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Abstract

Enabling cryptographically enforced access controls for data hosted in untrusted cloud is attractive for many users and
organizations. However, designing efficient cryptographically enforced dynamic access control system in the cloud is still a
challenging issue. In this paper, we propose Crypt-DAC, a system that provides practical cryptographic enforcement of dynamic
access control. Crypt-DAC revokes access permissions by delegating the cloud to update encrypted data. In Crypt-DAC, a file is
encrypted by a symmetric key list which records a file key and a sequence of revocation keys. In each revocation, a dedicated
administrator sends a new revocation key to the cloud and requests it to encrypt the file with a new layer of encryption and update
the encrypted key list accordingly. Crypt-DAC proposes three key techniques to constrain the size of key list and encryption layers
as revocations continuously happen. As a result, Crypt-DAC enforces dynamic access control that provides efficiency, as it does
not require expensive decryption/re-encryption and uploading/re-uploading of large data at the administrator side, and security,
as it immediately revokes access permissions. We use formalization framework and system implementation to demonstrate the
security and efficiency of our construction.
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I. INTRODUCTION

With the considerable advancements in cloud computing, users and organizations are finding it increasingly appealing to
store and share data through cloud services. For instance, commercial cloud providers (such as Amazon, Microsoft, Apple, etc.)
provide abundant cloud based services, ranging from small-scale personal services to large-scale industrial services. However,
recent data breaches, such as releases of private photos [8], have raised concerns regarding the privacy of cloud-managed data.
As such, a critical issue is how to enforce data access control on the potentially untrusted cloud.

In response to these security issues, numerous works [1]–[7] have been proposed to support access control on untrusted
cloud services by leveraging cryptographic primitives. Advanced cryptographic primitives are applied for enforcing many access
control paradigms. For example, attribute-based encryption (ABE) [9] is a cryptographic counterpart of attribute-based access
control (ABAC) model [10]. However, previous works oversimplify revocation issues and mainly consider static scenarios in
which access control policies are rarely changed. Besides, revocations can carry substantial overheads in practice. At a first
glance, the revocation of a user’s permission can be done by revoking his access to the keys with which the files are encrypted.
This solution, however, is not secure as the user can just cache a local copy of the keys before the revocation. To prevent such
a problem, files need to be re-encrypted with new keys. This requires the file owner to download the file, decrypt the file, and
then re-encrypt the file before uploading back to the cloud, incurring prohibitive overhead at the file owner side.

Currently, only a few works investigated the problem of dynamic data access control. Garrison et al. [11] proposed two
revocation schemes: immediate re-encryption (IMre), and deferred re-encryption (DEre). IMre requires an administrator to
re-encrypt file with new keys in a revocation. This scheme incurs a considerable overhead as we discussed above. Differently,
DEre delegates users to re-encrypt the file when they need to modify the file, relieving the administrator from re-encrypting
file data by itself. This scheme, however, comes with a security penalty as the revocation operation is delayed to the next user’s
modification to the file. As a result, a newly revoked user can still access the file before the next writing operation. Wang
et al. [23] proposed another revocation scheme: homomorphic re-encryption (HOre), in which the symmetric homomorphic
encryption scheme [26] is used to encrypt the file. Such a design enables the cloud to directly re-encrypt file without decryption.
However, HOre incurs expensive file read/write overhead as the encryption/decryption operation involves comparable overhead
with the public key encryption schemes.

To overcome these problems, we present Crypt-DAC, a cryptographically enforced dynamic access control system on
untrusted cloud. Crypt-DAC delegates the cloud to update encrypted file in permission revocations. In Crypt-DAC, a file is
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Fig. 1. Cloud enabled data access control.

encrypted by a symmetric key list which records a file key and a sequence of revocation keys. In a revocation, the administrator
sends a new revocation key to the cloud, which encrypts the file with a new layer of encryption and updates the encrypted key
list accordingly. Crypt-DAC is efficient as it avoids file transmission and mostly uses symmetric-key encryption. Crypt-DAC
is also secure as it immediately revokes access permissions. Although the basic idea of layered encryption is simple, it entails
tremendous technical challenges. For instance, the size of key list and encryption layers would increase as the number of
revocation operations. To overcome such a problem, Crypt-DAC proposes three key techniques as follows.

First, Crypt-DAC proposes delegation-aware encryption strategy to delegate the cloud to update policy data. For a file, the
administrator appends a new revocation key at the end of its key list and requests the cloud to update this key list in the policy
data. The size of the key list however increases with the revocation operations, and a user has to download a large key list
in each file access. To overcome this problem, we adopt the key rotation technique to compactly encrypt the key list in the
policy data [16]. As a result, the size of the key list remains constant regardless of revocation operations.

Second, Crypt-DAC proposes adjustable onion encryption strategy to delegate the cloud to update file data. For a file, the
administrator requests the cloud to encrypt the file with a new layer of encryption. Similarly, the size of the encryption layers
increases with the revocation operations, and a user has to decrypt multiple times in each file access. To overcome this problem,
we enable the administrator to define a tolerable bound for the file. Once the size of encryption layers reaches the bound, it
can be made to not increase anymore by putting more trust on the cloud. As a result, the administrator can flexibly adjust a
tolerable bound for each file (according to file type, access pattern, etc.) to achieve a balance between efficiency and security.

During the life cycle of a file, its encryption layers continuously increase until a pre-defined bound is reached. Crypt-DAC
proposes delayed de-onion encryption strategy to periodically refresh the symmetric key list of the file and remove the bounded
encryption layers over it through writing operations. In specific, the next user to write to the file encrypts the writing content
by a new symmetric key list only containing a new file key, and updates the key list in the policy data. With this strategy,
Crypt-DAC periodically removes the bounded encryption layers of files while amortizing the burden to a large number of
writing users.

Altogether, Crypt-DAC achieves efficient revocation, efficient file access and immediate revocation simultaneously. We have
implemented Crypt-DAC as well as several recent works [11], [23] on Alicloud. Real experiments suggest that Crypt-DAC is
three orders of magnitude more efficient in communication in access revocation compared with IMre, and is nearly two orders
of magnitude more efficient in computation in file access compared with HOre. Finally, Crypt-DAC is able to immediately
revoke access permissions compared with DEre.

