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Abstract

We explore a new security model for secure computation on large
datasets. We assume that two servers have been employed to compute
on private data that was collected from many users, and, in order to im-
prove the efficiency of their computation, we establish a new tradeoff with
privacy. Specifically, instead of claiming that the servers learn nothing
about the input values, we claim that what they do learn from the com-
putation preserves the differential privacy of the input. Leveraging this
relaxation of the security model allows us to build a protocol that leaks
some information in the form of access patterns to memory, while also
providing a formal bound on what is learned from the leakage.

We then demonstrate that this leakage is useful in a broad class of com-
putations. We show that computations such as histograms, PageRank and
matrix factorization, which can be performed in common graph-parallel
frameworks such as MapReduce or Pregel, benefit from our relaxation.
We implement a protocol for securely executing graph-parallel computa-
tions, and evaluate the performance on the three examples just mentioned
above. We demonstrate marked improvement over prior implementations
for these computations.

1 Introduction
Privacy and utility in today’s Internet is a tradeoff, and for most users, utility
is the clear priority. Citizens continue to contribute greater amounts of private
data to an increasing number of entities in exchange for a wider variety of
services. From a theoretical perspective, we can maintain privacy and utility if
these service providers are willing and able to compute on encrypted data. The
theory of secure computation has been around since the earliest days of modern
cryptography, but the practice of secure computation is relatively new, and still
lags behind the advancements in data-mining and machine learning that have
helped to create today’s tradeoff.
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Recently, we have seen some signs that the gap might be narrowing. The
advancements in the field of secure computation have been tremendous in the
last decade. The first implementations computed roughly 30 circuit gates per
second, and today they compute as many as 6 million per second [36]. Scat-
tered examples of live deployments have been referenced repeatedly, but most
recently, in one of the more promising signs of change, Google has started us-
ing secure computation to help advertisers compute the value of their ads, and
they will soon start using it to securely construct machine learning classifiers
from mobile user data [20]. A separate, more recent line of research also offers
promise: the theory and techniques of differential privacy give service providers
new mechanisms for aggregating user data in a way that reasonably combines
utility and privacy. The guarantee of these mechanisms is that, whatever can be
learned from the aggregated data, the amount that it reveals about any single
user input is minimal. The Chrome browser uses these techniques when aggre-
gating crash reports [12], and Apple claims to be employing them for collecting
usage information from mobile devices. In May, 2017, U.S. Senator Ron Wyden
wrote an open letter to the commission on evidence-based policymaking, urging
that both secure computation and differential privacy be employed by “agen-
cies and organizations that seek to draw public policy related insights from the
private data of Americans [35].”

The common thread in these applications is large scale computation, run by
big organizations, on data that has been collected from many individual users.
To address this category of problems, we explore new improvements for two-
party secure computation, carried out by two dedicated computational servers,
over secret shares of user data. We use a novel approach: rather than attempting
to improve on known generic constructions, or tailoring a new solution for a
particular problem, we instead explore a new trade-off between efficiency and
privacy. Specifically, we propose a model of secure computation in which some
small information is leaked to the computation servers, but this leakage is proven
to preserve differential privacy for the users that have contributed data. More
technically, the leakage is a random function of the input, revealed in the form
of access patterns to memory, and the output of this function does not change
“by too much” when one user’s input is modified or removed.

The question of what is leaked by memory access patterns during compu-
tation is central to secure computation. Although the circuit model of com-
putation allows us to skirt the issue, because circuits are data oblivious, when
computing on large data there are better ways of handling the problem, the most
well-studied being the use of secure two-party ORAM [27, 14, 34, 21, 37, 36].
However, when looking at very large data sets, it is often the case that both
circuits and ORAM are too slow for practical requirements, and there is strong
motivation to look for better approaches. In the area of encrypted search,
cryptographers have frequently proposed access-pattern leakage as a tradeoff
for efficiency [5, 4, 29, 17]. Unfortunately, analyzing and quantifying the leak-
age caused by the computation’s access pattern is quite difficult, as it depends
heavily on the specific computation, the particulars of the data, and even the
auxiliary information of the adversary. Furthermore, recent progress on study-
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ing this leakage has mostly drawn negative conclusions, suggesting that a lot
more is revealed than we might originally have hoped [16, 24, 3, 18, 9]. Em-
ploying the definition of differential privacy as a way to bound the leakage of
our computation allows us to offer an efficiency / privacy tradeoff that cryp-
tographers have been trying to provide, while quantifying, in a rigorous and
meaningful way, precisely what we have leaked.

1.1 Graph-Parallel Computations
In designing our protocol, we aimed to strike another balance as well; one be-
tween generality and efficiency. Accordingly, we have identified a broad class
of highly parallelizable computations that are amenable to the privacy tradeoff
we propose. Nayak et al., generalizing the work of Nikolaenko et al. [26], con-
structed a framework for parallelizing secure computation on graph-structured
data [25]. When computing on plaintext data, frameworks such as MapReduce,
Pregel, GraphLab and PowerGraph have very successfully enabled developers
to leverage large networks of parallelized CPUs [8, 23, 22, 13]. The latter three
mentioned systems are specifically designed to support computations on data
that resides in a graph, either at the nodes or edges. The computation proceeds
by iteratively gathering data from incoming edges to the nodes, performing some
simple computation at the node, and pushing the data back to the outgoing
edges. This simple iterative procedure captures many important computational
tasks, including histogram, matrix factorization and page-rank, which we fo-
cus on here (as did Nayak et al.), as well as Markov random field parameter
learning, parallelized Gibbs samplers, and name entity resolution, to name a
few more. Nayak et al. built a parallelizable system for securely computing on
graph-structured data, with complexity O(|E|+ |V |) log2(|E|+ |V |).

1.2 A Connection to Differential Privacy
It turns out that there is a natural connection between building differentially pri-
vate access patterns, and these graph-parallel frameworks. The memory access
pattern induced by this computation is easily described: during the gather stage,
each edge is touched when fetching the data, and the identifier of the adjacent
node is exposed when copying the data. A similar pattern is revealed during
the scatter phase. (The computation performed during the apply phase is typi-
cally very simple, and can be executed in a circuit, which is memory oblivious.)
Let’s consider what might be revealed by this access pattern in some concrete
application. In our framework, each user is represented by a node in the graph,
and provides the data on the edges adjacent to that node. For example, in a
recommendation system, the graph is bipartite, each user is represented by one
node on the left, each node on the right represents an item that users might
review, and the edges are labeled with scores indicating the user’s review of an
item. The access pattern just described would reveal exactly which items every
user reviewed!
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Our first observation is that if we use a secure computation to obliviously
shuffle all of the edges in between the gather and scatter phases, we break the
correlation between the nodes. Now the only thing revealed to the computing
parties is a histogram of how many times each node is accessed – i.e. a count
of each node’s in-degree and out-degree. When building a recommendation
system, this would reveal how many items each user reviewed, as well as how
many times each item was reviewed. Fortunately, histograms are the canonical
problem for differential privacy. Our second observation is that we can shuffle
in dummy edges to help obscure this information, and, by sampling the dummy
edges from an appropriate distribution (which has to be done within a secure
computation), we can claim that the degrees of each node remain differentially
private.

1.3 Contributions and Related Work
Contributions. We make several new contributions, of both a theoretical and
a practical nature.
Introducing the model. As cryptographers have attempted to support secure
computation on increasingly large datasets, they have often allowed their pro-
tocols to leak some information to the computing parties in the form of access
patterns to memory. This is especially true in the literature on encrypted search.
The idea of bounding the leakage in a formal way, using the definitions from
literature on differential privacy, is novel and important.
More efficient asymptotic analysis. The relaxation we introduce enables us
to improve the asymptotic complexity of the target computations by a factor
of logn. While the more practical construction of Nayak et al. [25] has run-
ning time O(n log2 n), if they instead use the best known asymptotic result for
oblivious sorting, their protocol becomes less practical, but in fact runs in time
O(n logn). In contrast, while our practical construction runs in time O(n logn),
if we are willing to perform encryption and decryption inside a garbled circuit,
we can modify our construction to achieve O(n) run-time. The details of this
improvement appear in Section 5.
An implementation. We demonstrate that the asymptotic improvements lead
to tangible gains. We have implemented our system, and compared the results
to the system of Nayak et al. [25]. We demonstrate up to a 20X factor improve-
ment in the number of garbled AND gates required in the computation, while
preserving differential privacy with strong parameters: ε = .3 and δ = 2−40.
Related Work. Nayak et al. [25] were the first to consider parallelizing the
secure computation of graph-structured data, and we use their work as the basis
for evaluating the efficiency of our own construction. Their construction gen-
eralized the protocol designed by Nikolaenko for matrix factorization of sparse
matrices. However, since the protocol of Nayak et al. out-performs theirs, we
only compare to the former. In both works, the constructions are secure in the
standard, semi-honest model, in contrast to our own construction that inten-
tionally leverages some bounded leakage in exchange for improved efficiency.
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Independent to our work, Papadimitriou et al. [28] also build a system for
secure computation of graph-structured data, and they even guarantee the dif-
ferential privacy of the output. However, as we mentioned above, we view this
property as orthogonal to the question of whether the protocol itself leaks dif-
ferentially private information. Indeed, their construction is fully secure, so
they do not leverage differential privacy in order to construct a more efficient
protocol, as we do. Their model also differs from our own (and those of Nayak
et al. and Nikolaenko et al.) in that they consider a set of parties that are
unwilling to entrust their input to computation servers. Instead, each party
holds their own piece of the graph-structured data, and the authors construct
a multi-party protocol where the communication patterns hide the structure of
the graph. This setting is more challenging, and the result is much less effi-
cient; the authors do not provide a comparison of their performance to that of
Nayak et al., so we do not provide one here.

