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ABSTRACT
NSEC5 is proposed modification to DNSSEC that simultaneously

guarantees two security properties: (1) privacy against offline zone

enumeration, and (2) integrity of zone contents, even if an adversary

compromises the authoritative nameserver responsible for respond-

ing to DNS queries for the zone. This paper redesigns NSEC5 to

make it both practical and performant. Our NSEC5 redesign fea-

tures a new fast verifiable random function (VRF) based on elliptic

curve cryptography (ECC), along with a cryptographic proof of its

security. This VRF is also of independent interest, as it is being stan-

dardized by the IETF and being used by several other projects. We

show how to integrate NSEC5 using our ECC-based VRF into the

DNSSEC protocol, leveraging precomputation to improve perfor-

mance and DNS protocol-level optimizations to shorten responses.

Next, we present the first full-fledged implementation of NSEC5—

extending widely-used DNS software to present a nameserver and

recursive resolver that support NSEC5—and evaluate their perfor-

mance under aggressive DNS query loads. Our performance results

indicate that our redesigned NSEC5 can be viable even for high-

throughput scenarios.

KEYWORDS
DNSSEC, verifiable random functions, elliptic curve cryptography,

implementation

1 INTRODUCTION
The Domain Name Security Extensions (DNSSEC) uses asymmetric

cryptography to protect the integrity and authenticity of DNS re-

sponses. NSEC5 [48] is a new proposal for providing authenticated
denial of existence for DNSSEC, i.e., for responding to DNS queries

(“What is the IP address of aWa2j3.com?”) for names that do not

exist in a zone (“NXDOMAIN: aWa2j3.com does not exist in the

.com zone.”) NSEC5 has two key security properties.

First, NSEC5 provides strong integrity, protecting the integrity of
the zone contents even if an adversary compromises the authorita-

tive nameserver (who is responsible for responding to DNS queries

for the zone). Hardening the DNS against external compromise

seems to be an increasingly important security goal [71], especially

in light of recent attacks [1, 2, 4, 39, 53].

Second, NSEC5 provides privacy against offline zone enumera-
tion [16, 24, 28, 60, 67, 70, 84, 85, 87], where an adversary makes
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a small number of online DNS queries and then processes them

offline in order to learn all the domain names in a zone. Zone enu-

meration can be used to identify routers, servers or other ‘things’

(thermostats, fridges, baby monitors, etc.) that could then be tar-

geted in more complex attacks. An enumerated zone can also be

“a source of probable e-mail addresses for spam, or as a key for

multiple WHOIS queries to reveal registrant data that many reg-

istries may have legal obligations to protect” [60] (e.g., per EU data

protection laws [75],[19, pg. 37]). Several publicly available net-

work reconnaissance tools can be used to launch zone-enumeration

attacks [10, 16, 28, 67, 70, 84].

While today’s DNSSEC protocol has several mechanisms for

authenticated denial of existence, they all either fail to provide

integrity against a compromised nameserver (i.e., online signing
used in NSEC3White Lies [44] andMinimally-Covering NSEC [86]),

or fail to prevent offline zone enumeration (NSEC [20], NSEC3 [60]).

In fact, offline zone enumeration is an issue introduced by DNSSEC,

and is not a possible attack on legacy DNS.

The original NSEC5. NSEC5 was first proposed in [48]. This first

proposal, which lacked a full specification and implementation, was

met with some skepticism [47, 82].

The first issue is that when DNSSEC uses schemes that do not
prevent offline zone enumeration, then DNSSEC responses can be

precomputed. By contrast, NSEC5 requires an online asymmetric

cryptographic computation at the nameserver, in response to every

negative DNSSEC query. (This is necessary. As shown in [48], online
cryptography is necessary for any scheme that both (a) provides

integrity, and (b) prevents zone enumeration.) Thus, there was a

concern that NSEC5 would not be sufficiently performant.

The second issue is the length of DNSSEC responses. DNSSEC

naturally amplifies DNS responses by including cryptographic keys

and digital signatures. Several unfortunate things occur when long

DNSSEC responses no longer fit in a single IP packet [69, 70, 72].

Long responses sent over UDP can be fragmented across multiple

IP fragments, and thus risk being dropped by a middlebox that

blocks IP fragments [76, 80] or being subject to an IP fragmentation

attack [50]. Alternatively, the resolver can resend the query over

TCP [37, 65], harming performance (due to roundtrips needed to

establish a TCP connection) and availability (because some mid-

dleboxes block DNS over TCP) [76]. Worse yet, long DNSSEC re-

sponses can be used to amplify DDoS attacks [43]. In a DDoS ampli-

fication attack, a botnet sends nameservers many small DNS queries

that are spoofed to look like they come from a victim machine, and

the nameservers respond by pelting the victim machine with many
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long DNSSEC responses. Long DNSSEC responses increase the

volume of traffic that arrives at the victim.

The NSEC5 proposal in [48] was based on RSA, which exacer-

bated both concerns, because of the length of an RSA modulus and

the cost of an RSA exponentiation. Under the proposal, each NSEC5

response would contain up to three additional (long) RSA values

that had to be computed on-the-fly. Moreover, there is currently

serious discussion about replacing RSA, which is widely used in

DNSSEC deployments [18, 78], with elliptic curve cryptography

(ECC) [52, 77, 81]; the goal is to have shorter responses at a better

security level. Thus, there was little enthusiasm for a new scheme

based on RSA.

In this paper, we implement and evaluate the NSEC5 proposal

from [48], and find that the concerns about its performance and

response lengths were justified.

A new version of NSEC5. In order to support the security goals

of NSEC5 without incurring the costs of the original RSA-based

NSEC5 proposal, we set out to design a new version of NSEC5. Our

approach proceeds along two lines.

First, we introduce DNS-level optimizations (Section 5) that allow

us to (1) precompute parts of the response, and (2) reduce the

number of DNSSEC records in the response.

Second, we redesign the cryptography behind NSEC5 (Section 4),

introducing a scheme based on elliptic curve cryptography (ECC).

To maintain the security properties of NSEC5, we cannot just

replace RSA with ECDSA. (Why? See Section 4.2.) Instead, the

starting point for our work is the observation of [66] that NSEC5

can be generically constructed from a verifiable random function

(VRF) [63]. A VRF is the public-key version of a keyed cryptographic

hash. We construct a VRF based on ECC, and prove its security

in the random oracle model. While our ECC VRF is similar to a

construction implicit in [41], this earlier work both lacked a proof

of security, and failed to satisfy the VRF security properties due

to a critical design flaw (that has been corrected as a result of our

work [7, 8, 40]). Beyond this, we take special care to minimize the

length of our VRF’s outputs while still maintaining security. Our

VRF has been submitted for standardization at the IETF [49].

Implementation. Our new version of NSEC5 has been submitted

for standardization at the IETF [83]. To evaluate our new version

of NSEC5, we present a full implementation of an authoritative

nameserver and recursive resolver that support both RSA- and ECC-

based NSEC5 (Section 6). (For the nameserver implementation, we

extend the Knot DNS 1.6 [12]. For the recursive resolver, we extend

Unbound 1.5.9.)

Performance results. Even though NSEC5 necessarily requires

the nameserver to perform online cryptographic computations,

we find that our new ECC-based NSEC5 can be viable even for

high-throughput scenarios. Throughput at our authoritative name-

server easily scales to a few tens of thousands of queries per second

(64K query/second) on a moderately-sized multi-core server (i.e.,
24 threads on 40 virtual cores). This is an order of magnitude larger

than the average negative response rate at single server in the

DNS’s root zone [6]. In fact, our ECC-based NSEC5 nameserver

implementation achieves a throughput that is about 2x higher than

the only nameserver implementation that prevents offline zone enu-

meration, is widely deployed, and is compliant with the DNSSEC

standards (i.e., PowerDNS’s implementation of online signing via

NSEC3White Lies [17]). Also, the performance of our NSEC5-ready

recursive resolver is comparable to DNSSEC’s existing denial-of-

existence mechanisms.

Response lengths. We show (Section 7.1) that our ECC-based

NSEC5 responses fit into a single IP packet, and have lengths that

are comparable to ECC versions of the current DNSSEC protocol

(i.e., NSEC3 with ECDSA signatures). In fact, ECC-based NSEC5

produces NXDOMAIN responses that are shorter than those pro-

duced by today’s dominant DNSSEC deployment configuration (i.e.,
NSEC3 with 1024-bit RSA signatures [18, 78]), which has a lower

security level!

Considering the transition to NSEC5. We conclude (Section 9)

by discussingmechanisms for transitioningNSEC5 into theDNSSEC

protocol. Given that the adoption of new cryptographic algorithms

into DNSSEC may be on the horizon (e.g., digital signatures over
Edwards elliptic curves [77, 88]), now may also be a good time to

consider the transition to NSEC5.

Contributions. We make the following contributions:

• We present a VRF based on elliptic curves, prove its security in

the random oracle model, and use it to design a more performant

version of NSEC5 (Section 4, Appendix B).

• We design the DNS protocol surrounding NSEC5, using precom-

putation and other optimizations to improve performance and

shorten response lengths (Section 5).

• We present the first full-fledged implementation of both RSA-

and ECC-based NSEC5 for both an authoritative nameserver

and a recursive resolver. Our evaluation highlights significant

improvements in throughput and response size achieved by our

new ECC-based NSEC5 (Section 6,7).

• We discuss challenges and opportunities for adopting NSEC5 in

practice (Section 9).

2 TRADEOFFS IN TODAY’S DNSSEC
We start by reviewing the issues that lead to the development

of NSEC5 for DNSSEC. (See e.g., [87] for a historical overview

of the full DNSSEC protocol.) With DNSSEC, a trustworthy zone
owner is trusted to determine the set of names (www.example.com)
present in the zone and their mapping to corresponding values

(172.18.216.34). Nameservers receive information from the zone

owner, and respond to DNS queries for the zone made by resolvers.
DNSSEC’s schemes for authenticated denial of existence reflect

tradeoffs between integrity and privacy against offline zone enu-

meration. We describe each scheme and its tradeoffs below:

NSEC (RFC 4034 [20]). The NSEC record is defined as follows.

The trusted owner of the zone prepares a lexicographic order-

ing of the names present in a zone, and uses the private zone
signing key (ZSK) to sign a record containing each consecutive

pair of names. The precomputed NSEC records are then provided

to the nameserver. Then, to prove the non-existence of a name

(x.example.com), the nameserver returns the NSEC record cor-

responding to the pair of existent names that are lexicographi-

cally before and after the non-existent name (w.example.com and

z.example.com), with its associated DNSSEC signatures.
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NSEC provides strong integrity—it not only protects against

network attackers that intercept and attempt to alter DNSSEC re-

sponses, but is also robust to amalicious nameserver. This is because

NSEC records are precomputed and signed by the trusted owner

of the zone, and so the nameserver does not need to know the

private ZSK in order to produce a valid NSEC record. Without the

private ZSK, a malicious nameserver cannot sign bogus DNSSEC

responses.

On the other hand, NSEC is vulnerable to trivial zone enumera-

tion attacks: N online queries to the nameserver suffice to enumer-

ate all N names in the zone. Several network reconnaissance tools

use NSEC records to enumerate DNS zones [10, 14, 67, 70].

NSEC3 (RFC 5155 [60]). NSEC3 is meant to raise the bar for

zone enumeration attacks. The trusted owner of the zone crypto-

graphically hashes all the names present in the zone using SHA1,

lexicographically orders all the hash values, and uses the private

ZSK to sign a NSEC3 record containing every consecutive pair of

hashes. To prove the non-existence of a name, the nameserver re-

turns the precomputed NSEC3 record (and the associated DNSSEC

signatures) for the pair of hashes lexicographically before and after

the hash of the non-existent name.

When NSEC3 records are precomputed, it also provides strong

integrity. However, [28, 85] demonstrated (and RFC 5155 [60, Sec.

12.1.1] acknowledged) that hashing does not eliminate zone enu-

meration. To enumerate a zone that uses NSEC3, the adversary

again makes a number of online queries to the nameserver to col-

lect all the NSEC3 records, and then uses an offline dictionary attack
to crack the hash values in the NSEC3 records, thus learning the

names present in the zone. These offline attacks will only become

faster as new tools come online [14, 16, 84] and technologies for

fast hashing continue to improve (e.g., GPUs [85], ASICs).