The remainder of this paper is organized as follows. In Section II, we introduce our system model and assumptions,
background on RBAC0 and the cryptographic techniques used in our system design. Section III identifies several critical issues
for cryptographically enforced dynamic access control, from which we derive the principles of Crypt-DAC. Section IV describes
the design details of Crypt-DAC. In Section V, we formally analyze the security of Crypt-DAC. In Section VI, we compare the
performance of Crypt-DAC through experiments. In Section VII, we discuss related works. Section VIII details our conclusions.

II. BACKGROUND AND ASSUMPTIONS

In this section, we first define the system and threat models. We then define the classes of cryptographic primitives upon
which Crypt-DAC is based.

A. System model

Our system model is depicted in Figure 1. We consider a scenario where companies contract with a commercial cloud
provider (e.g., Alicloud, Microsoft Azure) to outsource enterprise storage. As a result, there are three types of entities in our
system model: a cloud provider, an access control administrator, and a large number of users. The cloud provider is responsible
for the data storage and management. The data includes file data of users in the company, as well as policy data regulating
access policies for these files. Both the policy/file data are encrypted prior to being uploaded to the cloud provider. The access



3

control administrator is responsible for managing access policies of the file data. It assigns/revokes access permissions by
creating, updating, and distributing cryptographic keys used to encrypt files. Users may download any policy/file data from the
cloud, but are only allowed to decrypt and read files according to their access permissions. Finally, all parties communicate
via pairwise secure channels (e.g., SSL/TLS tunnels).

B. Threat model

In our threat model, we consider that the administrator is honest. The users may be malicious and try to access the file
data out of their access permissions. The cloud provider is assumed to be honest-but-curious. Honest means that the provider
honestly follows the commands of the administrator/users. Since any errors due to the provider’s misbehavior will harm its
reputation, we believe that the provider has incentive to follow the commands required by its customers. However, the provider
may be curious to passively gathering sensitive information to acquire commercial benefits and it is hard to be detected.

C. Security goals

We aim to provide confidentiality and access control for the cloud-hosted file data.
Confidentiality: our system stores encrypted data on the cloud, but never reveals the decryption keys to the cloud. This

protects the confidentiality of the file data.
Read access control: our system uses cryptography to enforce access control so that users can only read file data according

to their access permissions.
Write access control: for writing permission enforcement, our system relies on the cloud provider to validate write privileges

of users prior to file updates.

D. Role based access control

We design and analyze Crypt-DAC based on the role-based access control model named (RBAC0) [12], which is widely
used in practical applications. RBAC0 model describes permission management through the use of abstraction: roles describe
the access permissions associated with a particular (class of) job function, users are assigned to the set of roles entailed by
their job responsibilities, and a user is granted access to an object if they are assigned to a role that is permitted to access that
object. More formally, the state of an RBAC0 model can be described as follows:

– U: a set of users
– R: a set of roles
– P: a set of permissions (e.g., (file, op))
– PA ⊆ R × P: a permission assignment relation
– UR ⊆ U × R: a user assignment relation
– auth(u, p) = ∃ r: [(u, r) ∈ UR] ∧ [(r, p) ∈ PA]: the authorization predicate auth: U × P → B determines whether user u

has permission p

E. Cryptographic tools

Symmetric/public-key encryption scheme: Our construction makes use of symmetric-key encryption scheme (GenSym,
EncSym, DecSym) and public-key encryption scheme (GenPub, EncPub, DecPub).

Key rotation scheme: Key rotation [16] is a scheme (GenRo, B-Dri, F-Dri) in which a sequence of keys can be produced
from an initial key and a secret key. Only the owner of the secret key can derive the next key in the sequence, but any user
knowing a key in the sequence can derive all previous versions of the key. We next describe the algorithms of this scheme:

GenRo(1n) → (rsk, rpk): On input a security parameter 1n, this algorithm outputs a secret-public key pair (rsk, rpk).
B-Dri(ki, rsk) → (ki+1): On input a key ki in a key sequence {ki}ti=1 and a secret key rsk, this algorithm outputs the

next key ki+1 in the sequence.
F-Dri(ki, rpk) → ({kj}i−1j=1): On input a key ki in a key sequence {ki}ti=1 and a public key rpk, this algorithm outputs all

previous versions of the key {kj}i−1j=1 in the sequence.

III. DESIGN PRINCIPLE

In this section, we begin with a basic construction of cryptographic access control enforcement, from which we derive a
variety of issues for access revocation that must be addressed. We then give an overview of our system, Crypt-DAC, which
addresses these issues.
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A. Basic construction

In a cryptographically enforced RBAC0 system, a user u is associated with a user key (eku, dku) ← GenPub(1n), a role r
is associated with a role key (ekr, dkr) ← GenPub(1n), and a file is associated with a file key k ← GenSym(1n).

Access enforcement: For each (u, r) ∈ UR in the RBAC0 state (i.e., there exists a user u that is a member of r), the
administrator distributes the role key of r to u through a role key (RK) tuple:

〈RK, u, r, EncPub
eku

(dkr)〉

This tuple provides u with cryptographically-enforced access to the decryption key dkr of r. For each (r, (f, op)) ∈ PA in the
RBAC0 state (i.e., there exists a role r with permission to f ), the administrator distributes the file key of f to r through a file
key (FK) tuple:

〈FK, r, (fn, op), EncPub
ekr

(k)〉

This tuple provides r with cryptographically-enforced access to the file key k for f. For each file f, the administrator distributes
f through a file (F) tuple:

〈F, fn, EncSym
k (f )〉

This tuple contains a file name fn of f and a ciphertext of f. The relations of RK, FK, and F tuples are shown in Figure 2.
File access: If a user u with authorization to read a file f (i.e., ∃r: (u, r) ∈ UR ∧ (r, f, Read) ∈ PA) wishes to do so, u

downloads an RK tuple for the role r to decrypt the decryption key dkr by dku. u also downloads an FK tuple for the file f
to decrypt the file key k by dkr. Finally, u downloads a F tuple to decrypt the file f by k.

If a user u with authorization to write to a file f via membership in role r (i.e., ∃r: (u, r) ∈ UR ∧ (r, f, RW) ∈ PA) wishes
to do so, u uploads a new F tuple encrypting the new file content f ’ to replace the existing F tuple. It is the responsibility of
the cloud provider to check if u has the authorization to write to f. If yes, the cloud provider executes the writing operation.

