Small CRT-Exponent RSA Revisited*

${ }^{\dagger}$ Atsushi Takayasu ${ }^{\ddagger}$ Yao Lu ${ }^{\text {§ }}$ Liqiang Peng

May 1, 2017

Abstract

Since May (Crypto'02) revealed the vulnerability of the small CRT-exponent RSA using Coppersmith's lattice-based method, several papers have studied the problem and two major improvements have been made. Bleichenbacher and May (PKC'06) proposed an attack for small d_{q} when the prime factor p is significantly smaller than the other prime factor q; the attack works for $p<N^{0.468}$. Jochemsz and May (Crypto'07) proposed an attack for small d_{p} and d_{q} where the prime factors p and q are balanced; the attack works for $d_{p}, d_{q}<N^{0.073}$. Even after a decade has passed since their proposals, the above two attacks are still considered to be the state-of-the-art, and no improvements have been made thus far. A novel technique seems to be required for further improvements since the attacks have been studied with all the applicable techniques for Coppersmith's methods proposed by Durfee-Nguyen (Asiacrypt'00), Jochemsz-May (Asiacrypt'06), and Herrmann-May (Asiacrypt'09, PKC'10). In this paper, we propose two improved attacks on the small CRT-exponent RSA: a small d_{q} attack for $p<N^{0.5}$ (an improvement of Bleichenbacher-May's) and a small d_{p} and d_{q} attack for $d_{p}, d_{q}<N^{0.122}$ (an improvement of Jochemsz-May's). We use Coppersmith's lattice-based method to solve modular equations and obtain the improvements from a novel lattice construction by exploiting useful algebraic structures of the CRT-RSA key generation. We explicitly show proofs of our attacks and verify the validities by computer experiments. In addition to the two main attacks, we propose small d_{q} attacks on several variants of RSA.

[^0]
Contents

1 Introduction 3
1.1 Background 3
1.2 Technical Hardness 4
1.3 Our Results 4
1.4 Key Technique 5
2 Preliminaries 6
3 Small d_{q} Attack 7
3.1 An Overview of the Lattice Construction 7
3.1.1 May's Matrix 8
3.1.2 Bleichenbacher-May Matrix 8
3.1.3 Our Matrix 9
3.1.4 May's modulo q Attack 10
3.2 Attack for Large e 10
3.3 Attack for Small e 13
3.4 Proof of Lemma 3 16
3.5 Experimental results 18
4 Small d_{p} and d_{q} Attack 19
4.1 Our Attack 19
4.2 Experimental results 24
5 Attacks on the Variants 24
5.1 Multi-Prime RSA 24
5.2 Takagi's RSA 26
5.3 RSA with Multiple Exponent Pairs 28
6 Concluding Remarks and Open Problem 30
A Remaining Proof of Lemma 3 37

1 Introduction

1.1 Background

Let $N=p q$ be a public RSA modulus whose prime factors p and q are usually the same bit-size. A public exponent e and a secret exponent d satisfy $e d=1 \bmod (p-1)(q-1)$. For encryption/verifying (resp. decryption/signing), the heavy modular exponentiation of e (resp. d) has to be computed. To achieve faster computation, a simple solution is to use a small public or secret exponent. However, Wiener [Wie90] showed that a public RSA modulus is factorized in polynomial time when the secret exponent is too small such that $d<N^{0.25}$. Boneh and Durfee [BD00] revisited the problem with Coppersmith's lattice-based method [Cop96b, How97] and improved the bound to $d<N^{0.284}$. Furthermore, in the same work, the bound was improved to $d<N^{0.292}$ by exploiting sublattice structures from the previous one although the proof is involved.

To simultaneously thwart the small secret exponent attack and achieve faster decryption/signing, the Chinese Remainder Theorem (CRT) is often used as described by Quisquater and Couvreur [QC82]. Instead of the original secret exponent d, there are CRT-exponents d_{p} and d_{q} that satisfy

$$
e d_{p}=1 \bmod (p-1) \quad \text { and } \quad e d_{q}=1 \quad \bmod (q-1) .
$$

The PKCS\#1 standard [PKC] has specified that an RSA secret key should be ($p, q, d, d_{p}, d_{q}, q_{p}^{-1}$), where d_{p} and d_{q} are the CRT-exponents.

Then a natural question to ask is whether there exist analogous attacks of the Boneh-Durfee [BD00] to the small CRT-exponents. The first answer was given by May (Crypto'02) [May02]. May analyzed the unbalanced RSA whose prime factor p is significantly smaller than the other prime factor q, and proposed an attack for a small d_{q} with an arbitrary large d_{p}. The paper contains two attacks where the former attack works for $p<N^{0.382}$. The latter attack works only for smaller p, however, is better than the former attack for $p<N^{0.23}$ in the sense that a larger d_{q} can be recovered. Since May's attack works only in the unbalanced setting, it is an interesting open question if the attacks can be improved to cover the balanced RSA.

Subsequently, several improved attacks on the small CRT-exponent RSA have been proposed. Bleichenbacher and May (PKC'06) [BM06] revisited May's work [May02] in the same attack scenario and proposed an improved attack. The attack works for a larger p such that $p<N^{0.468}$, and recovers a larger d_{q} than May's attack for any size of p. However, the balanced prime factors still could not be captured. To capture the balanced RSA, Bleichenbacher and May analyzed other attack scenarios where both d_{p} and d_{q} are small in the same work. They proposed an attack which works for $e<N$. Although the same situation was already studied by Galbraith et al. [GHM05], Sun and Wu [SW05], their attacks only work for a smaller e. Jochemsz and May (Crypto'07) [JM07] proposed the first attack that works for a full size e when $d_{p}, d_{q}<N^{0.073}$.

In the past decade, no improved attacks of Bleichenbacher-May [BM06] and JochemszMay [JM07] have been proposed. Hence, following these attacks seems to be the best way to study the security of the CRT-RSA. Indeed, until recently, several papers followed the attacks and reported the vulnerabilities of the CRT-RSA, e.g., an attack on Takagi's RSA [SIK11], an attack on the RSA with multiple exponent pairs $\left[\mathrm{PHL}^{+} 15\right]$, and partial key exposure attacks [BM03, LZL14, SM09, TK15, TK16b].

1.2 Technical Hardness

Coppersmith introduced two lattice-based methods; to solve a modular equation [Cop96b] and an integer equation [Cop96a]. May's attack and Bleichenbacher-May's attack used the former method whereas Jochemsz-May's attack used the latter method. Both methods first construct a lattice and then solve equations with a small root in polynomial time. In this research area, constructing better attacks is equivalent to designing better lattices that reflect the more useful algebraic structure of the equation. For the purpose, several useful strategies and techniques for lattice constructions have been introduced thus far. Currently best known small CRT-exponent attacks [BM06, JM07, May02] are based on the state-of-the-art lattice constructions; the DurfeeNguyen technique (Asiacrypt'00) [DN00] and the Jochemsz-May strategy (Asiacrypt'06) [JM06]. Since the Durfee-Nguyen technique is useful to handle the relation $N=p q$ and the JochemszMay construction yields good lattices for arbitrary polynomials, these approaches [BM06, May02] seem appropriate to study the attack. Moreover, to the best of our knowledge, there remained no useful strategies to analyze the attack scenarios at that time. After the proposals of [BM06, JM07, May02], a new technique called unravelled linearization was introduced by Herrmann and May (Asiacrypt'09) [HM09]. The technique has been used to study various attack scenarios on RSA, e.g., [BVZ12, Her11, HM10, HHX14a, Kun12, KSI14, PHLW16, TK14b, TK14c, TK16a, TK16c, TK16d, TK17b, TK17a], and drastically developed the research area. For example, Herrmann and May [HM10] showed an elementary proof of Boneh-Durfee's attack [BD00] to exploit the sublattice structures. However, unfortunately, unravelled linearization could not improve small CRT-exponent attacks. Although Herrmann and May (PKC'10) [HM10] tried to exploit sublattice structures, they could not obtain better asymptotic bounds. Therefore, to obtain better bounds, a novel technique seems to be developed.

1.3 Our Results

In this paper, we develop a novel lattice construction technique for Coppersmith's modular method where the technique enables us to exploit more useful algebraic structures of the CRT-RSA key generation. A basic application of the technique is an improved small d_{q} attack for unbalanced prime factors (Section 3). As opposed to the previous results by May [May02] and BleichenbacherMay [BM06], our attack is the first result to reach a meaningful bound, i.e., $p<N^{0.5}$. Hence, we solve one of the major open problems for the security of the small CRT-exponent RSA. Moreover, our attack can recover a larger d_{q} than [BM06, May02] for any size of p. In addition, our attack requires less lattice dimensions than Bleichenbacher-May's attack [BM06] since our technique exploits sublattice structures from [BM06]'s lattice where the approach is similar to Boneh-Durfee [BD00]. Indeed, our experiments show that Bleichenbacher-May's attack works better than their theoretical analyses.

We claim that our technique is not limited to the small d_{q} attack. The technique is also applicable to a small d_{p} and d_{q} attack (Section 4) that improves Jochemsz-May's attack [JM07]. As we mentioned, small d_{q} attacks [BM06, May02] and small d_{p} and d_{q} attacks [JM07] were studied with different approaches in previous works; the former attack used Coppersmith's modular method whereas the latter attack used Coppersmith's integer method. However, our powerful technique
enables us to improve these attacks in the same manner. Our attack works for $d_{p}, d_{q}<N^{0.122}$ with a full size e where the exponent of N is about 40% larger than Jochemsz-May's attack. Notice that our proposed attack in this version is better than that in our proceeding version [TLP17] that works when $d_{p}, d_{q}<N^{0.091}$.

Recently, numerous papers [EKU15, HHX ${ }^{+} 14 \mathrm{~b}$, LZL13, LZPL15, PHHX15, PHL ${ }^{+}$15, PHL16, Sar14, Sar16, SIK11, TK14b, TK16a, TK16c] have been studying the security of RSA variants. We further show that we can extend our small d_{q} attack to the RSA variants (Section 5), i.e., the Multi-Prime RSA, Takagi's RSA, and the RSA with multiple exponent pairs. Our attacks significantly improve previous attacks on these variants [PHL ${ }^{+} 15$, SIK11].

1.4 Key Technique

We show an overview of our technique. The CRT-RSA key generation for d_{q} is written as

$$
\begin{equation*}
e d_{q}=1+k(q-1) \tag{1}
\end{equation*}
$$

with some integer k. By multiplying the equation by p, we obtain

$$
\begin{equation*}
e d_{q} p=p+k(N-p)=N+(k-1)(N-p) . \tag{2}
\end{equation*}
$$

Recall in May's and Bleichenbacher-May's attack scenario [BM06, May02], the prime p is significantly smaller than the other prime q. They solved the latter equation (2) modulo e to recover unknown $(k-1, p)$. Since the prime p is significantly smaller than the other prime q, to construct better attacks, solving the equation (2) is more promising approach than solving the equation (1) to recover (k, q). Hence, only the equation (2) was used in previous attacks. However, it means that the constructions of previous attacks significantly rely on the fact that p is much smaller than q. As a result, these attacks do not work when p is close to $N^{0.5}$.

What we focus on is a fact that the equations (1) and (2) are essentially the same; there are two representations for the same CRT-RSA key generation. As opposed to previous works, our improved lattice constructions utilize the algebraic structure of both equations (1) and (2) simultaneously not only the equation (2). The two representations are compatible in the sense that the combination enables us to exploit more useful algebraic structures. More specifically, we use the equations (1) and (2) where the proportion can be adaptively determined by the sizes of p and q. Then, to solve the modulo e equation as previous works, our framework always yields the better lattices than previous approaches. Our attacks are better than Bleichenbacher-May's attack for any size of p.

At a glance, our lattice construction technique is specialized to the improvement of Bleichenbacher-May's attack. As we pointed out, May's attack and Bleichenbacher-May's attack used Coppersmith's method to solve a modular equation [Cop96b, How97] whereas Jochemsz-May's attack used the method to solve an integer equation [Cop96a, Cor04]. The modular equation for the former attack and the integer equation for the latter attack have completely different algebraic structures. However, surprisingly, our powerful technique enables us to construct better lattices and improves Jochemsz-May's attack, too. It suggests that our proposed technique is quite useful to study the security of CRT-RSA over a wide range.

2 Preliminaries

Consider a modular equation $h\left(x_{1}, \ldots, x_{r}\right)=0(\bmod W)$, where all the absolute values of the target solutions ($\tilde{x}_{1}, \ldots, \tilde{x}_{r}$) are bounded above by X_{1}, \ldots, X_{r}. When $\prod_{j=1}^{r} X_{j}$ is reasonably smaller than W, Coppersmith's method can find all the solutions in polynomial time. In this section, we recall a simplified reformulation of the method due to Howgrave-Graham [How97] and its basis tools, i.e., Howgrave-Graham's lemma and the LLL algorithm.

Let $\left\|h\left(x_{1}, \ldots, x_{r}\right)\right\|$ denote a norm of a polynomial which represents the Euclidean norm of the coefficient vector. The following Howgrave-Graham's lemma reduces the modular equations into integer equations.
Lemma 1 (Howgrave-Graham's Lemma [How97]). Let $\tilde{h}\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ be a polynomial with at most n monomials. Let $m, W, X_{1}, \ldots, X_{r}$ be positive integers. Suppose that:

1. $\tilde{h}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{r}\right)=0\left(\bmod W^{m}\right)$, where $\left|\tilde{x}_{1}\right|<X_{1}, \ldots,\left|\tilde{x}_{r}\right|<X_{r}$,
2. $\left\|\tilde{h}\left(x_{1} X_{1}, \ldots, x_{r} X_{r}\right)\right\|<W^{m} / \sqrt{n}$.

Then $\tilde{h}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{r}\right)=0$ holds over the integers.
To solve r-variate modular equations $h\left(x_{1}, \ldots, x_{r}\right)=0(\bmod W)$, it suffices to find r new polynomials $\tilde{h}_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, \tilde{h}_{r}\left(x_{1}, \ldots, x_{r}\right)$ whose root is the same as the original one, i.e., $\left(x_{1}, \ldots, x_{r}\right)=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{r}\right)$, and whose norms are small enough to satisfy Howgrave-Graham's lemma.

To find such small norm polynomials from the original modular polynomial $h\left(x_{1}, \ldots, x_{r}\right)$, lattices and the LLL algorithm are used. An n-dimensional lattice is an additive discrete subgroup of \mathbb{Z}^{n}. In other words, a lattice represents all integer linear combinations of its basis vectors. All vectors are row representation throughout the paper. Let $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}$ be n-dimensional linearly independent vectors in \mathbb{Z}^{n}. A lattice spanned by these vectors as a basis is defined as $L\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}\right):=\left\{\sum_{j=1}^{m} c_{j} \boldsymbol{b}_{j}: c_{j} \in \mathbb{Z}\right.$ for all $\left.j=1,2, \ldots, n\right\}$. We also use a matrix representation for the basis. We define a basis matrix \boldsymbol{B} as $m \times n$ matrix which has the basis vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{m}$ in each row. A lattice spanned by a basis matrix \boldsymbol{B} is denoted as $L(\boldsymbol{B})$. We call a lattice full-rank if and only if $n=m$. A determinant of a lattice $\operatorname{det}(L(\boldsymbol{B}))$ is defined as the m-dimensional volume of the fundamental parallelepiped; $\mathcal{P}(\boldsymbol{B}):=\left\{\mathbf{c} B: \mathbf{c} \in \mathbb{R}^{m}, 0 \leq c_{j}<1\right.$, for all $\left.j=1,2, \ldots, m\right\}$. The determinant can be computed as $\operatorname{det}(L(\boldsymbol{B}))=\sqrt{\operatorname{det}\left(\boldsymbol{B} \boldsymbol{B}^{T}\right)}$ in general and that of a full-rank lattice can be computed as $\operatorname{det}(L(\boldsymbol{B}))=|\operatorname{det}(\boldsymbol{B})|$. In this paper, we only use a full-rank lattice. More specifically, we only use a lattice with a triangular basis matrix. Hence, the determinant of the lattice can be computed easily as the absolute value of a product of all diagonals.