In an unpublished work (which pre-dates our own), Kellaris et al. construct
differentially private storage systems that allow a client to outsource their data
to an untrusted server while supporting arbitrary queries to the data [19]. They
define a model in which the access pattern to storage leaks information to the
server, but prove that the leakage preserves the differential privacy of the users.
Communication with the authors about their work helped to inspire our own
ideas. The primary difference between their work and ours is that we explore
secure computation on the data, rather than search. Since database queries
can be viewed as a particular instance of secure computation, one could view
the idea of leveraging differentially private leakage in secure computation as a
generalization of their idea to leverage such leakage in the setting of encrypted
search. In practical terms, though, this is mostly inaccurate, because of many
other differences in the model: they assume a single computation server, a client
that provides all of the (pre-processed) data, and require computation times that
are sub-linear. Our protocol is not meant to capture arbitrary computation, and,
in particular, it runs in time super-linear in the input size, so it only provides
benefit when compared with protocols that are super-linear.

In another unpublished work (which also pre-dates our own), Wagh et al. de-
fine and construct differentially private ORAM [31]. This is an oblivious memory
structure that guarantees that two “neighboring access patterns” are indistin-
guishable. This is an extremely interesting relaxation of the standard definition
for ORAM, in which all access patterns must be indistinguishable. Furthermore,
as the authors point out, their construction composes: allowing for a degrada-
tion in the privacy parameter, they can provide differential privacy for any two
access patterns of bounded distance from one another. Although their con-
struction is in the client/server model, in which all of the data is known to the
client, and security / privacy is only guaranteed with respect to the server, using
standard techniques we could execute their ORAM in a two-party computation
to achieve precisely the privacy / efficiency tradeoff we have proposed, for all
RAM-model computations. However, the authors did not address this question,
and in particular did not define secure computation with differentially private
leakage, which we view as one of our contributions. More importantly, the re-
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sulting construction, while more general than our own, would also be much less
efficient than ours. The primary savings in Root ORAM (as compared to Path
ORAM [30]) stems from a modification to the read/write operation: instead of
always assigning the last touched memory item to a new leaf node in the binary
tree, in Root ORAM the mapping is occasionally left untouched, which allows
for operating with a smaller stash. We have not attempted to implement it,
and a good estimation is hard to make, but, using ε = .3 with Root ORAM, for
about 3 in 10,000 memory accesses, a data item would not be re-mapped to a
new leaf node in the ORAM. On a computation involving 106 edges and 4000
nodes, this amounts to 300 data lookups (on average) out of 106. Although the
authors do not give a direct analysis of the required stash size for preventing
an over-flow event (and, in particular, they do not compare the needed stash
size with that of Path ORAM), the overhead of implementing garbled ORAM
would make this far less efficient than our own construction. The asymptotic
complexity of using ORAM in our protocol would be O(|E| log2(|V |)), similar to
that of Nayak et al., whereas our own complexity is roughly O(δ|E| log(|E|)). In
the domain where E = O(V ), the overhead of ORAM is prohibitive. Addition-
ally, and perhaps more importantly, ORAM cannot be practically parallelized.
Nayak et al. provide a nice discussion of why ORAM is unsuitable for this class
of applications, including a concrete estimation of the resulting circuit depth
[25].

Finally, independent of our work, He et al. define a security notion that
is similar to our own [15]. Rather than providing the ideal world adversary
with leakage that preserves differential privacy, they instead require that, for
neighboring inputs to a computation, the distributions over the adversary’s real
world views preserve differential privacy. Comparing this definition to our own
is non-trivial, so we do not attempt to do that here. The other major difference
between their work and our own is the application space. We show how to
achieve our security definition for the class of computations that fit into the
graph parallel framework; He et al. apply their definition to the specific problem
of private record linkage, which is similar to private set intersection on fuzzy
data. Like us, they also demonstrate that their security relaxation enables
them to achieve more efficient protocols for their target application. While
the applications are incomparable, we notice one important distinction: while
we treat δ as a cryptographic security parameter, setting it to 2−40 in our
implementations, He et al. use a value of δ = 10−5 ≈ 2−16.

2 Definitions and Notation
Throughout the paper, we use the following notations. We view a database as a
multi-set of elements drawn from some fixed set S. We represent the database
by a function D : S → N, and we use |D| in the natural way to mean

∑
i∈S D(i).

We use DBi to denote the set of all databases of size i, and DB =
⋃
iDBi. We

consider two databases D1 and D2 to be adjacent if the two multi-sets differ
in exactly one element. Technically, |D1 \ D2| = 1 and |D2 \ D1| = 0. For
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simplicity, we will sometimes denote this by |D1 − D2| = 1. For example,
D1 = {A,A,B,B,B,C,C} and D2 = {A,A,B,B,C,C} have distance 1.

We let 〈x〉 denote a variable which is XOR secret-shared between parties.
Arrays have a public length and are accessed via public indices; we use 〈x〉i to
specify element i within a shared array, and 〈x〉i:j to indicate a specific portion
of the array containing elements i through j, inclusive. When we write 〈x〉 ← c,
we mean that both users should fix their shares of x (using some agreed upon
manner) to ensure that x = c. For example, one party might set his share to be
c while the other sets his share to 0.

2.1 Differential Privacy
We use the definition that appears in [11].

Definition 1 A randomized algorithm F : D → RF , with an input domain D
that is the set of all databases and output RF ⊂ {0, 1}∗ is (ε, δ)-differentially
private if for all T ⊆ RF and ∀D1, D2 ∈ D such that |D1 −D2| ≤ 1:

Pr[F(D1) ∈ T ] ≤ eε Pr[F(D2) ∈ T ] + δ

where the probability space is over the coin flips of the mechanism F .

2.2 Secure computation with differentially private access
patterns

Input model: We try to keep the definitions general, as we expect they will
find application beyond the space of graph-structured data. However, we use
notation that is suggestive of computation on graphs, in order to keep our
notation consistent with the later sections. We assume that two computation
servers have been entrusted to compute on behalf of a large set of users, V, with
|V| = n, and having sequential identifiers, 1, . . . , n. Each user i contributes data
vi. They might each entrust their data to one of the two servers (we call this
the disjoint collection setting), or they might each secret-share their input with
the two-servers (joint collection setting). In the latter case, we note that both
servers learn the size of each vi but neither learns the input values; in the former
case, each server learns a subset of the input values, but learns nothing about
the remaining input values (other than the sum of their sizes).1 Below we will
define two variant security notions that capture these two scenarios.

In all computations that we consider in our constructions, the input is rep-
resented by a graph. In every case, each user is represented as a node in this

1We note that the disjoint collection setting corresponds to the “standard” setting for
secure computation where each computing party contributes one set of inputs. Just as in
that setting, each of the two computing parties could pad their inputs to some maximum size,
hiding even the sum of the user input sizes. In fact, we could have them pad their inputs
using a randomized mechanism that preserves differential privacy, possibly leading to smaller
padding sizes, depending on what the maximum and average input sizes are. We don’t explore
this option further in this work.
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graph, and each user input is a set of weighted, directed edges that originate at
their node. In some applications, the graph is bipartite, with user nodes on the
left, and some distinct set of item nodes on the right: in this case, all edges go
from user nodes to item nodes. In other applications, there are only user nodes,
and every edge is from one user to another. In the joint collection setting, we
can leak the out-degree of each node, which is the same as the user input size,
but must hide (among other things) the in-degree of each node. In the disjoint
collection setting, the protocol has to hide both the in-degree and out-degree
of each node. We note that in some applications, such as when we perform
matrix factorization for a recommendation system, the graph is bipartite, and
it is publicly known that the in-degree of every user is 0 (i.e. the movies don’t
review the viewers). In the joint collection setting, this knowledge allows for
some improvement in efficiency that we will leverage in Section 6.
Secure computation with leakage: In this section, we define secure com-
putation with differentially private leakage. For simplicity, we start with a
standard definition of semi-honest security2, but make two important changes.
The first change is that we allow certain leakage in the ideal world, in order to
reflect what is learned by the adversary in the real world through the observed
access pattern on memory. The leakage function is a randomized function of
the inputs. The second change is an additional requirement that this leak-
age function be proven to preserve the differential privacy for the users that
contribute data. Our ideal world experiment is as follows. There are two par-
ties, P1 and P2, and an adversary S that corrupts one of them. The parties
are given input, as described above; we use V1 and V2 to denote the inputs
of the computing parties, regardless of whether we are in the joint collection
setting or the disjoint collection setting, and we let V = {v1, . . . , vn} denote
the user input. Technically, in the joint collection setting, V = V1 ⊕ V2, while
in the disjoint collection setting, V = V1 ∪ V2. Each computing party submits
their input to the ideal functionality, unchanged. The ideal functionality recon-
structs the n user inputs, v1, . . . , vn, either by taking the union of the inputs
submitted by the computation servers in the disjoint collection setting, or by
reconstructing the input set from the provided secret shares in the joint col-
lection setting. The ideal functionality then outputs f1(v1, . . . , vn) to P1 and
f2(v1, . . . , vn) to P2. These outputs might be correlated, and, in particular, in
our own use-cases, each party receives a secret share of a single function evalua-
tion: 〈f(v1, . . . , vn)〉1, 〈f(v1, . . . , vn)〉2. The ideal functionality also applies some
leakage function to the data, L(D), and provides the output of L(D), along with∑
i∈V |vi| to S.3 Additionally, depending on the choice of security definition,

the ideal functionality might or might not give the simulator, ∀i ∈ V, |vi|.
Our protocols are described in a hybrid world, in which the parties are given

2We stress that our allowance of differentially private leakage brings gains in the circuit
construction, so we could use any generic secure computation of Boolean circuits, including
those that are maliciously secure, and benefit from the same gains. See more details below.