Access revocation: The administrator may need to revoke a permission of a role, or revoke a membership of a user. We
only describe the user revocation case as the role revocation case is analogous. Removing a user u∗ from a role r entails: (1)
re-encrypting a new role key of r stored in RK tuples, (2) re-encrypting new file keys stored in FK tuples accessible by r, and
(3) re-encrypting files stored in F tuples by the new file keys. All these steps must be carried out by an administrator as only
the administrator can modify the access authorization.

In the first step, a new role key of r is generated. This key is then encrypted into a new RK tuple for each remaining member
u of r to replace the old RK tuple. This step prevents u∗ from accessing the new role key of r. In the second step, a new file
key is generated for each file f accessible by r. This key is then encrypted into a new FK tuple for each role r’ (including r)
that has access to f, and the new FK tuple is uploaded to replace the old FK tuple. This step prevents u∗ from accessing the
new file keys. In the third step, each file to which r has access is re-encrypted into a new F tuple by the new file key. The
new F tuple is then uploaded to replace the old F tuple. This step prevents u∗ from accessing the files by using cached old
file keys.

We emphasize that it is important to re-encrypt the files by the new file keys as u∗ may cache the old file keys of these
files and try to access them after the revocation. For example, suppose u∗ is assigned to three roles and can access 200 files.
u∗ can first cache all the file keys of the 200 files when he join the system. Later, u∗ is revoked from one of its three roles
and cannot access some the 200 files anymore. However, u∗ can still use the cached file keys to access these files if they are
not re-encrypted by new file keys in the revocation.

B. Design issues for revocation

The revocation in this basic construction is not suitable for realistic dynamic access control scenario due to its prohibitive
overhead in file data re-encryption. Due to the multi-to-one property of access permission relations among users, roles, and
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files in RBAC0 model, the administrator needs to download, decrypt, re-encrypt, and upload a large number of F tuples,
incurring potentially high bandwidth consumptions. For example, suppose the administrator needs to revoke the membership
of u∗ from r and r has permission to 100 files. Then, the administrator needs to re-encrypt all of the 100 files in the revocation.

Previous designs: In response, Garrison et al. [11] discussed two revocation schemes: immediate re-encryption (IMre) and
deferred re-encryption (DEre). IMre requires the administrator to re-encrypt file data by itself in a revocation. This scheme
completes the revocation immediately with a potentially high overhead as we discussed above. Differently, DEre relies on next
users writing to the F tuples to re-encrypt the F tuples. This scheme, however, comes with security penalty as it delays the
revocation to the next writing, creating a vulnerability window in which revoked users can continuously access the F tuples.

To alleviate the overhead of file data re-encryption, Wang et al. [23] proposed another revocation scheme: homomorphic
re-encryption (HOre), in which the symmetric homomorphic encryption scheme [26] is used to encrypt the file data. Instead by
re-encrypting the file data by itself, HOre enables the administrator to delegate the cloud to update F tuples from old file keys to
new file keys without decryption. The problem of this scheme, however, is that the cost of homomorphic symmetric encryption
is comparable with public key encryption schemes, incurring prohibitive computation overhead during file reading/writing.

C. Our design

To overcome these limitations, Crypt-DAC develops new techniques using lightweight symmetric encryption scheme. In
Crypt-DAC, a F tuple (file) is encrypted by a symmetric key list {k0, k1,..., kt} which records a file key k0 and a sequence
of revocation keys k1,..., kt. Crypt-DAC uses the innermost encryption layer to protect the file against the cloud provider and
the outermost encryption layer to protect the file against revoked users. In the ith revocation, the administrator sends a new
revocation key ki+1 to the cloud, which encrypts the file with a new layer of encryption. After this procedure, the revoked user
cannot access the file as he cannot access ki+1. The evolution of the encryptions of a F tuple is shown in Figure 3. Compared
with previous designs, Crypt-DAC achieves efficient revocation, immediate revocation, and efficient file access simultaneously.
For revocation efficiency, the administrator only needs to send keys to the cloud. For immediate revocation, the permissions of
users are immediately revoked as the files are re-encrypted. For file access efficiency, the files are still encrypted by symmetric
keys. To further constrain the size of key list and encryption layers for files, Crypt-DAC proposes three key techniques as
follows.

1) Delegation-aware encryption: Delegation-aware encryption enables the administrator to delegate the cloud provider to
update RK and FK tuples instead of creating and uploading new RK and FK tuples by itself. To constrain the size of the key
lists, delegation-aware encryption adopts the key rotation technique to compactly encrypt each key list in one encryption in a
FK tuple [13]. As a result, the administrator only needs to send one encryption for the cloud to update a key list. This design
also improves file access efficiency as users only need to download compact FK tuples to access files. The design principle
of the strategy is shown in Figure 4.

To revoke a user u∗ from a role r, the administrator generates a new role key (ek∗r , dk∗r ) of r. The administrator first delegates
the cloud provider to update RK tuples. Suppose there are n users remaining in r. For each of these users u, the administrator
delegates the cloud provider to update the RK tuple of u. To do so, the administrator uploads an encryption of EncPub

eku
(dk∗r ).

With this encryption, the cloud updates the RK tuple as:

〈RK, u, r, EncPub
eku

(dk∗r )〉

The updated RK tuple encrypts the new role key of r.
The administrator next delegates the cloud provider to update FK tuples. An FK tuple contains an encryption of a symmetric

key list {k0, k1,..., kt} for a file fn. With the key rotation scheme, the administrator can use a key rotation key pair (rskfn ,
rpkfn ) to generate the revocation key sequence, and compactly represent this key list as k0||kt. Given k0||kt, the next revocation
key kt+1 can be derived by kt+1 ← B-Dri(kt, rskfn ) and the whole revocation key sequence k1,..., kt can be recovered by
ki−1 ← F -Dri(ki, rpkfn ) (2≤i≤t). As a result, the complete format of an FK tuple is:

〈FK, r, (fn, op), c〉

c = EncPub
ekr

(k0||kt||rpkfn ||t)
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Assume that there are m files to which r has permissions. For simplicity, we assume that there are n roles with permissions
to each of the m files. For each of the m files fn, the administrator generates a new revocation key kt+1 ← B-Dri(kt, rskfn ).
For each of the n roles with permissions to fn, the administrator uses the role key of it to encrypt k0||kt+1||rpkfn ||t+ 1 and
sends the encryption to the cloud. Upon receiving the encryptions, the cloud provider updates the key lists in the FK tuples
of the n roles as:

〈FK, r’, (fn, op), c〉

If r’ = r: c = EncPub
ek∗r

(k0||kt+1||rpkfn ||t+ 1)