Lattice has been used in various ways in cryptographic research. See [Cop97, Cop01, May03, May10, NS01] for more information. In cryptanalysis, finding non-zero short lattice vectors is usually an essential operation. In this paper, we recall the LLL algorithm [LLL82] that outputs short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [LLL82, May03]). Given linearly independent vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ in \mathbb{Z}^{n}, the LLL algorithm finds new basis vectors $\tilde{\boldsymbol{b}}_{1}, \ldots, \tilde{\boldsymbol{b}}_{n}$ for a lattice $L\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)$ that satisfy

$$
\left.\left\|\tilde{\boldsymbol{b}}_{j}\right\| \leq 2^{n(n-1) / 4(n-j+1)} \operatorname{det}(L(\boldsymbol{B}))\right)^{1 /(n-j+1)} \quad \text { for } 1 \leq j \leq n
$$

in time polynomial in n and the maximum input length of $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$.
Again, we explain how to solve the modular equation $h\left(x_{1}, \ldots, x_{r}\right)=0(\bmod W)$. At first, we construct n polynomials $h_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, h_{n}\left(x_{1}, \ldots, x_{r}\right)$ that have the root ($\tilde{x}_{1}, \ldots, \tilde{x}_{r}$) modulo W^{m} with some positive integer m. Then we construct n basis vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ and equivalently its matrix representation \boldsymbol{B}. Each elements of a vector \boldsymbol{b}_{j} for $j=1,2, \ldots, n$ consist of coefficients of $h_{j}\left(x_{1} X_{1}, \ldots, x_{r} X_{r}\right)$. Since all vectors in a lattice $L(\boldsymbol{B})$ are integer linear combinations of the basis vectors, all polynomials whose coefficients are derived from lattice vectors have the root ($\tilde{x}_{1}, \ldots, \tilde{x}_{r}$) modulo W^{m}. We apply the LLL algorithm to a lattice basis \boldsymbol{B} and obtain r LLL-reduced vectors $\tilde{\boldsymbol{b}}_{1}, \ldots, \tilde{\boldsymbol{b}}_{r}$. Then new polynomials $\tilde{h}_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, \tilde{h}_{r}\left(x_{1}, \ldots, x_{r}\right)$ which are derived from the above r LLL-reduced vectors satisfy Howgrave-Graham's lemma provided that $\operatorname{det}(L(\boldsymbol{B})))^{1 / n}<$ W^{m}. Here, we omit small terms. When we obtain r polynomials $\tilde{h}_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, \tilde{h}_{r}\left(x_{1}, \ldots, x_{r}\right)$, the root $\left(\tilde{x}_{1}, \ldots, \tilde{x}_{r}\right)$ can easily be recovered by computing resultant or Gröbner bases for the polynomials.

We should note that the method needs heuristic argument for multivariate problems. The polynomials $\tilde{h}_{1}\left(x_{1}, \ldots, x_{r}\right), \ldots, \tilde{h}_{n}\left(x_{1}, \ldots, x_{r}\right)$ derived from LLL output vectors have no assurance of algebraic independency. In this paper, we assume that the polynomials are algebraic independent as previous works [BM06, JM07, May02] since there exist few negative reports. Moreover, we justify the validity of our attacks by computer experiments.

3 Small d_{q} Attack

In this section, we propose an attack for small d_{q} where p is significantly smaller than q. The attack improves Bleichnbacher-May's attack [BM06].

3.1 An Overview of the Lattice Construction

At first, we explain our strategy for lattice constructions. Since our lattice construction is highly technical, we show toy examples that compare previous lattices [BM06, May02] and ours. We hope that these examples help readers to understand our technique easily.

Recall the CRT-RSA key generation;

$$
e d_{q}=1+k(q-1)
$$

with some integer k. If we can solve the following modular equation:

$$
f_{q}\left(x_{q}, y_{q}\right)=1+x_{q}\left(y_{q}-1\right)=0 \quad(\bmod e)
$$

whose root is $\left(x_{q}, y_{q}\right)=(k, q)$, a public modulus N can be factorized. However, since the prime factor q is significantly larger than the other prime factor p, i.e., $p=N^{\beta}$ and $q=N^{1-\beta}$ for $\beta \leq 1 / 2$, May [May02] multiplied the above equation by p and obtain the following equation:

$$
e d_{q} p=p+k(N-p)=N+(k-1)(N-p) .
$$

Hence, if the following modular equation can be solved, the public modulus N can be factorized:

$$
f_{p}\left(x_{p}, y_{p}\right)=N+x_{p}\left(N-y_{p}\right)=0 \quad(\bmod e)
$$

whose root is $\left(x_{p}, y_{p}\right)=(k-1, p)$. Let $e=N^{\alpha}$ and $d_{q}=N^{\delta}$. Then the absolute values of the $\operatorname{root}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ is bounded above by $X_{p}:=N^{\alpha+\beta+\delta-1}, X_{q}:=N^{\alpha+\beta+\delta-1}, Y_{p}:=N^{\beta}, Y_{q}:=N^{1-\beta}$ respectively within constant factors. Later we also use a notation $X:=X_{p}=X_{q}$. In this setting, the other CRT-exponent d_{p} can be arbitrary large such that $d_{p} \approx N^{\beta}$.

3.1.1 May's Matrix

May [May02] solved the modular equation $f_{p}\left(x_{p}, y_{p}\right)=0$ under the standard lattice construction which can be captured by Jochemsz-May's strategy [JM07]. For example, although we omit the detail, he constructed the basis matrix as the following:

$$
\left(\begin{array}{ccccccc}
e & & & & & & \\
0 & e X_{p} & & & & & \\
N & N X_{p} & -X_{p} Y_{p} & & & & \\
0 & 0 & 0 & e Y_{p} & & & \\
0 & 0 & N X_{p} Y_{p} & N Y_{p} & -X_{p} Y_{p}^{2} & & \\
0 & 0 & 0 & 0 & 0 & e Y_{p}^{2} & \\
0 & 0 & 0 & 0 & N X_{p} Y_{p}^{2} & N Y_{p}^{2} & -X_{p} Y_{p}^{3}
\end{array}\right)
$$

where the rows consist of coefficients of seven polynomials: $e, e x_{p}, f_{p}\left(x_{p}, y_{p}\right), e y_{p}, y_{p} f_{p}\left(x_{p}, y_{p}\right)$, $e y_{p}^{2}, y_{p}^{2} f_{p}\left(x_{p}, y_{p}\right)$. All the polynomials share the common root as $f_{p}\left(x_{p}, y_{p}\right)$ modulo e. In addition to the base polynomials, i.e., $e, e x_{p}, f_{p}\left(x_{p}, y_{p}\right)$, he added extra y_{p}-shifts, i.e., $e y_{p}, y_{p} f_{p}\left(x_{p}, y_{p}\right), e y_{p}^{2}, y_{p}^{2} f_{p}\left(x_{p}, y_{p}\right)$. Applying the LLL reduction to the above matrix, polynomials derived from the LLL output vectors satisfy Howgrave-Graham's lemma when

$$
\begin{aligned}
X_{p}^{4} Y_{p}^{9} e^{4}<e^{7} & \Leftrightarrow 4(\alpha+\beta+\delta-1)+9 \beta<3 \alpha \\
& \Leftrightarrow \delta<1-\frac{\alpha+13 \beta}{4} .
\end{aligned}
$$

The core idea of the approach is solving the equation (2) not (1) since p is significantly smaller than q. Hence, if p becomes close to q such that $\beta \geq 0.382$, May's attack does not work.

3.1.2 Bleichenbacher-May Matrix

To improve May's attack [May02] based on the above matrix, Bleichenbacher and May [BM06] made use of the relation $y_{p} y_{q}=N$ as Durfee and Nguyen [DN00]. Although the exact solution of y_{p} is unknown, the relation enables us to reduce powers of Y_{p} in the diagonals by multiplying powers of y_{q} to all the polynomials. By optimizing the powers of y_{q}, Bleichenbacher-May's matrix always offers better results than May's matrix.

To explain our improvement later, we modify Bleichenbacher-May's matrix where the modified matrix offer the same bound as the original Bleichenbacher-May matrix. The modification helps
readers to understand the spirit of our improvement. Previous May's matrix used only extra $y_{p^{-}}$ shifts, however, modified Bleichenbacher-May's matrix used both y_{p}-shifts and y_{q}-shifts. Hence, we omit $e y_{p}^{2}, y_{p}^{2} f_{p}\left(x_{p}, y_{p}\right)$ from the above matrix and add $e y_{q}, N^{-1} \cdot y_{q} f_{p}\left(x_{p}, y_{p}\right)$ in turn where the new polynomials share the common root as $f_{p}\left(x_{p}, y_{p}\right)$ modulo e :

$$
\left(\begin{array}{ccccccc}
e & & & & & & \\
0 & e X_{p} & & & & & \\
N & N X_{p} & -X_{p} Y_{p} & & & & \\
0 & 0 & 0 & e Y_{p} & & & \\
0 & 0 & N X_{p} Y_{p} & N Y_{p} & -X_{p} Y_{p}^{2} & & \\
0 & 0 & 0 & 0 & 0 & e Y_{q} & \\
0 & -X_{p} & 0 & 0 & 0 & Y_{q} & X_{p} Y_{q}
\end{array}\right) .
$$

Although the precise definition of the polynomial selection is slightly different from the one in the original paper, they are essentially the same in the sense that the above matrix yields the same bound as the original Bleichenbacher-May attack. Applying the LLL reduction to the above matrix, polynomials derived from the LLL output vectors satisfy Howgrave-Graham's lemma when

$$
\begin{aligned}
X_{p}^{4} Y_{p}^{4} Y_{q}^{2} e^{4}<e^{7} & \Leftrightarrow 4(\alpha+\beta+\delta-1)+4 \beta+2(1-\beta)<3 \alpha \\
& \Leftrightarrow \delta<\frac{1}{2}-\frac{\alpha+6 \beta}{4} .
\end{aligned}
$$

Compared with May's matrix, the matrix reduces the powers of Y_{p} by multiplying the powers of Y_{q}. It means that Bleichenbacher-May's approach tries to control the appearance of Y_{p} and Y_{q}. Then the attack works for larger p than May's attack up to $p<N^{0.468}$. By optimizing the selection of y_{p}-shifts and y_{q}-shifts, Bleichenbacher-May's attack is always better than May's attack.

3.1.3 Our Matrix

To improve the Bleichenbacher-May attack, what we focus on is the representation of the polynomial. More concretely, previous works used the only one representation, i.e., $f_{p}\left(x_{p}, y_{p}\right)$, however, there is the other representation, i.e., $f_{q}\left(x_{q}, y_{q}\right)$, for the same polynomial. Indeed, a useful algebraic property can be exploited from the polynomial $f_{q}\left(x_{q}, y_{q}\right)$ by making use of the fact that $x_{q}=x_{p}+1$. For the above Bleichenbacher-May matrix to be triangular, the polynomial $e y_{q}$ is necessary. Since $e Y_{q}$ is larger than the modulus e, the polynomial does not contribute to maximize the solvable root bound as explained in [May10, TK14a]. However, we make use of $f_{q}\left(x_{q}, y_{q}\right)$ and show that the matrix becomes triangular without $e y_{q}$ as follows:

$$
\left(\begin{array}{cccccc}
e & & & & & \\
0 & e X_{p} & & & & \\
N & N X_{p} & -X_{p} Y_{p} & & & \\
0 & 0 & 0 & e Y_{p} & & \\
0 & 0 & N X_{p} Y_{p} & N Y_{p} & -X_{p} Y_{p}^{2} & \\
0 & -X_{p} & 0 & 0 & 0 & X_{q} Y_{q}
\end{array}\right)
$$

Although the above Bleichenbacher-May matrix used $N^{-1} \cdot y_{q} f_{p}\left(x_{p}, y_{p}\right)$ in the bottom row, we use $f_{q}\left(x_{q}, y_{q}\right)$ in turn. Notice that $f_{q}\left(x_{q}, y_{q}\right)=N^{-1} \cdot y_{q} f_{p}\left(x_{p}, y_{p}\right)$ and we use the same polynomial as the Bleichenbacher-May, however, the algebraic structure of $f_{q}\left(x_{q}, y_{q}\right)$, i.e., the relation $x_{q}=$ $x_{p}+1$, enables the matrix to be triangular without $e y_{q}$. The operation means that BleichenbacherMay's matrix contains better sublattices. The representation $f_{q}\left(x_{q}, y_{q}\right)$, which was not used by Bleichenbacher and May, enables us to exploit the sublattices. Indeed, by construction, our matrix always outperforms the above Bleichenbacher-May matrix with less lattice dimensions. Applying the LLL reduction to our above matrix, polynomials derived from the LLL output vectors satisfy Howgrave-Graham's lemma when

$$
\begin{aligned}
X_{p}^{3} X_{q} Y_{p}^{4} Y_{q} e^{3}<e^{6} & \Leftrightarrow 4(\alpha+\beta+\delta-1)+4 \beta+(1-\beta)<3 \alpha \\
& \Leftrightarrow \delta<\frac{3}{4}-\frac{\alpha+7 \beta}{4} .
\end{aligned}
$$

Since $\beta \leq 1 / 2$, the bound is always better than the above Bleichenbacher-May example.

3.1.4 May's modulo q Attack

We should notice that our lattice construction technique does not always offer the best attack. More concretely, as we discussed above, our lattice offers better results than all the existing lattices to solve $f_{p}\left(x_{p}, y_{p}\right)=0$ and $f_{q}\left(x_{q}, y_{q}\right)=0$. However, there is the other formulations to attack CRTRSA, i.e., May's modulo q approach [May02]. From the CRT-RSA key generation $e d_{q}=1+k(q-1)$, May solved a modular equation;

$$
x+e y=0 \quad(\bmod q)
$$

whose root is $\left(k-1, d_{q}\right)$. Since the modulo e and the modulo q approach is different, we should check whether which method is the better. Although our modulo e attacks are the better in most cases, we will show in Section 5.2 that the modulo p approach outperforms modulo e approach for small d_{p} attack with a modulus $N=p^{r} q$.

3.2 Attack for Large e

Although the above discussion handled only toy examples, our approach improves an asymptotic condition of the small CRT-exponent attack. In this section, we propose an improved attack that works when $\alpha>\beta /(1-\beta)$. The attack is the first result to cover the desired bound, i.e., $\beta<1 / 2$ with a full size e.

Theorem 1. Let $N=p q$ be an RSA modulus where $p=N^{\beta}$ and $q=N^{1-\beta}$ for $\beta \leq 1 / 2$. Let $e=N^{\alpha}$ and $d_{q}<N^{\delta}$ be a public/CRT exponent respectively such that ed ${ }_{q}=1(\bmod (q-1))$. Given public elements N and e, if

$$
\delta<\frac{(1-\beta)(3+2 \beta)-2 \sqrt{\beta(1-\beta)(\alpha \beta+3 \alpha+\beta)}}{3+\beta} \text { and } \alpha>\frac{\beta}{1-\beta},
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

Figure 1: Comparison between our attack (Theorem 1) and the Bleichenbacher-May for $\alpha=1$.

As opposed to previous results, when $\alpha=1$, the attack works to $\beta<1 / 2$. Figure 1 compares our result and the Bleichenbacher-May for $\alpha=1$. Our attack covers larger δ than the BleichenbacherMay attack for all β.
Proof of Theorem 1. To solve the modular equation $f_{q}\left(x_{q}, y_{q}\right)=0$ and equivalently $f_{p}\left(x_{p}, y_{p}\right)=0$, we use the following shift-polynomials:

$$
\begin{aligned}
g_{[i, j]}\left(x_{p}, y_{p}\right) & :=x_{p}^{j} f_{p}^{i}\left(x_{p}, y_{p}\right) e^{m-i}, \\
g_{[i, j]}^{\prime}\left(x_{p}, y_{p}\right) & :=y_{p}^{j} f_{p}^{i}\left(x_{p}, y_{p}\right) e^{m-i}, \\
g_{[i, j]}^{\prime \prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) & :=f_{p}^{i-j}\left(x_{p}, y_{p}\right) f_{q}^{j}\left(x_{q}, y_{q}\right) e^{m-i},
\end{aligned}
$$

with some positive integer m. For non-negative integers i and j, all the shift-polynomials share the same root as $f_{p}\left(x_{p}, y_{p}\right)$ and $f_{q}\left(x_{q}, y_{q}\right)$ modulo e^{m}. May [May02] used the same shift-polynomials as $g_{[i, j]}\left(x_{p}, y_{p}\right)$ and $g_{[i, j]}^{\prime}\left(x_{p}, y_{p}\right)$. The (modified) Bleichenbacher-May attack used an additional shiftpolynomial which used only $f_{p}\left(x_{p}, y_{p}\right)$. However, as we showed an example in the previous section, we use the both representations $f_{p}\left(x_{p}, y_{p}\right)$ and $f_{q}\left(x_{q}, y_{q}\right)$ simultaneously. Then we can construct triangular basis matrices that generalize the toy example as follows.
Lemma 2. Let all the polynomials be defined as above. Let τ_{p} and τ_{q} be constants such that $\tau_{p} \geq 0$ and $0 \leq \tau_{q} \leq 1$. Define sets of indices

$$
\begin{aligned}
\mathcal{I}_{x} & :=\{i=0,1, \ldots, m ; j=0,1, \ldots, m-i\}, \\
\mathcal{I}_{y, p} & :=\left\{i=0,1, \ldots, m ; j=1,2, \ldots,\left\lceil\tau_{p} m\right\rceil\right\}, \\
\mathcal{I}_{y, q} & :=\left\{i=1,2, \ldots, m ; j=1,2, \ldots,\left\lceil\tau_{q} i\right\rceil\right\} .
\end{aligned}
$$

Let \boldsymbol{B} be a matrix whose rows consist of coefficients of $g_{[i, j]}\left(x_{p} X_{p}, y_{p} Y_{p}\right), g_{[i, j]}^{\prime}\left(x_{p} X_{p}, y_{p} Y_{p}\right)$, and $g_{[i, j]}^{\prime \prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ with indices in $\mathcal{I}_{x}, \mathcal{I}_{y, p}$, and $\mathcal{I}_{y, q}$, respectively. If the shift-polynomials are ordered as

$$
g_{[i, j]} \prec g_{[i, j]}^{\prime}, g_{[i, j]}^{\prime \prime},
$$

$$
\begin{aligned}
& g_{[i, j]} \prec g_{\left[i^{\prime}, j^{\prime}\right]}, g_{[i, j]}^{\prime} \prec g_{\left[i^{\prime}, j^{\prime}\right]}^{\prime}, g_{[i, j]}^{\prime \prime} \prec g_{\left[i^{\prime}, j^{\prime}\right]}^{\prime \prime} \text { for } i<i^{\prime}, \\
& g_{[i, j]}^{\prime} \prec g_{\left[i, j^{\prime}\right]}^{\prime}, g_{[i, j]}^{\prime} \prec g_{\left[i, j^{\prime}\right]}^{\prime}, g_{[i, j]}^{\prime \prime} \prec g_{\left[i, j^{\prime}\right]}^{\prime \prime} \text { for } j<j^{\prime},
\end{aligned}
$$

and $N^{-1}\left(\bmod e^{m}\right)$ is multiplied appropriately, then the matrix becomes triangular with diagonals

- $X_{p}^{i+j} Y_{p}^{i} e^{m-i}$ for $g_{[i, j]}\left(x_{p} X_{p}, y_{p} Y_{p}\right)$,
- $X_{p}^{i} Y_{p}^{i+j} e^{m-i}$ for $g_{[i, j]}^{\prime}\left(x_{p} X_{p}, y_{p} Y_{p}\right)$,
- $X_{q}^{i} Y_{q}^{j} e^{m-i}$ for $g_{[i, j]}^{\prime \prime}\left(x_{p} Y_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$.