Online signing with NSEC3White Lies (RFC 7129 [44]). Nei-

ther NSEC nor NSEC3 prevent zone enumeration. As a result, the

DNS community introduced a radically different approach that

prevented zone enumeration at the cost of sacrificing strong in-

tegrity. DNSSEC online signing requires the nameserver to hold the

secret zone-signing key (ZSK), and to use it to generate NSEC3 re-

sponses on the fly. Crucially, online signing does not provide strong

integrity—it protects only against network attackers that intercept

DNSSEC responses, but integrity is totally lost if the nameserver is

compromised, because the nameserver holds the secret ZSK that

can be used to sign bogus DNSSEC responses. We call this weak
integrity.

RFC 7129 [44] describes an online signing approach called “NSEC3

White Lies” which is supported by at least one major nameserver

implementation (PowerDNS). NSEC3White Lies requires the name-

server to use the secret ZSK to generate, on the fly, an NSEC3 record

that covers a query with the minimal pair of hash values.
1
That is,

given a query α and its hash value h(α ), the nameserver generates

an NSEC3 record containing the pair of hashes (h(α ) − 1,h(α ) + 1),
and signs the NSEC3 record with the private ZSK. Because the

NSEC3 record only contains information about the queried name α ,
but not any name present in the zone, it provides privacy against
zone enumeration. Offline zone enumeration attacks no longer

work. Instead, enumeration is only possible by brute force—sending

no online weak strong

crypto integrity integrity privacy

legacy DNS ✓ X X ✓
(plain) NSEC or (plain) NSEC3 ✓ ✓ ✓ X
online signing, e.g. NSEC3 White Lies X ✓ X ✓
NSEC5 X ✓ ✓ ✓

Table 1: Properties of NSEC*. Note that [48] proved that it is
impossible to provide both privacy and weak integrity with-
out online crypto.

an online query to the nameserver for each name that is suspected

to be in the zone.

NSEC3 White Lies also has a helpful backwards-compatiblity

property for resolvers: resolvers just need to validate the NSEC3

record, but do not need to know or care whether the server is doing

online signing (with NSEC3 White Lies) or not (with plain NSEC3).

3 SECURITY PROPERTIES OF NSEC5
NSEC5 was introduced in [48, 66], to provide both privacy against

zone enumeration and strong integrity. NSEC5 is very similar to

NSEC3, except that we replace the cryptographic hashes used in

NSEC3 with the hashes computed by a verifiable random function
(VRF) [63]. Table 1 summarizes properties of NSEC5.We now review

the security properties of NSEC5, and revisit the exposition in [66]

to show how NSEC5 can be generically constructed from a VRF.

3.1 Verifiable Random Functions (VRF).
A VRF [63] is essentially the public-key version of a keyed crypto-

graphic hash. A VRF comes with a public-key pair (PK, SK ). Only
the holder of the private key SK can compute the hash, but anyone

with public key PK can verify the hash. A VRF hashes an input α
using the private key SK

β = FSK (α ) .

The collision-resistance guarantee of a VRF is similar to that of

a cryptographic hash function. The pseudorandomness of a VRF
guarantees that β is indistinguishable from random by anyone who

does not know the private key SK . The private key SK is also used

to construct a proof π that β is the correct hash output

π = ΠSK (α ) .

The proof π is constructed in such a way that anyone holding the

public key can validate that indeed β = FSK (α ). Finally, the VRF has
a trusted uniqueness property that roughly requires that, given

the VRF public key PK , each VRF input α corresponds to a unique

VRF hash output β . More precisely, trusted uniqueness guarantees

that, given a validly-generated PK , even an adversary that knows

SK cannot produce a valid proof for a fake VRF hash output β ′ , β .
(The word “trusted” here is used to indicate that we trust the key

generation process, and are not concerned with uniqueness for

untrusted keys.) See Appendix B for formal definitions.

All the VRFs we consider in this paper allow β to be computed

directly from π by a simple operation, i.e., hashing. This reduces
communication, since communicating π alone (without β) suffices.

1
RFC4470 [86] also proposes “Minimally Covering NSEC Records” an analogous on-

line signing approach that uses NSEC records instead of NSEC3 records. We omit

further discussion of this approach because it is not supported by major nameserver

implementations (i.e., BIND, PowerDNS, Microsoft DNS, Knot DNS, etc.).
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3.2 NSEC5 from VRFs.
NSEC5 uses a VRF to provide authenticated denial of existence for

DNSSEC [66, Sec. 7]. We review the NSEC5 construction and three

new types of DNSSEC records it requires: NSEC5, NSEC5KEY and

NSEC5PROOF.

The NSEC5KEY. NSEC5 uses a VRF with its own keys. These

keys are distinct from the zone-signing key (ZSK) that computes

DNSSEC signatures. The private VRF key is known to both the

nameserver and the trusted owner of the zone. Meanwhile, the

private ZSK is only known to the trusted owner of the zone. Finally,

resolvers get the public ZSK (in a DNSKEY record), and the public

VRF key (in an NSEC5KEY record) using the standard mechanisms

used for DNSSEC key distribution.

Why do we need two separate keys, namely the ZSK (for sign-

ing DNS records) and the VRF key (for NSEC5)? This allows us to

separate our two security goals (i.e., strong integrity and privacy

against zone enumeration). To achieve strong integrity, we follow

the approach in NSEC and NSEC3, and provide the private ZSK to

the the trusted zone owner but not to the untrusted nameserver.

On the other hand, any reasonable definition of privacy against

zone enumeration must trust the nameserver; after all, the name-

server holds all the DNS records for the zone, and thus can trivially

enumerate the zone. For this reason, we will provide the secret

VRF key to the nameserver, and use the VRF only to deal with zone

enumeration attacks.

In [48], cryptographic lower bounds were used to prove the

nameserver must necessarily have some secret cryptographic key.

However, we shall soon see that NSEC5 still provides strong in-

tegrity even if the nameserver’s private key is compromised ormade

public—all that is lost is privacy against zone enumeration. This

is contrast to any online signing approach, such as NSEC3 White

Lies, where compromising the nameserver’s secret key eliminates

both integrity and privacy against zone enumeration (Table 2).

Precomputing NSEC5 records. The trusted zone owner uses

the private VRF key SK to compute the VRF hashes of all the names

present in the zone, lexicographically orders all the the hash val-

ues, and uses the private ZSK to sign a record containing every

consecutive pair of hashes; each pair of hashes is an NSEC5 record.

The precomputed NSEC5 records and their associated DNSSEC

signatures are provided to the nameserver along with the private

VRF key SK .

Responding with NSEC5 and NSEC5PROOFs. To prove the

non-existence of a queried name α , the nameserver uses the private

VRF key SK to obtain the VRF hash output β = FSK (α ) and the

proof value π = ΠSK (α ). The nameserver responds to the query

with

(1) an NSEC5PROOF record containing π , and2

(2) the precomputed NSEC5 record (and the associated DNSSEC

signatures) for the pair of hashes lexicographically before and

after β .
NSEC5 is almost identical to NSEC3, except that NSEC3 does not

have a ‘PROOF’ record because resolvers can hash α by themselves.

2
We use VRFs where β can be publicly computable from the proof π , so do not include
β in the NSEC5PROOF record. VRFs that do not have this property additionally require

β to be included in the NSEC5PROOF.

integrity privacy

Online signing X X
NSEC5 ✓ X

Table 2: Comparing online signing (e.g., NSEC3 White Lies)
to NSEC5 when the nameserver is compromised.

(This is exactly why NSEC3 is vulnerable to offline zone enumera-

tion: because its hash function is publicly computable!)

Validating. The resolver validates the response by

(1) using the public VRF key in the NSEC5KEY record to validate

that proof π from the NSEC5PROOF corresponds to the query

α ,
(2) using a simple operation (i.e., hashing) to get β from π and then

checking that β falls between the two hash values in the NSEC5

record, and

(3) using the public ZSK to validate the DNSSEC signatures on the

NSEC5 record.

3.3 Properties of NSEC5.
Table 1 summarizes the properties of NSEC5.

Online crypto. NSEC5 requires online cryptographic computa-

tions for negative responses. (But not for positive responses.) For

every query α that elicits a negative response, the nameserver uses

the secret VRF key SK to compute the NSEC5PROOF record on

the fly. Notice that online signing (e.g., ‘NSEC3 White Lies’, see

Section 2) also requires online cryptographic computations. The

fact that both of these solutions prevent zone enumeration is not a

coincidence: [48] proved that any solution that both (a) prevents

zone enumeration and (b) provides weak integrity, must necessarily
use online cryptography. What is interesting about NSEC5 is that

it provides strong integrity (i.e., integrity even when the name-

server is malicious or compromised). Meanwhile, online signing

provides only weak integrity (i.e., against network attackers but

not compromised nameservers). See Tables 1-2.

Privacy. An attacker can only enumerate the zone by brute force—

by sending an online query to the nameserver for each name α that

it suspects is in the zone.

To see why, suppose an adversary has collected all the NSEC5

records for the zone, and nowwants to enumerate the zone using an

offline-dictionary attack that ‘cracks’ the VRF hashes. The adversary

must first hash each entry in his dictionary, and then check if any of

the hashed dictionary entries match any VRF hashes in the collected

NSEC5 records; if there is a match, the adversary has successfully

cracked the VRF hash. However, because the adversary does not

know the private VRF key, the VRF hash values are indistinguishable

from random values. It follows that the adversary cannot hash any

of the entries in its dictionary, and thus cannot perform a offline

dictionary attack. A formal security proof of this property is in [66].

Strong integrity. Strong integrity is provided even even if a

malicious nameserver, or any other adversary, knows the secret

VRF key SK . This is because because the untrusted nameserver does

not know the secret zone-signing key (ZSK). The idea behind the

formal proof (see [66]) of this property is simple. Suppose that the

secret VRF key SK used with NSEC5 is made public. Resolvers know

the correct public VRF key PK , so the VRF’s trusted uniqueness
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Keys. Let N be a public RSA modulus, let d be a secret RSA expo-

nent and e be its corresponding public exponent. The public VRF
key is (e,N ) and the secret VRF key is (d,N ).

Hashing. To hash input α using the private RSA key (d,N ), start
by computing the proof value

π = (MGF (α ))d mod N

and then compute the hash value β as

β = H (π )

H is a cryptographic hash function (e.g., SHA-256) while MGF is

an IETF-standard cryptographic hash that produces outputs one bit

shorter than the RSA modulus [22, Sec. 10.2] (aka, a “full domain

hash” [25]). Notice that anyone can compute β given π .

Verifying. To verify that β is the VRF hash of α , first verify that

H (π ) = β and then use the public RSA key (e,N ) to verify that π is

a valid RSA signature onMGF (α ), i.e., that πe = MGF (α ) mod N .

Figure 1: VRF based on RSA. Appendix C proves its security
in the random oracle model.

ensures that an adversary (that knows SK) cannot trick resolvers

into accepting an incorrect VRF hash output.
3
Then, NSEC5 is

essentially the same as (plain) NSEC3: the adversary can correctly

hash queries on its own, but cannot forge NSEC* records. Thus,

for any name α that is present in the zone, the adversary cannot

forge an NSEC5 record that falsely claims that α is absent from the

zone. In other words, even if the private NSEC5KEY is leaked to an

adversary, the security of NSEC5 just downgrades to that of (plain)

NSEC3. (See Tables 1-2.)

4 REDESIGNING THE CRYPTO
As discussed in Section 1, a key problem with the original NSEC5

construction from [48] was that it was based on RSA. We first

review [48]’s NSEC5 construction and explain why it implicitly

contains an RSA-based VRF; we prove the security of this RSA-

based VRF in Appendix C. We then explain why we cannot improve

its performance by just swapping out the RSA signatures in [48]

and replacing them with ECDSA. Finally, we construct a ECC-based

VRF, and prove its security in Appendix B.

4.1 VRF based on RSA
The original NSEC5 construction [48] was not described in terms of

VRFs. However, it actually uses the VRF in Figure 1, which is based

on RSA in the random oracle model. Notice that the VRF proof is

simply a deterministic RSA signature (using [25]’s “full-domain

hash" construction), and the VRF output is simply the cryptographic

hash of the VRF proof. VRF verification amounts to an RSA ver-

ification of the VRF proof. We prove that this is a secure VRF in

Appendix C.

