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Abstract. We propose a software implementation of a variant of Boneh-
Goh-Nissim scheme [BGN05] with multiplicative depth 2, whereas the
original one only tackled multiplicative depth 1. We employ together two
improvements of the original scheme, based on [Fre10,CF15]. We give a
full description of the resulting scheme, denoted BGN2, where encryption
is performed bitwise. In this scheme, the homomorphic multiplication
asks to compute pairings. We chose to compute an optimal Ate pairing
over an elliptic curve in the Barreto-Naehrig curve family [BN05] using a
library called DCLXVI [NNS10]. We provide simulation results, showing
the interest of this solution for applications requiring a low multiplicative
depth.

1 Introduction

While usual encryption schemes sometimes offer homomorphic proper-
ties, for addition [Pai99] or multiplication [RSA78] operations, they do
not provide a way to perform both additions and multiplications at the
same time. The only scheme based on classical cryptography that enables
to handle an arbitrary number of additions and one single multiplication is
[BGN05]. An important breakthrough has been made in 2009 according to
the work of Gentry [Gen09b,Gen09a] who designed scheme that are able
to perform unlimited additions and multiplications over encrypted data.
Such schemes are called Fully Homomorphic Encryption (FHE) schemes.
However, due to the size of operands, more practical ones, namely Some-
what Homomorphic Encryption (SHE) schemes, have been proposed in
the steps of Aguilar et al. [AMGH10], to allow any number of additions
but an (upper)-bounded number of multiplications, then drastically re-
ducing the computation complexity. Because they allow arbitrary com-
putations on encrypted data, (S/F)HE schemes suddenly opened the way
to exciting new applications.(see e.g. [NLV11,GLN12,LLN14,BPB09]).

? This work was done while the author was at CNRS, Lab-STICC.



A lot of schemes have been proposed in the literature, as for exam-
ple [vDGHV10,SV10,GHS12,GH11,BGV12,CNT12,FV12,GSW13].

Such SHE schemes based on lattices present a large potential as they
can handle several multiplications. But, in some use cases where the mul-
tiplicative depth of the circuit we want to evaluate over encrypted data is
small, it may be of interest to closely look at lighter solutions like the one
we present in this paper, which is based on an improvement of [BGN05],
that we call BGN2, and which can handle a multiplicative depth of 2.
This solution provides smaller ciphertexts than lattice based solutions,
and its security is based on a hard problem that has been more deeply
investigated. More precisely, it employs together two improvements of the
original [BGN05] scheme, based on [Fre10,CF15]. To our knowledge, only
Freeman’s work has already been coupled with BGN in [Gui13] to greatly
improve BGN’s speed, and it is the first time that Catalone and Fiore’s
construction is applied to this particular setting in order to add one more
multiplicative depth.

The order of ciphertext expansion in BGN2 is thousands rather than
millions for SHE schemes based on lattices. This permits to make the first
steps towards practical homomorphic cryptography. We supply running
times of each homomorphic operation in our BGN2 implementation using
OpenMP and 8 threads.

Organization. This paper is organized as follows. We will first present
and describe our scheme in Section 2. Then, we will propose some ex-
amples of low depth Boolean circuits for which this scheme is helpful in
Section 3. Performances of our scheme and its implementation will then
be discussed in Section 4, as well as security issues. In Section 5 we finally
draw some conclusions.

2 Cryptosystem description

2.1 Implementation settings

x0 = v3 and v = 1868033

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

t(x) = 6x2 + 1

p = p(x0), r = r(x0), t = t(x0)

The parameters p and r are 256-bits prime integers , the parameter t
is a 128-bits integer. Let E be a curve of equation y2 = x3+3 defined over



Fp. 12 is the embedding degree of r or the one of subgroup E(Fp)[r] of

E(Fp). The operator
$←− refers to a random draw according to an uniform

distribution.
i1, j1, k1, l1, i2, j2, k2, l2

$←− Fp : i1l1 − j1k1 = i2l2 − j2k2 = 1

g
$←− E(Fp)[r] : ord(g) = r

π : E → E

(x, y) 7→ (xp, yp)

h
$←− E[r] ∩Ker(π − p) : ord(h) = r

u1
$←− <(i1g, j1g)> ≤ E(Fp)[r]

2

v1
$←− <(i2h, j2h)> ≤ (E[r] ∩Ker(π − p))2

u = (u[0], u[1])
$←− E(Fp)[r]

2, v = (v[0], v[1])
$←− (E[r] ∩Ker(π − p))2

2.2 Encryption and decryption of a bit

m ∈ F2 b
$←− F2

a = m− b
c = Enc(m) = (a, bu+u1, bv+ v1) ∈ F2×E(Fp)[r]

2× (E[r]∩Ker(π−
p))2

To evaluate with this ciphertext, we need the first and at least one of
the two last components. According to this, we speak of curve mode, twist
mode or mixed mode. We decrypt with the two remaining components.

