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Abstract: Mix networks are a key technology to
achieve network anonymity, private messaging, voting
and database lookups. However, simple mix networks
are vulnerable to malicious mixes, which may drop or
delay packets to facilitate traffic analysis attacks. Mix
networks with provable robustness address this draw-
back through complex and expensive proofs of correct
shuffling, but come at a great cost and make limiting or
unrealistic systems assumptions. We present Miranda,
a synchronous mix network mechanism, which is prov-
ably secure against malicious mixes attempting active
attacks to de-anonymize users, while retaining the sim-
plicity, efficiency and practicality of mix networks de-
signs. Miranda derives a robust mix reputation through
the first-hand experience of mix node unreliability, re-
ported by clients or other mixes. As a result, each active
attack – including dropping packets – leads to reduced
connectivity for malicious mixes and reduces their abil-
ity to attack. We show, through experiments, the effec-
tiveness and practicality of Miranda by demonstrating
that attacks are neutralized early, and that performance
does not suffer.
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1 Introduction
Mix networks [8] are an established method for pro-
viding anonymous communication between senders and
recipients. While a single honest mix in a cascade is
enough to ensure anonymity against global passive at-
tackers, classical mix networks designs are not robust
against active long-term traffic analysis attacks, involv-
ing dropping or delaying packets by malicious mixes.
Such attacks have severe repercussions for privacy and
efficiency of mix networks. For example, a disclosure at-
tack in which a rogue mix strategically drops packets
from a specific sender allows the attacker to infer with
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whom the sender is communicating, by observing which
recipient received fewer packets than expected [2]. Sim-
ilarly, denial-of-service (DoS) attacks can be used to en-
hance de-anonymization [6], and (n − 1) attacks allow
tracing packets over honest mixes [42].

The problem of strengthening decryption mix net-
works, in order to improve the reliability and detection
of active attacks, is a challenging task, since the goal is
to identify and penalize malicious mixes, while retaining
strong anonymity and high efficiency. Trivial strategies
for detecting malicious mixes are fragile and may be-
come vectors for attacks. Rogue mixes can either hide
their involvement or worse, make it seem like honest
mixes are unreliable, which leads to their exclusion from
the network. Therefore, several approaches to the prob-
lem of active attacks and reliability were studied, how-
ever they have many shortcomings, which we discuss
in section 8.

In this work, we revisit the problem of making de-
cryption mix networks robust to malicious mixes per-
forming active attacks. We presentMiranda1, a practical
and efficient reputation-based decryption mix network,
which allows to detect and isolate malicious nodes, to-
gether with a security argument to demonstrate its ef-
fectiveness against active attacks. Our design includes
a set of secure and decentralized mix directory author-
ities, for selecting and distributing cascades once every
epoch. These cascades are selected based on evidence
of faulty links between mixes. Miranda employs a novel
approach of examining links between mixes, instead of
focusing on the mixes themselves. By carefully gather-
ing evidence of misbehaving links, Miranda disconnects
them. Consequently, the adversary loses the necessary
resources for attacks in long-term. Repeated misbehav-
iors result in the complete exclusion of the misbehaving
mixes from the system, see Figure 1.

Contributions. Our paper makes the following contri-
butions:
• We present Miranda, an efficient and scalable mech-
anism that detects and mitigates active attacks. To

1 “Miranda warning” is the warning used by the US police,
in order to notify people about their rights before questioning
them. Since Miranda’s design and mechanisms prevent adver-
saries from silently (but actively) attacking the mix network, we
refer to it as no right to remain silent, hence the name.
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(a) Connectivity graph in the
beginning. All mixes are willing to
communicate with each other.

(b) Miranda detects active attacks and
removes the links between the honest
and dishonest nodes (section 3.2.3). A
malicious node M1, which lost more
links than a pre-defined threshold, is
completely excluded from the system.

(c) Miranda applies community
detection (section 5.2) to detect the

group of dishonest nodes and disconnect
the entire group from the honest nodes.

Fig. 1. High-level overview of the process of isolating malicious mixes in Miranda.

protect against such attacks we leverage reputation
and local reports of faults. Miranda is applicable
to practical implementation and can be integrated
with mix networks and anonymous communication
designs.

• We propose an encoding for secure loop messages,
that may be used to securely test the network for
dropping attacks – extending traditional mix packet
formats for verifiability.

• We show how Miranda can take advantage of commu-
nity detection in a novel way, which further improves
its effectiveness.

• We implement and evaluate the performance and scal-
ability properties of Miranda. Our prototype shows
high performance for decryption mix networks and
the low overhead of the proposed defenses.

Overview. The rest of this paper is organized as fol-
lows. In Section 2, we discuss the motivation behind our
work, and define the threat model and security goals. In
Section 3, we present the design of Miranda. In Section 4
and 5, we detail two main protocols of Miranda, which
detect and penalize active attacks. In Section 6, we eval-
uate the security properties of Miranda against active
attacks. In Section 7, we evaluate the performance and
resistance to DoS attacks of Miranda. In Section 8, we
contrast our design to related work. Finally, we conclude
in Section 9.

2 System Model and Motivation
In this section, we outline the general model of the mix
network system, define the threat model and summa-
rize the security goals of Miranda. We also motivate
our work by quantifying how active attacks threaten
anonymity in mix network systems.

2.1 General system model

We consider an anonymous communication system con-
sisting of set U of users communicating over the decryp-
tion mix network [8] operating in synchronous batches,
denoted as rounds. Depending on the path constraints,
the topology may be arranged in separate cascades or a
Stratified network [15]. As M we denote the set of all
mixes building the anonymous network. Each message is
end-to-end layer encrypted into a cryptographic packet
format by the sender, and the recipient performs the
last stage of decryption. Mixes receive packets within
a particular round, denoted by r. Each mix decodes a
successive layer of encoding and shuffles all packets ran-
domly. At the end of the round, each mix forwards all
packets to their next hops. Changing the binary pattern
of packets by removing a single layer of encryption pre-
vents bit-wise correlation between incoming and outgo-
ing packets. Moreover, mixing protects against an exter-
nal observer, by obfuscating the link between incoming
and outgoing packets.

Message packet format. In this paper, we use
the Sphinx cryptographic packet format [10]. How-
ever, other packet formats can be used, as long as
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they fulfill certain properties. The messages encoded
should be of constant length and indistinguishable from
each other at any stage in the network. Moreover,
the encryption should guarantee duplicates detection,
and eliminate tampered messages (tagging attacks).
The packet format should also allow senders to en-
code arbitrary routing information for mixes or recipi-
ents. We denote the result of encoding a message as
Pack(path, routingInfo, rnd, recipient,message), where rnd
denotes a random string of bits used by the packet for-
mat.

2.2 Threat model

We consider an adversary whose goal is to de-anonymize
packets traveling through the mix network. Our adver-
sary acts as a global observer, who can eavesdrop on
all traffic exchanged among the entities in the network.
Moreover, all malicious entities in the system collude
with the adversary, giving access to their internal states
and keys. While the adversary might control a signifi-
cant percentage of the participating entities, we assume
that there is still an honest majority of nodes2. As n we
denote the total number of mixes in the network, nm of
which are malicious and nh are honest (|M| = n). We
refer to cascades where all mixes are malicious as fully-
malicious. Similarly, as fully-honest we refer to cascades
where all nodes are honest, and semi-honest to the ones
where only some of the mixes are honest. As semi-honest
link we call a link between an honest and malicious mix.

The adversary may launch active attacks by drop-
ping or delaying packets, to facilitate traffic analysis at-
tacks. However, the adversary is limited in terms of ac-
tive network attacks, as we assume that the adversary
cannot arbitrarily drop packets between honest parties
nor delay them for longer than a maximal period. This
restricted network adversary is weaker than the stan-
dard Dolev-Yao model, and in line with more contem-
porary works such as XFT [32] that assumes honest
nodes can eventually communicate synchronously. It al-
lows more efficient Byzantine fault tolerance schemes,
such as the one we present. However, our evaluation does
take into consideration some messages between honest

2 In practice, there are probably multiple non-colluding adver-
saries, each controlling its portion of nodes. While the total num-
ber of malicious nodes among all adversaries might exceed the
total number of honest nodes, there are still more honest nodes
than any single adversary’s nodes.

mixes being dropped, as a result of realistic network-
level attacks.

2.3 The impact of active attacks on
anonymity

Active attacks, like dropping messages, can result in a
catastrophic advantage gained by the adversary in link-
ing the communicating parties. To quantify the advan-
tage, we defined a security game, followed by a qualita-
tive and composable measure of security against drop-
ping attacks. To our knowledge this is the first analy-
sis of such attacks and we provide full details in Ap-
pendix A. Our results support the findings of previous
works on statistical disclosure attacks [2] and DoS based
attacks [6], and arguing that the traffic analysis advan-
tage gained from dropping messages is significant. We
found that the information leakage for realistic volumes
of traffic (10–100 messages per round), is quite signif-
icant: the adversary can improve de-anonymization by
about 20%. For larger traffic rates (more than 1000 mes-
sages per round) the leakage drops, but expecting each
client to receive over 1000 messages per round on aver-
age seems unrealistic (unless large volumes of synthetic
cover traffic is used). The lesson drawn from our anal-
ysis and previous studies is clear: it is crucial to de-
sign a mechanism to detect malicious nodes and remove
them from the system after only a small number of ac-
tive attacks. Further, we show how Miranda succeeds in
achieving this goal.