Here, we do not prove the lemma. Later, we prove a more general form of the statement, i.e., Lemma 3.

We compute the resulting condition of Theorem 1. The dimension n and the determinant of the lattice $\operatorname{det}(\boldsymbol{B})=X^{s_{X}} Y_{p}^{s_{Y_{p}}} Y_{q}^{s_{Y_{q}}} e^{s_{e}}$ can be computed as:

$$
\begin{aligned}
n & =\sum_{(i, j) \in \mathcal{I}_{x}} 1+\sum_{(i, j) \in \mathcal{I}_{y, p}} 1+\sum_{(i, j) \in \mathcal{I}_{y, q}} 1=\frac{1+2 \tau_{p}+\tau_{q}}{2} m^{2}+o\left(m^{2}\right), \\
s_{X} & =\sum_{(i, j) \in \mathcal{I}_{x}}(i+j)+\sum_{(i, j) \in \mathcal{I}_{y, p}} i+\sum_{(i, j) \in \mathcal{I}_{y, q}} i=\frac{2+3 \tau_{p}+2 \tau_{q}}{6} m^{3}+o\left(m^{3}\right), \\
s_{Y_{p}} & =\sum_{(i, j) \in \mathcal{I}_{x}} i+\sum_{(i, j) \in \mathcal{I}_{y, p}}(i+j)=\frac{1+3 \tau_{p}+3 \tau_{p}^{2}}{6} m^{3}+o\left(m^{3}\right), \\
s_{Y_{q}} & =\sum_{(i, j) \in \mathcal{I}_{y, q}} j=\frac{\tau_{q}^{2}}{6} m^{3}+o\left(m^{3}\right), \\
s_{e} & =\sum_{(i, j) \in \mathcal{I}_{x}}(m-i)+\sum_{(i, j) \in \mathcal{I}_{y, p}}(m-i)+\sum_{(i, j) \in \mathcal{I}_{y, q}}(m-i)=\frac{2+3 \tau_{p}+\tau_{q}}{6} m^{3}+o\left(m^{3}\right) .
\end{aligned}
$$

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy HowgraveGraham's lemma if $X^{s_{X}} Y_{p}^{s_{Y_{p}}} Y_{q}^{s_{Y_{q}}} e^{s_{e}}<e^{n m}$, i.e.,

$$
(\alpha+\beta+\delta-1) \frac{2+3 \tau_{p}+2 \tau_{q}}{6}+\beta \frac{1+3 \tau_{p}+3 \tau_{p}^{2}}{6}+(1-\beta) \frac{\tau_{q}^{2}}{6}-\alpha \frac{1+3 \tau_{p}+2 \tau_{q}}{6}<0
$$

by omitting low order terms of m. To minimize the left hand side of the inequality, we substitute the parameters

$$
\tau_{p}=\frac{1-2 \beta-\delta}{2 \beta} \text { and } \tau_{q}=\frac{1-\beta-\delta}{1-\beta}
$$

then the condition becomes

$$
\delta<\frac{(1-\beta)(3+2 \beta)-2 \sqrt{\beta(1-\beta)(\alpha \beta+3 \alpha+\beta)}}{3+\beta}
$$

as required. To satisfy the restriction $\tau_{p} \geq 0, \alpha>\beta /(1-\beta)$ should hold. The other parameter τ_{q} always satisfies $0 \leq \tau_{q} \leq 1$.

3.3 Attack for Small e

The attack of Theorem 1 works only for $\alpha>\beta /(1-\beta)$. The constraint comes from the fact that the parameter τ_{p} used in the proof should be non-negative. To capture the other case, i.e., $\alpha \leq \beta /(1-\beta)$, under the same algorithm construction, we set the parameters $\tau_{p}=0$ and $\tau_{q}=(1-\beta-\delta) /(1-\beta)$, then the attack works for $\delta<2(1-\beta)-\sqrt{(1+\alpha)(1-\beta)}$.

However, by modifying the lattice construction, a better result can be obtained as follows.
Theorem 2. Let $N=p q$ be an RSA modulus where $p<N^{\beta}$ and $q \geq N^{1-\beta}$ for $\beta \leq 1 / 2$. Let $e=N^{\alpha}$ and $d_{q}<N^{\delta}$ be a public/CRT exponent respectively such that ed ${ }_{q}=1(\bmod (q-1))$. Given public elements N and e, if

$$
\delta<1-\beta-\sqrt{\alpha \beta(1-\beta)} \text { for } \beta(1-\beta) \leq \alpha \leq \frac{\beta}{1-\beta},
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

As we claimed, the bound of Theorem 2 is better than $\delta<2(1-\beta)-\sqrt{(1+\alpha)(1-\beta)}$ which can be obtained from the same algorithm construction as Theorem 1. We show the proof of Theorem 2. The proof is more technical than that of Theorem 1, however, the spirit is almost the same. In the subsequent sections, lattices which are similar to that of Theorem 2 will be used.

Proof of Theorem 2. To solve the modular equation $f_{q}\left(x_{q}, y_{q}\right)=0$ and equivalently $f_{p}\left(x_{p}, y_{p}\right)=0$, we use the following shift-polynomials:

$$
\begin{gathered}
g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right):=x_{p}^{j} f_{p}^{\lceil\lambda i\rceil}\left(x_{p}, y_{p}\right) f_{q}^{\lfloor(1-\lambda) i\rfloor}\left(x_{q}, y_{q}\right) e^{m-i}, \\
g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right):=y_{q}^{j} f_{p}^{[\lambda i\rceil}\left(x_{p}, y_{p}\right) f_{q}^{\lfloor(1-\lambda) i\rfloor}\left(x_{q}, y_{q}\right) e^{m-i},
\end{gathered}
$$

with some positive integer m and a parameter $0<\lambda \leq 1$. For non-negative integers i and j, all the shift-polynomials share the common root as $f_{p}\left(x_{p}, y_{p}\right)$ and $f_{q}\left(x_{q}, y_{q}\right)$ modulo e^{m}. Here, notice that $\lceil\lambda i\rceil+\lfloor(1-\lambda) i\rfloor=i$ for all i. The shift-polynomials $g_{[i, j]}^{\prime}\left(x_{p}, y_{p}\right)$ and $g_{[i, j]}^{\prime \prime}\left(x_{p}, y_{p}\right)$ used in the proof of Theorem 1 is the special case of $g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ and $g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ for $\lambda=1$. As the attack of Theorem 1 , we use both representations $f_{p}\left(x_{p}, y_{p}\right)$ and $f_{q}\left(x_{q}, y_{q}\right)$ simultaneously for all shift-polynomials. Using these shift-polynomials, we can construct triangular basis matrices as follows.

Lemma 3. Let all the polynomials be defined as above. Let τ be a constant such that $1-\lambda<\tau \leq 1$. Let m be a positive integer. Define sets of indices as

$$
\begin{aligned}
\mathcal{I}_{x} & :=\{i=0,1, \ldots, m ; j=0,1, \ldots, m-i\}, \\
\mathcal{I}_{y_{q}} & :=\{i=1,2, \ldots, m ; j=1,2, \ldots,\lceil\tau i\rceil-\lfloor(1-\lambda) i\rfloor\} .
\end{aligned}
$$

Let \boldsymbol{B} be a matrix whose rows consist of coefficients of $g_{[i, j], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ and $g_{[i, j], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ with indices in \mathcal{I}_{x} and $\mathcal{I}_{y, q}$ respectively. If the shift-polynomials are ordered as

$$
g_{[i, j], \lambda} \prec g_{[i, j], \lambda}^{\prime},
$$

$$
\begin{aligned}
& g_{[i, j], \lambda} \prec g_{\left[i^{\prime}, j^{\prime}\right], \lambda}, g_{[i, j], \lambda}^{\prime} \prec g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime} \text { for } i<i^{\prime}, \\
& g_{[i, j], \lambda} \prec g_{\left[i, j^{\prime}\right], \lambda}, g_{[i, j], \lambda}^{\prime} \prec g_{\left[i, j^{\prime}\right], \lambda}^{\prime} \text { for } j<j^{\prime}
\end{aligned}
$$

and $N^{-1}\left(\bmod e^{m}\right)$ is multiplied appropriately, then the matrix becomes triangular with diagonals

- $X_{p}^{i+j} Y_{p}^{\lceil\lambda i\rceil} e^{m-i}$ for $g_{[i, j], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ with i such that $i=0$ and $\lceil\lambda i\rceil-\lceil\lambda(i-1)\rceil=$ 1,
- $X_{q}^{i+j} Y_{q}^{\lfloor(1-\lambda) i\rfloor} e^{m-i}$ for $g_{[i, j], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ with i such that $i \neq 0$ and $\lceil\lambda i\rceil-\lceil\lambda(i-$ 1) $\rceil=0$,
- $X_{q}^{i} Y_{q}^{\lfloor(1-\lambda) i\rfloor+j} e^{m-i}$ for $g_{[i, j], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$.

A proof of the lemma is the most technical part of this paper. We prove it in Section 3.4.
We compute the resulting condition of Theorem 2. The dimension n and the determinant of the lattice $\operatorname{det}(\boldsymbol{B})=X^{s_{X}} Y_{p}^{s_{Y_{p}}} Y_{q}^{s_{Y_{q}}} e^{s_{e}}$ can be computed as:

$$
\begin{aligned}
n & =\sum_{(i, j) \in \mathcal{I}_{x}} 1+\sum_{(i, j) \in \mathcal{I}_{y_{q}}} 1=\frac{\lambda+\tau}{2} m^{2}+o\left(m^{2}\right), \\
s_{X} & =\sum_{(i, j) \in \mathcal{I}_{x}}(i+j)+\sum_{(i, j) \in \mathcal{I}_{y_{q}}} i=\frac{\lambda+\tau}{3} m^{3}+o\left(m^{3}\right), \\
s_{Y_{p}} & =\sum_{(i, j) \in \mathcal{I}_{x}}\lceil\lambda i\rceil=\frac{\lambda^{2}}{6} m^{3}+o\left(m^{3}\right), \\
s_{Y_{q}} & =\sum_{(i, j) \in \mathcal{I}_{x}}\lfloor(1-\lambda) i\rfloor+\sum_{(i, j) \in \mathcal{I}_{y_{q}}}(\lfloor(1-\lambda) i\rfloor+j)=\frac{\tau^{2}}{6} m^{3}+o\left(m^{3}\right), \\
s_{e} & =\sum_{(i, j) \in \mathcal{I}_{x}}(m-i)+\sum_{(i, j) \in \mathcal{I}_{y_{q}}}(m-i)=\frac{1+\lambda+\tau}{6} m^{3}+o\left(m^{3}\right) .
\end{aligned}
$$

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy HowgraveGraham's lemma if $X^{s_{X}} Y_{p}^{s_{Y_{p}}} Y_{q}^{s_{Y_{q}}} e^{s_{e}}<e^{n m}$, i.e.,

$$
(\alpha+\beta+\delta-1) \frac{\lambda+\tau}{3}+\beta \frac{\lambda^{2}}{6}+(1-\beta) \frac{\tau^{2}}{6}-\alpha \frac{-1+2 \lambda+2 \tau}{6}<0
$$

by omitting low order terms of m. To minimize the left hand side of the inequality, we set the parameters

$$
\lambda=\frac{1-\beta-\delta}{\beta} \text { and } \tau=\frac{1-\beta-\delta}{1-\beta}
$$

then the condition becomes

$$
\delta<1-\beta-\sqrt{\alpha \beta(1-\beta)}
$$

Figure 2: Comparison between our attack (Theorem 3) and the attack of Lu et al. (Theorem 4) [LZPL15].
as required. To satisfy the restrictions $0<\lambda \leq 1$ and $1-\lambda<\tau \leq 1, \beta(1-\beta) \leq \alpha \leq \beta /(1-\beta)$ should hold.

As opposed to the attack of Theorem 1, that of Theorem 2 is applicable to a balanced RSA, i.e., $\beta=1 / 2$, for $\alpha \leq 1$. For a balanced RSA, we substitute $\beta=1 / 2$ and the attack becomes as follows.

Theorem 3. Let $N=p q$ be an RSA modulus where the prime factors p and q are the same bit-size. Let $e=N^{\alpha}$ and $d_{q}<N^{\delta}$ be a public/CRT exponent respectively such that ed $d_{q}=1(\bmod (q-1))$. Given public elements N and e, if

$$
\delta<\frac{1-\sqrt{\alpha}}{2} \text { for } \alpha \geq \frac{1}{4}
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

By construction, the attack always outperforms that under Bleichenbacher-May's lattice construction. We also compare our attack with that of Lu et al. [May02] (Theorem 9 of [LZPL15]) which follows May's modulo q approach.

Theorem 4 ([LZPL15]). Let $N=p q$ be an RSA modulus where the prime factors p and q are the same bit-size. Let $e=N^{\alpha}$ and $d_{q}<N^{\delta}$ be a public/CRT exponent respectively such that ed ${ }_{q}=1$ $(\bmod (q-1))$. Given public elements N and e, if

$$
\delta<\frac{3-4 \alpha}{8}
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

Figure 2 compares our attack (Theorem 3) and that of Lu et al. (Theorem 4). Our attack is better for all $1 / 4<\alpha<1$.

3.4 Proof of Lemma 3

In this section, we show a proof of Lemma 3 that is the most technical part of this paper. Before the detailed proof, we explain the spirit of our triangular matrix. The polynomials which we use contains four variables $x_{p}, x_{q}, y_{p}, y_{q}$. Furthermore, there are two algebraic relations: $x_{q}=x_{p}+1$ and $y_{p} y_{q}=N$. By using the latter relation, i.e., $y_{p} y_{q}=N$, we transform all monomials as they do not have both y_{p} and y_{q} simultaneously where the same operation was also done in previous works [BM06, DN00]. Moreover, we use an additional trick. By using the former relation, i.e., $x_{q}=x_{p}+1$, we transform all monomials as they do not have both x_{p} and x_{q} simultaneously. More concretely, the variable x_{p} appears only in monomials where powers of y_{p} are non-negative whereas the variable x_{q} appears only in monomials where powers of y_{q} are positive. The simple operation is the key technique of this paper.

Then we show the proof of Lemma 3.
Proof of Lemma 3. Since all $g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ for $i=0$ have only one monomial $x_{p}^{j} e^{m}$, these polynomials generate triangular basis matrix with diagonals $X_{p}^{j} e^{m}$. Then remaining proof is inductive; we show that the basis matrix is still triangular with other polynomials.