π1 ∈ End(E(Fp)[r]
2), π2 ∈ End(Ker(π − p)2)

π1(x, y) = (−j1k1x+ i1k1y,−j1l1x+ i1l1y)
π2(x, y) = (−j2k2x+ i2k2y,−j2l2x+ i2l2y)

m = Dec(c) = a+
π1(bu+ u1)

π1(u)
3 if c ∈ F2 × E(Fp)[r]

2

m = Dec(c) = a+
π2(bv + v1)

π2(v)
if c ∈ F2 × (E[r] ∩Ker(π − p))2

The encryption function takes a bit on input. It outputs :

– an element of F2,
– two group elements in E(Fp)[r] of order r, that is four elements of Fp,
– and two group elements in E[r] ∩ Ker(π − p) of order r, that is four

elements of Fp12 ∼= Fp[X]/(X12 + 3).

3 The ratio is well-defined if the numerator is a multiple of the denumerator. Its value
is the scalar factor between the two points, modulo 2. This is the case here since u1

and v1 belongs respectively to the kernel of π1 and π2[Fre10, page 58].



We simplify groups expressions. We have E(Fp)[r] = E(Fp) since
we have #E(Fp) = r with r prime. We also have E[r] ∩ Ker(π − p) =
E(Fp12)[r]. E(Fp)[r] and E[r] ∩ Ker(π − p) are commutative groups of
order r. They are isomorph to (Z/rZ,+). Two elements of E(Fp)[r] can
be represented by two elements of Fp plus 2 bits (x-coordinates and y-
signs), that is 2 log2(p) + 2 = 514 bits. The curve E admits a twist of
degree 6. With twist, elements of Fp12 can be represented using elements
of Fp2 . Two elements of E[r] ∩ Ker(π − p) can be represented by two
elements of F2

p plus 2 bits, that is 4 log2(p) + 2 = 1026 bits. We employ
E′ : y2 = x3 +3/ξ, a sextic twist of E defined over F2

p, with ξ chosen such
that r | #E′(F2

p).

We reformulate. The encryption of a bit consists in:

– an element of F2,

– two group elements in E(Fp)

– two group elements in E′(F2
p)

2.3 Ciphertext level

Figure 1 indicates which operations are permitted on ciphertexts in BGN2.
This correlates with the ciphertext level. A ciphertext, on which no ho-
momorphic operation has been made, has level 1. An homomorphic mul-
tiplication produce a ciphertext of level > 1. Table 1 sums up the different
ciphertext spaces according to this notion of ciphertext level as well as
circuit multiplicative depth.

level L ciphertext

�

level L ciphertext level L ciphertext

level L1 + L2 ciphertext

�

level L1 ciphertext level L2 ciphertext

Fig. 1. Operations in BGN2 on ciphertexts in the same space, . L ≤ 4,L1 ≤ 2,L2 ≤ 2.



Circuit multiplicative depth Ciphertext level Ciphertext space

04 1

F2 × E(Fp)[r]2

F2 × (E[r] ∩Ker(π − p))2

F2 × E(Fp)[r]2 × (E[r] ∩Ker(π − p))2

1 2 F2 × µ4
r

25
3

µ4
r × (E(Fp)[r]2 × µ4

r)B

µ4
r × ((E[r] ∩Ker(π − p))2 × µ4

r)B

µ4
r × (µ4

r × E(Fp)[r]2)B

µ4
r × (µ4

r × (E[r] ∩Ker(π − p))2)B

4 µ4
r × (µ4

r × µ4
r)B

Table 1. The different ciphertext spaces according to circuit multiplicative depth.

2.4 Multiply level 1 ciphertexts

A level 1 ciphertext ∈ F2×E(Fp)[r]
2×(E[r]∩Ker(π−p))2. To obtain the

product of two level 1 ciphertexts, we remove the second component of
first ciphertext and the third component of second ciphertext. We proceed
in this way because we use an asymmetric pairing. The result is a level 2
ciphertext.

c1 = (a1, β1) ∈ F2×E(Fp)[r]
2, c2 = (a2, β2) ∈ F2×(E[r]∩Ker(π−p))2.

