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Abstract. An Order-Revealing Encryption (ORE) scheme gives a pub-
lic procedure by which two ciphertext can be compared to reveal the
order of their underlying plaintexts. The ideal security notion for ORE
is that only the order is revealed — anything else, such as the dis-
tance between plaintexts, is hidden. The only known constructions of
ORE achieving such ideal security are based on cryptographic multilin-
ear maps, and are currently too impractical for real-world applications.
In this work, we give evidence that building ORE from weaker tools may
be hard. Indeed, we show black-box separations between ORE and most
symmetric-key primitives, as well as public key encryption and anything
else implied by generic groups in a black-box way. Thus, any construction
of ORE must either (1) achieve weaker notions of security, (2) be based
on more complicated cryptographic tools, or (3) require non-black-box
techniques. This suggests that any ORE achieving ideal security will
likely be somewhat inefficient.
Central to our proof is an proof of impossibility for something we call
information theoretic ORE, which has connections to tournament graphs
and a theorem by Erdös. This impossibility proof will be useful for prov-
ing other black box separations for ORE.

Keywords. Black-box separations, Order-revealing encryption, Random
oracle, Generic group model

1 Introduction

Order preserving encryption (OPE) [1, 3, 4] and order revealing encryption (ORE)
[5] have been proposed as useful tools to facilitate fast operations on encrypted
databases, such as lookup and range queries.

Order Preserving Encryption (OPE). In OPE, plaintexts and ciphertexts are
both integers, and encryption is monotonic: if m0 < m1, then Enc(k,m0) <
Enc(k,m1). Such a scheme allows, e.g., for binary search and range queries to
be easily performed over encrypted data by replacing the plaintext comparisons
with ciphertext comparisons. Boldyreva et al. [3] give an efficient construction
using pseudorandom functions.

While clearly such a scheme will reveal the order of the underlying plain-
texts, one may hope that nothing else is revealed; for example, the distance
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between plaintexts should not be learnable from the ciphertexts without the
secret key. However, Boldyreva et al. also show that some additional leakage
is necessary in OPE: any such scheme with polynomially-large ciphertexts will
reveal some information beyond just the order of the plaintexts; in essence their
proof shows that the approximate distance of two plaintexts will be revealed.
For their scheme, they instead prove a different notion of security, namely that
encryption is indistinguishable from a random monotone function. Characteriz-
ing the kind of information revealed by such a scheme is non-trivial, and has
only been analyzed in certain cases such as uniformly random plaintexts [4].
Despite being limited to non-ideal security notions, OPE has been deployed in
real products3 and been studied in applied research [17, 21, 19].

Order Revealing Encryption (ORE). In order to circumvent Boldyreva et al.’s [3]
impossibility result, Boneh et al. [5] define a relaxation called order revealing
encryption. Here, ciphertexts are no longer necessarily integers. Instead, integer
comparison for ciphertexts is replaced by a more general comparison procedure
Comp. The correctness requirement is, roughly, that

Comp( Enc(k,m0), Enc(k,m1) ) =


“ < ” if m0 < m1

“ = ” if m0 = m1

“ > ” if m0 < m1

Boneh et al. give an construction using multilinear maps [6, 14, 12], and argue
that their scheme reveals no information beyond the ordering of the plaintexts.
We will call such an ORE scheme ideal. Alternate constructions achieving ideal
leakage have since been proposed using multi-input functional encryption [5] or
even single input functional encryption [8]. Unfortunately, as all known instan-
tiations of functional encryption rely on multilinear maps anyway, all known
constructions of ORE require multilinear maps as well. Current multilinear map
candidates are quite inefficient, meaning the resulting constructions of order-
revealing encryption are far from practical use. Therefore, a natural question
is:

Is it possible to build ideal ORE from efficient tools so that it can be practical?

1.1 Our Work

We make a first attempt toward answering the above question by showing that
natural constructions of ORE from several simple tools are impossible. Specif-
ically, we give black box impossibility results for building ORE from one-way
functions or cryptographic groups:

Theorem 1 (Informal). There is no fully black box construction of an ORE
scheme for a super-polynomial plaintext space from one-way functions.

3 e.g. https://www.skyhighnetworks.com, https://www.ciphercloud.com/, https:
//www.bluecoat.com/ and Cipherbase [2]
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Theorem 2 (Informal). There is no fully black box construction of an ORE
scheme for a super-polynomial plaintext space from cryptographic groups.

Since one-way functions imply most of symmetric cryptography in a black
box way, including PRGs, PRFs, block ciphers, etc, Theorem 1 shows that there
are no fully black box constructions of ORE from these primitives. Similarly,
cryptographic groups can be used to build two-party non-interactive key agree-
ment, public key encryption, and more, so Theorem 2 shows that there are no
fully black box constructions of ORE from these primitives neither.

Thus, any black-box construction of order-revealing encryption will require
tools with more involved structure, such as bilinear maps, multilinear maps, or
lattice assumptions. Such tools tend to be less efficient than those needed to
build symmetric cryptography or public key encryption. While we do not rule
out non-black-box constructions, such constructions tend to be very inefficient.
We therefore take our separations as evidence that some inefficiency is required
to achieve order revealing encryption with ideal leakage.

In addition to proving Theorems 1 and 2, we also give a framework for proving
black box separations for ORE from other cryptographic tools, which may be
useful for extending our results.

1.2 Our Techniques

To prove our separation results, we start with an idealized model M captur-
ing the primitive that we want to separate ORE from: in the case of one-way
functions, we take M to be a random oracle, and in the case of cryptographic
groups, we take M to be the generic group model [20].

We now imagine a very relaxed notion of order-revealing encryption using
the model (relaxing the notion of ORE we consider only makes our separations
stronger):

– There is no explicit decryption procedure4

– The scheme is only partially correct, in that Comp may result in incorrect
answer, but is noticeably biased towards the correct answer.5

– The scheme (Gen,Enc,Comp) may make queries to the model M
– The algorithms are allowed to run arbitrary computations; the only restric-

tions are that (1) the number of queries toM is polynomially bounded, and
(2) that the length of ciphertexts are polynomially bounded. Running times
and key sizes can be unbounded.

– For simplicity in the following discussion, we will also assume the algo-
rithms are deterministic, although our analysis readily applies to randomized
schemes as well.

4 Though note that this is actually without loss of generality, since decryption can be
derived from encryption and comparison by using a binary search

5 This is also essentially without loss of generality, as correctness can be boosted by
running multiple instances of the scheme in parallel
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– The adversary can only make polynomially-many queries to M and can
only see a polynomial number of ciphertexts, but we do not consider its
computational power.

We next give a general recipe for proving that such a relaxed order-revealing
encryption scheme does not exist. To prove impossibility, we proceed in three
steps:

1. Compile any scheme satisfying the above requirements into one where Comp
does not make any queries to M.

2. Compile the resulting scheme into one where the entire scheme completely
ignoresM. We call such ORE scheme information-theoretic ORE. This step
may lose some level of correctness, so even starting from a perfectly correct
scheme, the information-theoretic scheme will no longer be perfectly correct.

3. Finally, show that (even partially correct) information-theoretic ORE does
not exist.

We now expand on the three steps above in reverse order:

Impossibility of information-theoretic ORE. In information-theoretic ORE,
the public/secret key are allowed to be arbitrarily (e.g. exponentially) large, the
running times of Enc, Comp are allowed to be arbitrary, while security must hold
for arbitrary adversaries. There is no mention of a modelM; the only constraints
are that ciphertexts must be polynomially bounded, and that the adversary sees
only a polynomial number of ciphertexts.

First, since the scheme is deterministic, we can assume that Comp(u, v) only
outputs “ = ” if u and v are actually the same. Indeed, if Comp(u, v) = “ = ” for
u 6= v, it means that u, v could not simultaneously be valid encryptions of two
messages under the same secret key (since then Comp would report “ = ” when
the plaintexts are in fact not equal). Therefore, for u 6= v, if Comp(u, v) = “ = ”,
we can simply change the answer arbitrarily without affecting correctness. Hence,
we will choose arbitrarily Comp(u, v) = “ < ” or Comp(u, v) = “ > ”. By a
similar argument, we can also assume that Comp(u, v) = “ < ” if and only if
Comp(v, u) = “ > ”.

Now, for such a scheme, we can construct an (exponentially large) graph G
associated to the public key where nodes are all possible ciphertexts. There is
a directed edge from node u to node v if Comp(u, v) = “ < ”. Notice that any
two distinct nodes have exactly one edge between them. G is therefore what is
known as a tournament graph.

Let s be the number of nodes in G, equivalently the number of ciphertexts.
Let [1, t] be plaintext space, which is assumed to be superpolynomial6. We show
that log s — the bit length of ciphertexts — must be superpolynomial, a con-
tradiction.

6 In reality, we would want the number of plaintexts to be exponential, but our im-
possibility rules out even superpolynomial message spaces.
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This graph must have a significant amount of structure. In our setting, every
key k corresponds to a set S of t nodes in G, the encryptions of each of the
plaintext elements. Assuming the scheme is perfectly correct, these nodes form
a complete DAG, with the encryption of 1 at the beginning and the encryption
of t at the end. Therefore, G must contain many complete DAGs on t nodes.

Moreover, security imparts additional structure on G. Security says, roughly,
that the encryptions of any two polynomial-length sequences of ordered messages
must be indistinguishable. If we insist on perfect security, we have the follow-
ing. For a given key k, consider the set T of encryptions of 1, . . . , p for some
polynomial p. Then by security, there must be some key k′ such that T are the
encryptions under k′ of 2, . . . , p+ 1. Therefore, the encryption of 1 under k′ will
have an edge to each of the nodes in T . Notice that this property must hold for
any set T that can be represented as the encryptions of 1, . . . , p for some key k.

The situation above is reminiscent of a problem studied by Erdös [13]. He
asked the question: suppose every set of p nodes is dominated by another node;
that is, for every set T of p nodes, there is a node u such that u has an edge to
each node in T . He showed that the number of nodes in any tournament graph
satisfying this property must be exponential in p. The proof is by induction: for
any graph G satisfying the property for p, there is a graph on half as many nodes
that satisfies the property for p− 1. Continuing until the base case p = 1, we see
that there must be a graph G′ that is exponentially smaller than G, meaning G
must be exponentially-large.