3In the joint collection setting, the simulator can infer this value from the size of the
input that was submitted to the ideal functionality. But it simplifies things to give it to him
explicitly.
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access to several secure, ideal functionalities. In our implementation, these are
replaced using generic constructions of secure computation (i.e. garbled circuits).
Relying on a classic result of Canetti [2], when proving security, it suffices to
treat these as calls to a trusted functionality. In the definitions that follow, we
let G denote an appropriate collection of ideal functionalities.

As is conventionally done in the literature on secure computation, we let
hybridGπ,A(z) (V1, V2, κ) denote a joint distribution over the output of the honest
party and, the view of the adversary A with auxiliary input z ∈ {0, 1}∗, when
the parties interact in the hybrid protocol πG on inputs V1 and V2, each held
by one of the two parties, and computational security parameter κ. We let
idealF,S(z,L(V ),∀i∈V :|vi|)(V1, V2, κ) denote the joint distribution over the output
of the honest party, and the view output by the simulator S with auxiliary input
z ∈ {0, 1}∗, when the parties interact with an ideal functionality F on inputs
V1 and V2, each submitted by one of the two parties, and security parameters κ.
We define the joint distribution idealF,S(z,L(V ),

∑
i∈V
|vi|)(V1, V2, κ) in a similar

way, the only difference being that the simulator is given the sum of the input
sizes and not the value of each input size.

Definition 2 Let F be some functionality, and let π be a two-party protocol
for computing F , while making calls to an ideal functionality G. π is said to
securely compute F in the G-hybrid model with L leakage, known input sizes,
and (κ, ε, δ)-security if L is (ε, δ)-differentially private, and, for every PPT,
semi-honest, non-uniform adversary A corrupting a party in the G-hybrid model,
there exists a PPT, non-uniform adversary S corrupting the same party in the
ideal model, such that, on any valid inputs V1 and V2{

hybridGπ,A(z) (V1, V2, κ)
}
z∈{0,1}∗,κ∈N

c≡{
ideal(1)

F,S(z,L(V ),∀i∈V :|vi|)(V1, V2, κ)
}
z∈{0,1}∗,κ∈N

(1)

The above definition is the one that we use in our implementations. However,
in Section 4 we also describe a modified protocol that achieves the stronger
security definition that follows, where the adversary does not learn the sizes of
individual inputs. This property might be desirable (or maybe even essential)
in the disjoint collection model, where users have not entrusted one of the two
computing parties with their inputs, or even the sizes of their inputs. On the
other hand, the previous definition is, in some sense, more “typical” of definitions
in cryptography, where we assume that inputs sizes are leaked. It is only in this
model where data is outsourced that can hope to hide the individual input sizes
among the other data elements.

Definition 3 Let F be some functionality, and let π be a two-party protocol
for computing F , while making calls to an ideal functionality G. π is said
to securely compute F in the G-hybrid model with L leakage, and (κ, ε, δ)-
security if L is (ε, δ)-differentially private, and, for every PPT, semi-honest,
non-uniform adversary A corrupting a party in the G-hybrid model, there exists
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a PPT, non-uniform adversary S corrupting the same party in the ideal model,
such that, on any valid inputs V1 and V2{

hybridGπ,A(z) (V1, V2, κ)
}
z∈{0,1}∗,κ∈N

c≡{
ideal(2)

F,S(z,L(V ),
∑

i∈V
|vi|)

(V1, V2, κ)
}
z∈{0,1}∗,κ∈N

(2)

Differentially Private Output: As is typical in secure computation, we are
concerned here with how to securely compute some agreed upon function, rather
than what function ought to be computed. In other words, we view the question
of what the output itself might reveal about the input to be beyond scope of our
work. Our concern is only that the process of computing that output does not
reveal too much. Admittedly, if the parties that perform the computation will
ultimately learn something that breaks differential privacy, it’s not clear why we
would insist that the process of performing that computation should preserve
differential privacy. We could resolve this tension by insisting that the output
of all computations preserve differential privacy, which, at least for the class of
computations we support in this work, would not be that hard to do. Indeed,
in the specific case of histograms, which we present as an example in Section 3,
adding differentially private noise to the output is substantially more efficient
than preserving an exact count.

Nevertheless, we take a different approach here. In all of our computations,
the output of each server is a secret share of the desired output. The question of
where to deliver these shares is left to the user, though we can imagine several
scenarios in which the party receiving the shares might not require that the
result preserve differential privacy. For example, it might be that the users of
the system have entrusted their data to a single entity, such as a government
agency, and that this entity is now outsourcing a complicated learning task to
the computation servers, with the requirement that they not learn about the
underlying data. We might even imagine that the shares are never reconstructed,
but are used later inside another secure computation in order to make decisions
that are driven by the output. The advantage of separating out the question
of what is revealed by the output is that it allows us to compare apples to
apples: we can isolate the question of what can be gained in performance when
we employ our proposed tradeoff. In particular, as we described above, the class
of computations that we support has been studied in prior work. In Section 6 we
will give a direct comparison to the performance in that work, and demonstrate
substantial improvement. Modifying the computational tasks would make such
a comparison difficult.
Malicious security and multi-party computation: Extending these defini-
tions to model malicious adversaries and/or multi-party computation is straight-
forward, so we omit redundant detail. Similarly, we stress that by leveraging
the security relaxation defined above, we gain improvement at the circuit level,
so we can easily extend our protocols to either (or both) of these two settings in
a generic way. To make our protocol from Section 4 secure against a malicious
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adversary, the only subtlety to address is that our protocols make iterative use
of multiple secure computations (i.e. the functionality we realize is reactive),
so we would need to authenticate outputs and verify inputs in each of these
computations. While this can be done generically, such authentication comes
“for free” in many common protocols for secure computation (e.g. [33, 7]). To
extend our protocols to a multiparty setting, the only subtlety is in construct-
ing a multiparty oblivious shuffle. With a small number of parties, c, it is very
efficient to implement c iterations of a permutation network, where in each iter-
ation, a different party chooses the control bits that determine the permutation.
As c grows, it becomes less clear what the best method is for implementing an
oblivious shuffle. Interestingly, we note that there has been some recent work on
parallelizing multi-party oblivious shuffle [6]. We do not explore this direction in
our work; presenting our protocols in the two-party, semi-honest setting greatly
simplifies the exposition, and suffices to demonstrate the advantages of our se-
curity relaxation. In our performance analysis, we primarily focus on counting
the number of AND gates in our construction, which makes the analysis more
general and allows for more accurate comparison with prior work (than, say,
comparing the timed performance of systems that use different frameworks for
implementing secure computation).

3 A Differentially Private Protocol for Comput-
ing Histograms

To illustrate our main idea, we describe an algorithm that computes the data
histogram (i.e. counting, or data frequency) with differentially private access
patterns. Although this computation can be formalized in the context of our
general framework, it is instructive to demonstrate some of the main technical
ideas with this simple example before considering how they generalize (which
we do in Section 4). We defer a discussion about security until we present the
more general protocol.

In this computation, we assume that each user in the system contributes
a single input value, xi ∈ S, where we call the set S the set of types. The
computation servers (parties) each begin the computation with secret shares of
the input array, denoted by 〈real〉. The output is a secret share of |S| counters,
where the counter for each type contains the exact number of inputs of that
type. The full protocol specification appears in Figure 1.

The protocol is in a hybrid model, where the parties have access to three
ideal functionalities: DumGenp,α,FShuffle,Fadd. The two parties begin by calling
DumGenp,α, which generates some number of dummy inputs. The ideal func-
tionality for this is described in the left of Figure 2, and it is realized using a
generic secure two-party computation. As part of this computation, the parties
have to securely sample from the distribution Dp. In the next section, we define
this distribution and describe our method for sampling it. We simply remark
now that it has integer support, and is negative with only negligible probability
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Differentially Private Histogram Protocol

Input: Each party, P1 and P2, receives a secret-share of real items de-
noted as 〈real〉 (r stands for number of real items, and d for number of
dummy ones)

Output: Secret share of counter values denoted as 〈Counter〉, where the
counter for each type contains the exact number of inputs of that type
(S is the number of counter types)

Preprocessing:
〈Counter〉1:|S| ← 0

Computation:
〈dummy〉1:d ← DumGenp,α
〈data〉1:(r+d) = 〈real〉1:r||〈dummy〉1:d
〈isReal〉1:r ← 1 , 〈isReal〉r:(r+d) ← 0
〈d̂ata〉 ← FShuffle(〈data〉, 〈ρ〉) , 〈îsReal〉 ← FShuffle(〈isReal〉, 〈ρ〉)
d̂ata← Open(〈d̂ata〉)
for i = 1 . . . (n+ d)
Fadd(〈isReal〉i, 〈Counter〉t) where t = d̂atai

Figure 1: A protocol for two parties to compute a histogram on secret-shared
data with an access pattern that preserves differential privacy.

