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ABSTRACT
NSEC5 is a new proposal for providing authenticated de-
nial of existence for DNSSEC, i.e., for securely respond-
ing to DNS queries for names that do not exist in a zone.
NSEC5 simultaneously guarantees two security properties:
(1) privacy against zone enumeration, and (2) integrity of
zone contents, even if an adversary compromises the au-
thoritative nameserver responsible for responding to DNS
queries for the zone. By contrast, today’s DNSSEC proto-
col can guarantee one of these properties, but not both. This
paper argues that NSEC5 not only improves DNS security,
but is also practical and performant. To that end, we present
a new version of NSEC5 that uses elliptic curve cryptog-
raphy to achieve small DNSSEC responses and fast query-
processing times. We also extend widely-used DNS soft-
ware to present the first implementations of NSEC5 for an
authoritative nameserver and a recursive resolver. We be-
lieve that our performance results indicate that NSEC5 can
be a practical solution for DNSSEC deployments.

1. INTRODUCTION
NSEC5 is a new proposal for providing authenticated

denial of existence for DNSSEC, i.e., for responding to
DNS queries (“What is the IP address of aWa2j3.com?”)
for names that do not exist in a zone (“NXDOMAIN:
aWa2j3.com does not exist in the .com zone.”) NSEC5
has two key security properties.

First, NSEC5 provides strong integrity, protecting the
integrity of the zone contents even if an adversary com-
promises the authoritative nameserver responsible for
responding to DNS queries for the zone. Hardening
the DNS against external compromise seems to be an

∗Full version from February 13, 2017.
†Substantial parts of this work conducted at Verisign Labs.
‡Substantial parts of this work conducted at CZ.NIC.

increasingly important security goal [62], especially in
light of recent attacks [9, 10,12,32,44].

Second, NSEC5 provides privacy against offline zone
enumeration [7,18,22,52,58,61,75,76,78], where an ad-
versary makes a small number of online DNS queries
and then processes them offline in order to learn all
the domain names in a zone. Zone enumeration can be
used to identify routers, servers or other ‘things’ (ther-
mostats, fridges, baby monitors, etc.) that could then
be targeted in more complex attacks. An enumerated
zone can also be “a source of probable e-mail addresses
for spam, or as a key for multiple WHOIS queries to
reveal registrant data that many registries may have
legal obligations to protect” [52] (e.g., per EU data pro-
tection laws [66], [13, pg. 37]). Several publicly avail-
able network reconnaissance tools can be used to launch
zone-enumeration attacks [2, 7, 22,58,61,75].

While today’s DNSSEC protocol has several mech-
anisms for authenticated denial of existence, they all
either fail to provide integrity against a compromised
nameserver (i.e., online signing used in NSEC3 White
Lies [36] and Minimally-Covering NSEC [77]), or fail
to prevent zone enumeration (NSEC [14], NSEC3 [52]).
In fact, zone enumeration is an issue introduced by
DNSSEC, and is not a possible attack on legacy DNS.

Optimizing and implementing NSEC5. The
first cryptographic construction for NSEC5 was pre-
sented in [40], but it was never implemented, tested or
fully specified. Moreover, the construction in [40] was
based on the RSA cryptosystem. RSA is widely used
in today’s DNSSEC deployments [69, 74], but there is
currently serious discussion about replacing RSA with
elliptic curve cryptography (ECC) for improved perfor-
mance and security [43,68,72]. Thus, the community is
unlikely to adopt a new mechanism based on RSA.

This paper presents a new cryptographic construc-
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tion for NSEC5 that uses elliptic curve cryptogra-
phy (ECC) (Section 3.5),1 and presents formal crypto-
graphic proofs of its security (Appendix B). We further
optimize NSEC5 with several DNS-level protocol opti-
mizations (Section 4). We fully specify NSEC5,2 and
present a full implementation of an authoritative name-
server and recursive resolver that support both RSA-
and ECC-based NSEC5 (Section 6). (For the name-
server implementation, we extend the Knot DNS 1.6 [3].
For the recursive resolver, we extend Unbound 1.5.9.)

Performance. We show that our ECC-based
NSEC5 can be viable even for high-throughput scenar-
ios. Throughput at our authoritative nameserver easily
scales to a few tens of thousands of queries per second
(64K query/second) on a moderately-sized multi-core
server (i.e., 24 threads on 40 virtual cores). This is an
order of magnitude larger than the average negative re-
sponse rate at single server in the DNS’s root zone [1].
In fact, our ECC-based NSEC5 nameserver implemen-
tation achieves a throughput that is about 2x higher
than the only widely-deployed nameserver implementa-
tion that prevents zone enumeration and is compliant
with the DNSSEC standards (i.e., PowerDNS’s imple-
mentation of online signing via NSEC3 White Lies [8]).
Meanwhile, the performance of our NSEC5-ready recur-
sive resolver (Section 7.3) is comparable to DNSSEC’s
existing denial-of-existence mechanisms.

Response lengths. Response length is another key
parameter to consider when evaluating NSEC5.

DNSSEC naturally amplifies the length of DNS re-
sponse by including cryptographic keys and digital sig-
natures. Several unfortunate things occur when long
DNSSEC responses no longer fit in a single IP packet
[60, 61, 63]. First, responses sent over UDP can be
fragmented across multiple IP fragments, and thus risk
being dropped by a middlebox that blocks IP frag-
ments [67, 71] or being subject to an IP fragmentation
attack [41]. Alternatively, the resolver can resend the
query over TCP [30, 56], harming performance (due to
roundtrips needed to establish a TCP connection) and
availability (because some middleboxes block DNS over
TCP) [67]. Worse yet, long DNSSEC responses can be
used to amplify DDoS attacks [35]. In a DDoS amplifi-
cation attack, a botnet sends nameservers many small
DNS queries that are spoofed to look like they come
from a victim machine, and the nameservers respond by
pelting the victim machine with many long DNSSEC re-
sponses. Long DNSSEC responses increase the volume
of traffic that arrives at the victim.

Fortunately, recent measurements [71, Fig. 10] found
that DNSSEC’s existing authenticated denial of exis-
tence records (NSEC and NSEC3 records) are not the

1We first described this cryptographic construction in a
short technical report [39].
2The full specification is in our IETF internet draft [73].

worst offenders in terms of DNSSEC length amplifi-
cation. We show (Section 7.1) that our ECC-based
NSEC5 responses easily fit into a single IP packet, and
have lengths that are comparable to ECC versions of the
current DNSSEC protocol (i.e., NSEC3 with ECDSA
signatures). In fact, ECC-based NSEC5 produces NX-
DOMAIN responses that are shorter than those pro-
duced by today’s dominant DNSSEC deployment con-
figuration, which has a lower security level (i.e., NSEC3
with 1024-bit RSA signatures [69,74])!

Transition. We conclude (Section 10) by discussing
mechanisms for transitioning NSEC5 into the DNSSEC
protocol. Given that the adoption of new cryptographic
algorithms may be on the horizon (e.g., digital signa-
tures over Edwards elliptic curves [68,79]), now may also
be a good time to consider the transition to NSEC5.

2. TRADEOFFS IN TODAY’S DNSSEC
We start by reviewing the issues that lead to the de-

velopment of NSEC5 for DNSSEC. (See e.g., [78] for a
historical overview of the full DNSSEC protocol.)

With DNSSEC, a trustworthy zone owner is trusted
to determine the set of names (www.example.com)
present in the zone and their mapping to corresponding
values (172.18.216.34). Nameservers receive informa-
tion from the zone owner, and respond to DNS queries
for the zone made by resolvers. DNSSEC’s schemes for
authenticated denial of existence reflect tradeoffs be-
tween integrity and privacy against zone enumeration.
We describe each scheme and its tradeoffs below:

NSEC (RFC 4034 [14]). The NSEC record is de-
fined as follows. The trusted owner of the zone prepares
a lexicographic ordering of the names present in a zone,
and uses the private zone signing key (ZSK) to sign a
record containing each consecutive pair of names. The
precomputed NSEC records are then provided to the
nameserver. Then, to prove the non-existence of a name
(x.example.com), the nameserver returns the NSEC
record corresponding to the pair of existent names that
are lexicographically before and after the non-existent
name (w.example.com and z.example.com), with its
associated DNSSEC signatures.

NSEC provides strong integrity—it not only pro-
tects against network attackers that intercept and at-
tempt to alter DNSSEC responses, but is also robust to
a malicious nameserver. This is because NSEC records
are precomputed and signed by the trusted owner of the
zone, and so the nameserver does not need to know the
private ZSK in order to produce a valid NSEC record.
Without the private ZSK, a malicious nameserver can-
not sign bogus DNSSEC responses.

On the other hand, NSEC is highly vulnerable to zone
enumeration attacks, where an adversary makes a num-
ber of online queries to the nameserver to collect all the
NSEC records, and thus trivially learns all the names
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in the zone. Several network reconnaissance tools use
NSEC records to enumerate DNS zones [2, 5, 58,61].

NSEC3 (RFC 5155 [52]). NSEC3 is meant
to raise the bar for zone enumeration attacks. The
trusted owner of the zone cryptographically hashes all
the names present in the zone using SHA1, lexicograph-
ically orders all the hash values, and uses the private
ZSK to sign a NSEC3 record containing every consec-
utive pair of hashes. To prove the non-existence of a
name, the nameserver returns the precomputed NSEC3
record (and the associated DNSSEC signatures) for the
pair of hashes lexicographically before and after the
hash of the non-existent name.

When NSEC3 records are precomputed, it also pro-
vides strong integrity. However, [22, 76] demonstrated
(and RFC 5155 [52, Sec. 12.1.1] acknowledged) that
hashing does not eliminate zone enumeration. To enu-
merate a zone that uses NSEC3, the adversary again
makes a number of online queries to the nameserver
to collect all the NSEC3 records, and then uses an of-
fline dictionary attack to crack the hash values in the
NSEC3 records, thus learning the names present in the
zone. These offline attacks will only become faster as
new tools come online [5,7,75] and technologies for fast
hashing continue to improve (e.g., GPUs [76], ASICs).

Online signing with NSEC3 White Lies (RFC
7129 [36]). Neither NSEC nor NSEC3 prevent zone
enumeration. As a result, the DNS community intro-
duced a radically different approach that prevented zone
enumeration at the cost of sacrificing strong integrity.
DNSSEC online signing requires the nameserver to hold
the secret zone-signing key (ZSK), and to use it to gen-
erate NSEC3 responses on the fly. Crucially, online
signing does not provide strong integrity—it protects
only against network attackers that intercept DNSSEC
responses, but integrity is totally lost if the nameserver
is compromised, because the nameserver holds the se-
cret ZSK that can be used to sign bogus DNSSEC re-
sponses. We call this weak integrity.

RFC 7129 [36] describes an online signing approach
called “NSEC3 White Lies” which is supported by
at least one major nameserver implementation (Pow-
erDNS). NSEC3 White Lies requires the nameserver to
use the secret ZSK to generate, on the fly, an NSEC3
record that covers a query with the minimal pair of
hash values.3 That is, given a query α and its hash
value h(α), the nameserver generates an NSEC3 record
containing the pair of hashes (h(α) − 1, h(α) + 1), and
signs the NSEC3 record with the private ZSK. Because
the NSEC3 record only contains information about the
queried name α, but not about any name present in
the zone, it provides privacy against zone enumera-
tion. Offline zone enumeration attacks no longer work.
Instead, an adversary can only enumerate the zone by
brute force, sending an online query to the nameserver

no online weak strong
crypto integrity integrity privacy

legacy DNS X X X X
(plain) NSEC or (plain) NSEC3 X X X X
online signing, e.g. White Lies X X X X
NSEC5 X X X X

Table 1: Properties of NSEC*. Note that [40] proved
that it is impossible to provide both privacy and weak
integrity without online crypto.

for each name that it suspects is in the zone.
NSEC3 White Lies also has a helpful backwards-

compatiblity property for resolvers: resolvers just need
to validate the NSEC3 record, but do not need to know
or care whether the server is doing online signing (with
NSEC3 White Lies) or not (with plain NSEC3).