2.4 Security goals of Miranda

The main goal of a mix network is to hide the correspon-
dence between senders and recipients of the messages in
the network. More precisely, although the communica-
tion is over cascades that might contain malicious mixes,
Miranda aims to provide protection which is indistin-
guishable from the protection provided by an ‘ideal mix’,
i.e., a single mix node which is known to be honest.

The key goals of Miranda relate to alleviating and
discouraging active attacks on mix networks, as they
have a significant impact on the anonymity through
traffic analysis. This is achieved through the detection
and exclusion of unreliable links or misbehaving mixes.
Miranda offers the following protections against active
attacks:
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Detection of malicious nodes. Every active attack
by a corrupt mix is detected with non-negligible proba-
bility, by at least one entity.
Separation of malicious nodes. Every active attack
by a rogue mix results, with a non-negligible probability,
in the removal of at least one link connected to the rogue
mix or even removal of the rogue mix itself.
Reducing attacks impact over multiple epochs.
Repeated application of Miranda lowers the overall
prevalence and impact of active attacks by corrupt
mixes across epochs, limiting the ability of the adver-
sary to drop or delay packets.

3 Miranda’s Design
In this section, we present an overview of the Miranda
design, and how it integrates with the mix network
model presented in subsection 2.1.

3.1 Directory authorities

Mix network management is secured by introducing di-
rectory authorities, a set of d semi-trusted servers that
maintain a list of available mixes and links between
them. We assume that a fraction dm of authorities can
be malicious and collude with the adversary. As dh we
denote the number of honest authorities (d = dm + dh).
Miranda operates in epochs, denoted by E. During each
epoch, users communicate over the mix network and
report any misbehavior they encounter to the directory
authorities. The directory authorities are responsible for
processing these reports between epochs. During this
inter-epoch phase, they generate a set of new cascades
to be used in the next epoch. The newly generated cas-
cades will reflect all denunciations about mixes’ misbe-
haviors, reported by clients or mixes. Namely, cascades
exclude links that were reported, or mixes involved in
too many reports. We denote the number of reports
which marks a mix as dishonest and causes its exclusion
from the network as thresh, and emphasize that thresh is
cumulative over rounds. To ensure that malicious mixes
alone are unable to exclude honest mixes, we assume
that thresh > nm.

3.2 The Miranda protocol overview

3.2.1 Message sending

At the beginning of each epoch, clients acquire the list
of all currently available cascades from the directory au-
thorities. When Alice wants to send a message, her client
filters out all cascades containing mixes through which
she does not wish to relay messages. We denote the set
of cascades selected by Alice as CA. Next, Alice picks
a random cascade from CA, which she uses throughout
the whole epoch, and encapsulates the message into the
packet format. For each mix in the cascade, we include
in the routing information the exact round number dur-
ing which the mix should receive the packet and during
which it should forward it. Next, the client sends the
encoded packet to the first mix on the cascade. In re-
turn, the mix sends back a receipt, acknowledging the
received packet.

3.2.2 Processing of received packets

After receiving a packet, the mix decodes a successive
layer of encoding and verifies the validity of the expected
round r and well-formedness of the packet. At the end
of the round, the mix forwards all valid packets to their
next hops. Miranda requires mixes to acknowledge re-
ceived packets by sending back receipts. A receipt is a
digitally signed [29] statement confirming that a packet
p was received by mix Mi. Receipts must be sent and
received by the proceeding mix within the same round
in which packet p was sent.
Generating Receipts. For simplicity, we de-
note a receipt for a single packet p as
receipt← Sign(p || receivedFlag = 1), where Sign(·) is
a secure digital signature algorithm, and Verify(·) is its
matching verification function3. However, generating
receipts for each packet individually incurs a high com-
putational overhead due to costly public key signature
and verification operations.

To reduce this overhead, mixes gather all the pack-
ets they received during round r in Merkle trees [34]
and sign the root of the tree once. Clients’ packets are
grouped in a single Merkle tree TC and packets from
mix Mi are grouped in a Merkle tree TMi

. Mixes then

3 Although Sign and Verify use the relevant cryptographic keys
in their operation, we abuse notations and for simplicity write
them without the keys.
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generate two types of receipts: (1) receipts for clients
and (2) aggregated receipts for mixes. Each client re-
ceives a receipt for each message she sends. Client re-
ceipts are of the form: receipt = (σC,Γp, r), where: σC
is the signed root of TC , Γp is the appropriate infor-
mation needed to verify that packet p appears in TC ,
and r is the round number. Similarly, each mix receives
a receipt in response to all the packets it forwarded in
the last round. However, unlike client receipts, mixes
expect back a single aggregated receipt for all the pack-
ets they sent to a specific mix. An aggregated receipt
is in the form of: receipt = (σi, r), where: σi denotes the
signed root of TMi

and r is the round number. Since
mixes know which packets they forwarded to a partic-
ular mix, they can recreate the Merkle tree and verify
the correctness of the signed tree root using a single re-
ceipt. Once a mix sent an aggregated receipt, it expects
back a signed confirmation on that aggregated receipt,
attesting it was delivered correctly.

Mixes record the receipts and confirmations to prove
later that they behaved honestly in the mixing opera-
tion. However, to ensure that messages are not trivially
tracked through low volume cascades, mixes only gener-
ate receipts if they received enough packets. Namely, if
a mix relays to another mix less than ω packets, where
ω is the minimum number of packets allowed, the subse-
quent mix does not generate receipts and does not relay
these messages.
Lack of a receipt. If a mix does not receive an aggre-
gated receipt or does not receive a signed confirmation
on an aggregated receipt it sent within the expected
time slot4, the mix disconnects from the misbehaving
mix. The honest mix detaches from the faulty mix by
informing the directory authorities about the disconnec-
tion through a signed link disconnection receipt. Note,
that the directories cannot identify which of the discon-
necting mixes is the faulty one merely based on this mes-
sage, because the mix who sent the complaint might be
the faulty one trying to discredit the honest one. There-
fore, the directory authorities only disconnect the link
between the two mixes. The idea of disconnecting links
was earlier investigated in various Byzantine agreement
works [17], however, to our knowledge this approach was
not yet applied to the problem of mix network reliabil-
ity.

4 Recall that we operate in a synchronous setting, where we can
bound the delay of an acknowledgement.

3.2.3 Detecting active attacks

To deter active attacks, clients periodically, yet ran-
domly, craft and send loop messages to themselves. In
order to construct a loop message, client S chooses a
unique random bit-string KS and a random cascade C.
Loop messages are encoded in the same manner as regu-
lar messages, making them indistinguishable from other
messages at any stage of their routing. The loop message
is encapsulated into the packet format as follows
pK ← Pack(path = C, routingInfo = routing, rnd = H(KS)

recipient = S,message = ”loop”)
The tuple (S,KS,C, routing) acts as the opening

value, which allows recomputing pK as well as all its
intermediate states pi

K that mix Mi should receive and
emit. Therefore, revealing the opening value convinces
everyone that a particular packet was indeed a loop mes-
sage and that its integrity was preserved throughout its
processing by all mixes. Moreover, the construction of
the opening value ensures that only the creator of the
loop packet can provide a valid opening value, and no
third party can forge one. Similarly, no one may repro-
duce an opening value that is valid for a non-loop packet
created by an honest sender.

If a loop message fails to complete the loop back,
this means that one of the cascade’s mixes misbehaved.
S queries all the mixes in the cascade for evidence
whether they have received, processed and forwarded
the loop packet. This allows S to isolate the cascade’s
problematic link or misbehaving mix which caused the
packet to be dropped. S then reports the isolated link
to the directory authorities and receives a signed confir-
mation on her report. This confirmation states that the
link will no longer be used to construct future cascades.

The rate of loop messages is adjusted according to
α, which is the expected probability of detection desired
by Alice. Namely, for every message, there is a fraction
α chance of it being a loop message. To achieve that,
if Alice sends β messages in round r, then dβ · αe ad-
ditional loop messages are sent alongside the genuine
messages. However, this only ensures α in the context
of the messages that Alice sends and does not ensure
the same for the messages she receives. Therefore, if γ
is the bound on the number of messages that Alice ex-
pects in round r and x is the number of rounds that it
takes for a loop message to complete the loop, then Al-
ice sends dγ ·αe loop messages in round r−x. Since loop
messages sent by Alice in round r also protect messages
received in round r + x, the number of loop messages
sent in round r is: dmax(β, γ) ·αe. Additionally, the loop
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messages are injected into the network following Poisson
process, therefore the rate of sending cannot be distin-
guished from genuine traffic. For analysis of the security
of loop messages see section 6.3.

4 Intra-Epoch Process
In this section, we present the mechanisms that oper-
ate during an epoch to deter active attacks. We start
by describing how active attacks are detected and how
this deters malicious behavior. Next, we discuss nodes
who refuse to cooperate and conclude with how Miranda
deals with sporadic or intentional loss of packets.

