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Abstract. We give a �rst tight security reduction for a conversion from a weakly-

secure public-key encryption scheme to an IND-CCA-secure key-encapsulation

mechanism scheme in the quantum random oracle model. To the best of our

knowledge, previous reductions are non-tight as the security levels of the ob-

tained schemes are degraded to at most half or quater of the original security

level (Boneh, Dagdelen, Fischlin, Lehmann, Schafner, and Zhandry (CRYPTO

2012), Targhi and Unruh (TCC 2016-B), and Hofheinz, Hövelmanns, and Kiltz

(TCC 2017)).

keywords: Tight security, chosen-ciphertext security, post-quantum cryptogra-

phy, KEM.

1 Introduction

Let us consider a cryptographic primitive P based on the hardness of a problem S. As

a reductionist, we prove the security of P by giving an algorithm R solving S, where

R can access to an adversary A (often in the black-box way) who breaks the security

of P. Let A’s running time and success probability be T and ε , respectively. Let R’s

running time and success probability be T ′ and ε ′, respectively. The reduction is said

to be tight if T ′ ≈ T and ε ′ ≈ ε . The tightness gap is de�ned as (T ′/ε ′)/(T/ε), since

we consider T ′/ε ′ as an expected time to solve S.

The security level of cryptographic schemes strongly depends on that of underly-

ing assumptions and the tightness/looseness of the security reductions. If the security

reduction is tight and the underlying problem is expected to have b-bit hardness, then

we can say that the security level of P is also b-bit. On the other hand, that is, if the

security reduction is non-tight, then we cannot estimate the security level of P imme-

diately: In the optimistic scenario, we hoped the existence of tighter reductions that

those we have. In the “nightmare” scenario due to Menezes [Men12], the primitive is

really insecure but the attacks are still hidden. Therefore, if the security reduction is

loose and we are pessimistic, then we are required to set parameters large at the cost

of slower performance.

Pre-Quantum Security of IND-CCA PKE/KEM: For asymmetric encryption, public-key

encryption (PKE) and key-encapsulation mechanism (KEM), we already have a lot

of generic conversions from weakly-secure primitives into strongly-secure PKEs in
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the random-oracle model (ROM); BR93 [BR93], OAEP [BR95,FOPS04], REACT [OP01],

GEM [CHJ
+

02], FO-PKC [FO00], FO [FO99,FO13], and so on.

Dent studied �ve KEM variants of those conversions [Den03] and Hofheinz, Hövel-

manns, and Kiltz also investigate KEM variants of the FO conversion in modular way

(and in the quantum setting) [HHK17]. We summarized their results in classical set-

ting in Figure 1, which also includes Dent’s conversions. For example, we obtain a KEM

variant Dent5 of the FO conversion in [Den03, Table 5] as the combination of U⊥◦T. In

Figure 1, solid arrows indicate tight reductions, that is, the tightness gap is a constant.

The results say that we have a tight security reduction for the proof that the KEM

scheme obtained by applying U6⊥m ◦ T ◦ S` to OW-CPA-secure PKE is IND-CCA-secure

in the ROM.

Post-Quantum Security of IND-CCA PKE/KEM: Let us consider a quantum adversary,

who poses a scalable quantum computer. (But, we stick classical implementation of our

primitives.) Unfortunately, the security reductions in the above papers except [HHK17]

considered only the classical setting; that is, they consider classical adversaries and

classical random oracles. Thus, if we want to used the conversions in quantum setting,

we are required to verify the security reductions or give new security reductions.

Notice that a quantum adversary can implement hash functions quantumly by it-

self. Hence, the adversary can evaluate |x, y〉 7→ |x, y ⊕ H(x)〉 by a quantum circuit and

obtain

∑
x |x,H(x)〉 from

∑
x |x〉, the superposition of hash values. Thus, it is natural to

de�ne quantum random oracles and the quanutm random oracle model (QROM) to con-
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sider the post-quantum cryptography. (See, e.g., Boneh, Dagdelen, Fischlin, Lehmann,

Scha�ner, and Zhandry [BDF
+

11].) On strongly-secure asymmetric (or hybrid) encryp-

tion schemes, there are a few studies in the QROM:

Variant of BR93: Boneh et al. [BDF
+

11] showed IND-CCA security of a variant of BR93

PKE in the QROM. Their assumptions are one-time CCA-secure symmetric-key

encryption and injective trapdoor functions. Their proof is non-tight.

Variant of FO: Targhi and Unruh [TU16] proposed a variant of the Fujisaki-Okamoto

conversion [FO99,FO13], which we call the TU conversion and denote by TU:

In the variant, they introduce another hash value H′(m) to a ciphertext of PKE

scheme obtained by FO. They showed IND-CCA security of the obtained PKE

in the QROM assuming that the underlying PKE is OW-CPA-secure and ω(1)-
spreading. The reduction for TU degrades the security level to approximately the

quarter of the original security level even ignoring the number of queries, that

is, the proof shows that εind-cca ≤ poly(qHash, qDec) · ε
1/4
ow-cpa

+ negl(κ). Moreover,

their simulation employs Zhandry’s method [Zha12] to simulate the random or-

acle H′ with 2q-degree random polynomial over a �eld. They exploited the roots

of polynomial to compute candidates of δ and simulated the decryption oracle by

those candidates. Thus, evaluations of H′ requires O(q2) costs and simulation of

the decryption oracle requires more. Hence, the reduction is non-tight from the

view of time complexity.

Modular Analysis of the variant of FO: Recently Hofheinz, Hövelmanns and Kiltz [HHK17]

proposed a KEM variant of TU and analyzed it in modular way and in the quantum

setting. They observed that the KEM variants of the TU conversion, denoted by

QFO∗m, is decomposed into two conversions, T and QU∗m; T converts PKE to PKE

and QU∗m converts PKE to KEM.

Variant of OAEP: Targhi and Unruh [TU16] also showed IND-CCA security of the

variant of OAEP in the QROM assuming the existence of partial-domain one-way

trapdoor functions. The security reductions are looser then those for TU.

Simulation of QRO: Zhandry [Zha12, Sections 3 and 6] showed that, if the number of

queries is q, then the random oracle can be perfectly simulated by 2q-wise inde-

pendent functions in the quantum setting as the random oracle can be perfectly

simulated by q-wise independent hash functions in the classic setting.

For the summary, see Figure 2. As far as we know, the IND-CCA-secure KEM in the

QROM with the tightest reduction is the KEM scheme obtained by applying the QU⊥m
or QU6⊥m conversion to a OW-PCA-secure PKE scheme. The security reduction results

in εind-cca ≤ 3q · ε1/2
ow-pca

and Tind-cca ≈ Tow-cpa + Ω(q2), where q denotes the sum of the

numbers of hash and decryption queries. (See [HHK17, Thm. 4.5 and 4.6].)

We list existing IND-CCA-secure KEM/PKE schemes in the QROM in Table 1. All

but NTRU Prime and RLCE employed variants of QFO∗∗ and su�ered from loose reduc-

tions with quartic loss. Even NTRU Prime is su�ered from the loose reduction with

quadratic loss. As far as we know, the existing security reductions in the QROM are

loose. It is quite natural to ask that

Can we construct tightly-secure conversions from CPA-secure primitives to IND-

CCA KEM in the QROM?
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Table 1: Existing CCA-secure KEM/PKE schemes in the QROM. pOW-CPA indicates

that the underlying scheme is assumed as probabilistic and one-way against chosen-

plaintext attacks; dOW-PCA indicates that the underlying scheme is assumed as de-

terministic and one-way against plaintext-checking attacks; QFOX
denotes QUX ◦ T

for X ∈ {⊥, 6⊥}.
Primitive ref. Name Assumption Conversion Notes

KEM

[BDK
+

17] Kyber pOW-CPA modi�ed QFO6⊥ involves ek

[BCLvVxx] NTRU Prime dOW-PCA QU⊥m
[HRSS17] NTRU HRSS pOW-CPA modi�ed QFO⊥ m is generated form seed

[BGG
+

17] CAKE pOW-CPA QFO⊥

[Wan17] RLCE ? RLCEpad a variant of OAEP+

[Ham17] ThreeBearsCCA pOW-CPA TU ver.7, Sec.4

PKE

[CHK
+

16] CHK+ PKE2 pOW-CPA TU
[CKLS16] CCALizard pOW-CPA TU

PKE PKE1

KEM

IND-CPA

OW-CPA

dOW-PCA

pOW-PCA

PR-CPA

IND-CCA

THalf XYZ

T

T
QU⊥m,QU

6⊥
m

Fig. 2: Transformations in the QROM. Solid arrows indicate quantum tight reductions,

dashed arrows indicate quantum non-tight reductions, thin arrows indicates existing

reductions in [HHK17], and thick arrows indicates our new reductions.