We prove an analog of Erdös’s proof in our setting. Namely, we show that for
any polynomial p, the number of nodes s in G must be exponential in p. Since
s is exponential in any polynomial, then log s must larger than any polynomial,
a contradiction. Our proof is inspired by Erdös’s proof, except complicated in
several ways:

– Our structure, while superficially similar, has several key differences. For
example, there will be sets T that do not correspond to encryptions of 1, . . . , p
under one key. For example, T may be formed by encrypting 1, . . . , p/2 under
k1 and 1, . . . , p/2 under k2.

– We do not insist on perfect security, but instead on statistical security. This
means, for example, that the dominating property may not hold for all sets
T that are encryptions of 1, . . . , p.

Nonetheless, we show an inductive argument that resolves these difficulties, and
proves that s must be exponential in p for any polynomial p. Hence, log s must
be larger than any polynomial, as desired.

The above discussion assumed that the scheme was perfectly correct. How-
ever, looking ahead, we would like to prove the impossibility for even partially
correct schemes, where the output of Comp may be incorrect, but is biased to-
ward the right answer. We show how to compile such a partially correct scheme
into one that is perfectly correct. Then invoking the impossibility above, we see
that even a partially correct scheme is impossible. The compilation is simple:
first we run multiple instances of the scheme in parallel to boost correctness
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arbitrarily high, but still not necessarily perfect. However, we argue that we can
boost correctness high enough so that, with high probability over the key, Comp
will produce the right answer for all ciphertexts. Then we just change the scheme
so that the key is chosen randomly from the set of “good” keys. This only neg-
ligibly affects security (since the key is “good” with high probability anyway).
Verifying that a key is “good” will of course take exponential time since one
must very that it outputs the right answer for any possible pair of messages;
however, this is fine since we do not place any computational restrictions.

Comparison to Boldyreva et al. [3]. Order preserving encryption is the spe-
cial case of ORE where the entire ciphertext graph is actually one large DAG.
Boldyreva et al.’s impossibility can be interpreted as a special case of our proof
above where the graph is restricted to DAG. Our proof is much stronger, as it
applies to much less structured graphs — any structure we use is solely a func-
tion of the correctness and security requirements, and no additional structure is
assumed.

Compiling schemes where Comp does not make queries to M. We
show that if Comp does not make queries toM, then it can be compiled into an
information-theoretic scheme, and then we can apply the above impossibility to
rule out the original scheme. Our compilation process works even if the start-
ing scheme was only partially correct; since the impossibility above works with
partially-correct schemes, we can still rule out partially correct schemes where
Comp makes no oracle queries.

The process is simple. Since Comp does not make any queries to M, the
model is not needed outside of encryption. This means, in particular, that it
makes sense to restrict the adversary from queryingM. Doing so only enhances
security.

Next, we can simply have the secret key holder construct the oracle M for
himself, and include it as part of the secret key. The description of the oracle
might be exponential in size, but this is acceptable since we do not place any
bounds on the key size or running time of the honest users. The result is a scheme
which makes no reference to an idealized model.

Removing oracle queries from Comp. The final step is to remove oracle
queries from Comp. This is the only part that is specific to the model M be-
ing considered. This step can be seen as an ORE analog of several recent re-
sults showing black box impossibilities for constructing obfuscation from simple
objects. We note however, as expanded on below, that there are some crucial
differences from obfuscation that make our proofs significantly different.

The Random Oracle Model. This first modelM we consider is the random oracle
model. Here,M just implements a random function O. At a very high level, our
compilation is conceptually similar Canetti et al.’s [9] analogous compilation
for program obfuscation. They show how to compile out a random oracle from
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the evaluation of an obfuscation scheme. Roughly, the idea is that evaluation
of the obfuscated program will be “sensitive” only to the query points that
were queried during the obfuscation; all other points will be independent of the
obfuscated code, and hence can be answered randomly. Therefore, the obfuscator
can just give the (polynomially-many) sensitive query answers out as part of the
obfuscated code, and now the evaluator can answer any oracle query without
actually making a call to the oracle.

In more detail, the sensitive queries can be split into two classes: “heavy”
queries that are somewhat likely to be queried when evaluating the program on a
random input, and “light” queries that are unlikely to be queried. Canetti et al.
first run the obfuscated code on a handful of random “test” points, and collect
the random oracle queries and responses. By setting the number of test queries
to be sufficiently large, they guarantee that all heavy queries will make it into
the list of query/response pairs. Then they just output this list as part of the
obfuscated code. Since an adversary could always run the code on random inputs
and make the oracle queries, this cannot impact the security of the obfuscator.
However now the evaluator, on a random input, will usually not need to make
any oracle queries. Indeed, on a random input, the evaluator will likely only
need to query on heavy inputs (or non-sensitive inputs, which can be answered
randomly), which it already has included as a part of the obfuscated code.

The straightforward attempt at translating this approach to our setting is to
first encrypt a handful of random test plaintexts, run the comparison procedure
between each pair of test ciphertexts, and collect all of the oracle queries made.
Then hand out the list of query/response pairs as part of the public key.

Unfortuantely, this strategy does not work, for at least three reasons:

– First, the test ciphertexts will allow one to learn the approximate differ-
ence between points, violating ORE security. In particular, using the ORE
comparison procedure, one can compute the fraction of test ciphertexts ly-
ing between any two given ciphertexts. This fraction, scaled up by the size
of the plaintext space, will approximately equal the difference between the
plaintexts.

– Second, the notion of “sensitive” and “heavy” queries is specific to each
individual plaintext, and not a global property of the encryption scheme.
For example, it could be that to encrypt a message m, the oracle is queried
on m. m will be a sensitive and heavy query point only for the message m.
Therefore, as we increase the number of test cihertexts, we also increase the
number of sensitive and heavy queries, making it more difficult to ensure
that we eventually capture all heavy queries for each ciphertext in question.

– Third, correctness will only hold plaintext drawn from the same distribution
as the test points — namely random plaintexts — whereas our steps above
require correctness to hold for any plaintexts

To overcome the first limitation, we will simply set our test ciphertexts to be
the smallest and largest several elements of the plaintext space. Now for any two
ciphertexts not at the extremes of the domain, there will be no test ciphertexts
between; we can therefore restrict the domain of actual ciphertexts to a smaller
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interval so as to not collide with the test ciphertexts. This change unfortunately
makes the third limitation even worse: the test elements now are the extreme
elements in the plaintext space, but we need correctness to hold for all possible
points in between.

To remedy the second limitation, we further modify the compiled scheme so
that in addition to comparing all pairs of test ciphertexts, any new ciphertext
is also compared to all of the test ciphertexts. If we set the number of test
ciphertexts to be much larger than the number of heavy queries for a ciphertext,
then hopefully these comparisons will generate all heavy queries. Indeed, each
comparison will generate heavy queries for one of the two ciphertexts being
compared. Note, however, that at this point in the discussion, it could be the
case that the comparisons only generate heavy queries for the test ciphertexts,
which would be useless for establishing the correctness of the scheme.

To overcome this issue, as well as the third limitation above, we will invoke
ORE security to switch back and forth between points in the middle of the
plaintext space and the extreme points at the ends of the plaintext space. Using
security (as opposed to an information-theoretic argument) means that the proof
has to be phrased as a reduction, which requires a delicate analysis. For example,
an adversary cannot necessarily test whether a query is sensitive or heavy, so our
reduction cannot know if it learned all of the important queries for a particular
ciphertext. We give the full details in Section 5.

The Generic Group Model. Next, we consider the generic group model. Here,
there is a cyclic group G. We will consider the group represented additively. Each
group element is associated with a handle (that is, a bit string), and only the
modelM has access to the mapping. Everyone can queryM on a group element
g to get a handle h, and can also query M on two handles h1, h2, receiving the
handle for the sum of corresponding group elements. However, it is not possible
to query M on a handle h and recover the original group element g.

An equivalent formulation is the following. Instead of being able to query on
two handles h1, h2 to get the handle for the sum, only the following is possible:
query on a vector h = (h1, . . . , hi) of handles corresponding to group elements
g = (g1, . . . , gi), and a vector v = (v1, . . . , vi) of integers. The response will be
a single bit: 0 if

∑
j vjgj = 0, and 1 otherwise. We call these queries zero test

queries.

Our high level proof strategy will be conceptually similar to Pass and She-
lat [18], which show how to remove generic groups from obfuscation construc-
tions. However, our setting faces similar complications as to the random oracle
setting above, requiring a much more delicate proof.

During encryption of a message m, Enc will query the generic group on several

new group elements g
(m)
1 , . . . , g

(m)
t , obtaining handles. Now, when comparing

two ciphertexts, Comp will make several zero test queries on various handles
coming from m0,m1. Whenever Comp gets a 0 in response, it learns a linear
constrain on the unknown g elements. Suppose the probability of getting a 0
during comparison is µ. We will assume that µ is noticeably large, since otherwise
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the zero test queries would be useless, as one could simulate them reasonably
accurately just by always answering 1.

If the adversary sees q ciphertexts, the total number of constraints she can
find will be O(µq2). And yet, the total number of unknown variables is only qt.
For large enough q, this is much smaller than the number of constraints. The
constraints are then necessarily linearly dependent. This means that, analogous
to the random oracle case above, the adversary will be able to answer zero test
queries for herself based on the results of previous queries. We show using a
similar strategy to the random oracle setting how to compile the ORE scheme in
a way that preserves security and correctness, while removing the generic group
oracle queries from Comp. Of course, formalizing this intuition is non-trivial, and
we give the details in Section 6.

Difficulties for extending to bilinear and multilinear maps. Pass and Shelat’s [18]
proof naturally extends to bilinear maps and more generally constant-degree
multilinear maps. A natural question is whether or not our techniques can be
extended to these settings as well. Roughly, a bilinear map allows for zero-test
queries that are degree 2 polynomials, and a multilinear map allows for even
higher degree.

Pass and Shelat’s proof, as well as ours, inherently relies on linear algebra, so
does not immediately extend to non-linear settings. Indeed, their proofs and ours
cannot possibly work for general multilinear maps, as there do exist black box
constructions of obfuscation [7] and ORE [5] from polynomial-degree multilinear
maps.