Mult(2)(c1, c2) := c = (a, β) ∈ F2 × µ4r
b1, b2, s

$←− F2

For i = 1 and i = 2, ci is an encryption of mi ∈ F2 and ai = mi − bi.
a = a1a2 − s
We redo a random uniform draw for u1 and v1.

u1
$←− <(i1g, j1g)>, v1

$←− <(i2h, j2h)>

We split up the computation of β in order to explain how the for-
mula is obtained. We can jump this paragraph and only retain the final
formula for a practical usage. The operator ⊕ refers to an homomorphic
addition with the scheme BGN-F6. Let eOA be the optimal Ate pairing.
The notation, Enc(L)(s) refers to a level L ciphertext of bit s, with the

4 Depending on the circuit, we can omit, or not, curvepoints or twistpoints computa-
tion.

5 B = A + 1. A is the number of additions of level 3 or 4 performed to obtain the
ciphertext.

6 The addition operator, in the scheme BGN2, is denoted �



scheme BGN-F. If no level is indicated, e.g. Enc(s), we consider a level 1
ciphertext.

e : E(Fp)[r]
2 × (E[r] ∩Ker(π − p))2 → µ4r

e((g1, g2)(h1, h2)) 7→ (eOA(g1, h1), eOA(g1, h2), eOA(g2, h1), eOA(g2, h2))

β = e(β1, β2)e(u, v1)e(u1, v)⊕ a1β2 ⊕ a2β1 ⊕ Enc(2)(s)

Let µr be the subgroup of rth-roots of unity in Fp12 . The first term
belongs to µ4r . Note, the level should be the same for all terms 7.

u2, u3, u4
$←− <(i1g, j1g)>

v2, v3, v4
$←− <(i2h, j2h)>

β = e(β1, β2)e(u, v1)e(u1, v)⊕e(Enc(1), a1β2)e(u, v2)e(u2, v)⊕e(a2β1,Enc(1))e(u, v3)e(u3, v)⊕
e(Enc(1),Enc(s))e(u, v4)e(u4, v)

Using bilinearity, we can simplify this expression. In practice, it is
not useful to define u2, u3, u4, v2, v3, v4. On the other hand, it is useful to
understand how we obtain the following formula.

β = e(β1, β2)e(Enc(1), a1β2 + Enc(s))e(a2β1,Enc(1))e(u, v1)e(u1, v)

We compute 5× 4 pairings to get a level 2 ciphertext.

2.5 Add level L ciphertexts with 1 ≤ L ≤ 2

On input, there are two ciphertexts (a1, β1) and (a2, β2), with the same
level 1 ≤ L ≤ 2 and a1, a2 ∈ F2. On output, there is one level L ciphertext
(a, β) The three ciphertexts are in the same space.

Three configurations are possible.

– β1, β2 ∈ E(Fp)[r]
2

– β1, β2 ∈ (E[r] ∩Ker(π − p))2
– β1, β2 ∈ µ4r

a = a1 + a2

7 If it is not the case, we multiply homomorphically the other terms by Enc(1), an
encryption of bit 1. More generally, this is applied several times when we compute
the sum of ciphertexts with several levels of difference.



We redo a random uniform draw for u1 and v1.

u1
$←− <(i1g, j1g)>, v1

$←− <(i2h, j2h)>

β = β1 + β2 + u1 if β1, β2 ∈ E(Fp)[r]
2

β = β1 + β2 + v1 if β1, β2 ∈ (E[r] ∩Ker(π − p))2

β = β1β2e(u, v1)e(u1, v) if β1, β2 ∈ µ4r

2.6 Decrypt level 2 ciphertext

We define a notation used by Freeman, more compact than the usual one.
Let M = (mi,j) be an n-order matrix over Fp
γM := (

∏n
i=1 γ

mi1
i , . . . ,

∏n
i=1 γ

min
i ) with γ in a product group.

A =

(
−j1k1 −j1l1
i1k1 i1l1

)
, B =

(
−j2k2 −j2l2
i2k2 i2l2

)
A⊗B is a matrix of order 4. We can divide it into 4 matrices of order

2. The (i, j)th block is equal to ai,jB with A = (ai,j)i,j∈{1,2}.
πT ∈ End(µ4r)
πT (β) = (β1, β2, β3, β4)

A⊗B

m = Dec(c) = a+ logπT (e(u,v))(πT (β)) if c ∈ F2 × µ4r

Public-key and private-key At this stage, we have used all the ma-
terial needed to encrypt and decrypt. We can explicit the keys in BGN2
scheme.