At first, we assume that polynomials $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ such that $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) \prec$ $g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ generate a triangular matrix as stated in Lemma 3. Then, we show that a matrix is still triangular with a new polynomial $g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ whose diagonal is $x_{p}^{i+j} y_{p}^{[\lambda i]} e^{m-i}$. By definition,

$$
\begin{aligned}
g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) & =x_{p}^{j} f_{p}^{[\lambda i\rceil}\left(x_{p}, y_{p}\right) f_{q}^{\lfloor(1-\lambda) i\rfloor}\left(x_{q}, y_{q}\right) e^{m-i} \\
& =x_{p}^{j}\left(N+N x_{p}-x_{p} y_{p}\right)^{\lceil\lambda i\rceil}\left(1-x_{q}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor} e^{m-i} .
\end{aligned}
$$

From the relation $x_{q}=x_{p}+1$ and equivalently $x_{p}=x_{q}-1$, the polynomial becomes

$$
=x_{p}^{j}\left(N x_{q}-x_{p} y_{p}\right)^{[\lambda i\rceil}\left(x_{p}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor} e^{m-i} .
$$

By expanding $\left(N x_{q}-x_{p} y_{p}\right)^{\lceil\lambda i\rceil}$ and $\left(x_{p}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor}$,

$$
\begin{aligned}
& =x_{p}^{j}\left(\sum_{i_{p}=0}^{\lceil\lambda i\rceil}\binom{\lceil\lambda i\rceil}{ i_{p}}\left(-x_{p} y_{p}\right)^{i_{p}} \cdot\left(N x_{q}\right)^{\lceil\lambda i\rceil-i_{p}}\right)\left(\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}}\left(x_{q} y_{q}\right)^{i_{q}} \cdot x_{p}^{\lfloor(1-\lambda) i\rfloor-i_{q}}\right) e^{m-i} \\
& =\sum_{i_{p}=0}^{\lceil\lambda i\rceil} \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}} x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}} y_{p}^{i_{p}} e^{m-i} .
\end{aligned}
$$

From the relation $y_{p} y_{q}=N$, the polynomial becomes

$$
\begin{aligned}
& =\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}}^{\lceil\lambda i\rceil}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}} x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{p}^{i_{p}-i_{q}} e^{m-i} \\
& +\sum_{i_{p}=0}^{\lfloor(1-\lambda) i\rfloor-1} \sum_{i_{q}=i_{p}+1}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil} x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}} e^{m-i} .
\end{aligned}
$$

Notice that there are no monomials that have y_{p} and y_{q} simultaneously. The exponents of y_{p} in the first summation are non-negative whereas the exponents of y_{q} in the second summation are positive. Hence, as we discussed above, we replace all x_{q} in the first summation by $x_{p}+1$ and replace all x_{p} in the second summation by $x_{q}-1$. Then, the polynomial becomes

$$
\begin{aligned}
&= \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}}^{\lceil\lambda i\rceil}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}} x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j}\left(x_{p}+1\right)^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{p}^{i_{p}-i_{q}} e^{m-i} \\
&+\sum_{i_{p}=0}^{\lfloor(1-\lambda) i\rfloor-1} \sum_{i_{q}=i_{p}+1}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil}\left(x_{q}-1\right)^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}} e^{m-i} \\
&= \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}}^{\lceil\lambda i\rceil} \sum_{i^{\prime}=0}^{\lceil\lambda i\rceil-i_{p}+i_{q}}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}}\binom{\lceil\lambda i\rceil-i_{p}+i_{q}}{i^{\prime}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}} x_{p}^{i-i^{\prime}+j} y_{p}^{i_{p}-i_{q}} e^{m-i} \\
&+\sum_{i_{p}=0}^{\lfloor(1-\lambda) i\rfloor-1} \sum_{i_{q}=i_{p}+1}^{\lfloor(1-\lambda) i\rfloor} \sum_{i^{\prime}=0}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j}(-1)^{i_{p}+i^{\prime}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} . \\
&\binom{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j}{i^{\prime}} N^{\lceil\lambda i\rceil} x_{q}^{i-i^{\prime}+j} y_{q}^{i_{q}-i_{p}} e^{m-i} .
\end{aligned}
$$

The polynomial has monomials for variables

- $x_{p}^{i_{p x}} y_{p}^{i_{p y}}$ for $i_{p y}=0,1, \ldots,\lceil\lambda i\rceil ; i_{p x}=i_{p y}+\lfloor(1-\lambda) i\rfloor+j, \ldots, i+j$,
- $x_{q}^{i_{q x}} y_{q}^{i_{q y}}$ for $i_{q y}=1,2, \ldots,\lfloor(1-\lambda) i\rfloor ; i_{q x}=i_{q y}+\lceil\lambda i\rceil, \ldots, i+j$.

Then, we show that these variables except $x_{p}^{i+j} y_{p}^{\lceil\lambda i\rceil}$ already appeared in the diagonals of a basis matrix. The above variables appeared for diagonals of $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ for

$$
\begin{aligned}
i^{\prime} & =0,1, \ldots, i-1 \text { such that }\left\lceil\lambda i^{\prime}\right\rceil-\left\lceil\lambda\left(i^{\prime}-1\right)\right\rceil=1 \\
j^{\prime} & =\lfloor(1-\lambda) i\rfloor-\left\lfloor(1-\lambda) i^{\prime}\right\rfloor+j, \ldots, i+j-i^{\prime}, \text { and } \\
i^{\prime} & =1,2, \ldots, i-1 \text { such that }\left\lceil\lambda i^{\prime}\right\rceil-\left\lceil\lambda\left(i^{\prime}-1\right)\right\rceil=0 \\
j^{\prime} & =\lceil\lambda i\rceil-\left\lceil\lambda i^{\prime}\right\rceil, \ldots, i+j-i^{\prime}
\end{aligned}
$$

Since $i^{\prime}<i$, by our definition of the polynomial order,

$$
g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right) \prec g_{[i, j], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)
$$

holds for all the above i^{\prime} and j^{\prime}. All we have to show is that these polynomials are selected in the lattice basis. For the purpose, we show that the indices

$$
\begin{aligned}
& i^{\prime}=0,1, \ldots, i-1 \\
& j^{\prime}=\min \left\{\lfloor(1-\lambda) i\rfloor-\left\lfloor(1-\lambda) i^{\prime}\right\rfloor+j,\lceil\lambda i\rceil-\left\lceil\lambda i^{\prime}\right\rceil\right\}, \ldots, i+j-i^{\prime}
\end{aligned}
$$

are contained in

$$
i^{\prime}=0,1, \ldots, m ; j^{\prime}=0,1, \ldots, m-i^{\prime}
$$

Since $0<\lambda \leq 1,0 \leq i^{\prime} \leq i$, and $j \geq 0$,

$$
\lfloor(1-\lambda) i\rfloor-\left\lfloor(1-\lambda) i^{\prime}\right\rfloor+j \geq 0 \text { and }\lceil\lambda i\rceil-\left\lceil\lambda i^{\prime}\right\rceil \geq 0
$$

hold. Since $i+j \leq m$ holds,

$$
i+j-i^{\prime} \leq m-i^{\prime}
$$

holds. Then the statement holds. In the same manner, analogous proof is obtained for the other polynomials $g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$. We will show the remaining proof in the full version.

To end this section, we briefly show how to deduce Lemma 2 from Lemma 3. The collection of shift-polynomials $g_{[i, j]}\left(x_{p}, y_{p}\right)$ and $g_{[i, j]}^{\prime \prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ in Lemma 2 are essentially the same as $g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ and $g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ in Lemma 3 for $\lambda=1$. Hence, by setting the parameters (λ, τ) in Lemma 3 as $\left(1, \tau_{q}\right)$, Lemma 3 show that $g_{[i, j]}\left(x_{p}, y_{p}\right)$ and $g_{[i, j]}^{\prime \prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ in Lemma 2 generate a triangular matrix. To complete the proof of Lemma 2, we also use May's result [May02] that showed that polynomials $g_{[i, j]}\left(x_{p}, y_{p}\right)$ and $g_{[i, j]}^{\prime}\left(x_{p}, y_{p}\right)$ generate a triangular matrix. As a result, $g_{[i, j]}\left(x_{p}, y_{p}\right), g_{[i, j]}^{\prime}\left(x_{p}, y_{p}\right)$, and $g_{[i, j]}^{\prime \prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ in Lemma 2 generates a triangular matrix.

3.5 Experimental results

We have implemented the experiment program in Magma 2.10 computer algebra system [BCP97] on a PC with $\operatorname{Intel}(\mathrm{R})$ Core(TM) Duo CPU(3.30GHz, 4.0GB RAM Windows 7$)$. Table 1 lists some theoretical and experimental results on factoring two 1000-bit RSA moduli with varying bit-size of q. In all experiments, we successfully find the factorization of these RSA moduli.

In [BM06], the experimental results are much better than their theoretical analysis. For example, for 440 -bit factor q, with a lattice dimension of 63 , in theory the attack should not work (we can recover the small private key d_{p} up to a size of $N^{-0.083}$), however, in practice, we succeed for d_{p} with bit-size a 0.010 -fraction of N. Since our lattice construction captures the underlying sublattice structure of [BM06]'s desired lattice, we can do better than [BM06]: with a lattice dimension of 66 , experimentally we can reconstruct d_{p} with a size of $N^{0.012}$.

Table 1: For 1000-bit RSA moduli, asymptotic and experimental comparisons of small d_{q} attacks

Bitsize of q	Bleichenbacher-May [BM06]				Our work					
	Asymptotic	Expt.	dim.	L^{3} time		Asymptotic	Expt.	dim.	L^{3} time	
305	0.210	0.160	63	53 min		0.230	0.170	56	15 min	
355		0.140	0.100	63	44 min		0.164	0.100	58	16 min
405		0.075	0.050	63	35 min		0.103	0.055	66	57 min
440	0.033	0.010	63	35 min		0.064	0.012	66	60 min	

Table 2: Asymptotic bounds and lattice dimension for small δ with fixed lattice dimensions.

$\beta=0.45$						
δ	0.010	0.020	0.030	0.040	0.052	
dim.	109	154	340	1055	Asymptotic	
$\beta=0.48$						
δ	0.002	0.005	0.010	0.015	0.020	
dim.	486	686	1491	5443	Asymptotic	

Figure 3: The comparison of the achievable bound depending on the lattice dimension. The left and the right figure is for $\beta=0.35$ and $\beta=0.40$ respectively.

Note that our result of Theorem 1 is an asymptotic improvement. In Table 2, we present numerical values of δ for different values of β and lattice dimension. Moreover, compared with [BM06], our method requires smaller lattice dimensions. For $\beta=0.35$ and $\beta=0.40$, Figure ?? shows a comparison of these two approaches in the terms of the bit-size of small secret exponent d_{p} that can be attacked.

4 Small d_{p} and d_{q} Attack

In this section, we propose an attack when both d_{p} and d_{q} are small. The attack improves JochemszMay's attack [JM07] by utilizing our lattice construction technique. Furthermore, we also improved our proposed attack in [TLP17] by exploiting better sublattices.

4.1 Our Attack

Recall the CRT-RSA key generation;

$$
e d_{q}=1+k_{q}(q-1) \quad \text { and } \quad e d_{p}=1+k_{p}(p-1)
$$

with some integers k_{q} and k_{p}. Hence, if we can solve the following simultaneous modular equations, RSA modulus N can be factorized:

$$
\begin{aligned}
& f_{q, 1}\left(x_{q, 1}, y_{q}\right)=1+x_{q, 1}\left(y_{q}-1\right)=0 \quad \bmod e, \\
& f_{p, 2}\left(x_{p, 2}, y_{p}\right)=1+x_{p, 2}\left(y_{p}-1\right)=0 \quad \bmod e,
\end{aligned}
$$

where the root is $\left(x_{q, 1}, x_{p, 2}, y_{q}, y_{p}\right)=\left(k_{q}, k_{p}, q, p\right)$.
In addition, by multiplying p and q to the key generation equations respectively, the following representations can be obtained:

$$
\begin{aligned}
& e d_{q} p=p+k_{q}(N-p)=N+\left(k_{q}-1\right)(N-p), \\
& e d_{p} q=q+k_{p}(N-q)=N+\left(k_{p}-1\right)(N-q) .
\end{aligned}
$$

Then, we can also use the following modular equations:

$$
\begin{aligned}
f_{p, 1}\left(x_{p, 1}, y_{p}\right)=N+x_{p, 1}\left(N-y_{p}\right)=0 & \bmod e, \\
f_{q, 2}\left(x_{q, 2}, y_{q}\right)=N+x_{q, 2}\left(N-y_{q}\right)=0 & \bmod e,
\end{aligned}
$$

where the root is $\left(x_{p, 1}, x_{q, 2}, y_{p}, y_{q}\right)=\left(k_{q}-1, k_{p}-1, p, q\right)$.
To summarize the above discussion, we want to solve the following simultaneous modular equations:

$$
\begin{aligned}
& f_{p, 1}\left(x_{p, 1}, y_{p}\right)=N+x_{p, 1}\left(N-y_{p}\right)=0 \quad \bmod e, \\
& f_{q, 1}\left(x_{q, 1}, y_{q}\right)=1+x_{q, 1}\left(y_{q}-1\right)=0 \quad \bmod e, \\
& f_{p, 2}\left(x_{p, 2}, y_{p}\right)=1+x_{p, 2}\left(y_{p}-1\right)=0 \quad \bmod e, \\
& f_{q, 2}\left(x_{q, 2}, y_{q}\right)=N+x_{q, 2}\left(N-y_{q}\right)=0 \quad \bmod e,
\end{aligned}
$$

where the root is $\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}, y_{p}, y_{q}\right)=\left(k_{q}-1, k_{q}, k_{p}, k_{p}-1, p, q\right)$. Let $e=N^{\alpha}, d_{p}<N^{\delta}$, and $d_{q}<N^{\delta}$ for a balanced RSA, i.e, $q<p<2 q$. The absolute values of $x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}$ are bounded above by $X=N^{\alpha+\delta-1 / 2}$ within constant factors whereas the absolute values of y_{p} and y_{q} are bounded above by $Y=N^{1 / 2}$ within constant factors.

Unfortunately, an approach to solve the above four equations simultaneously does not offer an improvement. The approach gives us only the same bound as Theorem 3. Hence, we use an additional algebraic relation. From the CRT-RSA key generation,

$$
\begin{aligned}
& e d_{q}=1+k_{q}(q-1) \text { and } e d_{p}=1+k_{p}(p-1), \\
\Leftrightarrow & k_{q}-1=k_{q} q \quad(\bmod e) \text { and } k_{p}-1=k_{p} p \quad(\bmod e) .
\end{aligned}
$$

By multiplying these two equations, we obtain

$$
\left(k_{q}-1\right)\left(k_{p}-1\right)=k_{q} k_{p} N \quad(\bmod e) .
$$

Then the following new equation can be obtained:

$$
h\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}\right)=(N-1) x_{p, 1} x_{p, 2}+x_{p, 1}+N x_{p, 2}=0 \quad(\bmod e)
$$

$$
=(N-1) x_{q, 1} x_{q, 2}+N x_{q, 1}+x_{q, 2}=0 \quad(\bmod e) .
$$

The polynomial also has two representations as the previous polynomials. Notice that the same equation as $h\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}\right)$ was already used by Galbraith et al. [GHM05]. We make use of these equations and obtain the following result.

Theorem 5. Let $N=p q$ be an RSA modulus where p and q are the same bit-size. Let $e=N^{\alpha}$ and $d_{p}, d_{q}<N^{\delta}$ be a public/CRT exponent respectively such that ed $d_{q}=1(\bmod (q-1))$ and $e d_{p}=1$ $(\bmod (p-1))$. Given public elements N and e, if

$$
\delta<\frac{1}{2}-\sqrt{\frac{\alpha}{7}} \text { for } \alpha \geq \frac{7}{16},
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

For the full size e, the attack works for $\delta<1 / 2-1 / \sqrt{6}=0.091 \cdots$ which is better than Jochemsz-May's bound [JM07], i.e., $\delta<0.073$. Our attack is better than all existing attacks.
Proof of Theorem 5. To solve the above modular equations, we use the following shift-polynomials:

$$
\begin{aligned}
g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]}\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}, y_{p}, y_{q}\right):= & x_{p, 1}^{j_{1}} x_{p, 2}^{j_{2}} y_{q}^{\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor} f_{p, 1}^{i_{1}}\left(x_{p, 1}, y_{p}\right) f_{p, 2}^{i_{2}}\left(x_{p, 2}, y_{p}\right) . \\
& h^{u}\left(x_{p, 1}, x_{p, 2}, x_{q, 1}, x_{q, 2}\right) e^{m-\left(i_{1}+i_{2}+u\right)}, \\
g_{\left[i_{1}, i_{2}, j_{1}\right], p}^{\prime}\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}, y_{p}, y_{q}\right):= & y_{q}^{\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor-j_{1}} f_{p, 1}^{i_{1}}\left(x_{p, 1}, y_{p}\right) f_{p, 2}^{i_{2}}\left(x_{p, 2}, y_{p}\right) e^{m-\left(i_{1}+i_{2}+u\right)}, \\
g_{\left[i_{1}, i_{2}, j_{2}\right], q}^{\prime}\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}, y_{p}, y_{q}\right):= & y_{q}^{\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor+j_{2}} f_{p, 1}^{i_{1}}\left(x_{p, 1}, y_{p}\right) f_{p, 2}^{i_{2}}\left(x_{p, 2}, y_{p}\right) e^{m-\left(i_{1}+i_{2}+u\right)},
\end{aligned}
$$

with some positive integer m. For non-negative integers $i_{1}, i_{2}, j_{1}, i_{2}$, and u, all the shiftpolynomials share the common root as $f_{p, 1}\left(x_{p, 1}, y_{p}\right), f_{p, 2}\left(x_{p, 2}, y_{p}\right), f_{q, 1}\left(x_{q, 1}, y_{q}\right), f_{q, 2}\left(x_{q, 2}, y_{q}\right)$, and $h\left(x_{p, 1}, x_{q, 1}, x_{p, 2}, x_{q, 2}\right)$ modulo e^{m}. Then we can construct triangular basis matrices as follows.