Nonetheless, Pass and Shelat show how to extend their result to constant
degree multilinear maps. Essentially, the idea is to linearize the constant-degree
polynomials by describing them as linear combinations of monomials. Then using
similar arguments as in the generic group case, they show how to remove oracle
queries from obfuscation.

Unfortunately, such linearization will not work in our setting, even in the bi-
linear map case. Once we linearize, the total number of variables grows O((qt)2),
while the number of constraints is still only O(µq2). Since both grow with q2,
the number of variables always remains large than the number of constraints, so
there is no linear dependence amongst the constrains. Without this linear de-
pendence the proof falls apart. Another perspective that why the linearization
does not work is: in bilinear map case, Enc will query the generic group on new
group elements gm1 , . . . , g

m
t , while the comparison on Enc(m0),Enc(m1) learn a

linear constrain on variables with degree ≤ 2, for instance gm0
1 ·g

m1
1 . And we note

that Comp will never learn constrain related to gm0
1 · gm1

1 , when comparing the
ciphertexts under other message pairs. Hence, it would be problematic to remove
the oracle from Comp while not significantly harm the correctness. We leave it
as an interesting open question whether our impossibility can be extended to,
say, the bilinear map setting, and if not, giving a black-box construction of ORE
from bilinear maps.
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1.3 Discussion

In light of our impossibility, it is natural to ask: now what? Here, we briefly
discuss possible other directions.

Weaker notions of security. One possibility is to consider weaker notions of
security, where more than just the order is revealed. For example, [11] give a
construction of ORE where the position of the most significant differing bit of
two plaintexts is revealed, but nothing else (put another way, the difference is
revealed, rounded to a power of two). Their construction is efficient, using only
PRFs (which can in turn be built from one-way functions). [10] give a still-
practical construction using bilinear maps which reveals even less, though still
more than the ideal security notion. [15] give a notion of functional revealing
encryption and build an efficient ORE under standard DLIN assumption, while
it leaks no less than [10].

An interesting direction is to extend our impossibility result to other leakage
profiles, perhaps showing that the leakage profile of [11] is optimal for construc-
tions based on one-way functions. Such an impossibility would require reworking
several parts of our proof, since we use the ideal ORE leakage in several parts,
including the impossibility of information-theoretic ORE, as well as the step
removing random oracle queries from Comp.

Non-black-box constructions. Another option is to resort to non-black-box con-
struction. We do not know if such a construction is possible. However, non-black-
box techniques tend to result in inefficient schemes, as such a non-black-box
construction is likely to be inefficient.

Other cryptographic tools. We only rule out black-box constructions from certain
building blocks; other building blocks are still possible. For example, it may be
possible to build ORE from the Learning With Errors (LWE) assumption, RSA
or integer factorization, or bilinear/multilinear maps. Indeed, using multilinear
maps of polynomial degree, it is possible to build ORE with ideal leakage, as
shown by Boneh et al. [5]. However, many of the tools not covered by our impos-
sibility, including polynomial-degree multilinear maps or learning with errors,
involve large parameter sizes, likely resulting in somewhat impractical schemes.
Nonetheless, we believe that constructing ideal ORE from weaker tools includ-
ing LWE or bilinear maps, or providing black-box separations for these tools by
building on our techniques, are fascinating open questions.

2 Background

Notation. For n, n1, n2 ∈ N, let [n] := {1, . . . , n}, [n1, n2] := {n1, . . . , n2}.
Throughout this paper, λ ∈ N denote the security parameter. For a finite set S,
we denote s← S the process of sampling s uniformly from S. For a probabilistic
algorithm A, we denote y ← A(x;R) the process of running A on input x and
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randomness R, and assigning y the result. We let RA denote the randomness
space of A; we require RA to be the form RA = {0, 1}r. We write y ← A(x) for
y ← A(x,R) with uniformly chosen R ∈ RA, and we write y1, . . . , ym ← A(x)
for y1 ← A(x), . . . , ym ← A(x) with fresh randomness in each execution. If A’s
running time is polynomial in λ, then A is called probabilistic polynomial-time
(PPT).

We say a function µ(n) is negligible if µ ∈ o(n−ω(1)), and is non-negligible
otherwise. We let negl(n) denote an arbitrary negligible function. If we say some
p(n) is poly, we mean that there is some polynomial q such that for all suf-
ficiently large n, p(n) ≤ q(n). We say a function ρ(n) is noticeable if the in-
verse 1/ρ(n) is poly. We use boldface to denote vector, i.e. m; we denote mi

as the i-th component of m and |m| as the length of m. The statistical dis-
tance of two random variables X and Y over some countable domain S is de-

fined as SD(X;Y ) = 1
2

∑
s∈S |Pr[X = s] − Pr[Y = s]|. We write X

d
≈ Y for

SD(X;Y ) ≤ d, and X
stat
≈ Y for SD(X;Y ) ≤ 2−λ.

Order Revealing Encryption. An order revealing encryption(ORE , see [5])
is a secret key setting encryption, it gives a public procedure by which two
ciphertexts can be compared to reveal the order of their underlying plaintexts,
formally:

Definition 3. (Order Revealing Encryption). An order revealing encryption (ORE)
with message space [N ] consists of the following algorithms:

– Gen(N,λ) is a probabilistic algorithm that takes N,λ as inputs, and outputs
public/secret key (pk, sk)

– Enc(sk,m) is a deterministic algorithm which takes secret key sk and message
m as inputs, and outputs ciphertext C;

– Comp(pk, C1, C2) is a deterministic algrithm which takes public key pk, and
two ciphertexts C1, C2 as inputs, outputs “<”, “= ” or“>”, indicating the
ordering of the underlying plaintexts.

Correctness for ORE. For any two message pair (m1,m2), let Comp(m0,m1)
be the order of (m0,m1), where:

Comp(m0,m1) =


“ < ” m0 < m1

“ = ” m0 = m1

“ > ” m0 > m1

Here we consider four notions of correctness:

– Perfect Correctness For any message pair (m0,m1), we have

Pr[Comp(pk, C0, C1) = Comp(m0,m1) : (pk, sk)← Gen(), Cb = Enc(sk,mb)] = 1

– Almost Perfect Correctness There is a negligible function µ = negl(λ)
such that

Pr[∃(m0,m1),Comp(pk, Cm0
, Cm1

) 6= Comp(m0,m1) : Cb = Enc(sk,mb)] ≤ µ

where the probability is taken over the choice of (pk, sk)← Gen().
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– Statistical Correctness There is a negligible function µ = negl(λ) such
that for any (m1,m2)

Pr[Comp(pk, C0, C1) = Comp(m0,m1) : Cb = Enc(sk,mb)] ≥ 1− µ

where the probability is taken over the choice of (pk, sk)← Gen().
– Partial Correctness There is a noticeable function ρ(λ) such that, for any

(m1,m2),

Pr[Comp(pk, C0, C1) = Comp(m0,m1) : (pk, sk)← Gen()] ≥ 1

2
+ ρ

In this paper, we also consider ORE in idealized models, where the scheme’s
algorithms have the access to an oracle.

Definition 4. An idealized model is a deterministic function M. M takes two
inputs: a string k which is the seed for the model, and a query q. Unless otherwise
stated, we allow all players — the honest parties, the protocol algorithms, and
the adversary — to query M. In a query to M:

– Any player sends q to M;
– The player receives M(k, q) in return.

We will denote an ORE scheme Π in an idealized model M as ΠM = (GenM,
EncM,CompM). This notation means that key generation, encryption, and com-
parison have access toM and the outputs are also depend onM’s response. Our
definitions of security and correctness for ORE easily extend to the idealized
model, where the probabilities are over the random seed k that generates M.

Efficiency for ORE Typically in the literature, ORE is defined as having
computationally efficient algorithms:

Definition 5. Let Π = (Gen,Enc,Comp) be an ORE scheme with respect to the
message space [N ]. We say Π is computationally efficient if Gen,Enc,Comp run
in time polynomial in (logN,λ). If Π is a scheme in an idealized model M,
we additionally require that the algorithms only make a polynomial number of
queries to M.

Here, we will generally not impose any such restrictions, and allow for com-
putationally inefficient algorithms. We only impose two efficiency constraints.
First, if the scheme is an ideal-model scheme, we still require the number of
queries to be polynomial.

Definition 6. Let ΠM = (GenM,EncM,CompM) be an ORE scheme in an
idealized model M. We say Π is query efficient if Gen,Enc,Comp only make a
number of queries that is polynomial in (logN,λ).

The second efficiency requirement (for both idealized model schemes and
standard model schemes) is that the ciphertexts produced by the scheme are
polynomial sized.
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Definition 7. Let Π(resp. ΠM) be an ORE with respect to the message space
[N ](resp. in idealized model). We say Π(ΠM) has succinct ciphertexts if the
ciphertext length is polynomial in (logN,λ).

We call a scheme for which there is no idealized model but which still has
succinct ciphertexts an information-theoretic scheme.

Security for ORE ORE leaks the order of the underlying plaintext, so the
ideal security notion for ORE is that only the order is revealed — anything else,
such as the distance or the most significant differing bit between plaintexts —
is hidden. Roughly speaking, given two sequences of message m,m′ such that
Comp(mi,mj) = Comp(m′i,m

′
j),∀i, j ∈ |m|, the distribution of Enc(m) and

Enc(m′) are statistically indistinguishable. We firstly consider a weak version,
which we call t-time secure, with the restriction that |m| = |m′| ≤ t, then we
define an interactive game with an unbounded adversary in the following:

t-SIND (A):

m1 < . . . < mt,m
′
1 < . . . < m′

t ← A(N, 1λ)
D0 = (pk,Enc(sk,m1), . . . ,Enc(sk,mt)), such that (pk, sk)← Gen(N, 1λ)
D1 = (pk,Enc(sk,m′

1), . . . ,Enc(sk,m′
t)), such that (pk, sk)← Gen(N, 1λ)

b′ ← A(Db)
Return (b

?
= b′)

Fig. 1: t-time Static Indistinguishable Game

Definition 8. Let Π = (Gen,Enc,Comp) be an ORE scheme with respect to the
message space [N ]. For an PPT (resp. unbounded) adversary A we define the
game t-SIND(A) in figure 1. The t-time static indistinguishable advantage of A
is defined to be:

Advt-SINDA (1λ) = 2Pr[t-SIND(A)]− 1

We say that Π is t-time computationally (resp. statistically) secure if for any
PPT (resp. unbounded) adversary A, Advt-SINDA (1λ) is negligible. And we say
Π is fully (computationally/statistically) secure if Π is t-time (computation-
ally/statistically) secure for any polynomial t = poly(logN,λ).

