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Abstract

A puncturable pseudorandom function (PRF) has a master key k that enables one to evaluate the
PRF at all points of the domain, and has a punctured key kx that enables one to evaluate the PRF at
all points but one. The punctured key kx reveals no information about the value of the PRF at the
punctured point x. Punctured PRFs play an important role in cryptography, especially in applications of
indistinguishability obfuscation. However, in previous constructions, the punctured key kx completely
reveals the punctured point x: given kx it is easy to determine x. A private puncturable PRF is one
where kx reveals nothing about x. This concept was defined by Boneh, Lewi, and Wu, who showed the
usefulness of private puncturing, and gave constructions based on multilinear maps. The question is
whether private puncturing can be built from a standard (weaker) cryptographic assumption.

We construct the first privately puncturable PRF from standard lattice assumptions, namely from the
hardness of learning with errors (LWE) and 1 dimensional short integer solutions (1D-SIS), which have
connections to worst-case hardness of general lattice problems. Our starting point is the (non-private)
PRF of Brakerski and Vaikuntanathan. We introduce a number of new techniques to enhance this PRF,
from which we obtain a privately puncturable PRF. In addition, we also study the simulation based
definition of private constrained PRFs for general circuits, and show that the definition is not satisfiable.

1 Introduction

A pseudorandom function (PRF) [GGM86] is a function F : K × X → Y that can be computed by a
deterministic polynomial time algorithm: on input (k, x) ∈ K × X the algorithm outputs F (k, x) ∈ Y. The
PRF F is said to be a constrained PRF [BW13, KPTZ13, BGI14] if one can derive constrained keys from the
master PRF key k. Each constrained key kg is associated with a predicate g : X → {0, 1}, and this kg enables
one to evaluate F (k, x) for all x ∈ X for which g(x) = 1, but at no other points of X . A constrained PRF is
secure if given constrained keys for predicates g1, . . . , gQ, of the adversary’s choosing, the adversary cannot
distinguish the PRF from a random function at points not covered by the given keys, namely at points x
where g1(x) = · · · = gQ(x) = 0. We review the precise definition in Section 3.

The simplest constraint, called a puncturing constraint, is a constraint that enables one to evaluate the
PRF at all points except one. For x ∈ X we denote by kx a punctured key that lets one evaluate the PRF
at all points in X , except for the punctured point x. Given the key kx, the adversary should be unable
to distinguish F (k, x) from a random element in Y. Puncturable PRFs have found numerous applications
in cryptography [BW13, KPTZ13, BGI14], most notably in applications of indistinguishability obfuscation
(iO) [SW14]. Note that two punctured keys, punctured at two different points, enable the evaluation of the
PRF at all points in the domain X , and are therefore equivalent to the master PRF key k. For this reason,
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for puncturing constraints, we are primarily interested in settings where the adversary is limited to obtaining
at most a single punctured key, punctured at a point of its choice. At the punctured point, the adversary
should be unable to distinguish the value of the PRF from random.

PRFs supporting puncturing constraints can be easily constructed from the tree-based PRF of [GGM86],
as discussed in [BW13, KPTZ13, BGI14]. Notice, however, that a punctured key kx completely reveals what
the point x is. An adversary that is given kx can easily tell where the key was punctured.

Private puncturing. Can we construct a PRF that can be punctured privately? The adversary should learn
nothing about x from the punctured key kx. More generally, Boneh, Lewi, and Wu [BLW17] define private
constrained PRFs, where a constrained key kg reveals nothing about the predicate g. They present applications
of private constraint PRFs to constructing software watermarking [CHN+16], deniable encryption [CDNO97],
searchable encryption, and more. They also construct private constrained PRFs from powerful tools, such as
multilinear maps and iO.

Several of the applications for private constraints in [BLW17] require only private puncturing. Here we
describe one such application, namely the connection to distributed point functions (DPF) [GI14, BGI15]
and 2-server private information retrieval (PIR) [CKGS98]. In a DPF, the key generation algorithm is given
a point x∗ ∈ X and outputs two keys k0 and k1. The two keys are equivalent, except at the point x∗. More
precisely, F (k0, x) = F (k1, x) for all key x 6= x∗ and F (k0, x

∗) 6= F (k1, x
∗). A DPF is secure if given one of

k0 or k1, the adversary learns nothing about x∗. In [GI14] the authors show that DPFs give a simple and
efficient 2-server PIR scheme. They give an elegant DPF construction from one-way functions.

A privately puncturable PRF is also a DPF: set k0 to be the master PRF key k, and set the key k1 to be
the punctured key kx∗ , punctured at x∗. The privacy property ensures that this is a secure DPF. However,
there is an important difference between a DPF and a privately puncturable PRF. DPF key generation takes
the punctured point x∗ as input, and generates the two keys k0, k1. In contrast, private puncturing works
differently: one first generates the master key k, and at some time later asks for a punctured key kx∗ at some
point x∗. That is, the punctured point is chosen adaptively after the master key is generated. This adaptive
capability gives rise to a 2-server PIR scheme that has a surprising property: one of the servers can be offline.
In particular, one of the servers does its PIR computation before the PIR query is chosen, sends the result to
the client, and goes offline. Later, when the client chooses the PIR query, it only talks to the second server.

Our contribution. We construct the first privately puncturable PRF from the learning with errors problem
(LWE) [Reg09] and the one-dimensional short integer solution problem (1D-SIS) [Ajt96, BV15], which are
both related to worst-case hardness of general lattice problems. We give a brief overview of the construction
here, and give a detailed overview in Section 2.

Our starting point is the elegant LWE-based PRF of Brakerski and Vaikuntanathan [BV15], which is a
constrained PRF for general circuits, but is only secure if at most one constrained key is published (publishing
two constrained keys reveals the master key). This PRF is not private because the constraint is part of
the constrained key and is available in the clear. As a first attempt, we try to make this PRF private by
embedding in the constrained key, an FHE encryption of the constraint, along with an encryption of the
FHE decryption key (a similar structure is used in the predicate encryption scheme of [GVW15b]). Now the
constraint is hidden, but PRF evaluation requires an FHE decryption, which is a problem. We fix this in a
number of steps, as described in the next section. To prove security, we introduce an additional randomizing
component as part of the FHE plaintext to embed an LWE instance in the challenge PRF evaluation.

We prove security of our private puncturable PRF in the selective setting, where the adversary commits
ahead of time to the punctured point x where it will be challenged. To obtain adaptive security, where the
punctured point is chosen adaptively, we use standard complexity leveraging [BB04].

In addition to our punctured PRF construction, we show in Section 6 that, for general function constraints,
a simulation based definition of privacy is impossible. This complements [BLW17] who show that a game-based
definition of privacy is achievable assuming the existence of iO. To prove the impossibility, we show that even
for a single key, a simulation-secure privately constrained PRF for general functions, implies a simulation secure
functional encryption for general functions, which was previously shown to be impossible [BSW11, AGVW13].

Finally, our work raises a number of interesting open problems. First, our techniques work well to enable
private puncturing, but do not seem to generalize to arbitrary circuit constraints. It would be a significant
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achievement if one could use LWE/SIS to construct a private constrained PRF for arbitrary circuits, even in
the single-key case. Also, can we construct an LWE/SIS-based adaptively secure private puncturable PRF,
without relying on complexity leveraging? We discuss these questions in more detail in Section 7.

1.1 Related Work

PRFs from LWE. The first PRF construction from the learning with errors assumption was given by
Banerjee, Peikert, and Rosen in [BPR12]. Subsequent PRF constructions from LWE gave the first key-
homomorphic PRFs [BLMR13, BP14]. The constructions of [BV15, BFP+15] generalized the previous works
to the setting of constrained PRFs.

Constrained PRFs. The notion of constrained PRFs was first introduced in three independent works [BW13,
KPTZ13, BGI14] and since then, there have been a number of constructions from different assumptions. We
briefly survey the state of the art. The standard GGM tree [GGM86] gives PRFs for simple constraints such
as prefix-fixing or puncturing [BW13, KPTZ13, BGI14]. Bilinear maps give left/right constraints but in the
random oracle model [BW13]. LWE gives general circuit constraints, but only when a single constrained key
is released [BV15]. Multilinear maps and indistinguishability obfuscation provide general circuit constraints,
and even for constraints represented as Turing machines with unbounded inputs [BW13, BZ14, BFP+15,
CRV14, AFP16, DKW16], as well as constrained verifiable random functions [Fuc14]. Several works explore
how to achieve adaptive security [FKPR14, BV15, HKW15, HKKW14].

Private constrained PRFs were introduced by Boneh, Lewi, and Wu [BLW17]. They construct a privately
constrained PRF for puncturing and bit-fixing constraints from multilinear maps, and for circuit constraints
using indistinguishability obfuscation.

ABE and PE from LWE. The techniques used in this work build upon a series of works in the area
of attribute-based encryption [SW05] and predicate encryption [BW07, KSW08] from LWE. These include
constructions of [ABB10, GVW15a, BGG+14, GV15, BV16, BCTW16], and predicate encryption constructions
of [AFV11, GMW15, GVW15b].1

Concurrent Work. In an independent and concurrent work, Canetti and Chen [CC17] construct a single-key
privately constrained PRF for general NC1 circuits from LWE. Their techniques are very different from
the ones used in this work as their construction relies on instances of the graph-induced multilinear maps
construction by Gentry, Gorbunov, and Halevi [GGH15] that can be reduced to LWE. They also analyze
their construction with respect to a simulation-based definition. We note that the simulation-based definition
that we consider in this work is much stronger than their definition and therefore, the impossibility that we
show does not apply to their definition.

2 Overview of the Main Construction

In this section, we provide a general overview of our main construction. The complete construction and proof
of security are provided in Section 5.1.

Recall that the LWE assumption states that for a uniform vector s ∈ Znq and a matrix A ∈ Zn×mq for

an appropriately chosen n,m, q, it holds that (A, sTA + eT ) is indistinguishable from uniform where e
is sampled from an appropriate low-norm error distribution. We present the outline ignoring the precise
generation or evolution of e and just refer to it as noise.

Embedding Circuits into Matrices. Our starting point is the single-key constrained PRF of [BV15],
which builds upon the ABE construction of [BGG+14] and the PRF of [BP14]. At a high level, the ABE
of [BGG+14] encodes an attribute vector x ∈ {0, 1}` as a vector

sT
(
A1 + x1 ·G | · · · | A` + x` ·G

)
+ noise ∈ Zm`q , (2.1)

1We note that LWE based predicate encryption constructions satisfy a weaker security property often referred to as weak
attribute-hiding than as is defined in [BW07, KSW08].
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for public matrices A1, ...,A` in Zn×mq , a secret random vector s in Znq , and a specific fixed “gadget matrix”
G ∈ Zn×mq . This encoding allows for fully homomorphic operations on the attributes, while keeping the noise

small. In particular, given x and a poly-size circuit f : {0, 1}` → {0, 1}, one can compute from (2.1), the
vector

sT
(
Af + f(x) ·G

)
+ noise ∈ Zmq (2.2)

where the matrix Af depends only on the function f , and not on the underlying attribute x. This implies a
homomorphic operation on the matrices A1, . . . ,A` defined as Evalpk(f,A1, . . . ,A`)→ Af .

This homomorphic property leads to the following puncturable PRF. Let eq(x∗,x) be the equality check
circuit (represented as NAND gates) defined as follows:

eq(x∗,x) =

{
1 if x∗ = x,
0 otherwise.

For x = (x1, . . . , x`) ∈ {0, 1}` define the PRF as:

PRFs(x) := bsT ·Aeqep ∈ Zmp where Aeq := Evalpk(eq,B1, ...,B`,Ax1
, ...,Ax`).

