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Abstract

In this paper, we focus on the constructions of adaptively secure identity-based encryption
(IBE) from lattices and verifiable random function (VRF) with large input spaces. Existing
constructions of these primitives suffer from low efficiency, whereas their counterparts with
weaker guarantees (IBEs with selective security and VRFs with small input spaces) are rea-
sonably efficient. We try to fill these gaps by developing new partitioning techniques that can
be performed with compact parameters and proposing new schemes based on the idea.

- We propose new lattice IBEs with poly-logarithmic master public key sizes, where we
count the number of the basic matrices to measure the size. Our constructions are proven
secure under the LWE assumption with polynomial approximation factors. They achieve the
best asymptotic space efficiency among existing schemes that depend on the same assumption
and achieve the same level of security.

- We also propose several new VRFs on bilinear groups. In our first scheme, the size of
the proofs is poly-logarithmic in the security parameter, which is the smallest among all the
existing schemes with similar properties. On the other hand, the verification keys are long. In
our second scheme, the size of the verification keys is poly-logarithmic, which is the smallest
among all the existing schemes. The size of the proofs is sub-linear, which is larger than our
first scheme, but still smaller than all the previous schemes.

1 Introduction

1.1 Background

In cryptography, we define appropriate security notions for cryptographic primitives, in order
to capture real world attacks. For a cryptographic scheme to be useful, it is desirable that the
scheme achieves security notions as realistic as possible. However, since natural and realistic
security notions are hard to achieve in general, we sometimes are only able to prove ad-hoc and
unrealistic security notions. Even when proving the former is possible, it sometimes comes with
the cost of longer parameters or stronger assumptions. In this paper, we focus on two such
primitives: identity-based encryption (IBE) and verifiable random function (VRF).
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Identity-Based Encryption. IBE [Sha85] is a generalization of public key encryption where the
public key of a user can be any arbitrary string such as an e-mail address. The first realizations of
IBE are given by [SOK00, BF01] on groups equipped with bilinear maps. Since then, realizations
from bilinear maps [BB04a, BB04b, Wat05, Gen06, Wat09], from quadratic residues modulo
composite [Coc01, BGH07], and from lattices [GPV08, CHKP10, ABB10a, Boy10] have been
proposed.

Among the existing lattice IBE schemes in the standard model, the most efficient one is in
[ABB10a]. However, the scheme only satisfies selective security, where an adversary must declare
at the start of the game which identity it intends to target. Although schemes with a much more
realistic adaptive security (or equivalently, full security) are known [CHKP10, ABB10a, Boy10],
they are not as efficient as the aforementioned selectively secure scheme. In particular, all these
schemes require master public keys longer by a factor O(λ) than the selectively secure one, where
λ is the security parameter. This stands in sharp contrast to pairing-based settings, in which we
have adaptively secure IBE schemes [Wat09, CLL+12, JR13] that are as efficient as selectively
secure ones [BB04a], up to a small constant factor.

There have been several studies that aim at reducing the sizes of the parameters in adaptively
secure lattice IBEs [Yam16, AFL16, ZCZ16, KY16]. However, current state of affairs are not
satisfactory. These schemes are either based on stronger assumptions [Yam16, KY16], or require
still long public parameters [Yam16, KY16, AFL16], or only achieves weaker security guarantee
[ZCZ16].

Verifiable Random Function. The notion of VRF was introduced by Micali, Rabin, and
Vadhan [MRV99]. A VRF Vsk(·) is a pseudorandom function with the additional property that it
is possible to create a non-interactive and publicly verifiable proof π that a given function value Y
was computed correctly as Y = Vsk(X). Since the introduction of this notion, several realizations
have been proposed [MRV99, Lys02, Dod03, DY05, ACF09]. All these constructions only allow
a polynomially bounded input space, or do not achieve full adaptive security without complexity
leveraging, or are based on an interactive complexity assumption. Following [HJ16], in the sequel,
we will say that a VRF has all the desired properties, if it has an exponential-sized input space
and a proof of full adaptive security under a non-interactive complexity assumption.

The first VRF scheme with all the desired properties was proposed by Hohenberger and Wa-
ters [HW10]. Later, constructions from weaker assumptions have been studied [BMR10, ACF14,
Jag15, HJ16]. Notably, the scheme in [HJ16] is secure under the standard decisional linear as-
sumption. On the other hand, there has not been improvement on the efficiency since [HW10].
Namely, all existing VRF schemes with all the desired properties require O(λ) group elements
both in the verification keys and proofs. This is much more inefficient than the scheme with a
polynomial-size input space [DY05], which only requires O(1) group elements for both.

The Gaps in Efficiency. As we have seen, there is a distinct gap in efficiency between the
state of the art schemes and the desired schemes. Namely, both in lattice IBEs and VRFs, we
loose efficiency when we want to achieve stronger security notions. This loss in efficiency is an
artifact of the security proofs. Most of the schemes use the partitioning technique based on
(an analogue of) Waters’ hash [Wat05] or admissible hash functions [BB04b] to achieve adaptive
security. However, these techniques typically require long parameters. The powerful framework of
dual system encryption methodology, which was introduced by Waters [Wat09], does not seem to
be applicable for these settings. In particular, we do not have lattice analogue of the dual system
approach yet. Furthermore, the uniqueness property required for VRF seems to contradict the
algebraic structure required to apply the dual system approach, as pointed out in [Jag15, HJ16].
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1.2 Our Contributions

In this paper, we try to fill the above gaps by generalizing the partitioning technique and proposing
new schemes with improved (asymptotic) efficiency. To do so, we first introduce the notion of
partitioning functions, which can be thought of as a generalization of the standard admissible hash
functions [BB04b, CHKP10, FHPS13, Jag15]. The notion of partitioning functions abstracts out
the information theoretic properties that are required to perform the partitioning technique in
the security proofs for IBE and VRF. Then, we propose two new partitioning functions that
can be constructed by much more compact parameters than prior admissible hash functions.
Our first construction is obtained by compressing the expression of the existing admissible hash
functions by introducing a novel encoding technique, whereas the second construction is based
on affine functions over a random modulus. We call the first partitioning function FMAH and the
second FAFF, where MAH and AFF stand for modified admissible hash function and affine function
respectively. These functions provide us a framework to perform the security proofs in a more
space efficient manner than previous ones.

One thing to note is that in order to use them to construct IBE and VRF schemes, we need
a certain level of homomorphic capability on the underlying algebraic structures. In the lattice
setting, we can implement the idea by relying on a variant of the powerful fully key homomorphic
algorithm of [BGG+14, GV15]. On the other hand, in the bilinear group setting, this technique
may be inapplicable since we only have very limited amount of homomorphic capabilities. Namely,
given group elements, which can be seen as encodings of the corresponding discrete logarithms,
we can only compute encodings corresponding to quadratic multi-variate polynomials on them.
However, in the special case of VRF, since the evaluator has full access to the secret key, it can
evaluate any homomorphism on them to compute the function value. Based on this observation,
we can implement the idea in this setting as well.

New Lattice IBE Schemes. Based on the new partitioning functions, we propose two new
adaptively secure lattice IBE schemes. For the overview and comparison, we refer to Table 1 in
Sec. 7. Both our schemes achieve the best asymptotic space efficiency among existing schemes
with the same assumption and security notion. In particular, the number of basic matrices in
the master public keys are only polylogarithmic. Furthermore, the sizes of the ciphertexts and
private keys are optimal, in the sense that they match those of the selectively secure schemes
[ABB10a, Boy10] up to a constant factor.

• In our first scheme, the master public key consists of ω(log2 λ) basic matrices∗, which is the
smallest among all the previous schemes. The security of the scheme can be shown from
the LWE assumption with approximation factor Õ(n11), where n is the dimension of the
lattices.

• In our second scheme, the master public key consists of only ω(log λ) basic matrices, which
is even smaller than the one above. The security of the scheme can be shown from the LWE
assumption with approximation factors poly(n), where poly(n) is some fixed polynomial that
is determined by the depth of the circuit computing a certain function.

We constructed the above schemes in a modular way. We first define the notion of compatible
algorithms for partitioning functions. Then, we propose a generic construction of an IBE scheme

∗ In our paper, when we say that the size of a parameters is ω(f(λ)), it means that the parameter can be set to
be any (polynomially bounded) function that grows faster than f(λ). The parameter can be as small as one wants,
as long as it does not violate the lower-bound given by the ω-notation. In this case, we can choose the number of
the matrices to be Θ(log3 λ) or even Θ(log2 λ · log log log λ) for instance.
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from a partitioning function with its associating compatible algorithms. We obtain our first
scheme by instantiating this framework with FMAH and its compatible algorithms. We obtain our
second scheme by instantiating it with FAFF.

New VRF Schemes. We also obtain the following three new VRF schemes with all the desired
properties. For the overview and comparison, we refer to Table 2 in Sec. 7. All our schemes are
constructed on bilinear groups and proven secure under the L-DDH assumption,† as is the same
as most of the previous schemes [ACF14, BMR10, Jag15]. In the following, to measure the sizes of
the proofs and verification keys, we count the number of group elements. Note that in all existing
VRF schemes with all the desired properties [HW10, ACF14, BMR10, Jag15, HJ16], the sizes of
the verification keys and proofs are O(λ).

• Our first scheme is based on FMAH, and is parametrized by several parameters, which control
the tradeoffs of the efficiency. In certain parameter settings, the scheme achieves the smallest
proof-size among all existing VRF schemes that satisfy all the desired properties. The size
of the proofs is ω(log λ), whereas the size of the verification keys is ω(λ log λ). The security
is proven from the L-DDH assumption with L = Õ(λ).

• Our second scheme is obtained by setting the parameters appropriately in our first scheme
and modifying it slightly. The scheme achieves the smallest verification-key-size among all
existing schemes with all the desired properties. The size of the verification keys is ω(log λ),
whereas the size of the proofs is ω(

√
λ log λ). The size of the proofs is larger than our first

scheme, but still smaller than all the previous schemes. The security is proven from the
L-DDH assumption with L = Õ(λ).

• Our third scheme is based on FAFF. The size of the verification keys and the proofs are
ω(log λ) and poly(λ), respectively. The security of the scheme is proven from the L-DDH
assumption with L = poly(λ). Here, poly(λ) is some fixed polynomial that is determined by
the depth of the circuit computing a certain function.

Note that the main advantage of the third scheme over our first and second schemes is that the
security reduction is tighter.

Finally we note that even though our lattice IBE schemes achieve the best asymptotic space
efficiency, it might not outperform [ABB10a, Boy10] in practical parameter settings, due to the
large poly-logarithmic factors. The construction of truly efficient adaptively secure lattice IBE
still remains open.

Comparison with the Dual System Encryption Methodology. The dual system encryp-
tion methodology [Wat09, LW10] is a very powerful tool to prove the adaptive security of IBE and
even advanced cryptographic primitives such as attribute-based encryption [LOS+10]. However,
currently, the technique is not available in several settings. These include lattice-based cryptogra-
phy and the construction of VRF. We notice that relatively high level of homomorphic capabilities
are available in these settings and show that the partitioning technique can be performed more
compactly by exploiting this fact. Our technique is somewhat limited in the sense that it requires
some homomorphic capabilities and may not be available without them. However, in the settings
where our technique does not apply, the dual system encryption methodology may apply. In this
sense, they have mutual complementary relationship.

† The L-DDH assumption says that given elements g, h, gα, . . . , gα
L

in a bilinear group, e(g, h)1/α is pseudo-
random for any PPT adversary.
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1.3 Related Works

Related Works on Lattice IBE. Yamada [Yam16] used the fully key homomorphic technique
of [BGG+14] and asymptotically reduced the size of the master public key. However, it required
super-polynomial size modulus. The subsequent work by Katsumata et al. [KY16] showed that
for the ring version of Yamada’s scheme, it is possible to prove the security for polynomial-size
modulus. The scheme by Apon et al. [AFL16] also proposed a scheme with shorter master public
keys using a different technique. These schemes require larger number of matrices in the master
public keys than ours. The scheme by Zhang et al. [ZCZ16] achieved shorter master public key
size than ours, however at the cost of a weaker security guarantee. In particular, their scheme only
achieves Q-bounded security, i.e., that the security of the scheme is not guaranteed any more if
the number of key extraction queries that the adversary makes exceeds Q, where Q is a parameter
that must be determined at the setup phase of the scheme. This restriction cannot be removed
by just making Q super-polynomial, since the encryption algorithm of the scheme runs in time
proportional to Q. Finally, Boyen and Li [BL16] proposed the first lattice IBE schemes with tight
security reductions, where the schemes require long master public keys.

Related Works on VRF. Very recently, several works [GHKW17, Bit17, BGJS17] showed
generic constructions of VRF from simpler cryptographic primitives. These constructions lead to
VRF schemes from various assumptions, including schemes without bilinear maps. However, they
cannot be efficiently instantiated because they require general NIWI and constrained PRF (for
admissible hash). On the other hand, we focus on the efficient constructions of VRF from the
specific number theoretic assumption. While our results are orthogonal to theirs, our definition
of partitioning function is very similar to that of the “partitioning scheme” in the independent
and concurrent work by Bitansky [Bit17].

2 Technical Overview

2.1 A Twist on the Admissible Hash

We first start with the review of the adaptively secure IBE schemes that use the admissible hash
function [BB04b, CHKP10]. The security proofs of these schemes are based on the partitioning
technique, a proof methodology that allows to secretly partition the identity space into two sets of
exponential size, the uncontrolled set and the controlled set, so that there is a noticeable probabil-
ity that the adversary’s key extraction queries fall in the controlled set and the challenge identity
falls in the uncontrolled set. Whether the identity is controlled or uncontrolled is determined by a
function FADH that on input a secret randomness K chosen during the simulation and an identity
ID outputs 0 or 1. Here, 0 (resp. 1) indicates that ID is in the uncontrolled set (resp. controlled
set). Concretely, the partitioning is made by the following specific function:

FADH(K, ID) =

{
0, if ∀i ∈ [`] : C(ID)i = Ki ∨ Ki = ⊥
1, otherwise

where C(·) is a public function that maps an identity to a bit string in {0, 1}` and K is a string in
{0, 1,⊥}`. C(ID)i and Ki represent the i-th bit of C(ID) and the i-th component of K, respectively.
In [BB04b, CHKP10], the master public keys are sufficiently long so that we can embed the secret
randomness K into them in a component-wise manner in the security proof. Since ` = Θ(λ),
where λ is the security parameter, this results in large master public keys containing O(λ) basic
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Figure 1: Pictorial explanation of the definition of S and T.

K = ⊥ ⊥ 1 ⊥ 0 ⊥ ⊥
1 3 5© 7 9 11 13
2 4 6 8 10© 12 14

T = { 5, 10, }

C(X)= 0 1 1 0 0 1 0

1 3© 5© 7 9 11© 13
2© 4 6 8© 10© 12 14©

S(X) = {2, 3, 5, 8, 10, 11, 14}

components. Due to the similar reasons, all constructions of VRFs using admissible hash functions
[ACF14, BMR10, Jag15, HJ16] also suffer from large public parameters.

Our first step to address the problem is to observe that K is very “sparse” in the sense that
it conveys only a small amount of information compared to its length. In the simulation, K is
chosen uniformly random from {0, 1,⊥}`, with O(log (Q/ε)) components being not ⊥, where Q
and ε are the number of key extraction queries and the advantage of the adversary, respectively.
Since we assume an adversary that makes polynomial number of key extraction queries and has
non-negligible advantage in the security proof, we have O(log (Q/ε)) = O(log λ). This means that
Ki = ⊥ for most i ∈ [`].

Our key idea is to encode K into a much shorter bit-string. For K ∈ {0, 1,⊥}`, let us consider
a set T ⊆ {1, 2, . . . , 2`} as

T := { 2i−Ki | i ∈ [`], Ki 6= ⊥ }. (1)

See Fig. 1 for the illustrative example. Since an element in {1, 2, . . . , 2`} can be represented by
a bit-string with length log 2` = O(log λ) and T only consists of O(log λ) components, T can be
represented by a bit-string with length O(log2 λ), which is much shorter than ` = Θ(λ).

In the next step, we introduce a modified admissible hash function FMAH as

FMAH(T, ID) =

{
0, if T ⊆ S(ID)

1, otherwise
where S(ID) = { 2i− C(ID)i | i ∈ [`] } .

Again, see Fig. 1 for the illustrative example. For T defined as above, we have

FADH(K, ID) = FMAH(T, ID).

Namely, FADH and FMAH are essentially the same functions, but they take different forms of inputs.
The former takes K as the input, whereas the latter takes T, an encoded form of K, as the input.
This fact suggests the possibility of the partitioning technique based on FMAH, rather than FADH.
Namely, we first choose K ∈ {0, 1,⊥}` as specified, then set T as Eq.(1). The identity space
is partitioned into two sets by FMAH(T, ·), which in turn is exactly the same partitioning made
by FADH(K, ·). Since the simulation strategy based on the function FMAH uses a much shorter
secret randomness (i.e. T) than FADH, this opens up the possibility of constructing a much more
compact IBE scheme.

Even given the above idea, the constructions of our IBE and VRF are not straightforward.
Although the change is only in the encoding of the secret randomness, it might be the case that
the construction of the function is incompatible with the underlying algebraic structures. In
particular, FMAH seems to require more homomorphic capability than FADH. Indeed, even though
we know how to construct IBE from bilinear maps using FADH [BB04b], we do not know how to do
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it for FMAH. In our lattice IBE, we can realize the idea by employing the fully key homomorphic
technique introduced by [BGG+14]. However, we have to be careful when applying the technique,
otherwise we will end up with a super polynomial LWE as in [Yam16], which is undesirable both
from the security and efficiency perspectives. For our VRF based on bilinear maps, we employ
the fact that we can compute the function value by highly non-linear operations in the exponent.

2.2 Our First Lattice IBE

Our proposed IBE scheme follows the general framework for constructing a lattice IBE scheme
[CHKP10, ABB10a, Yam16, ZCZ16] that associates to each identity ID the matrix [A‖BID] ∈
Zn×2m
q . In the template construction, the main part of the ciphertext for ID contains s>[A‖BID]+

x>, where s
$← Znq and x is a small noise term. On the other hand, a private key for ID is a short

vector e satisfying [A‖BID]e = u for a random public vector u.
We compute the matrix BID using the fully key homomorphic technique of [BGG+14]. Infor-

mally they showed that there exist algorithms PubEval and TrapEval that satisfy

PubEval
(
F, {ARi + yiG}i∈[u]

)
= ARF + F(y) ·G where RF = TrapEval

(
F,A, {Ri, yi}i∈[u]

)
.