– Public-key is ((E(Fp)[r])
2, (i1g, j1g), (E[r]∩Ker(π−p))2, (i2h, j2h), µr, e, u, v).

– Private-key is (π1, π2, πT ).

2.7 Multiply ciphertexts to obtain a level L ciphertext with
3 ≤ L ≤ 4

On input, there are two ciphertexts (a1, β1) and (a2, β2), with levels
L1, L2 ∈ J1, 2K, 3 ≤ L1 + L2 ≤ 4 and a1, a2 ∈ F2. On output, there
is one level L ciphertext (α, β) with L = L1 +L2

8. As previously said, ⊕
refers to an homomorphic addition with the scheme BGN-F.

8 We can obtain level 4 ciphertexts but no product between a level 1 ciphertext and
a level 3 ciphertext is defined.



α = Enc(a1a2)⊕ βa12 ⊕ β
a2
1

9

β = (β1, β2)

We can only add ciphertexts of same level, see Section 2.5. To compute
α, we should get level 2 terms.

Three configurations are possible.

– β ∈ (E(Fp)[r]
2 × µ4r) ∪ ((E[r] ∩Ker(π − p))2 × µ4r)

– β ∈ (µ4r × E(Fp)[r]
2) ∪ (µ4r × (E[r] ∩Ker(π − p))2)

– β ∈ µ4r × µ4r

The three corresponding values of α are:

– e(Enc(a1a2),Enc(1))βa12 e(a2β1,Enc(1))e(u, v1)e(u1, v)
– e(Enc(a1a2),Enc(1))βa21 e(a1β2,Enc(1))e(u, v1)e(u1, v)
– e(Enc(a1a2),Enc(1))βa12 β

a2
1 e(u, v1)e(u1, v)

The first two cases permit to evaluate the same products since the
multiplication is commutative over F2. We choose to limit outself to the
first case where the first ciphertext has level 1, and the second ciphertext
has level 2. Once again, in the first case, we restrict, for convenience, β
in the product group (E(Fp)[r]

2 × µ4r). In every instance, α ∈ µ4r . The
number of successive multiplications is limited to one because the scheme
BGN2 evaluates ciphertexts up to level 4. Notice, the computation of
a level 3 ciphertext needs the computation of 4 × 4 pairings instead of
3× 4 pairings for the computation of a level 4 ciphertext. The additional
pairings are an extra part of the computation cost when we multiply two
ciphertexts of different levels.

2.8 Add level L ciphertexts with 3 ≤ L ≤ 4

On input, there are two level L ciphertexts (α1, β1) and (α2, β2), with
L ∈ J3, 4K. The two ciphertexts are in the same ambient space. On output,
there is one level L ciphertext (α, β).

α = α1 ⊕ α2 = α1α2e(u, v1)e(u1, v)

For every instance, α, α1, α2 ∈ µ4r .
9 Abuse of notation in this subsection. Exponentations should be replaced by multi-

plications, for level 1 ciphertexts, where it operates on additive groups.



β = (β1, β2)

Each addition and multiplication (see Section 2.7) to obtain a level
L ciphertext, extend the ciphertext size. For this reason, we operate a
limited number of such additions in practice.

For a ciphertext of level 3 ≤ L ≤ 4, obtained after A additions of level
3 ≤ L ≤ 4, there are three cases:

– β ∈ (E(Fp)[r]
2 × µ4r)B ∪ ((E[r] ∩Ker(π − p))2 × µ4r)B

– β ∈ (µ4r × E(Fp)[r]
2)B ∪ (µ4r × (E[r] ∩Ker(π − p))2)B

– β ∈ (µ4r × µ4r)B

where B = A+ 1.

2.9 Decrypt level L ciphertext with 3 ≤ L ≤ 4

On input a ciphertext (α, β) obtained with A additions of different level
L ciphertexts with 3 ≤ L ≤ 4. α is a level 2 ciphertext.

β := (β1,1, β2,1, β1,2, β2,2, . . . , β1,B, β2,B)

where ∀ i, j ∈ J1, BK, βi,j is either a level 1 ciphertext or a level 2
ciphertext.