Use with NSEC5. Each precomputed NSEC5 record contains two

SHA-256 hash outputs, each corresponding to β in Figure 1, and

one DNSSEC signature. Each NSEC5PROOF, generated on the fly,

has one RSA value (π in Figure 1).

Public parameters. Let q be a prime number, and let G a cyclic

group of prime order q with generator д. Because checking mem-

bership inG may be expensive, we assumeG is a subgroup of some

group E such that (1) checking membership in E is easy, and (2) the

cofactor f = |E |/|G | is not divisible by q. (G may equal E, in which

case f = 1.) We assume that q,д, f ,G and E are public parameters.

Let H1 be a hash function (modeled as a random oracle) mapping

arbitrary-length bitstrings onto G − {1}. Let H2 be a function that

takes the bitstring representation of an element of E and shortens it

to the appropriate length; we need a 2ℓ-bit output for ℓ-bit security.

Let H3 be a hash function (modeled as a random oracle) mapping

arbitrary-length inputs to an ℓ-bit integer.

Keys. The secret VRF key x ∈ {1, . . . ,q − 1} is chosen uniformly

at random. The public VRF key is PK = дx .
Hashing. Given the secret VRF key x and input α , compute the

proof π as follows:

(1) Obtain the group element h = H1 (α ) and raise it to the power

of the secret key to get γ = hx .
(2) Choose a random nonce k ∈ {0, . . . ,q − 1}.

(3) Compute c = H3 (д,h,д
x ,hx ,дk ,hk ).

(4) Let s = k − cx mod q.
The proof π is the group element γ and the two exponent values c, s .
(Note that c may be shorter than a full-length exponent, because

its length is determined by the choice of H3). The VRF output

β = FSK (α ) is computed by shortening γ f with H2. Thus

π = (γ , c, s ) β = H2 (γ
f )

Notice that anyone can compute β given π .

Verifying. Given public key PK , verify that proof π = (γ , c, s )
corresponds to the input α and output β as follows:

(1) Compute u = (PK )c · дs .
(Note: if everything is correct then u = дk .)

(2) Given input α , hash it to obtain h = H1 (α ).
Check that γ ∈ E.
Compute v = (γ )c · hs .

(Note: if everything is correct then v = hk .)
(3) Check that hashing all these values together gives us c from

the proof. That is, check that:

c = H3 (д,h, PK ,γ ,u,v )

Finally, compute β = H2 (γ
f ).

Figure 2: A VRF that operates in a cyclic group G of prime
order with generator д. We use a multiplicative group nota-
tion. This VRF adapts the Chaum-Pederson protocol [35] for
proving that two cyclic group elements дx and hx have the
same discrete logarithm x base д and h, respectively. Appen-
dix B proves its security in the random oracle model, based
on the decisional Diffie-Hellman (DDH) assumption, which
roughly says that hx looks random given the tuple (д,дx ,h).

4.2 Why can’t we just use ECDSA?
At this point, one would naturally wonder whywe don’t just replace

the RSA signature in Figure 1 with an ECDSA signature. After all,

ECDSA signatures are much shorter than RSA signatures at the
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same security level. (For instance, ECDSA signatures over 256-bit

elliptic curves are just 512 bits long and are understood to have an

ℓ = 128-bit security level, comparable to 3072-bit RSA.)

The problem is that while the “full-domain hash” RSA signature

used in Figure 1 is unique given the public key PK , an ECDSA

signature lacks this property. With randomized ECDSA signatures,

the signature is computed using a random nonce, and so signatures

are not unique given only the ECDSA public key PK . Moreover,

even “deterministic” ECDSA [73] fails to provide uniqueness given

only the ECDSA public key PK . With “deterministic” ECDSA, the

signer derives the signing nonce from a keyed hash of the message

it is signing, but the symmetric key k to this hash is independent

of the ECDSA public key PK . Thus, the signer could produce a

different ECDSA signature just by choosing a different key k , and
the verifier would never know the difference.

Why does this matter? If ECDSA signatures were used in the

construction of Figure 1, then the VRF prover could produce any

arbitrary number of valid VRF proofs π for a given input α and

public key PK . This clearly violates the trusted uniqueness property
of the VRF (Section 3.1). Per Section 3.3, trusted uniqueness is

central to the strong integrity property of NSEC5. This is why we

can’t base NSEC5 on ECDSA signatures.

4.3 VRF based on Elliptic Curves.
We now see how to produce shorter NSEC5 responses using elliptic

curves (ECC). Our starting point is construction of [41, 46]. We can-

not, however, we use [41]’s construction as is. While [41] claimed

their construction was also a VRF, they did not formally prove that it

achieves the VRF properties from Section 3.1. In fact, we discovered

that their construction (which has since been adopted by Google’s

Key Transparency project [11, 62]) has a critical flaw that allows a

malicious prover to violate the VRF’s trusted uniqueness property.

This flaw has since been corrected as a result of our work [7, 8, 40].

Our VRF construction can be seen in Figure 2 and our formal

proof of its security properties in Appendix B. It fixes the flaw

of [41], without any downgrade in performance. On the contrary,

since we provide a concrete (as opposed to asymptotic) security

analysis as per the formulation of [26], we can optimize the VRF’s

parameters. Concretely, we can shorten the length of VRF proof

π , by truncating value c in Figure 2 so that it is only ℓ bits long

(and not 2 · ℓ). This results in NSEC5PROOF records that are ℓ bits

shorter.

Our VRF can be instantiated over any group where the decisional

Diffie-Hellman (DDH) problem is hard, including the elliptic curves

currently standardized in DNSSEC (NIST P-256 [55, Sec. 3]), and

Curve25519 [59] which has recently been proposed for use with

DNSSEC [56, 77]. Each of these curves operates in finite field Fp
where p is a 256-bit prime, and achieves a security level of ℓ = 128

bits [27, 55].

Use with NSEC5. What response lengths do we get when we

instantiate NSEC5 with the VRF in Figure 2 over 256-bit elliptic

curves?

Each NSEC5 record will once again contain two hash outputs

(each corresponding to β in Figure 2) along with a DNSSEC signa-

ture. We instantiate H2 in Figure 2 with the function that outputs

example.com A

bar.example.com A

www.example.com A

*.www.example.com A

Figure 3: Example zone.

the x coordinate (abscissa) of a point (x ,y) on the elliptic curve

(where x ,y ∈ Fp ). Thus, each β will be 256-bits long.

We instantiate H1 per Appendix A.

Next, observe that each NSEC5PROOF record will contain the

proof value π = (γ , c, s ) from Figure 2. How long is π? If we in-
stantiate the VRF using a 256-bit elliptic curve (e.g., NIST P-256 or

Ed25519), then s is 256 bits long. Meanwhile, γ is a point on the

elliptic curve, which can be represented with 256 + 1 bits using

point compression.
4
Finally, we show (in Appendix B) c must be

ℓ-bits long for an ℓ-bit security level. We therefore instantiate H3

as the first 128 bits output by the SHA-256 hash function.

It follows that proof π will be p = 256+ 1+ ℓ+ 256 = 513+ ℓ bits

for a ℓ-bit security level; thus, p = 641 for a 128-bit security level.

Achieving the same security level with RSA requires 3072-bit RSA,

which results in NSEC5PROOFS that are about 5 times longer!

5 DESIGNING THE DNS PROTOCOL FOR
NSEC5

To properly understand the performance of NSEC5, we must move

beyond the clean and idealized model we used thus far, where each

query (“What is the IP for example.com?”) elicits either a positive
response (“172.18.216.34.”) or a negative response (“NXDOMAIN:

The name does not exist.”) In practice, the behavior of NSEC* is

much messier. This is primarily due to the complex nature of a

seemingly-unrelated issue: DNS wildcards [60, Section 7.2.1],[45,

61]. (Indeed, the treatment of DNS wildcards is so complex that

RFC4592 [61] clarifying their use was issued nineteen years after

the original DNS RFC1035 [65].) Thus, we start by digging into how

NSEC3 handles wildcards. We then design the protocol that NSEC5

uses to deal with wildcards, and describe how it (1) uses a “wildcard

bit" to shorten response lengths and (2) exploits precomputation to

improve performance.

5.1 Wildcard and closest encloser proofs.
Awildcard record maps a set of queries to a particular response. For

example, if the domain has a wildcard record for *.example.com,
then queries for c.example.com and a.b.c.example.com would
all be answeredwith the value in thewildcard record (e.g., “172.18.216.35”).

To see why wildcards matter, we use a running example. Suppose

a DNS query for a.b.c.example.com is made to the example zone

in Figure 3. The correct response is NXDOMAIN (i.e., the name

4
The idea behind point compression is to represent a point with coordinates (x, y )
using only its abscissa x (which is 256 bits long) and a single bit that indicates which

square root (positive or negative) should be used for the ordinate y . Without point

compression, both coordinates must be transmitted, for a total length of 256+256 bits.

(Thus, without point compression our proof π would be 2 ∗ 256 + 128 + 256 = 896

bits long.) There has been some controversy over whether or not point compression is

covered by a patent, and whether its use in DNSSEC corresponds to patent infringe-

ment [81]. However, as Bernstein [29] argues: “a patent cannot cover compression

mechanisms [appearing in the paper by Miller in 1986 [64] that was] published seven

years before the patent was filed.” Moreover, new IETF specifications for elliptic curve

digital signatures using Ed25519 also use point compression [56].
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does not exist). Why? First, example.com is the longest ancestor

of the queried name that exists in the zone. In DNS terminology,

example.com is the closest encloser for a.b.c.example.com [61].

Next, *.example.com—the wildcard child of the closest encloser—is
not in the zone. Thus, there is nowildcard expansion of a.b.c.example.com.
The correct response is NXDOMAIN.

But how can a nameserver use DNSSEC to securely prove the
absence of relevant wildcards? First, the nameserver must prove

that example.com is the closest encloser, by proving:

(1) The presence of the closest encloser example.com.
(2) The absence of the next closer c.example.com, the name one

label longer than the closest encloser.

(Notice that the next closer is sometimes identical to the queried

name, e.g., if we had instead queried for c.example.com.) Once this
is it done, the nameserver must additionally prove:

(1) The absence of *.example.com, the wildcard child of the clos-

est encloser.

5.2 NSEC3 and wildcards.
How does NSEC3 prove the three items above? The middle and last

item are easily dealt with, by providing the NSEC3 record proving

the absence of the name, i.e., that contains a pair of hashes h1,h2
such that h1 < h(name) < h2. But what about proving the presence
of a name (i.e., the first item)? One way to do this is to provide an

NSEC3 record that matches the name, i.e., that contains a pair of
hashes h1,h2 such that h1 = h(name). Thus NSEC3 proves the three
items by returning three NSEC3 records [60]:

(1) A NSEC3 record matching the closest encloser, i.e., an NSEC3

recordwith two hash valuesh1,h2 such thath1 = h(example.com).
(2) An NSEC3 record covering the next closer, i.e., an NSEC3 record

containing two hash valuesh1,h2 such thath1 < h(c.example.com) <
h2.

(3) An NSEC3 record covering the wildcard, i.e., an NSEC3 record

containing two hash valuesh1,h2 such thath1 < h(∗.example.com) <
h2.

Thus, wildcards significantly impact performance: a single query

can solicit up to three NSEC3 responses! (Figure 4.)Sometimes,

fewer than three NSEC3 records are needed. For instance, only two

records are needed if the same record matches h(example.com) and
coversh(c.example.com). Indeed, this is always true for NSEC, so at
most two NSEC records are returned for each query. We summarize

the impact on performance below and in Table 3.

Response length. Every query can elicit a response containing

(up to) three NSEC3 records, each of which includes as DNSSEC

signature (of length σ bits) and two hash values (each of length 2ℓ

bits). Thus, the bitlength of the response can be estimated as

|nsec3| = 3(4ℓ + σ ) = 12ℓ + 3σ (1)

Resolver computations. The resolver must verify up to three

DNSSEC signatures (on each NSEC3 record).

Nameserver computations. When regular NSEC3 is used, all

responses are precomputed. When NSEC3 White Lies is used, re-

sponses are generated on the fly, so up to three NSEC3 records are

signed in response to every query.

online crypto verifications max response

at nameserver at resolver length

NSEC none 2 RRSIGs 2σ
NSEC3 none 3 RRSIGs 3σ + 12ℓ
NSEC3 White Lies 1 RRSIG 3 RRSIGs 3σ + 12ℓ
NSEC5 1 NSEC5PROOF 2 RRSIGs 2σ + 8ℓ + 2p

2 NSEC5PROOFs

Table 3: Performance characteristics of NXDOMAIN re-
sponses for NSEC*. RRSIG records are DNSSEC signatures.
σ is the bitlength of a DNSSEC signature, 2ℓ is the bitlength
of the hash output in the NSEC3 or NSEC5 record, and p is
the bitlength of an NSEC5PROOF.