If Π is an ORE scheme in idealized modelM, we extend the security notions
above by allowing A to make a polynomial number of queries to M, and all
probabilities are taken over the seed for M.

3 Impossibility of information-theoretic ORE

In this section, we show that for information-theoretic ORE, full statistical se-
curity is impossible if the message space is super-polynomial. Note that this is
qualitatively tight, as [16] 7show how to construct information-theoretic ORE
where the ciphertext size is polynomial in the size of the message space.

7 here we treat the PRFs and PRPs in [16] as real random functions and permutations,
which achieving statistical security, rather than only computational security
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Note that our impossibility applies to schemes where the public/secret key are
allowed to be arbitrarily (e.g. exponentially) large, the running time of Enc,Comp
are allowed to be arbitrary, while the security must hold for arbitrary adversaries.
The only constraints are that the ciphertexts must be polynomially bounded,
and the adversary sees only a polynomial number of ciphertexts. Nonetheless,
we now prove the following theorem:

Theorem 9. In standard model, there does not exists fully statistically secure
ORE Π such that

– Π is partially correct;
– Π’s message space is super-polynomial;
– Π has succinct ciphertext space

To prove this theorem, in the high level idea, our strategy is: (1) prove the result
in the simpler setting where we insist on perfect security, and then (2) show
how to convert any partially correct information-theoretic ORE into a perfectly
correct one.

3.1 Impossibility for perfect correct ORE

In this part, we consider the ORE in perfectly correct case. Formally:

Theorem 10. In standard model, there does not exists statistically secure ORE
Π such that

– Π is perfectly correct;
– Π’s message space is super-polynomial;
– Π has succinct ciphertext space

We firstly give a brief description of our proof strategy. Roughly speaking,
for any t ≤ poly(λ), let Π be an ORE scheme on message space [t + 1] which
is perfectly correct and statistically secure. We note that Π is t-time secure,
according to the statistical security definition. Then we show that there exists an
exponential lower bound on the size of the ciphertext space (roughly O(2t/2)) for
such ORE schemes, and hence a poly(t) lower bound on the length of ciphertexts.

Now, for any ORE scheme with a super-polynomial message space, we can
obtain an ORE with message space [t + 1] with the same ciphertext size by
simply restricting the domain to the first t + 1 messages. Thus, for any super-
polynomial message space, and any supposed polynomial upper bound on the
ciphertext size, we can set t to be a large enough polynomial that contradicts
the bound. This proves our impossibility.

The core technique we use to prove the lower bound is inspired by Erdös [13].
Roughly, for any Π with plaintext space [t + 1], we interpret the ciphertext
space as a graph Gt+1, where the structure of Gt+1 is similar to the graphs
studied by Erdös. Following a similar strategy to his lower bound, we sample
a sequence of sub-graphs Gt+1 ⊇ Gt−1 ⊇ . . . G1 and show that E[log |Gi|] ≥
E[log |Gi−2|] + log(1.6),∀i ∈ {t+ 1, t− 1, . . . , 3}. This allows us to conclude that
E[log |Gt+1|] ≥ b t−12 c log 1.6 and therefore E[Gt+1] ≥ O(2t/2), as desired. More
precisely:
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Lemma 11. In standard model, let Π be an perfectly correct t-time secure ORE
on message space [t+1], then Π requires ciphertexts of size at least b t−12 c log 1.6

Proof. This proof applies a similar spirit to a proof technique used by Erdös [13].
Let Πt+1 = (Gen,Enc,Comp) be a perfect correct t-time secure ORE, with

respect to message space [t+ 1] and ciphertext space C(WLOG, we assume t is
even). We construct a new ORE Π∗t+1 as follows. The public key for Πt+1 defines
a graph Gt+1, where the nodes of Gt+1 represent the ciphertexts in C. We set
the edges for Gt+1 as:

– If Comp(C0, C1) = “ < ”, then there is a directed edge from C0 to C1

– Otherwise, we arbitrarily assign a single directed edge between the two nodes.

By perfect correctness ofΠt+1, we note that there is at most one directed edge
between any two nodes, and if C0 and C1 are not simultaneously valid ciphertexts
under the same public key (we can view this as C0 = Enc(sk0, i), C1 = Enc(sk1, j),
that they are the ciphertext encrypted under distinct secret keys), we set an
arbitrary edge for these two nodes. Hence Gt+1 is a “tournament” graph.

Next, we give the formal description of Π∗t+1 = (Gen∗t+1,Enc
∗
t+1,Comp∗t+1):

– Gen∗() Runs (pk, sk)← Gen()), computes Gt+1 as above, and outputs pk∗ =
(pk, Gt+1), sk∗ = sk

– Enc∗(sk∗,m) It runs C = Enc(sk∗,m), and outputs C∗ = C;
– Comp∗(pk∗, C∗1 , C

∗
2 ) Outputs “ < ” if there is directed edge from C∗1 to C∗2

in Gt+1 , and “ > ” otherwise.

The only difference between Πt+1 and Π∗t+1 is adding Gt+1 to the public key,
which only affects the efficiency of Gen and Comp, while perfect correctness and
t-time security are preserved.

Next we sample the sub-graphs Gt−1 ⊇ . . . ⊇ G1. For any j ∈ {2, 4, . . . , t},
graph Gt+1−j is sampled as:

– Run (pk∗, sk∗)← Gen∗t+1, compute CiL = Enc(sk∗, i), CiR = Enc(sk∗, t+ 1− i)
for i ∈ [j/2];

– Set Gt+1−j be the sub-graph of Gt+1 consisting of all nodes v dominated by

{C1
L, . . . , C

j/2
L } (that is, there is an edge from CiL to v for all i) and which

dominate {C1
R, . . . , C

j/2
R } (that is, there is an edge from v to CiR for all i)

Clearly, |G1| ≥ 1. Next, we show that E(log |Gt+3−j |) ≥ E(log |Gt+1−j |) +
log 1.6 where j ∈ (2, 4 . . . , t).

First, recall that Π∗ is t-time secure, implying the distribution of the encryp-
tions for M0 and M1 are statistically close, where

M0 = (1, 2, . . . , j/2, j/2 + 1, t+ 1− j/2, . . . , t+ 1)

M1 = (1, 2, . . . , j/2, t− j/2, t+ 1− j/2, . . . , t+ 1)

and the probability is over (pk∗, sk∗)← Gen∗t+1.
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Now letfL, fR be the expected fraction of of nodes in Gt+3−j that are domi-
nated by Enc(j/2 + 1),Enc(t− j/2), respectively. Due to security, we have

(pk∗,Enc(M0))
stat
≈ (pk∗,Enc(M1))⇒ |fL − fR| ≤ negl ≤ 1/4

Thus, the expected fraction of nodes in Gt+3−j that dominate Enc(t− j/2) is

1− fR ≤ 1− fL + 1/4

Note that since Gt+1−j is the intersection of the nodes in Gt+3−j which
dominate Enc(t − j/2) and which are dominated by Enc(j/2 + 1), the ratio
|Gt+1−j |/|Gt+3−j | is at most the minimum of:

– The fraction of nodes in Gt+3−j which dominate Enc(t− j/2)
– The fraction of nodes in Gt+3−j dominated by Enc(j/2 + 1)

Then we upper bound E[log |Gt+1−j |] as:

E[log |Gt+1−j |] = E[log |Gt+3−j |] + E[log
|Gt+1−j |
|Gt+3−j |

]

≤ E[log |Gt+3−j |] + logE[
|Gt+1−j |
|Gt+3−j |

] Jensen’s inequality

≤ E[log |Gt+3−j |] + log min(fL, 1− fL + 1/4)

≤ E[log |Gt+3−j |] + log
1 + 1/4

2
= E[log |Gt+3−j |]− log 1.6

In the last line, we used the fact that for any fL, min(fL, c− fL) ≤ c
2 . Putting

everything together, we have

E[log |Gt+1|] ≥ E[log |G1|] +
t− 1

2
· log 1.6

which means any ORE scheme Π with message space [t+1] requires ciphertexts
of size at least b t−12 c log 1.6

Now, we complete the entire proof for Theorem 10. Suppose Π is an ORE such
that: 1) Π is perfect correct and statistically secure; 2) Π’s message space is
[N ], where N is super-polynomial; 3) Π has succinct ciphertext space, which is
bounded by r = poly(λ, logN). Then, let t = 4r (t is still polynomial here), we
know that Π is t-time secure. According to Lemma 11, r ≥ b t−12 c · log 1.6 > r,
a contradiction.

3.2 Boosting to perfect correctness

To strengthen our result, we also consider ORE scheme that is only partially
correct, hence we need boost it to perfectly correct.
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Theorem 12. If there exists partially correct and statistically secure ORE in
the standard model that has succinct ciphertexts and super-polynoial message
space, then statistically secure ORE in standard model with succinct ciphertexts
and perfect correctness on the same message space exists.

Proof. Let Π = (Gen,Enc,Comp) be an ORE in the standard model such that

1. Π is 1
2 + ρ correct, where ρ is noticeable;

2. Π’s message space is [N ], where N is super-polynomial;
3. Π∗ has succinct ciphertext, where the size is bounded by r = poly(λ, logN)

Then we construct a new ORE Π ′ = (Gen′,Enc′,Comp′) that is statistically
correct.