Here s ∈ Znq is the master secret key, and the matrices A0,A1,B1, ...,B` are random public matrices in
Zn×mq chosen at setup. Note that Aeq is a function of x. The operation b·ep is component-wise rounding that
maps an element in Zq to an element in Zp for an appropriately chosen p, where p < q.

Next, define the punctured key at the point x∗ = (x∗1, . . . , x
∗
` ) ∈ {0, 1}` as:

kx∗ =
(
x∗, sT ·

(
A0 + 0 ·G | A1 + 1 ·G

∣∣ B1 + x∗1 ·G | · · · | B` + x∗` ·G
)

+ noise
)
. (2.3)

To use this key to evaluate the PRF at a point x ∈ {0, 1}`, the user homomorphically evaluates the equality
check circuit eq(x∗,x), as in (2.2), to obtain the vector sT

(
Aeq + eq(x∗,x) ·G

)
+ noise. Rounding this vector

gives the correct PRF value whenever eq(x∗,x) = 0, namely x 6= x∗, as required. A security argument as
in [BV15] proves that with some minor modifications, this PRF is a secure (non-private) puncturable PRF,
assuming that the LWE problem is hard.

FHE to hide puncture point. The reason why the construction above is not private is because to operate
on the ABE encodings, one needs the description of the attributes. Therefore, the punctured key must include
the point x∗ in the clear, for the evaluator to run the equality check circuit on the punctured key (2.3).

Our plan to get around this limitation is to first encrypt the attributes (x∗1, . . . , x
∗
` ) using a fully

homomorphic encryption (FHE) scheme before embedding it as the attributes. In particular, we define our
punctured key to be

kx∗ =
(
ct, sT ·

(
A0 + 0 ·G | A1 + 1 ·G

∣∣ B1 + ct1 ·G | · · · | Bz + ctz ·G∣∣ C1 + sk1 ·G | · · · | Ct + skt ·G
)

+ noise
)
,

where ct ∈ Zzq is an FHE encryption of the punctured point x∗, and sk ∈ Ztq is the FHE secret key. While it is
not clear how to use this key to evaluate the PRF, at least the punctured point x∗ is not exposed in the clear.
One can show that the components of kx∗ that embed the secret key sk do not leak information about sk.

Now, given x ∈ {0, 1}`, one can now run the equality check operation inside the FHE ciphertext, which
gives the encrypted result of the equality check circuit. The question is how the evaluator can extract this
result from the ciphertext. To do this, we take advantage of another property of the underlying ABE: to
homomorphically multiply two attributes, one requires knowledge of just one of the attributes, not both.
This means that even without the knowledge of the FHE secret key sk, the evaluator can compute the inner
product of sk and ct. Recall that for lattice-based FHE schemes (e.g.,[GSW13]), the decryption operation is
the rounding of the inner product of the ciphertext with the FHE secret key. This technique was also used in
the lattice-based predicate encryption scheme of [GVW15b].

Rounding away FHE noise. The problem with the approach above is that we cannot compute the full
FHE decryption. We can only compute the first decryption step, the inner product. The second step,
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rounding, cannot be done while keeping the FHE decryption key secret. Computing just the inner product
produces the FHE plaintext, but offset by some small additive error term e ∈ Zq. More specifically, the
homomorphic evaluation of eq(x∗,x) followed by the inner product with sk, results in the vector

sT
(
Afhe,eq +

(q
2
· eq(x∗,x) + e

)
·G
)

+ noise ∈ Zmq ,

where Afhe,eq is the result of homomorphically computing the FHE equality test circuit, along with the inner
product with the secret key, on the public matrices. Here e ∈ Zq is some offset term. Even when eq(x∗,x) = 0,
the rounding of this vector will not produce the correct evaluation due to this offset term e. Moreover, the
term e contains information about the original plaintext and therefore, to ensure private puncturing, we must
somehow allow for correct computation without revealing the actual value of e. Resolving this issue seems
difficult. It is precisely the reason why the predicate encryption scheme of [GVW15b] cannot be converted
to a fully-attribute hiding predicate encryption scheme (and therefore a full-fledged functional encryption
scheme). However, in our context, the problem of noisy decryption has an elegant solution.

The idea is to “shorten” the vector (sT · e ·G) so that it is absorbed into noise, and disappears as we
round to obtain the PRF value at x. Towards this goal, we sample the secret vector s from the LWE noise
distribution, which does not change the hardness of LWE [ACPS09]. Next, we observe that although the
gadget matrix G is not a short matrix as a whole, it does contain a number of short column vectors. For
instance, a subset of the columns vectors of the gadget matrix consist of elementary basis vectors ui ∈ Znq
with the ith entry set to 1 and the rest set to 0. More precisely, for 1 ≤ i ≤ n, let the vector vi ∈ Zmq be an
m dimensional basis vectors with its i · blog q − 1cth entry set to 1 and the rest set to 0. Then, G · vi = ui.

With this observation, we can simply define the PRF with respect to these short column positions in the
gadget matrix. For instance, consider defining the PRF with respect to the first column position as follows

PRFs(x) := bsT ·Afhe,eq · v1ep ∈ Zp.

Since we are simply taking the first component of a pseudorandom vector, this does not change the
pseudorandomness property of the PRF (to adversaries without a constrained key). However, for the
evaluation with the punctured key, this allows the FHE error term to be “merged” with noise(

sT
(
Afhe,eq +

(q
2
· eq(x∗,x) + e

)
·G
)

+ noise
)

v1

= sTAfhe,eqv1 + sT
(q

2
· eq(x∗,x) + e

)
u1 + noise′

= sTAfhe,eqv1 +
(q

2
· eq(x∗,x) + e

)
〈s,u1〉+ noise′

= sTAfhe,eqv1 +
q

2
· eq(x∗,x) 〈s,u1〉+ e · 〈s,u1〉+ noise′︸ ︷︷ ︸

short

.

When eq(x∗,x) = 0, then the rounding of the vector above results in the correct PRF evaluation since the
final noise e · 〈s,u1〉+ noise′ is small and will disappear with the rounding.

Pseudorandomness at punctured point. The remaining problem is to make the PRF evaluation at the
punctured point look random to an adversary who only holds a punctured key. Note that if the adversary
evaluates the PRF at the punctured point x∗ using its punctured key, the result is the correct PRF output,
but offset by the term ( q2 + e) · s1 + noise′, which is clearly distinguishable from random. To fix this, we make
the following modifications. First, we include a uniformly generated vector w = (w1, ..., wn) ∈ Znq as part of
the public parameters. Then, we modify the FHE homomorphic operation such that after evaluating the
equality check circuit, we multiply the resulting message with one of the wi’s such that decryption outputs
wi · eq(x∗,x) + e, instead of q

2 · eq(x∗,x) + e. Then, we define the PRF evaluation as the vector

PRFs(x) =

⌊∑
i

sT ·Afhe,eq,i · vi

⌉
p

.
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where v1, ...,vn ∈ Zmq are elementary basis vectors such that G · vi = ui ∈ Znq . Here, the matrix Afhe,eq,i

represents the matrix encoding the equality check circuit operation, followed by scalar multiplication by wi.
Now, evaluating the PRF with the punctured key at the punctured point results in the vector∑

i

(
sT (Afhe,eq,i + (wi · eq(x∗,x) + e) ·G) + noise) vi

=
∑
i

sTAfhe,eq,i · vi +
∑
i

sT (wi · eq(x∗,x) + ei) ui + noise′

=
∑
i

sTAfhe,eq,i · vi +
∑
i

(eq(x∗,x) + ei) 〈s, wi · ui〉 ·+noise′.

=
∑
i

sTAfhe,eq,i · vi + eq(x∗,x) 〈s,w〉+ noise′′.

We note that when eq(x∗,x) = 1, then the offset term is a noisy inner product on the secret vector s. This
allows us to embed an LWE sample in the offset term and show that the evaluation indeed looks uniformly
random to an adversary with a punctured key.

3 Preliminaries

Basic Notations. For an integer n, we write [n] to denote the set {1, ..., n}. For a finite set S, we write

x
$← S to denote sampling x uniformly at random from S. We use bold lowercase letters (e.g.,v,w) to denote

column vectors and bold uppercase letters (e.g.,A,B) to denote matrices. For a vector or matrix s,A, we
use sT ,BT to denote their transpose. We write λ for the security parameter. We say that a function ε(λ) is
negligible in λ, if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote a negligible function in λ.
We say that an event occurs with negligible probability if the probability of the event is negl(λ), and an event
occurs with overwhelming probability if its complement occurs with negligible probability.

Rounding. For an integer p ≤ q, we define the modular “rounding” function

b·ep : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq. Here, the operation b·e is the rounding
operation over R.

Norm for Vectors and Matrices. Throughout this work, we will always use the infinity norm for vectors
and matrices. This means that for a vector x, the norm ‖x‖ is the maximal absolute value of an element in
x. Similarly, for a matrix A, ‖A‖ is the maximal absolute value of any of its entries. If x is n-dimensional
and A is n×m, then

∥∥xTA
∥∥ ≤ n · ‖x‖ · ‖A‖.

3.1 Private Constrained PRFs

We first review the definition of a pseudorandom function (PRF) [GGM86].

Definition 3.1 (Pseudorandom Function [GGM86]). Fix a security parameter λ. A keyed function F : K ×
X → Y with keyspace K, domain X , and range Y is pseudorandom if for all efficient algorithms A,∣∣∣Pr

[
k

$← K : AF (k,·)(1λ) = 1
]∣∣∣− Pr

[
f

$← Funcs(X ,Y) : Af(·)(1λ) = 1
]

= negl(λ).

Sometimes, a PRF is defined more naturally with respect to a pair of algorithms ΠPRF = (PRF.Setup,PRF.Eval)
where PRF.Setup is a randomized algorithm that samples the PRF key k in K and PRF.Eval computes the
keyed function F (k, ·).
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In a constrained PRF [BW13, KPTZ13, BGI14], an authority with a master secret key msk for the PRF
can create a restricted key skf associated with some function f that allows one to evaluate the PRF only at
inputs x ∈ X for which f(x) = 0.2

Definition 3.2 (Constrained PRF [BW13, KPTZ13, BGI14]). A constrained PRF consists of a tuple of
algorithms ΠpPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) over domain X , range Y,
and circuit class C is defined as follows:

• cPRF.Setup(1λ)→ msk: On input the security parameter λ, the setup algorithm outputs the master
secret key msk.

• cPRF.Constrain(msk, f)→ skf : On input the master secret key msk, and a circuit f ∈ C, the constrain
algorithm outputs a constrained key skf .

• cPRF.ConstrainEval(sk, x) → y: On input a constrained key sk, and an input x ∈ X , the puncture
evaluation algorithm evaluates the PRF value y ∈ Y.

• cPRF.Eval(msk, x) → y: On input the master secret key msk and an input x ∈ X , the evaluation
algorithm evaluates the PRF value y ∈ Y.

Algorithms cPRF.Setup and cPRF.Constrain are randomized, while algorithms cPRF.ConstrainEval and cPRF.Eval
are always deterministic.

Correctness. A constrained PRF is correct if for all λ ∈ N, msk← cPRF.Setup(1λ), for every circuit C ∈ C,
and input x ∈ X for which f(x) = 0, we have that

cPRF.ConstrainEval(cPRF.Constrain(msk, f), x) = cPRF.Eval(msk, x)

with overwhelming probability.

Security. We require two security properties for constrained PRFs: pseudorandomness and privacy. The
first property states that given constrained PRF keys, an adversary cannot distinguish the PRF evaluation at
the points where it is not allowed to compute, from a randomly sampled point from the range.