(in δ). The output of DumGenp,α is a secret sharing of values in S ∪ {⊥}: the
size of the output is 2α|S|, where α is determined by the desired privacy values ε
and δ (see Section 4). The number of dummy items of each type is random, and
neither party should learn this value; shares of ⊥ are used to pad the number
of dummy items of each type until they total 2α.

Each party locally concatenates their share of the real input array with their
share of the dummy values. They also initialize shares of an array of flags,
denoted as isReal, which will be used to keep track of which item is real and
which is dummy. They then shuffle the real and dummy items together using
an oblivious shuffle. This is presented as an ideal functionality, but in practice
we implement this using two sequential, generic secure computations of the
Waksman permutation network [1], where each party randomly choose one of
the two permutations. The same permutations are used to shuffle the array
isReal flags, ensuring that these flags are “moved around with” the items. We
note that all secret shares are updated during the process of shuffling, so while
the parties knew which items and flags were real and which were not before the
shuffle, they have no way of knowing this after they receive fresh shares of the
shuffled items and isReal flags.

The parties now open their shares of the data types, while leaving the flag
values unknown. This is where our protocol leaks some information: revealing
the data types allows the parties to see a noisy sum of the number inputs of
each type. On the other hand, this is also where we gain in efficiency: the
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remainder of the protocol requires only a linear scan over the data array, with
a small secure computation for each element in order to update the appropriate
counter value. More specifically, the parties iterate through the shuffled array,
opening each type. On data type i, they fetch their shares of the counter for
type i from memory, and call the Fadd functionality. This functionality adds
the (reconstructed) flag value to the (reconstructed) counter; if the item was a
real item, the counter is incremented, while if it was a dummy item, the counter
remains the same. The functionality returns fresh shares of the counter value.
Neither party ever learns whether the counter was updated. In particular, they
cannot know whether they fetched that counter from memory because of a real
input value, or because of a dummy value. In our implementation, we instantiate
Fadd with a garbled circuit.
Simple extensions: In Section 4 we show how to generalize this protocol to the
wider function class. However, we note that in this specific case, if we did want
to add noise to the output, we could simply instruct the servers to count the
number of times each counter is accessed. They would no longer have to update
the counter values through a secure computation, so this would be a (slightly)
faster protocol. The output would contain the one-sided noise, but they could
simply subtract off α from each counter to get a more accurate estimate of the
counts. We stress that in this modified protocol, the dummy items are still
shuffled in with the real items, so the access pattern still preserves differential
privacy for each user. The modification ensures that the (reconstructed) output
preserves differential privacy as well.

We also note that the protocol in Figure 1 can be applied to other simi-
lar computations, such as taking averages or sums over r values of |S| types
(though, once again without adding noise to the output). For example, if each
user contributed a salary value and a zip-code, we could use the above method
for computing the average salary in each zip-code, while ensuring that the access
patterns preserve user privacy. We simply need to modify the Fadd functional-
ity: instead of incrementing the secret-shared counter by 1 when the input is
a real item, the functionality would increment the counter by the value of the
secret-shared salary. In this case, though, the noisy access pattern alone does
not suffice for creating noisy output: the use of Fadd is essential. If we want
ensure that the reconstructed output preserves privacy, the noise would have
to be generated independently, through a secure computation, and then added
obliviously to the output.

4 OblivGraph: Differentially Private protocol
for Secure Graph-Parallel Computation

When considering how the protocol from the previous section might be general-
ized, it is helpful to recognize the essential property of the computation’s access
pattern that we were leveraging. When computing a histogram, the access pat-
tern to memory exactly leaks a histogram of the input! This might sound like
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a trivial observation, but it is in fact fairly important, as histograms are the
canonical example in the field of differential privacy, and finding other compu-
tations where the access pattern reveals a histogram of the input will allow us
to broadly apply our techniques.

With that in mind, we extend our techniques to graph structured data,
and the graph-parallel frameworks that support highly parallelized computa-
tion. There are several frameworks of this type, including MapReduce, Pregel,
GraphLab and others [8, 22, 23]. We describe the framework by Gonzalez et
al. [13] called PowerGraph since it combines the best features from both Pregel
and GraphLab. PowerGraph is a graph-parallel abstraction, consisting of a
sparse graph that encodes computation as vertex-programs, which run in paral-
lel and interact along edges in the graph. While the implementation of vertex-
programs in Pregel and GraphLab differ in how they collect and disseminate
information, they share a common structure called the GAS model of graph
computation. The GAS model represents three conceptual phases of a vertex-
program: Gather, Apply, and Scatter. The computation proceeds in iterations,
and in each iteration, every node gathers data from their incoming edges, ap-
plies some simple computation to the data, and then scatters the result to their
outgoing edges. Viewing each node as a CPU (or by assigning multiple nodes
to each CPU), the apply step, which constitutes the bulk of the computational
work, is easily parallelized. The framework is quite general, and captures com-
putations such as gradient descent, which is used in matrix factorization for
recommendation systems, as well PageRank, histograms, and many other com-
putations.

Taking matrix factorization as an example, an edge (u, v,Data) indicates
that user u reviewed item v, and the data stored on the edge indicates the
value of the user’s review. When computing in this manner, the memory access
pattern reveals the edges between nodes. However, because we touch only the
left node of every edge during the gather, and only the right node of every edge
during the scatter, by adding an oblivious shuffle of the edges between these two
steps, we can hide the connection between neighboring nodes. The leakage of
the computation is then reduced to two histograms: the in-degrees of all nodes,
and the out-degrees of all nodes! We preserve deferential privacy by adding
noise to these two histograms, just as we did in the previous section. Details
follow below, the formal protocol specification appears in Figure 4, and the ideal
functionality for the PowerGraph framework appears in Figure 3.

We denote the data graph by G = (V,E). The structure of each edge
is comprised of (u, v, uData, vData, isReal), where isReal indicates if an edge is
"real" or "dummy". Each vertex is represented as (x, xData). As in Section 3,
our protocol is in a hybrid model where we assume we have access to three ideal
functionalities: DumGenp,α, FShuffle, Ffunc. As compared to Section 3, here we
have dropped an explicit specification of the permutation used in FShuffle.

In every call to FShuffle we use a new random permutation. (Since the dummy
flags are now included inside the edge structure, we no longer need to specify
that they are shuffled using the same permutation as the data elements.) In the
protocol, Apply makes a call to an ideal functionality, Ffunc. This functionality
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DumGenp,α

Input: None.

Computation:
d = 2α|S|
dummy1:d ← ⊥
for i = 0 . . . |S| − 1

j = 2αi
γi ← Dp

k = γi + j
dummyj:k = i

Output: 〈dummy〉

DumGenp,α

Input: None.

Computation:
d = 2α|V |
DummyEdges1:d ← ⊥
for i = 0 . . . |V | − 1

j = 2αi
γi ← Dp

k = γi + j
DummyEdgesj:k.v = i

Output: 〈DummyEdges〉

DumGenp,α

Input: None.

Computation:
d = 2α|V |
DummyEdges1:d ← ⊥
for i = 0 . . . |V | − 1

j = 2αi
γi ← Dp

δi ← Dp

k = γi + j
` = δi + j
DummyEdgesj:k.v = i
DummyEdgesj:`.u = i

Output: 〈DummyEdges〉

Figure 2: Three variations on the Ideal functionality, DumGenp,α. Each is pa-
rameterized by α, p. The leftmost functionality is used in the histogram protocol
described in Section 3. The middle definition is the one used in our implementa-
tion, and suffices for satisfying security according to Definition 2. The right-most
adds differential privacy to out-degrees, which is needed in the disjoint collection
model (i.e. when hiding the input sizes for all users, in Definition 3).

takes secret shares of all vertices, reconstructs the data from the shares, applies
the specified function to the real data at each vertex (while ignoring data from
dummy edges), and returns fresh secret shares of the aggregated vertex data. In
our implementation, we realize this ideal functionality using garbled circuits. We
don’t focus on the details here, as they have been described elsewhere (e.g. [25,
26]).

The ideal functionality for DumGenp,α appears in the middle column of Fig-
ure 2. The functionality samples an array of dummy edges of size 2α|V |. It
does this by iterating through each vertex identifier i ∈ V , sampling a random
number γi ← Dp, and creating γi edges of the form (⊥, i). (We describe the
distribution, Dp, later.) The remainder of the array contains “blank” edges,
(⊥,⊥), which can be tossed away as they are discovered later in the protocol,
after the dummy edges have all been shuffled.4 DumGenp,α returns secret shares

4Revealing these blank edges before shuffling would reveal how many dummy edges there
are of the form (∗, i), which would break privacy. After all the edges are shuffled, revealing
the number of blank edges only reveals the total number of dummy edges, which is fine.
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Fgas
GAS Model Operations

Inputs: Secret share of edges denoted as 〈Edges〉, each edge is
edge : (u, v, uData, vData, isReal). Secret share of vertices denoted as
〈Vertices〉, each vertex contains vertex : (x, xData)
Outputs: Updated 〈Vertices〉

Gather(Edges)
for each edge ∈ Edges

if vertex.x = edge.v
vertex ← copy(edge)

Applyf(Vertices)
for each vertex ∈ Vertices

vertex ← f(vertex)

Scatter (Edges)
for each edge ∈ Edges

if vertex.x = edge.u
edge← copy(vertex)