On output a plaintext m ∈ F2.

m = Dec(α) +
B∑
i=1

Dec(β1,i) Dec(β2,i)

3 Low multiplicative depth Boolean circuits

We treat bit per bit encryption. Circuits are rewritten with two operators:
Y (exclusive disjunction) and ∧. They can be written under different forms
depending on operation order.

3.1 Binary data

Table 2 supplies constrainsts on ciphertext levels with typical examples
of low-depth multiplicative circuits.

Notation: ciphertexts a (resp. b, c, d) with level L1 (resp. level L2, L3, L4),
ciphertexts x (resp. y) with level M1 (resp. level M2).



Functions
Boolean Multiplicative Inputs Output

function10 Depth levels level

Test a == 1 a

0 ∈ J1, 4K

L1REFRESH a a Y 0

Test a == 0, NOT a a Y 1

Test a 6= b, a XOR b, sum of bits (a Y b)
max(L1, L2)

Test a == b, a XNOR b (a Y b) Y 1

a AND b, product of bits a ∧ b
1 ∈ J1, 2K

L1 + L2

a OR b ((a ∧ b) Y a) Y b

2-to-1 MUX, if x then a else b ((a Y b) ∧ x) Y b max(L1, L2) +M1

4-to-1 MUX
(a ∧ x ∧ y)

2 1 max(L1, L2, L3, L4) +M1 +M2
Y(b ∧ x ∧ (y Y 1))

selector inputs: x and y ∧(x Y 1) ∧ y)

output ∈ {a, b, c, d} Y(d ∧ (x Y 1) ∧ (y Y 1)

Table 2. Constrainsts on ciphertext levels with some low-depth multiplicative circuits

In BGN2, no multiplication is defined with a factor having a level ≥ 3.
Therefore, operands level is limited according to multiplicative depth.

3.2 Integer data

Data are n-bits integers. Input ciphertexts have level L = 1.

– Adder an−1 . . . a0 + bn−1 . . . b0 mod 2n

In terms of multiplicative depth, the hardest part is the evaluation of
the carry which enables to compute the most significant bit (MSB) of
the sum modulo 2n. Let us compute the MSB with n = 3, which is
the maximal value for BGN2. Then, it can be written :

a2 Y b2 Y ((a1 ∧ b1) ∧ (a0 ∧ b0))

The Boolean circuit has multiplicative depth dlog2 2(n − 1)e = 2.
The corresponding ciphertext is the sum of three ciphertexts of level

10 A Boolean function is not associated to a unique Boolean circuit. We restrict to
circuits with Y and ∧ gates because these gates correspond to elementary homo-
morphic operations in BGN2. The parentheses indicates the order of operations. It
permits to define a unique Boolean circuit and then to indicate its multiplicative
depth.



2(n−1)L = 4. Indeed, to add ciphertexts, we need to have ciphertexts
of the same level. In this case a2 and b2 have level L but ((a1∧b1)∧(a0∧
b0)) has level 4. To increment the level of a ciphertext, we multiply it
homomorphically by an encryption of 1.

– Test an−1 . . . a0 == bn−1 . . . b0
With BGN2, we can manage up to n = 4 bits with the circuit of depth
dlog2(n)e = 2:

((a3 Y b3) Y 1) ∧ ((a2 Y b2) Y 1) ∧ ((a1 Y b1) Y 1) ∧ ((a0 Y b0) Y 1)

The output is a ciphertext of level nL = 4.

4 Implementation performances and security

Our implementation uses the DCLXVI library [NNS10] to manage pairing
in an efficient way. We used version 20130329 of the library, which has
been designed to target a 128-bits security level, with software speed-up.
The rest of the implementation is of our own.

4.1 Memory usage and running time

Figure 2 show how data size in BGN2 is dependent on two kind of param-
eters. Those related with functionality (treatments operated on cipher-
texts) and those linked with security (implementation choices on cryp-
tosystem settings). Time/space/communication cost depend on:

– operations (encryption scheme, level of ciphertexts)
– operand size (security assumption, security level)
– operation number (Boolean circuit)

Homomorphic operations can differ according to the ciphertext level. A
fresh ciphertext is level 1. Multiply level L1 and level L2 ciphertexts give
a level L1 + L2 ciphertext.

Ciphertext size and key size are indicated in Table 3 and in Table 4.
Size depend on group order and data representation. In our implemen-
tation, we employ 256-bits prime p and r (see Subsection 2.1) to define
groups.