Definition 3.3 (Pseudorandomness). Fix a security parameter λ. A constrained PRF scheme ΠcPRF =
(cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is pseudorandom if for all PPT adversary A =
(A1,A2), there is a negligible function negl(λ) such that

AdvrandΠcPRF,A(λ) =
∣∣∣Pr[Expt

(0)
ΠcPRF,A(λ) = 1]− Pr[Expt

(1)
ΠcPRF,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where for each b ∈ {0, 1} and λ ∈ Z, the experiment Expt
(b)
ΠcPRF,A(λ) is defined as follows:

1. msk← cPRF.Setup(1λ)

2. (x∗, state1)← AcPRF.Constrain(msk,·),cPRF.Eval(msk,·)
1 (1λ)

3. y0 ← cPRF.Eval(msk, x∗)

4. y1
$← Y

5. b′ ← AcPRF.Constrain(msk,·),cPRF.Eval(msk,·)
2 (yb, state1)

6. Output b′

To prevent the adversary from trivially winning the game, we require that for any query f that A makes
to the cPRF.Constrain(msk, ·) oracle, it holds that f(x∗) = 1, and for any query x that A makes to the
cPRF.Eval(msk, ·) oracle, it holds that x 6= x∗.

2We adopt the convention that f(x) = 0 signifies the ability to evaluate the PRF. This is opposite of the standard convention,
and is done purely for convenience in the technical section.
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The security games as defined above is the fully adaptive game. One can also define a selective variant of
the games above where the adversary commits to the challenge point before the game starts. We do so in
Definition 3.6 below.

Next, we require that a constrained key skf not leak information about the constraint function f as in
the setting of private constrained PRFs of [BLW17].

Definition 3.4 (Privacy). Fix a security parameter λ ∈ N. A constrained PRF scheme ΠcPRF = (cPRF.Setup,
cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is private if for all PPT adversary A, there is a negligible
function negl(λ) such that

AdvprivΠcPRF,A(λ) =
∣∣∣Pr[Expt

(0)
ΠcPRF,A(λ) = 1]− Pr[Expt

(1)
ΠcPRF,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where the experiments Expt
(b)
ΠcPRF,A are defined as follows:

1. msk← cPRF.Setup(1λ).
2. b′ ← AcPRF.Constrainb(msk,·,·),cPRF.Eval(msk,·)(1λ).
3. Output b′

where the oracle cPRF.Constrainb(·, ·, ·) is defined as follows

• cPRF.Constrainb(msk, f0, f1): On input the master secret key msk, and a pair of constraint functions
f0, f1, outputs skf,b ← cPRF.Constrain(fb).

In the experiment above, we require an extra admissibility condition on the adversary to prevent it from trivially
distinguishing the two experiments. For a circuit f ∈ C, define the set S(f) ⊆ X where {x ∈ X : f(x) = 0}.
Let d be the number of queries that A makes to cPRF.Constrainb(msk, ·, ·) and let (f

(i)
0 , f

(i)
1 ) for i ∈ [d] denote

the ith pair of circuits that the adversary submits to the constrain oracle. Then we require that

1. For every query x that A makes to the evaluation oracle, f
(i)
0 (x) = f

(i)
1 (x).

2. For every pair of distinct indices i, j ∈ [d],

S
(
f

(i)
0

)
∩ S

(
f

(j)
0

)
= S

(
f

(i)
1

)
∩ S

(
f

(j)
1

)
.

Justification for the second admissibility condition is discussed in [BLW17, Remark 2.11].

3.2 Private puncturable PRFs

A puncturable PRF is a special case of constrained PRFs where one can only request constained keys
for point functions. That is, each constraining circuit Cx∗ is associated with a point x∗ ∈ {0, 1}n, and
Cx∗(x) = 0 if and only if x 6= x∗. Concretely, a puncturable PRF is specified by a tuple of algorithms
ΠpPRF = (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval) with identical syntax as regular con-
strained PRFs, with the exception that the algorithm pPRF.Puncture takes in a point x to be punctured
rather than a circuit f .

In the context of private puncturing, we require without loss of generality, that algorithm pPRF.Puncture
be deterministic (see [BLW17, Remark 2.14]). If it were randomized, it could be de-randomized by generating
its random bits using a PRF keyed by a part of msk, and given the point x as input.

We define a slightly weaker variant of correctness than as is defined above for constrained PRF called
computational functionality preserving as in the setting of [BV15]. In words, this property states that it is
computationally hard to find a point x 6= x∗ such that the result of the puncture evaluation differs from
the actual PRF evaluation. This is essentially a relaxation of the statistical notion of correctness to the
computational notion of correctness.
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Definition 3.5 (Computational Functionality Preserving). Fix a security parameter λ and let ΠpPRF =
(pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval) be a private-puncturable PRF scheme. For every
adversary A = (A1,A2), consider the following experiment where we choose msk ← pPRF.Setup(1λ),
(state, x∗)← A1(1λ), and skx∗ ← pPRF.Puncture(msk, x∗). Then, the private-puncturable PRF scheme ΠpPRF

is computational functionality preserving if

Pr

x← ApPRF.Eval(msk,·)
2 (state, skx∗) :

x 6= x∗∧
pPRF.Eval(msk, x) 6=

pPRF.PunctureEval(skx∗ , x)

 ≤ negl(λ)

for some negligible function negl.

We next specialize the security definitions to the settings of puncturing constraints. For puncturable PRFs,
the adversary in the pseudorandomness game is limited to making at most one key query to pPRF.Puncture.
If it made two key queries, for two distinct punctures, it would be able to evaluate the PRF on all points in
the domain, and then cannot win the game. Therefore, we need only consider two types of adversaries in the
pseudorandomness game:

• an adversary that makes evaluation queries, but no key queries during the game, and

• an adversary that makes exactly one key query.

The first adversary plays the regular PRF security game. We show in Appendix A that selective security
against an adversary of the second type, implies security against an adversary of the first type. Therefore,
when defining (selective) security, it suffices to only consider (selective) adversaries of the second type.

One technicality in defining pseudorandomness for puncturable PRFs that satisfy a computational notion
of correctness is that the adversary must also be given access to an evaluation oracle. This is because given
only a punctured key, the adversary cannot efficiently detect whether a point in the domain evaluates to
the correct PRF evaluation with the punctured key without the evaluation oracle. Therefore, we define the
following pseudorandomness definition.

Definition 3.6. Fix a security parameter λ. A puncturable PRF scheme ΠpPRF = (pPRF.Setup, pPRF.Puncture,
pPRF.PunctureEval, pPRF.Eval) is selectively-pseudorandom if for every PPT adversary A = (A1,A2), there
exists a negligible function negl such that for msk ← pPRF.Setup(1λ), (x∗, state) ← A1(1λ), skx∗ ←
pPRF.Puncture(msk, x∗), u

$← Y, we have that∣∣∣Pr[ApPRF.Eval(msk,·)
2 (state, skx∗ , pPRF.Eval(msk, x∗)) = 1]− Pr[ApPRF.Eval(msk,·)

2 (state, skx∗ , u) = 1]
∣∣∣ ≤ negl(λ).

To prevent the adversary from trivially breaking the game, we require that the adversary A cannot query the
evaluation oracle on x∗.

We next define the notion of privacy for puncturable PRFs. Again, since we rely on the computational
notion of correctness, we provide the adversary access to an honest evaluation oracle (except for at the
challenge points). As in the pseudorandomness game, we only consider selective adversaries that make a
single key query, although that results in a slightly weaker notion of privacy than in Definition 3.4.3

Definition 3.7. Fix a security parameter λ. A puncturable PRF scheme ΠpPRF = (pPRF.Setup, pPRF.Puncture,
pPRF.PunctureEval, pPRF.Eval) is selectively-private if for every PPT adversary A = (A1,A2), there exists a
negligible function negl such that for msk← pPRF.Setup(1λ), (x∗, state)← A1(1λ), skx∗ ← pPRF.Puncture(msk, x∗),
sk0 ← pPRF.Puncture(msk,0), we have that∣∣∣Pr[ApPRF.Eval(msk,·)

2 (state, skx∗) = 1]− Pr[ApPRF.Eval(msk,·)
2 (state, sk0) = 1]

∣∣∣ ≤ negl(λ).

3We note that the admissibility condition in Definition 3.4 allows an adversary to make two constrained key queries (see [BLW17]
Remark 2.14). However, applications of privately puncturable PRFs require pseudorandomness property to be satisfied, which
can only be achieved in the single-key setting. Therefore, the restriction of privacy to the single-key setting does not affect the
applications of privately puncturable PRFs.
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To prevent the adversary from trivially winning the game, we require that the adversary A cannot query the
evaluation oracle on x∗ or 0.

Remarks. We note that a selectively-secure privately constrained PRF can be shown to be fully secure
generically through complexity leveraging. In particular, the selectivity of the definition does not hurt the
applicability of privacy as it can be shown to be adaptively secure generically. Achieving adaptive security for
any kind of constrained PRFs without complexity leveraging (with polynomial loss in the reduction) remains
a challenging problem. For puncturable PRFs, for instance, the only known adaptively secure constructions
rely on the power of indistinguishability obfuscation([HKW15, HKKW14]).4

We also note that since constrained PRF is a symmetric-key notion, the setup algorithm just returns the
master secret key msk. However, one can also consider dividing the setup into distinct parameter generation
algorithm and seed generation algorithm where the parameters can be generated once and can be reused
with multiple seeds for the PRF. In fact, for our construction in Section 5.1, a large part of the master secret
key component can be fixed once and made public as parameters for the scheme. However, we maintain our
current definition for simplicity.

3.3 Fully-Homomorphic Encryption

Following the presentation of [GVW15b], we give a minimal definition of fully homomorphic encryption
(FHE) which is sufficient for this work. Technically, in this work, we use a leveled homomorphic encryption
scheme (LHE); however, we will still refer to it simply as FHE. A leveled homomorphic encryption scheme is
a tuple of polynomial-time algorithms ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) defined as follows:

• HE.KeyGen(1λ, 1d, 1k)→ sk: On input the security parameter λ, a depth bound d, and a message length
k, the key generation algorithm outputs a secret key sk.

• HE.Enc(sk, µ) → ct: On input a secret key sk and a message µ ∈ {0, 1}k, the encryption algorithm
outputs a ciphertext ct.

• HE.Eval(C, ct) → ct′: On input a circuit C : {0, 1}k → {0, 1} of depth d and a ciphertext ct, the
homomorphic evaluation algorithm outputs ciphertext ct′.

• HE.Dec(sk, ct′)→ µ′: On input a secret key sk and a ciphertext ct′, the decryption algorithm outputs a
message µ′ ∈ {0, 1}.

Correctness. We require that for all λ, d, k, sk← HE.KeyGen(1λ, 1d, 1k), µ ∈ {0, 1}k, and boolean circuits
C : {0, 1}k → {0, 1} of depth at most d, we have that

Pr [HE.Dec(sk,HE.Eval(C,HE.Enc(sk, µ))) = C(µ)] = 1

where the probability is taken over HE.Enc and HE.KeyGen.

Security. For security, we require standard semantic security. For any PPT adversary A = (A1,A2), and
for all d, k = poly(λ), there exists a negligible function negl such that

Pr

b = b′ :

sk← HE.KeyGen(1λ, 1d, 1k);
µ← A(1λ, 1d, 1k);

b
$← {0, 1};

ct0 ← HE.Enc(sk, 0|µ|);
ct1 ← HE.Enc(sk, µ);
b′ ← A(ctb)

−
1

2
≤ negl(λ)

4There are other adaptively secure constrained PRF constructions for prefix fixing and bit-fixing constraints as in [FKPR14, Hof14];
however, they too either require superpolynomial loss in the security parameter or rely on random oracles. The construction of
[BV15] achieves adaptive security for the challenge point, but is selective with respect to the constraint.
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4 LWE, SIS, Lattice FHE, and Matrix Embeddings

In this section, we present a brief background on the average case lattice problems of the Learning with
Errors problem (LWE) as well as the one-dimensional Short Integer Solutions problem (1D-SIS). We also
discuss the instantiations of FHE from LWE and summarize the circuit matrix embedding technique of the
lattice ABE constructions.