If r’ 6= r: c = EncPub
ekr′

(k0||kt+1||rpkfn ||t+ 1)

After the updating, the new FK tuples compactly encrypt the new symmetric key list {k0, k1,..., kt+1}.
2) Adjustable onion encryption: Adjustable onion encryption enables the administrator to delegate the cloud provider to

update F tuples. The administrator only needs to send a new revocation key for the cloud provider to encrypt the files with
a new layer of encryption. To constrain the size of the encryption layers, adjustable onion encryption provides two modes:
security mode and efficiency mode. Such a design enables the administrator to define a tolerable bound for a file. Initially, the
strategy works in the security mode and the encryption layers increase as revocations happen. Once the size of the encryption
layers reaches the bound, it turns to the efficiency mode to constrain the encryption layers by putting more trust on the cloud.
As a result, the administrator can flexibly adjust a tolerable bound for each file according to file type, access pattern, etc., to
achieve a balance between efficiency and security. The design principle of the strategy is shown in Figure 5.

Security mode: In this mode, a file fn is encrypted in a F tuple by a symmetric key list {k0, k1,..., kt} as follows:

〈F, fn, c, signr,vr
〉

c = EncSym
kt (...EncSym

k1 (EncSym
k0 (f )))
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When a user u accesses fn, u decrypts k0||kt||rpkfn ||t from one of these FK tuples, recovers the revocation key sequence:
ki−1←F -Dri(ki, rpkfn ) (2≤i≤t), and uses {k0, k1,..., kt} to decrypt the F tuple.

To complete the revocation of the user u∗ from the role r, for each of the m files fn to which r has permissions, the
administrator derives a new revocation key kt+1 ← B-Dri(kt, rskfn ) and sends kt+1 to the cloud provider. Upon receiving it,
the cloud provider updates the F tuples of the m files as:

〈F, fn, EncSym
kt+1 (c)〉

Efficiency mode: In this mode, a file fn in a F tuple is encrypted by a symmetric key list {k0, k1,..., kt} as follows:

〈F, fn, c, signr,vr
〉

c = EncSym
kt (EncSym

k0 (f ))

When a user u accesses fn, u decrypts k0||kt||rpkfn ||t from one of these FK tuples and uses {k0, kt} to decrypt the F tuple.
To complete the revocation of the user u∗ from the role r, for each of the m files fn to which r has permissions, the

administrator derives a new revocation key kt+1 ← B-Dri(kt, rskfn ) and sends kt||kt+1 to the cloud provider. Upon receiving
it, the cloud provider updates the F tuples of the m files as:

〈F, fn, EncSym
kt+1 (DecSym

kt (c))〉

Comparing with the security mode, the efficiency mode encrypts an F tuple with two layers instead of t layers, enabling
more efficient file access. The security tradeoff, however, is that the efficiency mode puts more trust on the cloud as it requires
the cloud to correctly execute more operations (first decrypt and then encrypt) to update F tuples in each revocation.

Adjustable bound: The combination of the above two modes enables the administrator to define a bound T of tolerable
encryption layers for a file. T means that when a file is encrypted by less than T encryption layers, the file access efficiency is
tolerable. In this case, the administrator prefers to minimize the trust on the cloud and uses the security mode in revocations.
Once the file is encrypted by T encryption layers, the administrator prefers file access efficiency and turns to use the efficiency
mode in revocations by putting more trust on the cloud.

Considering a sequence of revocations happened in the life cycle of an F tuple. In the ith revocation, if i ≤ T, the administrator
uses the security mode to update the F tuple. To access the F tuple in this case, a user recovers a symmetric key list {k0,
k1,..., ki} from an FK tuple to decrypt the F tuple. Otherwise, the administrator turns to use the efficiency mode to update
the F tuple. To access the F tuple in this case, a user recovers a symmetric key list {k0, k1,..., kT−1, ki} from an FK tuple
to decrypt the F tuple.

3) Delayed de-onion encryption: During the life cycle of a file, its encryption layers continuously increase until a pre-defined
bound is reached. To further improve file access efficiency, Crypt-DAC periodically refreshes the symmetric key list of the file
and remove the bounded encryption layers. A direct solution is for the administrator to periodically re-encrypts the F tuple
with a new key list which only contains a new file key. This solution however, incurs large communication and computation
overhead at the administrator side. Instead, Crypt-DAC proposes delayed de-onion encryption strategy to do so through writing
operations. In specific, a user writing to an F tuple encrypts the writing content by a new symmetric key list, and updates the
symmetric key list accordingly. In this way, Crypt-DAC amortizes the updating burden to a large number of writing users. The
design principle of the strategy is shown in Figure 6.

Suppose a user u wants to write to a file fn. To do so, u generates a new file key k′0 ← GenSym(1n) and creates a F tuple
encrypting the writing content f ’ by a new symmetric key list {k′0}:
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〈F, fn, EncSym
k′0 (f ’)〉

u then requests the cloud provider to replace the existing F tuple with this F tuple. To alleviate the overhead of u, we propose
to delegate the administrator to update the key list. In specific, u sends the new key list {k′0} to the administrator and delegates
it to update the old key list stored in FK tuples. Assume that there are m roles having permissions to fn. For each of the m
roles r, the administrator encrypts k′0 by the encryption key ekr of r, and uploads the encryption for the cloud provider to
update the FK tuple of r as:

〈FK, r, (fn, op), EncPub
ekr

(k′0)〉

After the writing operation, the symmetric key list is refreshed and the multiple encryption layers over the F tuple is removed.

IV. DESIGN DETAILS

In Crypt-DAC, users add files to the cloud provider by creating F tuples. The administrator assigns file permissions to roles
by distributing file keys using FK tuples, and assigns users to roles by distributing role keys to users using RK tuples. We
next describe the various operations in Crypt-DAC. There are three types of operations in Crypt-DAC: permission revocation,
permission assignment, and file operation. Due to the space constraint, we omit the algorithm details of these operations.

Permission revocation: Permission revocation includes revoking the permission of a user revokeUser(u) and revoking the
permission of a role revokeRole(r) .

The administrator uses revokeUser(u) to revoke the permission of a user u from all of its assigned roles. The algorithm
implements the delegation-aware encryption strategy to update the involved RK and FK tuples respectively. The algorithm also
implements the adjustable onion encryption strategy to update the involved F tuples. Moreover, revokeUser(u) provides a sub
algorithm REVOKEU(u, r) for the administrator to revoke the membership of u from a certain role r.