Lemma 4. Let all the polynomials be defined as above. Let τ be a constant such that $1 / 2 \leq \tau \leq 1$.

Define sets of indices as

$$
\left.\begin{array}{l}
\left\{\begin{array}{c}
i_{1}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; i_{2}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; j_{1}=0 ; j_{2}=0 ; \\
u=0,1, \ldots, \min \left\{\left\lfloor\frac{m}{2}\right\rfloor-i_{1},\left\lfloor\frac{m}{2}\right\rfloor-i_{2}\right\}, \text { and } \\
i_{1}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor-1 ; i_{2}=1,2, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; j_{1}=1 ; j_{2}=0 ; \\
u=0,1, \ldots, \min \left\{\left\lfloor\frac{m}{2}\right\rfloor-i_{1}-1,\left\lfloor\frac{m}{2}\right\rfloor-i_{2}\right\}, \text { and } \\
\mathcal{I}_{x}=
\end{array}\right\}, \\
i_{1}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; i_{2}=0 ; j_{1}=1,2, \ldots,\left\lfloor\frac{m}{2}\right\rfloor-i_{1} ; j_{2}=0 ; \\
u=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor-i_{1}-j_{1}, \quad \text { and } \\
i_{1}=0 ; i_{2}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; j_{1}=0 ; j_{2}=1,2, \ldots,\left\lfloor\frac{m}{2}\right\rfloor-i_{2} ; \\
u=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor-i_{2}-j_{2},
\end{array}\right\}, ~ \begin{gathered}
\mathcal{I}_{y, p}=\left\{\begin{array}{c}
i_{1}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; i_{2}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; \\
j_{1}=1,2, \ldots,\left\lfloor\tau\left(i_{1}+i_{2}\right)\right\rfloor-\left\lceil\left(i_{1}+i_{2}\right) / 2\right\rceil,
\end{array}\right\}, \\
\mathcal{I}_{y, q}=\left\{\begin{array}{c}
i_{1}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; i_{2}=0,1, \ldots,\left\lfloor\frac{m}{2}\right\rfloor ; \\
j_{2}=1,2, \ldots,\left\lfloor\tau\left(i_{1}+i_{2}\right)\right\rfloor-\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor,
\end{array}\right\},
\end{gathered}
$$

Let \boldsymbol{B} be a matrix whose rows consist of coefficients of $g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]}\left(x_{p, 1} X_{p, 1}, x_{q, 1} X_{q, 1}, x_{p, 2} X_{p, 2}, x_{q, 2} X_{q, 2}, y_{p} Y_{p}, y_{q} Y_{q}\right)$,
$g_{\left[i_{1}, i_{2}, j_{1}\right], p}^{\prime}\left(x_{p, 1} X_{p, 1}, x_{q, 1} X_{q, 1}, x_{p, 2} X_{p, 2}, x_{q, 2} X_{q, 2}, y_{p} Y_{p}, y_{q} Y_{q}\right)$, and $g_{\left[i_{1}, i_{2}, j_{2}\right], q}^{\prime}\left(x_{p, 1} X_{p, 1}, x_{q, 1} X_{q, 1}, x_{p, 2} X_{p, 2}, x_{q, 2} X_{q, 2}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ with indices in $\mathcal{I}_{x}, \mathcal{I}_{y, p}$, and $\mathcal{I}_{y, q}$, respectively. If the shift-polynomials are ordered as

$$
\begin{aligned}
& g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]} \prec g_{\left[i_{1}, i_{2}, j_{1}\right], p}^{\prime}, g_{\left[i_{1}, i_{2}, j_{2}\right], q}^{\prime}, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{1}^{\prime}, j_{2}^{\prime}, u^{\prime}\right]} \prec g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]} \text { for } i_{1}^{\prime}+i_{2}^{\prime}<i_{1}+i_{2}, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{1}^{\prime}, j_{2}^{\prime}, u^{\prime}\right]} \prec g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]} \text { for } i_{1}^{\prime}+i_{2}^{\prime}=i_{1}+i_{2}, u^{\prime}<u, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{1}^{\prime}, 0, u\right]}^{\prime} \prec g_{\left[i_{1}, i_{2}, j_{1}, 0, u\right]} \text { for } i_{1}^{\prime}+i_{2}^{\prime}=i_{1}+i_{2}, j_{1}^{\prime}<j_{1}, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, 0, j_{2}^{\prime}, u\right]} \prec g_{\left[i_{1}, i_{2}, 0, j_{2}, u\right]} \text { for } i_{1}^{\prime}+i_{2}^{\prime}=i_{1}+i_{2}, j_{2}^{\prime}<j_{2}, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{1}^{\prime}\right]}^{\prime}, g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{2}^{\prime}\right], q}^{\prime} \prec g_{\left[i_{1}, i_{2}, j_{1}\right], p}^{\prime}, g_{\left[i_{1}, i_{2}, j_{2}\right], q}^{\prime} \text { for } i_{1}^{\prime}+i_{2}^{\prime}<i_{1}+i_{2}, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{1}^{\prime}\right]} \prec g_{\left[i_{1}, i_{2}, j_{1}\right], p} \text { for } i_{1}^{\prime}+i_{2}^{\prime}=i_{1}+i_{2}, j_{1}^{\prime}<j_{1}, \\
& g_{\left[i_{1}^{\prime}, i_{2}^{\prime}, j_{2}^{\prime}\right], q}^{\prime} \prec g_{\left[i_{1}, i_{2}, j_{2}\right], q}^{\prime} \text { for } i_{1}^{\prime}+i_{2}^{\prime}=i_{1}+i_{2}, j_{2}^{\prime}<j_{2},
\end{aligned}
$$

and $N^{-1}\left(\bmod e^{m}\right)$ is multiplied appropriately, then the matrix becomes triangular with diagonals

- $X_{p, 1}^{i_{1}+j_{1}+u} X_{p, 2}^{i_{2}+j_{2}+u} Y_{p}^{\left\lceil\left(i_{1}+i_{2}\right) / 2\right\rceil} e^{m-\left(i_{1}+i_{2}+u\right)}$ for $g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]}$ if $i_{1}+i_{2}$ is odd,
- $X_{q, 1}^{i_{1}+j_{1}+u} X_{q, 2}^{i_{2}+j_{2}+u} Y_{q}^{\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor} e^{m-\left(i_{1}+i_{2}+u\right)}$ for $g_{\left[i_{1}, i_{2}, j_{1}, j_{2}, u\right]}$ if $i_{1}+i_{2}$ is even,
- $X_{p, 1}^{i_{1}} X_{p, 2}^{i_{2}} Y_{p}^{\left\lceil\left(i_{1}+i_{2}\right) / 2\right\rceil+j_{1}} e^{m-\left(i_{1}+i_{2}\right)}$ for $g_{\left[i_{1}, i_{2}, j_{1}\right], p}^{\prime}$,
- $X_{q, 1}^{i_{1}} X_{q, 2}^{i_{2}} Y_{q}^{\left\lfloor\left(i_{1}+i_{2}\right) / 2\right\rfloor+j_{2}} e^{m-\left(i_{1}+i_{2}\right)}$ for $g_{\left[i_{1}, i_{2}, j_{2}\right], q}^{\prime}$.

We do not prove the lemma, however, the proof can be obtained in the same manner as in Section 3.4. The polynomials which we use contain six variables $x_{p, 1}, x_{p, 2}, x_{q, 1}, x_{q, 2}, y_{p}, y_{q}$. Furthermore, there are three algebraic relations, i.e., $x_{q, 1}=x_{p, 1}+1, x_{p, 2}=x_{q, 2}+1$, and $y_{p} y_{q}=N$. By using the last relation, i.e., $y_{p} y_{q}=N$, we transform all monomials as they do not have both y_{p} and y_{q} simultaneously as the proof of Lemma 3. In addition, by using the other relations, i.e., $x_{q, 1}=x_{p, 1}+1$ and $x_{p, 2}=x_{q, 2}+1$, we transform all monomials as they do not have both $x_{p, 1}$ and $x_{q, 1}$ simultaneously or both $x_{p, 2}$ and $x_{q, 2}$ simultaneously. More concretely, the variables $x_{p, 1}$ and $x_{p, 2}$ appear only in monomials whose exponents of y_{p} are positive whereas the variables $x_{q, 1}$ and $x_{q, 2}$ appear only in monomials whose exponents of y_{q} are non-negative.

We compute the resulting condition of Theorem 5. The dimension n and the determinant of the lattice $\operatorname{det}(\boldsymbol{B})=X^{s_{X}} Y^{s_{Y}} e^{s_{e}}$ can be computed as:

$$
\begin{aligned}
& n=\sum_{\left(i_{1}, i_{2}, j_{1}, j_{2}, u\right) \in \mathcal{I}_{x}^{\prime}} 1+\sum_{\left(i_{1}, i_{2}, j_{1}\right) \in \mathcal{I}_{y, p}^{\prime}} 1+\sum_{\left(i_{1}, i_{2}, j_{2}\right) \in \mathcal{I}_{y, q}^{\prime}} 1=\frac{\tau}{4} m^{3}+o\left(m^{3}\right) . \\
& s_{X}=\sum_{\left(i_{1}, i_{2}, j_{1}, j_{2}, u\right) \in \mathcal{I}_{x}^{\prime}}\left(i_{1}+i_{2}+j_{1}+j_{2}+2 u\right)+\sum_{\left(i_{1}, i_{2}, j_{1}\right) \in \mathcal{I}_{y, p}^{\prime}}\left(i_{1}+i_{2}\right)+\sum_{\left(i_{1}, i_{2}, j_{2}\right) \in \mathcal{I}_{y, q}^{\prime}}\left(i_{1}+i_{2}\right) \\
& =\frac{7 \tau}{48} m^{4}+o\left(m^{4}\right), \\
& s_{Y}=\sum_{\substack{\left(i_{1}, i_{2}, j_{1}, j_{2}, u\right) \in \mathcal{I}_{x}^{\prime} \\
\text { s.t. } i_{1}+i_{2} \text { is odd }}}\left\lceil\frac{i_{1}+i_{2}}{2}\right\rceil+\sum_{\substack{\left(i_{1}, i_{2}, j_{1}, j_{2}, u\right) \in \mathcal{U}_{x}^{\prime} \\
\text { s.t. } i_{1}+i_{2} \text { is even }}}\left\lfloor\frac{i_{1}+i_{2}}{2}\right\rfloor \\
& +\sum_{\left(i_{1}, i_{2}, j_{1}\right) \in \mathcal{I}_{y, p}^{\prime}}\left(\left\lceil\frac{i_{1}+i_{2}}{2}\right\rceil+j_{1}\right)+\sum_{\left(i_{1}, i_{2}, j_{2}\right) \in \mathcal{I}_{y, q}^{\prime}}\left(\left\lfloor\frac{i_{1}+i_{2}}{2}\right\rfloor+j_{2}\right) \\
& =\frac{7 \tau^{2}}{96} m^{4}+o\left(m^{4}\right), \\
& s_{e}=\sum_{\left(i_{1}, i_{2}, j_{1}, j_{2}, u\right) \in \mathcal{I}_{x}^{\prime}}\left(m-\left(i_{1}+i_{2}+u\right)\right)+\sum_{\left(i_{1}, i_{2}, j_{1}\right) \in \mathcal{I}_{y, p}^{\prime}}\left(m-\left(i_{1}+i_{2}\right)\right)+\sum_{\left(i_{1}, i_{2}, j_{2}\right) \in \mathcal{I}_{y, q}^{\prime}}\left(m-\left(i_{1}+i_{2}\right)\right) \\
& =\frac{1+5 \tau}{48} m^{4}+o\left(m^{4}\right) .
\end{aligned}
$$

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy HowgraveGraham's lemma if $X^{s_{X}} Y^{s_{Y}} e^{s_{e}}<e^{n m}$, i.e.,

$$
\left(\alpha+\delta-\frac{1}{2}\right) \cdot \frac{7 \tau}{48}+\frac{1}{2} \cdot \frac{7 \tau^{2}}{96}+\alpha \cdot \frac{1+5 \tau}{48}<\alpha \cdot \frac{\tau}{4}
$$

by omitting low order terms of m. To minimize the left hand side of the inequality, we set the parameters $\tau=1-2 \delta$, then the condition becomes

$$
\delta<\frac{1}{2}-\sqrt{\frac{\alpha}{7}}
$$

as required. To satisfy the restriction $\tau \geq 1 / 2, \delta \leq 1 / 4$ and equivalently $\alpha \geq 7 / 16$ should hold.

Table 3: Experimental results of small CRT-exponents attack

N	Herrmann-May's result [HM10]		Ours in [TLP17]			Ours		
	d_{p}, d_{q}	dim.	d_{p}, d_{q}	dim.	LLL time (in sec.)	d_{p}, d_{q}	dim.	LLL time (in sec.)
1000 bits	11 bits	30	33 bits	95	25	33 bits	31	1
1000 bits	22 bits	93	50 bits	252	5194	50 bits	84	230
1000 bits	29 bits	154	-	-	-	62 bits	179	34577
2000 bits	21 bits	30	66 bits	95	81	66 bits	31	2
2000 bits	35 bits	60	100 bits	252	13393	100 bits	84	741
2000 bits	47 bits	105	-	-	-	129 bits	177	123646
5000 bits	48 bits	30	176 bits	95	573	176 bits	31	12
5000 bits	89 bits	60	261 bits	252	71249	261 bits	84	4920
5000 bits	113 bits	93	-	-	-	316 bits	177	559007
10000 bits	96 bits	30	351 bits	95	2460	351 bits	31	69
10000 bits	179 bits	60	530 bits	252	306604	530 bits	84	23559

4.2 Experimental results

We compare the practical behaviors between our previous attack in [TLP17] and an improved attack proposed in this version. Note that the improved lattice construction captures a sublattice of our previous one [TLP17], hence the experimental results do not change for $m=4,6$. However since the new sets adopt lattices with much smaller dimension, we greatly reduce the running time of LLL algorithm.

Moreover, for $m=8$ we can reduce the dimension from about 500 of [TLP17] to 180 which is acceptable for practical implementation, it means that we can further improve the experimental results of our previous attack. We implemented the experiment programs of both previous attack [TLP17] and our improved one by Sage 7.4 and L^{2} reduction algorithm from Nguyen and Stehlé [NS09]. The calculations were performed on Intel Xeon E5-2637 processor running at 3.5 GHz . By means of a comparison among the work of Herrmann-May's result [HM10], our previous attack [?], and the improved one, we list the experimental results with varying bitsize of RSA moduli under small CRT-exponents in Table 3. In all experiments, we successfully find the factorization of these RSA moduli. As it is shown, the experimental results of small CRT-exponents attack can be further improved.

5 Attacks on the Variants

In this section, we study small CRT-exponent attacks on the RSA variants, i.e., the Multi-Prime RSA, Takagi's RSA, and the RSA with multiple exponent pairs. We extend our attack of Theorem 2 to the variants.

5.1 Multi-Prime RSA

In this section, we extends the small CRT-exponent attack for the Multi-Prime RSA as follows.

Theorem 6. Let $N=\prod_{i=1}^{r} p_{i}$ be an RSA modulus where $r \geq 2$ and all the prime factors p_{1}, \ldots, p_{r} are the same bit-size. Let $e=N^{\alpha}$ and $d_{p_{i}}<N^{\delta_{i}}$ be a public/CRT exponent respectively such that $e d_{p_{i}}=1\left(\bmod \left(p_{i}-1\right)\right)$ for all $i=1, \ldots, r$. Given public elements N and e, if

$$
\min _{i \in\{1, \ldots, r\}} \delta_{i}<\frac{1-\sqrt{(r-1) \alpha}}{r} \text { for } \alpha>\frac{r-1}{r^{2}},
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense that Theorem 6 becomes the same as Theorem 3 for $r=2$.