1.1 Our Contributions

New Security Notion, PR-CPA: We �rst give a new (but seemingly folklore) security

notion, PR-CPA security of deterministic PKE. A deterministic PKE scheme is PR-CPA

if, there exist an e�cient fake key-generation algorithm and a fake encryption algo-

rithm, such that, 1) a real and fake encryption key are indistinguishable, 2) random real

and fake ciphertexts on a fake key are indistinguishable, and 3) the probability that a

random fake ciphertext on a fake key falls in the range of a real ciphertext on the fake

key is negligible.

It is easy to �nd PR-CPA PKE schemes from post-quantum cryptography, say,

NTRU [HPS98,SS11], the GPV TDF [GPV08], McEliece PKE [McE78], and Niederreiter

PKE [Nie86]. We notice that the above schemes have similar security proofs: We can

replace their keys with random keys under appropriate assumptions and random ci-

phertexts on the random key with completely random ciphertexts under the LPN/LWE
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assumptions. Moreover the random ciphertexts on the random key are exponentially

sparser than the completely random ciphertexts and, thus, and random and fake ci-

phertexts on a fake key are overlapped only in negligible amount. See Section 3 for

the detail.

PR-CPA from IND-CPA: In addition, we �nd that it is easy to construct PR-CPA-secure

PKE scheme from any IND-CPA-secure PKE scheme whose plaintext spaces are expo-

nentially large.

Recall that, T in [HHK17] converts probabilistic IND-CPA (or OW-CPA) PKEs into

a deterministic OW-PCA PKE PKE1 = T[PKE,G], where randomness in encryption is

�xed as r := G(m), the hash value of m.

We give another transformation THalf which is essentially same as T except that

THalf halves the plaintext space and employ only one of the two, while T keeps the

plaintext space as the original one. The other part is used for fake ciphertexts. Unfor-

tunately, the quantum reduction su�ers from loose reduction with the quadratic loss

as the reduction for T does. See Figure 2. We will prove this in Section 4.

Tight Reduction, XYZ: We propose a new conversion XYZ, which is a KEM variant

of the BR93 conversion and is essentially equivalent to U6⊥m. We succeed to show a

tight security reduction in the QROM by requiring an underlying PKE scheme to be

PR-CPA-secure and by giving a new and simple proof, which is easily understandable

(essentially without quantum knowledge): We show that

KEM = XYZ[PKE1,H, PRF, PRF′] is IND-CCA secure tightly in the QROM if

PKE1 is deterministic and PR-CPA, and PRF and PRF′ are quantumly-secure

pseudo-random functions.

Roughly speaking, our reduction results in

εind-cca ≤ 2εpr-cpa + 4εprf + negl(κ) and Tpr-cpa,Tprf ≈ Tind-cca +O(q · poly(κ)),

where εpr-cpa is the max. of the advantage for PR-CPA security, εprf is the max. of the

advantages of PRFs. This drastically improves the previous non-tight reductions. We

note that we can remove εPRF and εPRF′ by replacing PRF and PRF′ with quantum

random oracles and by invoking Zhandry’s simulation method [Zha12]. However, this

also replaces O(q · poly(κ)) with O(q2 · poly(κ)).
See Section 5 for the details.

Implementations: We implement our conversion upon NTRU-HRSS [HRSS17] over a

desktop PC and a RasPi. Assuming that NTRU-HRSS is PR-CPA, the obtained KEM is

CCA secure in the QROM. See Section 6.

Open Problems: We leave interesting open problems for IND-CCA security of asym-

metric encryption in the post-quantum setting:

1. Can we remove the stronger requirements for PKE1, deterministic and pseudo-

random?

2. Can we construct (almost) tightly-secure IND-CCA2 PKE/KEM in the multi-user

and multi-challenge setting and in the QROM?
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2 Preliminaries

Notation: A security parameter is denoted by κ. We use the standard O-notations, O,

Θ, Ω, and ω. The abbreviations DPT and PPT stand for deterministic polynomial time

and probabilistic polynomial time. A function f (κ) is said to be negligible if f (κ) =
κ−ω(1). We denote a set of negligible functions by negl(κ). For two �nite sets X andY,

Map(X,Y) denotes a set of all functions whose domain is X and codomain is Y.

For a distribution χ, we often write “x ← χ”, which indicates that we take a sample

x from χ. For a �nite set S, U(S) denotes the uniform distribution over S. We often

write “x ← S” instead of x ← U(S).
If inp is a string, then “out ← A(inp)” denotes the output of algorithm A when

run on input inp. If A is deterministic, then out is a �xed value and we write “out :=
A(inp)”; We also use the notation “out := A(inp; r)” to make the randomness r explicit.

For the Boolean statement P, bool(P) denote the bit that is 1 if P is true, and oth-

erwise 0. For example, bool(b′ ?

= b) is 1 if and only if b′ = b.

Quantum Computation: We refer to [NC00] for basic of quantum computation.

The following lemma is taken from [HHK17], a wrapper of the oneway-to-hiding

(OW2H) lemma [Unr15, Lemma 6.2]. Roughly speaking, the lemma states that if any

quantum adversary issuing at most q queries to H can distinguish (x,H(x)) from (x, y),
where y is chosen uniformly at random, then we can �nd x by measuring one of the

adversary’s query.

Lemma 2.1 (Algorithmic Oneway to Hiding [HHK17,Unr15]). Let H : X → Y be a

quantum random oracle, let A be an adversary issuing at most q queries to H that on

input (x, y) ∈ X × Y outputs either 0/1. For all (probabilistic) algorithms F whose input

space is X ×Y and which do not make any hash queries to H, we have����Pr[AH(inp) → 1 | x ← X; inp← F(x,H(y))]
− Pr[AH(inp) → 1 | (x, y) ← X × Y; inp← F(x, y)]

����
≤ 2q ·

√
Pr[EXTA,H(inp) → x | (x, y) ← X × Y; inp← F(x, y)],

where EXT picks i ← {1, . . . , q}, runs AH(inp) until i-th query | x̂〉 to H, and returns

x ′ := Measure(| x̂〉) (when A makes less than i queries, EXT outputs ⊥ < X).

2.1 Key Encapsulation

The model for KEM schemes is summarized as follows:

De�nition 2.1. A KEM scheme KEM consists of the following triple of polynomial-time

algorithms (Gen, Encaps,Decaps):

– Gen(1κ ; rg) → (ek, dk): a key-generation algorithmwhich on input 1
κ
, where κ is the

security parameter, outputs a pair of keys (ek, dk). ek and dk are called encapsulation
key and decapsulation key, respectively.

– Encaps(ek; re) → (c,K): an encapsulation algorithm which takes as input encapsu-

lation key ek, outputs ciphertext c ∈ C and key K ∈ K .

6



– Decaps(dk, c) → K/⊥: a decapsulation algorithm which takes as input decapsula-

tion key dk and ciphertext c, outputs key K or a rejection symbol ⊥ < K .

De�nition 2.2 (Correctness). We say KEM = (Gen, Encaps,Decaps) has perfect cor-

rectness if for any (ek, dk) generated by Gen, we have that

Pr[Decaps(dk, c) = K : (c,K) ← Encaps(ek)] = 1.

Security: The security of KEM schemes is de�ned by several notions like onewayness

and indistinguishability. We recall the de�nition of indistinguishability under chosen-

ciphertext and chosen-plaintext attacks (denoted by IND-CCA and IND-CPA) for KEM,

respectively.

De�nition 2.3. A KEM scheme is (T, ε)-IND-CCA secure if the following property holds

for security parameter κ; For any adversary A whose running time is at most T ,

Advind-ccaKEM,A(κ) :=
���2 Pr[Exptind-ccaKEM,A(κ) = 1] − 1

��� ≤ ε .
We say a KEM scheme is (T, ε)-IND-CPA secure, if A does not access Dec .