3. NSEC5 & ITS SECURITY PROPERTIES
NSEC5 was introduced in [40, 57], to provide both

privacy against zone enumeration and strong integrity.
NSEC5 is very similar to NSEC3, except that we re-
place the cryptographic hashes used in NSEC3 with
the hashes computed by a verifiable random function
(VRF) [54]. Table 1 summarizes properties of NSEC5.

We first revisit the exposition in [57] to show how
NSEC5 can be generically constructed from a VRF.
We then review the RSA-based NSEC5 construction
from [40] by showing how to construct a VRF from
RSA. RSA-based NSEC5 is simpler to understand and
implement. However, recent years have seen the DNS
community aiming to replace RSA with elliptic curve
cryptography (EC) [43,68,72]. The goal of this replace-
ment is to shorten the length of DNSSEC responses
while achieving a higher security level. (ECDSA sig-
natures over 256-bit elliptic curves are 256 bits long
and are understood to have an ` = 128-bit security
level, comparable to 3072-bit RSA; today, most zones
use 1024-bit RSA [69, 74].) As such, the present paper
introduces a new version of NSEC5, based on elliptic
curves. To do this, we construct a VRF from elliptic
curves using a construction implicit in several earlier
papers [33, 38]. However, because these papers do not
prove that the construction is a VRF, we provide new
cryptographic proofs of its security in Appendix B.

3.1 Verifiable Random Functions (VRF).
A VRF [54] is essentially the public-key version of a

keyed cryptographic hash. A VRF comes with a public-
key pair (PK ,SK ). Only the holder of the private key
SK can compute the hash, but anyone with public key

3RFC4470 [77] also proposes “Minimally Covering NSEC
Records” an analogous online signing approach that uses
NSEC records instead of NSEC3 records. We omit further
discussion of this approach because it is not supported by
major nameserver implementations (i.e., BIND, PowerDNS,
Microsoft DNS, Knot DNS, etc.).
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PK can verify the hash. A VRF hashes an input α
using the private key SK

β = FSK (α) .

The collision-resistance guarantee of a VRF is similar
to that of a cryptographic hash function. The pseudo-
randomness of a VRF guarantees that β is indistin-
guishable from random by anyone who does not know
the private key SK . The private key SK is also used to
construct a proof π that β is the correct hash output

π = ΠSK (α) .

The proof π is constructed in such a way that any-
one holding the public key can validate that indeed
β = FSK (α). Finally, the VRF has a trusted unique-
ness property that roughly requires that, given the
VRF public key PK , each VRF input α corresponds to
a unique VRF hash output β. More precisely, trusted
uniqueness guarantees that, given a validly-generated
PK , even an adversary that knows SK cannot produce
a valid proof for a fake VRF hash output β′ 6= β. (The
word “trusted” here is used to indicate that we trust
the key generation process, and are not concerned with
uniqueness for untrusted keys.) See Appendix B for
formal definitions.

All the VRFs we consider in this paper allow β to be
computed directly from π by a simple operation, i.e.,
hashing. This reduces communication, since communi-
cating π alone (without β) suffices.

3.2 NSEC5 from VRFs.
NSEC5 uses a VRF to provide authenticated de-

nial of existence for DNSSEC [57, Sec. 7]. We re-
view the NSEC5 construction and three new types of
DNSSEC records it requires: NSEC5, NSEC5KEY and
NSEC5PROOF.

The NSEC5KEY. NSEC5 uses a VRF with its own
keys. These keys are distinct from the ZSK that com-
putes DNSSEC signatures. The private VRF key is
known to both the nameserver and the trusted owner
of the zone. Meanwhile, the private ZSK is only known
to the trusted owner of the zone. Finally, resolvers get
the public ZSK (in a DNSKEY record), and the public
VRF key (in an NSEC5KEY record) using the standard
mechanisms used to distribute keys in DNSSEC.

Why do we need two separate keys, namely the
ZSK (for signing DNS records) and the VRF key (for
NSEC5)? This allows us to separate our two security
goals (i.e., strong integrity and privacy against zone
enumeration). To achieve strong integrity, we follow
the approach in NSEC and NSEC3, and provide the
private ZSK to the the trusted zone owner but not to
the untrusted nameserver. On the other hand, any rea-
sonable definition of privacy against zone enumeration
must trust the nameserver; after all, the nameserver

holds all the DNS records for the zone, and thus can
trivially enumerate the zone. For this reason, we will
provide the secret VRF key to the nameserver, and use
the VRF only to deal with zone enumeration attacks.

In [40], cryptographic lower bounds were used to
prove the nameserver must necessarily have some se-
cret cryptographic key. However, we shall soon see that
NSEC5 still provides strong integrity even if the name-
server’s private key is compromised or made public—all
that is lost is privacy against zone enumeration. This is
contrast to any online signing approach, such as NSEC3
White Lies, where compromising the nameserver’s se-
cret key eliminates both integrity and privacy against
zone enumeration (Table 2).

Precomputing NSEC5 records. The trusted
owner of the zone uses the private VRF key SK to
compute the VRF hashes of all the names present in the
zone, lexicographically orders all the the hash values,
and uses the private ZSK to sign a record containing
every consecutive pair of hashes; each pair of hashes is
an NSEC5 record. The precomputed NSEC5 records
and their associated DNSSEC signatures are provided
to the nameserver along with the private VRF key SK.

Responding with NSEC5 and NSEC5PROOFs.
To prove the non-existence of a queried name α, the
nameserver uses the private VRF key SK to obtain the
VRF hash output β = FSK (α) and the proof value π =
ΠSK(α). The nameserver responds to the query with

1. an NSEC5PROOF record containing π, and4

2. the precomputed NSEC5 record (and the associ-
ated DNSSEC signatures) for the pair of hashes
lexicographically before and after β.

NSEC5 is almost identical to NSEC3, except that
NSEC3 does not have a ‘PROOF’ record because re-
solvers can hash α by themselves. (Indeed, the public
nature of NSEC3’s hash function is exactly the cause of
its vulnerability to offline zone enumeration.)

Validating responses. The resolver validates the
response by

1. using the public VRF key in the NSEC5KEY
record to validate that proof π from the
NSEC5PROOF corresponds to the query α,

2. using a simple operation (i.e., hashing) to get β
from π and then checking that β falls between the
two hash values in the NSEC5 record, and

3. using the public ZSK to validate the DNSSEC sig-
natures on the NSEC5 record.

3.3 Properties of NSEC5.
Table 1 summarizes the properties of NSEC5.

4We use VRFs where β can be publicly computable from the
proof π, so do not include β in the NSEC5PROOF record.
VRFs that do not have this property additionally require β
to be included in the NSEC5PROOF.
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integrity privacy
Online signing X X
NSEC5 X X

Table 2: Comparing online signing (e.g., NSEC3 White
Lies) to NSEC5 when the nameserver is compromised.

Online crypto. NSEC5 requires online crypto-
graphic computations for negative responses. (But not
for positive responses.) For every query α that elic-
its a negative response, the nameserver uses the secret
VRF key SK to compute the NSEC5PROOF record
on the fly. Notice that online signing (e.g., ‘NSEC3
White Lies’, see Section 2) also requires online crypto-
graphic computations. The fact that both of these solu-
tions prevent zone enumeration is not a coincidence: [40]
proved that any solution that both (a) prevents zone
enumeration and (b) provides weak integrity, must nec-
essarily use online cryptography. What is interesting
about NSEC5 is that it provides strong integrity (i.e.,
integrity even when the nameserver is malicious or com-
promised). Meanwhile, online signing provides only
weak integrity (i.e., against network attackers but not
compromised nameservers). See Tables 1-2.

Privacy. An attacker can only enumerate the zone by
brute force—by sending an online query to the name-
server for each name α that it suspects is in the zone.

To see why, suppose an adversary has collected all
the NSEC5 records for the zone, and now wants to enu-
merate the zone using an offline-dictionary attack that
‘cracks’ the VRF hashes. The adversary must first hash
each entry in his dictionary, and then check if any of
the hashed dictionary entries match any VRF hashes
in the collected NSEC5 records; if there is a match, the
adversary has successfully cracked the VRF hash. How-
ever, because the adversary does not know the private
VRF key, the VRF hash values are indistinguishable
from random values. It follows that the adversary can-
not hash any of the entries in its dictionary, and thus
cannot perform a offline dictionary attack. A formal
security proof of this property is in [57].

Strong integrity. Strong integrity is provided even
even if a malicious nameserver, or any other adversary,
knows the secret VRF key SK . This is because be-
cause the untrusted nameserver does not know the se-
cret zone-signing key (ZSK). The idea behind the formal
proof (see [57]) of this property is simple. Suppose that
the secret VRF key SK used with NSEC5 is made pub-
lic. Resolvers know the correct public VRF key PK ,
so the VRF’s trusted uniqueness ensures that an ad-
versary (that knows SK ) cannot trick resolvers into ac-
cepting an incorrect VRF hash output.5 Then, NSEC5
is essentially the same as (plain) NSEC3: the adversary
can correctly hash queries on its own, but cannot forge
NSEC* records. Thus, for any name α that is present in

the zone, the adversary cannot forge an NSEC5 record
that falsely claims that α is absent from the zone. In
other words, even if the private NSEC5KEY is leaked
to an adversary, the security of NSEC5 just downgrades
to that of (plain) NSEC3. (See Tables 1-2.)

3.4 An RSA-based VRF for NSEC5.
The original NSEC5 construction [40] was not de-

scribed in terms of VRFs. However, it actually uses
the VRF in Figure 1, which is based on RSA in the
random oracle model (we provide the proof of the VRF
properties in Appendix C).

Instantiation. Each precomputed NSEC5 record
will contain two SHA-256 hash outputs, each corre-
sponding to β in Figure 1, and one DNSSEC signature.
Each NSEC5PROOF record, generated on the fly, has
one RSA value (π in Figure 1).

3.5 An Elliptic Curve VRF for NSEC5.
We now see how to produce shorter NSEC5 responses

using elliptic curves (EC). We use a VRF construction
implicit in [33,38]. This VRF operates in a cyclic group
G of prime order with generator g. The security of
this VRF is proven in the random oracle model, and
rests on the decisional Diffie-Hellman (DDH) assump-
tion, which roughly says that hx looks random given
the tuple (g, gx, h). Also, because [33,38] did not prove
that this construction is a VRF, we provide new formal
proofs that this construction satisfies the requirements
of a VRF in Appendix B.