Proof of Theorem 6 Recall the CRT-RSA key generation;

$$
e d_{p_{i}}=1+k_{p_{i}}\left(p_{i}-1\right)
$$

with some integer $k_{p_{i}}$. By multiplying an integer N / p_{i},

$$
e d_{p_{i}} N / p_{i}=N / p_{i}+k_{p_{i}}\left(N-N / p_{i}\right)=\left(k_{p_{i}}-1\right)\left(N-N / p_{i}\right)+N .
$$

Then we solve the following modular equations;

$$
\begin{aligned}
f_{N / p_{i}}\left(x_{N / p_{i}}, y_{N / p_{i}}\right) & :=N+x_{N / p_{i}}\left(N-y_{N / p_{i}}\right)=0 \quad(\bmod e), \\
f_{p_{i}}\left(x_{p_{i}}, y_{p_{i}}\right) & :=1+x_{p_{i}}\left(y_{p_{i}}-1\right)=0 \quad(\bmod e),
\end{aligned}
$$

whose root is $\left(x_{N / p_{i}}, x_{p_{i}}, y_{N / p_{i}}, y_{p_{i}}\right)=\left(k_{p_{i}}-1, k_{p_{i}}, N / p_{i}, p_{i}\right)$. The absolute values of the root are bounded above by $X:=N^{\alpha+\delta-1 / r}$ for $x_{N / p_{i}}$ and $x_{p_{i}}, Y_{N / p_{i}}:=N^{(r-1) / r}, Y_{p_{i}}:=N^{1 / r}$ for $y_{N / p_{i}}, y_{p_{i}}$ respectively. We construct the same matrix as the proof of Theorem 2 and the modular equation can be solved when

$$
\left(\alpha+\delta-\frac{1}{r}\right) \frac{\lambda+\tau}{3}+\frac{r-1}{r} \cdot \frac{\lambda^{2}}{6}+\frac{1}{r} \cdot \frac{\tau^{2}}{6}-\alpha \frac{-1+2 \lambda+2 \tau}{6}<0 .
$$

We set the parameters $\lambda=\frac{1-r \delta}{r-1}, \tau=1-r \delta$ and the condition becomes $\delta_{i}<\frac{1-\sqrt{(r-1) \alpha}}{r}$ as required. To satisfy the restrictions of parameters, $\alpha>\frac{r-1}{r^{2}}$ should hold.

We also extend May's modulo p_{i} attack [May02] for the Multi-Prime RSA as follows.
Theorem 7 (Adapted from [LZPL15]). Let $N=\prod_{i=1}^{r} p_{i}$ be an RSA modulus where $r \geq 2$ and all the prime factors p_{1}, \ldots, p_{r} are the same bit-size. Let $e=N^{\alpha}$ and $d_{p_{i}}<N^{\delta_{i}}$ be a public/CRT exponent respectively such that $e d_{p_{i}}=1\left(\bmod \left(p_{i}-1\right)\right)$ for all $i=1, \ldots, r$. Given public elements N and e, if

$$
\min _{i \in\{1, \ldots, r\}} \delta_{i}<\frac{r+1-r^{2} \alpha}{2 r^{2}}
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

Figure 4: Comparisons between our attacks of Theorem 6 and 7 . The left and the right figure is for $r=3$ and 4 , respectively.

We can successfully extend an attack for the Multi-Prime RSA in the sense that Theorem 7 becomes the same as Theorem 4 for $r=2$. We omit the proof since it is almost the same as Theorem 9 of [LZPL15]. The bound of Theorem 6 is always better than or equal to that of Theorem 7. Figure 4 compares the attack condition between Theorem 6 and 7 for $r=3$ and 4 .

5.2 Takagi's RSA

In this section, we extends the small CRT-exponent attack for Takagi's RSA as follows.
Theorem 8. Let $N=p^{r} q$ be an RSA modulus where $r \geq 1$ and the prime factors p and q are the same bit-size. Let $e=N^{\alpha}$ and $d_{p}<N^{\delta_{p}}, d_{q}<N^{\delta_{q}}$ be a public/CRT exponent respectively such that $e d_{p}=1(\bmod (p-1))$ and ed ${ }_{q}=1(\bmod (q-1))$. Given public elements N and e, if

$$
\min \left\{\delta_{p}, \delta_{q}\right\}<\frac{1-\sqrt{r \alpha}}{r+1} \text { for } \alpha>\frac{r}{(r+1)^{2}},
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for Takagi's RSA in the sense that Theorem 8 becomes the same as Theorem 3 for $r=1$. Although Shinohara et al. [SIK11] extended Bleichenbacher-May's attack, our attack is always better.

Proof of Theorem 8 Recall the CRT-RSA key generation;

$$
e d_{p}=1+k_{p}(p-1) \quad \text { and } \quad e d_{q}=1+k_{q}(q-1)
$$

with some integer k_{p} and d_{q}. By multiplying $N / p=p^{r-1} q$ and $N / q=p^{r}$ respectively,

$$
e d_{p} p^{r-1} q=p^{r-1} q+k_{p}\left(N-p^{r-1} q\right)=\left(k_{p}-1\right)\left(N-p^{r-1} q\right)+N \text { and }
$$

$$
e d_{q} p^{r}=p^{r}+k_{q}\left(N-p^{r}\right)=\left(k_{q}-1\right)\left(N-p^{r}\right)+N .
$$

Then we solve the following modular equations for small d_{p};

$$
\begin{aligned}
f_{p^{r-1} q}\left(x_{p^{r-1} q}, y_{p^{r-1} q}\right) & :=N+x_{p^{r-1} q}\left(N-y_{p^{r-1} q}\right)=0 \quad(\bmod e), \\
f_{p}\left(x_{p}, y_{p}\right) & :=1+x_{p}\left(y_{p}-1\right)=0 \quad(\bmod e),
\end{aligned}
$$

whose root is $\left(x_{p^{r-1} q}, x_{p}, y_{p^{r-1} q}, y_{p}\right)=\left(k_{p}-1, k_{p}, p^{r-1} q, p\right)$, and the following modular equations for small d_{q};

$$
\begin{aligned}
f_{p^{r}}\left(x_{p^{r}}, y_{p^{r}}\right) & :=N+x_{p^{r}}\left(N-y_{p^{r}}\right)=0 \quad(\bmod e), \\
f_{q}\left(x_{q}, y_{q}\right) & :=1+x_{q}\left(y_{q}-1\right)=0 \quad(\bmod e),
\end{aligned}
$$

whose root is $\left(x_{p^{r}}, x_{q}, y_{p^{r}}, y_{q}\right)=\left(k_{q}-1, k_{q}, p^{r}, q\right)$. The absolute values of the root are bounded above by $X:=N^{\alpha+\delta-1 /(r+1)}$ for $x_{p^{r-1} q}, x_{p}, x_{p^{r}}$, and $x_{q}, Y_{r}:=N^{r /(r+1)}$ for $y_{p^{r-1} q}$ and $y_{p^{r}}, Y_{1}:=N^{1 /(r+1)}$ for y_{p} and y_{q} respectively. For both small d_{p} and d_{q} attacks, we construct the same matrix as the proof of Theorem 2 and the modular equation can be solved when

$$
\left(\alpha+\delta-\frac{1}{r+1}\right) \frac{\lambda+\tau}{3}+\frac{r}{r+1} \cdot \frac{\lambda^{2}}{6}+\frac{1}{r+1} \cdot \frac{\tau^{2}}{6}-\alpha \frac{-1+2 \lambda+2 \tau}{6}<0 .
$$

We set the parameters $\lambda=\frac{1-(r+1) \delta}{r}, \tau=1-(r+1) \delta$ and the condition becomes $\delta<\frac{1-\sqrt{r \alpha}}{(r+1)}$ as required. To satisfy the restrictions of parameters, $\alpha>\frac{r}{(r+1)^{2}}$ should hold.

We also extend May's modulo a prime factor attack [May02] for Takagi's RSA as follows.
Theorem 9 (Adapted from [May02]). Let $N=p^{r} q$ be an RSA modulus where $r \geq 1$ and the prime factors p and q are the same bit-size. Let $e=N^{\alpha}$ and $d_{p}<N^{\delta_{p}}, d_{q}<N^{\delta_{q}}$ be a public/CRT exponent respectively such that $e d_{p}=1(\bmod (p-1))$ and $e d_{q}=1(\bmod (q-1))$. Given public elements N and e, if

$$
\delta_{p}<\frac{2 r+1-(r+1)^{2} \alpha}{2(r+1)^{2}} \text { or } \delta_{q}<\frac{r+2-(r+1)^{2} \alpha}{2(r+1)^{2}},
$$

then N can be factorized in polynomial time by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Takagi's RSA in the sense that Theorem 9 becomes the same as Theorem 4 for $r=1$. We omit the proof since it is almost the same as Theorem 9 of [LZPL15]. The bound for δ_{q} of Theorem 8 is always better than or equal to that of Theorem 9, however, the bound for δ_{p} of Theorem 9 is better than or equal to that of Theorem 8. Figure 5 compares the attack condition for small d_{p} between Theorem 8 and 9 for $r=2$ and 3 .

Figure 5: Comparisons between our attacks of Theorem 8 and 9. The left and the right figure is for $r=2$ and 3 , respectively.

5.3 RSA with Multiple Exponent Pairs

In this section, we extends the small CRT-exponent attack for the RSA with multiple exponent pairs as follows.

Theorem 10. Let $N=p q$ be an RSA modulus where the prime factors p and q are the same bit-size. Let $e_{\ell}=N^{\alpha}$ and $d_{q, \ell}<N^{\delta}$ for $\ell=1, \ldots, r$ be a public/CRT exponent respectively such that $e_{\ell} d_{q, \ell}=1(\bmod (q-1))$. Given public elements N and e_{1}, \ldots, e_{r}, if

$$
\delta<\frac{1}{2}-\sqrt{\frac{\alpha}{3 r+1}},
$$

then N can be factorized in time polynomial in input length and exponential in r by assuming that polynomials which are derived from LLL reduced bases are algebraically independent.

We can successfully extend the attack for RSA with multiple exponent pairs in the sense that Theorem 10 becomes the same as Theorem 3 for $r=1$. We do not think May's modulo q approach is an appropriate way for the attack scenario, hence, we do not extend it. Peng et al. proposed the attack (Theorem 2 of $\left[\mathrm{PHL}^{+} 15\right]$) which extended Bleichenbacher-May's [BM06] and works when $\delta<(9 r-14) /(24 r+8)$ for an $\alpha=1$. Theorem 10 is always better than the attack of Peng et al. Indeed, even if there are infinitely many exponent pairs r, the attack of Peng et al. works for $\delta<3 / 8$ whereas our attack works for the same bound of δ with only 21 exponent pairs. Figure 6 compares recoverable sizes of d_{q} between our attack and that of Peng et al. [PHL $\left.{ }^{+} 15\right]$.

Proof of Theorem 10 Recall the CRT-RSA key generation for $d_{q, \ell}$;

$$
e_{\ell} d_{q, \ell}=1+k_{\ell}(q-1)
$$

with some integer k_{ℓ}. By multiplying an integer p,

$$
e_{\ell} d_{q, \ell} p=p+k_{\ell}(N-p)=\left(k_{\ell}-1\right)(N-p)+N .
$$

Then we solve the following modular equations;

$$
\begin{aligned}
& f_{p, \ell}\left(x_{p, \ell}, y_{p, \ell}\right):=N+x_{p, \ell}\left(N-y_{p}\right)=0 \quad\left(\bmod e_{\ell}\right), \\
& f_{q, \ell}\left(x_{q, \ell}, y_{q, \ell}\right):=1+x_{q, \ell}\left(y_{q}-1\right)=0 \quad\left(\bmod e_{\ell}\right),
\end{aligned}
$$

whose root is $\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right)=\left(k_{\ell}-1, k_{\ell}, p, q\right)$. The absolute values of the root are bounded above by $X:=N^{\alpha+\delta-1 / 2}$ for $x_{p, \ell}$ and $x_{q, \ell}, Y:=N^{1 / 2}$ for y_{p}, y_{q} respectively within constant factors.

To solve the modular equations, we use the following shift-polynomials

$$
\begin{aligned}
g_{[i, j]}\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right) & :=x_{p, \ell}^{j} f_{p, \ell}^{[i / 2\rceil}\left(x_{p, \ell}, y_{p}\right) f_{q, \ell}^{\lfloor i / 2\rfloor}\left(x_{q, \ell}, y_{q}\right) e_{\ell}^{m-i}, \\
g_{[i, j]}^{[i]}\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right) & :=f_{p, \ell}^{[i / 2\rceil+j}\left(x_{p, \ell}, y_{p}\right) f_{q, \ell}^{\lfloor i / 2\rfloor-j}\left(x_{q, \ell}, y_{q}\right) e_{\ell}^{m-i}, \\
g_{[i, j]}^{\prime \prime}\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right) & :=f_{p, \ell}^{\lceil i / 2\rceil-j}\left(x_{p, \ell}, y_{p}\right) f_{q, \ell}^{\lfloor i / 2\rfloor+j}\left(x_{q, \ell}, y_{q}\right) e_{\ell}^{m-i},
\end{aligned}
$$

with some positive odd integer m. All the shit-polynomials share the common root modulo e^{m}. Let τ be a constant such that $0<\tau \leq 1$. We use the shift-polynomials

$$
\begin{aligned}
& g_{[i, j]}\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right) \text { for } i=0,1, \ldots, m ; j=\min \left\{0,\left\lceil\left(\frac{1}{2 \tau}-1\right) i\right\rceil\right\}, \ldots, m-i, \\
& g_{[i, j]}^{\prime}\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right) \text { for } i=1,3, \ldots, m ; j=1,2, \ldots,\lceil\tau i\rceil-\lceil i / 2\rceil \\
& g_{[i, j]}^{\prime \prime}\left(x_{p, \ell}, x_{q, \ell}, y_{p}, y_{q}\right) \text { for } i=0,2, \ldots, m-1 ; j=1,2, \ldots,\lceil\tau i\rceil-\lfloor i / 2\rfloor,
\end{aligned}
$$

and construct a triangular basis matrix with diagonals

- $X_{p, \ell}^{i_{X}} Y_{p}^{i_{Y}} e^{m-\min \left\{i_{X}, 2 i_{Y}-1\right\}}$ for $i_{X}=1,2, \ldots, m ; i_{Y}=0,1, \ldots, \tau i_{X}+o\left(i_{X}\right)$,
- $X_{q, \ell}^{i_{X}} Y_{q}^{i_{Y}} e^{m-\min \left\{i_{X}, 2 i_{Y}\right\}}$ for $i_{X}=0,1, \ldots, m ; i_{Y}=0,1, \ldots, \tau i_{X}+o\left(i_{X}\right)$.

As Boneh and Durfee's attack was extended to multiple exponent pairs setting [TK14b], we use Minkowski sum based lattice method [Aon13] and combine r lattices for $d_{q, \ell}$ with $\ell=1,2, \ldots, r$. Then the dimension n and the determinant of the combined lattice $X^{s_{X}} Y^{s_{Y}} e^{s_{e}}$ can be computed as follows:

$$
\begin{aligned}
& n=\sum_{i_{X_{1}}=0}^{m} \cdots \sum_{i_{X_{r}}=0}^{m} \sum_{i_{Y}=1}^{\left\lceil\tau\left(i_{X_{1}}+\cdots+i_{X_{r}}\right)\right\rceil} 1+\sum_{i_{X_{1}}=0}^{m} \cdots \sum_{i_{X_{r}}=0}^{m} \sum_{i_{Y}=0}^{\left\lceil\tau\left(i_{X_{1}}+\cdots+i_{X_{r}}\right)\right\rceil} 1=r \tau m^{r+1}+o\left(m^{r+1}\right), \\
& s_{X}=2 \sum_{\ell=1}^{r} \sum_{i_{X_{1}}=0}^{m} \cdots \sum_{i_{X_{r}}=0}^{m} \sum_{i_{Y}=0}^{\left\lceil\tau\left(i_{X_{1}}+\cdots+i_{X_{r}}\right)\right\rceil} i_{X_{\ell}}=\frac{r(3 r+1) \tau}{6} m^{r+2}+o\left(m^{r+2}\right), \\
& s_{Y}=2 \sum_{i_{X_{1}}=0}^{m} \cdots \sum_{i_{X_{k}}=0}^{m} \sum_{i_{Y}=0}^{\left\lceil\tau\left(i_{X_{1}}+\cdots+i_{X_{r}}\right)\right\rceil} i_{Y}=\frac{r(3 r+1) \tau^{2}}{12} m^{r+2}+o\left(m^{r+2}\right),
\end{aligned}
$$

Figure 6: Comparison between our attack (Theorem 10) and the attack of Peng et al. [$\left.\mathrm{PHL}^{+} 15\right]$

$$
\begin{aligned}
s_{e} & =\sum_{\ell=1}^{r} \sum_{i_{X_{1}}=0}^{m} \cdots \sum_{i_{X_{r}}=0}^{m} \sum_{i_{Y}=1}^{\left\lceil\tau\left(i_{X_{1}}+\cdots+i_{X_{r}}\right)\right\rceil}\left(m-\min \left\{i_{X_{\ell}}, 2 i_{Y}-1\right\}\right) \\
& +\sum_{\ell=1}^{r} \sum_{i_{X_{1}}=0}^{m} \cdots \sum_{i_{X_{r}}=0}^{m} \sum_{i_{Y}=0}^{\left\lceil\tau\left(i_{X_{1}}+\cdots+i_{X_{r}}\right)\right\rceil}\left(m-\min \left\{i_{X_{\ell}}, 2 i_{Y}\right\}\right)=\frac{(3 r-1) \tau+1}{6} m^{k+2}+o\left(m^{k+2}\right) .
\end{aligned}
$$

Applying the LLL reduction, the polynomials obtained from the output vectors satisfy HowgraveGraham's lemma if $X^{s_{X}} Y^{s_{Y}} e^{s_{e}}<e^{n m}$, i.e.,

$$
\left(\alpha+\delta-\frac{1}{2}\right) \frac{r(3 r+1) \tau}{6}+\frac{1}{2} \cdot \frac{r(3 r+1) \tau^{2}}{12}+\alpha \frac{-r(3 r+1) \tau+r}{6}<0
$$

by omitting low order terms of m. To minimize the left hand side of the inequality, we set the parameters $\tau=1-2 \delta$, then the condition becomes

$$
\delta<\frac{1}{2}-\sqrt{\frac{\alpha}{3 r+1}}
$$

as required.