Here, F : {0, 1}u → {0, 1} is some function, Ri is a matrix with small coefficients, and yi is the
i-th bit of the bit-string y. Furthermore, RF has small coefficients.

For our construction, we prepare random matrices A,B1, . . . ,Bu in the master public key,
where u = ω(log2 λ). Then, we set

BID = PubEval( FMAH( · , ID), {Bi}i∈[u] ).

Here, we consider FMAH(·, ID) as a function that takes an binary string representing T as an input.
This is necessary to apply the result of [BGG+14] without using the super-polynomial modulus.
The security of the scheme is reduced to the LWE assumption, which says that given A ∈ Zn×mq

and w ∈ Zmq , it is hard to distinguish whether w
$← Zmq or w> = s>A + x′> for some noise term

x′. To prove security, we set the matrices {Bi} in the master public key as

Bi = ARi + Ti ·G

where A is from the problem instance of the LWE, Ri is a random matrix with small coefficients,
and Ti ∈ {0, 1} is the i-th bit of the binary representation of T. Due to the leftover hash lemma,
the master public key is correctly distributed. By the properties of PubEval and TrapEval, we
have

BID = ARID + FMAH(T, ID) ·G where RID = TrapEval
(
FMAH( · , ID),A, {Ri,Ti}i∈[u]

)
.

Furthermore, by the property of FMAH, we have

FMAH(T, ID(1)) = · · · = FMAH(T, ID(Q)) = 1 ∧ FMAH(T, ID?) = 0 (2)

with noticeable probability, where ID? is the challenge identity, and ID(1), . . . , ID(Q) are identities
for which the adversary has made key extraction queries. If this condition holds, the simulation
will be successful. The key extraction queries for ID ∈ {ID(1), . . . , ID(Q)} can be handled by using
RID as a G-trapdoor [MP12] for the matrix [A‖BID] = [A‖ARID + G]. The generation of the
challenge ciphertext is also possible by computing

w>[I‖RID? ] =
(
s>A + x′

>
)
· [I‖RID? ] = s>[A‖BID? ] + x′

>
[I‖RID? ].︸ ︷︷ ︸

noise term
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A subtle point here is that the noise term above is not correctly distributed. However, this
problem can be resolved by the technique in [KY16] (Lemma 2).

Finally, we remark that our actual construction is different from the above in two points.
First, we do not use the (general) fully key homomorphic algorithm of [BGG+14] to compute
BID and RID. If we use the algorithm in a naive way, the coefficients of RID will become super-
polynomial, which somewhat nullifies the merit of having smaller number of matrices. Instead,
we show a direct algorithm to compute BID and RID using the technique of [GV15], such that
the coefficients of RID are polynomially bounded. The second difference is that we add a matrix
B0 to the master public key and use the matrix [A‖B0 + BID] in the encryption and the key
generation, instead of [A‖BID]. This change is introduced because of a subtle technical reason to
make the security proof easier.

2.3 Our First VRF

Our VRF is constructed on bilinear maps and obtained by incorporating our technique with the
previous inversion-based VRF schemes [DY05, BMR10]. In the scheme, we set the function as

Vsk(X) = e(g, h)1/θX , (3)

where the value θX = Z∗p is deterministically computed by the input X. Let us ignore the problem
of how we add the verifiability to the scheme for the time being and start with the overview of
the security proof for the scheme as a (plain) PRF. The security will be proven under the L-DDH

assumption, which says that given (h, ĝ, ĝα, . . . ĝα
L
,Ψ), it is infeasible to distinguish whether

Ψ
$← GT or Ψ = e(ĝ, h)1/α. As before, we sample T and partition the input space into two sets

by FMAH. By the property and definition of FMAH, we have

T 6⊆ S(X(1)) ∧ · · · ∧ T 6⊆ S(X(Q)) ∧ T ⊆ S(X?)

with noticeable probability, where X? is the challenge input and X(1), . . . , X(Q) are the inputs for
which the adversary has made evaluation queries. Our strategy to prove the security is to embed
the problem instance and T into the parameters of the scheme so that we have

θX = PX(α) and g = ĝQ(α).

Here, PX(Z) is a polynomial in Zp[Z] that depends on X and Q(Z) ∈ Zp[Z] is some fixed poly-
nomial. We want PX(Z) and Q(Z) to satisfy the following property: There exist ξX ∈ Z∗p and
RX(Z) ∈ Zp[Z] such that

Q(Z)

PX(Z)
=


ξX
Z

+ RX(Z) if T ⊆ S(X)

RX(Z) if T 6⊆ S(X)
. (4)

If the above holds, the simulation will be successful. To answer the evaluation query on input
X ∈ {X(1), . . . , X(Q)}, we compute e(ĝRX(α), h). This is a valid answer, since we have T 6⊆ S(X)
and thus

e(ĝRX(α), h) = e(ĝQ(α)/PX(α), h) = e(g1/PX(α), h) = e(g, h)1/θX .

To answer the challenge query, we compute ΨξX? · e
(
ĝRX? (α), h

)
. If Ψ

$← GT , it is a random

element in GT , as desired. On the other hand, if Ψ = e(ĝ, h)1/α, we have

ΨξX? · e
(
ĝRX? (α), h

)
= e

(
ĝQ(α)/PX? (α), h

)
= e

(
g1/PX? (α), h

)
= e(g, h)1/θX?
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which is the correct value. Now we have to find the polynomials with the desired property (namely,
Eq. (4)). Let us take PX(Z) to be the following form:‡

PX(Z) =
∏

i∈[η],j∈[`]

(Z− ti + sj) where T = {t1, . . . , tη} and S(X) = {s1, . . . , s`}.

In some sense, PX(Z) checks (ti
?
= sj) in a brute-force manner. We can see that PX(Z) can be

divided by Z exactly |T ∩ S(X)| times. Furthermore, we have |T ∩ S(X)| = |T| = η ⇔ T ⊆ S(X).
This motivates us to define Q(Z) as follows:

Q(Z) = Zη−1 ·
∏
a6=0

(Z + a), (5)

where the product is taken for sufficiently many a 6= 0, so that the latter part of Q(Z) can be
divided by any factor of PX(Z) except for Z. It is easy to see that Q(Z) can be divided by Z exactly
η − 1 times. These imply that Q(Z) can be divided by PX(Z), if and only if the multiplicity of Z
in PX(Z) is at most η − 1. This fact allows us to prove Eq.(4).

Finally, we go back and see how our actual construction works. We set the verification key as
vk = (g, h, {Wi = gwi}i∈[η]) and choose θX as

θX =
∏

(i,j)∈[η]×[`]

(wi + sj)︸ ︷︷ ︸
:=θi,j

=
∏
i∈[η]

∏
j∈[`]

(wi + sj)


︸ ︷︷ ︸

φi

(6)

and set the function value as Vsk(X) = e(g, h)1/θX . The form of θX reflects the “brute-force
structure” that has appeared in PX(Z). To generate a proof for the function value, we take
the “step ladder approach” [Lys02, ACF09, HW10]. Namely, we publish values of the form
g1/θ1,1 , g1/θ1,1θ1,2 , . . . , g1/θ1,1···θη,` = g1/θX . The correctness of the function value can be verified by
the pairing computations using these terms. While this scheme achieves very short verification
key, the proofs for the function values are very long. We can make the proofs much shorter by a

simple trick. We introduce additional helper components {gw
j
i }(i,j)∈[η]×[`] to the verification key.

Instead of publishing the proof above, we publish g1/φ1 , g1/φ1φ2 , . . . , g1/φ1···φη = g1/θX as a proof.
Thanks to the helper components, we can verify whether the function value is correct using the
proof.

2.4 Other Constructions

Partitioning with Yet Another Function. We propose another function FAFF, which is also
useful to perform the partitioning technique. The main advantage of the function over FMAH is
that it achieves even shorter secret randomness K of length ω(log λ). Here, we begin by reviewing
FWAT, a slight variant of the celebrated Waters’ hash [Wat05], and then gradually modify it to
our FAFF. Let the identity space of IBE (or input space of VRF) be {0, 1}k. The function FWAT

is defined as

FWAT( K = ({αi}i∈[k], β), ID ) =

{
0, if (

∑
i∈[k] αiIDi) + β = 0

1, otherwise
where αi, β ∈ Z, ID ∈ {0, 1}k

‡ For simplicity, we use a polynomial that is slightly different from the actual proof.
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Here, IDi is the i-th bit of ID. In order for the function to be useful, we should choose the random
secret K so that

Pr
K

[
FWAT(K, ID(1)) = 1 ∧ · · · ∧ FWAT(K, ID(Q)) = 1 ∧ FWAT(K, ID?) = 0

]
is noticeable. By a standard analysis, one can show that it suffices to satisfy the following two
requirements:

(A) PrK [ FWAT(K, ID?) = 0 ] is noticeable.

(B) PrK [ FWAT(K, ID(i)) = 0 | FWAT(K, ID?) = 0 ] is sufficiently small for all i ∈ [Q].

In order to satisfy the requirements, one way to choose is α1, . . . , αk
$← [1, 4Q] and β

$← [−4kQ, 0].
As for requirement (A), we have

Pr
K

[FWAT(K, ID?) = 0] = Pr
α,β

β = −
∑
i∈[k]

αiID
?
i

 =
1

4kQ+ 1

where the second equality follows from −4kQ ≤
∑

i∈[k] αiID
?
i ≤ 0. We can see that the probability

is noticeable as desired. The main observation here is that since the value of each αi is polynomially
bounded and ID?i ∈ {0, 1}, the total sum is also confined within the polynomially bounded range
and thus can be guessed with noticeable probability. Requirement (B) can be proven by exploiting
a certain kind of pairwise independence of FWAT(K, ·).

The problem of the above function is that it requires long secret randomness K, whose length
is linear in k. As the first attempt to shorten this, we could consider a modified function F′WAT

defined as

F′WAT( K = (α, β), ID ) =

{
0, if αID + β ≡ 0

1, otherwise
where α, β ∈ Z, ID ∈ [2k − 1]

where we interpret ID ∈ {0, 1}k as an integer in [2k − 1] by the natural bijection. While it is easy
to satisfy requirement (B), we no longer know how to satisfy requirement (A) at the same time.
Even if the size of α is polynomially bounded, α · ID can be very large, and we can not guess the
value better than with exponentially small probability.

To resolve the problem, we further modify the function and obtain our final function FAFF
defined as follows:

FAFF( K = (α, β, ρ), ID ) =

{
0, if αID + β ≡ 0 mod ρ

1, otherwise
where α, β, ρ ∈ Z, ID ∈ [2k − 1].

Here, we choose ρ to be a random polynomial-size prime. Now, we can satisfy requirement
(A), since we only have to guess (α · ID mod ρ), for which there are only a polynomial number
of candidates. However, making the size of ρ polynomial causes a subtle problem regarding
requirement (B). Let us consider the case where an adversary makes queries such that ID? =
ID(1) + ρ. In such a case, we have FAFF(K, ID?) = FAFF(K, ID(1)) and the simulation fails with
probability 1, no matter how we choose α and β. Such queries can be made with noticeable
probability, since ρ is polynomial-size and the adversary can guess the value with noticeable
probability. However a small subtlety is that the probability does not need to be negligible in
order to satisfy requirement (B). Due to this observation, by choosing ρ randomly from a large
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enough domain (concretely, from [kQ2/ε, 4kQ2/ε]), we can make the probability of such queries
being made sufficiently small, hence satisfying requirement (A) and (B).

New IBE and VRF Based on the Function. Based on the function FAFF, we propose a lat-
tice based IBE scheme and a VRF scheme on bilinear groups. To construct an lattice based IBE
scheme, we follow the same template as the case of FMAH and set BID = PubEval(FAFF( · , ID), {Bi}i∈[u]).
Again, if we use the fully key homomorphic algorithm of [BGG+14] naively, the scheme will re-
quire super polynomial modulus q. To avoid this, to compute BID, we first compute a description
of a log-depth circuit corresponding to FAFF. Such a circuit exists by the classical result of Beam,
Cook, and Hoover [BCH86], who showed that the computation of division can be performed in
NC1, since division implies modulo ρ arithmetic. Then, we convert the log-depth circuit into a
branching program using the Barrington’s theorem [Bar89]. Finally, we use the key homomorphic
algorithm for branching programs in [GV15]. Note that similar approach was also taken in [BL16]
to homomorphically evaluate a PRF. To construct a VRF based on bilinear groups, we again take
advantage of the fact that FAFF can be computed by a log-depth circuit. This fact is necessary
for our VRF to be proven secure under a polynomial-size assumption, since our security proof
requires 2d-DDH assumption, where d is the depth of the circuit.

3 Preliminaries

Notation. We denote by [a] a set {1, 2, . . . , a} for any integer a ∈ N. For a set S, |S| denotes its
size. We treat a vector as a column vector. If A1 is an n×m and A2 is an n×m′ matrix, then
[A1‖A2] denotes the n × (m + m′) matrix formed by concatenating A1 and A2. We use similar
notation for vectors. For a vector u ∈ Zn, ‖u‖ and ‖u‖∞ denote its `2 and `∞ norm respectively.
Similarly, for a matrix R, ‖R‖∞ denotes its infinity norm. ‖R‖2 is the operator norm of R.
Namely, ‖R‖2 := sup‖x‖=1 ‖Rx‖.

3.1 Identity-Based Encryption

Let {0, 1}k be the identity space of the scheme. An IBE scheme is defined by the following four
algorithms.

Setup(1λ)→ (mpk,msk): The setup algorithm takes as input a security parameter 1λ and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and an identity ID ∈ {0, 1}k. It outputs a private key skID.
We assume that ID is implicitly included in skID.

Encrypt(mpk, ID,M)→ ct: The encryption algorithm takes as input a master public key mpk, an
identity ID ∈ {0, 1}k, and a message M, It outputs a ciphertext ct.

Decrypt(mpk, skID, ct)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a private key skID, and a ciphertext ct. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Definition 1. We say that a tuple of efficient algorithms (Setup,KeyGen,Encrypt,Decrypt) is an
adaptively-anonymous IBE, if all the following properties hold.
Correctness. We require correctness of decryption: that is, for all λ, all ID ∈ {0, 1}k, and all M

in the specified message space, Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1−negl(n)
holds, where the probability is taken over the randomness of the algorithms.
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Adaptive Anonymous Security. This security notion is defined by the following game between
a challenger and an adversary A.

Setup. At the outset of the game, the challenger runs Setup(1λ) → (mpk,msk) and gives
mpk to A.

Phase 1. A may adaptively make key-extraction queries. If A submits ID ∈ {0, 1}k to the
challenger, the challenger returns skID ← KeyGen(mpk,msk, ID).

Challenge Phase. At some point, A outputs a message M and an identity ID? ∈ {0, 1}k,

on which it wishes to be challenged. Then, the challenger picks a random coin coin
$←

{0, 1} and a random ciphertext ct?1
$← C from the ciphertext space. If coin = 0, it runs

Encrypt(mpk, ID?,M)→ ct?0 and gives the challenge ciphertext ct?0 to A. If coin = 1, it gives
ct?1 to A.

Phase 2. After the challenge query, A may continue to make key-extraction queries, with
the added restriction that ID 6= ID?.

Guess. Finally, A outputs a guess ĉoin for coin.
The advantage of A is defined as |Pr[ĉoin = coin]− 1

2 |. We say that the scheme satisfies adaptively-
anonymous security if the advantage of any PPT A is negligible.

3.2 Verifiable Random Function

A verifiable random function consists of the following three algorithms.

Gen(1λ)→ (vk, sk): The generation algorithm takes as input a security parameter 1λ and outputs
a verification key vk and a secret key sk.

Eval(sk, X)→ (Y, π): The evaluation algorithm takes as input the secret key sk and an input
X ∈ {0, 1}k and outputs a function value Y ∈ Y, where Y is a finite set, and a proof π.

Verify(vk, X, Y, π)→ 1 or 0: The verification algorithm takes as input vk, X ∈ {0, 1}k, Y ∈ Y,
and a proof π, and outputs a bit.

Definition 2. We say that a tuple of algorithms (Gen,Eval,Verify) is a verifiable random function
(VRF), if all the following properties hold.

Correctness. Algorithm Gen,Eval,Verify are polynomial-time algorithms, and for all (vk, sk)
$←

Gen(1λ) and all X ∈ {0, 1}k holds: if (Y, π)← Eval(sk, X), then Verify(vk, X, Y, π) = 1.
Unique provability. For all strings vk ∈ {0, 1}∗ (not necessarily generated by Gen) and all X ∈

{0, 1}k, there does not exist any (Y0, π0, Y1, π1) such that Y0 6= Y1 and Verify(vk, X, Y0, π0) =
Verify(vk, X, Y1, π1) = 1.

Pseudorandomness. This security notion is defined by the following game between a challenger
and an adversary A.

Setup. At the outset of the game, the challenger runs Gen(1λ) → (vk, sk) and gives vk to
A.

Phase 1. A may adaptively query the evaluation of the function. If A submits X ∈ {0, 1}k
to the challenger, the challenger returns (Y, π)← Eval(sk, X).

Challenge Query. At some point, A makes the challenge query. If A outputs X? ∈ {0, 1}k,

the challenger picks random coin coin
$← {0, 1}. Then it runs (Y ?

0 , π
?
0) ← Eval(sk, X?) and

picks Y ?
1

$← Y. Finally it returns Y ?
coin to A.

Phase 2. After the challenge query, A may continue querying the evaluation of the function
with the added restriction that X 6= X?. The challenger returns (Y, π)← Eval(sk, X).
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Guess. Finally, A outputs guess ĉoin for coin.

The advantage of A is defined as |Pr[ĉoin = coin]− 1
2 |. We say that the scheme satisfies pseudo-

randomness if the advantage of any PPT A is negligible.