The construction is in Figure 2 and can be instanti-
ated over any group where the decisional Diffie-Hellman
(DDH) problem is hard, including the elliptic curves
currently standardized in DNSSEC (NIST P-256 [46,
Sec. 3]), and Curve25519 [51] which has recently
been proposed for use with DNSSEC [48, 68]. Each of
these curves achieves an approximately 128-bit security
level [21,46]. Both of these curves operate in finite field
Fq, where q is a 256-bit prime.
5Notice that the trusted uniqueness property of the VRF is
crucial for providing strong integrity. For the original RSA-
based NSEC5 construction (Figure 1), trusted uniqueness
follows because, for a given public key PK, the function
RSASIGSK(MGF (·)) can produce exactly one proof value
π for every input value α. Importantly, RSA signatures
are unique given the public key PK but ECDSA signatures
are not. This is why we cannot replace the RSA signature
in Figure 1 with an ECDSA signature. With randomized
ECDSA signatures, the signer uses a nonce as part of its
signature computation, and so signatures are not unique
given the ECDSA public key PK. Moreover, even deter-
ministic ECDSA [64] fails to provide uniqueness given the
ECDSA public key PK. This follows because with deter-
ministic ECDSA, the signer derives the signing nonce from
a keyed hash of the message it is signing, but the key k
to this hash in independent of the ECDSA public key PK.
Thus, PK does not allow the verifier to check that the signer
used the correct nonce for each message it signed.
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Keys. Let N be a public RSA modulus, let d be a
secret RSA exponent and e be its corresponding public
exponent. The public VRF key is (e,N) and the secret
VRF key is (d,N).

Hashing. To hash input α using the private RSA key
(d,N), start by computing the proof value

π = (MGF (α))
d

mod N

and then compute the hash value β as

β = H(π)

H is a cryptographic hash function (e.g., SHA-256)
while MGF is an IETF-standard cryptographic hash
that produces outputs one bit shorter than the RSA
modulus [16, Sec. 10.2] (aka, a “full domain hash” [19]).
Notice that anyone can compute β given π.

Verifying. To verify that β is the VRF hash of α,
first verify that H(π) = β and then use the public RSA
key (e,N) to verify that π is a valid RSA signature on
MGF (α), i.e., that πe = MGF (α) mod N .

Figure 1: A RSA-based VRF for NSEC5.

Instantiation. What response lengths do we get
when we instantiate NSEC5 with the VRF in Figure 2
over 256-bit elliptic curves?

Each NSEC5 record will once again contain two hash
outputs (each corresponding to β in Figure 2) along
with a DNSSEC signature. We instantiate H2 in Fig-
ure 2 with the function that outputs the x coordinate
(abscissa) of a point (x, y) on the elliptic curve (where
x, y ∈ Fq). Thus, each β will be 256-bits long.

We instantiate H1 per Appendix A.
Next, observe that each NSEC5PROOF record will

contain the proof value π = (γ, c, s) from Figure 2. How
long is π? If we instantiate the VRF using a 256-bit
elliptic curve (e.g., NIST P-256 or Ed25519), then s is
256 bits long. Meanwhile, γ is a point on the elliptic
curve, which can be represented with 256 + 1 bits using
point compression.6 Finally, we show (in Appendix B)

6The idea behind point compression is to represent a point
with coordinates (x, y) using only its abscissa x (which
is 256 bits long) and a single bit that indicates which
square root (positive or negative) should be used for the
ordinate y. Without point compression, both coordinates
must be transmitted, for a total length of 256+256 bits.
(Thus, without point compression our proof π would be
2 ∗ 256 + 128 + 256 = 896 bits long.) There has been some
controversy over whether or not point compression is covered
by a patent, and whether its use in DNSSEC corresponds
to patent infringement [72]. However, as Bernstein [20] ar-
gues: “a patent cannot cover compression mechanisms [ap-
pearing in the paper by Miller in 1986 [55] that was] pub-
lished seven years before the patent was filed.” Moreover,
new IETF specifications for elliptic curve digital signatures
using Ed25519 also use point compression [48].

Public parameters. Let q be a prime number, Zq be
the integers modulo q, Z∗q = Zq−{0}, and let G a cyclic
group of prime order q with generator g. We assume
that q, g and G are public parameters of our scheme.
Let H1 be a hash function (modeled as a random ora-
cle) mapping arbitrary-length bitstrings onto G − {1}.
(See Appendix A for a suggested instantiation of H1.)
Let H3 be a hash function (modeled as a random oracle)
mapping arbitrary-length bitstrings to fixed-length bit-
strings. We can use any secure cryptographic function
for H3; in fact, we need only the first ` bits of its output
for `-bit security. Let H2 be a function that takes the
bit representation of an element of G and truncates it
to the appropriate length; we need a 256 bit output for
128-bit security.

Keys. The secret VRF key x ∈ Z∗q is chosen uni-
formly at random. The public VRF key is gx.

Hashing. Given the secret VRF key x and input α,
compute the proof π as:

1. Obtain the group element h = H1(α) and raise it
to the power of the secret key to get γ = hx.

2. Choose a nonce k ∈ Zq.
3. Compute c = H3(g, h, gx, hx, gk, hk).
4. Let s = k − cx mod q.

The proof π is the group element γ and the two expo-
nent values c, s. (Note that c may be shorter than a
full-length exponent, because its length is determined
by the choice of H3). The VRF output β = FSK (α) is
computed by truncating γ with H2. Thus

π = (γ, c, s) β = H2(γ)

Notice that anyone can compute β given π.

Verifying. Given public key gx , verify that proof π
corresponds to the input α and output β as follows:

1. Given public key gx, and exponent values c and s
from the proof π, compute u = (gx)c · gs.
Note that if everything is correct then u = gk.

2. Given input α, hash it to obtain h = H1(α). Make
sure that γ ∈ G. Use h and the values (γ, c, s) from
the proof to compute v = (γ)c · hs. Note that if
everything is correct then v = hk.

3. Check that hashing all these values together gives
us c from the proof. That is, given the values u
and v that we just computed, the group element γ
from the proof, the input α, the public key gx and
the public generator g, check that:

c = H3(g,H1(α), gx, γ, u, v)

Finally, given γ from the proof π, check that β = H2(γ).

Figure 2: An EC-based VRF for NSEC5. We use a
multiplicative group notation. This VRF adapts the
Chaum-Pederson protocol [28] for proving that two
cyclic group elements gx and hx have the same discrete
logarithm x base g and h, respectively.
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example.com A
bar.example.com A
www.example.com A
*.www.example.com A

Figure 3: Example zone.

c must be `-bits long for an `-bit security level. We
therefore instantiate H3 as the first 128 bits output by
the SHA-256 hash function.

It follows that proof π will be p = 256+1 + `+256 =
513 + ` bits for a `-bit security level; thus, p = 641 for
a 128-bit security level. Achieving the same security
level with RSA requires 3072-bit RSA, which results in
NSEC5PROOFS that are about 5 times longer!

4. DEALING WITH DNS WILDCARDS
Thus far, we have considered the operation of NSEC*

in a very clean and idealized model, where every query
(“What is the IP for example.com?”) either elicits a
positive response (e.g., “172.18.216.34.”) or a negative
response (“NXDOMAIN: The name does not exist.”)
In practice, however, the behavior of NSEC* is much
messier. This is primarily due to the complex nature
of a seemingly-unrelated issue: DNS wildcards [52, Sec-
tion 7.2.1], [37,53]. (Indeed, the treatment of DNS wild-
cards is so complex that RFC4592 [53] clarifying their
use was issued nineteen years after the original DNS
RFC1035 [56].) To properly understand how NSEC*
performs in practice, we need to understand how each
NSEC* scheme handles DNS wildcards. We then ex-
plain why these different approaches have significant im-
plications on NSEC* performance, especially in terms
of response length and computational overhead.

4.1 Wildcard and closest encloser proofs.
A wildcard record maps a set of queries to a par-

ticular response. For example, if the domain has a
wildcard record for *.example.com, then queries for
c.example.com and a.b.c.example.com would all be
answered with the value in the wildcard record (e.g.,
“172.18.216.35”).

Wildcards have important implications for both
NSEC3 and NSEC5. To see why, suppose a DNS query
for a.b.c.example.com is made to the example zone in
Figure 3. The correct response is NXDOMAIN (i.e., the
name does not exist). Why? First, example.com is the
longest ancestor of the queried name that exists in the
zone. In DNS terminology, example.com is the closest
encloser for a.b.c.example.com [53]. Next, *.exam-
ple.com—the wildcard child of the closest encloser—is
not in the zone. Therefore, there is no wildcard expan-
sion of query a.b.c.example.com. Thus, the correct
response is NXDOMAIN.

But how can a nameserver use DNSSEC to securely
prove the absence of relevant wildcards? First, the

online crypto verifications max response
at nameserver at resolver length

NSEC none 2 RRSIGs 2σ
NSEC3 none 3 RRSIGs 3σ + 12`
NSEC3 White Lies 1 RRSIG 3 RRSIGs 3σ + 12`
NSEC5 1 NSEC5PROOF 2 RRSIGs 2σ + 8`+ 2p

2 NSEC5PROOFs

Table 3: Performance characteristics of NXDOMAIN
responses for NSEC*. RRSIG records are DNSSEC
signatures. σ is the bitlength of a DNSSEC signa-
ture, 2` is the bitlength of the hash output in the
NSEC3 or NSEC5 record, and p is the bitlength of an
NSEC5PROOF.

nameserver must prove that example.com is the clos-
est encloser, by proving:

1. The presence of the closest encloser example.com.
2. The absence of the next closer c.example.com,

the name one label longer than the closest encloser.
(Notice that the next closer is sometimes identical to
the queried name, e.g., if we had instead queried for
c.example.com.) Once this is it done, the nameserver
must additionally prove:

3. The absence of *.example.com, the wildcard child
of the closest encloser.

How can NSEC* be used to prove the three items
above? The middle and last item are easily dealt with,
by providing the NSEC* recording proving the absence
of the name, i.e., that contains a pair of hashes h1, h2

such that h1 < h(name) < h2. But what about proving
the presence of a name (i.e., the first item)? One way
to do this is to provide an NSEC* record that matches
the name, i.e., that contains a pair of hashes h1, h2 such
that h1 = h(name). Thus NSEC3 proves the three items
by returning three NSEC3 records [52]:

1. A NSEC3 record matching the closest encloser,
i.e., an NSEC3 record with two hash values h1, h2

such that h1 = h(example.com).
2. An NSEC3 record covering the next closer, i.e., an

NSEC3 record containing two hash values h1, h2

such that h1 < h(c.example.com) < h2.
3. An NSEC3 record covering the wildcard, i.e., an

NSEC3 record containing two hash values h1, h2

such that h1 < h(∗.example.com) < h2.
Sometimes, fewer than three NSEC3 records are
needed. For instance, only two records are needed
if the same record matches h(example.com) and cov-
ers h(c.example.com). Indeed, this is always true for
NSEC, so at most two NSEC records are returned for
each query.

4.2 Implications on NSEC3 performance.
Thus, wildcards significantly impact performance: a

single query can solicit up to three NSEC3 responses!
(Figure 4.)We now explain the impact on performance,
which is also summarized in Table 3.
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Response length. Every query can elicit a response
containing (up to) three NSEC3 records, each of which
includes as DNSSEC signature (of length σ bits) and
two hash values (each of length 2` bits). Thus, the
bitlength of the response can be estimated as

|nsec3| = 3(4`+ σ) = 12`+ 3σ (1)

Resolver computations. The resolver must verify
up to three DNSSEC signatures (on each NSEC3).

Nameserver computations. When regular NSEC3
is used, all responses are precomputed, so the name-
server need not perform online public-key crypto com-
putations. However, if NSEC3 White Lies is used, re-
sponses are generated on the fly, and up to three NSEC3
records must be signed in response to every query.