6 Concluding Remarks and Open Problem

In this paper, we studied a lattice-based cryptanalysis of the small CRT-exponent RSA. We developed a new lattice construction technique that is specialized to the CRT-RSA key generation and proposed several improved attacks. When a prime factor p is significantly smaller than the other prime factor q with a small d_{q}, we solved an open problem which was claimed in [BM06, May02]; we proposed an attack which works for $p<N^{0.5}$. When both d_{p} and d_{q} are small, we proposed an attack which works for $d_{p}, d_{q}<N^{0.091}$ with a full size e. Using more restrictions on the indices
to remove some unhelpful polynomials, we further improve the bound to $N^{0.122}$. We also proposed attacks on the RSA variants, i.e., the Multi-Prime RSA, Takagi's RSA, and RSA with multiple exponent pairs.

Note that in Section ??, by adding restrictions on the indices we capture a underlying sublattice from Section ??. Although the experimental results based on the sublattice provide better matching between achievable sizes of d_{p}, d_{q} and the theoretically predicted bound than the previous lattice in Section ??, there still exists a gap, which means it seems that there is still room to further improve the bound $N^{0.122}$ by this approach. Specifically, for the 31-dimensional lattices (resp. 84dimensional lattices), the theoretically predicted bound δ should be 0.00 (resp. 0.03), however, we successfully find integer equations when $\delta \leq 0.03$ (resp. $\delta \leq 0.05$). We think that the reason for this gap derives from that to make the matrix triangular, we can not only remove the unhelpful polynomials. The open problem is how to further improve this bound to fill the gap between achievable bound in experiments and the theoretically predicted bound. We hope our novel lattice construction can be fully analyzed and lead to a better result.

References

[Aon13] Yoshinori Aono. Minkowski sum based lattice construction for multivariate simultaneous coppersmith's technique and applications to RSA. In Colin Boyd and Leonie Simpson, editors, Information Security and Privacy - 18th Australasian Conference, ACISP 2013, volume 7959 of Lecture Notes in Computer Science, pages 88-103. Springer, 2013.
[BCP97] Wieb Bosma, John J. Cannon, and Catherine Playoust. The magma algebra system I: the user language. J. Symb. Comput., 24(3/4):235-265, 1997.
[BD00] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less than $N^{0.292}$. IEEE Trans. Information Theory, 46(4):1339-1349, 2000.
[BM03] Johannes Blömer and Alexander May. New partial key exposure attacks on RSA. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, volume 2729 of Lecture Notes in Computer Science, pages 27-43. Springer, 2003.
[BM06] Daniel Bleichenbacher and Alexander May. New attacks on RSA with small secret crt-exponents. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 1-13. Springer, 2006.
[BVZ12] Aurélie Bauer, Damien Vergnaud, and Jean-Christophe Zapalowicz. Inferring sequences produced by nonlinear pseudorandom number generators using coppersmith's methods. In Marc Fischlin, Johannes A. Buchmann, and Mark Manulis, editors, Public

Key Cryptography - PKC 2012-15th International Conference on Practice and Theory in Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 609-626. Springer, 2012.
[Cop96a] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known. In Ueli M. Maurer, editor, Advances in Cryptology - EUROCRYPT '96, International Conference on the Theory and Application of Cryptographic Techniques, volume 1070 of Lecture Notes in Computer Science, pages 178-189. Springer, 1996.
[Cop96b] Don Coppersmith. Finding a small root of a univariate modular equation. In Ueli M. Maurer, editor, Advances in Cryptology - EUROCRYPT '96, International Conference on the Theory and Application of Cryptographic Techniques, volume 1070 of Lecture Notes in Computer Science, pages 155-165. Springer, 1996.
[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptology, 10(4):233-260, 1997.
[Cop01] Don Coppersmith. Finding small solutions to small degree polynomials. In Joseph H. Silverman, editor, Cryptography and Lattices, International Conference, CaLC 2001, volume 2146 of Lecture Notes in Computer Science, pages 20-31. Springer, 2001.
[Cor04] Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial equations revisited. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Techniques, volume 3027 of Lecture Notes in Computer Science, pages 492-505. Springer, 2004.
[DN00] Glenn Durfee and Phong Q. Nguyen. Cryptanalysis of the RSA schemes with short secret exponent from asiacrypt '99. In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and Application of Cryptology and Information Security, volume 1976 of Lecture Notes in Computer Science, pages 14-29. Springer, 2000.
[EKU15] Muhammed F. Esgin, Mehmet Sabir Kiraz, and Osmanbey Uzunkol. A new partial key exposure attack on multi-power RSA. In Andreas Maletti, editor, Algebraic Informatics - 6th International Conference, CAI 2015, volume 9270 of Lecture Notes in Computer Science, pages 103-114. Springer, 2015.
[GHM05] Steven D. Galbraith, Chris Heneghan, and James F. McKee. Tunable balancing of RSA. In Colin Boyd and Juan Manuel González Nieto, editors, Information Security and Privacy, 10th Australasian Conference, ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages 280-292. Springer, 2005.
[Her11] Mathias Herrmann. Lattice-based Cryptanalysis Using Unravelled Linearization. PhD thesis, der Ruhr-University Bochum, 2011.
[HHX14a] Zhangjie Huang, Lei Hu, and Jun Xu. Attacking RSA with a composed decryption exponent using unravelled linearization. In Dongdai Lin, Moti Yung, and Jianying Zhou, editors, Information Security and Cryptology - 10th International Conference, Inscrypt 2014, volume 8957 of Lecture Notes in Computer Science, pages 207-219. Springer, 2014.
[HHX^{+}14b] Zhangjie Huang, Lei Hu, Jun Xu, Liqiang Peng, and Yonghong Xie. Partial key exposure attacks on takagi's variant of RSA. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network Security - 12th International Conference, ACNS 2014, volume 8479 of Lecture Notes in Computer Science, pages 134-150. Springer, 2014.
[HM09] Mathias Herrmann and Alexander May. Attacking power generators using unravelled linearization: When do we output too much? In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and Information Security, volume 5912 of Lecture Notes in Computer Science, pages 487-504. Springer, 2009.
[HM10] Mathias Herrmann and Alexander May. Maximizing small root bounds by linearization and applications to small secret exponent RSA. In Phong Q. Nguyen and David Pointcheval, editors, Public Key Cryptography - PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages 53-69. Springer, 2010.
[How97] Nick Howgrave-Graham. Finding small roots of univariate modular equations revisited. In Michael Darnell, editor, Cryptography and Coding, 6th IMA International Conference, volume 1355 of Lecture Notes in Computer Science, pages 131-142. Springer, 1997.
[JM06] Ellen Jochemsz and Alexander May. A strategy for finding roots of multivariate polynomials with new applications in attacking RSA variants. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory and Application of Cryptology and Information Security, volume 4284 of Lecture Notes in Computer Science, pages 267-282. Springer, 2006.
[JM07] Ellen Jochemsz and Alexander May. A polynomial time attack on RSA with private crt-exponents smaller than $N^{0.073}$. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference, volume 4622 of Lecture Notes in Computer Science, pages 395-411. Springer, 2007.
[KSI14] Noboru Kunihiro, Naoyuki Shinohara, and Tetsuya Izu. A unified framework for small secret exponent attack on RSA. IEICE Transactions, 97-A(6):1285-1295, 2014.
[Kun12] Noboru Kunihiro. On optimal bounds of small inverse problems and approximate GCD problems with higher degree. In Dieter Gollmann and Felix C. Freiling, editors, In-
formation Security - 15th International Conference, ISC 2012, volume 7483 of Lecture Notes in Computer Science, pages 55-69. Springer, 2012.
[LLL82] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515-534, 1982.
[LZL13] Yao Lu, Rui Zhang, and Dongdai Lin. Factoring multi-power RSA modulus $N=p^{r} q$ with partial known bits. In Colin Boyd and Leonie Simpson, editors, Information Security and Privacy - 18th Australasian Conference, ACISP 2013, volume 7959 of Lecture Notes in Computer Science, pages 57-71. Springer, 2013.
[LZL14] Yao Lu, Rui Zhang, and Dongdai Lin. New partial key exposure attacks on CRTRSA with large public exponents. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography and Network Security - 12th International Conference, ACNS 2014, volume 8479 of Lecture Notes in Computer Science, pages 151-162. Springer, 2014.
[LZPL15] Yao Lu, Rui Zhang, Liqiang Peng, and Dongdai Lin. Solving linear equations modulo unknown divisors: Revisited. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015-21st International Conference on the Theory and Application of Cryptology and Information Security, volume 9452 of Lecture Notes in Computer Science, pages 189-213. Springer, 2015.
[May02] Alexander May. Cryptanalysis of unbalanced RSA with small crt-exponent. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, volume 2442 of Lecture Notes in Computer Science, pages 242-256. Springer, 2002.
[May03] Alexander May. New RSA vulnerabilities using lattice reduction methods. PhD thesis, University of Paderborn, 2003.
[May10] Alexander May. Using LLL-reduction for solving RSA and factorization problems. In Phong Q. Nguyen and Brigitte Vallée, editors, The LLL Algorithm - Survey and Applications, Information Security and Cryptography, pages 315-348. Springer, 2010.
[NS01] Phong Q. Nguyen and Jacques Stern. The two faces of lattices in cryptology. In Joseph H. Silverman, editor, Cryptography and Lattices, International Conference, CaLC 2001, volume 2146 of Lecture Notes in Computer Science, pages 146-180. Springer, 2001.
[NS09] Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic complexity. SIAM J. Comput., 39(3):874-903, 2009.
[PHHX15] Liqiang Peng, Lei Hu, Zhangjie Huang, and Jun Xu. Partial prime factor exposure attacks on RSA and its takagi's variant. In Javier Lopez and Yongdong Wu, editors, Information Security Practice and Experience - 11th International Conference, ISPEC

2015, volume 9065 of Lecture Notes in Computer Science, pages 96-108. Springer, 2015.
[PHL $\left.{ }^{+} 15\right]$ Liqiang Peng, Lei Hu, Yao Lu, Santanu Sarkar, Jun Xu, and Zhangjie Huang. Cryptanalysis of variants of RSA with multiple small secret exponents. In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptology - INDOCRYPT 2015-16th International Conference on Cryptology in India, volume 9462 of Lecture Notes in Computer Science, pages 105-123. Springer, 2015.
[PHL16] Liqiang Peng, Lei Hu, and Yao Lu. Improved results on cryptanalysis of prime power RSA. In Seokhie Hong and Jong Hwan Park, editors, Information Security and Cryptology - ICISC 2016-19th International Conference, volume 10157 of Lecture Notes in Computer Science, pages 287-303, 2016.
[PHLW16] Liqiang Peng, Lei Hu, Yao Lu, and Hongyun Wei. An improved analysis on three variants of the RSA cryptosystem. In Kefei Chen, Dongdai Lin, and Moti Yung, editors, Information Security and Cryptology - 12th International Conference, Inscrypt 2016, volume 10143 of Lecture Notes in Computer Science, pages 140-149. Springer, 2016.
[PKC] PKCS\#1. RSA cryptography specifications version 2.0. http://www.ietf.org/rfc/rfc2437.txt.
[QC82] J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for rsa public-key cryptosystem. Electronics Letters, 18:905-907(2), October 1982.
[Sar14] Santanu Sarkar. Small secret exponent attack on RSA variant with modulus $N=p^{r} q$. Des. Codes Cryptography, 73(2):383-392, 2014.
[Sar16] Santanu Sarkar. Revisiting prime power RSA. Discrete Applied Mathematics, 203:127133, 2016.
[SIK11] Naoyuki Shinohara, Tetsuya Izu, and Noboru Kunihiro. Small secret CRT-exponent attacks on takagi's RSA. IEICE Transactions, 94-A(1):19-27, 2011.
[SM09] Santanu Sarkar and Subhamoy Maitra. Partial key exposure attack on CRT-RSA. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied Cryptography and Network Security, 7th International Conference, ACNS 2009, volume 5536 of Lecture Notes in Computer Science, pages 473-484, 2009.
[SW05] Hung-Min Sun and Mu-En Wu. An approach towards rebalanced RSA-CRT with short public exponent. IACR Cryptology ePrint Archive, 2005:53, 2005.
[TK14a] Atsushi Takayasu and Noboru Kunihiro. Better lattice constructions for solving multivariate linear equations modulo unknown divisors. IEICE Transactions, 97-A(6):12591272, 2014.
[TK14b] Atsushi Takayasu and Noboru Kunihiro. Cryptanalysis of RSA with multiple small secret exponents. In Willy Susilo and Yi Mu, editors, Information Security and Privacy - 19th Australasian Conference, ACISP 2014, volume 8544 of Lecture Notes in Computer Science, pages 176-191. Springer, 2014.
[TK14c] Atsushi Takayasu and Noboru Kunihiro. Partial key exposure attacks on RSA: achieving the boneh-durfee bound. In Antoine Joux and Amr M. Youssef, editors, Selected Areas in Cryptography - SAC 2014-21st International Conference, volume 8781 of Lecture Notes in Computer Science, pages 345-362. Springer, 2014.
[TK15] Atsushi Takayasu and Noboru Kunihiro. Partial key exposure attacks on CRTRSA: better cryptanalysis to full size encryption exponents. In Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied Cryptography and Network Security - 13th International Conference, ACNS 2015, volume 9092 of Lecture Notes in Computer Science, pages 518-537. Springer, 2015.
[TK16a] Atsushi Takayasu and Noboru Kunihiro. How to generalize RSA cryptanalyses. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography - PKC 2016-19th IACR International Conference on Practice and Theory in Public-Key Cryptography, volume 9615 of Lecture Notes in Computer Science, pages 67-97. Springer, 2016.
[TK16b] Atsushi Takayasu and Noboru Kunihiro. Partial key exposure attacks on CRT-RSA: general improvement for the exposed least significant bits. In Matt Bishop and Anderson C. A. Nascimento, editors, Information Security - 19th International Conference, ISC 2016, volume 9866 of Lecture Notes in Computer Science, pages 35-47. Springer, 2016.
[TK16c] Atsushi Takayasu and Noboru Kunihiro. Partial key exposure attacks on RSA with multiple exponent pairs. In Joseph K. Liu and Ron Steinfeld, editors, Information Security and Privacy - 21st Australasian Conference, ACISP 2016, volume 9723 of Lecture Notes in Computer Science, pages 243-257. Springer, 2016.
[TK16d] Atsushi Takayasu and Noboru Kunihiro. Small secret exponent attacks on RSA with unbalanced prime factors. In 2016 International Symposium on Information Theory and Its Applications, ISITA 2016, pages 236-240. IEEE, 2016.
[TK17a] Atsushi Takayasu and Noboru Kunihiro. General bounds for small inverse problems and its applications to multi-prime RSA. IEICE Transactions, 100-A(1):50-61, 2017.
[TK17b] Atsushi Takayasu and Noboru Kunihiro. A tool kit for partial key exposure attacks on RSA. In Helena Handschuh, editor, Topics in Cryptology - CT-RSA 2017-The Cryptographers' Track at the RSA Conference 2017, volume 10159 of Lecture Notes in Computer Science, pages 58-73. Springer, 2017.
[TLP17] Atsushi Takayasu, Yao Lu, and Liqiang Peng. Small crt-exponent RSA revisited. In Advances in Cryptology - EUROCRYPT 2017, 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lecture Notes in Computer Science. Springer, 2017.
[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Trans. Information Theory, 36(3):553-558, 1990.