5.3 Adding the wildcard bit to NSEC5.
In [45], however, Gieben and Mekking observed that wildcards

could be dealt with just two NSEC3 records. Their proposal sim-

ply requires a wildcard bit to be added to each NSEC3 record. If

an NSEC3 record contains the pair of hashes h1,h2 where h1 =
h(example.com), then the wildcard bit is set if *.example.com is

present in the zone, and cleared otherwise. This simple trick al-

lows us to eliminate the third NSEC3 record! Instead, we need only

check that the wildcard bit is cleared on the first NSEC3 record.

The wildcard bit was not standardized as part of NSEC3, and has

not been deployed in practice [44]. However, we can use it with

NSEC5, because NSEC5 records have the same structure as NSEC3

records.

NSEC5 uses the wildcard bit, so that up to two NSEC5 records

(and two NSEC5PROOFs) are needed to respond to any query. (See

Figure 5.)This has significant impact on response lengths:

Response lengths. Every query can elicit a response containing

(up to) two NSEC5 records, each including a DNSSEC signature

(length σ bits) and two hash values (each of length 2ℓ bits), and

up to two NSEC5PROOF records (each of length p bits). We can

therefore estimate the total bitlength of the response as

|nsec5| = 2(4ℓ + σ + p) = 8ℓ + 2σ + 2p (2)

Resolver computations. Resolvers need to verify twoNSEC5PROOF

records and up to two DNSSEC signatures (on each NSEC5 record).

5.4 Adding precomputation to NSEC5.
Perhaps the biggest performance challenge with NSEC5 is the need

for the nameserver to perform online crypto. We now see how to

lower this burden on the nameserver.

First recall that all DNSSEC signatures on NSEC5 records must
be precomputed. (This is because NSEC5 records are signed by the

zone-signing key (ZSK). To preserve strong integrity, the name-

server must not know the secret ZSK.) It is also possible to precom-

pute one of the twoNSEC5PROOFs. Specifically, the first NSEC5PROOF

and NSEC5 record prove the presence of the closest encloser (i.e.,
example.com) are as follows: (1) The NSEC5 record has two hash

values h1,h2, where h1 is the VRF hash of the closest encloser, and

(2) the NSEC5PROOF has a proof π that h1 is a correct VRF hash
value. The NSEC5PROOF for h1 can therefore be precomputed and

cached at the same time as the NSEC5 record.Online crypto is only

needed for the second NSEC5PROOF. The second NSEC5PROOF

andNSEC5 record cover the next closer c.example.com. TheNSEC5PROOF
proves that β is a correct VRF hash of c.example.com. Meanwhile,
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the NSEC5 record has a pair of VRF hash outputs h1,h2 that must

fall lexicographically before and after β . Importantly, h1 and h2
must not equal β . Also, β is unknown at the time that the NSEC5

record is prepared. As such, the NSEC5PROOF for β cannot be

precomputed.

Thus NSEC5 only needs one online cryptographic computation

when the nameserver responds to a query.
5

5.5 Other protocol considerations
NODATA Responses. Thus far, our exposition has used an ideal-

ized model where all DNS queries are of the same type: the query

contains a domain name (www.example.com), and the response con-
tains an IPv4 address (“172.18.216.34”). Actually, this is a query for

an A record. In practice, there are other query types. For instance,

the AAAA record is for IPv6 addresses. Suppose the example zone

in Figure 3 receives a AAAA query for www.example.com. The zone
has an A record for www.example.com, but not a AAAA one. Thus,

the correct response is NODATA, (i.e., “The name exists, but not

for queried type”).

Because NSEC5, NSEC3, and NSEC records all have the same

structure, they all deal with NODATA responses as follows. Every

NSEC* record includes a type bitmap [20, 60], containing a bit for

each type of DNS record (e.g., A, AAAA, NS, MX). Consider the

NSEC* record matching www.example.com, i.e., that contains a pair
of hash values h1,h2 such that h1 is the hash of www.example.com.
In our example zone, this NSEC* record has its type A bit set, and

its other type bits cleared. This NSEC* record would be used to

respond to an AAAA query for www.example.com. The resolver
would conclude the response is NODATA by checking that the the

AAAA bit cleared. Notice that NODATA responses always use just

one NSEC* record!

Privacy. Wildcards and types have minor implications on NSEC5

privacy. Consider a queried name (e.g., a.b.c.example.com) that
does not exist in the zone. Then, the NXDOMAIN response reveals

the closest encloser’s name (example.com) and types that exist in

the zone (e.g., A, AAAA, MX, NS), and also reveals if its wildcard

child (*.example.com) exists in the zone. Meanwhile, if a queried

name (e.g., www.example.com) does exist in the zone, then the NO-

DATA response reveals its all types (e.g.,A) present in the zone. This
means that NSEC5 ensures that an attacker can learn which types

of a non-wildcard name (example.com) exist in the zone only if it

(1) queries for the exact name (example.com) OR (2) queries for any

longer name that contains it as a prefix (e.g., a.b.c.example.com).
In other words, the attacker must still enumerate the zone by brute

force, sending an online query for every name (or longer name that

contains it as a prefix) suspected to be in the zone.

Key management. NSEC5KEY records can be distributed in

the same way as DNSKEY records. Menawhile, as discussed in

Section 3.3, the nameservermust store the private NSEC5 key (to the

VRF) but not the private ZSK. The secret NSEC5 key is not subject to

the same security requirements as a regular DNSSEC secret key (i.e.,

5
As noted in Table 3, a similar precomputation approach is possible with NSEC3

White Lies. Specifically, the presence of the closest encloser example.com and the

presence/absence of its wildcard child *.example.com are known at the time that the

zone is signed. Therefore, their corresponding NSEC3 records can be precomputed.

This optimization is (sort of) performed by the PowerDNS nameserver, which caches

and reuses NSEC3 records generated on-the-fly for the closest encloser and wildcard.

ZSK). Why? Because the damage from a compromised NSEC5 key

is the same as the damage from a downloaded zone file; integrity is

not damaged. And an attacker who can break into a nameserver

to steal the NSEC5 key can probably also download the zone file,

anyway. Moreover, the NSEC5KEY can be rolled over using the

same procedure to roll a ZSK [58]: the new NSEC5KEY record is

published at the nameserver, then old NSEC5 records are replaced

by NSEC5 records computed using the new NSEC5KEY, and finally

the old NSEC5KEY is removed.

Opt-out. NSEC5 supports opt-out in the same way as NSEC3 [60].

6 FULL-FLEDGED NSEC5 IMPLEMENTATION
We designed and implemented the two NSEC5 variants (RSA and

ECC), extending existing DNS software. For the authoritative name-

server, we extended Knot DNS 1.6.4, a highly-optimized author-

itative implementation. For the recursive resolver we extended

Unbound 1.5.9, one of the most widely used recursive resolver im-

plementations. Our implementation supports the full spectrum of

negative responses, (i.e., NXDOMAIN, NODATA, Wildcard, Wild-

card NODATA, and unsigned delegation). The authoritative im-

plements the optimization that precomputes the NSEC5PROOFs

matching each NSEC5 record (Section 5.4). We did not introduce

additional library dependencies; all cryptographic primitives are

already present in OpenSSL v1.0.2j, which is used by both imple-

mentations. We implemented our elliptic-curve VRF for the NIST

P-256 curve. The code is deliberately modular, so that the Ed25519

curve [56] (which is not supported by OpenSSL v1.0.2j) could be

used a drop-in replacement. Overall, we added approximately 9,000

lines of C code. We plan to make the source publicly available.

A “live” example from our implementation. Figures 4 and 5

present “live” NXDOMAIN responses from our implementation,

for NSEC3 and NSEC5 respectively. (Cryptographic values (hashes,

proofs, and signatures) have been shortened and some data fields

have been dropped.) To generate these responses, we signed a small

example.com zone with NSEC3 using ECDSA-P256 (DNSSEC algo-

rithm 13) and ECC-based NSEC5. Per Section 5.2, NSEC3 returns

three records and their corresponding signatures. On the other

hand, the wildcard bit used with NSEC5 allows us to return only

two NSEC5 records and two NSEC5PROOFS (Section 5.4).

7 NSEC5 PERFORMANCE EVALUATION
We now evaluate the performance of NSEC5 and compare it against

(plain) NSEC3 and online signingwith NSEC3White Lies (Section 2).

We consider response length, query processing time at the recursive

resolver and nameserver, and throughput, memory and CPU usage

at the nameserver.

Configurations. We tested our Knot DNS nameserver implemen-

tation in four configurations:

(1) NSEC3 with 2048-bit RSA signatures (DNSSEC Algorithm 8),

(2) NSEC3 with ECDSA signatures over the NIST P-256 curve

(DNSSEC Algorithm 13),

(3) NSEC5 with 2048-bit RSA signatures (RRSIG) and NSECPROOF

records,

(4) NSEC5 with ECC using the NIST P-256 curve for both signa-

tures (RRSIG) and NSECPROOFs.
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$ kdig +dnssec +multiline ddadasds.example.com
;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 22793
;; Flags: qr aa rd; QUERY: 1; ANSWER: 0; AUTHORITY: 8; ADDITIONAL: 1

;; QUESTION SECTION:
;; ddadasds.example.com. IN A

;; AUTHORITY SECTION:
example.com.     3600 IN SOA dns1.example.com. 
example.com.     3600 IN RRSIG SOA 13 2 3600 20170128184611 

( 5134 example.com. nqiEgM+kVBDeBI== )

;; Matching record for hash of example.com –-closest encloser;
0sc7qshrek878fcmnag1.example.com. 3600 IN NSEC3 1 0 0 AABB     

( CPDHD7GK40NGDKRU8CQ8 NS SOA MX RRSIG DNSKEY NSEC3PARAM )
0sc7qshrek878fcmnag1.example.com. 3600 IN RRSIG NSEC3 13 3 3600 

( 5134 example.com. 2JicIoTH3WkgAjbP/ehmTv== )

;; Covering record for hash of ddadasds.example.com –-next closer record;
jftj44t4kqppke20mukr.example.com. 3600 IN NSEC3 1 0 0 AABB   

( MSC7QSHREK878FCM8GD7 A AAAA RRSIG )
jftj44t4kqppke20mukr.example.com. 3600 IN RRSIG NSEC3 13 3 3600

( 5134 example.com. VfFQfho5sQ8QVWOqsrXyN6== )

;; Covering record for hash of *.ddadasds.example.com –-wildcard record;
cpdhd7gk40ngdkru8cq8n.example.com. 3600 IN NSEC3 1 0 0 AABB 

( J1VSBFDBU38SMLNJPIMM A AAAA RRSIG )
cpdhd7gk40ngdkru8cq8n.example.com. 3600 IN RRSIG NSEC3 13 3 3600

( 5134 example.com. lcDsoeVGuq3rvezN2oW74x== )

;; Received 773 B

Figure 4: NXDOMAIN response with NSEC3.

$ kdig +dnssec ddadasds.example.com
;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 18282
;; Flags: qr aa rd; QUERY: 1; ANSWER: 0; AUTHORITY: 8; ADDITIONAL: 1

;; QUESTION SECTION:
;; ddadasds.example.com. IN A

;; AUTHORITY SECTION:
example.com.    3600 IN SOA dns1.example.com. 
example.com.    3600 IN RRSIG SOA 16 2 3600 

( 5137 example.com. kVfd4pgDmWMg== )

;; Matching record for hash of example.com –-closest encloser; 
;; Wildcard flag is not set;
ec2i1k1adn16bb9sbh1k.example.com. 86400 IN NSEC5 48566 0 

( H4ETTRT2RNLVQA2DU6HM NS SOA MX RRSIG DNSKEY NSEC5KEY )
ec2i1k1adn16bb9sbh1k.example.com. 86400 IN RRSIG NSEC5 16 3 86400 

( 5137 example.com. RbkKnf4MT/Fg== )

;; Covering record for hash of ddadasds.example.com –-next closer record;
4vulla22dr6bo63j203c.example.com. 86400 IN NSEC5 48566 0 

( C341KKJADV09N1BH2DJ0 A AAAA RRSIG )
4vulla22dr6bo63j203c.example.com. 86400 IN RRSIG NSEC5 16 3 86400 

( 5137 example.com. KMrN9N+J9Rug== )

;; NSEC5PROOF records;
example.com.  3600 IN NSEC5PROOF 48566 ( AiZnaTPduKWyig )
ddadasds.example.com.  3600 IN NSEC5PROOF 48566 ( AzH6uKGjS+2FJf )

;; Received 834 B

Figure 5: NXDOMAIN response with NSEC5.