4.3 The wildcard bit.
In [37], however, Gieben and Mekking observed

that wildcards could be dealt with just two NSEC3
records. Their proposal simply requires a wildcard bit
to be added to each NSEC3 record. If an NSEC3
record contains the pair of hashes h1, h2 where h1 =
h(example.com), then the wildcard bit is set if *.exam-
ple.com is present in the zone, and cleared otherwise.
This simple trick allows us to eliminate the third NSEC3
record! Instead, we need only check that the wildcard
bit is cleared on the first NSEC3 record. The wildcard
bit was not standardized as part of NSEC3, and has
not been deployed in practice [36]. However, we can
use it with NSEC5, because NSEC5 records have the
same structure as NSEC3 records.

4.4 Implications on NSEC5 performance.
NSEC5 uses the wildcard bit, so that up to two

NSEC5 records (and two NSEC5PROOFs) are needed
to respond to any query. (See Figure 5.)Table 3 sum-
marizes the implications on NSEC5 performance.

Response lengths. Every query can elicit a re-
sponse containing (up to) two NSEC5 records, each of
which includes a DNSSEC signature (length σ bits) and
two hash values (each of length 2` bits), and up to two
NSEC5PROOF records (each of length p bits). We can
therefore estimate the total bitlength of the response as

|nsec5| = 2(4`+ σ + p) = 8`+ 2σ + 2p (2)

Resolver computations. Resolvers need to verify
two NSEC5PROOF records and up to two DNSSEC
signatures (on NSEC5 records).

Nameserver computations. Recall that all
DNSSEC signatures on NSEC5 records must be pre-
computed. (This is because NSEC5 records are signed
by the zone-signing key (ZSK). To preserve strong in-
tegrity, the nameserver must not know the secret ZSK.)

But it is also possible to precompute one of the two
NSEC5PROOFs. Specifically, the first NSEC5PROOF

and NSEC5 record prove the presence of the closest en-
closer (i.e., example.com) as follows: (1) The NSEC5
record has two hash values h1, h2, where h1 is the VRF
hash of the closest encloser, and (2) the NSEC5PROOF
has a proof π that h1 is a correct VRF hash value. The
NSEC5PROOF for h1 can therefore be computed and
cached at the same time as the NSEC5 record.Online
crypto is only needed for the second NSEC5PROOF.
The second NSEC5PROOF and NSEC5 record cover
the next closer c.example.com. The NSEC5PROOF
proves that β is a correct VRF hash of c.example.com.
Meanwhile, the NSEC5 record has a pair of VRF hash
outputs h1, h2 that must fall lexicographically before
and after β. Importantly, h1 and h2 must not equal β.
Also, β is unknown at the time that the NSEC5 record
is prepared. As such, the NSEC5PROOF for β cannot
be precomputed.

Thus NSEC5 only needs one online cryptographic
computation when the nameserver responds to a query.7

5. PRACTICAL CONSIDERATIONS
NODATA Responses. Thus far, our exposition has
been a clean and idealized model where all DNS queries
are of the same type: the query contains a domain name
(www.example.com), and the response contains an IPv4
address (“172.18.216.34”). Actually, this is a query for
an A record. In practice, there are other query types.
For instance, the AAAA record is for IPv6 addresses.
Suppose the example zone in Figure 3 receives a AAAA
query for www.example.com. The zone has an A record
for www.example.com, but not a AAAA one. Thus, the
correct response is NODATA, (i.e., “The name exists,
but not for queried type”).

Because NSEC5, NSEC3, and NSEC records all have
the same structure, they all deal with NODATA re-
sponses as follows. Every NSEC* record includes a type
bitmap [14, 52], containing a bit for each type of DNS
record (e.g., A, AAAA, NS, MX). Consider the NSEC*
record matching www.example.com, i.e., that contains
a pair of hash values h1, h2 such that h1 is the hash of
www.example.com. In our example zone, this NSEC*
record has its type A bit set, and its other type bits
cleared. This NSEC* record would be used to respond
to an AAAA query for www.example.com. The resolver
would conclude the response is NODATA by checking
that the the AAAA bit cleared. Notice that NODATA
responses always use just one NSEC* record!
7As noted in Table 3, a similar precomputation approach
is possible with NSEC3 White Lies. Specifically, the pres-
ence of the closest encloser example.com and the pres-
ence/absence of its wildcard child *.example.com are known
at the time that the zone is signed. Therefore, their corre-
sponding NSEC3 records can be precomputed. This opti-
mization is (sort of) performed by the PowerDNS name-
server, which caches and reuses NSEC3 records generated
on-the-fly for the closest encloser and wildcard.
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Opt-out, key rollover. Because NSEC5 is so
similar in structure to NSEC3, it also supports other
important optimizations and procedures developed for
DNSSEC. For instance, NSEC5 supports opt-out in the
same way as NSEC3 [52]. Moreover, the NSEC5KEY
can be rolled over using the same procedure to roll a
ZSK [50]: the new NSEC5KEY record is published,
then old NSEC5 records are replaced by NSEC5 records
computed using the new NSEC5KEY, and finally the
old NSEC5KEY is removed from the zone.

Privacy. Wildcards and types have only minor impli-
cations on NSEC5 privacy in practice.

Consider what happens when a queried name (e.g.,
a.b.c.example.com) does not exist in the zone. Then,
the NXDOMAIN response reveals the closest encloser’s
name (example.com) and types that exist in the zone
(e.g., A, AAAA, MX, NS), and also reveals if its wild-
card child (*.example.com) exists in the zone. Mean-
while, if a queried name (e.g., www.example.com) does
exist in the zone, then the NODATA response reveals
its all types (e.g., A) present in the zone.

This means that NSEC5 ensures that an at-
tacker can learn which types of a non-wildcard name
(example.com) exist in the zone only if it (1) queries
for the exact name (example.com) OR (2) queries for
any longer name that contains it as a prefix (e.g.,
a.b.c.example.com). In other words, the attacker
must still enumerate the zone by brute force, sending
an online query for every name (or longer name that
contains it as a prefix) suspected to be in the zone.

6. IMPLEMENTATION
We designed and implemented the two NSEC5 vari-

ents (RSA and ECC), extending existing DNS soft-
ware. For the authoritative nameserver, we extended
Knot DNS 1.6.4, a highly-optimized authoritative im-
plementation. For the recursive resolver we extended
Unbound 1.5.9, one of the most widely used recursive re-
solver implementations. Our implementation supports
the full spectrum of negative responses, (i.e., NXDO-
MAIN, NODATA, Wildcard, Wildcard NODATA, and
unsigned delegation). The authoritative implements
the optimization that precomputes the NSEC5PROOFs
matching each NSEC5 record (Section 4.4). We did
not introduce additional library dependencies; all cryp-
tographic primitives are already present in OpenSSL
v1.0.2j, which is used by both implementations. We
implemented our elliptic-curve VRF for the NIST P-
256 curve. The code is deliberately modular, so that the
Ed25519 curve [48] (which is not supported by OpenSSL
v1.0.2j) could be used a drop-in replacement. Overall,
we added approximately 9,000 lines of C code. We plan
to make the source publicly available.

A “live” example from our implementation. Fig-
ures 4 and 5 present a NXDOMAIN response with

$ kdig +dnssec +multiline ddadasds.example.com
;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 22793
;; Flags: qr aa rd; QUERY: 1; ANSWER: 0; AUTHORITY: 8; ADDITIONAL: 1

;; QUESTION SECTION:
;; ddadasds.example.com. IN A

;; AUTHORITY SECTION:
example.com.     3600 IN SOA dns1.example.com. 
example.com.     3600 IN RRSIG SOA 13 2 3600 20170128184611 

( 5134 example.com. nqiEgM+kVBDeBI== )

;; Matching record for hash of example.com –-closest encloser;
0sc7qshrek878fcmnag1.example.com. 3600 IN NSEC3 1 0 0 AABB     

( CPDHD7GK40NGDKRU8CQ8 NS SOA MX RRSIG DNSKEY NSEC3PARAM )
0sc7qshrek878fcmnag1.example.com. 3600 IN RRSIG NSEC3 13 3 3600 

( 5134 example.com. 2JicIoTH3WkgAjbP/ehmTv== )

;; Covering record for hash of ddadasds.example.com –-next closer record;
jftj44t4kqppke20mukr.example.com. 3600 IN NSEC3 1 0 0 AABB   

( MSC7QSHREK878FCM8GD7 A AAAA RRSIG )
jftj44t4kqppke20mukr.example.com. 3600 IN RRSIG NSEC3 13 3 3600

( 5134 example.com. VfFQfho5sQ8QVWOqsrXyN6== )

;; Covering record for hash of *.ddadasds.example.com –-wildcard record;
cpdhd7gk40ngdkru8cq8n.example.com. 3600 IN NSEC3 1 0 0 AABB 

( J1VSBFDBU38SMLNJPIMM A AAAA RRSIG )
cpdhd7gk40ngdkru8cq8n.example.com. 3600 IN RRSIG NSEC3 13 3 3600

( 5134 example.com. lcDsoeVGuq3rvezN2oW74x== )

;; Received 773 B

Figure 4: A typical NXDOMAIN response with NSEC3.

$ kdig +dnssec ddadasds.example.com
;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 18282
;; Flags: qr aa rd; QUERY: 1; ANSWER: 0; AUTHORITY: 8; ADDITIONAL: 1

;; QUESTION SECTION:
;; ddadasds.example.com. IN A

;; AUTHORITY SECTION:
example.com.    3600 IN SOA dns1.example.com. 
example.com.    3600 IN RRSIG SOA 16 2 3600 

( 5137 example.com. kVfd4pgDmWMg== )

;; Matching record for hash of example.com –-closest encloser; 
;; Wildcard flag is not set;
ec2i1k1adn16bb9sbh1k.example.com. 86400 IN NSEC5 48566 0 

( H4ETTRT2RNLVQA2DU6HM NS SOA MX RRSIG DNSKEY NSEC5KEY )
ec2i1k1adn16bb9sbh1k.example.com. 86400 IN RRSIG NSEC5 16 3 86400 

( 5137 example.com. RbkKnf4MT/Fg== )

;; Covering record for hash of ddadasds.example.com –-next closer record;
4vulla22dr6bo63j203c.example.com. 86400 IN NSEC5 48566 0 

( C341KKJADV09N1BH2DJ0 A AAAA RRSIG )
4vulla22dr6bo63j203c.example.com. 86400 IN RRSIG NSEC5 16 3 86400 

( 5137 example.com. KMrN9N+J9Rug== )

;; NSEC5PROOF records;
example.com.  3600 IN NSEC5PROOF 48566 ( AiZnaTPduKWyig )
ddadasds.example.com.  3600 IN NSEC5PROOF 48566 ( AzH6uKGjS+2FJf )

;; Received 834 B

Figure 5: A typical NXDOMAIN response with NSEC5.

NSEC3 and NSEC5 respectively. (Cryptographic values
(hashes, proofs, and signatures) have been shortened
and some data fields have been dropped.) We signed a
“small” example.com zone with NSEC3 using ECDSA-
P256 (DNSSEC algorithm 13) and ECC-based NSEC5.
Per Section 4.2, NSEC3 returns three records and their
corresponding signatures. On the other hand, the wild-
card bit used with NSEC5 allows us to return only two
NSEC5 records and two NSEC5PROOFS (Section 4.4).