A Remaining Proof of Lemma 3

Next, we assume that all variables in the monomials of $g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ for i such that $\lceil\lambda i\rceil-$ $\lceil\lambda(i-1)\rceil=0$ except $x_{q}^{i+j} y_{q}^{\lfloor(1-\lambda) i\rfloor} e^{m-i}$ appear in the diagonals of $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ where $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) \prec g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$. By definition,

$$
\begin{aligned}
g_{[i, j], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) & =x_{p}^{j} f_{p}^{[\lambda i\rceil}\left(x_{p}, y_{p}\right) f_{q}^{\lfloor(1-\lambda) i\rfloor}\left(x_{q}, y_{q}\right) e^{m-i} \\
& =x_{p}^{j}\left(N+N x_{p}-x_{p} y_{p}\right)^{[\lambda i\rceil}\left(1-x_{q}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor} e^{m-i}
\end{aligned}
$$

From the relation $x_{q}=x_{p}+1$ and equivalently $x_{p}=x_{q}-1$,

$$
=x_{p}^{j}\left(N x_{q}-x_{p} y_{p}\right)^{[\lambda i\rceil}\left(x_{p}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor} e^{m-i}
$$

By expanding the polynomials,

$$
\begin{aligned}
= & x_{p}^{j}\left(\sum_{i_{p}=0}^{\lceil\lambda i\rceil}\binom{\lceil\lambda i\rceil}{ i_{p}}\left(-x_{p} y_{p}\right)^{i_{p}} \cdot\left(N x_{q}\right)^{\lceil\lambda i\rceil-i_{p}}\right) . \\
& \left(\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}}\left(x_{q} y_{q}\right)^{i_{q}} \cdot x_{p}^{\lfloor(1-\lambda) i\rfloor-i_{q}}\right) e^{m-i} \\
= & \sum_{i_{p}=0}^{\lceil\lambda i\rceil} \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}} . \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{[\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}} y_{p}^{i_{p}} e^{m-i} .
\end{aligned}
$$

From the relation $y_{p} y_{q}=N$,

$$
\begin{aligned}
= & \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}}^{\lceil\lambda i\rceil}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}} . \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{p}^{i_{p}-i_{q}} e^{m-i}
\end{aligned}
$$

$$
+\sum_{i_{p}=0}^{\lfloor(1-\lambda) i\rfloor-1} \sum_{i_{q}=i_{p}+1}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil} .
$$

There are no monomials that have y_{p} and y_{q} simultaneously. The powers of y_{p} in the first summation are non-negative whereas the exponents of y_{q} in the second summation are positive. Hence, as we discussed above, we replace all x_{q} in the first summation by $x_{p}+1$ and replace all x_{p} in the second summation by $x_{q}-1$;

$$
\begin{aligned}
& =\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}}^{\lceil\lambda i\rceil}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}} . \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j}\left(x_{p}+1\right)^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{p}^{i_{p}-i_{q}} e^{m-i} \\
& +\sum_{i_{p}=0}^{\lfloor(1-\lambda) i\rfloor-1} \sum_{i_{q}=i_{p}+1}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil} . \\
& \left(x_{q}-1\right)^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j} x_{q}^{[\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}} e^{m-i} \\
& =\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}}^{\lceil\lambda i\rceil} \sum_{i^{\prime}=0}^{\lceil\lambda i\rceil-i_{p}+i_{q}}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}}\binom{\lceil\lambda i\rceil-i_{p}+i_{q}}{i^{\prime}} . \\
& N^{\lceil\lambda i\rceil-i_{p}+i_{q}} x_{p}^{i-i^{\prime}+j} y_{p}^{i_{p}-i_{q}} e^{m-i} \\
& +\sum_{i_{p}=0}^{\lfloor(1-\lambda) i\rfloor-1} \sum_{i_{q}=i_{p}+1}^{\lfloor(1-\lambda) i\rfloor} \sum_{i^{\prime}=0}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j}(-1)^{i_{p}+i^{\prime}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} . \\
& \binom{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}+j}{i^{\prime}} N^{\lceil\lambda i\rceil} x_{q}^{i-i^{\prime}+j} y_{q}^{i_{q}-i_{p}} e^{m-i} .
\end{aligned}
$$

Hence, the polynomial has monomials for variables

- $x_{p}^{i_{p x}} y_{p}^{i_{p y}}$ for $i_{p y}=0,1, \ldots,\lceil\lambda i\rceil ; i_{p x}=i_{p y}+\lfloor(1-\lambda) i\rfloor+j, \ldots, i+j$,
- $x_{q}^{i_{q x}} y_{q}^{i_{q y}}$ for $i_{q y}=1,2, \ldots,\lfloor(1-\lambda) i\rfloor ; i_{q x}=i_{q y}+\lceil\lambda i\rceil, \ldots, i+j$.

These variables except $x_{q}^{i+j} y_{q}^{\lfloor(1-\lambda) i\rfloor}$ appear in the diagonals of $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ for

$$
\begin{aligned}
i^{\prime} & =0,1, \ldots, i-1 \text { such that }\left\lceil\lambda i^{\prime}\right\rceil-\left\lceil\lambda\left(i^{\prime}-1\right)\right\rceil=1 ; \\
j^{\prime} & =\lfloor(1-\lambda) i\rfloor-\left\lfloor(1-\lambda) i^{\prime}\right\rfloor+j, \ldots, i+j-i^{\prime} \text {, and } \\
i^{\prime} & =1,2, \ldots, i-1 \text { such that }\left\lceil\lambda i^{\prime}\right\rceil-\left\lceil\lambda\left(i^{\prime}-1\right)\right\rceil=0 ; \\
j^{\prime} & =\lceil\lambda i\rceil-\left\lceil\lambda i^{\prime}\right\rceil, \ldots, i+j-i^{\prime} .
\end{aligned}
$$

Since $i^{\prime}<i$, by our definition of the polynomial order,

$$
g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right) \prec g_{[i, j], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)
$$

holds for all the above i^{\prime} and j^{\prime}. All we have to show is the polynomials are selected in the lattice basis. For the purpose, we show that the indices

$$
i^{\prime}=0,1, \ldots, i-1 ; j^{\prime}=\min \left\{\lfloor(1-\lambda) i\rfloor-\left\lfloor(1-\lambda) i^{\prime}\right\rfloor+j,\lceil\lambda i\rceil-\left\lceil\lambda i^{\prime}\right\rceil\right\}, \ldots, i+j-i^{\prime},
$$

are contained in

$$
i^{\prime}=0,1, \ldots, m ; j^{\prime}=0,1, \ldots, m-i^{\prime} .
$$

Since $0<\lambda \leq 1,0 \leq i^{\prime} \leq i$, and $j \geq 0$,

$$
\lfloor(1-\lambda) i\rfloor+\left\lfloor(1-\lambda) i^{\prime}\right\rfloor+j \geq 0 \text { and }\lceil\lambda i\rceil-\left\lceil\lambda i^{\prime}\right\rceil \geq 0
$$

hold. Since $i+j \leq m$ holds,

$$
i+j-i^{\prime} \leq m-i^{\prime}
$$

holds. Then the statement holds.
Next, we assume that all variables in the monomials of $g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ for i except $x_{q}^{i} y_{q}^{\lfloor(1-\lambda) i]+j} e^{m-i}$ appear in the diagonals of $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ and $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$ where $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) \prec g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right)$. By definition,

$$
\begin{aligned}
g_{[i, j], \lambda}^{\prime}\left(x_{p}, x_{q}, y_{p}, y_{q}\right) & =y_{q}^{j} f_{p}^{[\lambda i]}\left(x_{p}, y_{p}\right) f_{q}^{\lfloor(1-\lambda) i\rfloor}\left(x_{q}, y_{q}\right) e^{m-i} \\
& =y_{q}^{j}\left(N+N x_{p}-x_{p} y_{p}\right)^{\lceil\lambda i]}\left(1-x_{q}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor} e^{m-i} .
\end{aligned}
$$

From the relation $x_{q}=x_{p}+1$ and equivalently $x_{p}=x_{q}-1$,

$$
=y_{q}^{j}\left(N x_{q}-x_{p} y_{p}\right)^{\lceil\lambda i\rceil}\left(x_{p}+x_{q} y_{q}\right)^{\lfloor(1-\lambda) i\rfloor} e^{m-i} .
$$

By expanding the polynomials,

$$
\begin{aligned}
= & y_{q}^{j}\left(\sum_{i_{p}=0}^{\lceil\lambda i\rceil}\binom{\lceil\lambda i\rceil}{ i_{p}}\left(-x_{p} y_{p}\right)^{i_{p}} \cdot\left(N x_{q}\right)^{\lceil\lambda i\rceil-i_{p}}\right) . \\
& \left(\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}}\left(x_{q} y_{q}\right)^{i_{q}} \cdot x_{p}^{\lfloor(1-\lambda) i\rfloor-i_{q}}\right) e^{m-i} \\
= & \sum_{i_{p}=0}^{\lceil\lambda i\rceil} \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p} .} \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}} x_{q}^{[\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}+j} y_{p}^{i_{p}} e^{m-i} .
\end{aligned}
$$

From the relation $y_{p} y_{q}=N$,

$$
=\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}+j}^{\lceil\lambda i\rceil}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}+j} .
$$

$$
\begin{aligned}
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{p}^{i_{p}-i_{q}-j} e^{m-i} \\
+ & \sum_{i_{p}=j}^{\lfloor(1-\lambda) i\rfloor+j-1} \sum_{i_{q}=i_{p}-j+1}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil .} \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}+j} e^{m-i} \\
+ & \sum_{i_{p}=0}^{j-1} \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil .} \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}+j} e^{m-i} .
\end{aligned}
$$

There are no monomials that have y_{p} and y_{q} simultaneously. The exponents of y_{p} in the first summation are non-negative whereas the exponents of y_{q} in the second and the third summations are positive. Hence, as we discussed above, we replace all x_{q} in the first summation by $x_{p}+1$ and replace all x_{p} in the second and the third summations by $x_{q}-1$;

$$
\begin{aligned}
& =\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}+j}^{\lceil\lambda i\rceil}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil-i_{p}+i_{q}+j} . \\
& x_{p}^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}}\left(x_{p}+1\right)^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{p}^{i_{p}-i_{q}-j} e^{m-i} \\
& +\sum_{i_{p}=j}^{\lfloor(1-\lambda) i\rfloor+j-1} \sum_{i_{q}=i_{p}-j+1}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil} . \\
& \left(x_{q}-1\right)^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}+j} e^{m-i} \\
& +\sum_{i_{p}=0}^{j-1} \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} N^{\lceil\lambda i\rceil} . \\
& \left(x_{q}-1\right)^{\lfloor(1-\lambda) i\rfloor+i_{p}-i_{q}} x_{q}^{\lceil\lambda i\rceil-i_{p}+i_{q}} y_{q}^{i_{q}-i_{p}+j} e^{m-i} \\
& =\sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i_{p}=i_{q}+j}^{\lceil\lambda i\rceil} \sum_{i^{\prime}=0}^{\lceil\lambda i\rceil-\left(i_{p}-i_{q}\right)}(-1)^{i_{p}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}}\binom{\lceil\lambda i\rceil-\left(i_{p}-i_{q}\right)}{i^{\prime}} . \\
& N^{\lceil\lambda i\rceil-i_{p}+i_{q}+j} x_{p}^{i-i^{\prime}} y_{p}^{i_{p}-i_{q}-j} e^{m-i} \\
& +\sum_{i_{p}=j}^{\lfloor(1-\lambda) i\rfloor+j-1} \sum_{i_{q}=i_{p}-j+1}^{\lfloor(1-\lambda) i\rfloor} \sum_{i^{\prime}=0}^{\lfloor(1-\lambda) i\rfloor-\left(i_{q}-i_{p}\right)}(-1)^{i_{p}+i^{\prime}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} . \\
& \binom{\lfloor(1-\lambda) i\rfloor-\left(i_{q}-i_{p}\right)}{i^{\prime}} N^{\lceil\lambda i\rceil} x_{q}^{i-i^{\prime}} y_{q}^{i_{q}-i_{p}+j} e^{m-i} \\
& +\sum_{i_{p}=0}^{j-1} \sum_{i_{q}=0}^{\lfloor(1-\lambda) i\rfloor} \sum_{i^{\prime}=0}^{\lfloor(1-\lambda) i\rfloor-\left(i_{q}-i_{p}\right)}(-1)^{i_{p}+i^{\prime}}\binom{\lceil\lambda i\rceil}{ i_{p}}\binom{\lfloor(1-\lambda) i\rfloor}{ i_{q}} \text {. }
\end{aligned}
$$

$$
\binom{\lfloor(1-\lambda) i\rfloor-\left(i_{q}-i_{p}\right)}{i^{\prime}} N^{\lceil\lambda i\rceil} x_{q}^{i-i^{\prime}} y_{q}^{i_{q}-i_{p}+j} e^{m-i}
$$

Hence, the polynomial has monomials for variables

- $x_{p}^{i_{p x}} y_{p}^{i_{p y}}$ for $i_{p y}=0,1, \ldots,\lceil\lambda i\rceil-j ; i_{p x}=i_{p y}+\lfloor(1-\lambda) i\rfloor+j, i_{p y}+\lfloor(1-\lambda) i\rfloor+j+1, \ldots, i$,
- $x_{q}^{i_{q x}} y_{q}^{i_{q y}}$ for $i_{q y}=1,2, \ldots,\lfloor(1-\lambda) i\rfloor+j ; i_{q x}=i_{q y}+\lceil\lambda i\rceil-j, i_{q y}+\lceil\lambda i\rceil-j+1, \ldots, i$.

These variables except $x_{p}^{i} y_{p}^{\lfloor(1-\lambda) i\rfloor+j}$ are contained in the diagonals of $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ and $g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)$ for

$$
\begin{aligned}
& i^{\prime}=1,2, \ldots, i-1 ; j^{\prime}=1,2, \ldots, \max \left\{-\lceil\lambda i\rceil+\left\lceil\lambda i^{\prime}\right\rceil+j, 1\right\}, \text { and } \\
& i^{\prime}=i ; j^{\prime}=1,2, \ldots, j-1 .
\end{aligned}
$$

By our definition of the polynomial order,

$$
g_{[i, j], \lambda}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right) \prec g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)
$$

holds. For $i^{\prime}=0,1, \ldots, i-1$, since $i^{\prime}<i$, by definition of the polynomial order,

$$
g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right) \prec g_{[i, j], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)
$$

holds. For $i^{\prime}=i$, since $j^{\prime}<j$, by definition of the polynomial order,

$$
g_{\left[i^{\prime}, j^{\prime}\right], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right) \prec g_{[i, j], \lambda}^{\prime}\left(x_{p} X_{p}, x_{q} X_{q}, y_{p} Y_{p}, y_{q} Y_{q}\right)
$$

holds.
All we have to show is the polynomials are selected in the lattice basis. For the purpose, we show that the indices

$$
\begin{aligned}
& i^{\prime}=1,2, \ldots, i-1 ; j^{\prime}=1,2, \ldots, \max \left\{-\lceil\lambda i\rceil+\left\lceil\lambda i^{\prime}\right\rceil+j, 1\right\}, \text { and } \\
& i^{\prime}=i ; j^{\prime}=1,2, \ldots, j-1 .
\end{aligned}
$$

are contained in

$$
i^{\prime}=1,2, \ldots, m ; j^{\prime}=1,2, \ldots,\left\lceil\lambda^{\prime} i\right\rceil-\lfloor(1-\lambda) i\rfloor .
$$

Since $0<\lambda \leq 1,0 \leq i^{\prime} \leq i$, and $j \leq\left\lceil\lambda^{\prime} i\right\rceil-\lfloor(1-\lambda) i\rfloor$,

$$
-\lceil\lambda i\rceil+\left\lceil\lambda i^{\prime}\right\rceil+j \leq\left\lceil\lambda^{\prime} i\right\rceil+\left\lceil\lambda i^{\prime}\right\rceil-i \leq\left\lceil\lambda^{\prime} i\right\rceil-\lfloor(1-\lambda) i\rfloor
$$

holds. Then the statement holds.

[^0]: *This paper is the full version of [TLP17]. This research was supported by JST CREST Grant Number JPMJCR14D6, Japan, JSPS KAKENHI Grant Number 14J08237, National Key Basic Research Program of China (2013CB834203) and the National Natural Science Foundation of China (Grants 61472417, 61632020, 61472416).
 ${ }^{\dagger}$ The University of Tokyo, National Institute of Advanced Industrial Science and Technology (AIST). The author was supported by a JSPS Fellowship for Young Scientists. e-mail: takayasu@msit.i.u-tokyo.ac.jp
 ${ }^{\ddagger}$ The University of Tokyo.
 ${ }^{\text {§ }}$ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences.