The NSEC3 configurations used 10 hash iterations. (This is a com-

mon choice in practice, e.g., at the .ru zone.) Finally, we used Pow-

erDNS
6
4.0.1 in “narrow” mode with BIND back-end to evaluate

(5) NSEC3 White Lies with ECDSA signatures over NIST P-256

(DNSSEC Algorithm 13)

For the recursive resolver, we used our NSEC5-ready extension of

Unbound in validating and caching mode.

6
We acknowledge that this is not an apples-to-apples comparison. But, to the best of

our knowledge, PowerDNS is the only widely-deployed open-source nameserver that

supports DNSSEC online signing in an RFC-compliant way. Meanwhile, we chose to

focus our NSEC5 implementation effort on the more performant Knot DNS nameserver.

System. All experiments were executed on a machine with 20X

Intel Xeon E5-2660 v3 cores with dual thread support for a total of 40

virtual CPUs, and 256GB RAM, running CentOS Linux 7.1.1503 and

OpenSSL 1.0.2j. We would expect a typical SLD to have multiple

nameservers of roughly this size, possibly at multiple locations.

Because network latency is a common denominator for all our

schemes, all experiments were performedwith this machine hosting

both the nameserver (using 24 threads) and the recursive resolver

(using up to 16 threads), each listening at a different port.

Stress testing with “purely negative” query loads. Unless

otherwise specified, our measurements use synthetic query loads.

We elicit negative (NXDOMAIN) responses by sending queries for

names from the zone prepended with a random six-alphanumeric-

character sequence. We deliberately chose to stress-test our im-

plementation using this aggressive “purely negative” query load.

Importantly, a purely negative query load would typically occur

only when a server is subject to a volumetric denial-of-service

attack; natural DNS traffic usually elicits both positive responses

(e.g., A, AAAA, MX, NS records) as well as negative ones (NXDO-

MAIN) [5].

Zone. We test against a real Alexa-100 second-level-domain (SLD)

zone that consists of about 1000 names.
7
Note that our results are

largely agnostic to the choice of zone, because we use worst-case

query load of purely negative traffic, which eliminates the effect of

caching, and therefore the size of the zone itself has little impact

on performance. One notable exception is the RAM footprint at the

namesever, and so for this we give results for two zones.

7.1 Response lengths.
We want DNSSEC responses to be short enough to fit into a sin-

gle IP packet and to limit DDoS amplification (Section 1). We find

that NSEC5-ECC response lengths are comparable to NSEC3 with

ECDSA, and shorter than today’s dominant deployment configura-

tion (NSEC3 with 1024-bit RSA).

Figure 7. Figure 7 shows the average response size for 100,000 NX-
DOMAIN responses for our four Knot DNS configurations. When

RSA is used, both NSEC5 (at 1731 bytes, on average) and NSEC3

(1517 bytes) do not fit in a 1500-byte IP packet (Ethernet MTU).

Meanwhile, ECC-based NSEC5 is much shorter (827 bytes, on av-

erage), easily fitting into a single IP packet, and is comparable to

ECC-based NSEC3 (783 bytes).

Comparison to “legacy” NSEC3. Modern cryptographic rec-

ommendations mandate a security level of at least 112 bits [23].

Despite these recommendations, NSEC3 only supports (outdated)

SHA1 as its hash function [60], for an (outdated) security level of

ℓ = 80 bits. (NSEC5 records use a 2ℓ = 256-bit hash outputs, for a

ℓ = 128-bit security level.) Also, most domains deploying DNSSEC

still use 1024-bit RSA (σ = 1024 bits) [18, 78], for an (outdated)

80-bit security level [23]. NSEC3 with 1024-bit RSA has an aver-

age response length of 1069 bytes. This is about 29% longer than
ECC-based NSEC5, which also has a much stronger security level

(ℓ = 128 versus ℓ = 80 bits)!

7
We used the only domain in the Alexa 100 that we could completely enumerate

because it used DNSSEC with NSEC records. (The rest were unsigned, or did not use

NSEC records, and thus could not be enumerated.)
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7.2 Nameserver performance.
Both NSEC5 and NSEC3 White Lies prevent offline zone enumer-

ation by requiring online public-key crypto computations at the

nameserver. (See Table 3.) We compare their performance at the

nameserver, and find that our ECC-based NSEC5 implementation

(extending Knot DNS) is faster than PowerDNS’s implementation

of NSEC3 White Lies.

Processing time per query. To measure the time it takes to pro-

cess a query at the authoritative, we ran 100,000 sequential queries,

each eliciting an NXDOMAIN response. To fairly compare across

implementations, we report round-trip time as observed by the

query issuer. Figure 6-(left) presents the results. Ignoring the tail

of the plot (which can be attributed to delays in inter-process com-

munication and other tasks running in the background), we see

that the majority of queries are processed consistently close to an

average time for each configuration. Plain NSEC3 (with RSA-2048

and ECDSA-P256) uses precomputed responses; as such, the name-

server can respond to queries in just 117µs and 116µs on average.

Meanwhile NSEC5 and NSEC3 White Lies use online crypto, there-

fore process queries more slowly. RSA-based NSEC5 takes 1.93ms

on average, while ECC-based NSEC5 presents a 2.3x speedup, for

an average query processing time of 0.81ms. This is faster than the

1.12ms query processing time for the PowerDNS implementation

of NSEC3 White Lies!
8

Throughput with purely negative traffic. Next, we consider

aggregate query throughput. We used Dnsperf 2.1.1 [15], a popular

open-source DNS performance evaluation tool, to issue negative

queries at fixed rates from 1K to 128K queries per second (qps).

Figure 6-(center) presents throughput results on a logarithmic

scale.

Plain NSEC3 does not use online cryptographic computations,

and so throughput scales easily to 128 Kqps and beyond. The re-

maining schemes do use online crypto computations. RSA-based

NSEC5 plateaus earliest—the nameserver cannot cope with a query

rate greater than about 20 Kqps. Turning to elliptic-curve configu-

rations, PowerDNS’s NSEC3 White Lies plateaus at about 32 Kqps,

while our ECC-based NSEC5 improves on this to almost 64 Kqps.

This 2x improvement follows from differences in the Knot DNS and

PowerDNS implementations, which is also in line with benchmark

results of [13]. ([13] finds a 2-3x gap in throughput between the Knot

DNS and PowerDNS when serving DNSSEC-enabled zones.)Our

NSEC3-ECC throughput results should be well above the needs

of most zone operators. To put this in context, the A operator [6]

reports an average negative query load per server that is roughly

one order of magnitude smaller. (On July 7, 2017 the total number

of NXDOMAIN responses (RCODE 3) that day is 2640833191 split

across 5 servers for an average of 6113 q/second/server.)

Throughput with mixed traffic. In practice, throughput should

be even higher, because normal traffic should elicit positive re-

sponses (e.g., signed A records), which are precomputed, in ad-

dition to NXDOMAIN responses. To demonstrate this, we tested

ECC-based NSEC5 at a steady query rate of 32 Kqps using 4 (rather

than 24) threads. When fewer than 50% of responses are NXDO-

MAIN, throughput remains steady at 32 Kqps. Meanwhile, purely

NXDOMAIN traffic saturates throughput at 13 Kqps.

8
Per footnote 5, PowerDNS caches and reuses NSEC3 records generated on-the-fly for

the closest encloser and wildcard. By contrast, our NSEC5 implementation precomputes
the closest-encloser records, rather than caching and reusing them. Thus, to fairly

compare across implementations, we crafted the query load so that all queries could

use the same records (served from cache) for all but the next-closer records (Section 5.1).

Therefore, both NSEC5-ECC and NSEC3 White Lies perform a single online crypto

computation at query time.
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Table 4: Memory footprint (MB) at the authoritative after
loading the zone.

CPU utilization. CPU utilization is shown in Figure 6-(right). We

used the Linux perf_events profiler to measure the task-clock
time per second (shown on the y-axis of Figure 6-(right)), which re-

ports the CPU time spent by a process across all threads. Since

we use 24 threads, full utilization would correspond to a task-

clock/second of 24. All measurements were taken over a 5 minute

period (time shown on the x-axis) with 32 Kqps query load of purely

NXDOMAIN traffic. From Figure 6-(center), we already know that

a 32 Kqps query load causes throughput to deteriorate for RSA-

based NSEC5 and PowerDNS’s NSEC3 White Lies, but not for plain

NSEC3 and ECC-based NSEC5. Considering the corresponding CPU

utilization in Figure 6-(right), we see that plain NSEC3 has the low-

est CPU utilization (roughly 50%, or task-clock time/second of

about 12) while NSEC3-ECC is not too much higher. Meanwhile,

NSEC3 White Lies (with PowerDNS) has the heaviest CPU utiliza-

tion (roughly 95%, or task-clock time/second of about 23), mostly

due to implementation differences between Knot DNS and Pow-

erDNS. As a final note, we expect utilization to be lower in a setting

tuned for maximum performance, since these results include the

heavy logging necessary for our experiments.

Memory footprint. Table 4 considers the memory footprint at

the authoritative nameserver, once the zone is loaded. Because our

test SLD zone had only 1000 records, we repeated this experiment

for the .name TLD, which has about 460, 000 records. We see that

ECC generally has a much smaller memory footprint than RSA.

NSEC5 also takes up more space than plain NSEC3 because: (i)

NSEC5PROOFs are precomputed and cached to optimize perfor-

mance (Section 5.4), and (ii) NSEC5 records use 256-bit hash values,

while NSEC3 uses (outdated, less secure) 160-bit SHA1 hash values.

Finally, the memory overhead for NSEC3White Lies is tiny, because

NSEC3 records are computed on the fly at query time.

7.3 Recursive resolver performance.
NSEC3 and NSEC5 both require recursive resolvers to perform

public-key crypto verifications (Table 3). We therefore find that

query processing times at the recursive resolver for our RSA- and

ECC-based NSEC5 implementations are comparable to those of

NSEC3.

Overall per-query processing time. Figure 8-(left) reports the

overall query processing time per NXDOMAIN response, as ob-

served by a stub resolver. This measurement includes the process-

ing time both at the recursive resolver (which verifies DNSSEC

responses) and at the authoritative nameserver (with serves or gen-

erates responses). We set up the stub resolver, recursive resolver,

and nameserver on our single machine. Our query load was 100,000

sequential unique queries, each eliciting an NXDOMAIN response

from the nameserver.

Figure 8-(left) shows that plain NSEC3, NSEC3 White Lies, and

NSEC5 all have processing times of the same order of magnitude.

This follows because they all require public-key crypto verifica-

tions at the recursive resolver. (Compare this to processing time at

the authoritative nameserver alone, which is orders of magnitude

faster for plain NSEC3). Overall processing time for plain NSEC3 is

fastest (about 1ms); again, this follows because plain NSEC3 does

not require online crypto at the nameserver. Of the three configu-

rations that use online crypto at the nameserver to prevent zone

enumeration, RSA-based NSEC5 takes the longest (3.4ms on av-

erage), followed by NSEC5-ECC (3.1ms on average) and NSEC3

White Lies using PowerDNS (2.4ms on average).

Mixed traffic. The average query processing time is likely to be

faster in practice, since real DNSSEC traffic contains positive re-

sponses (e.g., signed A records) as well as NXDOMAIN responses.

To highlight this, Figure 8-(center) shows the overall query process-

ing time for ECC-based NSEC5, when handling traffic containing

both positive and NXDOMAIN responses. Positive queries were

sampled from the zone according to a Zipf distribution, which

has been shown to be a good fit for DNS query distributions [57].

Naturally, NSEC5 only affects performance for negative queries;

everything else is validated from cache in minimal time.