3.3 Preliminaries on Lattices

Gaussian Distributions. For an integer m > 0, let DZm,σ be the discrete Gaussian distribution
over Zm with parameter σ > 0. Regarding the Gaussian distributions, the following lemmas hold.

Lemma 1 ([Reg05], Lemma 2.5). We have Pr[ ‖x‖ > σ
√
m : x

$← DZm,σ ] ≤ 2−2m.

Lemma 2 ([KY16], Lemma 1). Let q,m,m′ be positive integers and r a positive real satisfying
r > max{ω(

√
logm), ω(

√
logm′)}. Let b ∈ Zmq be arbitrary and x chosen from DZm,r. Then for

any V ∈ Zm×m′ and positive real s > ‖V‖2, there exists a PPT algorithm ReRand(V,b + x, r, s)
that outputs b′ such that b′> = b>V + x′> ∈ Zm′×1

q where x′ is distributed statistically close to
DZm′ ,2rs.

Learning with Errors (LWE) Assumption. We define the learning with errors (LWE) prob-
lem, which was introduced by Regev [Reg05].

Definition 3 (LWE). For an integers n = n(λ), m = m(n), a prime integer q = q(n) > 2, a real
number α ∈ (0, 1), and a PPT algorithm A, an advantage for the learning with errors problem
dLWEn,m,q,α of A is defined as follows:

Adv
dLWEn,m,q,α
A =

∣∣∣Pr
[
A(A, s>A + x>)→ 1

]
− Pr

[
A(A,w> + x>)→ 1

]∣∣∣
where A

$← Zn×mq , s
$← Znq , x

$← DZm,αq, w
$← Zmq . We say that dLWEn,m,q,α assumption holds if

Adv
dLWEn,m,q,α
A is negligible for all PPT A.

Regev [Reg05] (see also [GKV10]) showed that solving dLWEn,m,q,α for αq > 2
√

2n is (quan-
tumly) as hard as approximating the SIVP and GapSVP problems to within Õ(n/α) factors in the
`2 norm, in the worst case. In the subsequent works, (partial) dequantumization of the Regev’s
reduction were achieved [Pei09, BLP+13].

Gadget Matrix. Let m > ndlog qe. There is a fixed full-rank matrix G ∈ Zn×mq such that
there exists a deterministic polynomial-time algorithm G−1 which takes the input U ∈ Zn×mq and
outputs V = G−1(U) such that V ∈ {0, 1}m×m and GV = U.

Trapdoors. Here, we follow the presentation of [BV16]. Let n,m, q ∈ N and consider a matrix
A ∈ Zn×mq . For all V ∈ Zn×m′q , we let A−1

σ (V) be a distribution that is a Gaussian (DZm,σ)m
′

conditioned on A ·A−1
σ (V) = V. A σ-trapdoor for A is a procedure that can sample from the

distribution A−1
σ (V) in time poly(n,m,m′, log q), for any V. We slightly overload notation and

denote a σ-trapdoor for A by A−1
σ . We have the following:

Lemma 3 (Properties of Trapdoors [GPV08, ABB10a, CHKP10, ABB10b, MP12, BLP+13]).
Lattice trapdoors exhibit the following properties.

1. Given A−1
σ , one can obtain A−1

σ′ for any σ′ ≥ σ.

2. Given A−1
σ , one can obtain [A‖B]−1

σ and [B‖A]−1
σ for any B.
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3. For all A ∈ Zn×mq and R ∈ Zm×m, with m ≥ ndlog qe, one can obtain [AR + G‖A]−1
σ for

σ = m · ‖R‖∞ · ω(
√

logm).

4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1
σ0

) where A ∈
Zn×mq for some m = O(n log q) and is 2−n-close to uniform, where σ0 = ω(

√
n log q logm).

5. For A−1
σ and u ∈ Znq , it follows Pr[ ‖A−1

σ (u)‖ >
√
mσ ] = negl(n).

3.4 Preliminaries on Bilinear Maps

Certified Bilinear Group Generators. We define certified bilinear group generators following
[HJ16]. We require that there is an efficient bilinear group generator algorithm GrpGen that on
input 1λ and outputs a description Π of bilinear groups G,GT with prime order p and a map
e : G × G → GT . We also require that GrpGen is certified, in the sense that there is an efficient
algorithm GrpVfy that on input a (possibly incorrectly generated) description of the bilinear groups
and outputs whether the description is valid or not. Furthermore, we require that each group
element has unique encoding, which can be efficiently recognized.

Definition 4. A bilinear group generator is a probabilistic polynomial-time algorithm GrpGen
that takes as input a security parameter λ (in unary) and outputs Π = (p,G,GT , ◦, ◦T , e, φ(1))

$←
GrpGen(1λ) such that the following requirements are satisfied.

1. p is prime and log(p) = Ω(λ).

2. G and GT are subsets of {0, 1}∗, defined by algorithmic descriptions of maps φ : Zp → G
and φT : Zp → GT .

3. ◦ and ◦T are algorithmic descriptions of efficiently computable (in the security parameter)
maps ◦ : G×G→ G and ◦T : GT ×GT → GT , such that

• (G, ◦) and (GT , ◦T ) form algebraic groups,

• φ is a group isomorphism form (Zp,+) to (G, ◦), and

• φT is a group isomorphism from (Zp,+) to (GT , ◦T ).

4. e is an algorithmic description of an efficiently computable (in the security parameter) bi-
linear map e : G×G→ GT . We require that e is non-degenerate, that is,

x 6= 0→ e(φ(x), φ(x)) 6= φT (0).

Definition 5. We say that group generator GrpGen is certified, if there exists a deterministic
polynomial-time algorithm GrpVfy with the following properties.
Parameter validation. Given a string Π (which is not necessarily generated by GrpGen), algo-
rithm GrpVfy(Π) outputs 1 if and only if Π has the form

Π = (p,G,GT , ◦, ◦T , e, φ(1))

and all requirements from Definition 4 are satisfied.
Recognition and unique representation of elements of G. Furthermore, we require that
each element in G has a unique representation, which can be efficiently recognized. That is, on
input two strings Π and s, GrpVfy(Π, s) outputs 1 if and only if GrpVfy(Π) = 1 and it holds that
s = φ(x) for some x ∈ Zp. Here φ : Zp → G denotes the fixed group isomorphism contained in Π
to specify the representation of elements of G (see Definition 4).
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L-Diffie-Hellman Assumptions.

Definition 6 (L-Diffie-Hellman Assumptions.). For a PPT algorithm A, an advantage for the
decisional L-Diffie Hellman problem L-DDH of A with respect to GrpGen is defined as follows:

AdvL-DDH
A = |Pr[A(Π, ĝ, h, ĝα, ĝα

2
, . . . ĝα

L
,Ψ0)→ 1]− Pr[A(Π, ĝ, h, ĝα, ĝα

2
, . . . ĝα

L
,Ψ1)→ 1]|

where Π
$← GrpGen(1λ), α

$← Z∗p, ĝ, h
$← G, Ψ0 = e(ĝ, h)1/α, and Ψ1

$← GT . We say that L-DDH

assumption holds if AdvL-DDH
A is negligible for all PPT A.

3.5 Known Facts

As observed in [Reg05, ABB10a], the following lemma is obtained as a corollary to the (general)
leftover hash lemma.

Lemma 4. (Leftover Hash Lemma.) Let q ∈ N be an odd prime and let m > (n + 1) log q +

ω(log n). Let R
$← {−1, 1}m×m and A,A′

$← Zn×mq be uniformly random matrices. Then the
distribution of (A,AR) is negl(n)-close to the distribution of (A,A′).

Lemma 5. (Number of Primes.) For a, b ∈ N with a ≤ b, let π(a, b) be the number of primes in
[a, b]. If a ≥ 221, we have

a

log2 a
≤ π(a+ 1, 4a)

Proof. In Lemma 5.3 of [BHJ+13], it is shown that a/ log a ≤ π(1, a) ≤ 2a/ log a holds for a ≥ 221.
Therefore, we have

π(a+ 1, 4a) = π(1, 4a)− π(1, a) ≥ 4a

log 4a
− 2a

log a
≥ 3a

log a
− 2a

log a
=

a

log a
.

This completes the proof of Lemma 5. ut

The following lemma is taken from [KY16] (see also Lemma 28 in the full version of [ABB10a]),
and is implicit in [BR09, Jag15, Yam16].

Lemma 6 (Lemma 8 in [KY16], See also Lemma 28 in [ABB10a]). Let us consider an IBE
(resp. VRF) scheme and an adversary A that breaks the adaptively-anonymous security (resp.
pseudorandomness) with advantage ε. Let the identity space (resp. input space) be X and consider
a map γ that maps a sequence of elements in X to a value in [0, 1]. We consider the following
experiment. We first execute the security game for A. Let X? be the challenge identity (resp.
challenge input) and X1, . . . , XQ be the identities (resp. inputs) for which key extraction queries
(resp. evaluation queries) were made. We denote X = (X?, X1, . . . , XQ). At the end of the game,

we set coin′ ∈ {0, 1} as coin′ = ĉoin with probability γ(X) and coin′
$← {0, 1} with probability

1− γ(X). Then, the following holds.∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ ≥ γmin · ε−
γmax − γmin

2

where γmin and γmax are the maximum and the minimum of γ(X) taken over all possible X,
respectively.

Though the lemma was proven only for IBE in [KY16], the same proof works also for VRF.

15



4 Partitioning Functions

In this section, we introduce the notion of partitioning functions. The notion abstracts out the
information theoretic properties that are useful in the security proofs based on the partitioning
techniques. Then, we proceed to recap the specific partitioning function that was given by [Jag15].
Then, we propose two new constructions of partitioning functions. The first one is obtained by
introducing a simple but novel twist to the construction by [Jag15]. The second one is based on
the affine-functions on random modulus. In the later sections, we will construct new lattice IBEs
and VRFs based on these partitioning functions.

4.1 Definition

In the security proofs based on the partitioning technique [BB04b, Wat05], the simulations are
successful only with noticeable probabilities. As observed by Waters [Wat05], this causes a sub-
tle problem when considering the reduction to the decisional assumptions (such as the L-DDH).
He resolved the problem by introducing the artificial abort step, where the simulator intention-
ally aborts with certain probability even when the simulation is successful. Later, Bellare and
Ristenpart [BR09] showed that by requiring reasonable upper bound on the probability that the
simulation is successful in addition to the lower bound, this step can be removed. In the subse-
quent work, Jager [Jag15] incorporated the idea of [BR09] into the notion of the admissible hash
function [BB04b, CHKP10, FHPS13] to define balanced admissible hash function. The notion is
a useful tool to perform the security proofs based on the partitioning technique. In addition, it
is compatible with the decisional assumptions in the sense that it does not require the artificial
abort step. Here, we define the notion of the partitioning function by slightly generalizing the
balanced admissible hash function [Jag15].

Definition 7. Let F = { Fλ : Kλ ×Xλ → {0, 1} } be an ensemble of function families. We say
that F is a partitioning function, if there exists an efficient algorithm PrtSmp(1λ, Q, ε), which takes
as input polynomially bounded Q = Q(λ) ∈ N and noticeable ε = ε(λ) ∈ (0, 1/2] and outputs K
such that:

1. There exists λ0 ∈ N such that

Pr
[
K ∈ Kλ : K

$← PrtSmp
(

1λ, Q(λ), ε(λ)
) ]

= 1

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and ε(λ).

2. For λ > λ0, there exists γmax(λ) and γmin(λ) that depend on Q(λ) and ε(λ) such that for
all X(1), . . . , X(Q), X? ∈ Xλ with X? 6∈ {X(1), . . . , X(Q)},

γmax(λ) ≥ Pr
[
F(K,X(1)) = · · · = F(K,X(Q)) = 1 ∧ F(K,X?) = 0

]
≥ γmin(λ) (7)

holds and the function τ(λ) defined as

τ(λ) := γmin(λ) · ε(λ)− γmax(λ)− γmin(λ)

2
(8)

is noticeable. The probability is taken over the choice of K
$← PrtSmp(1λ, Q(λ), ε(λ)).

We call K the partitioning key and τ(λ) the quality of the partitioning function.
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In the following, we often drop the subscript λ and denote F, K, and X for the sake of simplicity.
We remark that the term τ(λ) above, which may seem very specific, is inherited from [Jag15]. As
explained in [Jag15], such a term appears typically in security analyses that follows the approach
of Bellare and Ristenpart [BR09] (See also Lemma 6). Looking ahead, the quantity τ(λ) will
directly affect the reduction cost of our IBEs and VRFs. The length of (the binary representation
of) the partitioning key K will affect the efficiency of the resulting schemes. Therefore, we want
the partitioning function F for the largest possible τ(λ) and the shortest possible partitioning key.

There are two main differences from the definition of [Jag15]. Firstly, we consider any function
F, whereas they only considered a specific function (namely, FADH in Sec. 4.2). Secondly, we
explicitly add the condition regarding the domain correctness of the output of PrtSmp (the first
condition), which was implicit in [Jag15].

Comparison with Programmable Hash Functions. Our notion of the partitioning function
is also similar to the programmable hash function [HK08, ZCZ16]. The main difference is that
whereas the notion of the programmable hash function is defined on specific algebraic structures
such as (bilinear) groups [HK08] and lattices [ZCZ16], our definition is irrelevant to them. Since
the security proofs of our IBEs and VRFs have the same information theoretic structure in
common, we choose to decouple them from the underlying algebraic structures.

4.2 Construction from Admissible Hash Function

Here, we recap the result of Jager [Jag15] who constructed a specific partitioning function that
he calls balanced admissible hash function. The result will be used in the next subsection to
construct our first partitioning function. Let k(λ) = Θ(λ) and `(λ) = Θ(λ) be integers and let
{Ck : {0, 1}k → {0, 1}`}k∈N be a family of error correcting codes with minimal distance `c for a
constant c ∈ (0, 1/2). Explicit constructions of such codes are given in [SS96, Zém01, Gol08] for
instance. Let us define

KADH = {0, 1,⊥}` and XADH = {0, 1}k.

We define FADH as

FADH(K,X) =

{
0, if ∀i ∈ [`] : C(X)i = Ki ∨ Ki = ⊥
1, otherwise

where C(X)i and Ki are the i-th significant bit of C(X) and K, respectively. Jager [Jag15] showed
the following theorem.

Theorem 1. (Adapted from Theorem 1 in [Jag15].) There exists an efficient algorithm AdmSmp(1λ, Q, ε),
which takes as input Q ∈ N and ε ∈ (0, 1/2] and outputs K with exactly η′ components not equal
to ⊥, where

η′ :=

⌊
log(2Q+Q/ε)

− log (1− c)

⌋
,

such that Eq.(7) and (8) hold with respect to F := FADH, PrtSmp := AdmSmp, and τ(λ) = 2−η
′−1·ε.

In particular, FADH is a partitioning function.
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4.3 Our Construction Based on Modified Admissible Hash Function

Here, we propose our first construction of the partitioning function FMAH, which is obtained by
modifying FADH in the previous subsection. The advantage of FMAH is that it achieves much
shorter partitioning keys compared with FADH. In particular, the length is ω(log2 λ) in FMAH,
whereas Θ(λ) in FADH. We will use the same notation as in Sec. 4.2. Let us introduce an integer
η(λ) = ω(log λ). η(λ) can be set arbitrarily as long as it grows faster than log λ. (See footnote in
Sec. 1.) For our construction, we set

KMAH = { T ⊆ [2`] | |T| < η } and XMAH = {0, 1}k.

We define FMAH as

FMAH(T, X) =

{
0, if T ⊆ S(X)

1, otherwise
where S(X) = { 2i− C(X)i | i ∈ [`] } .

In the above, C(X)i is the i-th bit of C(X) ∈ {0, 1}`. See Fig. 1 in Sec. 2.1 for an illustrative
example of S.

Lemma 7. The function FMAH defined above is a partitioning function.

Proof. To prove the lemma, we define PrtSmpMAH as follows. It uses the algorithm AdmSmp from
the previous subsection as a subroutine.

PrtSmpMAH(1λ, Q, ε) : It runs AdmSmp(1λ, Q, ε)→ K and sets

T = { 2i−Ki | i ∈ [`], Ki 6= ⊥ } ⊆ [2`],

where Ki is the i-th bit of K. It finally outputs T.

See Fig. 1 in Sec. 2.1 for an illustrative example of T. We first show that PrtSmpMAH satisfies the
first property of Definition 7. By Theorem 1, |T| = η′ = dlog (2Q+Q/ε)/ log (1− c)e. To show
T ∈ KMAH for all sufficiently large λ, it suffices to show η′(λ) < η(λ) for all sufficiently large λ.
This follows since

η′(λ) =

⌊
log(2Q+Q/ε)

− log (1− c)

⌋
= O (log(poly(λ))) = O(log λ) and η(λ) = ω(log λ)

when Q(λ) is polynomially bounded and ε is noticeable for constant c. We next prove the second
property. This follows from Theorem 1 and by the following observation:

FADH(K,X) = 0 ⇔ C(X)i = Ki ∀i ∈ [`] such that Ki 6= ⊥
⇔ T ⊆ S(X)

⇔ FMAH(T, X) = 0.

This completes the proof of Lemma 7. ut
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4.4 Our Construction Based on Affine Functions

Here, we propose our second construction of the partitioning function FAFF. Compared to FMAH,
the function achieves an even shorter length of ω(log λ) for the partitioning keys. Let k(λ) = Θ(λ)
and η(λ) = ω(log λ) be integers. For our construction, we set

KAFF = {0, 1}3η, XAFF = {0, 1}k

FAFF(K,X) is defined as

FAFF( K = (α, β, ρ), X ) =

{
0, if ρ 6= 0 ∧ αX + β ≡ 0 mod ρ

1, otherwise
,

where α, β, ρ ∈ {0, 1}η. Here, we slightly abuse the notation and identify a bit-string in {0, 1}η
with an integer in [0, 2η − 1] by its binary representation. Similarly, a bit-string in {0, 1}k is
identified with an integer in [0, 2k − 1].

Theorem 2. FAFF defined above is a partitioning function.

Proof. To prove the theorem, we define PrtSmpAFF as follows.

PrtSmpAFF(1λ, Q, ε) : Let I be

I =

{
Prime x

∣∣∣∣ ⌈k2Q

ε

⌉
+ 1 ≤ x ≤ 4 ·

⌈
k2Q

ε

⌉ }
.