The administrator uses revokeRole(r) to revoke the permission of a role r from all of its assigned files. Similarly, the
algorithm also implements the delegation-aware encryption strategy to update the involved FK tuples and the adjustable onion
encryption strategy to update the involved F tuples. revokeRole(r) also provides two sub algorithms REVOKEP(r, 〈fn, RW〉)
and REVOKEP(r, 〈fn, Read〉) for the administrator to revoke the permission of r from a single file fn.

Permission assignment: Permission assignment includes adding a new user addUser(u), adding a new role addRole(r),
assigning a user to a role assignU(u, r), and assigning a role to a file with Read/RW permission assignP(r, 〈fn, Read/RW〉).
A user u uses addUser(u) to join the system. The administrator uses addRole(r) to add a new role r into the system, uses
assignU(u, r) to assign a user u with a role r, and uses assignP(r, 〈fn, Read/RW〉) to assign a role to a file with Read/RW
permission.

File operation: File operation includes file creation addFile(fn, f, u), file read read(fn, u), and file write write(fn, u). A user u
uses addFile(fn, f, u) to create a new file fn in the system and uses read(fn, u) to read a file fn from the cloud provider. Also,
a user u uses write(fn, u) to write to a file fn stored in the cloud provider. This algorithm implements the delayed de-onion
encryption strategy to refresh the symmetric key list of fn.

V. SECURITY ANALYSIS

We analyze the security of Crypt-DAC using the access control expressiveness framework known as application-sensitive
access control evaluation (ACE) [40]. ACE is a formalized mathematical framework to evaluate how well a candidate access
control scheme implement an idealized access control scheme. We show that Crypt-DAC is correct and secure under ACE. In
specific, we prove that Crypt-DAC satisfies three properties defined in ACE: correctness, safety and AC-preservation.

At a high level, correctness and safety ensures that an execution environment cannot determine whether it is interacting with
the idealized RBAC0 scheme or with Crypt-DAC through inputs, outputs and intermediate states. The two properties show that
Crypt-DAC is correct. AC-preservation ensures that a permission in the idealized RBAC0 scheme is authorized if and only if
its mapping in Crypt-DAC is authorized. This property shows that Crypt-DAC is secure.

In our proof, we first formalize Crypt-DAC under the ACE framework. We then provide a formal mapping from Crypt-DAC
to RBAC0. We show that this mapping achieves correctness, AC-preservation, and safety. We provide the specification and
proof online.

VI. SYSTEM EVALUATION

We implement IMre, DEre, HOre, and Crypt-DAC on AliCloud. We compare the performance of the four systems in access
revocation and file reading/writing. We implement the cryptographic schemes based on Crypto++ [41]. We select the AES
scheme and the El Gamal scheme to instantiate the symmetric and public key encryption schemes respectively. Both the
schemes are set with a security parameter of 80 bits. To evaluate the performance of the four systems in a realistic access
control scenario, we use an access control simulation framework [42] to generate traces of access control actions. We extract
several critical access control parameters from these traces to guide our experiments.
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Fig. 7. Summary of simulation results.

A. Access trace simulation

The simulation framework proposed in [42] describes a range of realistic access control scenarios and allows us to investigate
various access control actions and cryptographic operations incurred by these actions. We initialize the simulation from start
states extracted from real-world datasets enforced by role based access controls. We then generate traces of access control
actions using actor-specific continuous-time Markov chains. From these traces, we can record the number of instances of each
cryptographic operation executed, including counts or averages (e.g., the average number of file re-encryptions needed to revoke
a role from a user). We simulate one-month periods in which the administrator of the system behaves.

The real-world RBAC data sets used in the simulation are summarized in Table I. All of these datasets, aside from university,
were originally provided by HP [43]. The domino dataset is from a Lotus Domino server, emea is from a set of Cisco firewalls,
firewall1 and firewall2 are generated from network reachability analysis, and healthcare is a list of healthcare permissions from
the US Veteran’s Administration. The university dataset describes a university’s access control system [44], [45].

We show our simulation results in Figure 7. In Fig 7(a), we show the number of files that need to be re-encrypted for a
single user revocation. In many scenarios, a user revocation triggers the re-encryptions of tens or hundreds of files, such as in
emea or firewall2. From this result, we extract the following access control parameter: to revoke a user, the total number of
involved F tuples that need to be re-encrypted in average falls in [0, 200].

Fig 7(b) shows the upper bound a file needs to be re-encrypted within a month for the purpose of user revocation. In
Crypt-DAC, this bounds the increased number of encryption layers of a file within a month. From this result, we extract the
following access control parameter: for file data, the encryption layers of a file in average increases less than 3 within a month.

Fig 7(c) shows the total number of file re-encryptions that take place over a month for the purpose of user revocation. add
bias is a simulation parameter that describes the relative proportion of assignment vs. revocation operations. In many scenarios,

TABLE I
OVERVIEW OF THE DATASETS

set users |P|/|R| |UR|/|PA|
domino 79 231/20 75/629

emea 35 3046/34 35/7211

firewall1 365 709/60 1130/3455

firewall2 325 590/10 325/1136

healthcare 46 46/13 55/359

university 493 56/16 495/202

roles-user
max/min

users-role
max/min

perm-role
max/min

roles-perm
max/min

3/0 30/1 209/1 10/1

1/1 2/1 554/9 31/1

14/0 174/1 617/1 25/1

1/1 222/1 590/6 8/1

5/1 17/1 45/7 12/1

2/1 288/1 40/2 12/1
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we see several times as many re-encryptions as total files. This means that, on average, each file is re-encrypted multiple times
per month for the purposes of user revocation. This result highlights the importance of revocation efficiency when designing
an access control scheme.

B. End to end experiments

Revocation: We evaluate the performance of IMre, HOre, and Crypt-DAC in revoking a user u from a role r. We do not
consider DEre as it incurs no overhead at the administrator side. This experiment is affected by two parameters: file size and
number of F tuples that need to be re-encrypted. We consider three sizes of a file: 10 M, 50 M and 100 M. We use the access
control parameter that the number of F tuples that need to be re-encrypted falls in [0, 200] and show the experiment results
in Figure 8.