4.1 Isolating malicious mixes

Since clients are both the generators and recipients of
the attack-detecting loop messages, they know exactly
during which round r the loop should arrive back. There-
fore, if a loop message fails to complete the loop back to
the sender as expected, the client initiates an isolation
process, during which it detects and isolates the specific
problematic node or link in the cascade. The isolation
process starts with the client querying each of the mixes
on the cascade to establish whether they received and
correctly forwarded the loop packet. During the query-
ing phase, the client first reveals to the respective mixes
the packet’s opening value, in order to prove that it was
indeed a loop packet. Next, the client queries the mixes
for the receipts they received after they delivered that
packet. When clients detect a problematic link or the
misbehaving mix, they report it to the directory au-
thorities, along with the necessary proofs that support
its claim. This is in fact a broadcasting task in the con-
text of the well known reliable broadcast problem, and
can be solved accordingly [33]. Each directory author-
ity that receives the report verifies its validity, and if it
is correct, stores the information to be used in future
cascade generation processes. Then, the client chooses
another cascade from the set of available cascades and
sends future packets and loop messages using the new
route.

4.1.1 Detecting problematic links or mixes

When a client asks an honest mix to prove that it
received and correctly forwarded a packet, the mix

presents the relevant receipt. However, if a mix did not
receive this packet, it attests that by returning an ap-
propriate signed response to the client. In case of a loop
message that did not complete the loop because a mali-
cious mix dropped it and did not send a receipt back, the
honest preceding mix would have already disconnected
from the misbehaving mix. Thus, the honest mix can
present the appropriate disconnection receipt it received
from the directory authorities as an explanation for why
the message was not forwarded. The malicious mix can
attempt the following actions, in order to perform an
active attack.

Naive dropping. A mix which simply drops a loop
packet after sending a receipt to the previous mix can
be detected as malicious beyond doubt. When the client
that originated the dropped loop packet queries the pre-
ceding mix, it presents the receipt received from the ma-
licious mix, proving that the packet was delivered cor-
rectly to the malicious node. However, the malicious mix
is unable to produce a similar receipt that the resulting
packet was indeed forwarded to the subsequent mix or
that it disconnected from the “faulty” subsequent mix.

Blaming the neighbors. Malicious mixes performing
active dropping attacks would prefer to avoid complete
exclusion. One option is to drop a packet without gen-
erating a receipt, in order to accuse the previous mix,
that it did not forward the packet. This approach causes
the preceding mix to immediately disconnect from the
malicious one at the end of the round. Alternatively,
if the malicious mix decides to drop the packet after
it generated an appropriate receipt, the malicious mix
must disconnect from the subsequent mix by the end of
the round to avoid exclusion. Therefore, an adversary
that drops a packet either loses a link or is completely
excluded from the network.

Delaying packets. A malicious mix can also delay a
packet instead of dropping it, so that the subsequent
mix will drop that packet. However, the honest mix still
sends a receipt back for that packet, which the malicious
mix should acknowledge. If the malicious mix acknowl-
edges the receipt, the malicious mix is exposed when
the client performs the isolation process. The client can
obtain a signed receipt proving that the malicious mix
received the packet on time, and also the acknowledged
receipt from the honest mix that dropped the delayed
packet. The latter contains the round number when the
packet was dropped, which proves the malicious mix
delayed the packet and therefore should be excluded.
Otherwise, if the malicious mix refuses to sign the re-
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ceipt, the honest mix disconnects from the malicious
one. Therefore, the delaying attack costs the mix to ei-
ther lose a link or to be expelled from the system.

The combination of packet receipts, link disconnec-
tion notices, and the isolation process amplify the effect
of loop messages. It forces malicious mixes to immedi-
ately lose links when they perform active attacks, by ei-
ther not responding to the preceding mix or recording a
disconnection notice about the subsequent mix. Failure
to do so in a timely manner, creates potentially incrim-
inating evidence, that would lead to their complete ex-
clusion from the system. This prevents malicious mixes
from silently attacking the system and blaming honest
mixes when they are queried in the isolation mechanism.
The mere threat of loop messages forces malicious mixes
to drop a link with an honest mix for each message they
wish to suppress, or risk the full node being excluded
from the system with some probability.

4.1.2 Refusing to cooperate

Malicious mixes might attempt to circumvent the proto-
col by refusing to cooperate in the isolation procedure.
Potentially, this could prevent clients from obtaining the
necessary proofs about problematic links, thus prevent-
ing them from convincing directory authorities about
problematic links. If malicious mixes refuse to cooper-
ate, clients contact a directory authority and ask it to
perform the isolation process on their behalf. Clients can
prove to the directory authorities that the loop packet
was indeed sent to the cascade using the receipt from
the first mix. If all mixes cooperate with the directory
authority, it is able to isolate and disconnect the prob-
lematic link. Otherwise, if malicious mixes do not co-
operate with the directory authority, it excludes those
mixes from the system.

We note that a malicious client may trick the direc-
tory authorities into performing the isolation process
on its behalf repeatedly, against honest mixes. In that
case, directory authorities conclude that the mix is hon-
est, since the mix can provide either a receipt for the
message forwarded or a disconnection notice. However,
this is wasteful for both directory authorities and mixes.
Since clients do not have to be anonymous vis-a-vis di-
rectory authorities, they may record false reports and
eventually exclude abusive clients.
Malicious entry mix. If a first mix does not cooperate
by refusing to produce a receipt, the client can simply
choose another cascade. However, this allows malicious

mixes to divert traffic from cascades which are not fully
malicious without being penalized, increasing the proba-
bility that clients would select other fully-malicious cas-
cades instead. To avoid that, clients can force the first
mix to cooperate with the help of a trusted witness. A
witness is just another mix that relays the packet to the
misbehaving first mix. Now, the misbehaving node can
no longer refuse to produce a receipt, because the packet
arrives from the witness (and not from the client), which
allows isolation process to take place. If the witness it-
self is malicious, it will also refuse to produce a receipt
(otherwise, it loses a link). In that case, the client can
simply choose another witness. This prevents malicious
mixes from excluding semi-honest cascades without los-
ing a link. Moreover, although the refused clients cannot
prove to others that they were rejected, they can learn
about malicious mixes and can avoid all future cascades
that contain them, including fully-malicious cascades,
which makes such attack imprudent.

4.2 Handling packet loss

Under real network conditions, packets traversing a net-
work might get dropped. This could be the result of net-
work congestion, mistakes, or due to malicious attacks.
Miranda is sensitive to packet losses, because any lost
packet is interpreted as a semi-honest link, and results
in the exclusion of the link from the system. Hence,
an off-path adversary capable of dropping packets in
a fully-honest link (e.g., using bandwidth-DDoS [18]),
could abuse the mechanism and exclude links between
honest mixes. Therefore, it is crucial for Miranda to have
a built-in support against sporadic or malicious losses.

One approach to address this challenge is to use
TCP, and let its built-in mechanisms to take care of lost
packets. This is a good approach if the rate of lost pack-
ets is small or if the throughput is not high. However,
when TCP detects congestion or packet loss, it drasti-
cally reduces its transmission rate. Hence, reduced rate
is likely to result in delayed packets, which arrive at in-
correct rounds. This causes Miranda to consider the link
as semi-honest and exclude it, which is the same as if the
packets were intentionally delayed by a malicious mix.
For that reason, recovering from losses requires a cus-
tomized protocol, which, for simplicity of deployment,
we implement over UDP. To ensure resiliency to lost
packets (either due to benign reasons such as conges-
tion or due to attacks such as DoS attacks), we use a
forward error correction (FEC) mechanism [41]. In FEC,
packets are batched, and each batch is reinforced with
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extra redundant packets. The advantage of FEC is that
any lost packet can be recovered immediately from the
redundant packets, without the need to wait for retrans-
mission. In addition, the redundancy ratio can be ad-
justed dynamically, to send more/less redundant pack-
ets based on the currently estimated loss rate. To deal
with (rare) losses in spite of the FEC mechanism, we
use retransmission. Namely, in case too many packets
are lost and there are not enough redundant packets to
allow recovery, the receiver requests the sender to re-
transmit the missing batch. We emphasize that FEC
does not prevent users from overwhelming mixes with
more traffic than they can handle. That said, the first
mix can mitigate this by limiting the traffic volume from
clients, according to the throughput and bandwidth lim-
itations of their next hop. We evaluate how TCP and
UDP with FEC and retransmission handle packet loss
in section 7.

5 Inter-Epoch Process
In this section, we discuss the inter-epoch operations,
taking place between the end of one epoch and the next
one. The main goal of this process is to select a new
random set of cascades to be used in the coming epoch,
avoiding faulty or corrupt links and mixes. For simplic-
ity of presentation, we assume the mix network is not
used during the inter-epoch process – although part of
the inter-epoch processes may take place concurrently
with mixing. The inter-epoch process consists of the fol-
lowing steps.
Propagating disconnections. Directory authorities
share amongst themselves the evidence they received,
and use it to agree on the set of faulty links and mixes.
Evidence consists of the reports of faulty links from
mixes, clients or authorities performing the isolation
process. The directory authorities exchange all new evi-
dences of faulty links collected since the previous epoch
together with the collective signature of dm+1 directory
authorities. Since evidence was signed by at least one
non-faulty directory authority all honest directory au-
thorities eventually have exactly the same set of faulty
links, assuming maximum network delay.

