in addition, it holds: 
(iv) 0),0;( =βπkLS  for all β : 015 >> β ; 
(v) 32)15,0;( =πkLS  and 32)0,0;( =πkLS ; 
(vi) 0)0,;( =απkLS  for all 0≠α . 
Proposition 2(i) - (ii) mean that the new LAT is symmetric, in a sense, the half 

of its columns (where the parity position does not participate) is preserved and the 
remaining half of columns is replaced with a mirror copy of the preserved one. 



 
 

 

Also, by contrast to the original DES, Proposition 2(v) shows the existence of an 1-
round linear characteristic with zero input mask and non-zero output mask having 
non-zero bias. However, since this characteristic is deterministic it cannot be 
utilized in practice within the framework of a linear cryptanalysis with at most one 
active S-box per round. We would like to stress that, like our previous [3], the 
present article is focused on this narrow sense linear cryptanalysis, because its 
primary goal is to compare the results with those obtained for the original cipher [9] 
and the modified DES ciphers from [3] in that particular case of interest.  

The next theorem proven in [3] shows the decreasing effectiveness for 
modified DES ciphers with small number of rounds having S-boxes of parity check 
in the same position. 

Theorem 1. Every parity mask applied to the S-boxes of DES leads to a 
reduction of the maximal effectiveness of the 1-round and 3-round linear 
characteristics for that cipher. 

To explore the behaviour of thus modified ciphers for larger number of rounds, 
we developed our own search algorithm for finding best multi-round characteristics. 
This algorithm incorporates some specific features of the considered ciphers (e.g. 
the so-called modified Knudsen observation), and has very efficient C++ 
implementation. In summary, the experiments based on the tools created, show that 
multi-round linear cryptanalysis towards those ciphers has varying magnitude of 
complexity depending on the parity position chosen. Also, when comparing to that 
against the DES itself with the same number of rounds, the complexity can diminish 
but mostly grows. For instance, in case of 16 rounds, the complexity of successful 
linear attacks increases in three out of the four possibilities. For details of the 
developed algorithmic technique and the results yielded, we refer to [3]. 

3. Motivation and statement of the current research 

The question pointed in the Introduction motivated us to perform an examination in 
the following two directions: 

1. Studying the behaviour (from the perspective of linear cryptanalysis) of a 
wider family of modified DES ciphers whose parity check position into each 
individual S-box is picked up arbitrarily and independently from those into the 
others. 

2. Comparing the yielded results to those already known for the original DES 
cipher and the modified ciphers studied in [3]. 

Of course, when attacking a given cipher by the method of linear 
cryptanalysis, the effectiveness of the best linear characteristics is of crucial 
importance. Lower effectiveness implies worse probability for success of the linear 
attacks, although conversely larger one does not always provide better conditions 
for mounting these attacks. However, from the designer's point of view, in the 
former case the resistance of cipher towards these particular attacks increases and 
therefore its cryptographic strength as whole will grow. Rephrasing that, in respect 
to the modified DES ciphers considered here, an additional goal might be of 



 
 

 

interest. Namely, to choose the pattern of parity checks in such way that maximal 
effectiveness is on the desirable level. 

Based on the above reasoning, we set to our study two additional targets: 
• to look for some reasonable criteria for optimality; 
• to search for patterns of parity check positions (among all possible 

combinations of them into the S-boxes) satisfying these criteria. 

4. Optimal linear characteristics for small number of rounds 

In the general case of many (more than 3) rounds the number of possibilities for 
internal chaining of the 1-round characteristics increases prohibitively enough. 
However, for small number of rounds we obtain a clear and precise understanding 
without computer assistance. 

Clearly, the effectiveness of the best 1-round characteristics for the DES-like 
cipher of considered type is determined by the maximal magnitude of the elements 
in its LATs. In order to derive the effectiveness of interest, we perform a thorough 
analysis of the LATs of the original DES which in turn allows some deductions 
about the modified ones. 