In Figure 8(a-b), we observe that the time cost of IMre at the administrator side is prohibitive and increases fast as the
file size and the number of F tuples increases. When processing 200 F tuples with 100 M file size, IMre takes about 1129
minutes. On the other hand, HOre and Crypt-DAC costs about 50 seconds under the same parameters, achieving 1356 times
improvement. Also, we observe that the time cost of HOre and Crypt-DAC is not affected by the file size. The reason is that
the administrator only needs to generate and send cryptographic keys for F tuples regardless of their file size. Additionally, in
Figure 8(c), we observe that the time cost of HOre at the cloud side is prohibitive and increases with the file size. The reason
is that the cloud needs to homomorphically re-encrypt each F tuple, while in Crypt-DAC, the cloud only needs to AES-encrypt
each F tuple. The time cost of HOre is 520 times higher than Crypt-DAC for a cloud to process a file regardless of the file
size.

File reading/writing: We evaluate the performance of IMre, DEre, HOre, and Crypt-DAC in file reading/writing. The total
execution time (including both computation and communication time) is affected by file size. We vary the file size from 10
M, 50 M to 100 M. For Crypt-DAC, it is also affected by the number of encryption layers of files. We use the access control
parameter that the encryption layers of a file increases less than 3 within a month. Recall that once a file is written, the number
of its encryption layers will be reset to 1 due to the delayed re-onion encryption strategy. We consider that a large fraction
of files will be written at least once within every k months. For the remainder files, the administrator requests some users to
write to them at the end of every k months. As a result, the maximum number of encryption layers of a file is 3k all the time.
We evaluate the performance of Crypt-DAC in the worst case by encrypting files with the maximum number of encryption
layers. We varies k (from 1 to 5) to investigate the performance trend of Crypt-DAC and predicate its performance when k is
large enough (e.g., k = 12).

Figure 9 compares the execution time of reading operations. In Figure 9(a), we see that Crypt-DAC takes slightly more
time compared with IMre and DEre (7.2% when k = 5). The reason is that Crypt-DAC uses AES scheme multiple times to
encrypt/decrypt files. Fortunately, this additional cost increases very slow with the number of encryption layers because the
AES operations are lightweight. According to our results, it can be predicted that the additional cost is about 15% even when k
= 12 (a year). Moreover, we notice that a file will not be encrypted by the maximum number of encryption layers all the time.
The actual number only increases when revocation happens and is reset to 1 once the file is written. For a file to be frequently
revoked, we can further use the adjustable onion encryption strategy to bound the encryption layers of the file. Considering
the performance advantage of Crypt-DAC in revocation, we believe that this extra cost is acceptable. In Figure 9(b), we see
that HOre takes 80 computation times higher than Crypt-DAC (k = 5) and 6.7 total (computation and communication) times
higher than Crypt-DAC (k = 5). This is because HOre uses homomorphic symmetric encryption to encrypt files, the overhead
of which is comparable with public key encryption schemes. Instead, Crypt-DAC uses symmetric key encryption scheme to
do so.

Table 1 compares the execution time of writing operations. We see that IMre, DEre and Crypt-DAC takes same time. The
reason is that all the three schemes use symmetric key encryption scheme to encrypt files and the delayed de-onion encryption
adopted in Crypt-DAC incurs no additional cost at user side. Besides, HOre takes 82 computation times higher than Crypt-
DAC and 6.3 total (computation and communication) times higher than Crypt-DAC in average. This is because HOre uses
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homomorphic symmetric encryption to encrypt files, the overhead of which is comparable with public key encryption schemes.
Instead, Crypt-DAC uses symmetric key encryption scheme to do so.

VII. RELATED WORK

Current cryptographically enforced access control schemes can be classified as follows.
Hierarchy access control: Gudes et al. [29] explore cryptography to enforce hierarchy access control without considering

dynamic policy scenarios. Akl et al. [30] propose a key assignment scheme to simplify key management in hierarchical access
control policy. Also, this work does not consider policy update issues. Later, Atallah et al. [31] propose a method that allows
policy updates, but in the case of revocation, all descendants of the affected node in the access hierarchy must be updated,
which involves high computation and communication overhead.

Role based access control: Ibraimi et al. [34] cryptographically support role based access control structure using mediated
public encryption. However, their revocation operation relies on additional trusted infrastructure and an active entity to re-
encrypt all affected files under the new policy. Similarly, Nali et al. [35] enforce role based access control structure using
public-key cryptography, but requires a series of active security mediators. Ferrara et al. [36] define a secure model to formally
prove the security of a cryptographically-enforced RBAC system. They further show that an ABE-based construction is secure
under such model. However, their work focuses on theoretical analysis.

Attribute based access control: Pirretti et al. [37] propose an optimized ABE-based access control for distributed file
systems and social networks, but their construction does not explicitly address the dynamic revocation. Sieve [23] is a attribute
based access control system that allows users to selectively expose their private data to third web services. Sieve uses ABE
to enforce attribute based access policies and homomorphic symmetric encryption [26] to encrypt data. With homomorphic
symmetric encryption, a data owner can delegate revocation tasks to the cloud assured that the privacy of the data is preserved.
This work however incurs prohibitive computation overhead since it adopts the homomorphic symmetric encryption to encrypt
files.

Access matrix: GORAM [27] allows a data owner to enforce an access matrix for a list of authorized users and provides
strong data privacy in two folds. First, user access patterns are hidden from the cloud by using ORAM techniques [28].
Second, policy attributes are hidden from the cloud by using attribute-hiding predicate encryption [21], [22]. The cryptographic
algorithms, however, incur additional performance overhead in data communication, encryption and decryption. Also, GORAM
does not support dynamic policy update. Over-encryption [38], [39] is a cryptographical method to enforce an access matrix
on outsourced data. Over-encryption uses double encryption to enforce the whole access matrix. As a result, the administrator
has to rely on the cloud to run complex algorithms over the matrix to update access policy, assuming a high level of trust on
the cloud.

VIII. CONCLUSIONS

We presented Crypt-DAC, a system that provides practical cryptographic enforcement of dynamic access control in the
potentially untrusted cloud provider. Crypt-DAC meets its goals using three techniques. In particular, we propose to delegate

TABLE II
PERFORMANCE IN FILE WRITING

File size Others HOre Cost of HOre

10 M 1.1/16.8 Sec 98.6/17 Sec 88.3/6.4 times

50 M 6.1/84.9 Sec 490.4/89.1 Sec 79.5/6.3 times

100 M 12.3/168 Sec 981.7/175.1 Sec 79.8/6.4 times
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the cloud to update the policy data in a privacy-preserving manner using a delegation-aware encryption strategy. We propose
to avoid the expensive re-encryptions of file data at the administrator side using a adjustable onion encryption strategy. In
addition, we propose a delayed de-onion encryption strategy to avoid the file reading overhead. The theoretical analysis and
the performance evaluation show that Crypt-DAC achieves orders of magnitude higher efficiency in access revocations while
ensuring the same security properties compared with state-of-the-art schemes.
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APPENDIX A
FORMALIZATION OF CRYPT-DAC

To prove theorem 1, we need to represent Crypt-DAC as a formal access control system. We use m as the symmetric-key
size. For signatures, we assume that hash-and-sign is used, where the message is hashed with a collision-resistant hash function
and then digitally signed.