Note, that only links connected to (one or two)
faulty mixes are ever disconnected. Hence, any mix
which has more than thresh links disconnected must be
faulty (due to the assumption that thresh > nm), and
hence the directories exclude that mix completely. Since
the directory authorities share exactly the same set of

faulty links, it follows that they also agree on exactly the
same set of faulty mixes. We call this exclusion process
a simple malicious mix filtering step. In subsection 5.2,
we discuss a more advanced filtering technique based on
community detection.

While it is sufficient to say that thresh = nm + 1,
such threshold implicitly assumes that honest mixes
never fail. A more realistic approach would be to define
thresh = nm + y + 1, where y is the maximum number of
honest mistakes or misbehaviors due to massive attacks
(e.g., DDoS) that we assume an honest mix would do.
Obviously, y must not be too big in order to preserve
Miranda’s guarantees.
Select and publish cascades. After all directory au-
thorities have the same view of the mixes and their links,
they select and publish a (single) set of cascades, to be
used by all clients during the coming epoch. In subsec-
tion 5.1, we explain the protocol which directory author-
ities use to select the cascades, and how it ensures that
all honest directory authorities agree on the same set
of cascades. To allow clients to easily confirm that they
use the correct set of cascades, the directory authorities
collectively-sign the set that they determined for each
epoch, again using a threshold signature scheme [23, 43].
Hence, each client can simply retrieve the set from any
directory authority, and validate that it is the correct
set (using a single signature-validation operation).

5.1 Cascades selection protocol

The cascades selection protocol allows all directory au-
thorities to agree on a random set of cascades for the
upcoming epoch. The input to this protocol, for each
directory authority, includes the set of mixesM, the de-
sired number of cascades to be generated nc, the length
of cascades l, and the set of faulty mixes FM ⊂M and
faulty links FL ⊂ M×M. For simplicity, M, nc and l
are fixed throughout the execution.

The goal of all directory authorities is to select the
same set of cascades C ⊆ Ml, where C is uniformly cho-
sen from all sets of cascades of length l, limited to those
which satisfy the selected legitimate cascade predicates,
which define a set of constraints for building a cascade.
In Appendix B, we describe several possible legitimate
cascade predicates, and discuss their differences.

Given a specific legitimate cascade predicate the
protocol selects the same set of cascades for all directory
authorities, chosen uniformly at random among all cas-
cades satisfying this predicate. This is somewhat chal-
lenging, since sampling is normally a random process,
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which is unlikely to result in exactly the same results
in all directory authorities. One way of ensuring correct
sampling and the same output, is for the set of direc-
tories to compute the sampling process jointly, using a
multi-party secure function evaluation process, e.g., [24].
However, this is a computationally-expensive process,
and therefore, we present a much more efficient alter-
native. Specifically, all directory authorities run exactly
the same sampling algorithm and for each sampled cas-
cade validate it using exactly the same legitimate cas-
cade predicate. To ensure that the results obtained by
all honest directory authorities are identical, it remains
to ensure that they use the same random bits as the seed
of the algorithm. To achieve this, while preventing the
faulty directory authorities from biasing the choice of
the seed bits, we can use a coin-tossing protocol, e.g., [4],
among the directory authorities5.

5.2 Applying community detection

Community detection techniques can be used to extract
more information from reports of faulty links and mixes,
and tilt the choice of cascades towards honest mixes ear-
lier. We augment the inter-epoch process, by performing
an additional step of filtering nodes and propagating the
reports of faults to more links and nodes – through a
community detection algorithm. The key insight under-
pinning our approach is that reports of faulty links can
only concern links between the honest and malicious
set of nodes, and thus they separate the sub-graph into
those two types of mixes.

Community detection has been used in previous
works to achieve Sybil detection based on social or intro-
duction graphs [11, 12]. However, both our aims and the
graph-theoretic assumption we base our analysis on, are
very different from those previous works. First, we con-
sider a fixed set of mixes containing at most FM corrupt
mixes and assume that the problem of Sybil attacks is
solved through other means, such as admission control,
or resource constraints. Secondly, we make no assump-
tions on the mixing times of random walks on natural
‘social graphs’, which is for the best, since those have
proven, through empirical studies, to be fragile [37].

Graph, Markov chain, and short walk defini-
tion. We consider the graph G with vertices Mi ∈ M

5 Note, that we only need to generate a small number of bits
(security parameter), from which we can generate as many bits
as necessary using a pseudo-random generator.

representing mixes in the system. We define an edge
(Mi,Mj) ∈ E to exist between each pair of vertices if
neither of Mi, Mj has been reported as faulty, and nei-
ther has the link between them been dropped by either
mix. We note that the resulting graph is symmetric and
undirected. At first, before any reports of faults have
arrived at the directory authorities, it is complete since
all edges are present. Over time, and as reports of faulty
mixes or links arrive, the graph G becomes more sparse.

We define a Markov chain on the graph G as a set of
probabilistic transitions for all nodesMi →Mj , that we
borrow from SybilInfer [12]. We define as Deg(M) the
degree of the verticeM , and the probability of transiting
from two vertices Mi, Mj is:

Pr[Mj |Mi] =

{
min

{
1

Deg(Mi) ,
1

Deg(Mj)

}
if(Mi,Mj) ∈ E

0 otherwise

and call the matrix of all those transition probabilities
Π; the remaining probability mass from each node is
assigned to a self-loop. This transition matrix ensures
that the stationary distribution of the Markov walk is
uniform across all nodes in connected components of
G, as shown in [12]. However, a short random walk, of
O(logN) steps, will not converge to the stationary dis-
tribution for sparser G since the walks will tend to re-
main within regions of high capacitance. Similar to the
insight underpinning Sybil defenses, the random walks
starting from honest nodes tend to remain within the
(fully connected) regions of the graph, and the missing
links between honest and malicious mixes act as a bar-
rier to those walks escaping in malicious regions of the
graph.

We leverage this insight to bias cascade construc-
tion. We define K = dk ·logNe where k is a small system
constant. Then we compute the transition probability
matrix Π∗ = ΠK of a random walk using transitions Π
after a short number of steps K. Using the matrix Π∗

we can extract the probability that a walk starting at
node Mi ends up in any node Mj which we denote as
π∗i [j]. All directory authorities may compute those dis-
tributions deterministically and use the information to
infer further faulty links: for any node Mi, we denote as
cutoff the smallest probability within π∗i . Then for any
node Mj such that π∗i [j] < cutoff the directory author-
ities remove the link between Mi and Mj thus further
pruning the graph used to build cascades.

Community detection provides Miranda an impor-
tant feature. Since adversaries do not wish to be ex-
cluded from the system, they do not perform more than
thresh attacks from the same mix, thus they distribute
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the attacks among several malicious mixes. However, the
more attacks they perform, even if these attacks do not
exceed the thresh threshold, they increase the probabil-
ity of excluding the entire malicious collective from the
system. Merely the threat of such action is significant
in deterring active attacks.

6 Analysis of Active Attacks
In this section, we analyze the impact of active attacks
in the presence of Miranda. We first analyze Miranda
against traditional and non-traditional active attacks,
including attacks designed to abuse the protocol to in-
crease the chances of clients choosing fully-malicious
cascades. We continue by examining the security of loop
messages, and conclude this section by evaluating how
community detection strengthens Miranda.

6.1 Resisting active attacks

As discussed in subsection 4.1, a malicious mix that
drops a packet sent from a preceding mix or destined to
a subsequent mix, loses at least one link; in some cases,
the malicious mix gets completely excluded. Hence, the
adversary quickly loses its attacking capabilities, before
any significant impact is introduced. However, the ad-
versary might try other approaches in order to link the
communicating users or gain advantage in the network,
as we now discuss.

A malicious first mix can refuse clients’ packets;
however, such attack is imprudent, since clients can mi-
grate to other cascades. Furthermore, clients can force
the malicious mix to relay their packets, using a wit-
ness. Similarly, it is ineffective for the last mix of a cas-
cade to drop all packets it receives, since clients learn
through isolation that the dropped loop packets success-
fully arrived to the last mix. Although clients cannot
prove the mix maliciousness, they avoid future cascades
containing the malicious mix, including fully-malicious
cascades.

Instead of directly dropping packets, adversaries can
cause a packet to be dropped by delaying the packet.
However, such attack is also detected.

Claim 1. A malicious mix that delays a packet, is ei-
ther expelled from the system or loses a link.

Argument. When an honest mix receives a delayed
packet, it drops it. However, the honest mix still sends
a receipt back for that packet. If the malicious mix ac-

knowledges the receipt, the malicious mix is exposed
when the client performs the isolation process: the client
can obtain a signed receipt proving that the malicious
mix received the packet on time, and also the acknowl-
edged receipt from the honest mix that dropped the
delayed packet. The latter contains the round number
when the packet was dropped, which proves the ma-
licious mix delayed the packet and therefore should be
excluded. Otherwise, if the malicious mix refuses to sign
the receipt, the honest mix disconnects from the mali-
cious mix.