Figure 3: Ideal functionality for a single iteration of the GAS model operations

of the dummy edges, 〈DummyEdges〉. The only difference between the function-
ality described in the middle column, and the one in the left portion of the
figure (which was used in Section 3), is that our “types” are now node identi-
fiers, and they are stored within edge structures. However, the reader should
note that only the right node in each edge is assigned a dummy value, while
the left nodes all remain ⊥. This design choice is for efficiency, and comes at
the cost of leaking the exact histogram defined by the out-degrees of the graph
nodes when executing Open(Edgesi.u) in the Scatter operation. As an example
of this impacts privacy, when computing gradient descent for matrix factoriza-
tion, this reveals the number of reviews written by each user, while ensuring
that the number of reviews received by each item remains differentially private.
In particular, then, the noise hides whether any given user reviewed any specific
item. This suffices for achieving security with known input sizes, as defined in
Definition 2. This is the protocol that we use in our implementation, but we
also include a third variant of DumGenp,α on the right side of the Figure. In
that variant, separate noise is added to the left node of each edge as well, which
provides security according to Definition 3. We do not implement or analyze
the security of this variant. However, it is not hard to see that this doubles
the “sensitivity” of the “query”, and that ε will have to be cut in half in order
to provide the same security guarantee. Since our analysis includes multiple
values of ε, the reader can easily extrapolate to get a sense of how we perform
under our stronger security notion. Intuitively, doubling ε amounts, roughly, to
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πgas
Secure Graph-Parallel Computation with Differentially Private

Access Patterns

Inputs: Secret share of edges denoted as 〈RealEdges〉, each edge is
edge : (u, v, uData, vData, isReal). Secret share of vertices denoted as
〈Vertices〉, each vertex contains vertex : (x, xData). (r stands for number
of real items, and d for number of dummy ones)
Output: 〈Edges〉, 〈Vertices〉

Computation:
〈DummyEdges〉1:d ← DumGenp,α
〈Edges〉1:(r+d) ← 〈RealEdges〉1:r||〈DummyEdges〉1:d
〈Edges.isReal〉1:r ← 〈1〉 , 〈Edges.isReal〉r:r+d ← 〈0〉

Gather(〈Edges〉)
〈Edges〉 ← FShuffle(〈Edges〉)
for each 〈edge〉 ∈ 〈Edges〉

edge.v← Open(〈edge.v〉)
if vertex.x = edge.v
〈vertex〉 ← copy(〈edge〉)

Apply(〈Vertices〉)
for 〈vertex〉 ∈ 〈Vertices〉
〈vertex〉 ← Ffunc(〈vertex〉)

Scatter(〈Edges〉)
〈Edges〉 ← FShuffle(〈Edges〉)
for each 〈edge〉 ∈ 〈Edges〉

edge.u← Open(〈edge.u〉)
if vertex.x = edge.u
〈edge〉 ← copy(〈vertex〉)$

Figure 4: A protocol for two parties to compute a single iteration of the
GAS model operation on secret-shared data. This protocol realizes the ideal
functionality described in Figure 3.

doubling the number of dummy edges in the system. The impact this would
have on performance depends on the ratio of real edges to dummy edges in the
system, which itself depends on the data set and the number of vertices in the
graph. See Section 6 for a sense of how these parameters impact performance.

In some computations, the graph is known to be bipartite, with all edges
starting in the left vertex set and ending in the right vertex set (again, recom-
mendation systems are a natural example). In this case, since it is known that
all nodes in the left vertex set have in-degree 0, we do not need to add dummy
edges containing these nodes. This cuts down on the number of dummies re-
quired, and we take advantage of this when implementing matrix factorization.
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Implementing DumGenp,α: Viewing the left nodes of each edge as a “database”
D over the set V , defined as in Section 2 as a multiset, our mechanism Fε,δ(D)
outputs a “noisy” database, D̂. For each i ∈ V , D̂(i) = D(i) + γi, where each
γi is drawn independently from a shifted geometric distribution, parameterized
by a probability p, and denoted by Dp. The shift ensures that negative values
are negligible likely to occur. This is necessary because the noisy set determines
our access pattern to memory, and we cannot accommodate a negative number
of accesses (or, more accurately, we do not want to omit any accesses needed
for the real data). More specifically, we will define below a “shift function”
α : R × R → N that maps every (ε, δ) pair to a natural number. When ε
and δ are fixed, we will simply use α to denote α(ε, δ), and F to denote Fε,δ.
Intuitively, we sample γi by flipping a biased coin p until it comes up heads. We
flip one more unbiased coin to determine the sign of the noise, and then add the
result to α. We will determine p based on ε and δ. Formally, γi is sampled as
follows:

Pr[γi = α] = p

2

∀k ∈ N, k 6= 0 : Pr[γi = α+ k] = 1
2(1− p

2)p(1− p)|k|−1.

As just previously described, we view p as the stopping probability. However, in
the first coin flip, we stop with probability p/2. We note that this is a slight mod-
ification to the normalized 2-sided geometric distribution, which would typically
be written as Pr[γi = α+k] = 1

2−pp(1−p)
|k|. The advantage of the distribution

as it is written above is that it is very easy to sample in a garbled circuit, so long
as p is an inverse power of 2; normalizing by 1

2−p introduces problems of finite
precision and greatly complicates the sampling circuit. We note that Dwork et
al. [10] suggest using the geometric distribution with p = 2`, precisely because
it is easy to sample in a garbled circuit. However, they describe a 1-sided geo-
metric distribution, which is not immediately useful for preserving differential
privacy, and did not seem to consider that, after normalizing, the 2-sided dis-
tribution cannot be sampled as cleanly. A security analysis of our mechanism,
including concrete settings of the parameters, appears in Section 4.1.

We note that with some probability that is dependent on the choice of α,
for D̂ = F(D), ∃i ∈ V, D̂(i) < 0, which leaves us with a bad representation of
a multiset. We therefore modify the definition of F to output ∅ whenever this
occurs, and we always choose α so that this occurs with probability bound by
δ. In our implementation, we set δ = 2−40.

To securely sample Dp, each party inputs a random string, and we let the
XOR of these strings define the random tape for flipping the biased coins. If
the first ` bits of the random tape are 1, the first coin is set to heads, and
otherwise it set to tails: this is computed with a single `-input AND gate. We
iterate through the random tape, ` bits at a time, determining the value of each
coin, and setting the dummy elements appropriately. We use one bit from the
random tape to determine the sign of our coin flips, and we add α dummies
to the result. Recall that the output length is fixed, regardless of this random
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tape, so after we set the appropriate number of dummy items based on our coin
flips, the remaining output values are set to ⊥.

The cost of this implementation of DumGenp,α is O(V ), though this hides
a dependence on ε and δ: an exact accounting for various values can be found
in Section 6. This cost is small relative to the cost of the oblivious shuffle,
but we did first consider a much simpler protocol for DumGenp,α that is worth
describing. Instead of performing a coin flip inside a secure computation, by
choosing a different distribution, we can implement DumGenp,α without any
interaction at all! To do this, we have each party choose d random values from
{1, . . . , |V |}, and view them as additive shares (modulo |V |) of each dummy
item. Note that this distribution is already one-sided, so we do not need to
worry about α, and it already has fixed length output, so we do not need to
worry about padding the dummy array with ⊥ values. Intuitively, this can be
viewed as |V | correlated samples from the binomial distribution, where the bias
of the coin is 1/|V |. Unfortunately, the binomial distribution performs far worse
than the geometric distribution, and in concrete terms, for the same values of
ε and δ, this protocol resulted in 250X more dummy items. The savings from
avoiding the secure computation of DumGenp,α were easily washed away by
the cost of shuffling so many additional items. It is interesting to note that
in the “standard” settings where differential privacy is employed, additional
noise affects the accuracy of the result, whereas here it costs us in terms of
performance.

4.1 Proof of security
We begin by describing the leakage function L(Vertices,Edges). For each v ∈ V ,
we let out-deg(v) denote the out-degree of node v, and we use out-deg(V ) to
denote the set of integers, {out-deg(v)}v∈V . We use in-deg() analogously. Note
that |V | and |E| are both determined by out-deg(V ), and these values will be
used by the simulator as well. As we mentioned previously, we analyze the sim-
pler DumGenp,α algorithm, and prove that the resulting construction satisfies
Definition 2. In particular, then, we assume that out-deg(V ) is public knowl-
edge and given to the simulator. Extending the proof to meet Definition 3 is
not much harder to do.
Recall that the edges are formatted as edge : (u, v, uData, vData, isReal). We de-
fine a database DBR by taking every edge edge ∈ Edges, and adding edge.vData
to DBR. Intuitively, this is a multi-set over the node identifiers from the input
graph, with vertex identifier v appearing k times if in-deg(v) = k. The leak-
age function is L(Vertices,Edges) = (Fε,δ(DBR), out-deg(V )) (where Fε,δ is the
mechanism defined in the previous sub-section). We note that out-deg(V ) can
be modeled as auxiliary information about DBR – intuitively, it can be viewed
as the number of rows that each user contributed to the database – so the proof
that L preserves differential privacy follows from the fact that the mechanism
Fε,δ is differentially private. It is well known that similar noise mechanisms
preserve differential privacy, but, for completeness, we prove it below for our
modified distribution, which is much simpler to execute in a garbled circuit.
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Analyzing our mechanism: We remind the reader that we use the following
distribution for sampling noise:

Pr[γi = α] = p

2

∀k ∈ Z, k 6= 0 : Pr[γi = α+ k] = 1
2(1− p

2)p(1− p)|k|−1.

