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Abstract. This note analyzes the security of Kravatte against the cube
attack. We provide an analysis result which recovers the master key of the
current version of full Kravatte with data and time complexities 2136.01,
and negligible memory. The same could be applied to the first version
of Kravatte with complexities of 238.04, which could be carried out in
practice. These results are possible thanks to a clever way of constructing
affine spaces bypassing the first permutation layer of Kravatte proposed
by the designers and a simple yet efficient way to invert the last layer of
Sbox in Kravatte.
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1 Introduction

1.1 The Keccak-p

The Keccak-p permutations are specified with two parameters: the width of the
permutation in bits b and the number of rounds nr. The Keccak-p permutation
with nr rounds and width b is denoted by Keccak-p[b, nr], where nr is any
positive integer and b can be any value of the form 25·2l for l = 0, . . . , 6. The b-bit
state a for the Keccak-p[b, nr] permutation is seen as a three-dimensional array
of bits, namely a[5][5][w] with w = 2l. The expression a[x][y][z] with 0 ≤ x, y < 5,
0 ≤ z < w, denotes the bit with (x, y, z) coordinate. The coordinates are always
considered within modulo 5 for x and y and modulo w for z. The one-dimensional
portion a[∗][y][z] is called a row, a[x][∗][z] a column and a[x][y][∗] a lane.

The Keccak-p[b, nr] permutation iterates an identical round function (up
to a difference of round-dependent constant addition) nr times, each of which
consists of five bijective mappings R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with details as follows.

θ : A[x][y][z]← A[x][y][z] +Σ4
y=0A[x− 1][y][z] +Σ4

y=0A[x+ 1][y][z − 1],
ρ : A[x][y][z]← A[x][y][(z + T (x, y))],where T (x, y)s are pre-defined rotation constants,
π : A[y][2x+ 3y][z]← A[x][y][z],
χ : A[x][y][z]← A[x][y][z] + ((A[x+ 1][y][z] + 1) ·A[x+ 2][y][z]),
ι : A[0][0]← A[0][0] +RCir ,where RCir is the round constant for the ir-th round.



Here, ‘+’ denotes XOR and ‘·’ denotes logic AND. Expressions in the x and y
coordinates should be taken in modulo 5 and expressions in the z coordinate
modulo w.

1.2 The Farfalle construction and Kravatte

stands for permutations and symbolizes rolling functions.

Figure 1: The Farfalle construction [1].

Farfalle [1] is a permutation-based construction for building pseudorandom
functions, as shown in Figure 1. It takes a key of variable-length and a message
sequence as input, and outputs a bit stream of desired length. Farfalle has three
parts: a key derivation, a compression layer and an expansion layer, which makes
use of four permutations pb, pc, pd, and pe, and three rolling functions rollc, rolle,
and rollf . Firstly, the key derivation generates b-bit masks from the key using
pb, rollc, and rollf . These masks derived from the key are used for pre/post-
whitening. Then, the compression layer computes a b-bit accumulator from the
message sequence by the parallel application of pc. Finally, the expansion layer
computes rolling states from the accumulator using rolle, and passes the rolling
states to pe to generate the output. Due to the inherent parallelism of the Farfalle
construction, Farfalle instances can be very efficient.

Proposed in [1], Kravatte is a Farfalle instance based on Keccak-p[b, nr].
Specifically,

pb = pc = Keccak-p[1600, 6],
pd = pe = Keccak-p[1600, 4].
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rollf is the identity, and rolle = rollc. We refer to [1] for details and they are
omitted here as this analysis does not depends on them as long as all the rolling
functions are linear and their inverses are easily computable.

2 Cube Attack against Kravatte

2.1 The Cube Attack

The cube attack was introduced by Dinur and Shamir [3] in 2009, to analyze the
security of primitives with low algebraic degrees. The idea is similar to high order
differential attacks, when the algebraic degree of a polynomial is d, applying
d+ 1-th derivative will result in 0. Similarly, for a primitive f with the degree
of the algebraic expression at most d, the sum

∑
x∈S f(x) = 0 for any affine

subspace S of dimension at least d+ 1.
As observed by the Keccak designers, the algebraic degree of the Keccak

Sbox (a.k.a., the χ operation) is 2.

2.2 Cube Attack against Kravatte

As already described in [1, Section 5.4], the cube attack (or high order differential)
works for round-reduced variant. The idea is to bypass the pc layer, and find a big
enough affine subspace of the output of pc. It can be constructed as follows [1].

Each string has the form m(λ) = mλ0
0 ‖m

λ1
1 ‖ · · · ‖m

λd

d , where λi ∈ {0, 1}
and m0

i 6= m1
i for all i. If we denote ri = pc(m0

i + rolli(k)) and r∗i =
pc(m1

i + rolli(k)) and r′i = ri + r∗i 6= 0, the value of the accumulator for
the input string with label λ is xλ =

∑
i ri +

∑
i λir

′
i. Over the space of

input strings, this is an affine space.

Note the rest parts of Kravatte are mainly pd and pe which have in total 8
rounds. The algebraic degree of each round is 2. Without any further details of
the round functions, the cube attack can already analyze up to 7 rounds, since
its degree is 27 = 128. This requires a data complexity of 129 · 2129 = 2136.01

message blocks and the same time complexity.
Below, we show how we can invert the last round, so to extend this attack to

the full Kravatte without increasing the attack complexities.

2.3 Inverting the last round of Kravatte and Improved Cube
Attack

The core idea is that, the first three operations θ, ρ, π of the Keccak-p round
function are linear, which do not increase the algebraic degrees. So the zero-sum
property still holds at the point of the state just before the last χ. This zero-sum
could be checked against for each Sbox of the last χ individually, i.e., we can take
out the 5 bits of the PRF output at the position of the first row of the first slice,
i.e., the first Sbox, recover the 5 corresponding bits of the post-whitening key k′
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by simply bruteforcing all the 25 choices, compute χ−1 and check against the
zero-sum property. This can be repeated to all other Sboxes until we recover the
full post-whitening key k′. Note the knowledge of k′ give us the master key K
by computing p−1

b (roll−(i+2)
c (k′)). This attack has the same data complexity as

before, but increases the computation complexity by a factor of 25 for bruteforcing,
and this factor can be removed by filtering repeated occurrence of 5-bit values
at the output of each Sbox, since we are checking for zero-sum properties. This
dramatically reduces the data involved in the bruteforce stage from 2129 to no
more than 25, and now the bruteforce takes less than 210 to complete for each
Sbox and thus less than 320 · 210 for all Sboxes. Therefore, recovering the master
key of the full Kravatte costs data and time complexities of 2136.01.

We note the same applies to a previous version of Kravatte [2] with com-
plexities 33 · 233 = 238.04, as the Keccak-p permutation after the accumulator
had 6 rounds only.

3 Conclusion

There is a tradeoff between the attack complexities and number of round attacked.
For instance, we can attack one round less with complexities 65 · 265 = 271.02.
This analysis leaves no security margin for the current version of Kravatte.
However, inverting more than one rounds seems infeasible now, so increasing the
number of rounds of pd and/or pe will likely resist this attack.
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