Gaussian Distributions. We let DZm,σ to be the discrete Gaussian distribution over Zm with parameter
σ. For simplicity, we truncate the distribution, which means that we replace the output by 0 whenever the
norm ‖·‖ exceeds

√
m · σ.

The LWE Problem. Let n,m, q be positive integers and χ be some noise distribution over Zq. In the
LWE(n,m, q, χ) problem, the adversary’s goal is to distinguish between the two distributions:

(A, sTA + eT ) and (A,uT )

where A
$← Zn×mq , s

$← χn, e← χm, and u
$← Zmq are uniformly sampled.

Connection to Worst-Case. Let B = B(n) ∈ N. A family of distributions χ = {χn}n∈N is called
B-bounded if

Pr[χ ∈ {−B,−B + 1..., B − 1, B}] = 1.

For certain B-bounded error distributions χ, including the discrete Gaussian distributions5, the LWE(n,m, q, χ)
problem is as hard as approximating certain worst-case lattice problems such as GapSVP and SIVP on
n-dimensional lattices to within Õ(n · q/B) factor [Reg09, Pei09, ACPS09, MM11, MP12, BLP+13].

The Gadget Matrix. Let Ñ = n · dlog qe and define the “gadget matrix” G = g ⊗ In ∈ Zn×Ñq where

g = (1, 2, 4, ..., 2dlog qe−1). We define the inverse function G−1 : Zn×mq → {0, 1}Ñ×m which expands each entry
a ∈ Zq of the input matrix into a column of size dlog qe consisting of the bits of the binary representation of
a. To simplify the notation, we always assume that G has width m, which we do so without loss of generality
as we can always extend the width of G by adding zero columns. We have the property that for any matrix
A ∈ Zn×mq , it holds that G ·G−1(A) = A.

The 1D-SIS Problem. Following the technique of [BV15], we use a variant of the Short Integer Solution
(SIS) problem of [Ajt96] called 1D-SIS problem to show correctness and security for our scheme. Let m,β
be positive integers and let q be a product of n prime moduli p1 < p2 < . . . < pn, q =

∏
i∈[n] pi. Then, in

the 1D-SISm,q,β , the adversary is given a uniformly random vector v ∈ Zmq and its goal is to find z ∈ Zm

such that ‖z‖ ≤ β and 〈v, z〉 = 0 mod q. For m = O(n log q), p1 ≥ β · ω(
√
mn log n), the 1D-SIS-Rm,q,p,β

problem is as hard as approximating certain worst-case lattice problems such as GapSVP and SIVP to within
β · Õ(

√
mn) factor [Reg04, BV15].

For this work, we will use another variant called 1D-SIS-R that we define as follows. Let m,β be positive
integers. We let q = p ·

∏
i∈[n] pi, where all p1 < p2 < · · · < pn are all co-prime and co-prime with p as well.

In the 1D-SIS-Rm,q,p,β problem, the adversary is given a uniformly random vector v ∈ Zmq and its goal is to
find a vector z ∈ Zm such that ‖z‖ ≤ β and 〈v, z〉 ∈ [−β, β] + (q/p)(Z+ 1/2).6 In Appendix B, we show that
1D-SIS-Rm,q,p,β is as hard as 1D-SISm,q,β and therefore, is as hard as certain worst-case lattice problems.

4.1 FHE from LWE

There are a number of FHE constructions from LWE [BV14a, BGV12, GSW13, BV14b, ASP14, CM15,
MW16, BP16, PS16]. For this work, we use the fact that these constructions can support not just binary, but
field operations.

5By discrete Gaussian, we always mean the truncated discrete Gaussian.
6The term (q/p)(Z + 1/2) is a slight abuse of notation when q/p is not even. In this case, we mean (q/p) · (Z) + b(q/p) · (1/2)c.
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Specifically, given an encryption of a message x ∈ {0, 1}`, a circuit C : {0, 1}` → {0, 1}, and any field
element w ∈ Zq, one can homomorphically compute the function

fC,w(x) = w · C(x) ∈ Zq

on the ciphertext. Here, we take advantage of the fact that the FHE homomorphic operations can support
scalar multiplication by a field element without increasing the noise too much. Looking ahead, we will encrypt

the punctured point x∗, and homomorphically compute the equality predicate eqx(x∗) =

{
1 x = x∗

0 otherwise
on the ciphertext such that it decrypts to a random element wγ ∈ Zq only if the evaluation of the PRF
a point x equals to the punctured point. This is simply evaluating the equality check circuit on the FHE
ciphertext and scaling the result by wγ .

We formally summarize the properties of FHE constructions from LWE below.7

Theorem 4.1 (FHE from LWE). Fix a security parameter λ and depth bound d = d(λ). Let n,m, q, χ be
LWE parameters where χ is a B-bounded error distribution and q > B ·mO(d). Then, there is an FHE scheme
ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) for circuits of depth bound d, with the following properties:

• HE.KeyGen outputs a secret key sk ∈ Znq
• HE.Enc takes in a message m ∈ {0, 1}k and outputs a ciphertext ct ∈ {0, 1}z where z = poly(λ, d, log q, k).
• HE.Eval takes in a circuit fC,w and a ciphertext ct and outputs ciphertexts ct′ ∈ {0, 1}n.
• For any boolean circuit C of depth d and scalar element w ∈ Zq, HE.Eval(fC,w, ·) is computed by a

boolean circuit of depth poly(d, log z).
• HE.Dec on input sk and ct, when C(m) = 1 we have that

t∑
i=1

sk[i] · ct[i] ∈ [w − E,w + E].

When C(m) = 0 we have
t∑
i=1

sk[i] · ct[i] ∈ [−E,E]

for some bound E = B ·mO(d).
• Security relies on LWE(n,m, q, χ).

We note that in the predicate encryption construction of [GVW15b], the result of [BV14b] is used, which
applies the sequential homomorphic multiplication of ciphertexts (through branching programs) to take
advantage of the asymmetric noise growth of FHE. This allows the final noise from the FHE homomorphic
operations to be bounded by poly(λ), but the depth of the FHE evaluation grows polynomially in the bit
length of the FHE modulus. In our construction, this optimization is not needed because we will only be
concerned with the equality check circuit which is already only logarithmic in the depth of the input length.
Therefore, one can perform regular FHE homomorphic operations with depth logarithmic in the bit length of
the FHE modulus.

4.2 Matrix Embeddings

In the ABE construction of [BGG+14], Boneh et al. introduced a method to embed circuits into LWE
matrices and since then, the technique saw a number of applications in lattice-based constructions [BV15,
GVW15b, GV15, BV16, BCTW16].

We provide an overview of this technique since our proof of security will rely on the specifics of this matrix
encodings. Our, description will be informal, but we formally describe the properties that we need for the
proofs below. We refer the readers to [BGG+14, GVW15b] for the formal treatment.

7We slightly abuse the FHE syntax in Section 3.3.
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In the setting of [BGG+14], for the set of public matrix A1, ...A`, we encode a vector of field elements
x ∈ Ztq as an LWE sample as

axi = sT (Ai + xi ·G) + ei

for i = 1, ..., ` where s and ei’s are sampled according to the standard LWE distribution. Then, given two
encodings, axi , axj , we can add and multiply them as follows:

axi+xj = axi + axj

= sT (Ai + xi ·G) + ei + sT (Aj + xj ·G) + ej

= sT ([Ai + Aj ] + [xi + xj ] ·G) + [ei + ej ]

= sT (A+,i,j + [xi + xj ] ·G) + e+,i,j

axi×xj = axi · xj − axjG
−1(Ai)

= sT (xjAi + xixj ·G) + xjej − sT (AjG
−1(Ai) + xjAi) + ejG

−1(Ai)

= sT ([−AjG
−1(Ai)] + [xi · xj ] ·G) + [xjei + ejG

−1(Ai)

= sT (A×,i,j + [xi · xj ] ·G) + e×,i,j

Correspondingly, we can define operations on the matrices

• A+,i,j = Ai + Aj

• A×,i,j = −AjG
−1(Ai)

Using these operations, one can compute an arithmetic circuit F on the encodings gate-by-gate. In particular,
restricting x to be a binary string, we can compute the NAND operation as

a¬(xi∧xj) = a1 − axi×xj

A¬(xi∧xj) = A∗ −A×,i,j

where a1 = sT (A∗ + G) + e∗ is a fixed encoding of 1.
We note that in the description above, to compute a single multiplication on the encodings axi , axj , one

must know one of xi or xj , but it is not required to know both. This means that computing operations such
as inner products on two vector attributes can be done without the knowledge of one of the vectors. In
particular, given the encodings of (x,w) ∈ {0, 1}z × Ztq, and a pair (C,x) where C : {0, 1}z → {0, 1}t and
x ∈ {0, 1}z, one can derive an encoding of (IP ◦ C)(x,w) = 〈C(x),w〉.

Theorem 4.2 ([BGG+14, GVW15b]). Fix a security parameter λ, and lattice parameters n,m, q, χ where χ is
a B-bounded error distribution. Let C be a depth-d Boolean circuit on z input bits. Let A1, ...,Az, Ã1, ..., Ãt ∈
Zn×mq , (x1,b1), ..., (xz,bz) ∈ {0, 1} × Zmq , and (w1, b̃1), ..., (wt, b̃t) ∈ Zq × Zmq such that∥∥bTi − sT (Ai + xi ·G)

∥∥ ≤ B for i = 1, ..., z∥∥∥b̃Tj − sT (Ãj + wj ·G)
∥∥∥ ≤ B for j = 1, ..., t

for some s ∈ Znq . There exists the following pair of algorithms

• Evalpk((IP ◦ C),A1, ...,Az, Ã1, ..., Ãt)→ A(IP◦C): On input a circuit (IP ◦ C) for C : {0, 1}z → {0, 1}t

and z + t matrices A1, ...,Az, Ã1, ..., Ãt, outputs a matrix A(IP◦C).

• Evalct((IP ◦ C),b1, ...,bz, b̃1, ..., b̃t,x)→ b(IP◦C): On input a circuit (IP ◦ C) for C : {0, 1}z → {0, 1}t,
z + t vectors b1, ...,bz, b̃1, ..., b̃t, and length z string x, outputs a vector b(IP◦C)
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such that for A(IP◦C) ← Evalpk((IP ◦ C),A1, ...,Az, Ã1, ..., Ãt), and b(IP◦C) ← Evalct((IP ◦ C),b1, ...,bz, b̃1, ..., b̃t,x),
we have that ∥∥∥bT(IP◦C) − sT (A(IP◦C) + 〈C(x),w〉 ·G)

∥∥∥ ≤ B ·mO(d).

Moreover, b(IP◦C) is a “low-norm” linear function of b1, ...,bz, b̃1, ..., b̃z. That is, there are matrices

R1, ...,Rz, R̃1, ..., R̃t such that bT(IP◦C) =
∑z
i=1 bTi Ri +

∑t
j=1 b̃Tj R̃j and ‖Ri‖ , ‖R̃j‖ ≤ mO(d).

5 Main Construction

In this section, we present our private puncturable PRF. We first give a formal description of the construction
followed by a sample instantiation of the parameters used in the construction. Then, we prove security
followed by a correctness analysis. We conclude the section with some extensions.