We distinguish one kind of elements in these tables defined as follows. 
Definition 2. The entry ),( βαkLS , 0 ≤ α ≤ 63, 1 ≤ β ≤ 14, from the LAT of 

an Sk of the DES is called invariant when parity check is applied (or simply 
invariant) if 

|),;(||),(| βαπβα kk LSLS =   for every parity mask π. 
Obviously, Proposition 2(i)-(ii) imply that ),( βαkLS  is invariant if and only if 
when .|)15,(||),(| βαβα −= kk LSLS  

Let I be the set of all invariant entries from LATs and { }ILLM I ∈= |:|max: . 
The next proposition shows the reasoning for Definition 2. 

Proposition 3. Let πk be a parity mask applied to Sk of the DES, 1 ≤ k ≤ 8. 
Then 

{ },|),;(|max
,,

βαπ
βα kkkI LSM ≤  

where the maximum is on all values 1 ≤ k ≤ 8, 1 ≤ α ≤ 63 and 1 ≤ β ≤ 14. 
P r o o f :  The equalities |),;(||),(| βαπβα kkk LSLS =  for invariant entries 

),( βαkLS  imply that the set { }ILL ∈|:|  coincides with the union 

{U
8

1

),(|:),;(|
=

∈
k

kkk ILSLS βαβαπ }. The latter is, of course, a subset of the whole 

{U
8

1

|),;(|
=k

kkLS βαπ }, and the assertion follows. ■ 

In other words, the above proposition says that the maximum of magnitudes of 
the invariant elements determines a lower bound on the effectiveness of the best 1-
round characteristics of a modified DES cipher. As an immediate consequence, we 
obtain the following corollary. 



 
 

 

Corollary 1. Under the assumptions of Proposition 3 and ),,,( 821 ππππ K= , 
we have 

{ } .|),;(|maxmin
,, Ikkk

MLS ≥βαπ
βαπ

 

Let us remind that  we deal by default with a linear cryptanalysis in narrow 
sense, i.e. with no more than one active S-box per round. 

Theorem 2. Let π7 be the parity mask applied to the S-box S7 of the DES. 
Then: 

(i) The maximal possible effectiveness of the best 1-round characteristics for 
modified DES cipher is obtained iff 47 ≠π . There are two unique elements of the 
LATs in this case possessing the highest magnitude 18. 

(ii) If 47 =π  then the effectiveness of the best 1-round characteristics for such 
a DES-like cipher is of minimal possible value 0.25. 

(iii) The corresponding extremal effectiveness of the best 3-round 
characteristics is achieved at the same assumptions. These effectiveness are 
2(18/64)2 ≈ 0.1582 and 0.1250, respectively. 

P r o o f :  (i) The highest magnitude of an element of the LATs of DES is 20 
and there is an unique such element, namely 20)15,16(5 −=LS . On the other hand, 
by Proposition 2(iii) this element is eliminated (vanishes) from the LAT of S5 
whenever a parity check is embedded. The next two (by magnitude) values are 

18)4,59()15,16( 71 −== LSLS . The former vanishes by the same reason as above, 
while the latter preserves its value iff 47 ≠π  according to Proposition 2(i)-(ii) (note 
that 2)11,59(7 =LS ). We also have 18)4,59;()11,59;( 7777 −== ππ LSLS , which 
implies that there are two unique elements of the LATs with maximal magnitude 18 
iff 47 ≠π  with corresponding effectiveness 18/64=0.28125. This completes the 
proof. 

(ii) As we have already seen there are no invariant entries having magnitude 
larger than 16, however, two entries of this kind are 16)6,43(4 =LS  and 

16)9,43(4 −=LS . Thus, 16=IM , and Corollary 1 implies that the minimum of the 
maximal by magnitude element in modified LATs is not less than 16. Moreover, 
since 16 is the next value (after 20 and 18), the elimination of these two largest 
values will provide its maximality for some modified DES cipher. But, as shown 
above, this elimination happens iff 47 =π . Finally, the effectiveness of the best 1-
round characteristics in this case equals, of course, to 16/64 = 0.25. 