Injecting malformed packets. Notice how the hon-
est mix that dropped the delayed message still sends
back a receipt for it. The reason is that the dropping
mix cannot be sure that the previous mix did delay the
message. Instead, this can be the result of an adversary
that crafts a packet with the same round number in two
successive layers.

Claim 2. An adversary cannot craft a loop message
that causes a link loss between two honest mixes.

Argument. Any loop message has to be well-formed in
order for directory authorities to accept it. An adver-
sary can craft a message with invalid round numbers in
the packet’s routing information, which would cause the
honest mix to drop the packet. However, although the
honest mix drops the packet, it still sends back a receipt
for that packet. Otherwise, the preceding mix, which has
no way of knowing that the next layer is intentionally
malformed, would disconnect from the subsequent mix.
While the adversary can obtain a proof showing that
a loop message was dropped, it cannot prove that the
loop message was well-formed.

Aggressive active attacks. In order to de-anonymize
the network users, the adversary can choose a more ag-
gressive approach and drop a significant number of pack-
ets. For example, in the (n − 1) attack [42] applied to
the full network, the adversary tracks a target packet
from Alice by blocking other packets from arriving to
an honest mix, and instead injecting their own packets.
Another example is the intersection attack [5], where the
adversary tries disconnecting target clients. If the adver-
sary cannot directly disconnect a client with a targeted
attack, it can disconnect a client by dropping an entire
batch of packets where one of them belongs to the client
(the adversary simply does not know which). However,
it is important to note, that if an adversary can engineer
a scenario where a single target packet is injected and
mixed with only messages that the adversary controls,
any mix-based system is vulnerable. Nevertheless, we
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Fig. 2. The maximum probability of picking a fully-malicious
cascade as a function of the cascade length and the power of the

adversary.

argue that Miranda inflicts serious penalty on the ad-
versary who attempts to perform an aggressive dropping
of packets.

Claim 3. Miranda deters aggressive active attacks.

Argument. Miranda enforces a minimum number of ω
packets required for mixing. Therefore, singling out a
specific packet from an entire batch by dropping all
packets except the target one is not possible. Even if
the adversary generates new messages instead of the
dropped packets in order to satisfy ω, the attack can
still be detected. In Miranda, a malicious mix that drops
packets from another mix, losses a link to a honest
mix. A malicious entry mix may drop a packet from
the client, but the client then uses a witness mix – so
the malicious mix either losses a link to the witness mix
or the next mix – or has to forward the packet (see
subsection 4.1). If the malicious mix drops the packets
it acknowledged and instead sends the target message
along with enough fake ones, the malicious mix must
still sign the Merkle root of the next honest mix in or-
der for the attack to succeed, otherwise the subsequent
mix discards the packets and disconnects from the ma-
licious mix. However, this means that clients can prove
that the malicious mix received their packet and did not
forward it, which results in fully excluding the malicious
mix. Note that if a client is the only one that arrives to
a cascade with a malicious first mix, the malicious mix
can generate enough fake messages for the (n−1) attack
to work. However, organically, clients are distributed
among all cascades. Therefore, assuming that there are
enough clients in the system, this scenario is not likely.

6.2 Fully-malicious cascades attacks

If the packets are relayed via a fully-malicious cascade,
an adversary can trivially track them. Consequently, ad-
versaries would like to divert as much traffic as possi-
ble to the fully-malicious cascades. Attackers can try to
maximize their chances by: (1) increasing the probabil-
ity of fully-malicious cascades is included in the set C
produced by the directory authorities during the inter-
epoch process, and/or (2) increasing the probability
that clients pick a fully-malicious cascade from C during
an epoch.

Because cascades are chosen uniformly over all valid
cascades, the only way the adversary can influence the
cascades generation process is by excluding semi-honest
cascades. However, they can only exclude cascades by
dropping links they are a part of, therefore, the adver-
sary cannot exclude any honest links or honest mixes6,
meaning they cannot exclude any fully-honest cascades.
However, adversaries are able to disconnect semi-honest
cascades by disconnecting semi-honest links and thereby
increase the probability of picking a fully-malicious
cascade. Interestingly, we found that such an attack
only slightly increases the chance of selecting a fully-
malicious cascade – while significantly increasing the
chance of selecting a fully-honest cascade (see Claim 4).
Further, this strategy makes it easier to detect and elim-
inate sets of connected adversarial domains (see subsec-
tion 5.2).

Claim 4. Let CAdv denote a set of fully-malicious
cascades. The maximum probability to pick a fully-
malicious cascade during cascades generation process,
after the semi-honest cascades were excluded by the ad-
versary is

Pr(c ∈ CAdv) ≤

(
nm

nh − l + 1

)l
.

Argument. See Appendix C.
Figure 2 and Figure 3 present the probability of picking
a fully-malicious cascade depending on the number of
mixes colluding with the adversary and the percentage
of lost links.

Once nc cascades are generated, the adversary could
try to bias the probability of clients choosing a fully-
malicious cascade. To do so, the adversary can sabo-
tage semi-honest cascades [6] through dropping mes-
sages, and in an extreme case, exclude them all. We

6 Even if all adversarial mixes disconnect from an honest mix,
it is still not enough for exclusion, since thresh > nm.
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are l = 3, n = 100 and m = 30.

illustrate in Figure 4 the attack cost, expressed as the
number of links the adversary must affect in order to
achieve a certain probability of success in shifting clients
to a fully-malicious cascade. Note, that the larger the
number of cascades nc, the more expensive the attack,
and the lower the probability of success.

6.3 Security of loop messages

Since loop messages are generated and processed in the
same way as genuine messages, the binary pattern does
not leak any information. However, adversaries can still
seek ways to predict when loop messages are sent; for
example, by observing the timing pattern and the rate
of sent messages.
Detecting loop messages. Adversaries can try to
guess whether a particular message is a loop message
or not. A successful guess, allows the adversary to drop
non-loop messages without being detected, while still
sending receipts for them to the previous mix. We for-
mulate the following claim:

Claim 5. Assume that an adversary that does not con-
trol the last mix in the cascade, drops a packet. The
probability of this message being a non-loop message,
sent by a non-malicious client, is at least α.

Argument. It suffices to consider packets sent by non-
malicious clients. When a non-last mix receives such
packets, it does not know the destination. Furthermore,
as described in subsubsection 3.2.3, loop packets are
sent by non-malicious clients according to the rate de-
fined by α of genuine traffic and are bitwise indistin-
guishable from genuine packets. Hence, even if the mix
would know the identify of the sender, e.g., by being
the first mix, the packet can still be a loop message
with probability at least α.
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based on the fraction of cascades active in every epoch. Cost (red
circle, right axis) is measured in links the adversary must sacrifice;
probability of choosing a fully-malicious cascade (blue triangle,

left axis) as a result of the attack.

Note that a malicious non-last mix that drops a loop
message, yet sends a receipt for it and remains con-
nected to the next mix, would be proven malicious and
excluded from the network. On the other hand, if such
mix does not send a receipt, then it loses a link.
Malicious last mix. Claim 5 does not address detec-
tion of non-loop messages by the last mix. There are
two reasons for that: first, in contrast to mixes, clients
do not send receipts back to mixes. Therefore, a last mix
cannot prove it actually delivered the packets. Secondly,
the last mix may, in fact, identify non-loop messages in
some situations. For example, if a client did not send
packets in round r, then all the packets it is about to
receive in round r + x (where x is the number of rounds
it takes to complete a loop) are genuine traffic sent by
other clients. Therefore, these messages can be dropped
without detection.

However, dropping of messages by the last mix can
also be done against the ideal mix (see subsection 2.4).
In fact, similar correlation attacks can be performed
even without dropping packets, if clients have specific
sending patterns. Therefore, mitigating this attack is
beyond Miranda goals, and should be handled by the
application adopting Miranda 7.

7 For example [22, 40] use fixed sending rate. If the application
does not foil the attack, a concerned client can simply make
sure that it sends additional loop packets in every round where
no genuine traffic is needed to be relayed. Alternatively, while
the recipients of the dropped packets are not aware they were
dropped, the senders might, if they expect reply message or use
the end-to-end ack-based application protocol.
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Fig. 5. Effect of the community detection mechanism to detect
semi-honest links.

6.4 Evaluation of community detection

We evaluate the community detection based approach
through simulations. Given a fraction of reported faulty
links, we apply community detection and pruning, and
estimate three figures of merit: (1) the fraction of total
semi-honest links that are excluded; (2) the fraction of
malicious mixes that are detected by pruning those with
degree smaller than n/2; and (3) the fraction of non-
semi-honest links (links connecting two honest nodes,
or two malicious ones) that are being removed. The last
figure represents the ‘false positive’ rate of our approach.

We consider a model system with n = 100 mixes, out
of which 33 are malicious. We perform random walks of
length 7, which is the ceiling of the natural logarithm of
n. We remove at random a fraction φ of distinct reported
faulty links, perform community detection, prune links
and nodes, and compute the figures of merit above. We
consider values for φ between 0% and 10% of semi-
honest links. The results are illustrated on Figure 5,
and each data point is the mean of 20 experiments –
error bars are negligible.