It picks ρ
$← I and α, β

$← [0, ρ− 1] and outputs K = (α, β, ρ).

We have to show that PrtSmpAFF has the two properties defined in Definition 7. We start with
the first property. When ε(λ) is noticeable and Q(λ) is polynomially bounded, we have

ρ ≤ 4k(λ)2Q(λ)

ε(λ)
+ 1 = poly(λ) ≤ 2η(λ) − 1

for all sufficiently large λ, where the latter inequality follows from η(λ) = ω(log λ). Since 0 ≤
α, β ≤ ρ− 1, it follows that K = (α, β, ρ) ∈ ([0, 2η − 1])3 = KAFF for all sufficiently large λ.

Next, we proceed to show the second property. Let us denote γ(X(1), . . . , X(Q), X?) :=
PrK [FAFF(K,X(1)) = · · · = FAFF(K,X(Q)) = 1 ∧ FAFF(K,X?) = 0]. We first obtain an up-
per bound for γ(X(1), . . . , X(Q), X?):

γ(X(1), . . . , X(Q), X?) ≤ Pr
K

[FAFF(K,X?) = 0]

= Pr
α,β,ρ

[αX? + β ≡ 0 mod ρ]

=
∑
ρ̄∈I

Pr
ρ

[ρ = ρ̄] · Pr
α,β

$←[0,ρ̄−1]

[αX? + β ≡ 0 mod ρ̄]

=
∑
ρ̄∈I

Pr
ρ

[ρ = ρ̄] · 1

ρ̄︸ ︷︷ ︸
:=γmax

.

We have

γmax ≥
∑
ρ̄∈I

Pr
ρ

[ρ = ρ̄] · 1

4dk2Q/εe
=

1

4dk2Q/εe
≥ ε

5k2Q
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which we use later. Next, we show the lower bound. We have

γ(X(1), . . . , X(Q), X?)

= Pr
K

[FAFF(K,X?) = 0]− Pr
K

[
FAFF(K,X?) = 0 ∧

(
∨j∈[Q]FAFF(K,X(j)) = 0

) ]
= Pr

K
[FAFF(K,X?) = 0]− Pr

K

[
∨j∈[Q]

(
FAFF(K,X?) = 0 ∧ FAFF(K,X(j)) = 0

) ]
≥ Pr

K
[FAFF(K,X?) = 0]︸ ︷︷ ︸

=γmax

−
∑
j∈[Q]

Pr
K

[
FAFF(K,X?) = 0 ∧ FAFF(K,X(j)) = 0

]
︸ ︷︷ ︸

:=γj

.

It suffices to show the upper bound on γj .

γj = Pr
K

[
FAFF(K,X?) = 0 ∧ FAFF(K,X(j)) = 0

]
= Pr

α,β,ρ

[
αX? + β ≡ 0 mod ρ ∧ αX(j) + β ≡ 0 mod ρ

]
= Pr

α,β,ρ

[
αX? + β ≡ 0 mod ρ ∧ α ·

(
X? −X(j)

)
≡ 0 mod ρ

]
= Pr

α,β,ρ

[
αX? + β ≡ 0 mod ρ ∧

(
α ≡ 0 mod ρ ∨ X? −X(j) ≡ 0 mod ρ

) ]
≤ Pr

α,β,ρ
[ αX? + β ≡ 0 mod ρ ∧ α ≡ 0 mod ρ ]︸ ︷︷ ︸

:=γ′j

+ Pr
α,β,ρ

[
αX? + β ≡ 0 mod ρ ∧ X? −X(j) ≡ 0 mod ρ

]
︸ ︷︷ ︸

:=γ′′j

The last equality follows from the fact that ρ is prime. We then bound γ′j and γ′′j . We have

γ′j = Pr
α,β,ρ

[ αX? + β ≡ 0 mod ρ ∧ α ≡ 0 mod ρ ]

= Pr
α,β,ρ

[ α ≡ 0 mod ρ ∧ β ≡ 0 mod ρ ]

=
∑
ρ̄∈I

Pr
ρ

[ρ = ρ̄] · 1

ρ̄2

≤
∑
ρ̄∈I

Pr
ρ

[ρ = ρ̄] ·
(

ε

k2Q

)2

=
ε2

k4Q2

≤ ε2

18k2Q2

where the last inequality holds for k ≥ 5. To bound γ′′j , we introduce a set J as

J :=
{

Prime x
∣∣ x divides |X? −X(j)|

}
.

Since |X? − X(j)| ≤ 2k, it can be seen that |J | ≤ log 2k = k. This bound can be obtained by
replacing all prime factors of |X? −X(j)| with 2. We have

γ′′j = Pr
α,β,ρ

[
αX? + β ≡ 0 mod ρ ∧ X? −X(j) ≡ 0 mod ρ

]
20



=
∑
ρ̄∈I

Pr
ρ

$←I
[ρ = ρ̄] · Pr

α,β
$←[0,ρ̄−1]

[
αX? + β ≡ 0 mod ρ̄ ∧ X? −X(j) ≡ 0 mod ρ̄

]
=

∑
ρ̄∈I∩J

Pr
ρ

$←I
[ρ = ρ̄] · Pr

α,β
$←[0,ρ̄−1]

[ αX? + β ≡ 0 mod ρ̄ ] (9)

=
∑
ρ̄∈I∩J

(
1

|I|

)
·
(

1

ρ̄

)
≤ |I ∩ J |

|I|
· ε

k2Q

≤ k ·
(

log(dk2Q/εe)
dk2Q/εe

)
· ε

k2Q
(10)

≤ k ·
(

log(1 + k2Q/ε)

k2Q/ε

)
· ε

k2Q

=
ε2 · log(1 + k2Q/ε)

k3Q2

≤ ε2

18k2Q2
(11)

where Eq.(9) follows since X? − X(j) ≡ 0 mod ρ̄ if and only if ρ̄ ∈ I ∩ J , Eq.(10) follows from
Lemma 5, and Eq.(11) follows from 18 log(1 + k2Q/ε) ≤ k, which holds for sufficiently large λ
since

log

(
1 +

k(λ)2Q(λ)

ε(λ)

)
= log(poly(λ)) = O(log λ), and k(λ) = Θ(λ).

Putting the pieces together, we have

γ(X(1), . . . , X(Q), X?) ≥ γmax −
∑
j∈Q

(
ε2

18k2Q2
+

ε2

18k2Q2

)

≥ γmax −
ε2

9k2Q︸ ︷︷ ︸
:=γmin

.

It remains to show that γminε− (γmax − γmin)/2 is noticeable. We have

γminε−
γmax − γmin

2
= γmaxε− (2ε+ 1)

(
ε2

18k2Q

)
≥ ε2

5k2Q
− 3 ·

(
ε2

18k2Q

)
≥ ε2

30k2Q
.

The quantity is noticeable and this completes the proof of Theorem 2. ut

5 Our IBE Schemes

In this section, we give a generic construction of an adaptively secure lattice based IBE from a
partitioning function. Our generic construction requires the underlying partitioning function to
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be compatible (in some sense) with the structure of lattices. In the following, we first formalize
the requirement by giving the definition of compatibility. Then, we show that FMAH and FAFF are
compatible in this sense. Finally, we show the generic construction of IBE and prove its security.

5.1 Compatible Algorithms for Partitioning Functions

The following definition gives a sufficient condition for partitioning functions to be useful for
constructing adaptively secure IBE schemes.

Definition 8. We say that the deterministic algorithms (Encode,PubEval,TrapEval) are δ-compatible
with a function family {F : K×X → {0, 1}} if they are efficient and satisfy the following properties:

• Encode( K ∈ K )→ κ ∈ {0, 1}u

• PubEval
(
X ∈ X , {Bi ∈ Zn×mq }i∈[u]

)
→ BX ∈ Zn×mq

• TrapEval
(
K ∈ K, X ∈ X , A ∈ Zn×mq , {Ri ∈ Zm×m}i∈[u]

)
→ RX ∈ Zm×m

We require that the following holds:

PubEval
(
X, {ARi + κiG}i∈[u]

)
= ARX + F(K,X) ·G

where κi ∈ {0, 1} is the i-th bit of κ = Encode(K) ∈ {0, 1}u. Furthermore, if Ri ∈
{−1, 0, 1}m×m for all i ∈ [u], we have ‖RX‖∞ ≤ δ.

It is possible to obtain compatible algorithms for any partitioning functions, including ours,
by directly using the fully key homomorphic algorithm in [BGG+14]. However, if we apply the
algorithm naively, it will end up with super-polynomial δ, which is undesirable. In Sec. 5.2 and 5.3,
we will provide δ-compatible algorithms for FMAH and FAFF for polynomial δ by carefully applying
the idea from [GV15]. In Sec. 5.4, we obtain new lattice IBE schemes using these algorithms.

5.2 Compatible Algorithms for FMAH

Here, we show compatible algorithms for FMAH here. Before describing the algorithms, we state
and prove the following lemma, which will be used in the following. The lemma is a variant of
Lemma 6 in [Yam16] and can be proven based on the idea from [GV15]. The proof appears in
Appendix A.

Lemma 8 (Homomorphic Multiplication). Let d = d(λ) be a natural number. There exist two
efficient deterministic algorithms PubMultd and TrapMultd with the following properties:

• PubMultd
(
{Bi}i∈[d]

)
→ B×d ∈ Zn×mq . Here, Bi ∈ Zn×mq .

• TrapMultd
(
A, {Ri, xi}i∈[d]

)
→ R×d ∈ Zm×m. Here, A ∈ Zn×mq , ‖Ri‖∞ ≤ δ, xi ∈ {0, 1}.

Furthermore, we have

PubMultd
(
{ARi + xiG}i∈[d]

)
= AR×d + x1 · · ·xd ·G (12)

and ‖R×d ‖∞ ≤ mdδ.
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Compatible Algorithms for FMAH. Here, we provide compatible algorithms (EncodeMAH,
PubEvalMAH,TrapEvalMAH) for FMAH. Let k, `, η, and S be as in Sec. 4.3. We also introduce
ζ(λ) := dlog(2` + 1)e and set u(λ) := η(λ)ζ(λ). Note that by our choice of ζ, any integer in
[0, 2`] can be represented as a string in {0, 1}ζ by its binary representation. In the following, for
notational convenience, we use the index space [η]× [ζ] instead of [u]. For instance, the input to
PubEval is denoted as X and {Bi,j}(i,j)∈[η]×[ζ], instead of X and {B}i∈[u].

EncodeMAH(T) : Given T ⊆ [2`], it first parses it as T → {t1, . . . , tη′} where η′ < η and ti ∈ [2`],
and it sets tη′+1 = · · · = tη = 0. It then concatenates the binary representations of t1, . . . , tη
to obtain a bit string κ in {0, 1}ηζ = {0, 1}u. Finally, it outputs κ.

PubEvalMAH

(
X, {Bi,j}(i,j)∈[η]×[ζ]

)
: It first computes S(X) = {s1, . . . , s`} ⊂ [2`]. It also sets

s`+1 = 0. Let si,j ∈ {0, 1} be the j-th bit of the binary representation of si. It then
proceeds as follows:

1. For (i, j, i′) ∈ [η]× [ζ]× [`+ 1], it sets Vi,j,i′ =

{
G−Bi,j if si′,j = 0

Bi,j if si′,j = 1.

2. For (i, i′) ∈ [η]× [`+ 1], it computes Vi,i′ := PubMultζ({Vi,j,i′}j∈[ζ]).

3. For i ∈ [η], it computes Vi := G− PubMult`+1({G−Vi,i′}i′∈[`+1]).

4. Finally, it computes the output BX as BX = G− PubMultη
(
{Vi}i∈[η]

)
.

TrapEvalMAH

(
T, X,A, {Ri,j}(i,j)∈[η]×[ζ]

)
: It first computes S(X) = {s1, . . . , s`} ⊂ [2`] and parses

T→ (t1, . . . , tη′) ⊆ [2`], where η′ < η and ti ∈ [2`]. It then sets s`+1 := 0 and tη′+1 = · · · =
tη = 0. In the following, let si,j and ti,j be the j-th bit of the binary representation of si
and ti, respectively. It then proceeds as follows:

1. For (i, j, i′) ∈ [η]× [ζ]× [`+ 1], it sets

{
Si,j,i′ := −Ri,j , bi,j,i′ := 1− ti,j if si′,j = 0

Si,j,i′ := Ri,j , bi,j,i′ := ti,j if si′,j = 1.

2. For (i, i′) ∈ [η]×[`+1], it computes bi,i′ :=
∏
j∈[ζ] bi,j,i′ and Si,i′ := TrapMultζ(A, {Si,j,i′ , bi,j,i′}j∈[ζ]).

3. For i ∈ [η], it computes Si = −TrapMult`+1(A, {−Si,i′ , 1 − bi,i′}i′∈[`+1]) and bi =
1−

∏
i′∈[`+1](1− bi,i′).

4. Finally, it computes RX = −TrapMultη
(
A, {Si, bi}i∈[η]

)
and bX = 1 −

∏
i∈[η] bi and

outputs RX .

Lemma 9. (EncodeMAH,PubEvalMAH,TrapEvalMAH) defined above are m3u(` + 1)-compatible al-
gorithms for FMAH.

Proof. We have to show ‖RX‖∞ ≤ m3u(`+ 1) and

PubEval
(
X, {ARi,j + ti,jG}(i,j)∈[η]×[ζ]

)
= ARX + FMAH(T, X) ·G

for TrapEval
(
T, X,A, {Ri,j}(i,j)∈[η]×[ζ]

)
→ RX when Ri,j ∈ {−1, 0, 1}m×m. We start with the

former. By repeatedly applying Lemma 8, it can be seen that when Bi,j = ARi,j + ti,jG, we have

Vi,j,i′ = ASi,j,i′ + bi,j,i′G, Vi,i′ = ASi,i′ + bi,i′G, Vi = ASi + biG, BX = ARX + bXG,
bi,j,i′ ∈ {0, 1}, bi,i′ ∈ {0, 1}, bi ∈ {0, 1}, bX ∈ {0, 1},
‖Si,j,i′‖∞ ≤ 1, ‖Si,i′‖∞ ≤ mζ, ‖Si‖∞ ≤ m2ζ(`+ 1), ‖RX‖∞ ≤ m3ηζ(`+ 1),
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as desired. To prove the latter, it suffices to show bX = FMAH(T, X). We have

bX = 1−
∏
i∈[η]

bi

= 1−
∏
i∈[η]

1−
∏

i′∈[`+1]

(1− bi,i′)


= 1−

∏
i∈[η]

1−
∏

i′∈[`+1]

1−
∏
j∈[ζ]

bi,j,i′


= ¬

∧
i∈[η]

¬ ∧
i′∈[`+1]

¬ ∧
j∈[ζ]

bi,j,i′

 (13)

= ¬

∧
i∈[η]

∨
i′∈[`+1]

∧
j∈[ζ]

bi,j,i′


= ¬

∧
i∈[η]

∨
i′∈[`+1]

∧
j∈[ζ]

(
ti,j

?
= si′,j

) (14)

= ¬

∧
i∈[η]

∨
i′∈[`+1]

(
ti

?
= si′

)
= ¬

∧
i∈[η]

(
ti

?
∈ S(X) ∪ {0}

) (15)

= ¬

 ∧
i∈[η′]

(
ti

?
∈ S(X)

) (16)

= ¬
(
T

?
⊆ S(X)

)
= FMAH(T, X)

where we regard bi,j,i′ as boolean values rather than integers in Eq.(13) since they are in {0, 1},
Eq.(14) follows from bi,j,i′ = 1 if and only if ti,j = si′,j , Eq.(15) follows from S(X) = {s1, . . . , s`}
and s`+1 = 0, and Eq.(16) follows from ti 6= 0 for i ≤ η′ and ti = 0 for i ≥ η′ + 1. This completes
the proof of Lemma 9. ut

5.3 Compatible Algorithms for FAFF

Here, we provide a compatible algorithm for FAFF with δ = poly(n) here. Let k and η be as in
Sec. 4.4. We also define u := 3η. To start with, we state the following lemma, which shows that
FAFF can be computed in NC1. The proof is fairly standard given the result of Beam, Cook, and
Hoover [BCH86], who showed integer division is in NC1.

Lemma 10. The function FAFF : {0, 1}u+k → {0, 1} can be computed by a circuit with depth
O(log (u+ k)) = O(log n). Furthermore, the description of the circuit can be computed in time
poly(u, k).
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Proof. Let us parse the input as κ → (K = (α, β, ρ) ∈ {0, 1}3η, X ∈ {0, 1}k). From the input,
αX + β can be computed by O(log (u+ k))-depth circuits, which follows from the well-known
fact that the addition, subtraction, and multiplication over the integers can be computed in NC1.
In the next step, we apply the result of Beam, Cook, and Hoover [BCH86], who showed that
ba/bc ∈ Z can be computed in NC1 given the binary representations of two natural numbers a
and b. This implies that (a mod b) can also be computed in NC1, since (a mod b) = a−b·ba/bc.
Using the result, one can compute (αX+β mod ρ) by an additional O(log (u+ k))-depth circuit
because αX + β ≤ 2η+k+1 ∈ {0, 1}η+k+2 and ρ ∈ {0, 1}η. (In the case of ρ = 0, it outputs
1.) Finally, it outputs 0 if (αX + β mod ρ) = 0 and otherwise 1. The final step can also be
implemented by O(log (u+ k))-depth circuits. Summing up the above discussions, it follows that
FAFF can be computed by O(log (u+ k))-depth circuits. This completes the proof of Lemma 10.

ut

We further state the following lemma, which is needed to obtain poly(n)-compatible algorithm
for FAFF. The lemma can be obtained by the combination of the techniques in [GV15] and
Barrington’s Theorem [Bar89].

Lemma 11. Let ` := `(n) ∈ N be a natural number and F : {0, 1}` → {0, 1} be a function that can
be computed by a Boolean NAND circuit with depth d. There exist two deterministic algorithms
NC1PubEval and NC1TrapEval with the following properties.

• NC1PubEval
(
F, {Bi}i∈[`]

)
→ BF ∈ Zn×mq . Here, Bi ∈ Zn×mq .