Consider any two neighboring databases, D1, D2, and some fixed D̂ ∈ RF ,
D̂ 6= ∅ for F as just defined. Let D̂1 = F(D1), let D̂2 = F(D2), and let i
be the value for which D1(i) = D2(i) + 1. By the definition of F , for j 6= i,
Pr[D̂1(j) = D̂(j)] = Pr[D̂2(j) = D̂(j)]. Furthermore, for k 6= j, k 6= i, b ∈ {1, 2},
D̂b(k) and D̂b(j) are sampled independently. Therefore,

Pr[D̂1 = D̂]
Pr[D̂2 = D̂]

= Pr[D̂1(i) = D̂(i)]
Pr[D̂2(i) = D̂(i)]

≤ 1
(1− p)

(Note that the case |D̂(i)| = |D̂1(i)| – i.e. where there is no noise of type i
added to the first dataset – Pr[D̂1=D̂]

Pr[D̂2=D̂]
≤ 1

1−p/2 <
1

1−p .) By choosing 1−p = e−ε,
we achieve the desired bound. Then, for any Tg ⊆ FR \ {∅},

Pr[F(D1) ∈ Tg] =
∑
D∈Tg

Pr[F(D1) = D]

≤
∑
D∈Tg

eε Pr[F(D2) = D]

= eε Pr[F(D2) ∈ Tg]

We now consider the probability that F(D) = ∅. Recall, this is exactly the
probability that for some i ∈ V , γi < 0, which grows as a negligible function in
α. We choose α such that this probability is δ. (We will derive the exact function
below, and demonstrate some sample parameters.) Then, for any T ⊆ FR,
letting Tg = T \ {∅},

Pr[F(D1) ∈ T ] = Pr[F(D1) ∈ Tg] + Pr[F(D1) = ∅]
≤ eε Pr[F(D2) ∈ Tg] + δ

≤ eε Pr[F(D2) ∈ T ] + δ

Setting the parameters We set δ = 2−40, and show how to calculate α; this
allows us to give the expected size of D̂ as a function of ε and δ. We first fix
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some i ∈ V and calculate Pr[γi < 0], and then we take a union bound over |V |.

Pr[γi < 0] =
∞∑

k=α+1

1
2(1− p

2)p(1− p)k−1

= p

2(1− p

2)
∞∑
k=0

(1− p)α(1− p)k

= p

2(1− p

2)(1− p)α 1
1− (1− p)

= 1
2(1− p

2)(1− p)α

After taking a union bound over |V |, we have Pr[F(D) = ∅] ≤ 2−40 when
α >

−40−log( 1
2−

p
4 )−log(|V |)

log(1−p) . Recall that (1−p) = e−ε. So, as an example, setting
ε = .3 and |V | = 212, we have α = 118, and E(|F(D)|) = 118|V |+ |D|.

Theorem 1 The protocol πgas defined in Figure 4 securely computes Fgas with
L leakage in the (Ffunc,FShuffle,DumGenp,α)-hybrid model according to Defini-
tion 2 (respectively Definition 3) when using the second (resp. third) variant of
DumGenp,α.

Proof: ( sketch.) We only prove the first Theorem statement, and omit the
proof that we can meet the stronger security definition. At the end of this
section, we give some intuition for what would change in such a proof. Recall
that the leakage functionality contains (F(DBR), out-deg(V )). We construct a
simulator for a semi-honest P1.

For all three ideal functionalities, the output is simply an XOR secret sharing
of some computed value. The output of all calls to these functionalities can
be perfectly simulated using random binary strings of the appropriate length.
Let simEdges1 denote the random string used to simulate the output of FShuffle
the first time the functionality is called, and let simEdges2 denote the random
string used to simulate the output on the second call. Let simEdges1.u denote
the restriction of simEdges1 to the bits that make up the sharings of Edges.u,
and let simEdges2.v be defined similarly.

There are only two remaining messages to simulate: Open(edge.u), and
Open(edge.v). Recall that there are |E| + 2α|V | edges in the Edges array: the
original |E| real edges, and the 2α|V | dummy edges generated in DumGenp,α.
To simulate the message sent when opening Edges.u, the simulator uses the
values |V | and out-deg(V ) to create a bit string representing a random shuffling
of the following array of size |E|+2α|V |. For each u ∈ V , the array contains the
identifier of u exactly out-deg(u) times. This accounts for |E| =

∑
u out-deg(u)

positions of the array; the remaining 2α|V | positions are set to ⊥, consistent
with the left nodes output by DumGenp,α. Letting r denote the resulting bit-
string, the simulator sends r ⊕ simEdges1.u to the adversary.

To simulate simEdges2.v, the simulator creates another bit-string represent-
ing a random shuffling of the following array, again of size |E|+ 2α|V |. Letting
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D̂ = F(DBR) denote the first element output by the leakage L, the simulator
adds the node identifiers in D̂ to the array. In the remaining |E|+ 2α|V | − |D̂|
positions of the array, he adds ⊥. Letting r denote the resulting bit-string, the
simulator sends r ⊕ simEdges2.v to the adversary.

So far, this results in a perfect simulation of the adversary’s view. However,
note that the outputs of the two parties should be correlated. To ensure that
the joint distribution over the adversary’s view and the honest party’s output
is correct, the simulator has to submit the adversary’s input, 〈Vertices〉, to the
trusted party. He receives back a new sharing of Vertices, and has to “plant” this
value in his simulation. Specifically, in the final iteration of the protocol, when
simulating the output of Ffunc for the last time, the simulator uses 〈Vertices〉, as
received from the trusted party, as the simulated output of this function call.

Hiding the out-degree of each node. We don’t formally prove that using
the third variant of DumGenp,α suffices for achieving security as described in
Definition 3. We instead provide a brief intuition for the argument. For a graph
G = (E, V ), it is helpful to think of the edge set as defining two databases of
elements over V : for each (directed) edge (u, v), we will view u as an element
in database EL and v as an element in database ER. Because the oblivious
shuffle hides the edges between these two databases, the access pattern can be
fully simulated from two noisy histograms (one for each database). Because
differential privacy composes, the added noisy information has the affect of
cutting ε in half.
Hiding a user’s full edge set. The leakage function described above provide
edge privacy to each contributing party. That is, we have defined two databases
to be neighboring when they differ in a single edge. To understand the dis-
tinction, consider the application of building a movie recommendation system
through matrix factorization. If we guarantee edge privacy, then nobody can
learn whether a particular user reviewed a particular movie, but we cannot rule
out the possibility that an adversary could learn something about the set of
movies they have reviewed, perhaps, say, the genre that they enjoy. We could
also define two neighboring databases as differing in a single node. Using the
same example, this would guarantee that nothing can be learned about any
individual user’s reviews, at all. It would require more noise: if the maximum
degree of any node is d, ensuring node privacy would have the affect of scal-
ing ε by d. In our experiments, we have included some smaller values of ε to
help the reader evaluate how this additional noise would impact performance.
However, we note that if the maximum degree in the graph is large, achieving
node privacy might be difficult. We defer investigating other possible notions
of neighboring graphs to future work.
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5 Differentially Private Graph Computation with
O(|E|) complexity

The construction in Section 4 requires O((|E| + δ|V |) log(|E| + δ|V |)) garbled
AND gates. In comparison, the implementation of Nayak et al. [25] uses O(|E|+
|V |) log2(|E| + |V |) garbled gates. When |E| = O(δ|V |), this amounts to an
asymptotic improvement of O(log(|E|)). This improvement stems from our
ability to replace several oblivious sorting circuits with oblivious shuffle circuits,
which we are able to do only because of our security relaxation. However,
while less practical, Nayak et al. could instead rely on an asymptotically better
algorithm for oblivious sort, reducing their runtime to O((|E| + |V |) log(|E| +
|V |)). We therefore find it interesting to ask whether our security relaxation
admits asymptotic improvement for this class of computations, in addition to
the practical improvements described in the previous section. Indeed, we show
that we can remove the need for an oblivious shuffle altogether by allowing one
party to shuffle the data locally. As long as the party that knows the shuffling
permutation does not see the access pattern to V during the Scatter and Gather
phases, the protocol remains secure. The reason this protocol is less practical
then the protocol of Section 4 is because Ffunc now has to perform decryption
and encryption, which would require large garbled circuits.

The construction we present here, described in Figure 5, requires O(|E| +
δ|V |) garbled AND gates, demonstrating asymptotic improvement over the best
known construction for this class of computations, whenever |E| = O(δ|V |).

We assume that the two computation servers hold key pairs, (skAlice, pkAlice)
and (skBob, pkBob). When data owners upload their data, they encrypt the data
under Alice’s key, encrypt the resulting ciphertext under Bob’s key, and send the
result to Bob (obviously this second encryption is unnecessary, but it simplifies
the exposition to assume Bob receives the input in this form).5 Recall that edge
data contains (u, v, uData, vData, isReal), and vertex data contains (x, xData).
We assume each of these elements are encrypted independently, so that we can
decrypt portions of edges when needed. We also assume that these encryption
schemes are publicly rerandomizable: anyone can take an encryption of x un-
der pk, and rerandomize the ciphertext to give an encryption of x, with fresh
randomness, under the same pk. We assume that rerandomized ciphertexts and
“fresh” ciphertexts are equivalently distributed. Throughout this protocol, we
use JxKy to denote the encryption of x using y’s public key.