We observe that the fraction of semi-honest links
ultimately detected by community detection is a large
multiple of the faulty links originally reported to the di-
rectory authorities: for 1% or originally reported faulty
links we can prune about 20% of semi-honest links; for
4% reported we prune over 90% of semi-honest links.
Similarly, the number of mixes detected as outright ma-
licious increases very rapidly in the number of reported
faulty links, once that information has been enhanced
greatly by our community detection: for 2% of reported
faulty links we detect over 20% of malicious nodes; for
fewer than 4% of reported faulty links we detect over
90% of the malicious nodes. On the other hand, the frac-
tion of honest links mis-categorized and removed first
increases with the number of reported faulty links (up

to a peak of less than 30% for 1.5% reported links) but
then quickly decreases.
Integrated Evaluation. It is worth contextualizing
these results in terms of absolute numbers: 6% of re-
ported faulty links – leading to nearly perfect identi-
fication of all semi-honest links and malicious nodes –
represent merely 270 reports for a network of 100 mixes,
out of which 33 are malicious. Achieving the same effect
with the simple filtering strategy would require 1122 re-
ports. This is in absolute terms a very small number of
loop packets that need to be dropped and isolated un-
til the network can be rid of malicious nodes entirely.
Assuming, for example, Miranda requires senders to in-
ject 1% of loop packets to act as a credible detection
threat. Taking the scenario we considered in the previ-
ous section where each observation of the attacker yields
an ε∞ = 10−2, the attacker has a total attack budget
of ε = 2.70 to expend on attacking clients before all
malicious nodes are discovered and eliminated – this is
rather small. Even in the case λ = 10 the total attack
budget would be ε = 27 across all users.

We conclude that adding community detection to
post-process first-hand reports greatly enhances the
ability of the system to detect malicious links and lever-
age those to exclude malicious nodes. However, due
to transient misclassification of non-semi-honest links,
when the number of reports is low, we recommend
that at each inter-epoch processing directory authori-
ties only consider all first-hand reports received – rather
than propagating the post-processed information – to
avoid compounding errors. Despite being conservative,
we show that even after a very small number of first-
hand reports we can detect most semi-honest links and
malicious nodes.

7 Performance and Resiliency
In this section, we evaluate Miranda’s implementation
and show that Miranda is indeed capable of processing a
large volume of messages; we further show that Miranda
is resilient to DoS attacks, which cause high packet-loss
rate.
Implementation. We implemented a Miranda proto-
type in Python and C++, based on Sphinx’s Python
implementation8. All experiments were performed in

8 https://pypi.python.org/pypi/sphinxmix/0.0.7
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Fig. 6. Packet loss using TCP and UDP with FEC.

the CREATE lab environment9 (a localized version of
Deter-Lab10), using Intel Xeon E5-2420 v2 2.20GHz ma-
chines with 24 CPUs. Cascades contained 3 mixes which
were directly connected, with a round time of 1 minute.
Throughput. We first measure the throughput when
there are no packet losses. We compare a Sphinx-only
implementation to one with Miranda mechanism, using
a Merkle tree of all the messages that arrive during a
round. By using the Merkle tree, Miranda can process
up to 1.4M messages per minute, resulting in both high
throughput and reasonable overhead.
Packet loss. To observe how Miranda reacts to packet
losses, we compare an implementation that relies on
TCP to recover from losses with a UDP version that uses
forward error correction (FEC) and retransmission, as
discussed in subsection 4.2. TCP is able to recover from
losses as long as they are not too substantial. A conser-
vative throughput of 100K messages per minute can re-
cover from a loss rate of up to 10%, where a throughput
of 1M messages per minute can only sustain up to 4%
loss. In comparison, in the FEC version the redundancy
ratio can be adjusted to support even larger losses, at
the cost of more redundant packets being generated and
sent. For instance, using a batch size of 16 packets and
100% redundancy (16 redundant packets), Miranda can
sustain a loss of up to 25% with a throughput of 1M
messages per minute (see Figure 6). These results show
that Miranda can easily recover from sporadic link losses
and can be adjusted to endure even significant losses po-
tentially inflicted by an off-path network adversary.

Still, we obviously cannot guarantee that honest
mixes will never be excluded. For example, a completely
malfunctioning mix is expected to lose links to honest
mixes, resulting in its exclusion. Therefore, it is reason-
able to envision that mixes would be able to re-join the

9 https://www.create.iucc.ac.il/
10 https://www.isi.deterlab.net/index.php3

system after some time and under some conditions, as
long as it will not nullify the exclusion achieved by Mi-
randa.

8 Comparison with Related Work
In this section, we place our system in the context of
existing approaches and compare Miranda with the re-
lated works. We focus on works that present a similar
design to Miranda.

Receipts. The idea of using digitally signed receipts to
improve the reliability of the mix network was already
used in many designs. In Chaum’s original mix network
design [8] each participant obtains a signed receipt for
packets they submit to the entry mix. Each mix signs
the output batch as a whole, therefore the absence of
a single packet can be detected. The detection that a
particular mix failed to correctly process a packet relies
on the fact that the neighbouring mixes can compare
their signed inputs and outputs. Additionally, [8] uses
the untraceable return addresses to provide end-to-end
receipts for the sender.

Receipts were also used in the reputation based pro-
posals. The one presented in [14] uses receipts to verify a
mix failure and rank their reputation in order to identify
the reliable mixes and use them for building cascades.
The proposed design uses a set of trusted global wit-
nesses to prove the misbehavior of a mix. If a mix fails
to provide a receipt for any packet, the previous mix
enlists the witnesses, which try to send the packet and
obtain a receipt. Those witnesses are the key part of the
design and have to be engaged in every verification of
a failure claim, which leads to a trust and performance
bottleneck. In comparison, Miranda does not depend on
the witnesses, and a single one is just used to enhance
the design. Moreover, in [14] a failure is attributed to
a single mix in a cascade, what allows the adversary
to easily obtain high reputation and misuse it to de-
anonymize clients. Miranda rather than focusing on a
single mix, looks at the link between the mixes.

In the extended reputation system proposed in [16]
the reputation score is quantified by decrementing the
reputation of all nodes in the failed cascade and incre-
menting of all nodes in the successful one. In order to
detect misbehaviors of malicious nodes, the nodes send
test messages and verify later via a snapshot from the
last mix, whether it was successfully delivered. Since the
test messages are indistinguishable, dishonest mixes risk
being caught if they drop any message. However, the
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penalty for a dropping is very strong – if a single mix
drops any message, the whole cascade is failed. There-
fore, because a single mix’s behavior affects the reputa-
tion of all mixes in the cascade, the malicious nodes can
intentionally fail a cascade to incriminate honest mixes.
This design also proposed the delivery receipts, which
the recipient returns to the last mix in the cascade in
order to prove that the message exited the network cor-
rectly. If the last mix is not able to present the receipt,
then the sender contacts a random node from the cas-
cade, which then asks the last mix to pass the message
and attempts to deliver the message.

Trap messages. The idea of using trap messages to
test the reliability of the network was discussed in many
research works. The original DC-network paper [7] sug-
gested using trap messages, which include a safety con-
testable bit, to detect message disruption. In contrast,
the flash mixing [26] technique, which was later proved
to be broken [35], introduces two dummy messages that
are included in the input, and are later de-anonymized
after all mixes have committed to their outputs. This
allows the participants to verify whether the mix op-
eration was performed correctly and detect tampering.
However, both of those types of trap messages are lim-
ited to these particular designs.

The RGB-mix [13] mechanism uses heartbeat loop
messages to detect the (n-1) attacks [42]. Each mix
sends heartbeat messages back to itself, and if the (n-1)
attack is detected the mix injects cover traffic to confuse
the adversary. However the key assumption of the pro-
posed mechanism is limited only for anonymity among
mix peers.

Mixmaster [38] and Mixminion [9] employed an in-
frastructure of pingers [39], special clients sending probe
traffic through the different paths in the mix network
and recording publicly the observed reliability of de-
livery. The users of the network can use the obtained
reliability statistics to choose which nodes to use.

Recent proposals for anonymous communication
have also employed built-in reliability mechanisms. For
example, the Loopix [40] mix-network system uses loop
cover traffic to detects (n-1) attacks, both for clients
and mixes. However, this idea is limited to detecting
only aggressive (n-1) attacks, but not dropping of single
packets. The authors do not also specify how to penalize
misbehaving mixes.

The Atom [31] messaging system, is an alternative
design to a traditional mix networks, and uses trap mes-
sages to detect misbehaving servers. The sender submits
trap ciphertext with the ciphertext of a message, and

later uses it to check whether the relaying server mod-
ified the message. However, the trap message does not
detect which mix failed. Moreover, Atom does not de-
scribe any technique to exclude malicious servers, and
a failed trap only protects against releasing the secret
keys.
Other approaches. The literature on secure electronic
elections has been preoccupied with reliable mixing to
ensure the integrity of election results by using zero-
knowledge proofs [1, 3, 27] of correct shuffling to ver-
ify that the mixing operation was performed correctly.
However, those rely on computationally heavy prim-
itives and require re-encryption mix networks, which
significantly increase their performance cost and lim-
its their applicability. On the other hand, the more ‘ef-
ficient’ proofs restrict the size of messages to a single
group element that is too small for email or even in-
stant messaging.