• NC1TrapEval
(
F,A, {Ri, xi}i∈[`]

)
→ RF ∈ Zm×m. Here, A ∈ Zn×mq , Ri ∈ {−1, 0, 1}m×m,

and xi ∈ {0, 1}. Furthermore, we have

NC1PubEval
(
F, {ARi + xiG}i∈[`]

)
= ARF + F(x) ·G

and ‖RF‖∞ ≤ (3m+ 1) · 4d,

where x ∈ {0, 1}` is the concatenation of x1, . . . , x`.

• The running time of NC1PubEval and NC1TrapEval are poly(`, 4d, n,m, log q). In particular,
if d = O(log n), it runs in polynomial time.

The proof of lemma 11 will appear in Appendix B.

Compatible Algorithms for FAFF. We now use the algorithms in lemma 11 to construct
compatible algorithms (EncodeAFF,PubEvalAFF,TrapEvalAFF) for FAFF as follows.

EncodeAFF(K) : Given an input K ∈ {0, 1}u, it outputs the same bit-string κ := K.

PubEvalAFF(X, {Bi}i∈[u]) : It first sets Bi+u := Xi ·G for i ∈ [k], where Xi ∈ {0, 1} is the i-th bit
of X. It then computes BX := NC1PubEval(FAFF, {Bi}i∈[u+k]) and returns the output.

TrapEvalAFF(K,X,A, {Ri}i∈[u]) : It first sets xi := Ki for i ∈ [u]. It also sets Ri+u := 0n×m and
xi+u = Xi for i ∈ [k], where Kj and Xj are the j-th bit of K and X, respectively. It then
computes RX := NC1TrapEval(FAFF,A, {Ri, xi}i∈[u+k]) and returns the output.

Lemma 12. (EncodeAFF,PubEvalAFF,TrapEvalAFF) defined above are δ-compatible algorithms for
FAFF for some fixed polynomial δ = poly(n).
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Proof. We prove that these algorithms satisfy the desired properties. Let us assume that Bi =
ARi+KiG for i ∈ [u]. We further assume that x = {xi}i∈[u+k], {Bi}i∈[u+1,u+k], and {Ri}i∈[u+1,u+k]

are computed as specified. Then, we have FAFF(x) = FAFF(K,X) and Bi = ARi+xiG for i ∈ [u+
k]. Therefore, the property of NC1PubEval and NC1TrapEval imply that PubEvalAFF(X, {Bi}i∈[u]) =
ARX +FAFF(x)G = ARX +FAFF(K,X)G. By Lemma 11 and the fact that d = O(log n), it also
follows that ‖RX‖∞ ≤ (3m+ 1) · 4d = poly(n). This completes the proof of Lemma 12. ut

5.4 Construction

Here, we construct an IBE scheme based on a partitioning function F : K × X → {0, 1} with
associating δ-compatible algorithms (Encode,PubEval,TrapEval). We assume X = ID = {0, 1}k,
where ID is the identity space of the scheme. If a collision resistant hash CRH : {0, 1}∗ → {0, 1}k
is available, we can use any bit-string as an identity. For simplicity, we let the message space of the
scheme be {0, 1}. For the multi-bit variant, we refer to Sec. 5.7. Our scheme can be instantiated
with FMAH and FAFF, which would lead to schemes with efficiency and security trade-offs. We
provide an overview of the resulting schemes in Sec. 7.

Setup(1λ) : On input 1λ, it sets the parameters n, m, q, σ, α, and α′ as specified in Sec. 5.5,

where q is a prime number. Then, it picks random matrices B0,Bi
$← Zn×mq for i ∈ [u] and

a vector u
$← Znq . It also picks (A,A−1

σ0
)

$← TrapGen(1n, 1m, q) such that A ∈ Zn×mq and
σ0 = ω(

√
n log q logm). It finally outputs

mpk =
(

A, B0, {Bi}i∈[u], u
)

and msk = A−1
σ0
.

KeyGen(mpk,msk, ID) : Given an identity ID, it first computes

PubEval
(
ID, {Bi}i∈[u]

)
→ BID ∈ Zn×mq .

It then computes [A‖B0 + BID]−1
σ from A−1

σ0
and samples

e
$← [A‖B0 + BID]−1

σ (u).

Then, it returns skID = e ∈ Z2m. Note that we have [A‖B0 + BID] · e = u mod q.

Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1}, it first computes PubEval(ID, {Bi}i∈[u])→
BID. It then picks s

$← Znq , x0
$← DZ,αq, x1,x2

$← DZm,α′q and computes

c0 = s>u + x0 + M · dq/2e ∈ Zq, c>1 = s> [A‖B0 + BID] + [x>1 ‖x>2 ] ∈ Z2m
q .

Finally, it returns the ciphertext ct = (c0, c1).

Decrypt(mpk, skID, ct) : To decrypt a ciphertext ct = (c0, c1) using a private key skID := e, it first
computes

w = c0 − c>1 · e ∈ Zq.

Then it returns 1 if |w − dq/2e| < dq/4e and 0 otherwise.
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5.5 Correctness and Parameter Selection

We then prove the correctness and fix the parameters for the scheme. When the cryptosystem is
operated as specified, we have during decryption,

w = c0 − c>1 · e = M · dq/2e+ x0 − [x>1 ‖x>2 ] · e︸ ︷︷ ︸
error term

.

Lemma 13. Assuming α′ > α, the error term is bounded by O(α′σmq) with overwhelming prob-
ability.

Proof. With overwhelming probability, we have

|x0 − [x>1 ‖x>2 ] · e| ≤ |x0|+ |[x>1 ‖x>2 ] · e|
≤ |x0|+ ‖[x>1 ‖x>2 ]‖ · ‖e‖
≤ αq

√
m+ (α′q

√
2m) · (σ

√
2m)

= O(α′σmq).

The second inequality above follows from Cauchy-Schwartz and the third inequality follows from
Lemma 3 (Item 5) and 1. ut

Parameter selection. Now, to satisfy the correctness requirement and make the security proof
work, we need that

− the error term is less than q/5 with overwhelming probability (i.e., q > Ω(α′σmq)),

− that TrapGen can operate (i.e., m ≥ 6ndlog qe),

− that the leftover hash lemma (Lemma 4) can be applied in the security proof (i.e., m =
(n+ 1) log q + ω(log n)),

− that σ is sufficiently large so that the distribution of private keys in the real world is the same
as that in the simulation, (i.e., σ > σ0 = ω(

√
n log q logm) and σ > m · (1 + δ) · ω(

√
logm),

where the latter condition turns out to be more restrictive),

− that the ReRand algorithm in the security proof works (i.e., α′/2α >
√

2 · m(δ + 1) and
αq > ω(

√
logm). See Lemma 2),

− that the worst case to average case reduction works (i.e., αq > 2
√

2n).

To satisfy the above requirements, we set the parameters as follows:

m = O(n log q), q = n7/2 · δ2 · ω(log7/2 n), σ = m · δ · ω(
√

logm)

αq = 3
√
n, α′q = 5

√
n ·m · δ.

Here, the parameter δ is determined by the compatible algorithms corresponding to F.
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5.6 Security Proof

Theorem 3. If F : K×X → {0, 1} is a partitioning function and (Encode,PubEval,TrapEval) are
the corresponding δ-compatible algorithms, our scheme achieves adaptively-anonymous security
assuming dLWEn,m+1,q,α.

Proof. Let A be a PPT adversary that breaks the adaptively-anonymous security of the scheme.
In addition, let ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound of the number
of key extraction queries, respectively. By assumption, Q(λ) is polynomially bounded and there
exists a noticeable function ε0(λ) such that ε(λ) ≥ ε0(λ) holds for infinitely many λ. By the
property of the partitioning function (Definition 7, Item 1), we have that

K ∈ K where K
$← PrtSmp(1λ, Q, ε0)

holds with probability 1 for all sufficiently large λ. Here, PrtSmp is the sampling algorithm
associated to F. Therefore, in the following, we assume that this condition always holds. We
prove the security of the scheme via the following sequence of games. In each game, a value
coin′ ∈ {0, 1} is defined. While it is set coin′ = ĉoin in the first game, these values might be
different in the later games. In the following, we define Ei to be the event that coin′ = coin.

Game0 : This is the real security game. Recall that since the ciphertext space is C = Zq × Z2m
q ,

in the challenge phase, the challenge ciphertext is set as ct? = (c0, c1)
$← Zq × Z2m

q if

coin = 1. At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
sets coin′ = ĉoin. By definition, we have∣∣∣∣Pr[E0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the following additional
step at the end of the game. First, the challenger runs PrtSmp(1λ, Q, ε0) → K and checks
whether the following condition holds:

F(K, ID(1)) = · · · = F(K, ID(Q)) = 1 ∧ F(K, ID?) = 0 (17)

where ID? is the challenge identity, and ID(1), . . . , ID(Q) are identities for which A has made
key extraction queries. If it does not hold, the challenger ignores the output ĉoin of A, and
sets coin′

$← {0, 1}. In this case, we say that the challenger aborts. If condition (17) holds,

the challenger sets coin′ = ĉoin. By Lemma 6 and the second property of the partitioning
function (Definition 7, Item 2),∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ γminε−
1

2
(γmax − γmin)

≥ γminε0 −
1

2
(γmax − γmin)

= τ

holds for infinitely many λ and a noticeable function τ = τ(λ) , where γmin, γmax, and τ are
specified by ε0, Q, and the underlying partitioning function F.
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Game2 : In this game, we change the way B0 and Bi,j are chosen. At the beginning of the

game, the challenger runs K
$← PrtSmp(1λ, Q, ε0), computes κ = Encode(K), and samples

R0,Ri
$← {−1, 1}m×m for i ∈ [u]. Recall that by our assumption, K ∈ K and thus κ ∈

{0, 1}u. Then, we define B0 and Bi as

B0 = AR0 and Bi = ARi + κi ·G for i ∈ [u] (18)

where κi ∈ {0, 1} is the i-th bit of κ. The rest of the game is the same as in Game1.

By Lemma 4, the distributions(
A, AR0, {ARi + κi ·G}i∈[u]

)
and

(
A, B0, {Bi}i∈[u]

)
are negl(n)-close, where B0,Bi

$← Zn×mq . Therefore, we have

|Pr[E1]− Pr[E2]| = negl(n).

Before describing the next game, we define RID for ID ∈ {0, 1}k as

RID = TrapEval
(
K, ID,A, {Ri}i∈[u]

)
.

Note that we have

‖R0 + RID‖∞ ≤ ‖R0‖∞ + ‖RID‖∞ ≤ δ + 1 (19)

where the second inequality follows from R0,Ri ∈ {−1, 1}m×m and the δ-compatibility of TrapEval.
Furthermore, from the property of TrapEval, when condition (17) is satisfied, we have

B0 + BID =

{
A · (R0 + RID?) for ID = ID?

A · (R0 + RID) + G for ID ∈ {ID(1), . . . , ID(Q)}
(20)

where BID = PubEval
(
ID, {Bi}i∈[u]

)
.

Game3 Recall that in the previous game, the challenger aborts at the end of the game, if condition
(17) is not satisfied. In this game, we change the game so that the challenger aborts as soon
as the abort condition becomes true. Since this is only a conceptual change, we have

Pr[E2] = Pr[E3].

Game4 In this game, we change the way the matrix A is sampled. Namely, Game4 challenger
picks A

$← Zn×mq instead of generating it with a trapdoor. By Lemma 3, this makes
only negligible difference. Furthermore, we also change the way the key extraction queries
are answered. When A makes a key extraction query for an identity ID, the challenger
first checks whether F(K, ID) = 0 and aborts if so (as specified in Game3). Otherwise, it
computes [A‖B0 + BID]−1

σ = [A‖A(R0 + RID) + G]−1
σ from R0 + RID using the algorithm

in Lemma 3 (Item 3), and samples

e
$← [A‖A(R0 + RID) + G]−1

σ (u),

and returns it to A. Note that the private key was sampled using A−1
σ0

in the previous game.
By Eq.(19), (20), and σ > m(δ + 1) · ω(

√
logm), it follows from Lemma 3 that the above

change alters the view of the adversary only negligibly. Thus, we have

|Pr[E3]− Pr[E4]| = negl(n).
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Game5 : In this game, we change the way the challenge ciphertext is created when coin = 0. If
coin = 0, to create the challenge ciphertext for the identity ID? and the message M, Game5

challenger first picks s
$← Znq , x0

$← DZ,αq, x̄1
$← DZm,αq and sets w0 := s>u+x0 and w>1 :=

s>A + x̄>1 . Then, it computes RID? and sets the challenge ciphertext (c0, c1) ∈ Zq ×Z2m
q as

c0 := w0 + M · dq/2e, c>1 := ReRand
(
w1, [Im‖R0 + RID? ], αq, α

′/2α
)

(21)

where Im is the identity matrix with size m.

We show that the view of A in Game5 is negligibly close to that in Game4. To see this, we
apply Lemma 2 with V := [Im‖R0 + RID? ], x := x̄1, and b> := s>A to obtain that the
distribution of c1 is negligibly close to the following:

c>1 = s>A [Im‖R0 + RID? ] + [x>1 ‖x>2 ]

= s> [A‖B0 + BID? ] + [x>1 ‖x>2 ]

where x1,x2
$← DZm,α′q. The second equality follows from Eq.(20). Note that we can apply

the lemma because

α′/2α >
√

2 ·m · (δ + 1) ≥
√
m ·
√

2m · ‖R0 + RID?‖∞ ≥ ‖R0 + RID?‖2

where the second inequality follows from Eq.(19) (with ID = ID?) and the third from the
general inequality regarding the relationship between the infinity norm and the operator
norm. We may therefore conclude that

|Pr[E4]− Pr[E5]| ≤ negl(n).

Game6 In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext Game6 challenger first picks v0

$← Zq, v1
$← Zmq ,

x0
$← DZ,αq, and x̄1

$← DZm,αq and sets w0 := v0 +x0 and w1 := v1 + x̄1. Then it computes
RID? and sets the challenge ciphertext as Eq.(21).

We claim that |Pr[E5] − Pr[E6]| is negligible assuming dLWEn,m+1,q,α. To show this, we
construct an adversary B against the problem using A, which is described as follows.

B is given the problem instance of LWE (A′,w′ = v′ + x̄) ∈ Zn×(m+1)
q × Zm+1

q where x̄
$←

DZm+1,αq. The task of B is to distinguish whether v′> = s>A′ for s
$← Znq or v′

$← Zm+1
q .

Let the first column of A′ be u ∈ Znq and the last m columns be A ∈ Zn×mq . Further, let the
first coefficient of w′ be w0 and the last m coefficients be w1. Using these terms, B sets mpk
as Eq.(18). At any point in the game, B aborts and sets coin′

$← {0, 1} if condition (17) is not
satisfied. During the game, key extraction queries made by A can be answered as in Game4

without knowing A−1
σ0

. To generate the challenge ciphertext, it first picks coin
$← {0, 1}. If

coin = 0, it generates the challenge ciphertext as in Eq.(21) using w0 and w1, and returns
it to A. Note that secret randomness used to generate w0 and w1 (namely, s and x̄) is not
necessary to perform this. If coin = 1, B returns a random ciphertext. At the end of the
game, coin′ is defined. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

It can be easily seen that if (A′,w′) is a valid LWE sample (i.e., v′> = s>A′), the view of

the adversary corresponds to Game5. If v′
$← Zm+1

q , the view of A corresponds to that of
Game6. It is clear that the advantage of B is |Pr[E5] − Pr[E6]|. Assuming dLWEn,m+1,q,α,
we have

|Pr[E5]− Pr[E6]| = negl(n).
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Game7 In this game, we further change the way the challenge ciphertext is created when coin = 0.
If coin = 0, to create the challenge ciphertext Game6 challenger first picks v0

$← Zq, v1
$← Zmq ,

x0
$← DZ,αq, and x1,x2

$← DZm,α′q and computes RID? . Then, it sets the challenge ciphertext
as

c0 := v0 + M · dq/2e, c>1 :=
[
v>1

∥∥∥v>1 (R0 + RID?)
]

+
[
x>1

∥∥∥x>2 ] . (22)

Similarly to the change from Game4 to Game5, by setting V := [Im‖R0 + RID? ], x := x̄1,
and b := v1 (as in Game6) and applying Lemma 2, it can be seen that this change alters
the distribution of the challenge ciphertext only negligibly. Thus, we have

|Pr[E6]− Pr[E7]| = negl(n).

Game8 In this game, we change the challenge ciphertext to be a random vector, regardless of
whether coin = 0 or coin = 1. Namely, Game8 challenger generates the challenge ciphertext
(c0, c1) as c0

$← Zq and c1
$← Zmq . In this game, the value coin is independent from the view

of A. Therefore, Pr[E8] = 1/2.

We now proceed to bound |Pr[E7] − Pr[E8]|. Since Game7 and Game8 differ only in the
creation of the challenge ciphertext when coin = 0, we focus on this case. First, it is easy
to see that c0 is uniformly random over Zq in both Game7 and Game8. We also have to
show that the distribution of c1 =

[
v>1 ‖v>1 (R0 + RID?)

]
+
[
x>1 ‖x>2

]
in Game7 is negl(n)-

close to the uniform distribution over Z2m
q . To see this, we first observe that the following

distributions are negl(n)-close:

(A,AR0,v
>
1 ,v

>
1 R0) ≈ (A,A′,v>1 ,v

′
1
>

) ≈ (A,AR0,v
>
1 ,v

′
1
>

), (23)

where A,A′
$← Zn×mq , R0

$← {−1, 1}m×m, v1,v
′
1

$← Zmq . It can be seen that the first and

the second distributions are negl(n)-close, by applying Lemma 4 for [A>‖v1]> ∈ Z(n+1)×m
q

and R0. It can also be seen that the second and the third distributions are negl(n)-close,
by applying the same lemma for A and R0. From the above, we have that the following
distributions are statistically close:

(A,AR0,v
>
1 + x>1 ,v

>
1 (R0 + RID?) + x>2 ) ≈ (A,AR0,v

>
1 + x>1 ,v

′
1
>

+ v>1 RID? + x>2 )

≈ (A,AR0,v
>
1 ,v

′
1
>

)

where A
$← Zn×mq , R0

$← {−1, 1}m×m, v1,v
′
1

$← Zmq . The first and the second distribu-
tions above are negl(n)-close by Eq.(23), whereas the second and the third distributions are
negl(n)-close by the fact that x1, x2, and Ri, which are used to compute RID? , are chosen
independently random from other variables. Therefore, we may conclude that

|Pr[E7]− Pr[E8]| = negl(n).