Advind-cpaKEM,A(κ) :=
���2 Pr[Exptind-cpaKEM,A(κ) = 1] − 1

��� ≤ ε .

Exptind-cpaKEM,A (κ)

b← {0, 1}

(ek, dk) ← Gen(1κ )

(c∗,K∗
0
) ← Encaps(ek);

K∗
1
← K

b′ ← A(ek, c∗,K∗b)

return bool(b′ ?= b)

Exptind-ccaKEM,A (κ)

b← {0, 1}

(ek, dk) ← Gen(1κ )

(c∗,K∗
0
) ← Encaps(ek);

K∗
1
← K

b′ ← ADecc∗ (·)(ek, c∗,K∗b)

return bool(b′ ?= b)

Decc∗ (c)

if c = c∗, return ⊥

K := Decaps(dk, c)

return K

Fig. 3: Games for KEM schemes

2.2 Public-Key Encryption

The model for PKE schemes is summarized as follows:

De�nition 2.4. A PKE scheme PKE consists of the following triple of polynomial-time al-

gorithms (Gen, Enc,Dec) and a �nite message spaceM. We assume thatM is e�ciently

recognizable.
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– Gen(1κ ; rg) → (ek, dk): a key-generation algorithmwhich on input 1
κ
, where κ is the

security parameter, outputs a pair of keys (ek, dk). ek and dk are called encryption

key and decryption key, respectively.

– Enc(ek,m; re) → c: an encryption algorithm which takes as input encryption key ek

and message m ∈ M, outputs ciphertext c ∈ C.
– Dec(dk, c) → m/⊥: a decryption algorithm which takes as input decryption key dk

and ciphertext c, outputs message m ∈ M or a rejection symbol ⊥ <M.

De�nition 2.5. We say a PKE scheme PKE is deterministic if Enc is deterministic.

De�nition 2.6 (Correctness). We say PKE = (Gen, Enc,Dec) has perfect correctness

if for any (ek, dk) generated by Gen and for any m ∈ M we have that

Pr[Dec(dk, c) = m : c← Enc(ek,m)] = 1.

Security: The security of PKE schemes is de�ned by several notions like onewayness

and indistinguishability. Here, we recall the de�nition of indistinguishability under

chosen-ciphertext and chosen-plaintext attacks (denoted by IND-CCA and IND-CPA)

for PKE, respectively.

De�nition 2.7 (IND-CCA and IND-CPA security).APKE schemePKE = (Gen, Enc,Dec)
is (T, ε)-IND-CCA secure if the following property holds for security parameter κ; For
any adversary A whose running time is at most T ,

Advind-ccaPKE,A(κ) :=
���2 Pr[Exptind-ccaPKE,A(κ) = 1] − 1

��� ≤ ε .
We say a PKE scheme is (T, ε)-IND-CPA secure, ifA cannot access to the decapsulation

oracle Dec∗(∗); that is,

Advind-cpaPKE,A (κ) :=
���2 Pr[Exptind-cpaPKE,A (κ) = 1] − 1

��� ≤ ε .
De�nition 2.8 (OW-CPA security). A PKE scheme PKE = (Gen, Enc,Dec) is (T, ε)-
OW-CPA secure if the following property holds for security parameter κ; For any adver-
sary A,

Advow-cpa
A,PKE(κ) := Pr[Exptow-cpaPKE,A(κ) = 1] ≤ ε,

where A runs in at most T steps.

2.3 Pseudorandom Functions

A pseudorandom function (PRF) is a polynomial-time computable function of form

PRF : S × X → Y. We call the sets S, X, Y as the key space, the domain, and the

codomain of PRF, respectively.

De�nition 2.9. We say PRF is secure, if for any (QPT) adversary A, we have

AdvPRF,A(κ) :=
���Pr[APRF(s, ·)(1κ) = 1] − Pr[Aρ(·)(1κ) = 1]

���
is negligible in κ, where s ← S, ρ ← Map(X,Y) are uniformly and independently

random.
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Exptow-cpaPKE,A (κ)

(ek, dk) ← Gen(1κ )

m∗ ←M

c∗ ← Enc(ek,m∗)

m′ ← A(ek, c∗)

return bool(m′ ?= Dec(dk, c∗))

Exptind-cpaPKE,A (κ)

b← {0, 1}

(ek, dk) ← Gen(1κ )

(m0,m1, st) ← A1(ek)

c∗ ← Enc(ek,mb)

b′ ← A2(c∗, st)

return bool(b′ ?= b)

Exptind-ccaPKE,A (κ)

b← {0, 1}

(ek, dk) ← Gen(1κ )

(m0,m1, st) ← ADec⊥(·)

1
(ek)

c∗ ← Enc(ek,mb)

b′ ← ADecc∗ (·)

2
(c∗, st)

return bool(b′ ?= b)

Deca(c)

if c = a, return ⊥

m := Dec(dk, c)

return m

Fig. 4: Games for PKE schemes

We additionally require joint security of PRFs: Let PRFi : Si ×Xi → Yi be PRFs for

i = 1, . . . , k .

De�nition 2.10. We say PRFs PRF1, . . . , PRFk are jointly-secure, if for any (QPT) adver-
sary A, we have

AdvPRF1+· · ·+PRFk,A(κ) :=
���Pr[APRF1(s1, ·),...,PRFk (sk, ·)(1κ) = 1] − Pr[Aρ1(·),...,ρk (·)(1κ) = 1]

���
is negligible in κ, where si ← S, ρi ← Map(Xi,Yi) are uniformly and independently

random.

Remark 2.1. One might wonder why we de�ne joint security of PRFs, because it is well-

known that the securities of each PRF implies joint security of PRFs in the classical

setting. Recall that, in the proof of joint security, the hybrid games are introduced.

We then construct reduction algorithms that simulate the hybrid games. Notice that

the reduction algorithms are required to simulate the random oracles. In the classical-

query setting, it is easy to simulate the random oracle on the �y and the simulation

adds the time approximately O(q) operations if we carefully design the hash table.

Meanwhile, quantum adversaries can make quantum queries to their oracles. Thus,

we cannot employ the on-the-�y simulation of the random oracles. Zhandry’s theorem

shows that if we know the number of queries, q, then we take a random function f
from 2q-wise independent hash functions, and replace the random oracle ρ by f . To the

best of our knowledge, the most e�cient 2q-wise independent hash functions requires

the computational time Θ(q) operations per evaluation. This results in the additional

Θ(q2) operations to simulate the random oracle, which makes the security reduction

non-tight.

Therefore, we adopt an option that we just assume joint security of PRFs.

3 PR-CPA security of PKE

We formally de�ne our new security notion, PR-CPA, of deterministic PKE. We re-

quire two additional PPT algorithms G̃en and Ẽnc: G̃en is a PPT algorithm that takes
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the security parameter as input and outputs a fake encryption key ẽk, which is in-

distinguishable from a real encryption key. This means that the original encryption

algorithm Enc should be able to encrypt a message even with a fake encryption key.

Ẽnc is a PPT algorithm that takes a fake encryption key as input and outputs a random

fake ciphertext, which is indistinguishable from a random real ciphertext with a fake

encryption key. We further require that the probability that a random fake ciphertext

with a fake encryption key falls in the range of a real ciphertext with a fake encryption

key is negligible. For example, this condition is satis�ed if a set of real ciphertexts is

su�ciently sparser than a set of fake ciphertext or a set of real ciphertexts is disjoint

with a set of fake ciphertext. The formal de�nition follows:

De�nition 3.1. A deterministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and

ciphertext spacesM and C is (T, εdisj, εpr-key, εpr-cipher)-PR-CPA secure if the following

property holds for security parameter κ; There exist two PPT algorithms G̃en and Ẽnc
that satisfy the followings:

– (Statistical Disjointness:) for any ẽk generated by G̃en(1κ), the probability that a fake
ciphertext is in the range of a real ciphertext generated by Enc(ẽk, ·) is negligible, that
is,

Pr[c← Ẽnc(ẽk) : c ∈ Enc(ẽk,M)] = εdisj(κ).