The protocol follows the same outline as the one in Section 4, but here
we separate the tasks of shuffling and data copying. Bob locally shuffles the
edges, JJEdgesKAliceKBob according to a permutation of his choice. He sends the
encrypted, shuffled arrays to Alice. For each edge, he also partially decrypts the
node identifier for the right node, recovering JEdges.vKAlice. He rerandomizes the
resulting ciphertext, and sends it to Alice. Alice can now find the right vertex

5The data could instead be uploaded as in the previous section, and the servers could
perform a linear scan on the data to encrypt it as described here. This wouldn’t impact the
asymptotic claim; we chose the simpler presentation.
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An O(|E|) protocol for OblivGraph

Edge data is represented as (u, v, uData, vData, isReal), and vertex data is
represented as (u, uData). We assume that each server holds and encryption
key pair, (skAlice, pkAlice) and (skBob, pkBob), and that the public keys are known
to the data owners at the time the data is uploaded.
Input Preparation:
Users encrypt their edge data under Alice’s public key, then under Bob’s
public key, and upload the data to Bob: JJRealEdgesKAliceKBob. (We assume
that the 4 data elements in the edge are encrypted separately.)
Dummy Generation: The parties call the ideal functionality for
DumGenp,α. The functionality is just as described in either the middle or right
of Figure 2, except that we modify the format of the output. Instead of pro-
viding XOR shares of the output, 〈DummyEdges〉, the functionality is assumed
to return a doubly encrypted array of dummy edges, JJDummyEdgesKAliceKBob.

GAS operations in a single iteration:
1. Shuffle: Bob randomly permutes the arrays JJEdgesKAliceKBob accord-

ing to a single random permutation, p. He re-randomizes the (outer)
ciphertexts and sends the encrypted arrays to Alice.

2. Gather: For each edge in JJEdgesKAliceKBob, Bob decrypts the outer ci-
phertext of the right vertex id, re-randomizes JEdges.vKAlice, and sends
it to Alice. For each edge in JJEdgesKAliceKBob, Alice recovers Edges.v
and copies the encrypted edge data to vertex v.

3. Apply: For each vertex, Alice and Bob query a modified Ffunc function-
ality. Alice provides JJVertices.vDataKAliceKBob, and both parties provide
their secret keys. Alice receives updated, re-encrypted vertex data as
output, still denoted by JJVertices.vDataKAliceKBob.

4. Shuffle: Bob executes the second shuffling operation by randomly
permuting JJEdgesKAliceKBob according to a random permutation p′. He
re-randomizes the (outer) ciphertexts, and sends the encrypted array
to Alice.

5. Scatter: For each edge in JJEdgesKAliceKBob, Bob decrypts the outer
ciphertext of the left vertex id, re-randomizes JEdges.uKAlice, and sends
it to Alice. For each edge in JJEdgesKAliceKBob, Alice recovers Edges.u
and copies the encrypted vertex data at u to the corresponding edge.
She re-randomizes all ciphertexts, and sends JJEdgesKAliceKBob back to
Bob.

Figure 5: Protocol for Differentially Private Graph Computation with O(|E|)
complexity.

of every edge. She executes the Gather operation locally by performing a linear
scan over the edge data, opening the right vertex of edge, and copying data
from edge to vertex.

The two parties then execute the Apply operation together, performing a lin-
ear scan over the vertices, and calling a two-party functionality at vertex.6 Alice

6As before, we can replace this functionality with a two-party computation.
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supplies the functionality, Ffunc, with the encrypted data at each vertex, and
both parties provide their decryption key. The functionality decrypts, performs
the Apply function to all real data, and re-encrypts. The updated, encrypted
vertex data is output to Alice.

Bob now reshuffles all the edges and dummy flags, just as before, re-randomizing
Alice’s ciphertexts. He sends JJEdgesKAliceKBob to Alice, who now performs the
Scatter operation, as with Gather. That is, for each edge, she receives the re-
randomized encryption of the left vertex id, JEdges.uKAlice, recovers the vertex
identifier, and copies the vertex data from u back to the appropriate edge. She
re-randomizes all ciphertexts, and sends the edge data back to Bob.

The proof of security is not substantially different than in the previous sec-
tion, so we only give an intuition here. Instead of using random strings to
simulate secret shares, we now rely on the semantic security of the encryp-
tion scheme. When simulating Alice’s view, for each u ∈ Vertices, the leakage
function is used to determine how many times the identifier for u should be
encrypted. The rest of the ciphertexts can be simulated with encryptions of 0
strings. The rest of the simulation is straightforward.
When simulating Bob’s view, an interesting subtlety arises. Even though Bob
does not get to see the access pattern to the vertices during the Gather and
Scatter operations, he does in fact still learn F(DBR). This is because the in-
stantiation of Ffunc with a secure computation will leak the input size of Alice
(assuming we use a generic two-party computation for realizing the function-
ality). This reveals the number of data items that were moved to that vertex
during Gather.7 These input sizes can be exactly simulated using the leakage
function.

6 Implementation and Evaluation
In this section, we describe and evaluate the implementation of our proposed
framework called OblivGraph. We implemented OblivGraph using the FlexSC
multi-party computation framework, which executes Yao’s Garbled Circuits pro-
tocol with a Java-based garbled circuit implementation. We measured the per-
formance of our framework on a set of micro-benchmarks in order to evalu-
ate our design. These micro-benchmarks consist of histogram, PageRank and
matrix factorization problems which are commonly used for evaluating highly-
parallelizable frameworks.

6.1 Implementation
Using the OblivGraph framework, the histogram and matrix factorization prob-
lems can be represented as directed bipartite graphs, and PageRank as a directed
non-bipartite graph. When we are computing on bipartite graphs, if we consider

7If Bob knew how many dummy edges have the form (∗, v), he could immediately deduce
in-deg(v); this is why DumGenp,α is still executed by an ideal functionality, and not entrusted
to Bob.
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the Definition 2.2 where we aim to hide the in-degree of the nodes (nodes on
the left have in-degree 0), the growth rate of dummy edges is linear with the
number of nodes on the right and it is independent of the real edges or users.
However, considering the stronger Definition 2.3, the growth rate of dummy
edges is linear with max(users, items).
Histogram: In histogram, left vertices represent data elements, right vertices
are the counters for each type of data element, and existence of an edge indicates
that the data element on the left has the type on the right.
Matrix Factorization: In matrix factorization, left vertices represent the
users, right vertices are items (e.g. movies in movie recommendation systems),
the edges show if a user ranked that item, and the weight of the edge represents
the rating value.
PageRank: In PageRank, each vertex corresponds to a webpage and each edge
is the link between two webpages. The vertex data comprises of two real values,
one for the PageRank of the vertex and the other for the number of its outgoing
edges. Edge data is a real value corresponding to the weighted contribution of
PageRank of the source vertex to the PageRank of the sink vertex.
Vertex and Edge representation: In all scenarios, vertices are identified
using 16-bit integers and 1 bit is used to indicate if the edge is real or dummy.
For Histograms, besides 16 bits for the vertex id of data elements, we use 20
bits to represent the counter values. In PageRank, we represent the PageRank
value using a 40-bit fixed-point representation, with 20-bit for the fractional
part. In our matrix factorization experiments, we used synthetic data with
variable number of users, variable number of items, a dimension of 10 for the
user and item profiles, each with 20 bits for the fractional part of the 40-bit
fixed-point representation. We chose these values to be consistent with GraphSC
representation.
System setting: Our experiment comprises of 8 virtual machines each with
dedicated (reserved) hardware of 4 CPU cores (2.4 GHz) and 16 GB RAM.
These VMs were deployed on a vSphere Cluster of 5 physical servers and they
were interconnected with 1Gbps virtual interfaces. We run our experiments on
p (p = 1, 2, 4, 8) pairs of these processors, where in each pair, one processor
works as the garbler, and the other as the evaluator. Each processor can be
implemented by a core in a multi-core VM or be a VM in our compute cluster.

6.2 Evaluation
We used circuit complexity as the main metric to study the performance of our
system. We report the total number of AND gates generated in the garbled
system. This metric helps us to have a more fair comparison with other frame-
works, since it is independent of the hardware configuration and of the chosen
secure computation implementation. We run all the benchmarks with the same
set of parameters that have been used in the GraphSC framework. In our his-
togram and matrix factorization experiments, we run the experiments for 4000
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users and 128 items. The number of nodes in our PageRank experiment is set
to be 2000.
Histogram: To assess the performance of OblivGraph, first we show the results
for the histogram example that we used to explain our main construction. Figure
6a demonstrates the number of AND gates for histogram in both the GraphSC
and OblivGraph frameworks. In Histogram, with 2000 data elements and 128
data types, we always do better than GraphSC when ε >= 0.3. When ε = 0.1,
we start outperforming GraphSC when there are at least 3400 edges.
Matrix Factorization: We run the same set of experiments for the matrix fac-
torization problem and provide the results in Figure 6b. We consider a scenario
with 4000 users and a movie set of size 128 movies; we use the (batch) gradient
decent method for generating the recommendation model, as in [26, 25]. In MF,
with 2000 users, 128 items, and ε = 0.3, we outperform GraphSC once there
are at least 15000 edges. When ε = 0.1, we start outperforming them on 54000
edges. We always do better than GraphSC when the ε = 1 or higher.
PageRank: Figure 7 provides the result of running PageRank in our framework
with 2000 nodes and different values of ε. With ε = 0.3, we outperform GraphSC
when the number of edges are about 400000, and with ε = 1 we outperform them
on just 130000 edges. In both cases, the graph is quite sparse, compared to a
complete graph of 2 million edges. Note, though, that our comparison is slightly
less favorable for this computation. Recall, the number of dummy edges grow
with the number of nodes in the graph, and, when hiding only in-degree in a
bipartite graph, this amounts to growing only with the number of nodes on the
right. In contrast, the runtime of GraphSC grows equivalently with any increase
in users, items, or edges, because their protocol hides any distinction between
these data types. We therefore compare best with them when there are more
users than items. When looking at a non-bipartite graph, such as PageRank,
our protocol grows with any increase in the size of the singular set of nodes,
just as theirs does. If we increase the number of items in matrix factorization
to 2000, or decrease the number of nodes in PageRank to 128, the comparison
to GraphSC in the resulting experiments would look similar. We let the reader
extrapolate, and avoid the redundancy of adding such experiments. The timings
shown on the graphs are the estimates of the run time of the framework in one
single iteration, assuming, conservatively, that 5 million gates can be processed
per second.
Effect of Parallelization: We stress that the estimated timing results pre-
sented in Figures 6a, 6b and 7 are for execution on a single processor. Table 1
shows the effect of parallelization in our framework as compared to GraphSC.
We report the results for p pairs of processor (i.e. p garblers and p evaluators)
where p = 1, 2, 4, 8. Since all of our graph operations are highly paralleliz-
able, the results illustrate that the execution time can be significantly reduced
through parallelization. When the parallel oblivious algorithm is interpreted as
a circuit, the number of processors needed to achieve parallel runtime corre-
sponds to the maximum width of the circuit. As shown in the Table 1, adding
more processors in GraphSC framework, increases the total number of AND
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(a) Histogram (b) Matrix factorization