Analysis. From the above, we have that∣∣∣∣Pr[E8]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[E1]− 1

2
+

7∑
i=1

Pr[Ei+1]− Pr[Ei]

∣∣∣∣∣
31



≥
∣∣∣∣Pr[E1]− 1

2

∣∣∣∣− 7∑
i=1

|Pr[Ei+1]− Pr[Ei]|

≥ τ(λ)− negl(λ).

for infinitely many λ. Since Pr[E8] = 1/2, we have τ(λ) ≤ negl(λ) for infinitely many λ. This is a
contradiction since τ(λ) is noticeable. This completes the proof of Theorem 3. ut

5.7 Multi-bit Variant

Here, we explain how to extend our scheme to be a multi-bit variant without increasing much the
size of the master public keys and ciphertexts following [PVW08, ABB10a, Yam16]. (However,
it comes with longer private keys.) To modify the scheme so that it can deal with the message
space of length `M , we replace u ∈ Znq in mpk with U ∈ Zn×`Mq . The component c0 in the

ciphertext is replaced with c>0 = s>U + x>0 + Mdq/2e, where x0
$← DZ`M ,αq and M ∈ {0, 1}`M is

the message to be encrypted. The private key is replaced to be E ∈ Zm×`M , where E is chosen as
E

$← [A‖B0 + BID]−1
σ (U). We can prove security for the multi-bit variant from dLWEn,m+`M ,q,α

by naturally extending the proof of Theorem 3. We note that the same parameters as in Sec. 5.5
will also work for the multi-bit variant. By this change, the sizes of the master public keys,
ciphertexts, and private keys become Õ(n2u+n`M ), Õ(n+ `M ), and Õ(n`M ) from Õ(n2u), Õ(n),
and Õ(n), respectively. The sizes of the master public keys and ciphertexts will be asymptotically
the same as long as `M = Õ(n). To deal with longer messages, we employ a KEM-DEM approach
as suggested in [Yam16]. Namely, we encrypt a random ephemeral key of sufficient length and
then encrypt the message by using the ephemeral key.

6 Our VRF Scheme Based on FMAH

6.1 Construction

Here, we construct a verifiable random function scheme based on the partitioning function FMAH.
We let the input and output space of the scheme be X = {0, 1}k and Y = GT , respectively.
Let η := η(λ), ` := `(λ), C : {0, 1}k → {0, 1}`, and S be as in Sec. 4.3. We also introduce
`1 := `1(λ) and `2 = `2(λ) such that ` = `1`2. These parameters will control the trade-offs
between sizes of proofs and verification keys. A typical choice would be (`1, `2) = (O(

√
`), O(

√
`))

or (`1, `2) = (O(`), O(1)).

Gen(1λ) : On input 1λ, it chooses a group description Π
$← GrpGen(1λ). It chooses random

generators g, h
$← G∗ and w1, . . . , wη

$← Zp. It then outputs

vk =

(
Π, g, h,

{
Wi,j1 := gw

j1
i

}
(i,j1)∈[η]×[`1]

)
and sk =

(
{wi}i∈[η]

)
.

Eval(sk, X) : Given X ∈ {0, 1}k, it first computes S(X) = {s1, . . . , s`} ⊂ [2`],

θ =
∏

(i,j)∈[η]×[`]

(wi + sj), and θi,j2 =
∏

(i′,j′)∈Ωi,j2

(wi′ + sj′) (24)

for (i, j2) ∈ [η]× [`2], where

Ωi,j2 =
{

(i′, j′) ∈ [η]× [`] | ( i′ ∈ [i− 1] ) ∨ ( i′ = i ∧ j′ ∈ [j2`1] )
}
.
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We note that θ = θη,`2 . If θ ≡ 0 mod p, it outputs Y = 1GT and π = ({πi,j2 =
1G}(i,j2)∈[η]×[`2])

§. Otherwise, it outputs

Y = e(g, h)1/θ and π =

( {
πi,j2 = g1/θi,j2

}
(i,j2)∈[η]×[`2]

)
.

Verify(vk, X, Y, π) : It first checks the validity of vk by the following steps. It outputs 0 if any of
the following does not hold:

1. vk is of the form (Π, g, h, {Wi,j1}(i,j1)∈[η]×[`1]).

2. GrpVfy(Π)→ 1, g, h ∈ G∗, and Wi,j1 ∈ G for all (i, j1) ∈ [η]× [`1].

3. e (Wi,1,Wi,j1−1) = e (g,Wi,j1) for all (i, j1) ∈ [η]× [2, `1].

It then checks the validity of Y and π. To do this, it computes Φi,j2 ∈ G for (i, j2) ∈ [η]× [`2]
as

Φi,j2 := gϕj2,0 ·
∏

j1∈[`1]

W
ϕj2,j1
i,j1

, (25)

where {ϕj2,j1 ∈ Zp}(j2,j1)∈[`2]×[0,`1] are the coefficients of the following polynomial:∏
j′∈[(j2−1)`1+1,j2`1]

(
Z + sj′

)
= ϕj2,0 +

∑
j1∈[`1]

ϕj2,j1Z
j1 ∈ Zp[Z].

It outputs 0 if any of the following does not hold:

4. X ∈ {0, 1}k, Y ∈ GT , π is of the form π = ({πi,j2 ∈ G}(i,j2)∈[η]×[`2]).

5. If there exists (i, j2) ∈ [η]× [`2] such that Φi,j2 = 1G, we have Y = 1GT and πi,j2 = 1G
for all (i, j2) ∈ [η]× [`2].

6. If Φi,j2 6= 1G for all (i, j2) ∈ [η] × [`2], the following equation holds for all (i, j2) ∈
[η]× [`2]:

e (πi,j2 ,Φi,j2) = e(πi,j2−1, g) (26)

where we define πi,0 := πi−1,`2 for i ≥ 2 and π1,0 := g.

7. e(πη,`2 , h) = Y holds.

If all the above conditions hold, it outputs 1.

6.2 Correctness, Unique Provability, and Pseudorandomness of the Scheme

Correctness. We prove correctness of the scheme. Let us assume that (vk, Y, π) are correctly

generated as (vk, sk)
$← Gen(1λ) and (Y, π)← Eval(sk, X). It is straightforward to see that it passes

Step 1, 2, 3, and 4 in the verification algorithm. In the case where there exists (i, j2) ∈ [η]× [`2]
such that logg Φi,j2 ≡ 0 mod p, it is straightforward to see that Y = 1GT and honestly generated
(vk, Y, π) passes Step 5, 6, and 7. Next, we proceed to consider the case where logg Φi,j2 6≡ 0

§The event occurs with only negligible probability. This choice of the output is arbitrary and can be replaced
with any fixed group elements.
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mod p for all (i, j2) ∈ [η] × [`2]. First, it trivially passes Step 5. Furthermore, since θ = θη,`2 ,
it also passes Step 7. Finally, we show that it passes Step 6 by proving Eq.(26). Let us denote
θi,0 := θi−1,`2 , Ωi,0 := Ωi−1,`2 for i ≥ 2, θ1,0 := 1, and Ω1,0 be the empty set. We have

logg Φi,j2 = ϕj2,0 +
∑
j1∈[`1]

ϕj2,j1w
j1
i

=
∏

j′∈[(j2−1)`1+1,j2`1]

(wi + sj′)

=

 ∏
(i′,j′)∈Ωi,j2

(wi′ + sj′)

/ ∏
(i′,j′)∈Ωi,j2−1

(wi′ + sj′)


= θi,j2/θi,j2−1. (27)

This immediately implies Eq.(26). This completes the proof of the correctness.

Unique Provability. We prove the unique provability of the scheme. We have to show
that for any vk ∈ {0, 1}∗, there does not exist any (Y, π, Y ′, π′) such that Verify(vk, X, Y, π) =
Verify(vk, X, Y ′, π′) = 1 and Y 6= Y ′.

• Step 1 checks whether Π contains valid certified bilinear group parameters. Step 2 checks
whether g ∈ G∗, h ∈ G, and Wi,j1 ∈ G. Thus, we may assume in the following that all
these group elements are valid and have a unique encoding. In particular, there exists

unique wi ∈ Zp such that gwi = Wi,1 for all i ∈ [η]. Step 3 verifies whether Wi,j1
?
= gw

j1
i

for all (i, j1) ∈ [η] × [2, `1]. We may assume that all these conditions are satisfied in the
following. At this point, θ, θi,j2 , and Φi,j2 for (i, j2) ∈ [η]× [`2] defined as Eq.(24) and (25)
are well-defined.

• In Step 4, it is checked whether X ∈ {0, 1}k, Y ∈ GT , and π is of the form π = ({πi,j2 ∈
G}(i,j2)∈[η]×[`2]). We first consider the case where logg Φi,j2 6≡ 0 mod p holds for all (i, j2) ∈
[η] × [`2]. In this case, by Eq.(27) and induction, we can see that (Y, π) will pass Step
6 only if πi,j2 = g1/θi,j2 holds for all (i, j2) ∈ [η] × [`2]. Furthermore, it will pass Step 7
only if Y = e(g1/θη,`2 , h) = e(g, h)1/θ. Due to the fact that the bilinear group is certified,
which guarantees that each group element has a unique encoding and that the bilinear map
is non-degenerate, the unique provability follows. Next we consider the case where there
exists (i, j2) ∈ [η] × [`2] such that logg Φi,j2 ≡ 0 mod p. In such a case, the only (Y, π)
that is accepted by (Step 5 of) the verification algorithm is Y = 1GT and π = {πi,j2 =
1G}(i,j2)∈[η]×[`2]. Similarly to the above case, the fact that the bilinear group is certified
implies the unique provability.

This completes the proof of the unique provability.

Pseudorandomness. The following theorem asserts the pseudorandomness of the scheme.

Theorem 4. Our scheme satisfies pseudorandomness assuming L-DDH with L = (4`+ 1)η + `1.

Proof. Let A be a PPT adversary that breaks pseudorandomness of the scheme. In addition, let
ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound on the number of evaluation queries,
respectively. By assumption, Q(λ) is polynomially bounded and there exists a noticeable function
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ε0(λ) such that ε(λ) ≥ ε0(λ) holds for infinitely many λ. By the property of the partitioning
function (Definition 7, Item 1), we have that

|T| < η where T
$← PrtSmpMAH(1λ, Q, ε0)

holds with probability 1 for all sufficiently large λ. Therefore, in the following, we assume that
this condition always holds. We show the security of the scheme via the following sequence of
games. In each game, a value coin′ ∈ {0, 1} is defined. While it is set coin′ = ĉoin in the first
game, these values might be different in the later games. In the following, we define Ei be the
event that coin′ = coin.

Game0 : This is the real security game. Recall that since the range of the function is Y = GT ,
in the challenge phase, Y ?

1
$← GT is returned to A if coin = 1. At the end of the game, A

outputs a guess ĉoin for coin. Finally, the challenger sets coin′ = ĉoin. By definition, we
have ∣∣∣∣Pr[E0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the following additional
step at the end of the game. First, the challenger runs PrtSmpMAH(1λ, Q, ε0) → T ⊆ [2`]
and checks whether the following condition holds:

T 6⊆ S(X(1)) ∧ · · · ∧ T 6⊆ S(X(Q)) ∧ T ⊆ S(X?) (28)

where X? is chosen by A at the challenge phase, and X(1), . . . , X(Q) are inputs to the VRF
for which A has queried the evaluation of the function. If it does not hold, the challenger
ignores the output ĉoin of A, and sets coin′

$← {0, 1}. In this case, we say that the challenger

aborts. If condition (28) holds, the challenger sets coin′ = ĉoin. By Lemma 6 and 7 (See
also Definition 7, Item 2),∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ γminε−
γmax − γmin

2

≥ γminε0 −
γmax − γmin

2
= τ

holds for infinitely many λ and a noticeable function τ = τ(λ). Here, γmin, γmax, and τ are
specified by ε0, Q, and the underlying partitioning function FMAH.

Game2 : In this game, we change the way wi are chosen. At the beginning of the game, the
challenger picks T

$← PrtSmpMAH(1λ, Q, ε0) and parses it as T = {t1, . . . , tη′} ⊂ [2`]. Recall
that by our assumption, we have η′ < η. It then sets ti := 0 for i ∈ [η′ + 1, η]. It then

samples α
$← Z∗p, and w̃i

$← Z∗p for i ∈ [η]. Then, wi are defined as

wi = w̃i · α− ti for i ∈ [η].

The rest of the game is the same as in Game1. The statistical distance of the distributions
of {wi}i∈[η] in Game1 and Game2 is at most η/p, which is negligible. Therefore, we have

|Pr[E1]− Pr[E2]| = negl(λ).

35



Before describing the next game, for any Ω ⊆ [η] × [`], T ⊂ [2`] with |T| = η′ < η, and
X ∈ {0, 1}k, we define polynomials PX,Ω(Z),Q(Z) ∈ Zp[Z] as

PX,Ω(Z) =
∏

(i,j)∈Ω

(w̃iZ− ti + sj) and Q(Z) = Zη
′−1 ·

∏
(i,j)∈[η]×[−2`,2`]\{0}

(w̃iZ + j) ,

where {sj}j∈[`] = S(X) and {ti}i∈[η] are defined as in Game2 (namely, T = {ti}i∈[η′] and ti = 0
for i > η′). In the special case of Ω = [η] × [`], we denote PX(Z) := PX,[η]×[`](Z). We state the
following lemma, which plays an important roll in our security proof.

Lemma 14. There exist ξX ∈ Z∗p and RX(Z) ∈ Zp[Z] such that

Q(Z)

PX(Z)
=


ξX
Z

+ RX(Z) if T ⊆ S(X)

RX(Z) if T 6⊆ S(X)
. (29)

From the above lemma, we can see that for any Ω ⊆ [η]× [`], it holds that

PX,Ω(Z) | Q(Z) if T 6⊆ S(X),

because PX,Ω(Z) | PX(Z). So as not to interrupt the proof of Theorem 4, we intentionally skip
the proof of Lemma 14 for the time being.

Game3 Recall that in the previous game, the challenger aborts at the end of the game, if condition
(28) is not satisfied. In this game, we change the game so that the challenger aborts as soon
as the abort condition becomes true. Since this is only a conceptual change, we have

Pr[E2] = Pr[E3].

Game4 In this game, we change the way g is sampled. Namely, Game4 challenger first picks α and
w̃i as specified in Game2. It further picks ĝ

$← G∗. Then, it computes (coefficients of) Q(Z)
and sets

g := ĝQ(α), Wi,j1 = gw
j1
i = ĝQ(α)·(w̃iα−ti)j1 for (i, j1) ∈ [η]× [`1]. (30)

It aborts and outputs a random bit if g = 1G ⇔ Q(α) ≡ 0 mod p. It can be seen that
the distribution of g and Wi,j1 is unchanged, unless Q(α) ≡ 0 mod p. Since Q(Z) is a
non-zero polynomial with degree (4η`+ η′ − 1) and α is chosen uniformly at random from
Z∗p, it follows from the Schwartz-Zippel lemma that this happens with probability at most
(4η`+ η′ − 1)/(p− 1) = negl(λ). We therefore have

|Pr[E3]− Pr[E4]| = negl(λ).

Game5 In this game, we change the way the evaluation queries are answered. By the change
introduced in Game4, we assume Q(α) 6≡ 0 mod p in the following. When A makes a query
for an input X, the challenger first checks whether T ⊆ S(X) and aborts if so (as specified in
Game3). Otherwise, it computes RX,Ωi,j2 (Z) ∈ Zp[Z] such that Q(Z) = PX,Ωi,j2 (Z)·RX,Ωi,j2 (Z)
for (i, j2) ∈ [η]× [`2]. Note that such polynomials exist by Lemma 14. Then, it returns

Y = e
(
ĝ
RX,Ωη,`2

(α)
, h
)
, π =

( {
πi,j2 = ĝ

RX,Ωi,j2
(α)
}

(i,j2)∈[η]×[`2]

)
(31)
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to A. We claim that this is only a conceptual change. To see this, we first observe that

PX,Ωi,j2 (α) =
∏

(i′,j′)∈Ωi,j2

(
w̃i′α− ti′ + sj′

)
=

∏
(i′,j′)∈Ωi,j2

(
wi′ + sj′

)
= θi,j2 . (32)

We can see that θi,j2 6≡ 0 mod p, since otherwise we have Q(α) ≡ PX,Ωi,j2 (α) ·RX,Ωi,j2 (α) ≡
θi,j2 · RX,Ωi,j2 (α) ≡ 0 mod p, which is a contradiction. Thus, we have

ĝ
RX,Ωi,j2

(α)
= ĝ

Q(α)/PX,Ωi,j2
(α)

= g
1/PX,Ωi,j2

(α)
= g1/θi,j2 .

This indicates that the simulation by the challenger is perfect. Since the view of A is
unchanged, we have

Pr[E4] = Pr[E5].

Game6 : In this game, we change the way the challenge value Y ?
0 = Eval(sk, X?) is created when

coin = 0. If coin = 0, to generate Y ?
0 , it first computes ξX? ∈ Z∗p and RX?(Z) ∈ Zp[Z] such

that Q(Z)/PX?(Z) = ξX?/Z + RX?(Z). Note that such ξX? and RX?(Z) exist by Lemma 14
whenever T ⊆ S(X?). It then sets

Y ?
0 =

(
e (ĝ, h)1/α

)ξX?
· e
(
ĝRX? (α), h

)
and returns it to A. We claim that this is only a conceptual change. This can be seen by
observing that

e
(
ĝ1/α, h

)ξX?
· e
(
ĝRX? (α), h

)
= e

(
ĝξX?/α+RX? (α), h

)
= e

(
ĝQ(α)/PX? (α), h

)
= e (g, h)1/PX? (α)

and PX?(α) = θη,`2 , where the latter follows from Eq.(32). Since the view of A is unchanged,
we therefore conclude that

Pr[E5] = Pr[E6].