– (PR-Key Security:) for any adversaryA, its advantage to distinguish a real key from

a fake key, denoted by Advpr-key
A,PKE(κ), is at most ε ;

Advpr-key
A,PKE(κ) :=

����Pr [
(ek, dk) ← Gen(1κ); b′← A(ek) : b′ = 1

]
− Pr

[
ẽk ← G̃en(1κ); b′← A(ẽk) : b′ = 1

] ���� ≤ εpr-key,
where A runs in at most T steps.

– (PR-Ciphertexts Security:) for any adversary A, its advantage to distinguish a real

ciphertext from a fake ciphertext with a fake key, denoted by Advpr-cipher
A,PKE (κ), is at

most ε ;

Advpr-cipher
A,PKE (κ) :=

���������
Pr

[
ẽk ← G̃en(1κ);m∗ ←M; c∗ := Enc(ẽk,m∗);

b′← A(ẽk, c∗) : b′ = 1

]
− Pr

[
ẽk ← G̃en(1κ); c∗ ← Ẽnc(ẽk);

b′← A(ẽk, c∗) : b′ = 1

]
��������� ≤ εpr-cipher,

where A runs in at most T steps.

3.1 Examples

We found that NTRU, the GPV TDFs, the McEliece PKE, and the Niederreiter PKE are

PR-CPA-secure under certain assumptions if their parameters are carefully chosen.

– (Perfect Correctness) First, we require them to be perfectly correct; this can be

satis�ed their noise parameter su�ciently smaller.
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Gen1(1κ )

(ek, dk) ← Gen(1κ )

return (ek, dk)

Enc1(ek,m), where m ∈ Meven

r := G(m)

c := Enc(ek,m; r)

return c

Dec1(dk, c)

m := Dec(dk, c)

if m <Meven return ⊥

else return m

�Gen1(1κ )
(ek, dk) ← Gen(1κ )

return ek

�Enc1(ek)
m←M

odd
, r ← R

c := Enc(ek,m; r)

return c

Fig. 5: PKE1 = (Gen1, Enc1,Dec1) = THalf[PKE,G] with �Gen1 and Ẽnc1

– (PR-Keys) Second, in the proofs of semantic security (IND-CPA security) of NTRU,

McEliece, and Niederreiter, we often employ the assumptions that their encryption

keys are indistinguishable from random keys. Thus, the assumption just states PR-

Keys security. In the case of GPV, the public key is statistically indistinguishable

from random keys.

– (PR-Ciphertexts) Third, we know that after we replace their encryption keys ran-

dom, then their random ciphertexts with random keys are indistinguishable from

random. Hence, we just de�ne Ẽnc1 as a sampler from the ambient spaces;Zq[x]/(xn−
1) for NTRU, Zmq for GPV, Fm for McElice, and Fn for Niederreiter.

– (Disjointness) Forth, we know that the ciphertext spaces are exponentially sparser

than the ambient spaces in them. Thus, the disjointness easily follows.

We also show that any perfectly-correct, IND-CPA-secure PKE whose plaintext

space is su�ciently large can be converted into PR-CPA-secure PKE1 by using the

random oracle G. See Section 4 for the details.

4 Conversion from IND-CPA to PR-CPA

We propose a new conversion THalf from IND-CPA-secure PKE PKE to deterministic

PR-CPA-secure PKE PKE1, which is a variant of T. LetM and R be the message and

randomness spaces of PKE, respectively. Suppose thatM is divided into two disjoint,

sampleable spaces, M = Meven t Modd. (For example, Meven and Modd are even

and odd numbers in M.) We set the message space of PKE1 as Meven, the half of

M. Let G : Meven → R be a random oracle. We denote PKE1 = THalf[PKE,G] =
(Gen1, Enc1,Dec1). The algorithms are de�ned in Figure 5. We additionally require a

PRF PRF : S ×Meven → R for the security proof.

The proofs are very similar to those of [TU16] and [HHK17].

Theorem 4.1 (Classical Reduction). Let PKE be a PKE scheme. For any PR-CPA ad-

versary A against PKE1 issuing at most qG queries to G, there exist two two IND-CPA

11



adversaries APKE and A
′
PKE against PKE such that

Advpr-keyPKE1,A
(κ) = 0

Advpr-cipherPKE1,A
(κ) ≤ 2Advind-cpaPKE,APKE

(κ) + Advind-cpaPKE,A′PKE
(κ) +

qG
#Meven

,

and their running times are about that of A.

The proof of Theorem 4.1 is in Appendix B.

Theorem 4.2 (Quantum Reduction). Let PKE be a PKE scheme. For any PR-CPA quan-

tum adversaryA against PKE1 issuing at most qG queries to G, there exist two IND-CPA
quantum adversariesAPKE andA

Hyb
PKE against PKE and three quantum adversariesA

Hyb
PRF ,

A1

PRF, and A
2

PRF against PRF, such that

Advpr-keyPKE1,A
(κ) = 0

Advpr-cipherPKE1,A
(κ) ≤ 2qG

√
2Advind-cpa

PKE,AHyb
PKE

(κ) + Advprf
PRF,AHyb

PRF

(κ) + 1/#Meven

+ Advind-cpaPKE,APKE
(κ) + Advprf

PRF,A1

PRF
(κ) + Advprf

PRF,A2

PRF
(κ)

and their running times are about that of A.

The proof of Theorem 4.2 follows.

4.1 Quantum Proofs

It is obvious that Advpr-keyPKE1,A
(κ) = 0, since Gen1 = �Gen1. It is also obvious that the

output of Ẽnc1(ek) never overlaps with Enc1(ek,Meven) ⊆ Enc(ek,Meven;R), because

PKE is perfectly correct and the range of Ẽnc1(ek) is Enc(ek,Modd;R).

Table 2: Summary of Games for the Security Proof in the QROM

Game m∗ r∗ c∗ G justi�cation

Game0 Meven G(m∗) Enc(ek,m∗; r∗) = EncG
1
(ek,m∗) G(·)

Game1 Meven r∗ Enc(ek,m∗; r∗) G(·) IND-CPA security of PKE and the OW2H lemma

Game′
1
Meven r∗ Enc(ek,m∗; r∗) PRF(s, ·) PRF security of PRF

Game′
2
M

odd
r∗ Enc(ek,m∗; r∗) =�Enc1(ek) PRF(s, ·) IND-CPA security of PKE

Game2 Modd
r∗ Enc(ek,m∗; r∗) =�Enc1(ek) G PRF security of PRF

In the rest of this section, we give a non-tight security proof for pseudorandomness

of ciphertexts. What we want to show is the upper bound of

Advpr-cipherPKE1,A
(κ) = |Pr[Game0 = 1] − Pr[Game2 = 1]| .

12



Game0: We expand algorithms and obtain Game0:

(ek, dk) ← Gen(1κ);m∗ ←Meven; r∗ ← G(m∗); c∗ := Enc(ek,m∗; r∗); b′← AG(·)(ek, c∗); return b′.

Game1: This game is the same as Game0 except that the randomness of the challenge

ciphertext is freshly generated:

(ek, dk) ← Gen(1κ);m∗ ←Meven; r∗ ← R; c∗ := Enc(ek,m∗; r∗); b′← AG(·)(ek, c∗); return b′.

Applying the Algorithmic-OW2H lemma (Lemma 2.1) with X = Meven, Y = R,

x = m∗, y = r∗, algorithms F and EXT[A,G], and game Hyb in Figure 6, we have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ 2qG
√
Pr[Hyb = 1].

Game2: This game is the same as Game1 except that the challenge ciphertext is gen-

erated by Enc(ek,m∗; r∗), where m∗ ←Modd rather than m∗ ←Meven:

(ek, dk) ← Gen(1κ);m∗ ←Modd; r∗ ← R; c∗ := Enc(ek,m∗; r∗); b′← AG(·)(ek, c∗); return b′.

In addition, for i = 0, 1, we de�ne intermediate games Game′i , in which we employ

PRF PRF(s, ·) : Meven → R with random key s′← S instead of G : Meven → R.

It is straightforward to construct quantum reduction algorithms A1

PRF, A2

PRF, and

satisfying ��
Pr[Game1 = 1] − Pr[Game′

1
= 1]

�� ≤ Advprf
PRF,A1

PRF
(κ),��

Pr[Game′
2
= 1] − Pr[Game2 = 1]

�� ≤ Advprf
PRF,A2

PRF
(κ).

Their running times are about that of A.