– Gen′(ρ, logN,λ) let s = 2
ρ2 logN2λ, runs (pki, ski)

s
i=1 ← Gen(), and outputs

pk′ = (pki)
s
i=1; sk′ = (ski)

s
i=1;

– Enc′(sk′,m) runs Ci = Enc(ski,m), i ∈ [s] Outputs C = (C1, . . . , Cs);
– Comp′(pk′,C0,C1) let C0 = (C0

1 , . . . , C
0
s ),C1 = (C1

1 , . . . , C
1
s ), outputs the

majority of (Comp(pki, C
0
i , C

1
i ))si=1

It is straightforward that Π ′ is statistically secure due to hybrid argument.
In addition, applying Chernoff Bound, we have

Pr[Π ′ is correct] ≥ 1− e−
1

1+2ρ sρ
2

≥ 1− 1

N2
e−λ

We note Π ′ is statistically correct such that: within overwhelming probability
over the choice of (pk′, sk′), the comparison is correct for all message pairs. Then
we construct the perfectly correct ORE Π∗ = (Gen∗,Enc∗,Comp∗), same as Π ′

except we modify Gen∗: it draws (pk∗, sk∗) , conditioned on correctness holding

for all message pairs. As Π ′
stat
≈ Π∗, this only negligibly changes the distribution

of keys, Π∗ is also statistically secure. Notice that Gen∗ is no longer efficient
even if Gen was. Fortunately, our notion in standard model allows us to have
inefficient Gen. Thus, statistically secure ORE in standard model with succinct
ciphertexts and perfect correctness on the same message space exists.

Combing Theorem 10 and 12, we establish Theorem 9.

4 Impossibility of statistically secure ORE In idealized
models

In this section, we begin our investigation of ORE in idealized models, where
the algorithms of ORE have the access to the modelM (M is deterministic and
computable). We give a unified strategy to help answer prove statements of the
form:

For some particular idealized model M, there does not exists randomized, par-
tially correct and statistically secure ORE that has succinct ciphertext with super-
poly message space
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Roughly speaking, our strategy is consist of four steps:

– Convert a randomized, partially correct and statistically secure ORE in an
idealized model into a deterministic, partially correct and statistically secure
ORE in the same model;

– Compile the scheme to remove the oracle queries from the comparison pro-
cedures;

– Remove the model from ORE completely.
– Invoke Theorem 9 to finish the impossibility

In this section, we show that step 1 and 3 is achievable for any deterministic and
computable model M, and we note that when achieving step 3, it indicates the
existence of partially correct and statistically secure ORE in standard model,
which conflicts our result in Theorem 9. Hence the only step that depends on
the exact model in question is step 2, removing the oracle query access from the
comparison while still preserving the partial correctness. In later sections, we
will show how to do this for the random oracle model and generic group model.

Theorem 13. If there exists a randomized partially correct and statistically se-
cure ORE in idealized modelM that has succinct ciphertext and super-polynomial
message space, then deterministic, partially correct and statistically secure ORE
in the same modelM with succinct ciphertext on the same message space exists.

Proof. ORE typically allows for randomized encryption. We may even allow for
randomized comparison. However, we will show how to convert such a scheme
into a deterministic one.

To handle a randomized comparison, we simply add a sequence of random
coins to the public key. These random coins will be used for any run of Comp.
While in the original scheme, each run of Comp uses independent randomness,
here we use the same randomness every time. However, since the experiment
defining correctness only considers a single run of Comp, the correctness proba-
bility is not affected by this change.

To handle randomize encryption, we just generate the random coins rm for
every message m, and include rm in the secret key. When encrypting a message
m, encrypt using the random coins rm. Notice that this blows up the secret key
size. However, note that for this work we do not care about the size of the secret
key; it can be exponential in size, and still our impossibility will hold. We note
that another approach is to have rm be the output of a PRF evaluated on m;
suitable PRFs can be built from most interesting models, including the random
oracle and generic group models we consider. This prevents the secret key length
from exploding. However, this is unnecessary for our purposes.

Suppose Π = (GenM,EncM,CompM) be a randomized ORE where encryp-
tion and comparison procedures are both randomized, then we construct Π∗

as:

– Gen∗ runs (pk, sk) ← Gen, samples N + 1 randomness (r, r1, . . . , rN ), and
outputs pk∗ = (pk, r), sk∗ = (sk, r1, . . . , rN );
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– Enc∗(sk∗,m) outputs C∗ = EncM(sk,m, rm);
– Comp∗(pk∗, C∗0 , C

∗
1 ) outputs CompM(pk, C∗0 , C

∗
1 , r)

We note that Π∗ is a deterministic ORE now, both in encryption and com-
parison. Moreover, as long as we do not encrypt the same message twice, the
distribution of the ciphertext in Π∗ is exactly the same as Π’s. We note that the
correctness is well preserved. In fact, according to the partial correctness defini-
tion, the randomness used in Comp is uniform just as in the original scheme.

For statistical security, we see that the adversary only additionally learns a
random string (r, used for Comp) after it submits the message sequence, and the
random string is independent of the message sequence, hence the adversary does
not gain more information than in Π. Thus, statistical security is also preserved.

From now on, we treat ORE scheme as deterministic encryption and the message
space is super-polynomial, unless otherwise specified.

Theorem 14. If there exists partially correct and statistically secure ORE in
idealized model that makes no query to M in comparison procedure and has suc-
cinct ciphertext, then partially correct and statistically secure ORE in standard
model exists that has succinct ciphertexts.

Proof. This proof is very simple. Since there is no access toM during the com-
parison procedure, there is no need for the idealized model to be public. Instead,
we set M as part of the secret key and only the encrypter has the access to it.
Not giving the adversary access to M only helps security. Of course, in such a
setting, the secret key is now exponentially large, and encryption is no longer
efficient. However, our notion of ORE in standard model allows such large key
and inefficiencies of encryption, which completes the proof.

The only remaining part is step 2, which is model-specific and non-trivial.
We need remove M from comparison procedures, while the input of Comp only
includes the public key and ciphertext, and we cannot just absorb the model to
the public key as we did in Theorem 14. Otherwise, the adversary would have
the complete access to the oracle, indicating that it gains more information than
it has in t-time statistical security game, and might break the game. Hence,
we need to find ways to simulate the model while still preserving the statistical
security. In the next two sections, we present our methods on two specific models:
random oracle model and generic group model.

5 The Random Oracle Model

In this section, we finish the separation result in the case that M is a random
oracle, which we denote by O. Using the results of Sections 3 and 4, it remains to
show that the random oracle model can be removed from the comparison proce-
dure of an ORE scheme. Our proof is inspired by [9], which shows how to remove
random oracles from obfuscation schemes. However, for reason’s outlined in the
introduction, the technical details of our proof will be substantially different.
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We first observe the following. Consider running CompO(C0, C1) where C0, C1

encrypt m0,m1 respectively. Consider an oracle query x made by Comp. If x was
not a query made during encryption (EncO(m0),EncO(m1)), then we claim Comp
must output the right answer, even if it is given the incorrect query response.
Indeed, for any possible response y′, there is an oracle O′ that is consistent with
O on the points queried during encryption of m0,m1, but where O′(x) = y′.
Therefore, any potentially incorrect query answer can be “explained” by an
oracle O′, and correctness of the scheme says that Comp must still output the
right value in this case.

For a particular run of Comp on encryptions of m0,m1, we therefore call
the oracle queries made during encryption “sensitive” queries. Comp only needs
access to O on sensitive queries; for all others, it can answer randomly. The
difficulty, then, is (1) allowing Comp to figure out the sensitive queries, and (2)
giving it the right oracle answers in this case.

For simplicity, consider two extremes. On the one end, suppose none of
Comp’s queries are ever sensitive. In this case, Comp can just ignore its ora-
cle entirely, simulating the responses with random answers. In this case, we are
already done. In the other extreme, suppose all of Comp’s queries are always
sensitive. In this case, if the adversary sees ` ciphertexts, she expects to make at
least Ω(`2) oracle queries on sensitive queries. However, there are only q` possi-
ble query values, where q is the number of queries made during each encryption.
Therefore, heuristically, we may expect to eventually pick of all of the sensitive
queries made during encryption by setting ` large enough (namely, bigger than
q). Even so, security must hold. Therefore, we can construct a modified scheme
where Enc simply outputs all the queries it makes and the corresponding an-
swers along with the ciphertext. Then all the sensitive queries Comp needs are
provided as input, and it does not need to make any oracle queries.

To formalize the above sketch, we must show how to handle cases between
the two extremes, where some of Comp’s queries are sensitive, and others are
not, and we cannot necessarily tell which is the case. Moreover, we need to deal
with the fact that we may not actually get all of the sensitive queries if there
are sufficiently many collisions. In this case, handing out all of the queries made
during encryption could actually hurt security (for example, if a query is made
on the message itself). Nonetheless, we now prove the following theorem:

Theorem 15. If there exists partially correct and statistically secure ORE in
random oracle model that has succinct ciphertexts, then there exists partially
correct and statistically secure ORE with succinct ciphertext such that the com-
parison procedures makes no queries to the random oracle.

Proof. Let Π0 = (Gen0,Enc
O
0 ,CompO0 ) be a statistically secure ORE in the ran-

dom oracle model with plaintext space [N ]. Here, we assume Gen0 makes no
queries to O. This is actually without loss of generality: since O is a determin-
istic oracle, we can always treat sk as the random coins inputted to Gen0, and
run Gen0 every time we encrypt a message.
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For convenience, we denote Pr[Π0] as the lower bound on the correctness
probability:

Pr[Π0] = min
m0,m1

Pr[CompO0 (pk, C0, C1) = Comp(m0,m1) : (pk, sk)← Gen0();Cb ← EncO0 (sk,mb)]

We assume that Comp0(pk0, C0, C1) does not query the same point twice;
since O is deterministic, Comp0 can always store a table of query/response pairs
already seen, and use this table to answer subsequent queries on the same point.
Here we specify some parameters:

1. Pr[Π0] ≥ 1
2 + 2ρ, where ρ is noticeable; q, u = poly(λ) by query efficiency;

s := 110u4·q2
ρ3 ; si := 110u3·q2·i

ρ3 , i ∈ [u];

2. EncO0 makes q queries to the oracle O. Let Qsk,m be the set of query-answer
pairs made when encrypting m under key sk. Notice that the set Qsk,m is
fully determined by sk and m since Enc and O are deterministic.