7. PERFORMANCE EVALUATION
We now evaluate the performance of NSEC5 and

compare it against (plain) NSEC3 and online signing
with NSEC3 White Lies (Section 2). We consider re-
sponse length, query processing time at the recursive
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resolver and authoritative nameserver, and throughput,
memory and CPU usage at the authoritative.

Configurations. We tested our Knot DNS name-
server implementation in four configurations:

1. NSEC3 with 2048-bit RSA signatures (DNSSEC
Algorithm 8),

2. NSEC3 with ECDSA signatures over the NIST P-
256 curve (DNSSEC Algorithm 13),

3. NSEC5 with 2048-bit RSA signatures (RRSIG)
and NSECPROOF records,

4. NSEC5 with ECC using the NIST P-256 curve for
both signatures (RRSIG) and NSECPROOFs.

The NSEC3 configurations used 10 hash iterations.
(This is a common choice in practice, e.g., at the .ru

zone.) Finally, we used PowerDNS8 4.0.1 in “narrow”
mode with BIND back-end to evaluate

5. NSEC3 White Lies with ECDSA signatures over
NIST P-256 (DNSSEC Algorithm 13)

For the recursive resolver, we used our NSEC5-ready
extension of Unbound in validating and caching mode.

Zone. We test against a real Alexa-100 second-level-
domain (SLD) zone that consists of about 1000 names.

System. All experiments were executed on a machine
with 20X Intel Xeon E5-2660 v3 cores with dual thread
support for a total of 40 virtual CPUs, and 256GB
RAM, running CentOS Linux 7.1.1503 and OpenSSL
1.0.2j. We would expect a typical SLD to have multiple
nameservers of roughly this size, possibly at multiple
locations. Because network latency is a common de-
nominator for all our schemes, all experiments were per-
formed with this machine hosting both the nameserver
(using 24 threads) and the recursive resolver (using up
to 16 threads), each listening at a different port.

Query load. Unless otherwise specified, our mea-
surements use synthetic query loads. We elicit neg-
ative (NXDOMAIN) responses by sending queries for
names from the zone prepended with a random six-
alphanumeric-character sequence.

7.1 Response lengths.
We want DNSSEC responses to be short enough to

fit into a single IP packet and to limit DDoS amplifica-
tion (Section 1). Our measurements show that NSEC5-
ECC response lengths are comparable to NSEC3 with
ECDSA, and shorter than today’s dominant deploy-
ment configuration (NSEC3 with 1024-bit RSA).

Figure 7. Figure 7 shows the average response size
for 100,000 NXDOMAIN responses for our four Knot
DNS configurations. When RSA is used, both NSEC5
8We acknowledge that this is not an apples-to-apples com-
parison. But, to the best of our knowledge, PowerDNS is the
only widely-deployed open-source nameserver that supports
DNSSEC online signing in an RFC-compliant way. Mean-
while, we chose to focus our NSEC5 implementation effort
on the more performant Knot DNS nameserver.

(at 1731 bytes, on average) and NSEC3 (1517 bytes)
do not fit in a 1500-byte IP packet (Ethernet MTU).
Meanwhile, ECC-based NSEC5 is much shorter (827
bytes, on average), easily fitting into a single IP packet,
and is comparable to ECC-based NSEC3 (783 bytes).

Comparison to “legacy” NSEC3. Modern cryp-
tographic recommendations mandate a security level of
at least 112 bits [17]. Despite these recommendations,
NSEC3 only supports (outdated) SHA1 as its hash func-
tion [52], for an (outdated) security level of ` = 80
bits. (NSEC5 records use a 2` = 256-bit hash outputs,
for a ` = 128-bit security level.) Also, most domains
deploying DNSSEC still use 1024-bit RSA (σ = 1024
bits) [69,74], for an (outdated) 80-bit security level [17].
NSEC3 with 1024-bit RSA has an average response
length of 1069 bytes. This is about 29% longer than
ECC-based NSEC5, which also has a much stronger se-
curity level (` = 128 versus ` = 80 bits)!

7.2 Authoritative nameserver performance.
Both NSEC5, and online signing with NSEC3 White

Lies, prevent offline zone enumeration by requiring on-
line public-key crypto computations at the nameserver.
(See Table 3.) We now compare performance at the
nameserver, and find that our ECC-based NSEC5 im-
plementation (extending Knot DNS) is faster than Pow-
erDNS’s implementation of NSEC3 White Lies.

Processing time per query. To measure the time it
takes to process a query at the authoritative, we ran
100,000 sequential queries, each eliciting an NXDO-
MAIN response. To fairly compare across implemen-
tations, we report round-trip time as observed by the
query issuer. Figure 6-(left) presents the results. Ignor-
ing the tail of the plot (which can be attributed to delays
in inter-process communication and other tasks running
in the background), we see that the majority of queries
are processed consistently close to an average time for
each configuration. Plain NSEC3 (with RSA-2048 and
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ECDSA-P256) uses precomputed responses; as such,
the nameserver can respond to queries in just 117µs
and 116µs on average. Meanwhile NSEC5 and NSEC3
White Lies use online crypto, therefore process queries
more slowly. RSA-based NSEC5 takes 1.93ms on aver-
age, while ECC-based NSEC5 presents a 2.3x speedup,
for an average query processing time of 0.81ms. This
is faster than the 1.12ms query processing time for the
PowerDNS implementation of NSEC3 White Lies!9

Throughput with negative traffic. Next, we con-
sider aggregate query throughput. We used Dnsperf
2.1.1 [6], a popular open-source DNS performance eval-
uation tool, to issue negative queries at fixed rates from
1K to 128K queries per second (qps). Figure 6-(center)
presents throughput results on a logarithmic scale.

Plain NSEC3 does not use online cryptographic com-
putations, and so throughput scales easily to 128 Kqps
and beyond. The remaining schemes do use online
crypto computations. RSA-based NSEC5 plateaus
earliest—the nameserver cannot cope with a query
rate greater than about 20 Kqps. Turning to elliptic-
curve configurations, PowerDNS’s NSEC3 White Lies
plateaus at about 32 Kqps, while our ECC-based
NSEC5 improves on this to almost 64 Kqps. This
2x improvement follows from differences in the Knot
DNS and PowerDNS implementations, which is also
in line with benchmark results of [4]. ( [4] finds a
2-3x gap in throughput between the Knot DNS and
PowerDNS when serving DNSSEC-enabled zones.)Our
NSEC3-ECC throughput results should be well above

9Per footnote 7, PowerDNS caches and reuses NSEC3
records generated on-the-fly for the closest encloser and
wildcard. By contrast, our NSEC5 implementation precom-
putes the closest-encloser records, rather than caching and
reusing them. Thus, to fairly compare across implementa-
tions, we crafted the query load so that all queries could use
the same records (served from cache) for all but the next-
closer records (Section 4.1). Therefore, both NSEC5-ECC
and NSEC3 White Lies perform a single online crypto com-
putation at query time.

the needs of most zone operators. To put this in context,
the A operator [1] reports an average negative query
load per server that is roughly one order of magnitude
smaller.

Throughput with mixed traffic. In practice,
throughput should be even higher, because normal
traffic should elicit positive responses (e.g., signed A
records), which are precomputed, in addition to NX-
DOMAIN responses. To demonstrate this, we tested
ECC-based NSEC5 at a steady query rate of 32 Kqps
using 4 (rather than 24) threads. When fewer than
50% of responses are NXDOMAIN, throughput remains
steady at 32 Kqps. Meanwhile, purely NXDOMAIN
traffic saturates throughput at 13 Kqps.

CPU utilization. CPU utilization is shown in Fig-
ure 6-(right). We used the Linux perf events profiler
to measure the task-clock time per second (shown on
the y-axis of Figure 6-(right)), which reports the CPU
time spent by a process across all threads. Since we use
24 threads, full utilization would correspond to a task-
clock/second of 24. All measurements were taken over
a 5 minute period (time shown on the x-axis) with 32
Kqps query load of purely NXDOMAIN traffic. From
Figure 6-(center), we already know that a 32 Kqps
query load causes throughput to deteriorate for RSA-
based NSEC5 and PowerDNS’s NSEC3 White Lies, but
not for plain NSEC3 and ECC-based NSEC5. Consid-
ering the corresponding CPU utilization in Figure 6-
(right), we see that plain NSEC3 has the lowest CPU
utilization (roughly 50%, or task-clock time/second of
about 12) while NSEC3-ECC is not too much higher.
Meanwhile, NSEC3 White Lies (with PowerDNS) has
the heaviest CPU utilization (roughly 95%, or task-

clock time/second of about 23), mostly due to im-
plementation differences between Knot DNS and Pow-
erDNS. As a final note, we expect utilization to be lower
in a setting tuned for maximum performance, since
these results include the heavy logging necessary for our
experiments.
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tested SLD 18.1 49.3 43.9 64 53.3 18.6
.name TLD 108.3 417.2 254.7 634.1 492.2 144.4

Table 4: Memory footprint (MB) at the authoritative
after loading the zone.

Memory footprint. Table 4 considers the mem-
ory footprint at the authoritative nameserver, once
the zone is loaded. Because our test SLD zone had
only 1000 records, we repeated this experiment for the
.name TLD, which has about 460, 000 records. We
see that ECC generally has a much smaller memory
footprint than RSA. NSEC5 also takes up more space
than plain NSEC3 because: (i) NSEC5PROOFs are
precomputed and cached to optimize performance (Sec-
tion 4.4), and (ii) NSEC5 records use 256-bit hash val-
ues, while NSEC3 uses (outdated, less secure) 160-bit
SHA1 hash values. Finally, the memory overhead for
NSEC3 White Lies is tiny, because NSEC3 records are
computed on the fly at query time.

7.3 Recursive resolver performance.
NSEC3 and NSEC5 both require recursive resolvers

to perform public-key crypto verifications (Table 3). We
therefore find that query processing times at the recur-
sive resolver for our RSA- and ECC-based NSEC5 im-
plementations are comparable to those of NSEC3.

Overall per-query processing time. Figure 8-(left)
reports the overall query processing time per NXDO-
MAIN response, as observed by a stub resolver. This
measurement includes the processing time both at the
recursive resolver (which verifies DNSSEC responses)
and at the authoritative nameserver (with serves or gen-
erates responses). We set up the stub resolver, recursive
resolver, and nameserver on our single machine. Our
query load was 100,000 sequential unique queries, each
eliciting an NXDOMAIN response from the authorita-
tive nameserver.

Figure 8-(left) shows that plain NSEC3, NSEC3
White Lies, and NSEC5 all have processing times of
the same order of magnitude. This follows because they
all require public-key crypto verifications at the recur-
sive resolver. (Compare this to processing time at the
authoritative nameserver alone, which is orders of mag-
nitude faster for plain NSEC3). Naturally, overall pro-
cessing time for plain NSEC3 is fastest (about 1ms);
again, this follows because plain NSEC3 does not re-
quire online crypto at the authoritative nameserver. Of
the three configurations that use online crypto at the
nameserver to prevent zone enumeration, RSA-based
NSEC5 takes the longest (3.4ms on average), followed

by NSEC5-ECC (3.1ms on average) and NSEC3 White
Lies using PowerDNS (2.4ms on average).

Mixed traffic. The average query processing time is
likely to be faster in practice, since real DNSSEC traffic
contains positive responses (e.g., signed A records) as
well as NXDOMAIN responses. To highlight this, Fig-
ure 8-(center) shows the overall query processing time
for ECC-based NSEC5, when handling traffic contain-
ing both positive and NXDOMAIN responses. Positive
queries were sampled from the zone according to a Zipf
distribution, which has been shown to be a good fit for
DNS query distributions [49]. Naturally, NSEC5 only
affects performance for negative queries; everything else
is validated from cache in minimal time.