Moreover, we have a quantum reduction algorithm APKE satisfying��
Pr[Game′

1
= 1] − Pr[Game′

2
= 1]

�� = Advind-cpaPKE,APKE
(κ).

We de�ne APKE as follows:

– On input ek,APKE chooses two messages m0 ←Meven and m1 ←Modd uniformly

at random. It queries them to its challenge oracle and obtains c∗ ← Enc(ek,m∗; r∗),
where m∗ is mb . It invokesA with ek and c∗. It also chooses key of PRF as s← S
to simulate the oracle.

– APKE simulates the random oracle G by computing∑
x

|x〉 |y〉 7→
∑
x

|x〉 |PRF(s, x) ⊕ y〉 .

– Eventually, A outputs a bit b′. APKE outputs b′ also.
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It is obvious that APKE perfectly simulates Gameb+1 depending on the challenge bit

b ∈ {0, 1}. Therefore,

Advind-cpaPKE,A′PKE
(κ) = |Pr[b′ = b] − 1/2|

= |(1 − Pr[b′ = 1 | b = 0]) + Pr[b′ = 1 | b = 1] − 1|

= |1 − Pr[Game1 = 1] + Pr[Game2 = 1] − 1|

= |Pr[Game2 = 1] − Pr[Game1 = 1]|

as we wanted. The running time is given as

TAPKE ≈ TA +O(qG · TPRF).

Hyb: Finally, we upperbound Pr[Hyb = 1].

Let us introduce another hybrid game Hyb′, in which we replace G with PRF(s, ·).
It is straightforward to construct a quantum reduction algorithm A

Hyb
PRF satisfying

|Pr[Hyb = 1] − Pr[Hyb′ = 1]| ≤ Advprf
PRF,AHyb

PRF

(κ).

Their running times are about that of A.

Let γ := Pr[Hyb′ = 1]. Let us construct a reduction algorithm A
Hyb
PKE against

IND-CPA security of PKE as follows:

– On input ek, A
Hyb
PKE chooses s ← S and chooses two messages m0 ← Meven and

m1 ← Modd uniformly at random. It then queries m0,m1 to its challenge oracle

and obtains c∗ ← Enc(ek,m∗; r∗), where m∗ is mb . It invokes EXT[A, PRF(s, ·)]
with ek and c∗.

– AHyb
PKE can simulate the oracle PRF(s, ·) because it knows s.

– Eventually, EXT[A, PRF(s, ·)] outputs m′. AHyb
PKE outputs b′ = 0 if m′ = m0. Other-

wise, it outputs b′← {0, 1}.

If the challenge bit b is 0, then the plaintext of c∗ is correctly generated. Thus,A
Hyb
PKE

perfectly simulates the game Hyb′. This means that we have

Pr[b′ = 0 | b = 0] = Pr[Hyb′ = 1] +
1

2

(1 − Pr[Hyb′ = 1]) =
1

2

+
1

2

γ.

On the other hand, that is, if the challenge bit b is 1, A
Hyb
PKE did not simulate the game

correctly. Let δ denote the probability that m′ = m0 occurs conditioned on that the

challenge bit b is 1. Since m0 is chosen uniformly at random and EXT[A, PRF(s, ·)]
knows nothing on m0 from ek and c∗, we have

δ ≤ 1/#Meven

and

Pr[b′ = 1 | b = 1] =
1

2

(1 − δ).
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Hyb

(ek, dk) ← Gen(1κ )

m∗ ←Meven

r∗ ← R

c∗ := Enc(ek,m∗; r∗)

m′ ← EXT[A,G(·)](ek, c∗)

return bool(m′ ?= m∗)

F(m∗, r∗)

(ek, dk) ← Gen(1κ )

c∗ := Enc(ek,m∗; r∗)

inp := (ek, c∗)

return inp

EXT[A,G](inp)

i ← [qH]

Run AG(inp) until i-th query | x̂〉 to G

if i > number of queries to G, return ⊥

else return x′ := Measure(| x̂〉)

Fig. 6: Game Hyb and Algorithms F and EXT

Let us estimate the advantage of A
Hyb
PKE . From the de�nition, we have

Advind-cpa
PKE,AHyb

PKE

(κ) = |2 Pr[b′ = b] − 1| = |Pr[b′ = 0 | b = 0] + Pr[b′ = 1 | b = 1] − 1|

=

����1
2

+
1

2

γ +
1

2

−
1

2

δ − 1

���� = 1

2

|γ − δ | .

If 0 ≤ γ < δ, then we have the upperbound

Pr[Hyb′ = 1] < δ ≤ 1/#Meven.

On the other hand, that is, if γ ≥ δ, then we have

Pr[Hyb′ = 1] = γ ≤ 2Advind-cpa
PKE,AHyb

PKE

(κ) + δ ≤ 2Advind-cpa
PKE,AHyb

PKE

(κ) + 1/#Meven.

Thus, in the both cases, we have

Pr[Hyb′ = 1] ≤ 2Advind-cpa
PKE,AHyb

PKE

(κ) + 1/#Meven

as we wanted. The running time is about that of EXT[A, PRF(s, ·)] and A.

Summary: Summing up the above arguments, we obtain the bound

Advpr-cipherPKE1,A
(κ) = |Pr[Game0 = 1] − Pr[Game2 = 1]|

≤ 2qG
√
2Advind-cpa

PKE,AHyb
PKE

(κ) + Advprf
PRF,AHyb

PRF

(κ) + 1/#Meven

+ Advind-cpaPKE,APKE
(κ) + Advprf

PRF,A1

PRF
(κ) + Advprf

PRF,A2

PRF
(κ)

as we wanted.
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Gen(1κ )

(ek′, dk′) ← Gen1(1κ )

s← S

dk ← (dk′, ek′, s)

return (ek′, dk)

Enc(ek′)

m←M

c := Enc1(ek′,m)

K := H(m)

return (K, c)

Dec(dk, c), where dk = (dk′, ek′, s)

m := Dec1(dk′, c)

if m = ⊥, return K := PRF(s, c)

if c , Enc1(ek′,m), return K := PRF(s, c)

else return K := H(m)

Fig. 7: KEM := XYZ[PKE1, PRF,H].

5 Conversion from PR-CPA to IND-CCA

We propose a new conversion XYZ from deterministic PKE PKE1 = (Gen1, Enc1,Dec1),
whose plaintext and ciphertext spaces are denoted byM and C, to KEM = (Gen, Enc,
Dec). We notice that this is a variant of U6⊥m and a KEM variant of the BR93 conversion.

Let PRF : S×C → K be a PRF and let H : M → K be a random oracle. We denote

KEM = XYZ[PKE1, PRF,H]. The algorithms are de�ned in Figure 7. Assuming PR-CPA

security of PKE1, we have two algorithms �Gen1 and Ẽnc1 that satisfy the conditions

in De�nition 3.1. Let εdisj(κ) be a disjointness probability of PKE1 with �Gen1 and Ẽnc1.
We additionally require a PRF PRF′ : S ×M → K .

Theorem 5.1 (Classical Reduction). Let PKE1 be a deterministic PKE scheme. For any

IND-CCA adversaryB againstKEM, there exist PR-CPA adversariesApr-key andApr-cipher

against PKE1, three adversaries APRF against PRF, such that

Advind-ccaKEM,B(κ) ≤ Advpr-keyPKE1,Apr-key

(κ) + Advpr-cipherPKE1,Apr-cipher

(κ)

+ AdvprfPRF,APRF
(κ) + εdisj(κ),

and the running times of them are about that of B.

The proof of Theorem 5.1 is in Appendix A.

Theorem 5.2 (Quantum Reduction). Let PKE1 be a deterministic PKE scheme. For any

IND-CCA quantum adversary B against KEM, there exist PR-CPA quantum adversaries

Apr-key and Apr-cipher against PKE1, quantum adversary A0

PRF′ against PRF
′
, quantum

adversary APRF′+PRF against PRF′ and PRF, and two quantum adversaries A3

PRF and

A6

PRF against PRF such that

Advind-ccaKEM,B(κ) ≤ Advpr-keyKEM,A
pr-key

(κ) + Advpr-cipherKEM,A
pr-cipher

(κ)

+ Advprf
PRF′,A0

PRF′
(κ) + AdvprfPRF′+PRF,APRF′+PRF

(κ)

+ Advprf
PRF,A3

PRF
(κ) + Advprf

PRF,A6

PRF
(κ) + εdisj(κ)

and the running times of them are about that of B.