Definition 1 access control system: As defined in [40], a formal access control system includes following components:
1) S: a set of states
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2) R: a set of access control requests
3) Q: a set of queries including auth(r) for every r ∈ R
4) `: a subset of S × Q (the entailment relation)
5) L: a set of labels
6) Next: States(M ) × L → States(M ) (the transition function)
We represent Crypt-DAC as a formal access control system as follows.

1) S: (USERS, ROLES, FILES, FS)
• USERS: a list of (u, enku, siku) records containing user names and their encryption and signing key pairs
• ROLES: a list of (r, vr, enkr, vr , sikr, vr ) records containing role names, version numbers, and their encryption and

signing key pairs
• FILES: a list of (fn, vfn ) records containing file names and version numbers
• FS: the set of RK, FK, and F tuples stored on the cloud provider

2) R: (u, p)
• (u, p) for whether user u has permission p

3) Q: (RK, FK, Role, auth)
• RK(u, r) returns whether a user is a member of a role:

∃(c, sign) (〈RK, u, (r, vr), c, sign〉 ∈ FS ∧ Accept = VerifyvkSU
((〈RK, u, (r, vr), c〉), sign)

• FK(r, (fn, op)) returns whether a role has a permission for the latest version of a file.
∃(c, sign) (〈FK, (r, vr) (fn, vfn , op), c, SU, sign〉 ∈ F ∧ sign = SignskSU

(〈FK, (r, vr), (fn, vfn , op), c, SU〉)
• Role(r) returns whether a role exists in the system:

∃(v, k1, k2) (r, v, k1, k2) ∈ ROLES
• auth(u, p) returns whether a user has a permission:

∃r (RK(u, r) ∧ FK(r, p))
4) `: the entailment relation is implicitly defined in the design of Crypt-DAC
5) L: all of the operations (revokeUser, revokeRole, addUser, addRole, assignU, assignP, addFile, read, write) in Crypt-DAC
6) Next: the transition function is implicitly defined in the design of Crypt-DAC
Definition 2 Correctness: Consider a workload W, a candidate access control system Y, and an implementation (α, σ, π).

Correctness states that the implementation is correct if (1) σ preserves π: for every workload state x we have Th(x) = π(Th(σ(x)))
and (2) α congruence-preserves σ, which means the following: For all n ∈ N, states x0, and labels l1, ..., ln, let y0 = σ(x0), xi
= Next(xi-1, li) for i = 1, ..., n, and yi = terminal(yi-1, α(yi-1, li)) for i = 1, ..., n. Then α congruence-preserves σ means that yi∼= σ(xi) for all i = 1, ..., n.

Definition 3 AC-preservation: An implementation with query-mapping π is called AC-preserving if for all workload states
s and authorization requests r we have s ` auth(r) iff πauth(r)(Th(σ(s))) = true.

Definition 4 Safety: An implementation is safe if the following holds for all i whenever the execution of a workload label
yields the access control state sequence (s0, ..., sn).

Auth(si) – Auth(s0) ⊆ Auth(sn) – Auth(s0) (Grant)
Auth(s0) – Auth(si) ⊆ Auth(s0) – Auth(sn) (Revoke)

APPENDIX B
IMPLEMENTATION OF RBAC0 BY CRYPT-DAC

We show that Crypt-DAC implements RBAC0 with correctness, AC-preserving, and safety achieved.
Definition 5 implementation: For RBAC0 and a candidate access control system Y, an implementation has fields (α, σ, π):
• State-mapping σ: States(RBAC0) → States(Y)
• Label mapping α: States(Y) × Labels(RBAC0) → Labels(RBAC0)∗

• Query mapping π: for each q ∈ Queries(RBAC0), a function πq that maps each theory for Y to either true or false
We first show a implementation of RBAC0 by Crypt-DAC:

1) State mapping α:
For each u ∈ U ∪ {SU}
• Generate enku ← GenPub and siku ← GenSign.
• Add (u, eku, vku) to USERS

Let FS = {}
Let ROLES and FILES be blank. For each R(r) ∈ M:
• Generate enkr,1 ← GenPub and sikr,1 ← GenSign.
• Add (r, 1, ekr,1, vkr,1) to ROLES.
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• Update FS = FS ∪ {〈RK, SU, (r, 1), EncPub
ekSU

(dkr,1, skr,1), signSU 〉}.
For each P(fn, u) ∈ M:
• Add (fn, 1) to FILES
• Generate k ← GenSym

• Update FS = FS ∪ {〈F, fn, EncSym
k (f ), signu〉}

• Update FS = FS ∪ {〈FK, (SU, 1), (fn, 1, RW), EncPub
ekSU

(k), signu 〉}
For each UR(u, r) ∈ M:
• Find 〈FK, (SU, 1), (r, 1, RW), c, sign〉 ∈ FS
• Update FS = FS ∪ {〈RK, u, (r, 1), EncPub

eku
(dkr,1, skr,1), signSU 〉}.

For each PA(r, (fn, op)) ∈ M:
• Find 〈FK, (SU, 1), (fn, 1, RW), EncPub

ekSU
(k), signSU 〉 ∈ FS

• Update FS = FS ∪ {〈FK, (r, 1), (fn, 1, RW), EncPub
ekr,1

(k), signSU 〉}
Output (FS, ROLES, FILES)

2) Label mapping σ: The label mapping α simply maps any RBAC0 label, regardless of the state, to the Crypt-DAC label.
3) Query mapping π:

πUR(u,r)(T) = true if RK(u, r) ∈ T
πPA(r,p)(T) = true if FK(r, p) ∈ T
πR(r)(T) = true if Role(r) ∈ T

πauth(u,p)(T) = true if auth(u, p) ∈ T
for each theory T of Crypt-DAC.