Validation time. Finally, we zoom in on performance
at the recursive resolver by considering only the time
required for validating responses. (This excludes pro-
cessing at the nameserver, latency to the nameserver,
packet processing at the recursive, etc.).

Figure 6-(right) shows that cryptographic validation
NSEC5-RSA is faster than NSEC5-ECC. (This is nat-
ural: RSA verification is well known to be faster than
ECDSA verification.)

Next, consider the two plain NSEC3 configurations.
Figure 6-(center) shows that most queries are validated
in microseconds; meanwhile, the top 11% of queries (on
the right side of the figure) take seconds to validate.
The reasoning for this subtle. Because we issue 100,000
queries for a zone that only has 1000 names, our recur-
sive resolver eventually collects all the NSEC3 records
for the zone. (In other words, it enumerates the zone.)
Once this happens, the authoritative nameserver begins
sending NSEC3 records that the recursive resolver has
already cached. Instead of cryptographically validating
these NSEC3 records from scratch, the resolver simply
takes a few microseconds to retrieve the cached NSEC3
record. Thus, the excellent validation performance of
plain NSEC3 follows because we make a large number
of queries to the same small zone. In a live system that
queries multiple zones, this behavior is likely to be less
significant.

Now consider the validation performance for NSEC3
White Lies. With White Lies, a fresh NSEC3 record
is generated for every query, so the recursive will never
be able to collect all the NSEC3 records for the zone.
(That is, will never be able to enumerate the zone un-
less it queries specifically for all names in it!) Thus, this
excellent validation performance we observed for plain
NSEC3 is not possible with NSEC3 White Lies. Anal-
ogous reasoning shows it is also not possible with any
other approach that prevents zone enumeration, includ-
ing NSEC5.

Thus, it is most sensible to compare NSEC5’s vali-
dation performance to that of NSEC3 White Lies. Fig-
ure 8-(right) shows that validation for NSEC3 White-
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Figure 8: Overall query processing time at the recursive resolver and authoritative nameserver (left) per NXDOMAIN
response across all configurations, and (center) for ECC-based NSEC5 under mixed (positive & NXDOMAIN) traffic.
(right) Validation time per NXDOMAIN response at the recursive resolver for all configurations.

Lies (0.5ms) is faster than for NSEC5-ECC implemen-
tation (1.2ms). Digging into this result, we found that
it is due to (1) parsing and logging the different parts
of the NSEC5 response (e.g., the NSEC5PROOF), (2)
fetching the NSEC5KEY, and (3) a performance gap
between our (unoptimized) VRF verification and the
highly-optimized OpenSSL verification of ECDSA.

8. NSEC5 VS. RECENT INNOVATIONS
We consider the relationship between NSEC5 and

some recent DNS innovations.

Aggressive negative caching (draft-ietf-dnsop-
nsec-aggressiveuse) [34]: A new proposal, that is
in the process of being standardized, calls for aggres-
sive caching of NSEC* records at resolvers. The idea
is to reuse cached NSEC* records to answer queries
that are different from the original query that elicited
the NSEC* record. (The original DNSSEC specifica-
tions [15] do not allow this.) To see how this works,
suppose the zone in Figure 3 used (plain) NSEC and
suppose we sent a type A query for foo.example.com.
The response would contain an NSEC record that (1)
attests that no names exist between bar.example.com

and www.example.com, and (2) has a type bitmap with
the type A bit set and type AAAA, NS, MX, etc. bits
cleared. Then, aggressive negative caching allows re-
solvers to use the cached NSEC record to infer that:

1. Other names covered by the NSEC record do
not exist in the zone (NXDOMAIN for e.g.,
qqq.example.com).

2. Other types matching the NSEC record do not ex-
ist in the zone (NODATA for bar.example.com

for types e.g., AAAA, NS, MX).
This first item treats offline zone enumeration as fea-
ture, rather than a bug. In other words, it exploits
the fact that resolvers can make offline inferences about
the names covered by an NSEC/NSEC3 record. It
optimizes DNSSEC performance by cutting down on
the number of queries sent from resolver to name-
server. (For instance, the fast response validation be-

havior we observed for plain NSEC3 in Figure 8-(right)
would also translate to a reduce number of queries.)
However, this performance optimization is obviated by
any scheme that prevents offline zone enumeration, in-
cluding NSEC3 White Lies and NSEC5, because these
schemes necessarily prevent resolvers from making of-
fline inferences about the names present or absent in
the zone. Meanwhile, the second item optimizes perfor-
mance (reducing queries from resolver to nameserver)
for all the schemes including NSEC5.

RFC8020 [25]. RFC8020 is a new standard that
states that NXDOMAIN for a query (c.example.com)
implies that names deeper in the DNS hierarchy
(e.g., b.c.example.com) also do not exist. This al-
lows resolvers to cache the NXDOMAIN response for
c.example.com and reuse it to answer a later query
for e.g., b.c.example.com. All the NSEC* variants we
have considered thus far, including NSEC5, can benefit
from this performance optimization.

Black Lies (draft-valsorda-dnsop-black-lies [70]).
There is a (concurrent) NSEC* proposal that lever-
ages the fact that NODATA responses are short. Black
Lies is an online-signing solution that answers each
negative query with an NODATA response, even if
the “correct” response is NXDOMAIN. (Hence, the
Black Lie.) For example, suppose the zone in Fig-
ure 3 receives an AAAA query for a.example.com. The
Black Lies response is a single NSEC record matching
a.example.com, with its AAAA type bit cleared, that
is generated and signed on the fly. To prevent zone
enumeration, the second name in the NSEC record is
the immediate lexicographic successor of query, i.e.,
\000.a.example.com. Only one NSEC record is re-
quired, so Black Lies responses are short.

Black Lies comes with some caveats. First, it is an
online-signing solution (per Tables 1,2) that requires
the nameserver to know the secret zone-signing key
(ZSK). Thus, it fails to provide strong integrity. Sec-
ond, because Black Lies gives a NODATA response
when the “correct” response is NXDOMAIN, it obviates
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the performance optimization of RFC8020 [25]. Also,
Black Lies thwarts any diagnostic or security tool (e.g.,
[31, 65]) that uses NXDOMAIN responses to infer that
a name definitely does not exist in the zone.

9. SUMMARY: WHY USE NSEC5?
The key advantage of NSEC5 is that it (1) stops

offline zone enumeration while (2) providing integrity
even if the zone’s authoritative nameserver is com-
promised. By contrast, DNSSEC’s online signing so-
lutions (NSEC3 White Lies [36], Minimally-Covering
NSEC [77], Black Lies [70]) stops offline zone enumer-
ation by trusting the nameserver with the secret zone-
signing key (ZSK); thus compromising the nameserver
compromises the integrity of the zone.

[40] proved that providing integrity and prevent-
ing offline zone enumeration necessarily require the
nameserver to perform one online public-key crypto
computation for each negative query. While this
seems expensive, we demonstrate that our ECC-based
NSEC5 nameserver implementation can be viable even
for high-throughput scenarios. In Section 7.2 we
found that it supports a throughput of 64, 000 neg-
ative queries per second (qps) on a moderately-sized
server with 24 threads on 40 virtual cores. This is
about 2x the throughput of the only implementation of
RFC-compliant online signing that is widely deployed
and publicly available (PowerDNS’s implementation of
NSEC3 White Lies). A throughput of 64 Kqps should
be well above the needs of most zone operators—even
public statistics from the A-root operator [1] indicate an
average negative query load about one order of magni-
tude smaller per server. Without access to proprietary
statistics regarding corporate second-level-domains, it
is not easy to estimate their throughput requirements.
Nevertheless, this 64 Kqps throughput is achieved even
with purely negative traffic (rather that mixed traffic,
with both positive and negative queries) and a single
server (rather than a cluster of nameservers, a more
common deployment configuration).

With ECC-based NSEC5, the overall processing time
for an negative query (from stub resolver, to recur-
sive resolver, to authoritative nameserver) is only 30%
longer that of online signing with NSEC3 White Lies
(using the PowerDNS implementation). It may be pos-
sible to reduce this performance gap with an optimized
implementation, since the nature and number of crypto-
graphic operations in the two configurations is similar.

Thus, we believe that NSEC5 can be a practical so-
lution for zone operators that care about protecting
sensitive information (names of hosts, servers, routers,
IoT devices, DANE certificates [45], etc.) from offline
zone enumeration attacks. Meanwhile, operators that
don’t care about zone enumeration should just use plain
NSEC3. Moreover, for zones that currently use on-

line signing with NSEC3 White Lies, moving to NSEC5
seems like a win-win scenario: roughly the same (if not
better) performance, and no need to store the sensitive
secret ZSK at the authoritative nameserver.

10. THE TRANSITION TO NSEC5
We conclude with a discussion of the elephant in the

room. How can today’s DNSSEC transition to NSEC5?
The DNS community has faced this problem be-

fore. First, the NSEC3 specification [52] came out after
the earliest deployments of DNSSEC [59], and so re-
solvers and nameservers had to transition from NSEC
to NSEC3 [52, Section 10.4]. Second, there is currently
a proposal to transition from RSA to ECDSA signa-
tures over the NIST P-256 elliptic curve [72]. Third, a
desire to avoid NIST-specified curves [23] and to have
short DNSSEC responses, is motivating the commu-
nity to consider transitioning to digital signatures over
Edwards elliptic curves [68, 79]. Fourth, there is also
the DPRIVE initiative that seeks to add confidentiality
to DNS transactions, to mitigate concerns surrounding
pervasive network monitoring [11]. Given that other
transitions may be on the horizon, this might also be a
good time to consider transitioning to NSEC5.

10.1 The mechanics of the transition.
We believe that the transition to NSEC5 can be

accomplished similarly to the transition to NSEC3.
DNSSEC records have an algorithm number that speci-
fies the cryptographic algorithms they use (e.g., 5 spec-
ifies RSA signatures with SHA1 hashing [47]). To tran-
sition to NSEC3, two new algorithm numbers were
introduced—6:DSA-NSEC3-SHA1 and 7:RSASHA1-
NSEC3-SHA1. (Once the transition period ended, sub-
sequent DNSSEC algorithm numbers (8,10, 12, etc.)
implied support of NSEC3.) Per [15, Sec 5.2], resolvers
that did not support NSEC3 ignored DNSSEC records
with algorithms 6 or 7, and either ‘hard failed’ (i.e., re-
jected the response) or ‘soft failed’ (i.e., accepted the
response) depending on their local policies.

New algorithm numbers could also be used to tran-
sition to NSEC5. There are two ways [50, Sec 4.1.4] to
transition from an old algorithm number to a new one.

1. Conservative approach. The nameserver simul-
taneously supports both algorithms. Thus, the name-
server answers each query with a DNSSEC response has
records for both the old and the new algorithm number.
The resolver can validate the response if recognizes at
least one algorithm. The downside is that DNSSEC
responses contain twice as many keys and signatures.

2. Liberal approach. Here, the nameserver stops
serving responses with the old algorithm, and use the
new algorithm instead. The downside is that resolvers
that do not support the new algorithm number will treat
the zone as unsigned [15, Sec 5.2]. As such, the liberal
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approach is unlikely to be used until the majority of
resolvers support the new algorithm number.