The proof of Theorem 5.2 follows.
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Table 3: Summary of Games for the Security Proof in the QROM

Game ek H c∗ K∗
0

K∗
1

valid c invalid c justi�cation

Game0 ek
′ H(·) Enc1(ek′,m∗) H(m∗) random H(m) PRF(s, c)

Game0.5 ek
′ PRF′(s′, ·) Enc1(ek′,m∗) H(m∗) random H(m) PRF(s, c) PRF security

Game1 ek
′ H(·) Enc1(ek′,m∗) H(m∗) random H(m) Hq(c) joint PRF security

Game2 ek
′ Hq(Enc1(ek, ·)) Enc1(ek′,m∗) Hq(c∗) random Hq(c) Hq(c) Perfect correctness

Game3 ek
′ PRF(s, Enc1(ek, ·)) Enc1(ek′,m∗) PRF(s, c∗) random PRF(s, c) PRF(s, c) PRF security

Game4 ẽk
′ PRF(s, Enc1(ẽk′, ·)) Enc1(ẽk′,m∗) PRF(s, c∗) random PRF(s, c) PRF(s, c) PR-Key

Game5 ẽk
′ PRF(s, Enc1(ẽk′, ·))�Enc1(ẽk′) PRF(s, c∗) random PRF(s, c) PRF(s, c) PR-Cipher

Game6 ẽk
′ Hq(Enc1(ẽk′, ·)) �Enc1(ẽk′) Hq(c∗) random Hq(c) Hq(c) PRF security

Game7 ẽk
′ Hq(Enc1(ẽk′, ·)) �Enc1(ẽk′) \ Enc1(ẽk′, ·) Hq(c∗) random Hq(c) Hq(c) Statistical Argument

Game8 ẽk
′ Hq(Enc1(ẽk′, ·)) �Enc1(ẽk′) \ Enc1(ẽk′, ·) random random Hq(c) Hq(c) Statistical Argument

5.1 Security Proof in the QROM

We use game-hopping proof. The overview of all games is given in Table 3. In what

follows, qH and qDec are the numbers of queries to the random oracle H and the de-

capsulation oracle Dec made by A.

Game0: This is the original game, Exptind-ccaKEM,A(κ). Thus, we have

Advind-ccaKEM,A(κ) = |Pr[Game0 = 1] − 1/2| .

Game0.5: This game is the same asGame0 except thatH is replaced by PRFPRF′(s′, ·) : M →
K with random s′← S.

It is straightforward to construct quantum reduction algorithms A0

PRF′ satisfying

|Pr[Game0 = 1] − Pr[Game0.5 = 1]| ≤ Advprf
PRF′,A0

PRF′
(κ).

The running time is about

TA0

PRF′
≈ TA + TGen1 +O

(
qDec · (TEnc1 + TDec1 + TPRF)

)
.

Game1: This game is the same as Game0 except that the decapsulation oracle employs

another random oracle Hq : C → K instead of PRF PRF(s, ·) to generate a random key

K for invalid ciphertexts.

It is straightforward to construct quantum reduction algorithms APRF′+PRF satis-

fying

|Pr[Game0.5 = 1] − Pr[Game1 = 1]| ≤ AdvprfPRF′+PRF,APRF′+PRF
(κ).

The running time is about

TAPRF′+PRF ≈ TA + TGen1 +O
(
qDec · (TEnc1 + TDec1 )

)
.
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Game2: We next de�ne H(m) := Hq(Enc1(ek,m)), where Hq : C → K . Notice that the

view H(m′) = Hq(c) for valid ciphertext c in step 5 of Dec2 is equivalent to the view

H(m′) in step 5 of Dec1, because Enc1(ek, ·) is perfectly correct and injective. Thus, we

have

Pr[Game1 = 1] = Pr[Game2 = 1].

We note that, now, our decapsulation oracle needs not to distinguish valid and

invalid ciphertexts: It just rejects if c = c∗ and returns K = Hq(c) otherwise. Thus, in

what follows, the reduction algorithm never requires a decapsulation key.

Game3: We next modify Hq : C → K with PRF(s, ·). It is straightforward to construct

a quantum reduction algorithm A3

PRF satisfying

|Pr[Game2 = 1] − Pr[Game3 = 1]| ≤ Advprf
PRF,A3

PRF
(κ).

The running time is about

TA3

PRF
≈ TA + TGen1 +O

(
(qDec + qH) · TEnc1

)
.

Game4: We next replace an encryption key ek
′

with another one ẽk
′

generated by�Gen1.
Let us construct a reduction algorithm Apr-key:

– On input ek, which is ek
′
or ẽk

′
,Apr-key chooses b← {0, 1} and s← S. It chooses

a message m∗ ← M uniformly at random and computes c∗ := Enc1(ek,m∗) and

K∗
0
:= PRF(s, c∗). It also chooses K∗

1
← K uniformly at random. It invokes the

adversary A with ek, c∗, and K∗
b
.

– Apr-key simulates the hash oracle by computing∑
m

|m〉 |y〉 7→
∑
m

|m〉 |PRF(s, Enc1(ek,m)) ⊕ y〉 .

– Apr-key also can simulate the decapsulation oracle: On input c , c∗, it just returns

K := PRF(s, c).
– Eventually, A outputs a bit b′. Apr-key outputs b′.

It is obvious that Apr-key perfectly simulates Game3 and Game4 if ek is ek
′

or ẽk
′
.

Therefore,

Advpr-keyPKE,A
pr-key

(κ) =
���Pr[b′ = 1 | ek = ek

′] − Pr[b′ = 1 | ek = ẽk
′]

���
= |Pr[Game3 = 1] − Pr[Game4 = 1]| ,

as we wanted. The running time is given as

TA
pr-key
≈ TA +O

(
(qDec + qH) · (TEnc1 + TPRF)

)
.
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Game5: We next replace a target ciphertext c∗ generated by Enc1(ẽk′,m∗), where

m∗ ←M, with another target ciphertext generated by Ẽnc1(ẽk′).
Let us construct a reduction algorithm Apr-cipher as follows:

– On input ẽk
′

and c∗, which is generated by Enc1(ẽk′,m∗) or Ẽnc1(ẽk′), Apr-cipher

chooses b ← {0, 1} and s ← S. It computes K∗
0
:= PRF(s, c∗). It also chooses

K∗
1
← K uniformly at random. It invokes the adversary A with ek, c∗, and K∗

b
.

– Apr-cipher simulates the hash oracle by computing∑
m

|m〉 |y〉 7→
∑
m

|m〉 |PRF(s, Enc1(ek,m)) ⊕ y〉 .

– Apr-cipher also can simulate the decapsulation oracle: On input c , c∗, it just re-

turns K := PRF(s, c).
– Eventually, A outputs a bit b′. Apr-cipher outputs b′.

It is obvious that Apr-cipher perfectly simulates Game4 and Game5 depending on c∗.
Therefore,

Advpr-keyPKE,A
pr-cipher

(κ) =
���Pr[b′ = 1 | c∗ := Enc1(ẽk′,m∗)] − Pr[b′ = 1 | c∗ ← Ẽnc1(ẽk′)]

���
= |Pr[Game4 = 1] − Pr[Game5 = 1]| ,

as we wanted. The running time is given as

TA
pr-key
≈ TA +O

(
(qDec + qH) · (TEnc1 + TPRF)

)
.

Game6: We replace PRF(s, ·)withHq : C → K again. It is straightforward to construct

a quantum reduction algorithm A6

PRF satisfying

|Pr[Game5 = 1] − Pr[Game6 = 1]| ≤ Advprf
PRF,A6

PRF
(κ).

The running time is

TA6

PRF
≈ TA + T�Gen1 +O

(
(qDec + qH) · TEnc1 )

)
.

Game7: We now turn in the statistical arguments. We employ the (ine�cient) chal-

lenger that returns false if the challenge ciphertext c∗ generated by Ẽnc1(ẽk′). is in the

range of Enc1(ẽk′,M). Since we have

Pr[c← Ẽnc1(ẽk) : c ∈ Enc(ẽk,M)] = εdisj(κ)

from the de�nition of PR-CPA, this modi�cation introduces only negligible di�erence.