5.1 Construction

Our construction uses a number of parameters and indices, which we list here for reference:

• (n,m, q, χ) - LWE parameters
• ` - length of the PRF input
• p - rounding modulus
• z - size of FHE ciphertext (indexed by i)
• t - size FHE secret key (indexed by j)
• d′ - depth of the equality check circuit
• d - depth of the circuit that computes the FHE homomorphic operation of equality check
• γ - index for the randomizers w1, ..., wn

For γ ∈ [n] we use uγ to denote the n dimensional basis vector in Znq with γth entry set to 1 and the rest set
to 0. Also, for γ ∈ [n], we denote by vγ the m dimensional basis vector in Zmq with the γ · (dlog qe − 1)th
component set to 1 and the rest set to 0. By construction of G we have that G · vγ = uγ .

For the cleanest way to describe the construction, we slightly abuse notation and define the setup
algorithm pPRF.Setup to also publish a set of public parameters pp along with the master secret key msk.
One can view pp as a fixed set of parameters for the whole system that is available to each algorithms
pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval, or it can be viewed as a component included in both the
master secret key msk and the punctured key skx∗ .

Fix a security parameter λ. We construct a privately puncturable PRF ΠpPRF = (pPRF.Setup, pPRF.Puncture,
pPRF.PunctureEval, pPRF.Eval) with domain {0, 1}` and range Zp as follows:

• pPRF.Setup(1λ): On input the security parameter λ, the setup algorithm generates a set of uniformly
random matrices in Zn×mq :

– A0,A1 that will encode the input to the PRF
– B1, ...,Bz that will encode the FHE ciphertext
– C1, ...,Ct that will encode the FHE secret key

Then, it generates a secret vector s from the error distribution s← χn, and also samples a uniformly
random vector w ∈ Znq . It sets

pp =
(
{Ab}b∈{0,1}, {Bi}i∈[z], {Cj}j∈[t], w

)
and msk = s

• pPRF.Eval(msk,x): On input the master secret key msk = s and the PRF input x, the evaluation
algorithm first computes

B̃γ ← Evalpk(Cγ ,B1, ...,Bz,Ax1
, ...,Ax` ,C1, ...,Ct)
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where for γ ∈ [n] the circuit Cγ is defined as Cγ(·) = IP ◦ HE.Eval(eqwγ , ·) and the equality check
function eqwγ is defined as:

eqwγ (x∗,x) =

{
wγ if x = x∗

0 otherwise
.

The algorithm outputs the following as the PRF value:∑
γ∈[n]

〈
sT B̃γ ,vγ

〉
p

∈ Zp.

• pPRF.Puncture(msk,x∗): given msk and the point to be punctured x∗ = (x∗1, ..., x
∗
` ) ∈ {0, 1}` as input,

the puncturing algorithm generates an FHE key he.sk← HE.KeyGen(1λ, 1d
′
, 1`) and encrypts x∗ as

he.ct← HE.Enc
(
he.sk, (x∗1, ..., x

∗
` )
)
∈ Zzq .

Then, it samples an error vector e← χ2+z+t from the error distribution and computes

ab = sT (Ab + b ·G) + eT1,b ∀b ∈ {0, 1}

bi = sT (Bi + he.cti ·G) + eT2,i ∀i ∈ [z]

cj = sT (Cj + he.skj ·G) + eT3,j ∀j ∈ [t].

It outputs the punctured key skx∗ =
(
{ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t], he.ct

)
.

• pPRF.PunctureEval(skx∗ ,x): On input a punctured key skx∗ =
(
{ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t], he.ct

)
and x ∈ {0, 1}`, the puncture evaluation algorithm runs

b̃γ ← Evalct
(
Cγ , b1, ...,bz, ax1

, ...,ax` , c1, ..., ct, (he.ct,x)
)

for γ = 1, ..., n. Here Cγ is the circuit defined as in algorithm pPRF.Eval. The puncture evaluation
algorithm then outputs the PRF value:∑

γ∈[n]

〈
b̃γ ,vγ

〉
p

∈ Zp.

As discussed in Section 3.2, we can de-randomize algorithm pPRF.Puncture so that it always returns the same
output when run on the same input.

5.2 Parameters

The parameters can be instantiated such that breaking correctness or security translates to solving worst-case

lattice problems to 2Õ(n1/c) for some constant c. We set the parameters to account for the noise of both
(a) the FHE decryption and (b) the homomorphic computation on the ABE encodings. The former will be
bounded largely by B ·mO(d′) and the latter by B ·mO(d). Here, d′ is the depth of the equality check circuit
and d is the depth of the FHE operation of the equality check circuit. We want to set the modulus of the
encodings q to be big enough to account for these bounds. Furthermore, for the 1D-SIS-R assumption, we
need q to be the product of coprime moduli p1, ..., pλ such that the smallest of these primes exceeds these
bounds.

Sample instantiations: We first set the PRF input length ` = poly(λ). The depth of the equality check
circuit is then d′ = O(log `). We set n = λ2c. We define q to be the product of λ coprime moduli p, p1, ..., pλ
where we set p = poly(λ) and for each i ∈ [λ], pi = 2O(n1/2c) such that p1 < . . . < pλ. The noise distribution χ
is set to be the discrete Gaussian distribution DZ,

√
n. Then the FHE ciphertext size z and the secret key size

t is determined by q. Set m = Θ(n log q). The depth of the FHE equality check circuit is d = poly(d′, log z).
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5.3 Security

We next prove security of the construction. We start by describing a set of auxiliary algorithms that we will
use in the description of the hybrids in the security proof.

5.3.1 Auxiliary Algorithms

We define the following set of auxiliary algorithms.8

• Setup∗(1λ,x∗)→ (pp∗,msk∗): On input a point to be punctured x∗ ∈ {0, 1}`, the setup algorithm first
generates he.sk ← HE.KeyGen(1λ, 1d, 1`) and encrypts he.ct ← HE.Enc(he.sk, (x∗1, ..., x

∗
` )). It sets the

public matrices

Ab = A′b − b ·G where A′b
$← Zn×mq , ∀b ∈ {0, 1}

Bi = B′i − he.cti ·G where B′i
$← Zn×mq , ∀i ∈ [z]

Cj = C′j − he.skj ·G where C′j
$← Zn×mq , ∀j ∈ [t].

It samples a secret vector s from the error distribution s← χn and also samples a uniformly random

vector w
$← Znq . It sets

pp∗ =
(
{Ab}b∈{0,1}, {Bi}i∈[z], {Cj}j∈[t], w

)
and msk∗ =

(
s, he.sk, he.ct,x∗

)
and outputs (pp∗,msk∗).

• Puncture∗1(msk∗) → skx∗ : On input the master secret key msk∗ =
(
s, he.sk, he.ct,x∗

)
the puncture

algorithm samples error vectors ek ← χ2+z+t from the error distributions and computes

ab = sT (Ab + b ·G) + eT1,b ∀b ∈ {0, 1}

bi = sT (Bi + he.cti ·G) + eT2,i ∀i ∈ [z]

cj = sT (Cj + he.skj ·G) + eT3,j ∀j ∈ [t].

It then sets skx∗ =
(
{ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t], he.ct

)
.

• Puncture∗2(msk∗) → skx∗ : On input the master secret key msk∗ = (s, he.sk, he.ct,x∗), the puncture
algorithm instantiates {ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t] with uniformly random vectors in Zmq . It sets

skx∗ =
(
{ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t], he.ct

)
.

• Eval∗(msk∗, skx∗ ,x)→ ỹ: On input the master secret key msk∗ =
(
s, he.sk, he.ct,x∗

)
, skx∗ =

(
{ab}b∈{0,1},

{bi}i∈[z], {cj}j∈[t], ct
∗), and x, the evaluation algorithm runs

b̃γ ← Evalct
(
Cγ ,b1, ...,bz,ax1 , ...,ax` , c1, ..., ct, (he.ct,x)

)
for γ = 1, ..., n. Then, if x 6= x∗, it returns

ỹ =

∑
γ∈[n]

〈
b̃γ ,vγ

〉
p

∈ Zp.

If x = x∗, then it samples an error term ew̃ ← χ, computes w̃ = 〈s,w〉+ ew̃ ∈ Zq and outputs

ỹ =

∑
γ∈[n]

〈
b̃γ ,vγ

〉
− w̃


p

∈ Zp.

8As was the case in the description of the main construction, we assume that all algorithms excluding the setup implicitly takes
in pp∗ as part of its input.
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5.3.2 Security Proof

We start with showing the pseudorandomness property of our construction.

Theorem 5.1. The puncturable PRF from Section 5.1 with parameters instantiated as in Section 5.2 is
selectively-pseudorandom as defined in Definition 3.6 assuming the hardness of LWEn,m′,q,χ and 1D-SIS-Rq,p,β,m′

for β = B ·mÕ(d) and m′ = m · (2 + z + t) + 1.

Proof. Recall that in the selective pseudorandomness game (Definition 3.6), the adversary first commits to a
puncture point x∗. Then, for (pp,msk)← pPRF.Setup(1λ) and sk∗x ← pPRF.Puncture(msk,x∗), the adversary
is provided with pp, sk∗x, and an oracle access to the real evaluation algorithm pPRF.Eval(msk, ·) on X\{x∗},
along with a challenge y∗ ∈ Y.9 Its goal is to distinguish whether the challenge y∗ was generated using the

real evaluation algorithm y∗ ← pPRF.Eval(msk,x∗) or sampled uniformly y∗
$← Zp.

We proceed through a series of hybrid experiments where we start with the real experiment H0 where
the challenger provides the adversary with a real PRF evaluation at the punctured point. The final hybrid
experiment H5 is the ideal experiment where the challenger gives the adversary a randomly sampled element
in the range for the PRF evaluation at the punctured point. We start with the precise hybrid descriptions.

Hybrid descriptions. For the hybrid descriptions, we use the auxiliary algorithms defined in the previous
subsection.

• Hybrid H0: This is the real experiment. The challenger first receives the commitment to the challenge
point x∗ from the adversary A. It generates the public parameters pp and the master secret key
msk as in the real scheme (pp,msk) ← pPRF.Setup(1λ). Using msk, it generates the punctured key
skx∗ ← pPRF.Puncture(msk,x∗) and the challenge PRF evaluation y∗ ← pPRF.Eval(msk,x∗). The
honest PRF evaluation queries are answered using the real evaluation algorithm pPRF.Eval(msk, ·).

• Hybrid H1: In this experiment, we change the setup and the puncturing algorithm by precomputing
the point to be punctured during setup. More precisely, given the commitment to the challenge
point x∗ from the adversary A, the challenger runs the auxiliary setup (pp∗,msk∗) ← Setup∗(1λ,x∗)
and generates the punctured key with the auxiliary puncture algorithm skx∗ ← Puncture∗1(msk∗). It
generates the challenge PRF evaluation and answers the regular PRF evaluation queries still using the
real evaluation algorithm pPRF.Eval(msk, ·), where msk is the secret vector s that is part of msk∗.

• Hybrid H2: This experiment is the same as H1, but we change the way the challenger computes the
PRF evaluations. Instead of evaluating the PRF with the master secret key, the challenger computes
the PRF evaluation with the punctured key. More precisely, for the challenge PRF evaluation, the
challenger computes y∗ ← Eval∗(msk∗, skx∗ ,x

∗) and for each of the regular PRF evaluation queries x
from the adversary, the challenger returns yx ← Eval∗(msk∗, skx∗ ,x).