An alternative approach for verifying the cor-
rectness of the mixing operation were mix-nets with
randomized partial checking (RPC) [28]. This cut-
and-choose technique detects packet drops in both
Chaumian and re-encryption mix-nets, however, it re-
quires interactivity and considerable network band-
width. Moreover, the mix nodes have to routinely dis-
close information about their input/output relations in
order to provide evidence of correct operation, what was
later proven to be flawed [30].

9 Conclusion and Future work
In this work, we revisited the problem of protecting mix
networks against active attacks. The analysis performed
showed that active attacks can significantly increase
the adversary’s chances to correctly de-anonymize users.
Miranda achieves much better efficiency than the pre-
vious designs, but at the same time quickly detects
and mitigates active adversaries. Miranda employs pre-
viously studied techniques such as packet receipts and
loop traffic alongside novel techniques to ensure that
each dropped packet penalizes the adversary. We take a
new approach of focusing on problematic links between
mixes, instead of mixes themselves. We also investigate
how community detection enhances our mechanism ef-
fectively. The overall contribution of our work is a prac-
tical, scalable and efficient mechanism for detection and
mitigation of active attacks.

We designed Miranda considering its integrity with
synchronous mix networks; however, the extension for
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other mix network models is also possible. Recent re-
search in mix networks showed that the continuous
time mixes are a promising approach towards deploy-
ment of mix network systems, which can support low
latency communication. Therefore, interesting future
work would investigate how to integrate Miranda with
continuous time mix models.
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A Information Leakage Analysis
Security game. The challenger chooses a target cas-
cade Px and gives it to the adversary. The adversary
chooses two target senders S0, S1 and two target recip-
ients R0, R1 who communicate using Px, and observes
the system over multiple rounds. We assume that other
clients also communicate using cascade Px. We call their
packets cover traffic. In one of the rounds the challenger
selects a secret bit b at random. If b = 0 then S0 sends a
challenge message to R0 and S1 sends a challenge mes-
sage to R1, what we denote as S0 → R0 and S1 → R1.
Otherwise, if b = 1, S0 → R1 and S1 → R0. During the
challenge round, the adversary drops a single message of
S0 or S1 and observes the system. The adversary guesses
the value of bit b′, and sends b′ to the challenger. The
adversary wins the game if b = b′.
Measurement of adversary’s advantage. The ad-
versary observes the volume of traffic injected to the
cascade by S0 and S1 and the volume of traffic, denoted
xR0 and xR1 , received by R0 and R1. The adversary ex-
amines how the volume of traffic received by R0 and R1
is affected by the active attack, and use it to increase

the probability of correctly guessing b′. We use a differ-
ential privacy metric [19] to bound the likelihood ratio
of the observation (xR0 , xR1) conditioned on the adver-
sary’s guess b′ using an ε ≥ 0 and a 0 ≤ δ ≤ 1. Although
applying the DP measurement in the context of anony-
mous channels deviates from its traditional meaning, it
is a good measure when we want to investigate the in-
distinguishability bound on two events observed by the
adversary. Intuitively, ε defines the maximal leakage the
adversary can learn from observing both the events (so
how much those events differ), whereas δ is the proba-
bility by which the leakage exceeds this ε (small ε and
δ values are better for security). We also consider the
volume of the cover traffic λ, injected according to the
Poisson distribution. We do not use the usual distribu-
tion DP does, but a Poisson distribution since sending
can be modeled only by a positive distribution. More-
over, Poisson models have been widely used in the com-
puter networks and telecommunications literature [21],
since it offers attractive analytical properties. The Pois-
son distribution is appropriate if the arrivals are from
a large number of independent sources, like in networks
with many clients and nodes. The superposition of mul-
tiple independent Poisson processes results in a Poisson
process. Moreover, based on the Palm’s Theorem [25]
we know that under suitable conditions large number
of independent multiplexed streams approach a Poisson
process as the number of processes grows. Finally, the
memoryless property of Poisson process allows to sim-
plify queuing problems involving Poisson arrivals. How-
ever, we highlight that the analysis could be done using
other distributions as well.

Let xS0 , xS1 denote the volume of traffic sent by S0
and S1 respectively. Similarly, let xR0 , xR1 denote the
observed volume of traffic incoming to recipient R0 and
r1, which can be either from S0 or S1 or cover packets.
Thus, let us define Y0, Y1 as random variables, such that
Y0 ∼ Pois(λ0) and Y1 ∼ Pois(λ1), which denote the
number of cover packets received by R0 and R1 respec-
tively (λ0, λ1 denote the expected value of the Poisson
distribution).

Theorem 1. Given an observation O = (xR0 , xR1) re-
sulting from a single observation of the adversary per-
forming a dropping attack on a single packet sent by
Sb, the relationship of the likelihoods of the observations
conditioned on the secret bit b becomes:
Pr[Y0 = xR0 , Y1 = xR1 − 1|b = 0]

≤ eε Pr[Y0 = xR0 − 1, Y1 = xR1 |b = 1] + δ
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for δ = 1−

( ∞∑
i=1

CDFY1 [(1 + ε)i] · λ
ie−λ

i!

)
,

where CDF denotes the cumulative distribution
function of the cover Poisson distribution with rate pa-
rameter λ.

Proof. Given the observation o = (xC , xD) we consider
two cases conditioned by the events that either b = 0,
i.e., A → C and B → D, or b = 1, i.e., A → D,B → C.
Without the loss of generality we consider a scenario
in which the adversary targets sender A. We define a
differentially private dependency

Pr[YC = xC , YD = xD − 1|b = 0]
≤ eε Pr[YC = xC − 1, YD = xD|b = 1] + δ.

Thus, we compute
Pr[YC = xC , YD = xD − 1|b = 0]
Pr[YC = xC − 1, YD = xD|b = 1]

=
λxC e−λ

(xC !)
λxD−1e−λ

((xD−1)!)
λxC−1e−λ

((xC−1)!)
λxD e−λ

(xD!)
= xD
xC

,

Given that, we calculate the values of δ, defined as δ =
Pr[YD ≥ eεYC ], using the law of total probability and
the cumulative distribution function:

Pr[YD ≥ eεYC ] =
∞∑
i=1

Pr[YD ≥ eεYC |YC = i] Pr[YC = i]

=
∞∑
i=1

Pr[YD ≥ eεi] Pr[YC = i]

=
∞∑
i=1

CDFYD [eεi] · λ
ie−λ

i! .

We also provide a loose (but analytic) bound on δ as
a function of ε and λ. We compare between the bound
(Theorem 2) and the exact calculation (Theorem 1), for
different values of λ and a fixed leakage ε = 0.2 in Fig-
ure 7. As illustrated the below bound is tight for large
values of λ, however for small values of λ it does not
give us any significant information. Therefore, for small
values of λ the formula from Theorem 1 suits better for
computing a good approximation of leakage δ.

Theorem 2. The value of δ from Theorem 1 for suffi-
ciently large values of parameter λ can be bound as:

δ ≤
(

e−ε/2

(1− ε/2)(1−ε/2)

)λ
+
(

eε/2

(1 + ε/2)(1+ε/2)

)λ
+

(
e
ε
2−

ε2
2

(1 + ε
2 −

ε2

2 )(1+ ε
2−

ε2
2 )

)λ

Proof. As before, we start by applying the law of total
probability and we note, that for small values of ε we

can approximate eε ≈ 1 + ε. Hence,
Pr[YD ≥ (1 + ε)YC ]

=
∞∑
i=1

Pr[YD ≥ (1 + ε)YC |YC = i] Pr[YC = i]

=
∞∑
i=1

Pr[YD ≥ (1 + ε)i] Pr[YC = i].

Thus, we can split the infinite sum into three separate
cases as follows

Pr[YD ≥ (1 + ε)YC ] ≤
(1− ε2 )λ∑
i=0

Pr[YC = i] Pr[YD ≥ (1 + ε)i]︸ ︷︷ ︸
(I)

+
∞∑

i=(1+ ε
2 )λ

Pr[YC = i] Pr[YD ≥ (1 + ε)i]

︸ ︷︷ ︸
(II)

+
(1+ ε

2 )λ∑
i=(1− ε2 )λ

Pr[YC = i] Pr[YD ≥ (1 + ε)i]

︸ ︷︷ ︸
(III)

.

Note, that for large values of λ the tails of Poisson dis-
tribution in parts (I) and (II) are ’heavy’, i.e., accumu-
late a large probability mass. Thus, we can bound those
tails by 1 without overestimation. Hence, we obtain

Pr[YD ≥ (1 + ε)YC ] =
(1− ε2 )λ∑
i=0

Pr[YC = i] +
∞∑

i=(1+ ε
2 )λ

Pr[YC = i]

+
(1+ ε

2 )λ∑
i=(1− ε2 )λ

Pr[YC = i] Pr[YD ≥ (1 + ε)i].