In crypt-DAC, the encryptions, signatures and version numbers in RK/FK/F tuples are different after a revocation. As a
result, assigning and then revoking a user will not result in the same state as if the user was never assigned. However, all
the authorization requests will not be changed. These differences, however, make crypt-DAC unable to achieve the original
definition of correctness. For example, l1 assigns a user to a role and then l2 revokes that user from the role, x2 will be equal to
x0. Accordingly, σ(x2) should be equal to σ(x0). However, y2 will have different encryptions, signatures and version numbers
from y0.

We follow the way of [11] and prove a variant of correctness named congruence correctness. We consider states, which are
equal except for differences in encryptions, signatures and version numbers, to be congruent, and represent this with the ∼=
relation. We define that state mappings σ’ and σ are congruent if σ’(x) ∼= σ(x) for all states x. Thus we will show that yi ∼=
σ(xi) for all i = 1,..., n, which we define as α congruence preserves σ.

We first prove that Crypt-DAC implements RBAC0 with congruence-correctness achieved:
1) σ preserves π: To prove this, we show that for each RBAC0 state x and query q, x ` q if and only if πq(Th(σ(x))) =

TRUE. As the proof is similar with that of [11], we just omit the details here.

2) α congruence-preserves σ: To prove this, we show that for each RBAC0 state x and label l, and state mappings σ’
congruent to σ, we have:

σ′(next(x, l)) ∼= terminal(σ′(x), α(σ′(x), l))

We consider each RBAC0 label l separately. As the proof is similar with that of [11] except revokeU and revokeR, we
just show the two labels here.
• revokeU: If l is an instance of revokeU(u, r), then x’ = x\UR(u, r). Let (ekr,vr+1, dkr,vr+1) ← GenPub and (skr,vr+1,
vkr,vr+1) ← GenSig. Let T0 = {(u’, sig) | ∃〈RK, u’, (r, vr), cu’, sig〉 ∈ FS} and T1 = {fn | ∃〈FK, (r, vr), (fn, vfn ,
op), vfn , cr, sig〉 ∈ FS}. For each fn ∈ T1, let Tfn = {(r, sig) | 〈FK, (r, vr), (fn, vfn , op’), cr, sig〉 ∈ FS} and T ′fn
= {(r’, sig) | 〈FK, (r’, vr′ ), (fn, vfn , op), cr′ , sig〉 ∈ FS}. Then:

σ′(x’) = σ′(x \ UR(u, r))
= σ′(next(x, revokeU(u, r))
∼= σ′(x)\{FS(〈RK, u’, (r, vr), cu′ ,
sig〉) | (u’, sig)∈T0}∪{FS(〈RK, u’,
(r, vr + 1), c’u′ , sig〉) | (u’, sig) ∈ T0 ∧ u’ 6=u}
\{FS(〈FK, (r, vr), (fn, vfn , op’), cr,
sig〉) | fn ∈ T1 ∧ (r, sig)∈Tfn}
∪{FS(〈FK, (r, vr + 1), (fn, vfn+1, op’), c′r, sig〉) | fn ∈ T0 ∧ (r, sig) ∈ Tfn}
\{FS(〈FK, (r’, vr′ ), fn, vfn , op’), cr′
, sig〉) | fn ∈ T1 ∧ (r’, sig) ∈ T’fn}
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∪{FS(〈FK, (r’, vr′ ), (fn, vfn+1, op’), c′r′ , sig〉) | fn ∈ T1 ∧ (r’, sig) ∈ T’fn}
\ {FS(〈F, fn, cfn , sig〉) | (fn) ∈ T1}
∪{FS(〈F, fn, c′fn , sig〉) | (fn) ∈ T1}
∪{FILES(fn, vfn+1) | fn ∈ F}
\ {FILES(fn, vfn ) | fn ∈ F}
∪ ROLES(r, vr+1, ek(r,vr+1), vk(r,vr+1))
\ ROLES(r, vr, ek(r,vr), vk(r,vr))
=terminal(σ′(x), α′(σ′(x), l))

• revokeP: If l is an instance of revokeP(r, p) with p = 〈fn, op〉, then x’ = x\PA(r, p). We consider two cases:

– If op = RW, then let T = {(r, c, sig) | ∃〈FK, (r, vr), (fn, vfn , RW), c, sig〉}. Then
σ′(x’) = σ′(x \ PA(r, p))
=σ′(next(x’, revokeP(r, p)))
=σ′(x) \ {FS(〈 FK, (r, vr), (fn, vfn , RW ),
c, sig〉) | (r, c, sig) ∈ T }
∪{FS(〈FK, (r, vr),(fn, vfn , Read),
c, sig〉) | (r, c, sig) ∈ T}
=terminal(σ′(x), α(σ′(x), l)).

– If op = Read, then let T = {(r, sig) | 〈FK,(r, vr), (fn, vfn , op’), c, sig〉 ∈ FS}, T1 = {(r’, op’) | r’ 6= r ∧ ∃〈FK,
r’, (fn, vfn , op’), cr’, sig〉 ∈ FS)}, and T2 = {(fn) | 〈F, fn , cfn , SU, sig〉 ∈ FS)}. Then
σ′(x’) = σ′(x \ PA(r, p))
=σ′(next(x, revokeP(r, p))
∼=σ′(x) \ {FS(〈FK, (r, vr), (fn, vfn , op’),
c, sig〉) | (r, sig) ∈ T}
\ {FS(〈FK, r’, (fn, vfn , op’),
cr′ , sig〉) | (r’, op’) ∈ T1}
∪{FS(〈FK, r’, (fn, vfn , op’), vfn+1,
c′r′ , sig〉) | (r’, op’) ∈ T1}
\ {FS(〈F, fn, cfn , sig〉) | (fn) ∈ T2}
∪{FS(〈F, fn, c′fn , sig〉) | (fn) ∈ T2}
∪ FILES(fn, vfn+1) \ FILES(fn, vfn )
=terminal(σ′(x), α(σ′(x), l)).

We then prove that Crypt-DAC implements RBAC0 with AC-preserving achieved. The query mapping π is AC-preserving
because it maps auth(u, p) to TRUE for theory T if and only if T contains auth(u, p).

We finally prove that Crypt-DAC implements RBAC0 with safety achieved. The label mapping α is safe by inspection–for
any RBAC0 state x and label l, the Crypt-DAC label α(σ(x), l) never revokes or grants authorizations except the images of
those that are revoked or granted by l.