(iii) This follows from (i), (ii), and the fact that best 3-round characteristic can 
be constructed using twice a best 1-round non-trivial characteristic (see Proposition 
4(ii) in [3]). To compute the effectiveness of those best 3-round characteristics, we 
apply the Piling-up Lemma. ■ 

Remark 1. For completeness, notice that due to the special Feistel structure, 
the task for finding effective linear approximations for 2-rounds of the considered 
ciphers is reduced to the 1-round task for the two halves of the plaintext/ciphertext 
block. That is why we do not pay special attention to the issues of 2-round linear 
cryptanalysis. 



 
 

 

5. Optimal linear characteristics for many rounds 

In the general case an exhaustive search over all members of the considered family 
of ciphers is carried out in order to find globally optimal best multi-round 
characteristics. Also, let us mention that finding best characteristics for each 
individual cipher is performed by the specially designed for this purpose algorithm 
from  [3]. 

5.1.  Optimal characteristics with respect to better opportunities for attacking 

Looking for optimal parity mask patterns in this case means searching of 
},{maxmax eff

lπ
 

where l is a linear characteristic for the corresponding number of rounds, eff is its 
effectiveness and π is a combination of the eight parity bit masks. 

The results are contained in the Table 1 where the effectiveness of the best 
linear characteristics in three instances is compared. The first is for the original 
DES algorithm, the second is when the parity bit positions are the same for all S-
boxes as in [3], and the third is about optimal pattern of parity bit positions when 
the maximal effectiveness of the best characteristics is achieved. In the second 
multi-column examples for optimal masks are given, and in the third one the 
number of optimal mask patterns is given together with examples of patterns. All 
computations are performed for 3 to 20 rounds. The patterns are given as sequences 
of the values of parity bit masks for all S-boxes. 

It can be seen that experimentally determined number 78 4449152 −=  of 
optimal patterns for 3 rounds is in agreement with Theorem 2(i). The same holds for 
the computed effectiveness, which is in correspondence with Theorem 2(iii). 

The values of the effectiveness that are greater than those for the original 
cipher, are given in italic in the table. The presence of only few of them confirms 
the tendency that the effectiveness of the best characteristics for larger number of 
rounds mostly diminish but may even grow depending on the parity bit position. 

Table 1. Maximizing the effectiveness of the best characteristics 

 DES equal parity positions maximizing patterns 
n effectiveness max. effect. mask max. effect. number pattern 
3 0.781·2-2 0.632·2-2 8 0.632·2-2 49152 11112812 
4 0.976·2-4 0.562·2-4 1 *0.765·2-4 4096 11241821 
5 0.610·2-5 0.562·2-5 1 *0.765·2-5 4096 11184821 
6 0.976·2-8 0.703·2-8 1 *0.717·2-8 2304 11422118 
7 0.976·2-9 0.527·2-9 1 0.527·2-9 4096 11121418 
8 0.610·2-10 0.703·2-11 1 0.703·2-11 4096 11121412 
9 0.953·2-13 0.878·2-13 1 0.878·2-13 4096 11121212 
10 0.762·2-14 0.659·2-14 1 0.659·2-14 4096 11111114 
11 0.953·2-15 0.988·2-16 1 0.988·2-16 4096 11111888 
12 0.596·2-16 0.659·2-17 1 0.659·2-17 4096 11121242 
13 0.745·2-18 0.878·2-19 1 0.878·2-19 4096 11121218 
14 0.596·2-20 0.617·2-20 1 0.617·2-20 4096 11121412 
15 0.596·2-21 0.926·2-22 1 0.926·2-22 4096 11121244 
16 0.745·2-23 0.617·2-23 1 0.617·2-23 4096 11121411 



 
 

 

17 0.582·2-25 0.772·2-25 1 0.772·2-25 4096 11121411 
18 0.931·2-27 0.579·2-26 1 0.579·2-26 4096 11121221 
19 0.582·2-27 0.869·2-28 1 0.869·2-28 4096 11111842 
20 0.727·2-10 0.579·2-29 1 0.579·2-29 4096 11121288 

The values of (globally) maximal effectiveness which are better than the 
corresponding values for fixed parity position in all S-boxes are marked by *. The 
existence of such instances leads to the conclusion that  independent choice of 
parity bit positions may provide better opportunities for attacking. 