In some configurations, few errors (such as false positives in a test)
can be acceptable. In this case, we can restrain constraints and design an

11 Depending on the circuit, we encrypt plaintexts in curve mode, twist mode, or both.
12 The symbol k (resp. l) is the number of level 3 (resp. 4) additions performed to

obtain the ciphertext.



Evaluation polynomial

Boolean circuit

Pairing

Groups

Assumption

Security level

Group size

Input ciphertexts size
Plaintext
maximum
size

Output ciphertext size

# operations � of level > 2 # operations �

Fig. 2. Parameters influencing memory usage in BGN2 scheme.

Ciphertext level Size in bytes

1 (curve mode11) 784

1 (twist mode) 1552

2 4624

3 10032 + k12 × 5376

4 13872 + l × 9216

Table 3. Ciphertext size in our BGN2 implementation (256-bits primes p and r)

ad-hoc circuit with a lower depth than an error-free circuit. Cheap tasks
could be done with precomputation and postcomputation. It can permit
to decrease both the multiplicative depth and the number of additions of
level > 2.



Size in bytes Short description

Public key 4608 four curve points, four twist points

Private key 1024 eight prime field elements

Table 4. Key size in our BGN2 implementation (256-bits primes p and r)

We provide in Table 5 the running time of different homomorphic
cryptographic operations. In BGN2, it does not only depend on the op-
eration (encryption decryption, addition, multiplication). Addition of ci-
phertexts of level >2 and any multiplication of ciphertexts modify ci-
phertext spaces (see Table 1). It is thus necessary to specify time for each
ciphertext level.

Operation Time

Encryption (curve mode) 1.37 ms

Encryption (twist mode) 0.878 ms

Multiplication L113 5.27 ms

Multiplication L1L2 4.3 ms

Multiplication L2 3.49 ms

Addition L1 (curve mode) 0.643 ms

Addition L1 (twist mode) 0.606 ms

Addition L2 2.37 ms

Addition of two L3 2.25 ms

Addition of two L4 2.18 ms

Decryption (curve mode) 1.09 ms

Decryption (twist mode) 0.851 ms

Decryption L2 18.9 ms

Decryption L3 39.7 ms

Decryption L4 57.9 ms

Decryption sum of two L3 60.9 ms

Decryption sum of two L4 98.6 ms

Table 5. Running time of operations in BGN2 scheme on a Dell Precision T7810,
using two E5-2623v3 chips (each of them has 4 cores and can manage 8 threads, at a
frequency of 3GHz). In our experiments we used 16 threads at a time.



4.2 Security

The security of BGN2 is based on the generalized subgroup decision as-
sumption. We chose to employ asymetric pairings to compute homomo-
morphic product of fresh ciphertexts. The use of symmetric pairings would
change the computational hardness assumption [Fre10]. This problem is
derived from the decision Diffie-Hellman assumption [Bon98]. Two pos-
sible choices to instantiate groups are to select either an elliptic curve or
an hyperelliptic curve. In the first case, the security assumption reduces
to the elliptic curve discrete logarithm problem and the recommended
group size is given by different academic and private organizations at
www.keylength.com according to standard security levels.

We would like to point out that our implementation with 256-bits
primes p and r ensures today around 110-bits security and not 128-bits
security, as it was targetted a few months ago. Indeed, pairing-based cryp-
tography using target field Fp6 and Fp12 is affected by Kim-Barbulescu
variant of the Number Field Sieve[KB15]. This forces to reevaluate pa-
rameters size if we want to maintain a 128-bits security level. According
to estimates, last month, in [MSS16], 383-bits primes are now required
for a 128-bits security level. As our implementation relies on DCLXVI li-
brary, we need to modify it to update parameters size. But this step is not
trivial, as DCLXVI has been conceived to optimize software speed rather
than scalability. Hence, we will address this issue in a future publication.

5 Conclusion

In this paper, we proposed a variant of BGN homomorphic encryption
scheme that is called BGN2 and can address one more multiplicative
depth. This scheme may help to address practical situations where the
multiplicative depth is of 2, with smaller keys and ciphertext expansion
than homomorphic encryption schemes based on lattices. Moreover, its
security is better understood than for lattices based schemes, as it relies
on Discrete Logarithm computation, which has been more deeply studied
than, for example, LWE or RLWE. It is also less complex, as no boot-
strapping nor relinearization is needed here.
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