We have

|Pr[Game6 = 1] − Pr[Game7 = 1]| ≤ εdisj(κ).
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Game8: We �nally replace K∗
0
:= Hq(c∗) with K∗

0
← K . Apparently, we have

Pr[Game8 = 1] = 1/2,

because K∗
0

and K∗
1

are chosen uniformly at random and independent from c∗.
Meanwhile, we notice that the sum of the squared magnitudes of c∗ over all queries

made toHq is zero, because c∗ is outside of the range of Enc1(ẽk, ·) in both ofGame7 and

Game8: If the i-th query is made by the adversary, then the query is to H and cannot

contain c∗ because of disjointness. If the i-th query is made by the decapsulation oracle,

then the query is classical and never equals to c∗. Since the sum is zero, A has no

knowledge on Hq(c∗) and the views in Game7 and Game8 are equivalent.
1

Hence,

Pr[Game7 = 1] = Pr[Game8 = 1].

This completes the proof.

6 Implementation

We report the implementation results on a desktop PC and on a RasPi, based on the

previous implementation of a variant of NTRU [HRSS17].

6.1 NTRU-HRSS

We review a variant of NTRU, which we call NTRUHRSS17, in [HRSS17].

Let Φm(x) ∈ Z[x] be the m-th cyclotomic polynomial. We have Φ1 = x − 1. If

m is prime, then we have Φm = 1 + x + · · · + xm−1. De�ne Sn := Z[x]/(Φn) and

Rn := Z[x]/(xn − 1). For prime n, we have xn − 1 = Φ1Φn and Rn ' S1 × Sn. We de�ne

Li�p : Sn/(p) → Rn as

Li�p(v) :=
[
Φ1[v/Φ1](p,Φn)

]
(xn−1)

.

By de�nition, we have Li�p(v) ≡ 0 (mod Φ1) and Li�p(v) ≡ v (mod (p,Φn)). Let

p = (p,Φn) and q = (q, xn − 1). Let

T := {a ∈ Z[x] : a = [a]p} = {a ∈ Z[x] : ai ∈ (p) and deg(a) < deg(Φn)}

T+ := {a ∈ T : 〈xa, a〉 ≥ 0}.

The de�nition of NTRUHRSS17 is in Figure 8. Notice that all ciphertexts are equiv-

alent to 0 modulo (q,Φ1). which prevents a trivial distinguishing attack.

Hülsing et al. chooses (n, p, q) = (701, 3, 8192): The scheme is perfectly correct and

they claimed 128-bit post-quantum security of this parameter set. The implementation

of NTRUHRSS17 and QFO⊥[NTRUHRSS17,G,H,H′] is reported in [HRSS17].

1
The reader can invoke the algorithmic OW2H lemma (Lemma 2.1) to show this equivalence.

In the hybrid game, the extractor EXT will output the result c of the measure on the i-th query

| x̂〉 to Hq . Notice that any query | x̂〉 cannot set the non-zero amplitude for the state |c∗〉 as

we already discussed. Thus, any query cannot contain c∗ and Pr[c = c∗] is zero.
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Gen(1κ )

g, f ← T+
fq := [1/ f ](q,Φn)

h := [Φ1g fq]q
return dk = f , ek = h

Enc(h,m), m ∈ T

r ← T

c := [prh + Li�p(m)]q
return c

Dec( f , c)

m′ :=
[
[c f ]q f −1

]
p

return m′

Fig. 8: NTRUHRSS17

Gen′(1κ ) = Gen

g, f ← T+
fq := [1/ f ](q,Φn)

h := [Φ1g fq]q
return dk = f , ek = h

Enc′(h, (m, r)), (m, r) ∈ T 2

c := [prh + Li�p(m)]q
return c

Dec′( f , c)

m′ :=
[
[c f ]q f −1

]
p

r ′ :=
[ [
(c − Li�p(m′)) · (ph)−1

]
q

]
p

return (m′, r ′)

Fig. 9: Our Modi�cation NTRUHRSS17
′

Our Modi�cation: We want PKE1 to be deterministic PKE. Hence, we consider a pair

of (m, r) as a plaintext and make the decryption algorithm output (m, r) rather than m.

The modi�cation NTRUHRSS17
′

is summarized in Figure 9.

We also implement XYZ[NTRUHRSS17
′,H], where H is implemented by SHAKE. In

order to avoid the inversion of polynomials in decapsulation, we add f −1 modulo p to

dk as [HRSS17] did. This requires extra 139 bytes. In addition, we put (ph)−1 modulo q

in dk, which requires extra 1140 bytes. Thus, our decapsulation key is of length 2557

bytes.

6.2 Experimental Results

We preform the experiment with

– one core of an Intel Core i7-6700 at 3.40GHz on a desktop machine with 8GB

memory and Ubuntu16.04 and

– a RasPi3 with 32-bit Rasbian.

We use gcc to compile the programs with option -O3. We geneartes 200 keys and ci-

phertexts to estimate the running time of key generation, encryption, and decryption.

The experimental results are summarized in Table 4. In the table, we haveNTRUHRSS17
′ =

(Gen1, Enc1,Dec1) and XYZ[NTRUHRSS17
′] = (Gen, Enc,Dec). The results re�ect that

HRSS17’s constant-time implementation and ours. Our conversion adds only small ex-

tra amount of costs for hashing in encryption and adds about TEnc1 for re-encrypting

in decryption.

We note that our implementations are for reference and we did not optimize them.

Further optimizations will speed up the algorithms as [HRSS17] did.
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Table 4: Experimental Results: We have |ek | = 1140 bytes, |dk | = 2557 bytes, and

|c | = 1140 bytes.

(a) Our Experiments on a PC

min (ms) med. (ms) avg. (ms) max (ms)

Gen1 1 767 1 778 1 815 2 592

Enc1 327 329 328 331

Dec1 958 959 959 1 021

Gen 2 565 2 580 2 579 2 601

Enc 332 334 333 336

Dec 1 280 1 282 1 282 1 286

(b) Our Experiments on a RasPi

min (ms) med. (ms) avg. (ms) max (ms)

Gen1 33 675 33 685 33 687 45 460

Enc1 3 085 3 089 3 091 3 121

Dec1 8 839 8 851 8 850 8 880

Gen 49 151 49 169 49 174 49 263

Enc 3 200 3 205 3 207 3 232

Dec 11 837 11 841 11 843 11 888
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Table 5: Summary of Games for the Security Proof in the ROM

Game ek H c∗ K∗
0

K∗
1

valid c invalid c justi�cation

Game0 ek
′

real Enc1(ek′,m∗) H(m∗) random H(m) PRF(s, c)
Game1 ek

′
real Enc1(ek′,m∗) H(m∗) random H(m) Hq(c) PRF security

Game2 ek
′ Hq(Enc1(ek, ·)) Enc1(ek′,m∗) Hq(c∗) random Hq(c) Hq(c) Perfect correctness

Game3 ẽk
′ Hq(Enc1(ẽk′, ·)) Enc1(ẽk′,m∗) Hq(c∗) random Hq(c) — PR-Key

Game4 ẽk
′ Hq(Enc1(ẽk′, ·))�Enc1(ẽk′) Hq(c∗) random Hq(c) — PR-Cipher

Game5 ẽk
′ Hq(Enc1(ẽk′, ·))�Enc1(ẽk′) \ Enc1(ẽk′, ·) Hq(c∗) random Hq(c) — Statistical Argument

Game6 ẽk
′ Hq(Enc1(ẽk′, ·))�Enc1(ẽk′) \ Enc1(ẽk′, ·) random random Hq(c) — Statistical Argument

Zha12. Mark Zhandry. Secure identity-based encryption in the quantum random oracle

model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume

7417 of LNCS, pages 758–775. Springer, Heidelberg, 2012. 3, 5

A Warm Up: Proof of Theorem 5.1

The overview of all games is given in Table 5. Here, we give a sketch of proof.

– Game0: This is the original game Exptind-ccaKEM,A(κ). We have

Advind-ccaKEM,A(κ) = |Pr[Game0 = 1] − 1/2| .

– Game1: We replace PRF(s, ·) with a random oracle Hq : C → K . It is easy to show

that there exists an adversary APRF satisfying

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ AdvprfPRF,APRF
(κ)

and its running time is about that of A.