Validation time. Finally, we zoom in on performance at the recur-

sive resolver by considering only the time required for validating

responses. (This excludes processing at the nameserver, latency to

the nameserver, packet processing at the recursive, etc.).
Figure 6-(right) shows that cryptographic validation NSEC5-RSA

is faster than NSEC5-ECC. (This is natural: RSA verification is well

known to be faster than ECDSA verification.)

Next, consider the two plain NSEC3 configurations. Figure 6-

(center) shows that most queries are validated in microseconds;

meanwhile, the top 11% of queries (on the right side of the figure)

take seconds to validate. The reasoning for this subtle. Because we

issue 100,000 queries for a zone that only has 1000 names, our recur-

sive resolver eventually collects all the NSEC3 records for the zone.

(In other words, it enumerates the zone.) Once this happens, the

authoritative nameserver begins sending NSEC3 records that the

recursive resolver has already cached. Instead of cryptographically

validating these NSEC3 records from scratch, the resolver simply

takes a few microseconds to retrieve the cached NSEC3 record.

Thus, the excellent validation performance of plain NSEC3 follows

because we make a large number of queries to the same small zone.

In a live system that queries multiple zones, this behavior is likely

to be less significant.

Now consider the validation performance for NSEC3 White Lies.

With White Lies, a fresh NSEC3 record is generated for every query,

so the recursive will never be able to collect all the NSEC3 records

for the zone. (That is, will never be able to enumerate the zone

unless it queries specifically for all names in it!) Thus, this excellent

validation performance we observed for plain NSEC3 is not possible

with NSEC3 White Lies. Analogous reasoning shows it is also not

possible with any other approach that prevents zone enumeration,

including NSEC5.

Thus, it is most sensible to compare NSEC5’s validation per-

formance to that of NSEC3 White Lies. Figure 8-(right) shows

that validation for NSEC3 White-Lies (0.5ms) is faster than for
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time per NXDOMAIN response at the recursive resolver for all configurations.

NSEC5-ECC implementation (1.2ms). Digging into this result, we

found that it is due to (1) parsing and logging the different parts

of the NSEC5 response (e.g., the NSEC5PROOF), (2) fetching the

NSEC5KEY, and (3) a performance gap between our (unoptimized)

ECC-based VRF verification and the highly-optimized OpenSSL

verification of ECDSA.

Remark: Speedups with Ed25519? Finally, we note that our

NSEC5 implementation uses the NIST P-256 elliptic curve. However,

the literature suggests that computational speedups are possible by

moving from P-256 to the Ed25519 [77] elliptic curve. We leave this

to future work.

8 NSEC5 VS. RECENT INNOVATIONS
We consider the relationship between NSEC5 and some recent DNS

innovations.

Aggressive negative caching (draft-ietf-dnsop-nsec-aggressiveuse) [42]:
A new proposal, that is in the process of being standardized, calls

for aggressive caching of NSEC* records at resolvers. The idea is

to reuse cached NSEC* records to answer queries that are different
from the original query that elicited the NSEC* record. (The origi-

nal DNSSEC specifications [21] do not allow this.) To see how this

works, suppose the zone in Figure 3 used (plain) NSEC and sup-

pose we sent a type A query for foo.example.com. The response
would contain an NSEC record that (1) attests that no names exist

between bar.example.com and www.example.com, and (2) has a

type bitmap with the type A bit set and type AAAA, NS, MX, etc.
bits cleared. Then, aggressive negative caching allows resolvers to

use the cached NSEC record to infer that:

(1) Other names covered by the NSEC record do not exist in the

zone (NXDOMAIN for e.g., qqq.example.com).
(2) Other types matching the NSEC record do not exist in the

zone (NODATA for bar.example.com for types e.g., AAAA,
NS, MX).

This first item treats offline zone enumeration as feature, rather than

a bug. In other words, it exploits the fact that resolvers can make

offline inferences about the names covered by an NSEC/NSEC3

record. It optimizes DNSSEC performance by cutting down on

the number of queries sent from resolver to nameserver. (For in-

stance, the fast response validation behavior we observed for plain

NSEC3 in Figure 8-(right) would also translate to a reduce number

of queries.) However, this performance optimization is obviated

by any scheme that prevents offline zone enumeration, including

NSEC3 White Lies and NSEC5, because these schemes necessarily
prevent resolvers from making offline inferences about the names

present or absent in the zone. Meanwhile, the second item optimizes

performance (reducing queries from resolver to nameserver) for all

the schemes including NSEC5.

RFC8020 [32]. RFC8020 is a new standard that states that NXDO-

MAIN for a query (c.example.com) implies that names deeper in

the DNS hierarchy (e.g., b.c.example.com) also do not exist. This

allows resolvers to cache theNXDOMAIN response for c.example.com
and reuse it to answer a later query for e.g., b.c.example.com. All
the NSEC* variants we have considered thus far, including NSEC5,

can benefit from this performance optimization.

Black Lies (draft-valsorda-dnsop-black-lies [79]). There is a

(concurrent) NSEC* proposal that leverages the fact that NODATA

responses are short. Black Lies is an online-signing solution that

answers each negative query with an NODATA response, even if

the “correct” response is NXDOMAIN. (Hence, the Black Lie.) For

example, suppose the zone in Figure 3 receives an AAAA query for

a.example.com. The Black Lies response is a single NSEC record

matching a.example.com, with its AAAA type bit cleared, that is

generated and signed on the fly. To prevent zone enumeration, the

second name in the NSEC record is the immediate lexicographic

successor of query, i.e., \000.a.example.com. Responses are short
because only one NSEC record is required.

Black Lies comes with some caveats. Most importantly, it is an

online-signing solution (per Tables 1,2) that requires the nameserver

to know the secret zone-signing key (ZSK). Thus, it fails to provide

strong integrity. Moreover, because Black Lies gives a NODATA

response when the “correct” response is NXDOMAIN, it obviates

the performance optimization of RFC8020 [32]. Also, Black Lies

thwarts any diagnostic or security tool (e.g., [38, 74]) that uses
NXDOMAIN responses to infer that a name definitely does not

exist in the zone.

9 THE TRANSITION TO NSEC5
How can today’s DNSSEC transition to NSEC5?

The DNS community has faced this problem before. First, the

NSEC3 specification [60] came out after the earliest deployments of
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DNSSEC [68], and so resolvers and nameservers had to transition

from NSEC to NSEC3 [60, Section 10.4]. Second, there is currently a

proposal to transition from RSA to ECDSA signatures over the NIST

P-256 elliptic curve [81]. Third, a desire to avoid NIST-specified

curves [30] and to have short DNSSEC responses, is motivating

the community to consider transitioning to digital signatures over

Edwards elliptic curves [77, 88]. Fourth, there is also the DPRIVE

initiative that seeks to add confidentiality to DNS transactions, to

mitigate concerns surrounding pervasive network monitoring [3].

Given that other transitions may be on the horizon, this might also

be a good time to consider transitioning to NSEC5.

9.1 The mechanics of the transition.
We believe that the transition to NSEC5 can be accomplished simi-

larly to the transition to NSEC3. DNSSEC records have an algorithm
number that specifies the cryptographic algorithms they use (e.g.,
5 specifies RSA signatures with SHA1 hashing [9]). To transition

to NSEC3, two new algorithm numbers were introduced—6:DSA-

NSEC3-SHA1 and 7:RSASHA1-NSEC3-SHA1. (Once the transition

period ended, subsequent DNSSEC algorithm numbers (8,10, 12,

etc.) implied support of NSEC3.) Per [21, Sec 5.2], resolvers that did

not support NSEC3 ignored DNSSEC records with algorithms 6 or

7, and either ‘hard failed’ (i.e., rejected the response) or ‘soft failed’

(i.e., accepted the response) depending on their local policies. Algo-

rithm numbers could also be used to transition to NSEC5. There

are two ways [58, Sec 4.1.4] to transition from an old algorithm

number to a new one.

1. Conservative approach. The nameserver simultaneously sup-

ports both algorithms. Thus, the nameserver answers each query

with a DNSSEC response has records for both the old and the

new algorithm number. The resolver can validate the response if

recognizes at least one algorithm. The downside is that DNSSEC

responses contain twice as many keys and signatures.

2. Liberal approach. The nameserver stops serving responses

with the old algorithm, and uses the new algorithm instead. The

downside is that resolvers that do not support the new algorithm

number will treat the zone as unsigned [21, Sec 5.2]. Thus, the

liberal approach is unlikely to be used until many resolvers support

the new algorithm number.

There are several reasons why the liberal approach seems right

for NSEC5. First, it does not blow up the length of DNSSEC re-

sponses. Secondly, and more importantly, a zone that simultane-

ously supports both NSEC3 and NSEC5 will not reap the security

benefits of NSEC5. If (plain) NSEC3 is supported in parallel with

NSEC5, then offline zone enumeration is possible by collecting the

NSEC3 records.
9
If online signing (e.g., NSEC3 White Lies) is sup-

ported in parallel with NSEC5, then the nameserver must hold the

secret ZSK key, and thus NSEC5 loses its strong integrity guaran-

tees. On the other hand, the liberal approach is unlikely to be used

in a transition until a majority of resolvers support NSEC5. How-

ever, given that resolvers might soon be upgraded to add support

for Edwards curves, now might also be a good time to consider

adding support for NSEC5.

9
This also suggests that algorithm negotiation [51] may be less helpful in a transition

to NSEC5—a zone-enumeration attacker can simply negotiate to speak NSEC3.

10 CONCLUSION: WHY USE NSEC5?
The zones that could adopt NSEC5 are the ones that currently con-

sider deploying NSEC3 White online signing because zone enumer-

ation is an issue for them. NSEC5 provides comparable/improved

performance without compromising integrity (even when the name-

server is compromised). Meanwhile, with NSEC3 White Lies, com-

promising the nameserver compromises the integrity of the zone

(Table 2).

[48] proved that providing integritywhile preventing offline zone

enumeration necessarily require the nameserver to perform one on-

line public-key crypto computation for each negative query. While

this seems expensive, we demonstrate that our ECC-based NSEC5

nameserver implementation can be viable even for high-throughput

scenarios. In Section 7.2 we found that it supports a throughput

of 64, 000 negative queries per second (qps) on a moderately-sized

server with 24 threads on 40 virtual cores. This is about 2x the

throughput of the only implementation of RFC-compliant online

signing that is widely deployed and publicly available (PowerDNS’s

implementation of NSEC3 White Lies). A throughput of 64 Kqps

should be well above the needs of most zone operators—even public

statistics from the A-root operator [6] indicate an average nega-

tive query load about one order of magnitude smaller per server.

Without access to proprietary statistics regarding corporate second-

level-domains, it is not easy to estimate their throughput require-

ments. Nevertheless, this 64 Kqps throughput is achieved even with

purely negative traffic (rather that mixed traffic, with both positive

and negative queries) and a single server (rather than a cluster of

nameservers, a more common deployment configuration).

With ECC-based NSEC5, the overall processing time for an nega-

tive query (from stub resolver, to recursive resolver, to authoritative

nameserver) is only 30% longer that of online signing with NSEC3

White Lies (using the PowerDNS implementation). It may be possi-

ble to reduce this performance gap with an optimized implementa-

tion, since the nature and number of cryptographic operations in

the two configurations is similar. Moreover, our implementation is

for the NIST P-256 elliptic curve; further speedups might be possi-

ble by moving to the Ed25519 curve [77]. (Doing this requires no

modifications to ECC-based VRF of Figure 2.)

Thus, we believe that NSEC5 can be a practical solution for

zones that care about protecting sensitive information (names of

hosts, servers, routers, IoT devices, DANE certificates [54], etc.)
from offline zone enumeration attacks. Meanwhile, operators that

don’t care about zone enumeration should just use plain NSEC3.
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A HASHING ONTO THE CURVE.
The ECC-based VRF (Figure 2) uses a hash function H1 that maps

arbitrary-length strings to points on an elliptic curve. How can we

instantiate such a hash function? Ideally we want an instantiation

that works for both curves we have considered: NIST P-256 and

Ed25519.