3. CompO0 makes u queries to the oracle O. Let Spk,m0,m1 be the set of query-
answer pairs made when comparing the encryptions of (m0,m1) under key
pk. Again, Spk,m0,m1

is fully determined by mk,m0,m1.
4. D := [s] ∪ [N − s+ 1, N ];Di := [si] ∪ [N − si + 1, N ], i ∈ [u]
5. Ti = [i] ∪ [N − i+ 1], i ∈ [N ];

Next we construct a new ORE Π∗ = (Gen,EncO,Comp) with plaintext space
[s+ 1, N − s] as:

– Gen() runs (pk0, sk0) ← Gen0(), computes Ci = EncO0 (sk0, i), i ∈ D and
outputs pk = pk0, sk = (sk0, {Ci}i∈D);

– EncO(sk,m) runs C ← EncO0 (sk0,m). Then it runs CompO0 (pk0, Ci, C) for
all i ∈ D, recording all query-answer pairs Spk,m = ∪i∈DSpk,m,i. Then it
outputs C∗ = (C, Spk,m);

– Comp(pk, C∗0 , C
∗
1 ) : let C∗0 = (C0, S0), C∗1 = (C1, S1). Run CompO0 (pk0, C0, C1),

except that when querying the oracle with input x, do the following:
1. If there is a pair (x, y) in S0 ∪ S1, Comp responds to the query with y;
2. Otherwise, returns a random string.

We note that in the comparison procedure of Π∗, we remove the oracle access,
so it remains to show that Π∗ is statistically secure and partially correct.

Lemma 16. If Π0 is t+2s statically secure, then Π∗ is t-time statically secure.

Proof. The entire view of the the adversary A in the t-time experiment for Π∗

can be simulated by a t+ 2s-time adversary B for Π0: the lists of messages are
those produced by A, plus all the messages in D. Then, the lists S associated
with ciphertext C can be constructed by comparing C to each of the Ci for
i ∈ D. ut

Thus we have that Π∗ is statistically secure since Lemma 16 holds for any t =
poly(logN,λ). The partial correctness property is more interesting and involved.
In the following, we prove that Π∗ also preserves partial correctness, though
there is some loss in the concrete correctness parameter.
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Lemma 17. Pr[Π∗] ≥ 1
2 + ρ

Proof. We establish our proof by hybrid argument, here we define uORE schemes
Πj = (Genj ,Enc

O
j ,CompOj ), j ∈ [u] with message space [sj + 1, N − sj ]:

– Genj() runs (pk0, sk0)← Gen0(), computes Ci = EncO0 (sk0, i) for i ∈ Dj and
outputs pkj = pk0, skj = (sk0, {Ci}i∈Dj );

– EncOj (skj ,m) runs C ← EncO0 (sk0,m) and CompO0 (pk0, Ci, C) for i ∈ Dj ,
records all query-answer pairs Spk,m = ∪i∈DjSpk,m,i and outputs C∗ =
(C, Spk,m);

– CompOj (pkj , C
∗
0 , C

∗
1 ) : let C∗0 = (C0, S0), C∗1 = (C1, S1). It runs CompO0 (pkj ,

C0, C1), except that when querying O with input x, it does the following:
1. If x is one of the first u− j queries, make a query to O as usual.
2. If x is one of the final j queries and there is a pair (x, y) ∈ S0 ∪S1, then

respond with y.
3. Otherwise, returns a random string.

We observe that Πu = Π∗, hence it suffices to prove the following lemma,

Lemma 18.
Pr[Πj ] ≥ Pr[Πj−1]− ρ

u
,∀j ∈ [u]

We here only prove the case j = 1, the rest can be handled analogously. Specif-
ically, we show Pr[Π1] ≥ 1

2 + 2ρ− ρ
u .

According to the definition, we see that Comp1 works the same as Comp0,
except for the final query x to O in which we use the list of oracle outputs
provided with the ciphertext to answer the oracle query. We prove that the
response made by Π1 for x does not significantly harm the ability of Comp1 to
output the correct answer. To do so, we introduce yet another sequence of s1
ORE schemes Π1,j , j ∈ [s1] on message space [j + 1, N − j]. The only difference
between Π1,j and Π1 is the number of test ciphertexts that are generated.

– Gen1,j() runs (pk0, sk0)← Gen0(), computes Ci = EncO0 (sk0, i) for i ∈ Tj and
outputs pk1,j = pk0, sk = (sk0, {Ci}i∈Tj );

– EncO1,j(sk1,j ,m) runs C ← EncO0 (sk0,m) and CompO0 (pk0, Ci, C) for i ∈
Tj , records all query-answer pairs S

(j)
pk,m = ∪iSpk,m,i and outputs C∗ =

(C, S
(j)
pk,m);

– CompO1,j(pk1,j , C
∗
0 , C

∗
1 ) : let C∗0 = (C0, S0), C∗1 = (C1, S1). It runs CompO0 (pk1,j ,

C0, C1), except that when querying O with input x, it does the following:
1. If x is one of the first u− 1 queries, make a query to O as usual.
2. If x is the final query and there is a pair (x, y) ∈ S0 ∪ S1, then respond

with y.
3. Otherwise, returns a random string.

We note that Π1 = Π1,s1 . We now claim that increasing j must improve the
correctness of the scheme:
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Claim. If Pr[Π1,j ] <
1
2 + 2ρ− ρ

u , then Pr[Π1,j+1] ≥ Pr[Π1,j ] + ρ3

110u3·q2

Notice that this means as j increases, Pr[Π1,j ] must increase by increments

of at least 1
s1

= ρ3

110u3·q2 until Pr[Π1,j ] ≥ 1
2 +2ρ− ρ

u . Therefore, by setting j = s1,

we get that Pr[Π1] = Pr[Π1,j ] ≥ 1
2 + 2ρ− ρ

u as desired. It remains to prove the
claim.

Assuming Pr[Π1,j ] <
1
2 + 2ρ− ρ

u , there are two messages m∗0,m
∗
1 minimizing

the correctness probability; that is, the comparison procedure on encryptions of
m∗0,m

∗
1 outputs the correct answer with probability less than 1

2 + 2ρ− ρ
u . Since

comparison succeeding is a detectable event, we can invoke the security of ORE
to conclude that, for any m0,m1, comparison must output the correct answer
with probability at most 1

2 + 2ρ− ρ
u + negl < 1

2 + 2ρ− 2ρ
3u .

Fix two messages m0,m1 ∈ [s1 + 1, N − s1]. We denote S(j) := S
(j)
pk,m0

∪
S
(j)
pk,m1

;Q := Qsk,m0
∪Qsk,m1

. Let x be the final query made when comparing the
encryptions of m0,m1.

Define the event Badj where the following happen:

– x ∈ Q \ S(j), so that x was queried during the encryption of m0 or m1, but
not during any of the comparisons to the test ciphertexts.

– CompO0 outputs the correct answer on encryptions of m0,m1.
– CompO1,j outputs the incorrect answer on encryptions of m0,m1.

We consider four cases:

– x ∈ S(j) In this case, Π1 answers the same as Π1,j since it has access to
O(x)

– x /∈ Q Then the ciphertexts components C0, C1 under Π0 are independent
of O(x), meaning that during the correctness experiment, O(x) in Π0 is a
random string. Hence Π1 answers the query with the correct distribution.

– x ∈ Q\S(j), but Badj does not occur. Here, we must have that Comp0 either
produced the incorrect answer, or Comp1,j produced the correct answer.

– Badj occurs In this case, C0, C1 will depend on O(x), while Π1,j cannot
find it in S(j). Hence, Π1,j will answer randomly, but Comp may expect
an answer correlated with C0, C1. Moreover, we know that by answering
randomly, Comp1,j goes from outputting the correct answer to the incorrect
answer.

We note in the first three cases above, the expected correctness probability does
not decrease relative to Π1,j . Indeed, in the first and third cases, Π1,j is at
least as correct as Π0, and in the second case, Π1,j in expectation has the same
correctness as Π0. Only in the final case might answering randomly decrease
the probability of correctness. Therefore, since comparison in Π1,j outputs the
correct answer with probability less than 1

2 + 2ρ− 2ρ
3u , we must have Pr[Badj ] >

2ρ
3u .

We consider two sub-events of Badj , denoted Bad
(b)
j , corresponding to x ∈

Qsk,mb/S. Notice that Pr[Badj ] ≤ Pr[Bad
(0)
j ] + Pr[Bad

(1)
j ]. By our assumption
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above, we have max{Pr[Bad
(0)
j ],Pr[Bad

(1)
j ]} > ρ

3u . We will assume that Pr[Bad
(0)
j ] >

ρ
3u , the other case handled analogously

Next we split the message space into two parts: [j+ 1, N2 ] and [N2 + 1, N − j],
and sample w ← [j + 1, N2 ] and z1, . . . , z` ← [N2 + 1, N − j], where ` = 6u·q

ρ . Let
ti be the indicator as:

ti =

{
1 if Bad

(0)
j occurs for message pair (w, zi)

0 Otherwise

and T be the event that
∑`
i=1 ti > q, we must have that:

Pr[T ] · `+ q · (1− Pr[T ]) ≥ E(
∑̀
i=1

ti) > 2q ⇒ Pr[T ] >
ρ

6u

as Pr[ti = 1] > ρ
3u , which refers E

[∑`
i=1 ti

]
> ` · ρ3u > 2q.

For three messages m0,m1,m2, m0 < m1 < m2, we define the event Collision
as the following: the final queries x1, x2 when comparing encryptions of m0 to

m1 and respectively m0 to m2 satisfy: (1) Bad
(0)
j occurs simultaneously for both

(m0,m1) and (m0,m2), and (2) x1 = x2.

We observe that if T occurs, there are at least q + 1 index such that ti = 1.
Moreover, in EncO1,j(w), there are at most q distinct queries. This means there is

some zi1 < zi2 such that Bad
(0)
j occurs for both (w, zi1) and (w, zi2) and moreover

the final query in both comparisons is identical. This in particular means that
Collision happens for (w, zi1 , zi2).