• Hybrid H3: This experiment is the same as H2, but now, the challenger provides the adversary with
a randomly sampled element in the range as the challenge PRF evaluation. Also, for the punctured
key, the challenger replaces the “ABE component” of the punctured key with random strings. More
precisely, for the punctured key, the challenger generates skx∗ ← Puncture∗2(msk∗). For the challenge

PRF evaluation, it samples a uniform element y∗
$← Y and provides it to the adversary. It answers the

regular PRF evaluation queries in the same way as in H2.

• Hybrid H4: From this experiment, we start “unrolling back” the changes that we made from the
previous hybrid experiments except for the challenge PRF evaluation. In this experiment, we change the
way we generate the punctured key. Instead of using the auxiliary puncturing algorithm Puncture∗2(msk∗),
the challenger generates the punctured key skx∗ ← Puncture∗1(msk∗).

9Recall that we assume pp as a public component that is part of both msk and sk∗x.
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• Hybrid H5: This experiment is the same as H4 except that for the regular PRF evaluation queries, the
challenger uses the real evaluation pPRF.Eval(msk, ·). The way the challenger generates the challenge
queries remains unchanged.

• Hybrid H6: This experiment is the same as H5 except now, instead of using the auxiliary setup and
puncture algorithms, the challenger uses the honest setup (pp,msk)← pPRF.Setup(1λ) and the honest
puncture skx∗ ← pPRF.Puncture(msk,x∗). We note that this experiment is also identical to H0 except

for the challenge evaluation query, which the challenger samples uniformly y∗
$← Y.

Analysis. Now we proceed in arguing the indistinguishability of each of the hybrids.

Lemma 5.2. The hybrid experiments H0 and H1 are perfectly indistinguishable.

Proof. It is easy to see that in both experiments H0 and H1, the public parameters pp are distributed
uniformly. Also, in H0, the challenger generates the FHE ciphertext when it receives the point x∗ to be
punctured whereas in H1, the challenger computes the FHE ciphertext at the point to be punctured before
it sets pp. Since the challenger is only precomputing the ciphertext, the distribution of the punctured key
remains unchanged.

We now consider the indistinguishability of H1 and H2. In H1, the challenger evaluates the PRF with
the real evaluation algorithm pPRF.Eval(msk∗, ·) and in H2, the challenger uses the auxiliary evaluation
algorithm Eval∗(msk∗, skx∗ , ·). We show that the adversary’s view in both experiments is identical, provided
that a certain “bad event” does not occur. To define this event formally, we first recall the definitions of
Eval∗(msk∗, skx∗ , ·) and pPRF.Eval(msk∗, ·).

• The auxiliary evaluation algorithm Eval∗(msk∗, skx∗ ,x) takes the encodings {ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t]

from the punctured key and computes the vectors {b̃γ}γ∈[n] defined as

b̃γ ← Evalct
(
Cγ ,b1, ...,bz,ax1 , . . . ,ax` , c1, ..., ct, (he.ct,x)

)
(5.1)

and then returns the auxiliary PRF output as

ỹ =

∑
γ∈[n]

〈
b̃γ ,vγ

〉
− eq(x,x∗) · w̃


p

where w̃ = 〈s,w〉+ ew̃. (5.2)

• The real evaluation algorithm pPRF.Eval(msk, ·) first computes

B̃γ ← Evalpk
(
Cγ ,B1, ...,Bz,Ax1

, ...,Ax` ,C1, ...,Ct

)
and returns the value

ỹ′ =

∑
γ∈[n]

〈
sT B̃γ ,vγ

〉
p

.

We can express the quantity ỹ′ using the vectors {b̃γ}γ∈[n] defined in (5.1), and the quantity w̃ ∈ Zq
defined in (5.2). First, by the correctness of FHE (Theorem 4.1) and the correctness of the ABE encodings
(Theorem 4.2), the vector b̃γ satisfies:

b̃Tγ = sT
(
B̃γ + (wγ · eq(x,x∗) + εγ) ·G

)
+ eTγ for γ ∈ [n].
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for some FHE error term εγ with ‖εγ‖ ≤ B ·mO(d′) and ABE error term eγ with ‖eγ‖ ≤ B ·mO(d). Therefore,
ỹ′ can be written as:

ỹ′ =

∑
γ∈[n]

〈
sT B̃γ ,vγ

〉
p

=

∑
γ∈[n]

〈
sT (B̃γ + (wγ · eq(x,x∗) + εγ) ·G) + eγ − sT (wγ · eq(x,x∗) + εγ) ·G− eγ , vγ

〉
p

=

∑
γ∈[n]

〈
sT (B̃γ + (wγ · eq(x,x∗) + εγ) ·G) + eγ ,vγ

〉
− eq(x,x∗)

∑
γ∈[n]

〈
sT · wγ ·G,vγ

〉
+ ew̃

− ẽ

p

=

∑
γ∈[n]

〈
b̃γ ,vγ

〉
− eq(x,x∗)

∑
γ∈[n]

〈
sT · wγ ·G,vγ

〉
+ ew̃

− ẽ

p

=

∑
γ∈[n]

〈
b̃γ ,vγ

〉
− eq(x,x∗)(〈w, s〉+ ew̃)− ẽ


p

=


∑
γ∈[n]

〈
b̃γ ,vγ

〉
− eq(x,x∗) · w̃

︸ ︷︷ ︸
ξx

−ẽ


p

where ẽ =
∑
γ∈[n] 〈eγ ,vγ〉 − eq(x,x∗) · ew̃ and ew̃ is the noise associated with the term w̃. We note that the

error term ẽ is bounded |ẽ| ≤ E for some E = B ·mÕ(d).
Therefore, as long as the term ẽ disappears with the rounding operation b·ep, the auxiliary PRF evaluation

Eval∗(msk∗, skx∗ , ·) and the honest PRF evaluation pPRF.Eval(msk, ·) coincide.
To this end, we define the event Borderlinex as the event where the adversary submits an input x to its

challenge or regular evaluation queries such that

ξx ∈ [−E,E] + (q/p) · (Z + 1/2).

Namely, this is the event that the puncture evaluation excluding the noise is close to being rounded in
the wrong direction. By the definition of rounding, if ¬Borderlinex, then we have that pPRF.Eval(msk,x) =
Eval∗(msk∗, skx∗ ,x). Therefore, we have the following lemma

Lemma 5.3. We have that AdvH1,H2
(A) ≤ PrH2

[Borderlinex∗ ].

Now, instead of bounding the probability PrH2
[Borderlinex∗ ] directly, we first show that the hybrid

experiments H2 and H3 are computationally indistinguishable. This means that the probability of the event
Borderlinex in the two hybrid experiments are negligible∣∣∣∣Pr

H2

[Borderlinex]− Pr
H3

[Borderlinex]

∣∣∣∣ ≤ negl(λ).

Then, we show that the event Borderlinex in H3 is negligible, thus showing that the probability of the event
Borderlinex in H2 is negligible.

Lemma 5.4. The hybrid experiments H2 and H3 are computationally indistinguishable assuming the hardness
of LWEn,m,q,χ.
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Proof. We construct a simulator B that breaks LWE given an attacker A that distinguishes between H2 and
H3. B first receives {(A′b,a′b)}b∈{0,1}, {(B′i,b′i)}i∈[z], and {(C′j , c′j)}j∈[t] from the LWE challenger. It also

receives one additional LWE challenge (w, w̃). Upon receiving x∗ from A, the simulator B runs Setup∗(1λ,x∗)
with these LWE challenge matrices, instead of choosing the matrices at random.

Now, the simulator B provides the LWE challenge vectors {a′b}b∈{0,1}, {b′i}i∈[z] {c′j}j∈[t] along with ct∗ as
the punctured key to A. We note that if the challenge vectors are valid LWE samples, then the distribution
is identical to the key generated by Puncture∗1 and if they are truly random samples, then the distribution is
identical to the key generated by Puncture∗2.

Finally, the simulator B runs Eval∗(msk∗, skx∗ ,x
∗) to generate the challenge PRF evaluation using the

punctured key along with the challenge sample w̃. If w̃ that was provided by the LWE challenger is a valid
LWE sample w̃ = 〈s,w〉 + ew, then it is easy to see that this is a perfect simulation of Eval∗. If w̃ is a
uniformly random element in Zq, then the evaluation

ỹ =

∑
γ∈[n]

〈
b̃γ ,vγ

〉
− w̃


p

.

is a uniformly random vector in Zp as q is a multiple of p. Therefore, with the distinguishing advantage of A,
the simulator B solves the LWE problem, which proves the lemma.

Now we show that the event Borderlinex in the hybrid experiment H3 is negligible.

Lemma 5.5. Under the 1D-SIS-Rq,p,β,m′ assumption, it holds that PrH3
[Borderlinex∗ ] = negl(λ) where

m′ = m · (2 + z + t) + 1, and β = B ·mÕ(d).

Proof. Let z ∈ Z(2+z+t)·m+1
q be an instance of 1D-SIS-Rq,p,β,m′ . We parse z into 2 + z + t m-dimension

vectors and a single 1-dimension element. We define {ab}b∈{0,1}, {bi}i∈[z], {cj}j∈[t] and w̃ in the Puncture∗2
and Eval∗ algorithms to correspond to these parsed components of z. We construct a simulator B that runs
the experiment H3 and solves 1D-SIS-Rq,p,β,m′ if the event Borderlinex occurs.

Assume that Borderlinex occurs. Then, by how we defined Borderlinex, we found an x such that∑
γ∈[n]

〈
b̃γ ,vγ

〉
− w̃ ∈ [−E,E] + (q/p) · (Z + 1/2)

where E = B ·mO(d). By Theorem 4.2, it follows that

b̃Tγ =
∑

b∈{0,1}

aTb R1,b,γ +
∑
i∈[z]

bTi R2,i,γ +
∑
i∈[t]

cTj R3,j,γ

for some matrices {R1,b,γ}, {R2,i,γ}, {R3,j,γ} where ‖R1,b,γ‖ , ‖R2,i,γ‖ , ‖R3,j,γ‖ ≤ mO(d). By combining
these matrices, we get an efficiently computable matrix Rγ such that∑

γ∈[n]

〈z,Rγ · vγ〉 ∈ [−E,E] + (q/p) · (Z + 1/2)

with Rγ ·vγ ≤ mO(d). Therefore, the vector
∑
γ∈[n] Rγ ·vγ is a valid solution to 1D-SIS-Rq,p,β,m′ with bound

β = B ·mÕ(d) and this proves the lemma.

Finally, since the event Borderlinex∗ is negligible in H3 and the experiments H2 and H3 are indistinguishable,
we have the following corollary.

Corollary 5.6. We have that PrH2
[Borderlinex∗ ] = negl(λ) assuming the hardness of LWEn,m,q,χ and

1D-SIS-Rq,p,β,m′ for β = B ·mÕ(d) and m′ = (2 + z + t) ·m+ 1.
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What remains are the indistinguishability of the sequence of hybrid experiments from H3 to H6. We note,
however, that in each of these hybrid experiments, we simply unroll back the changes that we made in the
previous hybrid experiments. Therefore, their indistinguishability follows from the symmetric argument used
to show the indistinguishability of the previous hybrid experiments.

Lemma 5.7. The hybrid experiments H3 and H4 are computationally indistinguishable assuming the hardness
of LWEn,m,q,χ.

Lemma 5.8. The hybrid experiments H4 and H5 are computationally indistinguishable assuming the hardness

of LWEn,m,q,χ and 1D-SIS-Rq,p,β,m′ for β = B ·mÕ(d) and m′ = m · (2 + z + t) + 1.

Lemma 5.9. The hybrid experiments H5 and H6 are perfectly indistinguishable.

This concludes the proof of Theorem 5.1.

Now, we proceed in showing that our construction satisfies the privacy of the punctured point. Since the
arguments used to show privacy follows from the arguments used to show pseudorandomness in Theorem 5.1
in a straightforward way, we simply provide a general proof overview.