One lightweight technique was proposed in [31]. It proceeds as

follows. Assume an elliptic curve with equation y2 = x3 + ax + b
and order qf . Given an input α (the queried name in our case), set

counter i = 0 and compute h = H (α | |i ), where H is a standard

cryptographic hash function, e.g., SHA-256, and | | is concatenation.
Then, if h3 + ax + b is a quadratic residue (that is, h is the valid

x-coordinate of a point on the curve) output the point (h, (h3 +

ax +b)1/2) raised to the power of cofactor f . Otherwise, increment

the counter by 1 and try again. This simple process is expected to

terminate after two steps, and the involved operations are very fast,

with an expected running time of (O log
3 (n)), if the curve is defined

over finite fieldGF (n). The range of this function is only half of the

group G (because only one y is chosen for a random x), but that
does not materially change the proofs of security. (Specifically, in

Claims B.4 and B.5, the running time for simulating queries to H1

doubles).

As first shown in [33], the above technique is not suitable when α
must be kept secret; this is because the running time of the hashing

algorithm depends on α , and so it is susceptible to timing attacks.

However, this attack is not relevant for NSEC5, because the only

value hashed in the query phase is the query α itself, which is

already known to the adversary.

B SECURITY OF ECC-BASED VRF.
We define the necessary security properties that a VRF needs to

satisfy in order to be used in our application, and provide formal

proofs that they are satisfied by ECC-based VRF from Figure 2.

B.0.1 Proof sketches. We start with a sketch of the proofs of

three properties: uniqueness, psuedorandomness, and collision re-

sistance.We define and prove them formally after this brief informal

sketch. For this purposes of this sketch, assume E = G and therefore

f = 1.

Uniqueness. The proof is by contradiction. Suppose an adversary,

given the secret key x , can come up with some α and an incorrect

VRF output value β1 , H2 ([H1 (α )]
x ) for that α , and a valid proof

π1 = (γ1, s1, c1) for value β1. The verification function for the VRF
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computes h = H1 (α ) and

u = (дx )c1дs1

v = (γ1)
c1hs1

Now take the logarithm of the first equation base д and the log-

arithm of the second equation base h, subtract the two resulting

equations, and express c1, to get

c1 ≡
logд u − logh v

x − logh γ1
(mod q) . (3)

Now since γ1 , hx (since β1 is not the correct output value), the
denominator is not zero, and there is exactly one c1 modulo q that

satisfies equation (4) for a given (д,h,дx ,γ ,u,v ), regardless of s .
However, recall that the verifier checks that c1 is equal to the output
of the cryptographic hash function H3 on input (д,h,дx ,γ ,u,v ).
SinceH3 is a randomoracle, its output is random, and the probability

that it equals the unique value determined by its inputs according

to (3) is negligible.
10

Thus, we have arrived at our contradiction.

Pseudorandomness. This follows from the DDH assumption, in

the random oraclemodel. Roughly speaking, the pseudorandomness

adversary does not know the secret VRF key x , but must distinguish

between between pairs (α , β ) where β is the VRF hash output on

input α , and pairs (α , r ) where r is a random value. This adversary

knows the public valuesд andдx , and can easily computeh = H1 (α )
for any α . However, by the DDH assumption,hx looks random even

given (д,дx ,h), and so H2 (h
x ) is pseudorandom in the range of H2.

Collision resistance. For a collision to happen, H2 (h
x
1
) should

equal to H2 (h
x
2
) where h1 = H1 (α1) and h2 = H1 (α2) for some

α1 , α2. Assume H2 is a τ -to-1 function. Since raising to the power
x is a permutation, for every h1, there are at most τ possible h2
values that can cause a collision. Since h1 and h2 are obtained via

random oracle queries, a pair that causes a collision is unlikely to

be found after QH queries to H1, as long asG is larger than τQ2

H /2.

B.0.2 Full Proofs. We now expand on the sketches above to

prove that the construction in Section 4.3 is a secure VRF. It suffices

to prove three properties: Trusted Uniqueness (see [66, Definition

10]), Selective Pseudorandomness (see [66, Definition 11]), and

Collision-Resistance (not formally discussed in [66], but mentioned

in the proof of Theorem 4). Sufficiency of these three properties

for constructing NSEC5 follows from [66, Theorem 4]. We discuss

each property in turn.

We model the hash functions H1 and H3 as random oracles. We

use notation VerPK (α , β,π ) to denote the verification algorithm,

which outputs 1 if and only if the proof π and hash output β are

valid for input α and public key PK .

B.0.3 Uniqueness. Recall that uniqueness requires that there
should be only one provable VRF output β for every input α ; trusted
uniqueness limits this requirement to only the case when the public

key is valid.

Following tradition of the VRF literature, Naor and Ziv [66, Defi-

nition 10]) define uniqueness unconditionally: that is, for a validly

generated public key, each input α to the VRF has at most one hash

10
The birthday paradox does not apply here, so that for a 128-bit security level is

suffices to have c be 128 bits long.

output β that can be proven to be correct. However, the construc-

tion in Section 4.3 satisfies it only computationally: more than one

hash output y may exist, but only one valid β—the one produced
by FSK (α )—can be proven correct by any computationally bounded

adversary, even given the secret key. We are not aware of any prior

work defining this relaxation of the uniqueness property, although

Chase and Lysyanskaya [34] mention that such a relaxation can be

defined. We therefore define it here. Our definition is in terms of

concrete, rather than asymptotic security, because concrete security

enables us to set length parameters.

Definition B.1. (Computational Trusted Uniqueness.) A VRF sat-

isfies (QH , ϵ )-trusted uniqueness if for all adversaries A that make

at most QH queries to the random oracle, for a validly chosen key

pair (PK, SK ), the probability that the adversary can come up with

an incorrect output β1 , FSK (α ) and a proof for this β1 is less than
ϵ : namely,

Pr[A(PK, SK ) → (α , β1,π1) s.t.

β1 , FSK (α ) and VerPK (α , β1,π1) = 1] ≤ ϵ .

We now prove that the VRF satisfies Definition B.1 based on the

randomness of the oracle H3. (Note: this proof does not rest on any

computational assumptions or on programming a random oracle.)

Claim B.2. The VRF satisfies (t , ϵ )-computational trusted unique-
ness of Definition B.1 for ϵ = (QH + 1)/min(q/2, ρ), where ρ =
|range(H3) | and QH ≤ t is the number of queries the adversary
makes to the random oracle H3.

Note that the quantitative bound on ϵ in the above claim implies

that the bit length log ρ of the output c of H3 can be equal to the

desired security parameter; in particular, it can be shorter than the

prime order q of the group G (whose bit length needs to be at least

twice the security parameter in order to protect against attacks on

the discrete log). This claim is the only part of the security analysis

affected by the output length of H3 (and thus the bit length of the

integer c from the VRF proof π ).

Proof. Suppose there is an adversary A that violates computa-

tional trusted uniqueness with probability ϵ . That is, on input д,x ,
the adversary A makes QH queries to the H3 oracle and wins by

outputting (α , β1,π1) s.t. β1 , FSK (α ) and Ver(α , β1,π1) = 1 with

probability ϵ . We will show that ϵ ≤ (QH + 1)/min(q/2, ρ), where
q is the order of the group G and ρ = |range(H3) |.

The proof π1 contains γ1 such that β1 = H2 (γ
f
1
). Note that the

correct β = FSK (α ) is computed as H2 (γ
f ) for γ = [H1 (α )]

x
. Since

β1 , β , we have γ
f
1
, γ f , i.e., γ

f
1
, hxf , where h = H1 (α ).

Now, it must be that π1 = (γ1, c, s ) for some c, s that ensure that
Ver(α , β1,π1) = 1. The verification function Ver ensures that γ1 ∈ E
and computes h = H1 (α ) and

u = дsPKc

v = hsγ c
1
.

Because the VRF parameters and public keys are trusted, it follows

that that д ∈ G and PK = дx ∈ G. The range of H1 is G − {1} so
h ∈ G. Since G ⊂ E, all variables in the above two equations are

guaranteed to be in E.
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For any a ∈ E, we define â = af . By the structure theorem

for finite abelian groups, E has exactly one subgroup of order q,
because q does not divide f . This subgroup isG = {b ∈ E | bq = 1}.

Therefore, â ∈ G, because âq = af q = a |E | = 1 (by Fermat’s little

theorem).

We can now raise both equations to the power of the cofactor f
to obtain similar equations, but with all the variables in G:

û = д̂s ˆPKc

v̂ = ˆhsγ̂ c
1
.

Note that h , 1 (since the range of H1 is G − {1}). Because G is

of prime order, h is also a generator of G. Since q does not divide

f , ˆh = hf , 1 and thus
ˆh is also a generator of G. Same for д̂.

Therefore we can take the logarithm of the first equation base д̂

and the logarithm of the second equation base
ˆh, . Solving these for

s we get

logд̂ û − cx ≡ s (mod q)

log
ˆh v̂ − c log ˆh γ̂1 ≡ s (mod q)

which implies that

c ≡
logд̂ û − log ˆh v̂

x − log
ˆh γ̂1

(mod q) (4)

Since γ̂1 , ˆhx , the denominator is not zero, and so there is only one

c modulo q that satisfies equation (4) given д,дx ,h,γ1,u, and v .
Recall that for verification to pass,

c = H3 (д,h,д
x ,γ1,u,v ) .

Note that the contents of the query to H3 contains every value in

the right hand side of equation (4), and thus the correct c is uniquely
defined at the time the query is made (assuming G is fixed).

What is the probability, for a given query to H3, that the ran-

dom value returned by the H3 oracle is congruent to that correct c
modulo q? Let ρ denote |range(H3) |. If the range of H3 is a subset

of {0, . . . ,q − 1}, then this probability is either 1/ρ or 0, depending

on whether the correct c is in range(H3). Else (i.e., if q < ρ), think
of reducing every element in range(H3) modulo q. Then some val-

ues c modulo q will be hit ⌊ρ/q⌋ times, while others will be hit

⌈ρ/q⌉ times. Thus, the probability that any given c is hit is at most

⌈ρ/q⌉/ρ ≤ ((ρ/q) + 1)/ρ = 1/q + 1/ρ < 2/q.
Assume the adversary outputs β1,π1 and then the verification

algorithm is run. This causes a total of QH + 1 queries to H3 (QH
by A and one by the verifier), so by the union bound, the chances

that any of them returns a correct c for that query are at most

(QH + 1)/min(q/2, ρ). □

Remark. Our computational trusted uniqueness property is slightly

weaker than the unconditional trusted uniqueness of Naor and Ziv’s

[66, Definition 10]. Thus, the proof that NSEC5, when constructed

from the VRF of Figure 2, satisfies the soundness property in [66,

Theorem 4] needs a slight change, as follows. The proof in [66]

is a reduction from an adversary A who violates soundness to an

adversary B who forges signatures. The reduction relies on the

fact that Amust provide the correct β value (called y in [66]) and

proof π for the VRF as part of its soundness-violating output on an

input α (called x in [66]). Computational trusted soundness ensures

that this happens except with negligible (i.e., (QH +1)/min(q/2, ρ))
probability. Thus, the success probability of the reduction reduces

from ϵ to ϵ − (QH + 1)/min(q/2, ρ).

Uniqueness without trusting the key. Our VRF can be modi-

fied to attain the stronger property of computational uniqueness

(without needing to trust the key generation). There are three cases:

• If the group E is fixed and trusted to have been correctly gener-

ated (i.e., E is known to have a subgroup of prime order q), and
the generator д is known to be in G − {1}, then the verifier just

needs to check that PK ∈ E. (This is the only requirement on PK
is the proof above.)

• If the group E is fixed and trusted, but д and PK are not, then the

verifier needs to check that д ∈ E, дf , 1, as well as that PK ∈ E.
• If the group E is not fixed, then we need to include an unam-

biguous identifier of E as input to H3 (so that a malicious prover

cannot choose E after seeing c), and verifier needs to also check

that G is a subgroup of E of order q, q is prime, |E | = qf , q

does not divide f , д ∈ E, дf , 1, and PK ∈ E. The identifier of E
must also be unambiguous in the sense that the adversary should

not be allowed to choose the mapping from the group E to its

identifier after seeing c .

B.0.4 Pseudorandomness. We will state and prove pseudoran-

domness in terms of concrete, rather than asymptotic, security. This

allows us to set parameters and work with fixed groups G,E.
We require a slight modification to the notions of pseudoran-

domness and selective pseudorandomness from [66, Definition 11]:

instead of being indistinguishable from a random bit string, the out-

put of our VRF is indistinguishable from a truncation of a random

element of G − {1}, i.e., from the distribution H2 (UG ), where UG
is the uniform distribution on G − {1}. Our definitions are thus as
follows.