– Game2: We next set H : M → K as H(m) := Hq(Enc1(ek′,m)) (instead of H ←
Map(M,K)). We notice that the two games are equivalent, since PKE1 is perfectly

correct. Thus, we have that

Game1 = Game2.

Notice that now, we can simplify the decapsulation oracle as; output K = Hq(c) if
c , c∗ and ⊥ if c = c∗. So that, the decapsulation oracle can forget the decapsula-

tion key in what follows.

– Game3: We next replace ek
′

with ẽk
′

generated by Ẽnc1. It is straightforward to

show that there exists an adversary Apr-key satisfying

|Pr[Game2 = 1] − Pr[Game3 = 1]| ≤ Advpr-keyPKE1,Apr-key

(κ)

and its running time is about that of A.
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Table 6: Summary of Games for the Security Proof in the ROM

Game m∗ r∗ c∗ justi�cation

Game0 Meven G(m∗) Enc(ek,m∗; r∗) = EncG
1
(ek,m∗)

Game1 Meven r∗ Enc(ek,m∗; r∗) IND-CPA security of PKE
Game2 Modd

r∗ Enc(ek,m∗; r∗) =�Enc1(ek) IND-CPA security of PKE

– Game4: We next replace c∗ := Enc1(ẽk′,m∗) with m∗ ←M with c∗ ← Ẽnc1(ẽk′).
It is straightforward to show that there exists an adversary Apr-cipher satisfying

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advpr-cipherPKE1,Apr-cipher

(κ)

and its running time is about that of A.

– Game5: We now employ statistical arguments: We replace the challenge ciphertext

c∗ ← Ẽnc1(ẽk′) with c∗ ← Ẽnc1(ẽk′) \ Enc1(ẽk′,M);
That is, if c∗ is within the range of Enc1(ẽk′,M), we abort the game. We have

|Pr[Game4 = 1] − Pr[Game5 = 1]| ≤ εdisj(κ).

– Game6: We �nally replace K∗
0
:= Hq(c∗) with random. Since the adversary A

cannot ask c∗ to Hq , it cannot distinguish Game6 with Game5. Moreover, the ad-

versary A cannot distinguish two random keys in Game6. Thus, we have

Pr[Game5 = 1] = Pr[Game6 = 1] = 1/2.

B Warm Up: Proof of Theorem 4.1

It is obvious that Advpr-keyPKE1,A
(κ) = 0, since Gen1 = �Gen1. It is also obvious that the

output of Ẽnc1(ek) never overlaps with Enc1(ek,Meven) ⊆ Enc(ek,Meven;R), because

PKE is perfectly correct and the range of Ẽnc1(ek) is Enc(ek,Modd;R).

In the rest of this section, we give a tight classical security proof for pseudoran-

domness of ciphertexts. The overview of all games is given in Table 6

What we want to show is the upper bound of

Advpr-cipherPKE1,A
(κ) = |Pr[Game0 = 1] − Pr[Game2 = 1]|

is negligible in κ.

Game0: We expand algorithms and obtain Game0:

(ek, dk) ← Gen(1κ);m∗ ←Meven; r∗ ← G(m∗); c∗ := Enc(ek,m∗; r∗); b′← AG(·)(ek, c∗); return b′.
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Game1: This game is the same as Game0 except that the randomness of the challenge

ciphertext is freshly generated:

(ek, dk) ← Gen(1κ);m∗ ←Meven; r∗ ← R; c∗ := Enc(ek,m∗; r∗); b′← AG(·)(ek, c∗); return b′.

In addition, we change the random oracle G as follows: on query m ∈ M,

1. If (m, r) is stored in the table G, then return r
2. If m = m∗, then abort the game.

3. Otherwise, return r ← R and store (m, r) to the table G.

Let Bad denote the event that the challenger aborts the game in the simulation of

G. Since the two games are equivalent until Bad occurs, we have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ Pr[Bad].

Let γ = Pr[Bad].
We can construct a reduction algorithmAPKE against IND-CPA security of PKE as

follows:

– On input ek, APKE chooses two messages m0 ← Meven and m1 ← Modd uni-

formly at random. It then queries them to its challenge oracle and obtains c∗ ←
Enc(ek,m∗; r∗), where m∗ is mb . It initialize the table G and invokesA with ek and

c∗.
– APKE simulates the random oracle G as follows:

1. If (m, r) is stored in the table G, then return r
2. If m = m0, then output b′ = 0 and terminate the game.

3. Otherwise, return r ← R and store (m, r) to the table G.

– Eventually, A outputs a bit. APKE outputs b′← {0, 1}.

If the challenge bit b is 0, then the plaintext of c∗ is correctly generated. Thus,APKE
correctly simulates the two games until Bad occurs. This means that we have

Pr[b′ = 0 | b = 0] = Pr[Bad | b = 0] +
1

2

(1 − Pr[Bad | b = 0]) =
1

2

+
1

2

γ.

On the other hand, that is, if the challenge bit b is 1, APKE did not simulate the game

correctly. However, notice that A knows nothing on m0 through ek and c∗. Thus,

it is hard for A to make Bad occurs. Let δ denote the probability that Bad occurs

conditioned on that the challenge bit b is 1. Since m0 is chosen uniformly at random,

we have

δ ≤ qG/#Meven

and

Pr[b′ = 1 | b = 1] =
1

2

(1 − Pr[Bad | b = 1]) =
1

2

−
1

2

δ.

Let us estimate the advantage of APKE. From the de�nition, we have

Advind-cpaPKE,APKE
(κ) = |2 Pr[b′ = b] − 1| = |Pr[b′ = 0 | b = 0] + Pr[b′ = 1 | b = 1] − 1|

=

����1
2

+
1

2

γ +
1

2

−
1

2

δ − 1

���� = 1

2

|γ − δ | .
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If 0 ≤ γ < δ, then we have the upperbound

Pr[Bad] < δ ≤ qG/#Meven.

On the other hand, that is, if γ ≥ δ, then we have

Pr[Bad] = γ ≤ 2Advind-cpaPKE,APKE
(κ) + δ ≤ 2Advind-cpaPKE,APKE

(κ) + qG/#Meven.

Thus, in the both cases, we have

Pr[Bad] ≤ 2Advind-cpaPKE,APKE
(κ) + qG/#Meven

as we wanted.

Game2: This game is the same as Game1 except that the challenge ciphertext is gen-

erated by Enc(ek,m∗; r∗), where m∗ ←Modd rather than m∗ ←Meven:

ek ← Gen(1κ);m∗ ←Modd; r∗ ← R; c∗ := Enc(ek,m∗; r∗); b′← AG(·)(ek, c∗); return b′.

Let us construct a reduction algorithm A ′PKE against IND-CPA security of PKE as

follows:

– On input ek, A ′PKE chooses two messages m0 ← Meven and m1 ← Modd uni-

formly at random. It then queries them to its challenge oracle and obtains c∗ ←
Enc(ek,m∗; r∗), where m∗ is mb . It initializes the table G and invokes A with ek

and c∗.
– A ′PKE simulates the random oracle G as follows:

1. If (m, r) is stored in the table G, then return r
2. Otherwise, return r ← R and store (m, r) to the table G.

– Eventually, A outputs a bit b′. A ′PKE outputs b′.

It is obvious that A ′PKE perfectly simulates Gameb+1 depending on the challenge bit

b ∈ {0, 1}. Therefore,

Advind-cpaPKE,A′PKE
(κ) = |Pr[b′ = b] − 1/2|

= |(1 − Pr[b′ = 1 | b = 0]) + Pr[b′ = 1 | b = 1] − 1|

= |1 − Pr[Game1 = 1] + Pr[Game2 = 1] − 1|

= |Pr[Game2 = 1] − Pr[Game1 = 1]| ,

this results in

|Pr[Game1 = 1] − Pr[Game2 = 1]| = Advind-cpaPKE,A′PKE
(κ).

Summary: Summing up the di�erences, we obtain the bound

Advpr-cipherPKE1,A
(κ) = |Pr[Game0 = 1] − Pr[Game2 = 1]|

≤ 2Advind-cpaPKE,APKE
(κ) + Advind-cpaPKE,A′PKE

(κ) +
qG

#Meven

as we wanted.
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