There are several reasons why the liberal approach
seems right for NSEC5. First, it does not blow up
the length of DNSSEC responses. Secondly, and more
importantly, a zone that simultaneously supports both
NSEC3 and NSEC5 will not reap the security benefits
of NSEC5. If (plain) NSEC3 is supported in parallel
with NSEC5, then offline zone enumeration is possible
by collecting the NSEC3 records.10 If online signing
(e.g., NSEC3 White Lies) is supported in parallel with
NSEC5, then the nameserver must hold the secret ZSK
key, and thus NSEC5 loses its strong integrity guaran-
tees. On the other hand, the liberal approach is unlikely
to be used in a transition until a majority of resolvers
support NSEC5. However, given that resolvers might
soon be upgraded to add support for Edwards curves,
now might also be a good time to consider adding sup-
port for NSEC5.
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APPENDIX
A. HASHING ONTO THE CURVE.

The VRF (Section 3.5) uses a hash function H1 that
maps arbitrary-length strings to points on an elliptic
curve. How can we instantiate such a hash function?
Ideally we want an instantiation that can work for
both curves we have considered here: NIST P-256 and
Curve25519.

One very lightweight technique was proposed in [24]
and, at a high level, it proceeds as follows. Assume
an elliptic curve with corresponding equation y2 =
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x3 + ax + b (in Weierstrass form). Given an integer
α (the queried name in our case), set counter i = 0 and
compute h = H(α||i), where H is a standard crypto-
graphic hash function, e.g., SHA-256, and || is concate-
nation. Then, if h3 +ax+ b is a quadratic residue (that
is, h is the valid x-coordinate of a point on the curve)
output (h, (h3 + ax + b)1/2). Otherwise, increment the
counter by 1 and try again. This simple process is ex-
pected to terminate after two steps, and the involved
operations are very fast, with an expected running time
of (O log3(q)), if the curve is defined over finite field
Fq. The range of this function is only half of the group
G (because only one y is chosen for a random x), but
that does not materially change the proofs of security
(specifically, in Claims B.4 and B.5, the running time
for simulating queries to H1 doubles).

As first shown in [26], the above technique is not suit-
able when α must be kept secret; this is because the run-
ning time of the hashing algorithm depends on α, and
so it is susceptible to timing attacks. However, we stress
that this attack is not relevant in the context of NSEC5.
The only value that is hashed in the query phase is the
queried name α itself, which is already known to the
adversary.

B. SECURITY PROOFS.
We define the necessary security properties that a

VRF needs to satisfy in order to be used in our appli-
cation, and provide formal proofs that our construction
satisfies them.

B.1 Proof sketches.
We start with a sketch of the proofs of three prop-

erties: uniqueness, psuedorandomness, and collision re-
sistance. We define and prove them formally after the
brief informal sketch.

Uniqueness. The proof is by contradiction. Sup-
pose an adversary, given the secret key x, can come
up with some α and an incorrect VRF output value
β1 6= H2([H1(α)]x) for that α, and a valid proof π1 =
(γ1, s1, c1) for value β1. The verification function for
the VRF computes h = H1(α) and

u = (gx)c1gs1

v = (γ1)c1hs1

Now take the logarithm of the first equation base g and
the logarithm of the second equation base h, subtract
the two resulting equations, and express c1, to get

c1 ≡
logg u− logh v

x− logh γ1
(mod q) . (3)

Now since γ1 6= hx (since β1 is not the correct out-
put value), the denominator is not zero, and there is
exactly one c1 modulo q that satisfies equation (4) for

a given (g, h, gx, γ, u, v), regardless of s. However, re-
call that the verifier checks that c1 is equal to the out-
put of the cryptographic hash function H3 on input
(g, h, gx, γ, u, v). Since H3 is a random oracle, its out-
put is random, and the probability that it equals the
unique value determined by its inputs according to (3)
is negligible.11 Thus, we have arrived at our contradic-
tion.

Pseudorandomness. This follows from the DDH as-
sumption, in the random oracle model. Roughly speak-
ing, the pseudorandomness adversary does not know
the secret VRF key x, but must distinguish between
between pairs (α, β) where β is the VRF hash output
on input α, and pairs (α, r) where r is a random value.
This adversary knows the public values g and gx, and
can easily compute h = H1(α) for any α. However,
by the DDH assumption, hx looks random even given
(g, gx, h), and so H2(hx) is pseudorandom in the range
of H2.

Collision-Resistance. For a collision to happen,
H2(hx1) should equal to H2(hx2) where h1 = H1(α1) and
h2 = H1(α2) for some α1 6= α2. Assume H2 is a τ -to-1
function. Since raising to the power x is a permutation,
for every h1, there are at most τ possible h2 values that
can cause a collision. Since h1 and h2 are obtained via
random oracle queries, a pair that causes a collision is
unlikely to be found after QH queries to H1, as long as
G is larger than τQ2

H /2.

B.2 Full Proofs
We now expand on the sketches above to prove that

the construction in Section 3.5 is a secure VRF. It
suffices to prove three properties: Trusted Uniqueness
(see [57, Definition 10]), Selective Pseudorandomness
(see [57, Definition 11]), and Collision-Resistance (not
formally discussed in [57], but mentioned in the proof
of Theorem 4). Sufficiency of these three properties for
constructing NSEC5 follows from [57, Theorem 4]. We
discuss each property in turn.

We model the hash functions H1 and H3 as random
oracles. We use notation VerPK (α, β, π) to denote the
verification algorithm, which outputs 1 if and only if
the proof π and hash output β are valid for input α and
public key PK .

B.2.1 Uniqueness.
Recall that uniqueness requires that there should be

only one provable VRF output β for every input α;
trusted uniqueness limits this requirement to only the
case when the public key is valid.

Following tradition of the VRF literature, Naor and
Ziv [57, Definition 10]) define uniqueness uncondition-
ally: that is, for a validly generated public key, each

11The birthday paradox does not apply here, so that for a
128-bit security level is suffices to have c be 128 bits long.
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input α to the VRF has at most one hash output β that
can be proven to be correct. However, the construction
in Section 3.5 satisfies it only computationally: more
than one hash output y may exist, but only one valid
β—the one produced by FSK (α)—can be proven correct
by any computationally bounded adversary, even given
the secret key. We are not aware of any prior work defin-
ing this relaxation of the uniqueness property, although
Chase and Lysyanskaya [27] mention that such a relax-
ation can be defined. We therefore define it here. Our
definition is in terms of concrete, rather than asymp-
totic security, because concrete security enables us to
set length parameters.

Definition B.1. (Computational Trusted Unique-
ness.) A VRF satisfies (QH , ε)-trusted uniqueness if for
all adversaries A that makes at most QH queries to the
random oracle, for a validly chosen key pair (PK ,SK ),

Pr[A(PK ,SK )→ (α, β1, π1) and

(FSK (α),ΠSK (α))→ (β2, π2) s.t.

β1 6= β2 and VerPK (α, β1, π1) = 1] ≤ ε .

(Naor and Ziv [57, Definition 10]) also require that for
every PK , for an overwhelming fraction of the domain
of α, there exists β and π such that VerPK (α, β, π) = 1;
we retain this requirement, which is trivially satisfied
by our VRF, because Π and F work for every α.)

We now prove that the VRF satisfies Definition B.1
unconditionally (based on the randomness of the oracle
H3 and not on any computational assumptions).

Claim B.2. The VRF satisfies (t, ε)-computational
trusted uniqueness of Definition B.1 for ε = (QH +
1)/min(q/2, ρ), where ρ = |range(H3)| and QH ≤ t is
the number of queries the adversary makes to the ran-
dom oracle H3.

Note that the quantitative bound on ε in the above
claim implies that the bit length log ρ of the output
c of H3 can be equal to the desired security level; in
particular, it can be shorter than q (i.e., the prime order
of the cyclic group G). This claim is the only part of
the security analysis affected by the output length of
H3.

Proof. Suppose there is an adversary A that vi-
olates computational trusted uniqueness with proba-
bility ε. That is, on input g, x, the adversary A
makes QH queries to the H3 oracle and wins by out-
putting (α, β1, π1) s.t. β1 6= β2 and Ver(α, β1, π1) = 1
with probability ε. We will show that ε ≤ (QH +
1)/min(q/2, ρ), where q is the order of the group G
and ρ = |range(H3)|.

The proof π1 contains γ1 such that β1 = H2(γ1); sim-
ilarly, π2 contains γ2 such that β2 = H2(γ2). Since
β1 6= β2, we have γ1 6= γ2. Therefore, since γ2 =

[H1(α)]x (because that is what Π produces), we have
γ1 6= [H1(α)]x = hx.

Now, it must be that π1 = (γ1, c, s) for some c, s that
ensure that Ver(α, β1, π1) = 1. The verification function
Ver computes h = H1(α) and

u = gs(gx)c

v = hs(γ1)c.

Note that h 6= 1 (since H1 maps to G−{1}), and thus,
because G is of prime order, h is a generator of G. Then
we can take the logarithm of the first equation base g
and the logarithm of the second equation base h, be-
cause h and g are generators of G, and the verification
procedure checks that γ1 ∈ G. Solving these for s we
get

logg u− cx ≡ s (mod q)

logh v − c logh γ1 ≡ s (mod q)

which implies that

c ≡
logg u− logh v

x− logh γ1
(mod q) (4)

Since γ1 6= hx, the denominator is not zero, and so there
is only one c modulo q that satisfies equation (4) given
g, gx, h, γ1, u, and v.

Recall that for verification to pass,

c = H3(g, h, gx, γ1, u, v) .

Note that the contents of the query to H3 contains every
value in the right hand side of the equations (4), and
thus the correct c is uniquely defined at the time the
query is made.

What is the probability, for a given query to H3, that
the random value returned by theH3 oracle is congruent
to that correct c modulo q? Let ρ denote |range(H3)|.
If the range of H3 is a subset of Zq, and the correct c
is in that range, then this probability is at most 1/ρ.
If ρ is an exact multiple of q, then this probability is
at most 1/q. Finally, if ρ not an exact multiple of q
but is greater than q, then some values modulo q are
more likely than others, but none will have probability
greater than dρ/qe/ρ < 2/q.

Assume the adversary outputs β1, π1 and then the
verification algorithm is run. This causes a total of
QH + 1 queries to H3 (QH by A and one by the ver-
ifier), so by the union bound, the chances that any of
them returns a correct c for that query are at most
(QH + 1)/min(q/2, ρ).

Remark. Since our computational trusted unique-
ness property is slightly weaker than the unconditional
trusted uniqueness of [57, Definition 10], the proof of
the soundness property in [57, Theorem 4] of Naor-
Ziv needs a slight change, as follows. Recall that the
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proof is a reduction from an adversary A who violates
soundness to an adversary B who forges signatures.
The reduction relies on the fact that A must provide
the correct β value (called y in [57]) and proof π for
the VRF as part of its soundness-violating output on
an input α (called x in [57]). Computational trusted
soundness ensure that this happens except with negli-
gible (i.e., (QH +1)/min(q/2, ρ)) probability. Thus, the
success probability of the reduction reduces from ε to
ε− (QH + 1)/min(q/2, ρ).

Uniqueness Without Trusting the Key Our VRF
can be modified to attain the stronger property of com-
putational uniqueness (without needing to trust the key
generation). The verifier simply needs to check that the
group G is really of prime order q and that g and the
public key are in G − {1}. These properties suffice for
the proof above to go through regardless of how key
generation was performed.