Definition B.3. (Pseudorandomness) AVRF satisfies (t ,QH ,QP , ϵ )
pseudorandomness for output distribution S if no adversary D
(which can depend on the fixed VRF parameters, such asG,E, etc.)
whose running time and description size are bounded by t , whose
total number of random oracle queries is bounded by QH and to-

tal number of Π and F queries is bounded by QP , can distinguish

the following two games with advantage more than ϵ . In the both

games, VRF keys (PK , SK ) are honestly generated, and D (PK ) gets
to query ΠSK , FSK , and the random oracles on arbitrary inputs. In

both games, D chooses a challenge input α∗ that has been queried

to neither Π nor F . In one game, D receives FSK (α
∗), while in the

other D receives a random element drawn from S . Finally, after
additional queries to ΠSK and FSK (except on α∗), D outputs one

bit indicating which game D thinks it is playing.

The slightly weaker notion of selective pseudorandomness is

defined the same way, exceptD has to choose α∗ before any queries
and before seeing PK .

Pseudorandomness of our VRF depends on the following assump-

tion about the groupG and generator д, known as the (t , ϵ )-DDH
(Decisional Diffie-Hellman) Assumption: for any adversary C whose

description size and running time are bounded by t , the difference
in probabilities (where the probabilities are over a random choice
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of h,h′ ∈ G − {1} and x ∈ {1, . . . ,q}) that C (дx ,h,hx ) = 1 and

C (дx ,h,h′) = 1 is at most ϵ . (Because the assumption is specifically

for the group G, we think of the fixed VRF parameters G,q,E, f ,
and д as hardwired into the adversary C .)

We now prove that our VRF satisfies both pseudorandomness and

selective pseudorandomness. We address selective pseudorandom-

ness first, because it is simpler. Our proof relies on programming

the random oracles H1 and H3.

Claim B.4. Under the (t , ϵ )-DDH assumption, for anyQH ,QP , the
VRF satisfies (t ′,QH ,QP , ϵ

′) selective pseudorandomness for output
distribution H2 (UG ), for t ′ ≈ t (minus the time for Θ(QH + QP )
exponentiations inG and one evaluation ofH2) and ϵ ′ = ϵ +QP (QP +

QH )/q.

Proof. We need to show the following: if

• D chooses α∗,
• then receives an honestly generated PK = дx and

– either H2 ([H1 (α
∗)]xf )

– or H2 applied to a random element of G − {1},
• is allowed QH queries to random functions H1 and H3 and QP

queries are to ΠSK or FSK (except on α∗)
• can distinguish between the two cases with advantage ϵ ′

then we can build C that breaks (t , ϵ )-DDH assumption for t ≈
t ′ (plus the time for Θ(QH + QP ) exponentiations in G and one

evaluation of H2) and ϵ = ϵ ′ −QP (QP +QH )/q.
Because FSK is computable, in our case, fromΠSK , we can assume

without loss of generality that D never queries FSK—every query

to FSK can be replaced with a query to ΠSK .

Given (дx ,h,h′) (where h′ is either hx or a random element of

G − {1}), C gets α∗ from D, sets the VRF public key PK as дx and

runs D with public key PK and input H2 (h
′f ). Note that if h′ is a

random element of G − {1}, then so is h′f , because raising to the

power f is a permutation ofG−{1}, since q does not divide f . Thus,
D is getting either the correct VRF output or H2 (UG ), as required
by Definition B.3.

C answers the queries of D as follows:

• If D queries α∗ to random oracle H1, C returns h.
• If D queries any other αi to H1, C chooses a random ρi ∈
{1, . . . ,q} and then programs random oracle H1 as

H1 (αi ) := д
ρi .

(Note: this response is distributed uniformly in G − {1}, just like
with the honest H1, because д is a generator of G.)

• If D queriesH3,C return a fresh random value in the appropriate

range. (Note that these responses are distributed just like honest

H3).

• If D makes a query qi to Π |SK (note that qi , α ),
– C makes a query to H1 (qi ) as described above to get ρi ,
– C sets γ = (дx )ρi where дx was the public key given as input

to D,
– C chooses random values s ∈ [q] and c ∈ range(H3) and then

computes

u = дs (дx )c

and

v = [дρi ]s [(дx )ρi ]c .

(Note that u,v,x ,h = дρi , s , and c are distributed identically

to the distribution produced by Π. The difference in how these

distributions are obtained is simply that Π chooses a uniform

k while C chooses a uniform s , where k and s are tied by

the equation s + cx ≡ k (mod q), and u = дk , v = hk .) If
H3 (д,д

ρi ,дx , (дx )ρi ,u,v ) is already defined, then C fails and

aborts. Else, C programs the random oracle H3 to let

H3 (д,д
ρi ,дx , (дx )ρi ,u,v ) := c

(Note: if C does not abort, then H3 is uniformly random, just

like honest H2 and H3).

If C does not abort, then its simulation for D is faithful and

C can just output what D outputs. The probability that C aborts

is simply the probability that H3 (д,д
ρi ,дx , (дx )ρi ,u,v ) is already

defined during the computation of the response to Π; since at most

QH +QP values ofH3 are defined, andu is a uniformly random value

inG (because s is uniformly random in [q] and д is a generator), the

chances that a single query to Π causes an abort are (QH +QP )/q,
and the chances that any of the queries to Π causes an abort are

QP (QH +QP )/q. Thus, the advantage of C is at least ϵ ′ −QP (QP +

QH )/q. □

We can also prove pseudorandomness, but with a looser security

reduction than selective pseudorandomness.

Claim B.5. Under the (t , ϵ )-DDH assumption, for anyQH ≥ 1,QP ,
the VRF satisfies (t ′,QH ,QP , ϵ

′) pseudorandomness for output distri-
butionH2 (UG ), for t ′ ≈ t (minus the time forΘ(QH+QP ) exponentia-
tions inG and one evaluation ofH2) and ϵ ′ = 4ϵQP+QP (QP+QH )/q.

Proof. We explain the proof by showing the differences from

the previous proof. The problem is that C does not know what α∗

is—it could be in any of the H1 queries. We follow the approach of

[36] to deal with this problem.

Whenever D makes a query αi to H1, C flips a biased coin to

decide whether this query is going to be “type-sig” (with probability

QP/(QP + 1)) or “type-attack” (with probability 1/(QP + 1)). If the
query is “type-sig,” then C works the same way as in the proof

of Claim B.4. Else, C returns hρi for a random ρi ∈ {1, . . . ,q}. C
remembers the type of the query and the ρi value.

If D makes a query qi to Π, then C aborts if qi = αi for an
αi of type-attack (else C proceeds as before). At some point D
produces α∗; before proceeding, C makes sure α∗ has been queried

to H1 (performing the query if it hasn’t been). C aborts if α∗ = αi
for some αi of type-sig, and otherwise returns H2 (h

′ρi f ) as the
response to the challenge.

We note that all the responses to H1 queries are still uniformly

distributed over G − {1} and independent, because both д and h
are generators of G. If h′ = hx , then D receives the correct value

for FSK (α
∗), namely H2 (h

′ρi f ) = H2 (h
xρi f ) = H2 ([H1 (α

∗)]xf ).
On the other hand, if h′ is a uniform element of G − {1}, then
instead of instead of FSK (α

∗),D receives a uniform response chosen

independently of anything else from from H2 (G − {1}), because a
uniform value inG − {1} raised to f (a fixed power not divisible by

q) is uniform in G − {1}.
NowC succeeds as long as (1) there is no abort due to a collision

ofH3 inputs as in the proof of Claim B.4) and (2) the guesses for the

H1 query type (type-sig or type-attack) don’t lead to an abort. Note
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that these guesses are independent of the view of D and therefore

of the success of D. The probability that the guesses are correct for

each Π query and for α∗ is(
QP

QP + 1

)QP
1

QP + 1
≥

1

4QP

whenever QP ≥ 1. (The bound is obtained by observing that the

left-hand multiplied by QP is increasing for qsiд ≥ 1, and its value

at QP = 1 is 1/4.) We thus obtain the claimed result. □

B.0.5 Collision Resistance. We now define trusted collision re-

sistance, which states that an adversary cannot produce a collision

even given SK , as long as the keys are honestly generated. This

property, while not explicitly defined in [66], is necessary to ensure

the completeness of NSEC5, i.e., to ensure that a valid non-existence

proof can always be generated by the nameserver and accepted by

the resolver whenever the record does not exist (see [66, Proof of

Theorem 4]).

Definition B.6. (Trusted Collision Resistance) A VRF satisfies

(QH , ϵ ) trusted collision resistance if no adversary making QH
random oracle queries, can, given an honestly generated SK , output
two values α1 , α2 such that FSK (α1) = FSK (α2) with probability

greater than ϵ .

Claim B.7. If every output of H2 has at most τ preimages in G,
then our VRF satisfies (QH ,τQ

2

H /(2q))-trusted collision resistance.
Note that in our suggested instantiation of H2, τ = 2, so we have
(QH , (QH + 2)

2/q)-trusted collision resistance

Proof. Let α1,α2 be the output of the adversary. Without loss

of generality, assume α1 and α2 have been queried to H1; if not,

add those queries to the code of the adversary, for a total of QH + 2

queries.

Given two values α i , α j , what is the probability (for a random

choice of the oracle H1) that FSK (α
i ) = FSK (α

j )? Such a collision

happens if [H1 (α
i )]xf takes on one of the τ values that collide with

[H1 (α
j )]xf after the application of H2. Since H1 (α

i ) is uniform in

G − {1}, and raising to x f is a permutation of G − {1}, the chances
of hitting one of those τ values is τ/(q − 1). Applying the union

bound over at most (QH + 2) (QH + 1)/2 pairs of distinct queries
to H1, we get that a successful output α1,α2 exists among queries

to H1 with probability at most τ (QH + 2) (QH + 1)/(2q − 2) <
τ (QH + 2)

2/(2q) (assuming the latter fraction is less than 1 — but

the theorem statement is trivially true otherwise). □

Collision resistance without trusting the key. Similarly to the

case with uniqueness, our VRF can be modified the same way to

attain collision resistance without needing to trust the key genera-

tion. The modifications are the same as in the case of uniqueness

(to ensure that FSK is uniquely defined), with the additional check

that PK f , 1 to ensure that x is not divisible by q.

C SECURITY OF RSA-BASED VRF
In [48] the authors provided an explicit proof only for the selec-

tive pseudorandomness of the RSA-based VRF in Figure 1 (see [48,

Lemma III.2]), but not for its trusted uniqueness or for its collision

resistance. These proofs are straightforward, but we provide them

for completeness.

Claim C.1. The RSA-based VRF of [48] satisfies trusted uniqueness
as per [66, Definition 10]).

Proof. The claim that for every α there exist β,π such that

VerPK (α , β ,π ) = 1 follows by inspection since for every α it is true

that VerPK (α , ProveSK (α )) = 1.

Let A be an adversary such that A(PK, SK ) → (α , β1,π1) and
ProveSK (α ) → (β2,π2) and β1 , β2, where (PK, SK ) ← Setup(1κ ).
Since β1 , β2 it follows that π1 , π2 as βi = H (πi ) for i = 1, 2

and H (·) implements a deterministic function. For the same reason,

the value of MGF (α ) is fully determined by α . Since PK , SK are

valid RSA keys, the function f (x ) = xe is a bijection in ZN (where

e is the RSA public exponent) and therefore πe
1
, MGF (α ) = πe

2
.

Due to this, the probability that VerPK will accept for proof π1 and
value β1 for input α is 0. □

Claim C.2. The RSA-based VRF of [48] for H with output size
ℓ (assuming ℓ is less than the length of the RSA modulus) satisfies
(QH ,Q

2

H /2
ℓ+1)-trusted collision resistance per definition B.6.

Proof. Indeed, for a collision to occur, eitherH (π1) should equal
H (π2) for some π1 , π2, or MGF (α1) should equal MGF (α2) for
α1 , α2. (Because trusted key generation ensures that raising to

the power d is a permutation.) Let Q ′H be the number of queries to

H and Q ′′H be the number of queries to MGF . Let k be the output

size of theMGF . The probability of collision, by the union bound, is

at most Q ′2H /(2 · 2
ℓ ) +Q ′′2H /(2 · 2

k ) ≤ Q2

H /2
ℓ+1

because k ≤ ℓ. □
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