We note that Pr[YD ≥ (1 + ε)i] in the sum over i =
{
(
1− ε

2
)
λ, . . . ,

(
1 + ε

2
)
λ} can be bounded as

Pr[YD ≥ (1 + ε)i] ≤ Pr[YD ≥ (1 + ε)
(

1−
ε

2

)
λ].

Following this, we have

Pr[YD ≥ (1 + ε)YC ]

= Pr[YC ≤
(

1−
ε

2

)
λ] + Pr[YC ≥

(
1 +

ε

2

)
λ]

+ Pr[YD ≥ (1 + ε)
(

1−
ε

2

)
λ]

(1+ ε
2 )λ∑

i=(1− ε2 )λ
Pr[YC = i]

Since YC is a Poisson distributed variable, and we sum
up the probabilities of independent events we can bound
the whole sum by 1. Hence,

Pr[YD ≥ (1 + ε)YC ]

≤ Pr[YC ≤
(

1−
ε

2

)
λ] + Pr[YC ≥

(
1 +

ε

2

)
λ]

+ Pr[YD ≥ (1 + ε)
(

1−
ε

2

)
λ]

(1)
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Fig. 7. The precision of upper bound for δ presented in theorem 1
for a fixed ε = 0.2. The exact values are computed using the

importance sampling technique.

Now by applying the Chernoff inequality [36] we can
derive a final form of our upper bound for δ11:

δ ≤
(

e−ε/2

(1− ε/2)(1−ε/2)

)λ
+
(

eε/2

(1 + ε/2)(1+ε/2)

)λ

+

 e
ε
2−

ε2
2(

1 + ε
2 −

ε2
2

)(1+ ε
2−

ε2
2

)
λ

.

Leakage (ε,δ) for multiple rounds. The advantage of
the (ε, δ) leakage quantification presented in Theorem 1
is that it composes under R multiple rounds of dropping
and observations. Given the set of observations O =
(o1, o2, . . . , on), where each single observation is defined
as oi = (xCi , xDi)., we compute

Pr[(xC1 , xD1), . . . , (xCR , xDR)|b = 0]
Pr[(xC1 , xD1), . . . , (xCR , xDR)|b = 1]

=
R∏
i=1

Pr[(xCi , xDi)|b = 0]
Pr[(xCi , xDi)|b = 1] =

R∏
i=1

xDi
xCi

From the composition theorem of differential privacy
we know that given the value of ε, δ for a single round,
the likelihood ratio of multiple observations will follow
a similar (εR, δR) relation, with εR = R ·ε and δR = R ·δ.
However, this estimation of leakage for multiple obser-
vations can also be shown to be tragically loose and pes-
simistic – since it assumes that the worst case occurs in
every round. In reality the adversary cannot attain such
significant advantage except with negligible probability.
Therefore, we focus on analyzing the average case, for
which we simulate several observations (xCi , xDi) and
compute the estimator of the average leakage as

11 (Note, that the above bound can be made even a little bit
tighter, by doing two more precise steps in Equation 1.)

eRε =
R∏
i=1

xDi
xCi

=⇒ log
(
eRε
)

= log

(
R∏
i=1

xDi
xCi

)

=⇒ ε =
1
R

R∑
i=1

log
(
xDi
xCi

)
.

This allows us to derive the average case value of the
leakage which the adversary can gain after multiple
concrete observations (xCi , xDi). From the law of large
numbers [20] we know, that as R grows, the obtained
estimator tends closer to its expected value. And thus:
ε∞ = lim

R→∞
ε̂ = E[log Y/X] for X,Y ∼ Poisson+(λ) (2)

where Poisson+ denotes the Poisson distribution trun-
cated to only its strictly positive range. The quantity
ε∞ represents the expected per-round leakage and thus
after R observations we expect the total leakage to be
ε = R · ε∞ However, we note, that if xC or xD is 0 the
adversary can successfully distinguish who was commu-
nicating with whom immediately – representing a catas-
trophic event for which we cannot bound the leakage
under any ε. We therefore need to compute the proba-
bility of such an event after R observations and fold it
within the probability δ. The probability that a Poisson
distribution yields zero is δ0 = Pr[x = 0] = e−λ. Thus
after R observed rounds the probability that any such
event has occurred is:

δ = 1− (1− δ0)2R < 2R · δ0 (3)
Equations (1) and (2) conclude our direct estima-

tion of the (ε, δ) for multiple observations. These rep-
resent a different trade-off between the two parameters
than in the single round analysis: the new δ only rep-
resents the catastrophic probabilities any observation is
zero – and not the cases where epsilon may be too large
as in the single round case.
Evaluating multi-round leakage. Figure 8 shows
the values of the leakage estimator ε∞ (estimated using
Monte Carlo integration using 10, 000 samples), versus
the values of λ. We note that, as the rate of cover traffic
λ grows, the leakage significantly decreases. For exam-
ple, for cover traffic rates of λ = 100, the rate of leakage
ε∞ = 10−2, and thus after R = 100 observations we ex-
pect a total leakage of ε = 1 (following Eq. (1)). Mean-
while δ0 = e−100 and overall δ < e−94 (from Eq. (2))
which is tiny.

The fact that as the volume of cover traffic increases,
the probability δ of a catastrophic event becomes ex-
tremely small is comforting. On the other hand, we note
that the value of ε does grow linearly, and there is a di-
rect inverse relationship (see Figure 8) between the rate
of cover traffic each user receives and the rate of round
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Fig. 8. The comparison of amounts of leakage ε∞ for different
values of λ.

leakage. The value of ε that can be tolerated in real-
ity depends on the prior belief of the adversary: in the
simple cryptographic game proposed the adversary as-
signs a 50:50 prior likelihood to b = 0 or b = 1. In a
real de-anonymization setting, that prior belief may in-
stead be much lower: for example if the adversary tries
to guess which of 100 potential recipients a target sends
a message to, the prior belief is as low as 1/100.

B Legitimate-Cascade Predicates
The cascade selection protocol described in subsec-
tion 5.1, uses several constraints, defined by the legit-
imate cascade predicates, to generate a set C of valid
cascades. Below, we propose a set of such predicates,
which validate whether a cascade is legitimate and can
be included in C. Depending on the considered predi-
cate, it can either be co-applied jointly with other ones,
to eliminate more undesired cascades, or individually.
• UniqueInCascade(c) = {∀Mi,Mj ∈ c : i 6= j}
Each mix is used only once in a particular cascade c.

• NonFaulty(c) = {∀Mi ∈ c : Mi 6∈ FM}
Each mix in cascade c is selected only from the set of
non-faulty mixes.

• OnlyInOneCascade(c) = {∀Mi ∈ c∧∀ c′ ∈ C : Mi 6∈ c′}
Any two cascades should not have a common mix.

• ValidNeighbor(c) = {∀Mi,Mi+1 ∈ c : (Mi,Mi+1) 6∈ FL}
For each pair of directly connected mixes in cascade
c, this pair should not be listed in the set of faulty
links FL.

• ValidNodes(c) = {∀Mi,Mj ∈ c : (Mi,Mj) 6∈ FL}
No two mixes in cascade c can have a faulty link be-
tween them.
Other predicates can be defined, however it is im-

portant to balance their effect on the system, both
in terms of performance and security. Predicates also
affect the penalization factor, i.e., the price that an

0 20 40 60 80 100

Percent of link losses (%)

0

20

40

60

80

100

Pe
rc

en
t o

f c
as

ca
de

s (
%

)

ValidNeighbors:

ValidNodes:

Fully-honest

Fully-honest

Semi-honest

Semi-honest

Fully-malicious

Fully-malicious

Fig. 9. Probability of picking cascades as function of link losses in
ValidNeighbor in comparison to ValidNodes, where l = 4 and the

adversary controls 30% of the mixes.

adversary pays for losing a link. Consider predicates
ValidNeighbor and ValidNodes, where a single link loss ex-
cludes a different number of cascades in each approach.
In ValidNeighbor, all cascades that contained a dropped
link are no longer valid, while in ValidNodes, on top
of those cascades, any other cascade that has any two
mixes who disconnected from one another is no longer
valid. The rationale is that if two mixes are unwilling
to directly communicate, they are unwilling to commu-
nicate indirectly as well. Therefore, the price that an
adversary pays for losing a link significantly increases,
as presented in Figure 9, yet increases the chances of
choosing a fully-malicious cascade, as presented in Fig-
ure 3.

C Fully-Malicious Cascades
In this section, we argue the correctness of claim 4.

Argument. Initially, the probability that a ran-
domly selected cascade is fully-adversarial is
Pr(c ∈ CAdv) = nm!(n−l)!

n!(nm−l)! . After the adversary discon-
nects all semi-honest cascades, the total number of all
possible permutations of cascades is nm!

(nm−l)! + nh!
(nh−l)! .

Since each cascade is selected uniformly at random
the probability of picking a fully-adversarial cascade is
defined as

Pr(c ∈ CAdv) =
nm!

(nm−l)!
nm!

(nm−l)! + nh!
(nh−l)!

=
(

1 + nh!(nm − l)!
nm!(nh − l)!

)−1

≤ nm!(nh − l)!
nh!(nm − l)!

≤

(
nm

nh − l + 1

)l
�
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