B.2.2 Pseudorandomness.
We will state and prove pseudorandomness in terms

of concrete, rather than asymptotic, security. This type
of security is more relevant to practice and works for a
fixed group G.

We require a slight modification to the notions
of pseudorandomness and selective pseudorandomness
from [57, Definition 11]: instead of being indistinguish-
able from a random bit string, the output of our VRF
is indistinguishable from a truncation of a random el-
ement of G − {1}, i.e., from the distribution H2(UG),
where UG is the uniform distribution on G− {1}. Our
definitions are thus as follows.

Definition B.3. (Pseudorandomness) A VRF sat-
isfies (t, QH , QP , ε) pseudorandomness for output dis-
tribution S if no adversary D whose running time and
description size are bounded by t, whose total number of
random oracle queries is bounded by QH and total num-
ber of Π and F queries is bounded by QP , can distin-
guish the following two games with advantage more than
ε. In the both games, VRF keys (PK,SK) are honestly
generated, and D(PK ) gets to query ΠSK , FSK , and
the random oracles on arbitrary inputs. In both games,
D chooses a challenge input α∗ that has been queried
to neither Π nor F . In one game, D receives FSK (α∗),
while in the other D receives a random element drawn
from S. Finally, after additional queries to ΠSK and
FSK (except on α∗), D outputs one bit indicating which
game D thinks it is playing.

The slightly weaker notion of selective pseudoran-
domness is defined the same way, except D has to
choose α∗ before any queries and before seeing PK .

Pseudorandomness of our VRF depends on the fol-
lowing assumption about the group G and generator
g, known as the (t, ε)-DDH (Decisional Diffie-Hellman)

Assumption: for any adversary C whose description size
and running time are bounded by t, the difference in
probabilities (where the probabilities are over a ran-
dom choice of g, h, h′ ∈ G − {1} and x ∈ {1, . . . , q})
that C(g, gx, h, hx) = 1 and C(g, gx, h, h′) = 1 is at
most ε.

We now prove that our VRF satisfies both pseudoran-
domness and selective pseudorandomness. We address
selective pseudorandomness first, because it is simpler.

Claim B.4. Under the (t, ε)-DDH assumption, for
any QH , QP , the VRF satisfies (t′, QH , QP , ε

′) selec-
tive pseudorandomness for output distribution H2(UG),
for t′ ≈ t (minus the time for Θ(QH + QP ) expo-
nentiations in G and one evaluation of H2) and ε′ =
ε+QP (QP +QH )/q.

Proof. We need to show the following: if
• D chooses α∗,
• then receives an honestly generated PK = gx and

– either H2([H1(α∗)]x)

– or H2 applied to a random element of G,

• is allowed QH queries to random functions H1 and
H3 and QP queries are to ΠSK or FSK (except on
α∗)
• can distinguish between the two cases with advan-

tage ε′

then we can build C that breaks (t, ε)-DDH assumption
for t ≈ t′ (plus the time for Θ(QH +QP ) exponentiations
in G and one evaluation of H2) and ε = ε′ −QP (QP +
QH )/q.

Because FSK is computable, in our case, from ΠSK ,
we can assume without loss of generality that D never
queries FSK —every query to FSK can be replaced with
a query to ΠSK .

Given (g, gx, h, h′) (where h′ is either hx or a random
element of G−{1}), C gets α∗ from D, sets (g, gx) as the
VRF public key PK and runs D(PK , H2(h′)), answer-
ing the queries of D as follows (note that all random
oracle query responses are computed as below unless
already defined):
• If D queries α∗ to random oracle H1, C returns h.
• If D queries any other αi to H1, C chooses a ran-

dom ρi ∈ {1, . . . , q} and then programs H1 as

H1(αi) := gρi .

(note that this response is distributed uniformly in
G − {1}, just a like the honest H1, because g is a
generator of G).
• If D queries H3, C return a fresh random value in

the appropriate range (note that these responses
are distributed just like honest H3).
• If D makes a query qi to Π (note that qi 6= α),

– C makes a query to H1(qi) as described above
to get ρi,

– C sets γ = (gx)ρi ,
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– C chooses random values s ∈ [q] and c ∈
range(H3) and then computes

u = gs(gx)c

and

v = [gρi ]s[(gx)ρi ]c .

(Note that u, v, x, h = gρi , s, and c are dis-
tributed identically to the distribution pro-
duced by Π: the difference in how these distri-
butions are obtained is simply that Π chooses
a uniform k while C chooses a uniform s,
where k and s are tied by the equation s +
cx ≡ k (mod q), and u = gk, v = hk.)
If H3(g, gρi , gx, (gx)ρi , u, v) is already defined,
then C fails and aborts. Else, C programs the
H3 oracle to let

H3(g, gρi , gx, (gx)ρi , u, v) := c

(note that if C does not abort, then H3 is uni-
formly random, just like honest H2 and H3).

If C does not abort, then its simulation for D is
faithful and C can just output what D outputs. The
probability that C aborts is simply the probability
that H3(g, gρi , gx, (gx)ρi , u, v) is already defined during
the computation of the response to Π; since at most
QH + QP values of H3 are defined, and u is a uni-
formly random value in G (because s is uniformly ran-
dom in [q] and g is a generator), the chances that a
single query to Π causes an abort are (QH + QP )/q,
and the chances that any of the queries to Π causes an
abort are QP (QH + QP )/q. Thus, the advantage of C
is at least ε′ −QP (QP +QH )/q.

We can also prove pseudorandomness, but with a
looser security reduction than selective pseudorandom-
ness.

Claim B.5. Under the (t, ε)-DDH assumption, for
any QH ≥ 1, QP , the VRF satisfies (t′, QH , QP , ε

′)
pseudorandomness for output distribution H2(UG), for
t′ ≈ t (minus the time for Θ(QH + QP ) exponen-
tiations in G and one evaluation of H2) and ε′ =
4εQP +QP (QP +QH )/q.

Proof. We explain the proof by showing the differ-
ences from the previous proof. The problem is that C
does not know what α∗ is—it could be in any of the H1

queries. We follow the approach of [29] to deal with this
problem.

Whenever D makes a query αi to H1, C flips a biased
coin to decide whether this query is going to be “type-
sig” (with probability QP/(QP + 1)) or “type-attack”
(with probability 1/(QP +1)). If the query is“type-sig,”
then C works the same way as in the proof of Claim B.4.
Else, C returns hρi for a random ρi ∈ {1, . . . , q}. C
remembers the type of the query and the ρi value.

If D makes a query qi to Π, then C aborts if qi = αi
for an αi of type-attack (else C proceeds as before). At
some point D produces α∗; before proceeding, C makes
sure α∗ has been queried to H1 (performing the query
if it hasn’t been). C aborts if α∗ = αi for some αi of
type-sig, and otherwise returns H2(h′ρi) as the response
to the challenge.

We note that all the responses to H1 queries are still
uniformly distributed over G − {1} and independent,
because both g and h are generators of G. if h′ = hx,
then D receives the correct value for FSK (α∗), namely
H2(h′ρi) = H2(hxρi) = H2([H1(α∗)]x). On the other
hand, if h′ is a uniform element of G − {1}, then in-
stead of instead of FSK (α∗), D receives a uniform re-
sponse chosen independently of anything else from from
H2(G − {1}) because a uniform value raised to a fixed
nonzero power is uniform in G− {1}.

Now C succeeds as long as the guesses for the H1

query type (type-sig or type-attack) don’t lead to an
abort (and also an abort due to a collision of H3 inputs
doesn’t happen, as in the proof of Claim B.4). Note
that these guesses are independent of the view of D
and therefore of the success of D. The probability that
the guesses are correct for each Π query and for α∗ is(

QP

QP + 1

)QP 1

QP + 1
≥ 1

4QP

whenever QP ≥ 1 (as can be seen by observing that
the left-hand multiplied by QP is increasing, and its
value at QP = 1 is 1/4). We thus obtain the claimed
result.

B.2.3 Collision Resistance
We now define trusted collision resistance, which

states that an adversary cannot produce a collision even
given SK , as long as the keys are honestly generated.
This property, while not explicitly defined in [57], is
necessary to ensure the completeness of NSEC5, i.e., to
ensure that a valid non-existence proof can always be
generated by the nameserver and accepted by the re-
solver whenever the record does not exist (see [57, Proof
of Theorem 4]).

Definition B.6. (Trusted Collision Resistance) A
VRF satisfies (QH , ε) trusted collision resistance if no
adversary making QH random oracle queries, can, given
an honestly generated SK , output two values α1 6= α2

such that FSK (α1) = FSK (α2) with probability greater
than ε.

Claim B.7. If every output of H2 has at
most τ preimages in G, then our VRF satisfies
(QH , τQ

2
H /(2q))-trusted collision resistance. Note that

in our suggested instantiation of H2, τ = 2, so we have
(QH , Q

2
H /q)-trusted collision resistance
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Proof. The argument is simple: QH attempts pro-
duce QH uniformly random (because H1 is a random
oracle and raising to the power x is a permutation)
values γ ∈ G − {1}; the probability that any pair of
them collide after the application of H2 is at most
τ/(q − 1), and there are (QH − 1)(QH )/2 pairs, for
a total collision probability (by the union bound) of
2τQH (QH −1)/(2(q−1)), which is less than 2τQ2

H /(2q)
whenever QH < q.

Collision Resistance Without Trusting the Key
Similarly to the case with uniqueness, our VRF can
be modified the same way to attain collision resistance
without needing to trust the key generation.

C. SECURITY OF THE RSA-BASED VRF
In [40] the authors provided an explicit proof only for

the selective pseudorandomness of the RSA-based con-
struction [40, Lemma III.2], but neither for its trusted
uniqueness nor for its collision resistance. While these
proofs are straightforward, we provide them here for
completeness.

Claim C.1. The RSA-based VRF of [40] satisfies
trusted uniqueness as per [57, Definition 10]).

Proof. The claim that for every α there exist β, π
such that VerPK (α, β, π) = 1 follows by inspection since
for every α it is true that VerPK (α,ProveSK (α)) = 1.

Let A be an adversary such that A(PK ,SK ) →
(α, β1, π1) and ProveSK (α) → (β2, π2) and β1 6= β2,
where (PK ,SK )← Setup(1κ). Since β1 6= β2 it follows
that π1 6= π2 as βi = H(πi) for i = 1, 2 and H(·) imple-
ments a deterministic function. For the same reason,
the value of MGF (α) is fully determined by α. Since
PK,SK are valid RSA keys, the function f(x) = xe

is a bijection in ZN (where e is the RSA public expo-
nent) and therefore πe1 6= MGF (α) = πe2. Due to this,
the probability that VerPK will accept for proof π1 and
value β1 for input α is 0.

Claim C.2. The RSA-based VRF of [40] for H with
output size ` (assuming ` is less than the length of the
RSA modulus) satisfies (QH , Q

2
H /2

`+1)-trusted collision
resistance per definition B.6.

Proof. Indeed, for a collision to occur, either H(π1)
should equal H(π2) for some π1 6= π2, or MGF (α1)
should equal MGF (α2) for α1 6= α2. (Because trusted
key generation ensures that raising to the power d is a
permutation.) Let Q′H be the number of queries to H
and Q′′H be the number of queries to MGF . Let k be the
output size of theMGF . The probability of collision, by
the union bound, is at most Q′2H /(2 ·2`)+Q′′2H /(2 ·2k) ≤
Q2

H /2
`+1 because k ≤ `.
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