Game7 In this game, we change the challenge value to be a random element in GT regardless of
whether coin = 0 or coin = 1. Namely, Game7 challenger sets Y ?

0
$← GT . In this game, the

value coin is independent from the view of A. Therefore, Pr[E7] = 1/2.

We claim that |Pr[E6]− Pr[E7]| is negligible assuming L-DDH with L = (4`+ 1)η + `1. To
show this, we construct an adversary B against the problem using A, which is described as
follows.

B is given the problem instance (Π, ĝ, h, {ĝαi}i∈[L],Ψ) of L-DDH where Ψ = e(ĝ, h)1/α or

Ψ
$← GT . At any point in the game, B aborts and sets coin′

$← {0, 1} if condition (28) is not
satisfied. It first sets g and Wi,j1 as Eq.(30) and returns vk = (Π, g, h, {Wi,j1}(i,j1)∈[η]×[`1])
to A. These terms can be efficiently computable from the problem instance because logĝ g
and logĝWi,j1 can be written as polynomials in α with degree at most η′− 1 + 4η`+ `1 < L
and the coefficients of the polynomials can be efficiently computable. When A makes an
evaluation query on input X, it computes (Y, π) as Eq.(31) and returns it to A. Again,
these terms can be efficiently computable from the problem instance, because the degree of
RX,Ωi,j2 (α) is at most L and coefficients of them can be efficiently computable. When A
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makes the challenge query on input X?, B first picks coin
$← {0, 1} and returns Y ? $← G if

coin = 1. Otherwise, it returns

Y ? = ΨξX? · e
(
ĝRX? (α), h

)
to A. Note that ĝRX? (α) can be efficiently computed from the problem instance because the
degree of RX?(Z) is at most L. At the end of the game, coin′ is defined. Finally, B outputs
1 if coin′ = coin and 0 otherwise.

It can easily be seen that the view of A corresponds to that of Game6 if Ψ = e(ĝ, h)1/α

and Game7 if Ψ
$← GT . It is clear that the advantage of B is |Pr[E6] − Pr[E7]|. Assuming

L-DDH, we have

|Pr[E6]− Pr[E7]| = negl(λ).

Analysis. From the above, we have∣∣∣∣Pr[E7]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[E1]− 1

2
+

6∑
i=1

Pr[Ei+1]− Pr[Ei]

∣∣∣∣∣
≥

∣∣∣∣Pr[E1]− 1

2

∣∣∣∣− 6∑
i=1

|Pr[Ei+1]− Pr[Ei]|

≥ τ(λ)− negl(λ).

for infinitely many λ. Since Pr[E7] = 1/2, this implies τ(λ) ≤ negl(λ) for infinitely many λ, which
is a contradiction. ut

To complete the proof of Theorem 4, it remains to prove Lemma 14.

Proof of Lemma 14. By definition, we have

PX(Z) =
∏

(i,j)∈[η]×[`]

(w̃iZ− ti + sj) .

We define PX,i(Z) ∈ Zp[Z] and Qi(Z) ∈ Zp[Z] for i ∈ [η] as

PX,i(Z) =
∏
j∈[`]

(w̃iZ− ti + sj) and Qi(Z) =
∏

j∈[−2`,2`]\{0}

(w̃iZ + j) .

We have | − ti + sj | ≤ 2` since ti, sj ∈ [2`]. Furthermore, if ti 6∈ S(X), then −ti + sj 6= 0 for all
j ∈ [`]. Otherwise, if ti ∈ S(X), there is a unique j′ ∈ [`] such that −ti + sj′ = 0. These facts
together with w̃i 6= 0 imply that{

PX,i(Z) | Z · Qi(Z) if ti ∈ S(X)

PX,i(Z) | Qi(Z) if ti 6∈ S(X)
.

Let us define I := { i ∈ [η] | ti ∈ S(X) } and η′′ := |I|. From the above observation and by
the fact that PX(Z) =

∏
i∈[η] PX,i(Z), we have

PX(Z) | Zη′′ ·
∏
i∈[η]

Qi(Z).
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Observe that Q(Z) = Zη
′−1 ·

∏
i∈[η] Qi(Z). If T 6⊆ S(X), we have η′′ < η′ and thus PX(Z) | Q(Z).

On the other hand, if T ⊆ S(X), we have η′′ = η′ and thus PX(Z) | Z · Q(Z). Furthermore, we
have PX(Z) - Q(Z), since PX(Z) can be divided by Z exactly η′ times whereas Q(Z) can only be
divided by Z exactly η′ − 1 times. The facts that PX(Z) - Q(Z) and PX(Z) | Z · Q(Z) imply that
there exist RX(Z) ∈ Zp[Z] and ξX ∈ Z∗p satisfying Q(Z)/PX(Z) = ξX/Z + RX(Z). This completes
the proof of Lemma 14. ut

6.3 A Variant with Short Verification Keys

Here, we introduce a variant of our scheme in Sec. 6.1. In the variant, we remove {Wi,j1 =

gw
j1
i }(i,j1)∈[η]×[2,`1] from vk. Instead, we add these components to π. We do not change the verifi-

cation algorithm and other parts of the scheme. It is straightforward to see that the correctness
and pseudorandomness of the scheme can still be proven. To prove the unique provability, we
observe that the only possible strategy to break is to include invalid {Wi,j1}(i,j1)∈[η]×[2,`1] in the
proof. This is because if these values are correct, the unique provability of the original scheme
immediately implies that of the modified scheme. However, this strategy does not work since the
invalid values will be detected at Step 3 of the verification algorithm using {Wi,1 = gwi}i∈[η] in vk.
The advantage of the variant is that the size of vk is small. In particular, vk only consists of η+ 2
group elements in this variant, whereas η`1 + 2 group elements were required in the scheme in
Sec. 6.1. Of course, this change increases the size of the proofs π. The number of group elements
will become η(`1 + `2 − 1) from η`2 by this modification. To minimize the size of the proofs we
choose `1 = `2 =

√
`.

7 Comparisons

Here, we compare our proposed schemes with previous schemes.

New Lattice IBE Schemes. In Sec. 5.4, we showed how to construct an IBE scheme from a
partitioning function with associating compatible algorithms. We have two ways of instantiating
the scheme.

• By using the partitioning function FMAH in Sec. 4.3 and the corresponding compatible al-
gorithms in Sec. 5.2, we obtain our first IBE scheme. The master public key of the scheme
only consists of ω(log2 λ) matrices.

• By using the partitioning function FAFF in Sec. 4.4 and the corresponding compatible algo-
rithms in Sec. 5.3, we obtain our second IBE scheme. The master public key of the scheme
is even shorter: It only consists of ω(log λ) matrices.

Both our schemes achieve the best asymptotic space efficiency (namely, the sizes of the master
public keys, ciphertexts, and private keys) among existing IBE schemes that are adaptively secure
against unbounded collusion without sub-exponential security assumptions. In Table 1, we compare
our schemes with previous schemes. Note that the scheme by Zhang et al. [ZCZ16] achieves shorter
master public key size than ours, but only achieves Q-bounded security. This restriction cannot
be removed by just making Q super-polynomial, since the encryption algorithm of the scheme
runs in time proportional to Q.

Finally, we note that there are two drawbacks that are common in our schemes. The first
drawback is that the encryption algorithm is heavy. Our first scheme requires Õ(λ) times of
matrix multiplications for the encryption algorithm. Our second scheme requires even heavier
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computation. It first computes the description of the “division in NC1 circuit” [BCH86] and then
invokes Barrington’s theorem to convert it into a branching program. The second drawback is
that we have to rely on the LWE assumption with large (but polynomial) approximation factors
to prove the security.

Table 1: Comparison of Adaptively Secure Lattice IBE Schemes

Schemes |mpk| |ct|, |sk| LWE Reduction Remarks
# of # of param Cost

Zn×mq mat. Zmq vec. 1/α

[CHKP10] O(λ) O(λ) Õ(n1.5) O(εν+1/Qν)‡

[ABB10a]+[Boy10] O(λ) O(1) Õ(n5.5) O(ε2/qQ)
[Yam16] O(λ1/µ)† O(1) nω(1) O(εµ+1/kQµ)†

[ZCZ16] O(logQ) O(1) Õ(Q2 · n6.5) O(ε/kQ2) Q-bounded

[AFL16]∗ O(λ/ log2 λ) O(1) Õ(n6) O(ε2/qQ)
[BL16] O(λ) O(1) superpoly(n) O(λ)
[KY16]∗∗ O(λ1/µ)∗∗† O(1) O(n2.5+2µ)† O(λµ−1εµ/Qµ)µ+1)† Ring-based

Sec. 5.4 + FMAH (η = log2 λ). O(log3 λ) O(1) Õ(n11) O(εν+1/Qν)‡

Sec. 5.4 + FAFF (η = log2 λ). O(log2 λ) O(1) poly(n) O(ε2/k2Q) Need [BCH86, Bar89]

We compare with adaptively secure IBE schemes under the LWE assumption in the standard model. |mpk|, |ct|, and |skID| show
the size of the master public keys, ciphertexts, and private keys, respectively. To measure the space efficiency, we count the
number of basic components. Q and ε denote the number of key extraction queries and the advantage, respectively. poly(n) (resp.
superpoly(n)) represents fixed but large polynomial (super-polynomial) that does not depend Q and ε. To measure the reduction
cost, we show the advantage of the LWE algorithm constructed from the adversary against the corresponding IBE scheme. To be
fair, we calculate the reduction cost by employing the technique of Bellare and Ristenpart [BR09] for all schemes.
† µ ∈ N is a constant number that can be chosen arbitrary. Since the reduction cost degrades exponentially as µ grows, we

would typically set µ very small (e.g., µ = 2 or 3).
‡ ν > 1 is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of the underlying error correcting code
C : {0, 1}k → {0, 1}`. We can take ν as close to 1 as one wants, by choosing c < 1/2 appropriately and make ` large enough
(See Appendix E.1 of [Gol08]).
∗ They also propose a variant of the scheme with constant-size master public key assuming the exponentially secure collision

resistant hash function. Since the use of the exponential assumption can be considered as a certain kind of the complexity
leveraging, we do not include the variant in the table.
∗∗ The scheme can only be instantiated over the rings Rq = Zq[X]/(Xn + 1). To measure the size of mpk we count the number

of the basic vectors, instead of the basic matrices.

New VRF Schemes. Following [HJ16], we say that a VRF scheme has “all the desired proper-
ties” if it has exponential-sized input space and a proof of adaptive security under a non-interactive
complexity assumption. Here, we compare our schemes proposed in this paper with previous
schemes that satisfy all the desired properties.

• In Sec. 6.1, we proposed new VRF scheme based on FMAH. The scheme is parametrized by
the parameters `1 and `2. By setting `1 = ` and `2 = 1, we obtain a new VRF scheme with
very short proofs. They only consist of ω(log λ) group elements.

• In Sec. 6.3, we proposed a variant of the above scheme. The verification keys consist of
ω(log λ) group elements and proofs consist of ω(

√
λ log λ) group elements.

• In Appendix C, we proposed a new VRF scheme based on FAFF. The verification key of the
scheme only consists of ω(log λ) group elements. However, the proof size of the scheme is
large.
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See Table 2 for the overview. From the table, we can see that all previous VRF schemes
that satisfy all the desired properties [ACF14, BMR10, HW10, Jag15, HJ16] require O(λ) group
elements for both of verification keys and proofs. Our first scheme above significantly improves
the size of proofs, at least asymptotically. Our second scheme improves both of the sizes of the
verification keys and proofs. Compared to our second scheme, only advantage of our third scheme
is that the reduction cost is better. Still, we think that our third scheme is also of interest because
the construction is quite different from previous schemes.

Table 2: Comparison of VRF Schemes with All The Desired Properties

Schemes |vk| |sk| |π| Assumption Reduction
(# of G) (# of Zp) (# of G) Cost

[ACF14] O(λ) O(λ) O(λ) O(λ)-DDH O(εν+1/Qν)†

[BMR10] O(λ) O(λ) O(λ) O(λ)-DDH O(ε/λ)
[HW10] O(λ) O(λ) O(λ) O(Qλ/ε)-DDHE O(ε2/λQ)
[Jag15] O(λ) O(λ) O(λ) O(log (Q/ε))-DDH O(εν+1/Qν)†

[HJ16] O(λ) O(λ) O(λ) DLIN O(εν+1/λQν)†

Sec. 6.1 (`1 = `, `2 = 1, η = log2 λ). O(λ log2 λ) O(log2 λ) O(log2 λ) Õ(λ)-DDH O(εν+1/Qν)†

Sec. 6.3 (`1 = `2 =
√
`, η = log2 λ). O(log2 λ) O(log2 λ) O(

√
λ log2 λ) Õ(λ)-DDH O(εν+1/Qν)†

Appendix C (η = log2 λ) O(log2 λ) O(log2 λ) poly(λ) poly(λ)-DDH O(ε2/λ2Q)

We compare VRF schemes with all the desired properties. |vk|, |sk|, and |π| show the size of the verification keys, secret keys,
and proofs, respectively. To measure |vk| and |π| (resp. |sk|), we count the number of group elements (resp. elements in Zp).
Q and ε denote the number of evaluation queries and the advantage, respectively. poly(λ) represents fixed polynomial that
does not depend Q and ε. To measure the reduction cost, we show the advantage of the algorithm that solves the problem
(which is L-DDH for some L except for [HJ16]) constructed from the adversary against the corresponding VRF scheme. To
be fair, we measure the reduction cost by employing the technique of Bellare and Ristenpart [BR09] for all schemes.
† ν is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of the underlying error correcting code C :
{0, 1}k → {0, 1}`. We can take ν as close to 1 as one wants, by choosing c < 1/2 appropriately and make ` large enough
(See Appendix E.1 of [Gol08]).
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A Proof of Lemma 8

Proof. For {Bi}i∈[d], we define B×j for j ∈ [d] recursively as follows:

B×j =

{
B1 if j = 1

Bj ·G−1
(
B×j−1

)
if j ≥ 2.

The output of PubMultd
(
{Bi}i∈[d]

)
is B×d . For A and {Ri, xi}i∈[d], we define R×j for j ∈ [d]

recursively as follows:

R×j =

{
R1 if j = 1

Rj ·G−1
(
A ·R×j−1 +

(∏j−1
i=1 xi

)
G
)

+ xj ·R×j−1 if j ≥ 2.

The output of TrapMultd
(
A, {Ri, xi}i∈[d]

)
is R×d . It is clear that PubMult and TrapMult run in

polynomial time. We first show Eq.(12). The proof is by induction on d. The base case d = 1 is
trivial. For d ≥ 2, Let Bi = ARi + xiG for i ∈ [d]. We have

B×d = Bd ·G−1(B×d−1)

= (ARd + xdG) ·G−1(B×d−1)

= A ·Rd ·G−1(B×d−1) + xd ·B×d−1

= A ·Rd ·G−1

(
A ·R×d−1 +

(
d−1∏
i=1

xi

)
G

)
+ xd ·

(
A ·R×d−1 +

(
d−1∏
i=1

xi

)
G

)
(33)

= A

(
Rd ·G−1

(
A ·R×d−1 +

(
d−1∏
i=1

xi

)
G

)
+ xd ·R×d−1

)
+

(
d∏
i=1

xi

)
G

= AR×d +

(
d∏
i=1

xi

)
G

where Eq.(33) follows from the induction hypothesis. Next, we proceed to show the bound on
‖R×d ‖∞. The proof is again by induction. The base case is trivial. For d ≥ 2, we have

‖R×d ‖∞ ≤

∥∥∥∥∥Rd ·G−1

(
A ·R×d−1 +

(
d−1∏
i=1

xi

)
G

)∥∥∥∥∥
∞

+ |xd| ·
∥∥R×d−1

∥∥
∞

≤ m · ‖Rd‖∞ +m(d− 1)δ

= mdδ

where the second inequality follows from G−1
(
A ·R×d−1 +

(∏d−1
i=1 xi

)
G
)
∈ {0, 1}m×m and the

induction hypothesis. This completes the proof of Lemma 8. ut
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B Proof of Lemma 11

Here, we prove Lemma 11. To prepare for the proof, we recall the following results regarding
branching programs in previous works. Since the definition of branching programs is not necessary,
we omit it and refer to [GV15].

Theorem 5 (Barrington’s Theorem [Bar89]). Every Boolean NAND circuit f that acts on ` inputs
and has depth d can be computed by a width-5 permutation branching program Π of length 4d.
Given the description of the circuit f , the description of the branching program can be computed
in poly(`, 4d) time.

The following lemma can be obtained by combining Lemma 6 and 7 of [GV15].

Lemma 15 (Adapted from [GV15]). Let BP : {0, 1}` → {0, 1} be a width-5 permutation branching
program of length L. There exist two efficient deterministic algorithms BPPubEval and BPTrapEval
with the following properties.

• BPPubEval
(
BP, {Ai}i∈[`], {V0,i}i∈[5],A

c
)
→ VBP ∈ Zn×mq . Here, Ai,V0,i,A

c ∈ Zn×mq .

• BPTrapEval
(
BP,A, {Ri, xi}i∈[`], {R0,i}i∈[5],R

c
)
→ RBP ∈ Zm×m. Here, A ∈ Zn×mq ,

Ri,R0,i,R
c ∈ {−1, 0, 1}m×m, xi ∈ {0, 1}. Furthermore, we have

BPPubEval
(
BP, {ARi − xiG}i∈[`], {AR0,i − yiG}i∈[5],ARc −G

)
= ARBP − BP(x)G

and ‖RBP‖∞ ≤ (3m+ 1)L,

where x ∈ {0, 1}` is the concatenation of x1, . . . , x`, y1 = 1, and yj = 0 for j ∈ [2, 5].

We note that Lemma 15 is only shown for the case of Ri,R0,i ∈ {−1, 1}m×m in [GV15].
However, the same proof works without change for the case of Ri,R0,i ∈ {−1, 0, 1}m×m as well.
We then proceed to prove Lemma 11.

Proof of Lemma 11. We give the description of NC1PubEval and NC1TrapEval.