Theorem 5.10. Let ΠHE be a secure leveled homomorphic encryption scheme with parameters instantiated
as in Section 5.2. The puncturable PRF from Section 5.1 with parameters instantiated as in Section 5.2
satisfies the security property of a private puncturable PRF as defined in Definition 3.6 assuming the hardness

of LWEn,m′,q,χ and 1D-SIS-Rq,p,β,m′ for β = B ·mÕ(d) and m′ = m · (2 + z + t) + 1.

Proof Overview. Intuitively, we want to reduce the privacy of the punctured point to the semantic security of
the underlying FHE scheme since the point is encrypted. The only obstacle that prevents a straightforward
reduction to semantic security is that the FHE secret key he.sk is released as part of the ABE encodings in
the punctured key. Therefore, we must argue that the ABE encodings in the punctured key computationally
hides he.sk such that we can remove it altogether from the simulation. In fact, this is precisely what we do in
the hybrid experiments H0 → H3 in the proof of Theorem 5.1. In H3, the ABE encodings of the punctured key
are simply uniformly random strings. Therefore, following the experiment H3, we can rely on the semantic
security of FHE to replace the encryption of the punctured point to an encryption of the all zeros string.
As in the proof of Theorem 5.1, we can now unroll back the generation of the public parameters and the
punctured keys. This concludes the proof overview.

5.4 Correctness

We now show the correctness of our construction. The correctness proof also follows in a straightforward
manner as in the proof of Theorem 5.1 and therefore, we provide a general overview of the proof.

Theorem 5.11. The puncturable PRF from Section 5.1 with parameters instantiated as in Section 5.2
satisfies the correctness property of Definition 3.5 assuming the hardness of LWEn,m,q,χ and 1D-SIS-Rq,p,β,m′

for β = B ·mÕ(d) and m′ = m · (2 + z + t) + 1.

Proof Overview. We note that in the correctness game, the adversary wins the game if it finds a point x such
that pPRF.Eval(msk,x) 6= pPRF.PunctureEval(skx∗ ,x) for x 6= x∗. By the correctness of Evalpk and Evalct,
we have that pPRF.Eval(msk,x) 6= pPRF.PunctureEval(skx∗ ,x) precisely when the event Borderlinex occurs.
Therefore, we can use the same argument in the proof of Theorem 5.1 to show that the adversary’s advantage
in forcing the event Borderlinex is negligible. Specifically, we can first argue by LWE that the challenger can
replace the “ABE encodings” of the punctured key with just random strings. Now, since the PRF evaluation
consists of taking a low-norm linear combination of the encoding vectors, one can embed an instance of
the 1D-SIS-R problem into the encoding vectors and therefore, solve 1D-SIS-R using an adversary that can
force the event Borderlinex. This shows that the adversary’s advantage is negligible assuming the hardness of
1D-SIS-R. This concludes the proof overview.
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5.5 Extentions

We conclude this section with some high-level discussion on extending our scheme and how it relates to other
lattice based PRF constructions.

Puncturing at Multiple Points. A private puncturable PRF can be combined to support a single-key
private k-puncturable PRF generically where a constrained key can be punctured at k distinct points in the
domain. One way of doing this is to simply define the PRF to be the xor of k independent instances of a
1-puncturable PRF. More precisely, let mski ← pPRF.Setup(1λ) for i = 1, ..., k. Then define the master secret
key of the k-puncturable PRF to be the collection of these master secret keys msk = (msk1, ...,mskk). We define
the evaluation of the PRF to be F (msk,x) = F (msk1,x)⊕. . .⊕F (mskk,x). Then, to generate a punctured key
at S = {x1, ...,xk}, we puncture each mski at point xi, to get punctured key skxi ← pPRF.Puncture(mski,xi),
and then set skS = (skx1

, ..., skxk). It is easy to see that one can evaluate the PRF with the punctured key
only at a point x in the domain x /∈ S. It is also straightforward to show that pseudorandomness and privacy
follow from the security of the underlying 1-puncturable PRF.

Short constrained keys. In [BV15], Brakerski and Vaikuntanathan provide a way to achieve succinct
constrained keys for their single-key constrained PRF, which also extends to our construction in Section 5.1.
We provide a high level overview of this method.

In the constrained PRF construction of [BV15], a constrained key consists of the description of the
constraint circuit along with the ABE encodings of the constraint circuit. To get succinct constrained keys,
one can encrypt the bit encodings for each possible bits using an encryption scheme and publish it as part of
the public parameters (just like in a garbling scheme). Then, as the constrained key, one can provide the
decryption keys corresponding to the bit description of the constraint circuit. Now, using the attribute-based
encryption construction of [BGG+14], which has short decryption keys, one can provide the ABE secret key
that allows the decryption of the bits of the constraint circuit.

One difference with our construction is that we encode field elements in our ABE encodings for the FHE
key. However, the FHE key stays the same for any punctured point. Therefore, we can garble just the bit
positions corresponding to the encryption of the point to be punctured and publish the rest of the components
in the clear. This allows the size of the public parameters to absorb the size of the constrained key.

Key homomomorphism. Our PRF construction has a similar structure as the other lattice-based PRF
constructions and therefore, the master secret key (LWE vector) for which the PRF is defined can be added
homomorphically from the PRF evaluations. However, we note that in our construction, the PRF key (secret
vector) is from a short noise distribution χ. Although there are applications of key-homomorphic PRFs with
short keys, for most applications of key-homomorphic PRFs, one requires a perfect secret sharing of the
PRF key, which requires it to come from a uniform distribution over a finite group. We leave it as an open
problem to extend the construction to the setting of key-homomorphic PRFs with uniform keys.

6 Impossibility of Simulation Based Privacy

In this section, we show that a simulation based privacy notion for constrained PRFs for general circuit
constraints is impossible. More precisely, we show that even for the single-key setting where the adversary is
given one single constrained key, a natural extension of the indistinguishability privacy definition (Definition 3.4)
to a simulation based privacy definition cannot be satisfied. We do this rather indirectly by showing that a
constrained PRF (for general circuits) satisfying the simulation based privacy definition implies a simulation
secure functional encryption [SS10, BSW11, O’N10], which was shown to be impossible in [BSW11, AGVW13].

6.1 Definition

We begin with the definition of a simulation based privacy notion for constrained PRFs. The simulation based
privacy requires that any adversary given a constrained key skf does not learn any more information about the
constraint other than what can be implied by comparing the output of the real evaluation cPRF.Eval(msk, ·)
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and cPRF.ConstrainEval(skf , ·). The correctness and pseudorandomness properties stay the same as how it is
defined in Section 3.

Definition 6.1 (Sim-Privacy). Fix a security parameter λ ∈ N. A constrained PRF scheme ΠcPRF =
(cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) is simulation-private for single-key if there exists
a PPT simulator S = (SEval,SConstrain) such that for all PPT adversary A, there exists a negligible function
negl(λ) such that

AdvprivΠcPRF,A(λ) =
∣∣∣Pr[ExptREALΠcPRF,A(λ) = 1]− Pr[ExptRANDΠcPRF,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where the experiments ExptREALΠcPRF,A(λ) and ExptRANDΠcPRF,A(λ) are defined as follows:

ExptREALΠcPRF,A(λ):

1. msk← cPRF.Setup(1λ).
2. (f∗, state)← AcPRF.Eval(msk,·)(1λ).
3. skf∗ ← cPRF.Constrain(msk, f∗).
4. b← A(skf∗ , state).
5. Output b

ExptRANDΠcPRF,A(λ):

1. (f∗, state1)← ASEval(·)(1λ).
2. skf∗ ← SConstrain().
3. b← A(skf∗ , state1).
4. Output b.

Here, the algorithms SEval and SConstrain share common state and the algorithm SConstrain is given the size |f |
and oracle access to the following set of mappings

Cconstrain =
{
i 7→ f∗(x(i)) : i ∈ [Q]

}
where Q represents the number of times A queries the evaluation oracles SEval.

In words, the security definition above requires that an adversary cannot distinguish whether it is
interacting with a real constrained PRF or it is interacting with a simulator that is not actually given the
constraint f∗ except for output of f∗ applied to each of the adversary’s queries to the evaluation oracle.

6.2 Functional Encryption

In this subsection, we define a simulation secure functional encryption for circuits. For simplicity, we consider
functions with just binary outputs.

A (secret-key) functional encryption (FE) scheme is a tuple of algorithms ΠFE = (FE.Setup,FE.KeyGen,
FE.Encrypt,FE.Decrypt) defined over a message space X , and a class of functions Fλ = {f : X → {0, 1}} with
the following properties:

• FE.Setup(1λ)→ msk: On input the security parameter λ, the setup algorithm outputs the master secret
key msk.

• FE.KeyGen(msk, f) → skf : On input the master secret key msk and a circuit f , the key generation
algorithm outputs a secret key skf .

• FE.Encrypt(msk,x) → ct: On input the master secret key msk, and a message x, the encryption
algorithm outputs a ciphertext ct.

• FE.Decrypt(ct, skf )→ {0, 1}: On input a ciphertext ct and a secret key skf , the decryption algorithm
outputs a bit y ∈ {0, 1}.

Correctness. A functional encryption scheme ΠFE = (FE.Setup,FE.KeyGen,FE.Encrypt,FE.Decrypt) is
correct if for all λ ∈ N, msk← FE.Setup(1λ), f ∈ F , and skf ← FE.KeyGen(msk, f), we have that

Pr[FE.Decrypt(skf ,FE.Encrypt(msk,x)) = f(x)] = 1− negl(λ).

Security. For security, we require that any adversary given a secret key does not learn any more information
about an encrypted message other than what can be deduced from an honest decryption.
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Definition 6.2. Fix a security parameter λ ∈ N. A functional encryption scheme ΠFE = (FE.Setup,
FE.KeyGen,FE.Encrypt,FE.Decrypt) is simulation secure for single-key if there exists a PPT simulator S =
(SEncrypt,SKeyGen) such that for all PPT adversary A, there exists a negligible function negl(λ) such that

AdvFEΠFE,A(λ) =
∣∣∣Pr[ExptREALΠFE,A(λ) = 1]− Pr[ExptRANDΠFE,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where the experiments ExptREALΠFE,A(λ) and ExptRANDΠFE,A(λ) are defined as follows:

ExptREALΠFE,A(λ):

1. msk← FE.Setup(1λ).
2. (f∗, state)← AFE.Encrypt(msk,·)(1λ).
3. skf∗ ← FE.KeyGen(msk, f∗).
4. b← A(skf∗ , state).
5. Output b

ExptRANDΠFE,A(λ):

1. (f∗, state)← ASEncrypt()(1λ)
2. skf∗ ← SKeyGen(f∗).
3. b← A(skf∗ , state).
4. Output b.

Here, the algorithms SEncrypt and SKeyGen share common state and the simulator SKeyGen is given oracle access
to the set of mappings Cmsg =

{
i 7→ f∗(x(i)) : i ∈ [Q]

}
where Q represents the number of queries that A

makes to SEncrypt.

It was shown in [BSW11, AGVW13] that a functional encryption scheme satisfying the security definition
above is impossible to achieve.

6.3 FE from Constrained PRFs

In this subsection, we present our construction of functional encryption. Fix a security parameter λ. Let
ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) be a constrained PRF with domain
{0, 1}λ+` and range {0, 1}λ where ` is the size of the message in the functional encryption scheme. We
also use an additional regular PRF, which we denote by Fk : {0, 1}λ → {0, 1}`. We construct ΠFE =
(FE.Setup,FE.KeyGen,FE.Encrypt,FE.Decrypt) as follows:

• FE.Setup(1λ): On input the security parameter λ, the setup algorithm first samples a regular PRF key

k
$← {0, 1}λ. Then, it runs cprf.msk← cPRF.Setup(1λ) and sets msk = (cprf.msk,k).