Figure 6: 4000 users and 128 types and varying ε

Figure 7: PageRank with 2000 nodes and varying ε

Gates by some small amount because of their design structure of Gather and
Scatter operations. However, the size of the circuit generated in OblivGraph
framework is constant in the number of processors: parallelization does not af-
fect the number of AND gates in the OblivGraph GAS operations, DumGen. It
does, of course, increase the total communication in the network, but, as already
demonstrated in [25], this has small impact on the result of parallelization. The
parallel runtime is the total time required to execute the parallel oblivious al-
gorithm, assuming a sufficient number of processors. Therefore, increasing the
number of processors corresponding to the maximum width of the circuit, we
can achieve significantly better parallel runtime as compared to GraphSC.
Optimization using Compaction: It is important to note that the measured
circuit sizes in our OblivGraph experiments correspond to the worst-case sce-
nario in which the number of dummy edges are equal to d = 2α|V |, which is the
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Processors GraphSC OblivGraph
|E| = 8192 |E| = 24576 |E| = 8192 |E| = 24576

1 4.047E + 09 1.035E + 10 2.018E + 09 4.480E + 09
2 4.055E + 09 1.039E + 10 2.018E + 09 4.480E + 09
4 4.070E + 09 1.046E + 10 2.018E + 09 4.480E + 09
8 4.092E + 09 1.057E + 10 2.018E + 09 4.480E + 09

Table 1: Cost of Parallelization on OblivGraph vs. GraphSC in computing
Matrix Factorization
maximum number of dummies per type. Consequently the time for OblivShuffle
is its maximum value. However, looking at the geometric distribution used in
the DumGen procedure, the expected number of dummy edges is α|V |, so half of
the dummy items are unnecessary. Removing these extra dummy items during
DumGen is non-trivial, because, while it is safe to reveal the total number of
dummy items in the system, revealing the number of dummy items of each type
would violate differential privacy. After the first iteration of the computation,
once the dummy items are shuffled in with the real items, an extra flag marking
the excessive dummy items can be used to safely remove them from the sys-
tem; this optimization can significantly reduce the shuffling time (roughly by
half) in the following iterations. However, our graphs are showing only the first
iteration of the algorithm and they do not reflect this simple optimization.
Oblivious Shuffle: We use an Oblivious Shuffle in our OblivGraph framework,
which has a factor of log(n) less overhead than the Bitonic sort used in GraphSC.
We designed the Oblivious Shuffle operation based on the Waksman network
[32]. The cost of shuffling is approximately BW (n) using a Waksman network,
where W (n) = n logn− n+ 1 is the number of oblivious swaps required to per-
mute n input elements, and B indicates the size of the elements being shuffled.
In the original Waksman switching network, the size of the input, n, is assumed
to be a power of two. However, in order to have an Oblivious Shuffle for arbi-
trary sized input, we must use an improved version of the Waksman network
proposed in [1] which is called AS-Waksman (Arbitrary-Sized Waksman). The
number of necessary swapper gates in AS-Waksman can be calculated using the
following formula:

W (n) = W
(⌈n

2

⌉)
+W

(⌊n
2

⌋)
+ n− 1 =

n∑
i=1

⌈
log(i)

⌉
(3)

In our current set of experiments, we have only implemented the original ver-
sion of the Waksman network and have not implemented AS-Waksman. How-
ever, we used the Equation 3 for AS-Waksman to calculate the number of nec-
essary swapper gates in our Oblivious Shuffle when using arbitrary sized input,
and we report these projected values in the graphs. For example, in Figure
8, the green line shows the values that we obtained from the Waksman imple-
mentation where the input size must be power of two, and the red dotted line
represents the projection values we computed with the AS-Waksman formula
for any arbitrary sized inputs.

Since all of the operations in ObliveGraph, including DumGen, Gather,
Apply and Scatter, can work with arbitrary sized inputs, and the only lim-
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Figure 8: The effect of using Waksman network vs. AS-Waksman network in
OblivShuffle procedure in Matrix factorization with 4000 users, 128 movies and
ε = 0.3

itation of our current implementation is imposed by using the conventional
Waksman switching network, in all graphs we used the estimated circuit size of
the OblivShuffle for non-power of two inputs and the exact circuit size of the
OblivShuffle for power of two inputs. (To avoid confusion, we did not show the
step function in the rest of the graphs.)
Cost of a single iteration in the OblivGraph framework: In order to
understand how expensive the DumGen and ObliveShuffle procedures are, as
compared to other GAS model operations, we show the number of AND gates
for each of these procedures in Table 2. A single (and only) iteration in the
Histogram computation includes one OblivShuffle. PageRank and Matrix Fac-
torization have two OblivShuffle in a single iteration. The results shown in
this table are for Histogram and Matrix Factorization with 4000 users and 128
types and PageRank with 2000 number of nodes. In all experiments, we used
ε = 0.3, and the number of real edges is 250000. We demonstrate the result for
GraphSC framework with similar parameters in the last column of this Table. In
all of these experiments we eliminate the effect of parallelization by running the
computations on a single machine. As demonstrated in Table 1 and discussed
below, the only overhead in parallelizing our protocol lies in the communication
cost; roughly, the estimated times reported in the graphs can be reduced by a
factor of P by using P processors.
DumGen Procedure: Figure 9 shows the number of AND gates in the Dum-
Gen procedure for different algorithms and varying values of ε. Due to the
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OblivGraph Procedures AND Gates
Computation DumGen Shuffle GAS OblivGraph GraphSC

Histogram 5.02E + 05 | 1.61E + 08 | 1.11E + 07 1.72E + 08 3.24E + 09
PageRank 1.64E + 07 | 2.97E + 09 | 3.62E + 09 9.56E + 09 7.34E + 09
Matrix Factorization 5.02E + 05 | 4.49E + 09 | 3.22E + 10 4.11E + 10 8.23E + 10

Table 2: Cost of DumGen and ObliveShuffle versus GAS operations for a single
iteration in OblivGraph, and compared to GraphSC
nature of the DumGen procedure, the number of items (or nodes in the case of
PageRank) affects the number of dummy edges. Therefore the number of AND
gates in PageRank is higher than in histogram and matrix factorization, and
the number of AND gates for histogram and matrix factorization are the same
due to having the same number of items. By relaxing the privacy notion and
increasing the value of ε (recall the value of δ is always fixed), the number of
required dummy edges will decrease, and consequently the size of the DumGen
procedure will shrink. More specifically, increasing ε increases the value of p in
our geometric distribution, which hastens the halting probability and creates
fewer dummy edges on average. We do not include the cost of DumGen in our
comparison to GraphSC because it is a one time overhead and we want to cap-
ture the cost of one iteration, and note that they have a much more expensive
sort that we do not include.

Figure 9: DumGen for different algorithms with different values of ε. Histogram
and Matrix Factorization with 4000 users and 128 types and PageRank with
2000 number of nodes.
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7 Conclusion and Open Problems
We have established a new tradeoff between privacy and efficiency in secure
computation by defining a new security model in which the adversary is pro-
vided some leakage that is proven to preserve differential privacy. We show that
this leakage allows us to construct a more efficient protocol for a broad class of
computations: those that can be computed in graph-parallel frameworks such
as MapReduce. We have evaluated the impact of our relaxation by comparing
the performance of our protocol with the best prior implementation of secure
computation for graph-parallel frameworks.
Our work demonstrates that differentially private leakage is useful, in that it
provides opportunity for more efficient protocols. The protocol we present has
broad applicability, but we leave open the very interesting question of deter-
mining, more precisely, for which class of computations this leakage might be
help. Graph-parallel algorithms have the property that the access pattern to
memory can be easily reduced to revealing only a histogram of the memory
that is accessed, and histograms are the canonical example in the differential
privacy literature. Looking at other algorithms will likely introduce very inter-
esting leakage functions that are new to the differential privacy literature, and
security might not naturally follow from known mechanisms in that space. A
wonderful example is the stable matching problem, which is another large-scale
computation that has been the focus of some research in secure computation.
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