5.2.  Optimal characteristics with respect to resistance against attacking 

Here, we consider the task for optimization in opposite direction, i.e. to assure 
maximal resistance against attacking. Using the same notations as in the previous 
subsection the search yields the form 

}.{maxmin eff
lπ

 

Correspondingly, Table 2 comprises the results of the performed search. 
It can be seen again that the experimentally determined number 7416384 =  of 

optimal patterns for 3 rounds is in agreement with Theorem 2(ii). The same holds in 
respect to the effectiveness which equals to the already proven in Theorem 2(iii). 

The values of minimal effectiveness of the best characteristics which cannot be 
reached when the parity bit position is the same for all S-boxes are marked by *. As 
can be seen there are a lot of such instances. Their existence means that, by 
independent choice of parity bit positions one could design ciphers with better 
resistance towards linear attacks. 



 
 

 

Table 2. Minimizing the effectiveness of the best characteristics 

 DES equal parity positions minimizing patterns 
n effectiveness max. effect. mask max. effect. number pattern 
3 0.781·2-2 0.500·2-2 4 0.500·2-2 16384 11111141 
4 0.976·2-4 0.820·2-5 2 *0.632·2-5 224 84148281 
5 0.610·2-5 0.878·2-7 2 *0.711·2-7 200 81122221 
6 0.976·2-8 0.527·2-10 8 *0.738·2-11 330 21222281 
7 0.976·2-9 0.820·2-13 2 0.820·2-13 3072 21112221 
8 0.610·2-10 0.738·2-15 2 *0.732·2-15 184 81812241 
9 0.953·2-13 0.562·2-17 2 *0.861·2-18 464 22222888 
10 0.762·2-14 0.562·2-20 2 *0.984·2-21 674 21212281 
11 0.953·2-15 0.861·2-22 2 *0.738·2-22 184 81812241 
12 0.596·2-16 0.562·2-24 2 *0.791·2-25 560 21212281 
13 0.745·2-18 0.711·2-27 2 0.711·2-27 1652 21212221 
14 0.596·2-20 0.830·2-30 2 0.830·2-30 2348 21212221 
15 0.596·2-21 0.562·2-31 2 *0.922·2-32 1728 21112281 
16 0.745·2-23 0.830·2-34 2 *0.791·2-34 184 81812241 
17 0.582·2-25 0.968·2-37 2 0.968·2-37 1664 21224484 
18 0.931·2-27 0.562·2-38 2 *0.553·2-39 770 22222282 
19 0.582·2-27 0.968·2-41 2 *0.830·2-41 184 81812241 
20 0.727·2-10 0.889·2-44 2 0.889·2-44 1808 21212221 

6. Conclusions 

In this work, we have studied a large family of ciphers derivable from the DES, and 
having an endowment to thwart differential and some fault-injection attacks. 
Presumably, by their construction these ciphers are suspected to be vulnerable in 
linear attacks. After examining the strength of them against linear cryptanalysis, we 
could conclude that they possess good resistance (in most cases even better than the 
DES itself) towards the primary attacks of indicated type. However, before final 
recommendation, it remains to investigate the behavior of these ciphers against the 
existing more sophisticated forms of linear cryptanalysis. But, in any case, their 
practical utilization has to be preceded by a well-considered preprocessing on the 
primary clear data bearing in mind the lessons from [1]. 
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