Now we bound the probability of Collision for a random message w in [j+1, N2 ]

and random distinct z∗1 , z
∗
2 in [N2 +1, N−j]. One way to sample random w, z∗1 , z

∗
2

is to sample w at random in [j + 1, N2 ], and sample ` random distinct zi in

[N2 + 1, N − j]. Then we choose two random indices i1, i2, and set z∗b = zib . The
above analysis shows that with probability at least ρ/6u, there some Collision
among the zi. Since z∗b are chosen as a random pair from this set, there is a
collision in z∗1 , z

∗
2 with probability at least

Pr[ Collision for random (w, z∗1 , z
∗
2)]} ≥ 1(

`
2

) · Pr[T ] >
ρ3

108u3 · q2

Now, we would like to use security of ORE to show that Collision happens for
arbitrary fixed triples m0,m1,m2. Unfortunately, Collision is not necessarily de-
tectable by an adversary, since an adversary does not know Q. Instead, we define
a slightly different event Collision′. Collision′ is the same as Collision except that
it removes the requirement that the common query x is in Q for either w, z∗1 or
w, z∗2 . Since Collision implies Colision′, we must have that Collision′ happens with

probability at least ρ3

108u3·q2 for a random w, z∗1 , z
∗
2 .
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Now, Collision′ is an event that can be detected by an adversary, thus by
statistical security, we have that for arbitrary (m0,m1,m2) ∈ [j + 1, N − j],

Pr[ Collision′ for (m0,m1,m2)] ≥ ρ3

108u3 · q2
− negl >

ρ3

110u3 · q2

Specifically, let m2 = N − j, we see that for any (m0,m1) ∈ [j + 2, N − j − 1],
if we move to Π1,j+1, m2 is included in the test queries for the scheme. Notice
that Collision′ means that in Π1,j , comparing m0,m1 would have been incorrect
(since the final query is answered randomly), but in Π1,j+1 comparing m0,m1

would be correct due to the additional queries provided from comparing m0,m2

(since comparing m0,m2 would add the missing query x to the list of queries
included in the encryption of m0). Thus:

Pr[Π1,j+1] ≥ Pr[Π1,j ] +
ρ3

110u3 · q2
⇒ Pr[Π1] ≥ Pr [Π0]− ρ

u

Now we have shown that Pr[Π1] ≥ Pr [Π0] − ρ
u . This handles the case of Π1.

However, note that at this point, what use to be the second-to-last query is now
the last query (since the last query is no longer made). Therefore, we can apply
the exact same techniques as above to handle the general case of Πj , giving

Pr[Πj+1] ≥ Pr [Πj ]−
ρ

u

Combing together, we get

Pr[Π∗] ≥ 1

2
+ ρ

which completes the entire proof. ut

6 The Generic Group Model

In this section, we finish the separation result in generic group model, which
we denote by G. It remains to show that the generic group oracle model can
be removed from the comparison procedure of any ORE scheme. Our strategy
is inspired by [18], which shows how to remove constant graded encoding from
obfuscation schemes. Before we illustrate the main idea of our proof, we recall
a simple variant of the generic group model, which is equivalent to the usual
generic group model [20]:

Definition 19. (Variant Generic Group Model) Let (G,�) be any group of size
N and let S be any set of size at least N . The generic group oracle G : G 7→ S.
At first an injective random function σ : G 7→ S is chosen, and two type of
queries are answered as:

– Type 1: Labeling queries. Given g ∈ G, oracle returns handle h = σ(g);
– Type 2: Zero-test queries. Given h = (h1, . . . hn) ∈ S, a vector v =

(v0, . . . , vn) of integers, oracle returns a single bit: 0 if there exists g1, . . . , gn ∈
G such that hi = σ(gi) and v0 +�jvjgj = 0; 1 otherwise.
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WLOG, we can assume that the ORE scheme Π = (Gen,EncG ,CompG) satisfies
the following:

– Gen makes no queries to G.
– Enc has the access of both labeling and zero-test query, while Comp only

makes zero-test queries. This is because Comp gains no advantage by making
labeling queries; it can always keep track of any group element it would have
made a labeling query on, and adjust the v0 term in a zero-test query to
compensate.

– Let hm be the vector of handles returned by the labeling queries during
the encryption of m. We will assume the comparison procedure, when com-
paring encryptions of m0,m1, only makes zero-test queries using handles
derived during the encryption. In other words, it will always have the form
(hm0

,hm1
,v). We can assume this as Comp′s view only depends on those

labels; if it queried the zero-test on other labels, then it would somehow be
guessing labels it never saw before, which is statistically unlikely.

– For any m, |hm| = |gm| = q, where q = poly(λ) is a fixed integer.

Then we present a brief description of our strategy. Similar to our ran-
dom oracle proof, given an ORE scheme Π = (Gen,EncG ,CompG) on mes-
sage space [N ] with partial correctness 1

2 + 2ρ, we construct an new ORE
Π∗ = (Gen∗,Enc∗,Comp∗) on message space [s+ 1, N − d](s, d = poly(logN,λ))
with correctness 1

2 + ρ, where we remove G from Comp∗. In the key generation
procedure, Π∗ additionally outputs the encryption of i, i ∈ [s] ∪ [N − d+ 1, N ].

Next, Enc(k,m) runs Enc(k,m),Comp(Enc(k,m),Enc(k, i)),Comp(Enc(k, i),
Enc(k, j)), i, j ∈ [s] ∪ [N − d + 1, N ]. It collects all of the zero test queries and
responses produced during the comparisons. It deletes all queries that outputted
1. It is left with a set of linear constraints on the g1, . . . , gs, gm, gN−d+1, . . . , gN
terms. It therefore produces a set Sm of linearly independent constrains over
these variables. It finally outputs (Enc(m), Sm).

Meanwhile, Comp∗(Cm0 , Cm1), runs Comp on the two Π-ciphertexts con-
tained in Cm0 , Cm1 . Whenever Comp1,j tries to make a zero-test query, Comp∗1,j
intercepts, and answers using the sets Sm0

, Sm1
as follows. It determines if the

zero test query is linearly dependent on the constraints in Sm0
∪ Sm1

. If so, it
knows that the answer to the zero test query is 0. Otherwise, it guesses that the
zero test query answer is non-zero.

We claim that this modified comparison procedure answers all zero test
queries right except with small probability. Roughly, the idea is that Comp only
needs to learn the constrain space when restricted to gm0

, gm1
, and does so

using the constraints it obtains through the test ciphertexts. Notice that that
the number of constraints we obtain grows quadratically with the number of
test ciphertexts computed, while the dimension of the space of constraints only
grows linearly. Therefore, by using enough test elements, we “should” exhaust
all linear constrains and recover the entire constraints space. Indeed, we show
that with sufficiently large s, d, Sm0

∪ Sm1
has either recovered the full basis of

the space (which allows one to correctly answer all remaining zero-test queries),
or it’s very unlikely that a new constraint appears, which in turn means that
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Comp∗ simulates the oracle itself properly except with a small probability. We
now prove the following theorem:

Theorem 20. If there exists partially correct and statistically secure ORE in
generic group model that has succinct ciphertext, then partially correct and sta-
tistically secure ORE with succinct ciphertext that makes no query to generic
group oracle in comparison procedures exists.

Proof. In our proof, for simplicity we will assume all queries to the zero testing
oracle are homogeneous (there is no constant term v0); it is straightforward to
extend our proof the full inhomogeneous setting. Let Π0 = (Gen0,Enc

G
0 ,CompG0 )

be a statistical secure ORE in generic group model (we view sk is simply the
randomness fed into Gen, thus we do not have oracle access for Gen). For conve-
nience, we denote Pr[Π0] as the lower bound on the correctness probability:

Pr[Π0] = min
m0,m1

Pr[CompG0 (pk, C0, C1) = Comp(m0,m1) : (pk, sk)← Gen0();Cb ← EncG0 (sk,mb)]

Similar to the random oracle case, we specify some parameters:

1. Pr[Π0] ≥ 1
2 + 2ρ, where ρ is noticeable;

2. q, u = poly(λ) by query efficiency; `1 = 20q·u2

ρ2 , `2 =
42q·`21·u

2

ρ2 ;

3. EncG0 (m) makes q labeling queries to oracle when encrypting m under sk.
4. CompG0 makes u queries to the oracle, and let Spk,m0,m1

be the set of the
constraints in value gm0

, gm1
(with form of p = (v,hm0

,hm1
)) that it stores;

5. s = u`2 · 2`2 · 42u
2·`1
ρ2 , si = i`2 · 2`2 · 42u

2·`1
ρ2 , s∗ = s1

`2
;

6. d = `1s
`2
, di = `1si

`2
, i ∈ [u];

7. D = [s] ∪ [N − d+ 1, N ];Di = [si] ∪ [N − di + 1, N ];
8. Ti = [i`2] ∪ [N − i`1 + 1, N ];

Next we construct a new ORE Π∗ = (Gen,EncG ,Comp) with plaintext space
[s+ 1, N − d] as:

– Gen() runs (pk0, sk0) ← Gen0(), computes Ci = EncG0 (sk0, i), i ∈ D. And
outputs pk = pk0, sk = (sk0, {Ci})

– EncG(sk,m) runs C ← EncG0 (sk0,m) and CompG0 (pk0, Ci, C),CompG0 (pk0, Ci,
Cj), i, j ∈ D, stores the set of constraints on (gm, gi)i∈D as Ssk,m and outputs
C∗ = (C, Ssk,m);

– Comp(pk, C∗0 , C
∗
1 ) : let C∗0 = (C0, S0), C∗1 = (C1, S1), runs CompG0 (pk0, C0, C1),

except that when querying a linear zero test p on unknown value (gm0
, gm1

)
, it responds as follows:
1. p is a linear combination of the constraints stored in S0 ∪ S1, then it

returns “0”;
2. Otherwise,returns “1”.

We note that in the comparison procedure of Π∗, we remove the oracle access,
hence it remains to show that Π∗ is statistically secure and partially correct.
It’s trivial that Π∗ is statistically secure, due to almost identical argument as in
random oracle case, and in the following we prove Π∗ is partially correct.
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Lemma 21. Pr[Π∗] ≥ 1
2 + ρ

Proof. We establish our proof by hybrid argument, and we define u ORE schemes
Πj = (Genj ,Enc

G
j ,CompGj ), j ∈ [u] with message space [sj + 1, N − dj ]. There

are two difference between Π∗ and Πj : 1) numbers of tested ciphertexts that are
generated; 2) Πj only uses the constraint set to answer the last j queries (for
the first u− j queries, Πj answers as usual by accessing G).