NC1PubEval
(
F, {Bi}i∈[`]

)
: It first expresses F : {0, 1}` → {0, 1} as a Boolean NAND circuit of

depth d. Then, it converts it into a width-5 branching BP of length 4d using Theorem 5.
It then sets Ai = −Bi for i ∈ [`], Ac = −G, V0,1 := −G, and V0,j := 0n×m for j ∈ [2, 5].
Finally, it runs BPPubEval in Lemma 15 as BPPubEval

(
BP, {Ai}i∈[`], {V0,i}i∈[5],A

c
)
→

VBP ∈ Zn×mq and outputs BF := −VBP.

NC1TrapEval
(
F,A, {Ri, xi}i∈[`]

)
: It first converts F into a branching program BP. It then

sets R′i := −Ri for i ∈ [`] and R0,j = Rc = 0m×m for all j ∈ [5]. Finally, it runs
BPTrapEval(BP,A, {R′i, xi}i∈[`], {R0,i}i∈[5],R

c)→ RBP ∈ Zm×m and outputs RF := −RBP.

We then prove that these algorithms satisfy the required properties. It can be seen by Theorem 5
that the requirement on the running time is satisfied. From Lemma 15, it follows that ‖RF‖∞ =
‖RBP‖∞ ≤ (3m+ 1)4d since the length of BP is 4d. It remains to show that BF = ARF + F(x)G
holds if Bi = ARi + xiG for i ∈ [`]. We have Ai = AR′i − xiG for i ∈ [`], V0,1 = AR0,1 −G,
V0,j = AR0,j for j ∈ [2, 5], and Ac = ARc −G. Therefore, VBP = ARBP − BP(x) ·G follows
from Lemma 15. Then, BF = ARF + F(x) · G immediately follows from F(x) = BP(x). This
completes the proof of Lemma 11. ut

46



C VRF Scheme Based on FAFF

Here, we construct a VRF scheme based on the partitioning function FAFF. We first introduce
some notations regarding circuits following [BHR12]. We use simpler definition adapted to our
setting.

Circuit. We define a circuit with a single output wire as a 4-tuple f = (u, v,A,B). For simplicity,
we consider circuits with only NAND gates. Here, u is the number of inputs and v is the number
of gates. We let u+v be the number of wires. We let Inputs = [u], Wires = [u+v], OutputWire =
{u + v}, and Gates = [u + 1, . . . , u + v]. Then A : Gates → Wires\OutputWire is a function to
identify each gate’s first incoming wire and B : Gates → Wires\OutputWire is a function that
identify each gate’s second incoming wire. We require A(i) < B(i) < i for all i ∈ Gates. The
depth of the wire is defined as the maximum distance from the input gate to the wire. We define
the depth of the circuit as the depth of the output wire.

Evaluating an Circuit. To evaluate the circuit f on input x = x1x2 · · ·xu ∈ {0, 1}u, we first
assign each xi ∈ {0, 1} to the gate i for i ∈ [u]. Then, for i ∈ [u + 1, u + v], we compute
xi = ¬(xA(i) ∧ xB(i)). The final output is xu+v. Similarly, we can evaluate the circuit on input
x = (x1, . . . , xu) ∈ Zup for any integer p. To do this, we first assign each xi ∈ Zp to the gate i for
i ∈ [u]. Then, for i ∈ [u+ 1, u+ v], we compute xi = 1−xA(i)xB(i) ∈ Zp. The final output is xu+v.

Construction. We let the input space of the scheme be X = {0, 1}k and Y = GT . Let us use
the same notation as in Sec. 4.4. We also define u := 3η + k. Let ¬FAFF : {0, 1}u → {0, 1} be
a function defined as ¬FAFF(x) := 1 − FAFF(x). By Lemma 10, ¬FAFF : {0, 1}u → {0, 1} can be
computed by an (efficiently computable) circuit fAFF = (u, v,A,B) such that v = poly(u) and
depth O(log u). This circuit will be used in the construction.

Gen(1λ) : On input 1λ, it chooses group description Π
$← GrpGen(1λ). It chooses random genera-

tors g, h
$← G∗, w0

$← Z∗p, and w1, . . . , wu−k
$← Zp. It then outputs

vk =
(

Π, g, h, {Wi := gwi}i∈[0,u−k]

)
and sk =

(
{wi}i∈[0,u−k]

)
.

Eval(sk, X) : Given X ∈ {0, 1}k, it first computes fAFF = (u, v,A,B). Then, it sets

θi =


wi if i ∈ [u− k]

Xi−(u−k) if i ∈ [u− k + 1, u]

1− θA(i) · θB(i) if i ∈ [u+ 1, u+ v]

,

where Xj is the j-th bit of X ∈ {0, 1}k. Note that θi ∈ Zp is the value associated to the i-th
wire when evaluating the circuit on input (w1, w2, · · · , wu−k, X1, . . . , Xk) ∈ Zup . The output
of the circuit is θ := θu+v. It then computes and outputs

Y = e(g, h)θ/w0 and π =

(
π0 = gθ/w0 ,

{
πi = gθi

}
i∈[u+1,u+v]

)
.

Verify(vk, X, Y, π) : It first checks the validity of vk by the following steps. It outputs 0 if any of
the following does not hold:

1. vk is in the form of (Π, g, h, {Wi}i∈[0,u−k]).

2. GrpVfy(Π)→ 1, g, h,W0 ∈ G∗, and Wi ∈ G for all i ∈ [u− k].
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It then checks the validity of Y and π. To do so, it sets πi := Wi for i ∈ [u − k] and
πi := gXi−(u−k) for i ∈ [u − k + 1, u]. Furthermore, it computes the description of fAFF =
(u, v,A,B). It outputs 0 if any of the following does not hold:

3. X ∈ {0, 1}k, Y ∈ GT , π is in the form of π = (π0 ∈ G, {πi ∈ G}i∈[u+1,u+v]).

4. For all i ∈ [u+ 1, u+ v], e(g, πi) = e(g, g) ·
(
e
(
πA(i), πB(i)

))−1
holds.

5. e(π0, h) = Y and e(π0,W0) = e(πu+v, g) hold.

If all the above conditions hold, it outputs 1.

Correctness. We prove correctness of the scheme. Let us assume that (vk, Y, π) are correctly

generated as (vk, sk)
$← Gen(1λ) and (Y, π)← Eval(sk, X). It is straightforward to see that it passes

Step 1, 2, and 3 in the verification algorithm. It also passes Step 4, because θi = 1 − θA(i) · θB(i)

and thus e(g, g) ·
(
e
(
πA(i), πB(i)

))−1
holds for all wire i ∈ [u + 1, u + v]. Finally, by a simple

calculation, it can be seen that it also passes Step 5. This completes the proof of the correctness.

Unique Provability. We prove the unique provability of the scheme. We have to show
that for any vk ∈ {0, 1}∗, there does not exist any (Y, π, Y ′, π′) such that Verify(vk, X, Y, π) =
Verify(vk, X, Y ′, π′) = 1 and Y 6= Y ′.

• Step 1 checks whether Π contains valid certified bilinear group parameters. Step 2 checks
whether g, h,W0 ∈ G∗ and Wi ∈ G. Thus, we may assume in the following that all these
group elements are valid and have a unique encoding. In particular, there are unique wi ∈ Zp
such that gwi = Wi for all i ∈ [0, u− k].

• In Step 3, it is checked that whether X ∈ {0, 1}k, Y ∈ GT , and π is in the form of
π = ({πi ∈ G}i∈[u+1,u+v]). For i ∈ [u + v], let us define θi as the unique value that is
assigned for gate i when we evaluate the circuit fAFF on input (w1, . . . , wu−k, X1, . . . , Xk).
It can be seen by induction that in order to pass Step 4, logg πi = θi should hold for all

i ∈ [u+v]. Finally, Step 5 checks that π0 = gθu+v/w0 and Y = e(g, h)θu+v/w0 . Due to the fact
that the bilinear group is certified, which guarantees that each group element has a unique
encoding and that the bilinear map is non-degenerate, the unique provability follows.

This completes the proof of the unique provability.

Pseudorandomness. We have the following theorem.

Theorem 6. The above scheme satisfies pseudorandomness assuming L-DDH with L = 2d, where
d is the depth of the circuit fAFF. Since fAFF is a O(log λ)-depth circuit, the above scheme is secure
assuming L-DDH with polynomially bounded L.

Proof. The proof of the theorem roughly follows that of Theorem 4. We will highlight the differ-
ence. Let A be a PPT adversary that breaks pseudorandomness of the scheme. In addition, let
ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound on the number of the evaluation
queries, respectively. Let ε0(λ) be a noticeable function such that ε(λ) ≥ ε0(λ) holds for infinitely
many λ. We show the security of the scheme via the following sequence of games. In each game,
a value coin′ ∈ {0, 1} is defined. In the following, we define Ei be the event that coin′ = coin.

Game0 : This is the real security game. At the end of the game, the challenger outputs the same
bit as A. Namely, coin′ = ĉoin. We have∣∣∣∣Pr[E0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.
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Game1 : In this game, we change Game0 so that the challenger performs the following additional
step at the end of the game. First, the challenger runs K

$← PrtSmpAFF(1λ, Q, ε0) and checks
whether the following condition holds:

FAFF(K,X(1)) = · · · = FAFF(K,X(Q)) = 1 ∧ FAFF(K,X?) = 0

where X? is chosen by A at the challenge phase, and X(1), . . . , X(Q) are inputs to the VRF
for which A has queried the evaluation of the function. If it does not hold, the challenger
ignores the output ĉoin of A, and sets coin′

$← {0, 1}. In this case, we say that the challenger

aborts. If the above condition holds, the challenger sets coin′ = ĉoin. Similarly to the proof
of Theorem 4, we have that ∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ τ
holds for infinitely many λ. Here, τ(λ) is a noticeable function that is specified by ε0, Q,
and the underlying partitioning function FAFF (See Theorem 2).

Game2 : In this game, we change the way wi are chosen. At the beginning of the game, the
challenger picks K

$← PrtSmpAFF(1λ, Q, ε0). We assume K ∈ {0, 1}u−k, which holds for all

sufficiently large λ. It then samples α
$← Z∗p, and w̃i

$← Z∗p for i ∈ [0, u − k]. Then, wi are
defined as

w0 := w̃0 · α, wi = w̃i · α+Ki for i ∈ [u− k]

where Ki is the i-th bit of K. The rest of the game is the same as in Game1. The statistical
distance of the distributions of {wi}i∈[u−k] in Game1 and Game2 is at most (u− k)/p, which
is negligible. Therefore, we have

|Pr[E1]− Pr[E2]| = negl(λ).

Before describing the next game, we introduce additional notations. For {w̃i}i∈[u−k], K ∈
{0, 1}u−k, and X ∈ {0, 1}k, let us define polynomials { PX,i(Z) ∈ Zp[Z] }i∈[u+v] as follows.

PX,i(Z) =


w̃i · Z +Ki if i ∈ [u− k]

Xi−(u−k) if i ∈ [u− k + 1, u]

1− PX,A(i)(Z) · PX,B(i)(Z) if i ∈ [u+ 1, u+ v]

Furthermore, we denote PX(Z) := PX,u+v(Z). It can be seen that PX,i(α) = θi and PX(α) = θ.
We state the following lemma, which plays an important roll in our security proof.

Lemma 16. There exists RX(Z) ∈ Zp[Z] such that

PX(Z) =

{
1 + Z · RX(Z) if FAFF(K,X) = 0

Z · RX(Z) if FAFF(K,X) = 1
.

In other words, the constant term of PX(Z) is 1−FAFF(K,X). We have deg(PX(Z)),deg(PX,i(Z)) ≤
2d for all i ∈ [u+ v], where d is the depth of the circuit fAFF.

So as not to interrupt the proof of Theorem 4, we intentionally skip the proof of Lemma 16
for the time being.
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Game3 In this game, we change the game so that the challenger aborts as soon as the abort
condition becomes true. Since this is only a conceptual change, we have

Pr[E2] = Pr[E3].

Game4 In this game, we change the way the evaluation queries are answered. When A makes a
query for an input X, the challenger first checks whether FAFF(K,X) = 0 and aborts if so
(as specified in Game3). Otherwise, it computes RX(Z) ∈ Zp[Z] such that PX(Z) = Z ·RX(Z)
and returns

Y = e
(
gRX(α)/w̃0 , h

)
, π =

(
π0 = gRX(α)/w̃0 ,

{
πi = gPX,i(α)

}
i∈[u+1,u+v]

)
(34)

to A. Note that such RX(Z) exists by Lemma 16. We claim that this is only a conceptual
change. First, πi for i ∈ [u + 1, u + v] are correctly generated because PX,i(α) = θi.
Furthermore, we have

RX(α)

w̃0
=
α · RX(α)

w̃0α
=

PX(α)

w0
=

θ

w0
.

Thus, π0 and Y are also correctly generated. These indicate that the simulation by the
challenger is perfect. Since the view of A is unchanged, we have

Pr[E3] = Pr[E4].

Game5 : In this game, we change the way the challenge value Y ?
0 = Eval(sk, X?) is created when

coin = 0. If coin = 0, to generate Y ?
0 , it first computes RX?(Z) ∈ Zp[Z] such that PX?(Z) =

1 + Z · RX?(Z). By Lemma 16, such RX?(Z) ∈ Zp[Z] exists. It then sets

Y ?
0 =

(
e (g, h)1/α · e

(
gRX? (α), h

))1/w̃0

and returns it to A. We claim that this is only a conceptual change. This can be seen by
observing(
e (g, h)1/α · e

(
gRX? (α), h

))1/w̃0

= e
(
g(1+αRX? (α))/w̃0α, h

)
= e

(
gPX? (α)/w0 , h

)
= e

(
gθ/w0 , h

)
.

Since the view of A is unchanged, we conclude that

Pr[E4] = Pr[E5].

Game6 In this game, we change the challenge value to a random element in GT regardless of
whether coin = 0 or coin = 1. Namely, Game6 challenger sets Y ?

0
$← GT .

We claim that |Pr[E5] − Pr[E6]| is negligible assuming L-DDH with L = 2d. To show this,
we construct an adversary B against the problem using A, which is described as follows.

B is given the problem instance (Π, g, h, {gαi}i∈[L],Ψ) of L-DDH where Ψ = e(g, h)1/α or

Ψ
$← GT . At any point in the game, B aborts and sets coin′

$← {0, 1} if the abort condition
is satisfied. It first computes

W0 = (gα)w̃0 and Wi = (gα)w̃i · gKi for i ∈ [u− k]
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and returns vk = (Π, g, h, {Wi}i∈[0,u−k]) to A. When A makes an evaluation query on
input X, it computes (Y, π) as Eq.(34) and returns it to A. These terms can be efficiently
computable from the problem instance without knowing α, because RX(α) and PX,i(α) are
polynomials in α with degree at most L = 2d by Lemma 16. When A makes the challenge
query on input X?, B first picks coin

$← {0, 1} and returns Y ? $← G if coin = 1. Otherwise,
it returns

Y ? =
(

Ψ · e
(
gRX? (α), h

))1/w̃0

to A. Note that gRX? (α) can be efficiently computed from the problem instance because the
degree of RX?(α) is at most L. At the end of the game, coin′ is defined. Finally, B outputs
1 if coin′ = coin and 0 otherwise.

It can easily be seen that the view of A corresponds to that of Game5 if Ψ = e(g, h)1/α

and Game6 if Ψ
$← GT . It is clear that the advantage of B is |Pr[E5] − Pr[E6]|. Assuming

L-DDH, we have

|Pr[E5]− Pr[E6]| = negl(λ).

Analysis. From the above, we have∣∣∣∣Pr[E6]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[E1]− 1

2
+

5∑
i=1

Pr[Ei+1]− Pr[Ei]

∣∣∣∣∣
≥

∣∣∣∣Pr[E1]− 1

2

∣∣∣∣− 5∑
i=1

|Pr[Ei+1]− Pr[Ei]|

≥ τ(λ)− negl(λ).

for infinitely many λ. Since Pr[E6] = 1/2, this implies τ(λ) ≤ negl(λ) for infinitely many λ, which
is a contradiction. ut

To complete the proof of Theorem 6, it remains to prove Lemma 16.

Proof of Lemma 16. We prove the following (stronger) claim.

Claim 1. For i ∈ [u+ v], let bi be the value assigned to wire i when we evaluate the circuit fAFF
on input (K,X) = (K1, . . . ,Ku−k, X1, . . . , Xk) ∈ {0, 1}u. Furthermore, let di be the depth of wire
i. Then, there exists RX,i(Z) ∈ Zp[Z] such that

PX,i(Z) = bi + Z · RX,i(Z).

Furthermore, we have deg(PX,i(Z)) ≤ 2di.

Proof of Claim 1. The proof is by induction on i. It is clear that the claim holds for i ∈ [u]. Let
us assume that the claim holds for all i in [j] with j ≥ u. Then, we have

PX,j+1(Z)

= 1− PX,A(j+1)(Z) · PX,B(j+1)(Z)

= 1−
(
bA(j+1) + Z · RX,A(j+1)(Z)

)
·
(
bB(j+1) + Z · RX,B(j+1)(Z)

)
(35)
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= (1− bA(j+1) · bB(j+1))︸ ︷︷ ︸
=bj+1

+

Z ·
(
−bA(j+1) · RX,B(j+1)(Z)− bB(j+1) · RX,A(j+1)(Z) + Z · RX,A(j+1)(Z) · RX,B(j+1)(Z)

)︸ ︷︷ ︸
:=RX,j+1(Z)

= bj+1 + Z · RX,j+1(Z)

where we introduced two polynomials RX,A(j+1)(Z) and RX,B(j+1)(Z) ∈ Zp[Z] in Eq.(35). The
existence of these polynomials is implied by A(j + 1),B(j + 1) < j + 1 and by the induction
hypothesis. We also have

deg(PX,j+1(Z)) = deg
(
1− PX,A(j+1)(Z) · PX,B(j+1)(Z)

)
≤ 2dA(j+1) + 2dB(j+1) ≤ 2dj+1 ,

where the first inequality follows from the induction hypothesis and the second from dj+1 =
max{dA(j+1), dB(j+1)}+ 1. This completes the proof of the claim. ut

The proof of the lemma completes by observing d = du+v, bu+v = 1 − FAFF(K,X), and
PX(Z) = PX,u+v(Z). ut
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