• FE.KeyGen(msk, f): On input the master secret key msk and a circuit f , the key generation algorithm
generates a constrained PRF key skCf,k ← cPRF.Constrain(cprf.msk, Cf,k) where the circuit Cf,k is
defined as follows:

Cf,k(r,y) =

{
0 if f(Fk(r)⊕ y) = 0
1 otherwise

.

It outputs skf = skCf,k .

• FE.Encrypt(msk,x): On input the master secret key msk, and a message x ∈ {0, 1}`, the encryption

algorithm first samples encryption randomness r
$← {0, 1}λ and computes y = Fk(r) ⊕ x. Then, it

returns
ct = (r,y, cPRF.Eval(cprf.msk, r‖y))

• FE.Decrypt(skf , ct): On input a secret key skf = skCf,k and ct = (r,y, c̃t), the decryption algorithm
returns 0 if cPRF.ConstrainEval(skCf,k , r‖y) = c̃t and 1 otherwise.

Correctness. To show correctness, we note that the decryption algorithm simply evaluates the PRF using
the constrained key cPRF.Constrain(skCf,k , r‖y) and returns 0 if the result equals c̃t and 1 otherwise. Since
c̃t is precisely the PRF evaluation using the master secret key cPRF.Eval(cprf.msk, r‖y), the two evaluations
coincide if Cf,k(r,y) = 0. Also, if ΠcPRF satisfies the standard notion of pseudorandomness as in Definition 3.3,
the PRF evaluation using the master secret key and the PRF evaluation using the constrained key differs
with overwhelming probability if the constraint is not satisfied Cf,k(r,y) = 1.
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6.4 Security

In this section, we prove security of construction above.

Theorem 6.3. Let ΠcPRF = (cPRF.Setup, cPRF.Constrain, cPRF.ConstrainEval, cPRF.Eval) be a constrained
PRF scheme satisfying the security properties of Definition 6.1. Also, let Fk be a secure PRF. Then,
the functional encryption scheme ΠFE constructed above satisfies the simulation based security notion of
Definition 6.2.

Proof. We proceed through a series of hybrid experiments where the first hybrid H0 represents the real
experiment ExptREALΠFE,A and the final hybrid H3 represents the ideal simulation ExptRANDΠFE,A.

• Hybrid H0: This is the real experiment. The challenger runs the real setup algorithm to generate
msk. Then the adversary makes a number of encryption queries and a key generation query which the
challenger answers using its msk.

• Hybrid H1: In this experiment, the challenger runs the simulator for the constrained PRF to answer
the adversary’s queries. More precisely, given a constrained PRF simulator S = (SEval,SConstrain), the

challenger first samples a PRF key k
$← {0, 1}λ as msk. Then for each encryption query x that the

adversary makes, the challenger samples r
$← {0, 1}λ, computes y← Fk(r)⊕x and invokes the simulator

to generate c̃t← SEval(r‖y). It provides (r,y, c̃t) to the adversary as the encryption of x. To answer the
single key generation query on f∗ from the adversary, the challenger invokes the simulator SConstrain() to
generate the key. For the set of mappings Cconstrain that are to be provided to SConstrain, the challenger
computes f∗(x(i)) itself and feeds it to the simulator.

By the assumption on the simulator S = (SEval,SConstrain), we have that the hybrids H0 and H1 are
indistinguishable to the adversary. We note that in H1, the challenger does not actually use the PRF
key k to generate the secret keys.

• Hybrid H2: In this experiment, the challenger replaces Fk(·) with a random function. Namely, to
answer an encryption query x by the adversary, the challenger ignores the message x and samples ỹ

randomly ỹ
$← {0, 1}`. It then invokes c̃t← SEval(r‖ỹ) and sets (r, ỹ, c̃t) as the encryption of x. The

rest of the experiment remains unchanged from H1.

Note that in both hybrid experiments H1 and H2, the challenger does not use the PRF key k other than
in evaluating the PRF Fk(·) to encrypt. Therefore, by the PRF security of Fk(·), the two experiments
are indistinguishable to the adversary. We note that in H2, the challenger does not use any information
about the message xi other than providing the simulator SConstrain with the values f∗(x(i)).

• Hybrid H3: This experiment represents the ideal experiment where the challenger corresponds to
the simulator for the functional encryption game. The simulator runs in exactly the same way as in
the previous hybrid H2. Namely, for each encryption query x that the adversary makes, it samples

r
$← {0, 1}λ, y

$← {0, 1}` and invokes c̃t ← SEval(r‖ỹ). It sets (r, ỹ, c̃t) as the encryption of x. Note
that to generate the ciphertext, it does not use any information about x. For the single key query, the
simulator invokes SConstrain(). For the set of mappings Cconstrain that are to be provided to SConstrain, it
uses its own oracle Cmsg to provide the values f∗(x(i)).

It is easy to see that the distribution of the experiments H2 and H3 are identical.

We have shown that the experiment H0, which corresponds to ExptREALΠFE,A and the experiment H3, which

corresponds to ExptRANDΠFE,A are indistinguishable. This concludes the proof.
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7 Conclusion and Open Problems

We constructed a privately puncturable PRF from worst-case lattice problems. Prior constructions of
privately puncturable PRFs required heavy tools such as multilinear maps or iO. This work provides the
first privately puncturable PRF from a standard assumption. We also showed that for general functions, a
natural simulation-based privacy definition for constrained PRFs is impossible to achieve.

Our PRF builds on the construction of [BV15], which supports circuit constraints. However, our
construction does not extend to more general constraints, and it will be interesting to provide a private
constrained PRF for a larger class of circuit constraints. For private puncturing, it will be interesting to give
more constructions based on assumptions other than LWE.

Our construction satisfies the selective security game of private puncturable PRFs, and we rely on
complexity leveraging for adaptive security. Recently, [HKW15] gave a way to achieve adaptively secure
puncturable PRFs without complexity leveraging. Can we extend the result to private puncturable PRFs?

Finally, private constrained PRFs have a number of interesting applications, as explored here and
in [BLW17]. It would be interesting to find further applications and relations to other cryptographic
primitives.
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A Puncturable PRFs and regular PRFs

In this section, we show that a puncturable PRF satisfying the pseudorandomness notion of Definition 3.6
implies a secure PRF as defined in Definition 3.1.

Theorem A.1. Let ΠpPRF = (pPRF.Setup, pPRF.Puncture, pPRF.PunctureEval, pPRF.Eval) be a puncturable
PRF satisfying Definition 3.6 with domain X and range Y. Then ΠPRF = (pPRF.Setup, pPRF.Eval) satisfies
Definition 3.1.

Proof. Fix an adversary A that, with oracle access to pPRF.Eval, distinguishes pPRF.Eval from a random
function as in Definition 3.2 making Q oracle calls to pPRF.Eval(msk, ·). We define a series of hybrid
experiments H0, ...,HQ such that H0 denotes the real experiment where A interacts with pPRF.Eval(msk, ·)
and in HQ, A interacts with a random function. We define the intermediate hybrids as follows

• Hi: The challenger answers the adversary’s first i evaluation queries with randomly sampled elements

from the range y(i) $← Y. Then, for the rest of the evaluation queries, the challenger answers the
adversary with an honest evaluation using pPRF.Eval(msk, ·).

We now show that the consecutive hybrids are indistinguishable.

Lemma A.2. The hybrid experiments Hi and Hi+1 are indistinguishable for i = 0, ..., Q− 1 assuming that
the puncturable PRF ΠpPRF satisfies Definition 3.6.

Proof. For an adversary A that distinguishes the two hybrid experiments Hi and Hi+1, we construct a
simulator B that breaks the security game of Definition 3.6. For each query that A makes to the evaluation
oracle, B answers A as follows. For the first i evaluation queries x(1), ..., x(i), B simply answers A with

randomly sampled elements from the range y(1), ..., y(i) $← Y. Then, for the evaluation query x(i+1), the
adversary submits x(i+1) as the commitment to the challenge point to the puncturable PRF challenger and
receives the PRF key punctured at x(i+1), and the challenge evaluation y(i+1). Then, B answers A with
y(i+1) as the (i+ 1)th evaluation. Now, for the subsequent evaluation queries x(i+2), ..., x(Q), the simulator B
uses its own evaluation oracle to answer A.

If the challenge evaluation y(i+1) is an honestly generated evaluation y(i+1) ← pPRF.Eval(msk, x(i+1)),
then the view of the adversary is exactly the view of Hi. If y(i+1) is uniform over Y, then the view of the
adversary is exactly the view of Hi+1. Therefore, B breaks the security of Definition 3.6 with the distinguishing
advantage of A.

B Worst-Case Hardness of 1D-SIS-R

In this section, we give a reduction from 1D-SIS-R to 1D-SIS. For this, we first introduce an intermediate
problem called 1D-SIS’.

Definition B.1 (1D-SIS’). Let m,β be positive integers and let q be a product of n prime moduli p1 < p2 <
. . . < pn, q =

∏
i∈[n] pi. Then the 1D-SIS’m,q,β problem is defined as follows. Given a uniformly random

vector v ∈ Zmq , find z ∈ Zm such that ‖z‖ ≤ β and 〈v, z〉 = [−β, β] + q · (Z + 1/2).

We first show that the 1D-SIS’ problem is at least as hard as 1D-SIS.

Lemma B.2. Let m, q, β be positive integers. Then the 1D-SIS’m,q,β problem is at least as hard as
1D-SISm+1,q,2(β+1).
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Proof. Let A be an adversary for 1D-SIS’m,q,β and let v = (v1, ..., vm) ∈ Zmq be a random instance of the
1D-SISm,q,β problem. If v1 is not a unit in Zq, then the reduction aborts. Otherwise, we define the vector
v′ = (v−1

1 · v2, ..., v
−1
1 · v2) ∈ Zm−1

q and provide v′ to A to get a solution z′ = (z′1, ..., z
′
m−1) ∈ Zm−1 such

that 〈v′, z′〉 ∈ [−β, β] + q · (Z + 1/2). Then, consider the vector z = (−2 〈v′, z′〉 , 2z′1, ..., 2z′m−1). Since
〈v′, z′〉 ∈ [−β, β] + q · (Z + 1/2), we have that 2 · 〈v′, z′〉 ∈ [−2(β + 1), 2(β + 1)] + qZ, which shows that
‖z‖ ≤ 2(β + 1). Also, it is easy to see that 〈v, z〉 = 2v1(〈v′, z′〉 − 〈v′, z′〉) = 0 mod q.

Now we show that the 1D-SIS-R problem is at least as hard as 1D-SIS’, which follows in a straightforward
way.

Lemma B.3. Let m,β be positive integers and let q be a product of n+ 1 prime modulus p1 < p2 < . . . < pn
and p, q = p

∏
i∈[n] pi. Then, the 1D-SIS-Rm,q,p,β is at least as hard as 1D-SIS’m,q/p,β.

Proof. Let A be an adversary for 1D-SIS-Rm,q,p,β . Given a random instance v ∈ Zmq/p of 1D-SIS’m,q/p,β ,

sample a random vector r
$← Zmp and compute v′ ∈ Zmq using the Chinese remainder theorem such that

v′ = v mod (p/q) and v′ = r mod p. Feeding A with v′, we get a solution z′ such that 〈v′, z′〉 ∈
[−β, β] + (q/p)(Z + 1/2). It is easy to see that by definition, ‖z′‖ ≤ β and therefore, z′ is a valid solution to
1D-SIS’m,q/p,β .
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