– Genj() runs (pk0, sk0) ← Gen0(), computes Ci = EncG0 (sk0, i), i ∈ Dj and
outputs pk = pk0, sk = (sk0, {Ci}i∈Dj );

– EncGj (sk,m) runs C ← EncG0 (sk0,m) and CompG0 (pk0, Ci, C),CompG0 (pk0, Ci,
Ck), i, k ∈ Dj , stores the set of constraints on (gm, gi)i∈Dj as Ssk,m and
outputs C∗ = (C, Ssk,m);

– Compj(pk, C
∗
0 , C

∗
1 ) : let C∗0 = (C0, S0), C∗1 = (C1, S1), runs CompG0 (pk0, C0, C1),

except that when querying the oracle on zero test p, it does the following:

1. If p is one of the first u− i zero test queries, make a query to G as usual;
2. If p is one of the last i zero test queries and p is a linear combination of

the constraints stored in S0 ∪ S1, then it returns “0”;
3. Otherwise, returns “1”;

Similar to the proof in ROM, we here prove Pr[Π1] ≥ 1
2 + 2ρ− ρ

u . According
to the definition, we see that Comp1 works as the same as Comp0, except for the
final query in which we test whether p is a linear combination of the constraints
provided with the ciphertext to answer the oracle query. We prove that the
response made by Π1 for p does not significantly harm the ability of Comp1
to output the correct answer. To do so, we introduce yet another sequence of
s∗ ORE schemes Π1,j = (Gen1,j ,Enc

G
1,j ,CompG1,j), j ∈ [s∗] on message space

[j`2 +1, N − j`1]. The only difference between Π1,j and Π1 is the number of test
ciphertexts that are generated.

– Gen1,j() runs (pk0, sk0) ← Gen0(), computes Ci = EncG0 (sk0, i), i ∈ Tj , and
outputs pk = pk0, sk = (sk0, {Ci}i∈Tj );

– EncG1,j(sk,m) runs C ← EncG0 (sk0,m) and CompG0 (pk0, Ci, C),CompG0 (pk0, Ci,

Ck), i, k ∈ Tj , stores the set of constraints on (gm, gi)i∈Tj as S
(j)
sk,m and out-

puts C∗ = (C, Ssk,m);

– CompG1,j(pk, C
∗
0 , C

∗
1 ) : let C∗0 = (C0, S0), C∗1 = (C1, S1), runs CompG0 (pk0, C0, C1),

except that when querying the oracle on with the zero test p, it does the
following:

1. If p is one of the first u−1 zero test queries, make a query to G as usual;
2. If p is the last test query and is linearly dependent of the constraints

stored in S0 ∪ S1, then it returns “0”;
3. Otherwise returns “1”;

Similar to Section 5, it remains to prove the following claim.

Claim. If Pr[Π1,j ] <
1
2 + 2ρ− ρ

u , then Pr[Π1,j+1] ≥ Pr[Π1,j ] + 1
s∗
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Assuming Pr[Π1,j ] <
1
2 + 2ρ − ρ

u , there is a message pair (m∗0,m
∗
1) minimizing

the correctness probability; that is the comparison procedure on encryptions of
(m∗0,m

∗
1) outputs the correct answer with probability less than 1

2 +2ρ− ρ
u . Due to

the statistical security, we have that for any (m0,m1), comparison must output
the correct answer with probability at most 1

2 + 2ρ− ρ
u + negl < 1

2 + 2ρ− ρ
2u .

Fix two message m0,m1 ∈ [j`2+1, N−j`1]. We let S(j) = S
(j)
sk,m0

∪S(j)
sk,m1

(the
constraint set in Enc1,j(mb)). Let p be the final zero test made when comparing

the encryptions of m0,m1. Define the event Bad(j) where the following happen:

– p is a constraint satisfied by gm0
, gm1

, but p is linearly independent of the
constraints stored S(j);

– CompG0 outputs the correct answer on encryption of m0,m1;
– CompG1,j outputs the incorrect answer on encryption of m0,m1

We consider four cases:

– p is linearly dependent of the constraints of S(j). In this case, Π1,j answers
the same as Π0 since it knows p is a valid constraint;

– p is not satisfied by gm0 , gm1 . In this case, p must be linearly independent
of S(j), hence Π0, Π1,j answer the same;

– p is a constraint satisfied by gm0
, gm1

, and independent of S(j), but Bad(j)

does not occur. Here we must have Comp0 either outputs the incorrect an-
swer, or Comp1,j outputs the correct answer;

– Bad(j) occurs. We know that by answering “1”, Comp1,j goes from outputting
the correct answer to the incorrect one.

Similar to the random oracle setting, only the last case decreases the probability
of correctness, therefore, Pr[Bad(j)] > ρ

2u .

Next we split the message space into two parts [j · `2 + 1, N2 ] and [N2 + 1, N −
j · `1], and sample w ← [j · `2 + 1, N2 ], z1 < . . . < z`1 ← [N2 + 1, N − j · `1]. Let

Bad
(j)
i be the event that “Bad(j)” occurs for (w, zi), i ∈ [`1]. Then we claim that

Pr[Bad
(j)
1 ∩ Bad

(j)
i ] > ρ2

10u2 , and we prove it by contradiction. In fact, we note
that unlike the case in ROM, the bad event here is detectable for unbounded
adversary, then invoking the security we must have that for any j, k ∈ [t] where
t = 4u

ρ < `1
Pr[Badj ∩ Badk] ≤ Pr[Bad1 ∩ Badi] + negl

If assuming that Pr[Bad1 ∩ Badi] ≤ ρ2

10u2 , then Pr[Badj ∩ Badk] < ρ2

9u2 , which
means

Pr[Bad1 ∪ . . . ∪ Badt] ≥
t∑
i=1

Pr[Badi]−
∑

i<j∈[t]

Pr[Badi ∩ Badj ]

≥ ρ · t
2u
− t2

2

ρ2

9u2
> 2− 8/9 > 1

a contradiction.



30 Mark Zhandry and Cong Zhang

Let ti be the indicator as:

ti =

{
1 if Bad1 ∩ Badi = 1

0 Otherwise

Then it’s apparent that

Pr[ti = 1] ≥ ρ2

10u2
⇒ E(

`1∑
i=2

ti) > (`1 − 1) · ρ2

10u2
> 2q − ρ2

10u2

Now let T be the event that
∑`1
i=2 ti > q − 1, then

Pr[T ] · `1 + (q − 1) · (1− Pr[T ]) ≥ E(
∑̀
i=1

ti)⇒ Pr[T ] >
ρ2

20u2

We observe that when T occurs, there exists a constraint p∗ on ( gz1 , . . . , gz`1 )
such that

p∗ = a1p1 + . . .+ a`1p`1

where pi is the last query in Comp(Enc(w),Enc(zi))(if pi is not a constraint, we
set ai = 0). Let T ∗ be the event, conditioned on T , such that a1 6= 0, besides T ∗

is also detected. Invoking the security, we have

Pr[T ∗] ≥ 1

`1
· Pr[T ]− negl ≥ ρ2

21u2 · `1

When T ∗ occurs, we gain a constraint on ( gz1 , . . . , gz`1 ), while the cardinality of
the entire space is q`1. To recover the full basis, we sample w = (w1 < . . . w`2) ∈
[j · `2 + 1, N2 ], z = (z1 < . . . < z`1) ∈ [N2 + 1, N − j · `1]. Let ei be the indicator

that T ∗ = 1 for (wi, z), i ∈ [`2] and G be the event that
∑`2
i=1 ei > q`1, similarly

we have:

Pr[G] · `2 + q`1 · (1− Pr[G]) ≥ E(

`2∑
i=1

gi) > 2q`1 ⇒ Pr[G] ≥ ρ2

42u2`1

For a message sequence (w1 < . . . < wk < z1 < . . . < z`1), we define the
event Collision as the following:

– the last query p in Comp(Enc(wk),Enc(z1)) is a constraint in value (gwk , gz1),

and Bad(j) occurs for (wk, z);
– p is a linear combination of the constraints collected in Comp(Enc(wi, zj)), i ∈

[k], j ∈ [`1], (i, j) 6= (k, 1)

Due to the definition of Collision, it’s obvious that if Collision happens for (w1 <
. . . < wk < z1 < . . . < z`1), then it happens for (x1 < . . . < xk′ , w1 < . . . <
wk < z1 < . . . < z`1) as long as xk′ < wk(adding more test ciphertext only helps
the correctness). Similar to the case in ROM, we notice that when G occurs,
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Collision happens for some (wi1 < . . . < wik , z), moreover, Collision also happens
for (w1 < w2 . . . < wik , z). Thus:

max
i∈[`2]

Pr[Collision for (w1 < . . . < wi < z1 < . . . < z`1)] ≥ 1

`2
· Pr[G]

Fortunately and in contrast to the ROM, Collision can be detected here.
Therefore, by the security, we claim that for arbitrary (w1 < . . . < w`2 < z1 <
. . . < z`1) ∈ [j · `2 + 1, N − j · `1]

Pr[Collision] ≥ 1

`2
· Pr[G]− negl ≥ 1

2`2
· Pr[G] =

1

s∗

Specifically, let wi = j`2 + i, i ∈ [`2− 1],zi = N − j`1− i, i ∈ [`1− 1], we see that
for any (w`2 , z1), if we move to Π1,j+1, (w1, . . . , w`2−1, z2, . . . , z`1) are included
in the test queries for the scheme. With the same argument in ROM case, we
have:

Pr[Π1,j+1] ≥ Pr[Π1,j ] +
1

s∗
⇒ Pr[Π1] ≥ Pr[Π0]− ρ

u

Now we have shown that Pr[Π1] ≥ Pr [Π0] − ρ
u . This handles the case of

Π1. However, note that at this point, what use to be the second-to-last query is
now the last query (since the last query is no longer made). Therefore, we can
apply the exact same techniques as above to handle the general case of Πj , give
Pr[Πj+1] ≥ Pr [Πj ]− ρ

u Combing together, we get

Pr[Π∗] ≥ 1

2
+ ρ

which establishes the entire proof. ut
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