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Abstract. In this paper, we give a pre-image attack against 1-round
KECCAK-512 hash function which also works for 1-round of all the
variants of KECCAK.
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1 Introduction

Hash functions are used in digital signatures, message integrity and authenti-
cation. In 2006, NIST announced the “NIST hash function competition” which
received 64 proposals from round the world. In October 2012, KECCAK de-
signed by Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche
[3], was selected as the winner of the competition and in 2015, it was standard-
ized as a “Secure Hash Algorithm 3” [9].

The KECCAK hash family is based on the sponge construction[4]. Sponge con-
struction has the property to generate a output of any length and because of
this property, SHA3 standards include two extend-able output functions which
are SHAKE128 and SHAKE256. These can also be used as a pseudo-random
generator. Due to its vast applications, a lot of security analysis are being per-
formed on the KECCAK hash family.

In 2010, D. J. Bernstein [1] gave an idea for second preimage for Keccak vari-
ants and in 2014, Chang et al. [5] gave a 1st and 2nd preimage attack. Both
have an improvement in time complexity over the bruteforce. Morawiecki et al.
[11] gave a theoretical preimage attack upto 4 round of KECCAK by using a
technique called as rotational cryptanalysis. Morawiecki et al. [12] performed
a preimage analysis of round reduced KECCAK by using toolkit CryptLogVer
and SAT solver PrecoSAT. Mara Naya-Plasencia et al. [13] gave a preimage
attack on 2-round for KECCAK-224 and KECCAK-256 by using the meet in
middle approach. Dinur et al. [6] [8] gave a collision attack upto 4 round using
differential and algebraic techniques, and later improved upto 5 rounds using
generalized internal differential [7]. In 2016 Guo et al. [10] gave preimage attack
for 2 round for KECCAK-224, 256, 384 and 512. The complexity of attack [10]
for KECCAK-384 is 2129 and for KECCAK-512 is 2384. They extended this upto
4 round for small hash length. Apart from above mentioned attacks, there are



several other attacks against KECCAK.

Our contribution: In this paper, we give a preimage attack against 1 round
KECCAK-512. The attack does not contain solving of system of equations. It
is primarily based on exploiting the degree of freedom in the equations between
hash values and the message bits, and convert these equation to simple assign-
ments of values to message variables. Using this method, we can find a message
of length less than 2880 bits corresponding to every hash value. Also, the time
complexity of this attack is constant. This attack does not pose a threat to the
security of 24-round KECCAK.

Organization: The rest of the paper contains the following sections. In Sec-
tion 2, we briefly describe the structure of KECCAK. In Section 3, we show the
preimage analysis of 1 round KECCAK-512 by using the idea of linear structure
given by Guo et al. [10]. Section 4 contains the description of our pre-image
attack and the appendix contains other details regarding the preimage attack
that were skipped in Section 4. Section 5 contains conclusion and future works.

2 Structure of Keccak

Keccak hash function has 3 parameters: r is the bitrate, c is the capacity and n
is the output length. It is based on sponge construction[4] which uses a padding
function pad, a bitrate parameter r and a permutation function f as shown in
figure 2.

Fig. 1. Sponge function [4]



2.1 Sponge Construction

The sponge construction begins by applying the padding function pad on the
input string M which produces M ′ whose length is a multiple of r. M ′ under
goes the absorbing phase as follows.

1. M ′ is split into blocks of r bits namely m1,m2, ...mk.
2. There is an initial string(o0) which is a b bit string initialized to zero.
3. The initial r bits of o0 is XORed with first block m1 and is given as input

to f . The output produced by f is denoted by o1.
4. Similarly, the initial r bits of oi is XORed with the mi+1 and given to f .
5. Finally, the output of the absorbing phase is ok.

The squeezing phase consist of obtaining the output which can be of any
length. Let n be the required output length such that n = pr + q where q < r.

1. Apply the f function p more times such that ok+i = f(ok+i−1).
2. Let O be the concatenation of the first r bits of each ok+i where 0 ≤ i ≤ p.
3. The output of the sponge construction is the first n bits of O.

In case of KECCAK hash function, f is a KECCAK-f permutation and
the pad function appends 10∗1 to input M . KECCAK-f is a specialization of
KECCAK-p permutation.

KECCAK − f [b] = KECCAK − p[b, 12 + 2l]

where l = log2(b/25).

2.2 KECCAK-p permutation

KECCAK-p permutation is denoted by KECCAK-p[b, nr], where b is length
of input string which is called the width of the permutation, nr is number of
rounds of internal transformation where b ∈ {25, 50, 100, 200, 400, 800, 1600} and
nr being any positive integer. We can define two more quantities w = b/25 and
l = log2(b/25). For KECCAK-512 number of rounds of internal transformation
nr is 24 and b = 1600. The b bit input string can be represented as a 5× 5× w
3-dimensional array known as state as shown in figure 2.2. A lane in a state S is
denoted by S[x][y] which is the substring S[x][y][0]|S[x][y][1]| . . . |S[x][y][w − 1]
where | is the concatenation function.

The internal transformation consist of 5 step mappings θ,ρ,π,χ and ι which
acts on a state. We give a brief description of each of these step mappings with
A and A′ being the state before and after applying a step mappings.

1. θ:

A′[x][y][z] = A[x][y][z]⊕ CP [(x+ 1) mod 5][(z − 1) mod 64]

⊕ CP [(x− 1) mod 5][z]

where CP [x][z] is the parity of a column, i.e,

CP [x][z] = A[x][0][z]⊕A[x][1][z]⊕A[x][2][z]⊕A[x][3][z]⊕A[x][4][z]



Fig. 2. Keccak state [2]

2. ρ:
A′[x][y] = A[x][y] << r[x][y]

where << means bitwise rotation towards MSB of the 64-bit word. The
values of r[x][y] are given in the table below.

4 18 2 61 56 14

3 41 45 15 21 8

2 3 10 43 25 39

1 36 44 6 55 20

0 0 1 62 28 27

y\x 0 1 2 3 4

3. π:
A′[y][2x+ 3y] = A[x][y]

π interchanges the lanes of the state A.
4. χ:

A′[x][y][z] = A[x][y][z]⊕ ((A[(x+ 1) mod 5][y][z]⊕ 1)

.A[(x+ 2) mod 5][y][z])

χ is the only non-linear operation among the 5 step mappings.
5. ι:

A′[0][0] = A[0][0]⊕RCi
where RCi is a constant which depends on i where i is the round number.

3 Linear Techniques

In this section, we are going to show our initial idea to attack 1 round KECCAK-
512. This is based on the idea of linear structure [10] proposed by Jian Guo et al..
The attack is to invert the hash value by applying ι inverse and χ inverse at the
same time convert rest of the operations on message block into linear operations.
This forms a system of linear equations and the solution to these equation gives



the preimage corresponding to the given hash value. In KECCAK-512, we have
n = 512, c = 1024 and r = 576. So, the hash value occupies 8 lanes and message
block is of 9 lanes. Suppose A = a0a1a2a3a4a5a6a7a8 is the message block of 576
bit length where each ai is an array of 64 bits. Figure 3 shows the state after
applying θ,ρ and π on A where di[k] = CP [i − 1][k] + CP [i + 1][k − 1]. In all
the equations and figures, the value inside the brackets ’()’ indicate the offset by
which the lane is shifted. Every operation between two lanes are bitwise and +
symbol refer to XOR operation.
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Fig. 3. Linear structure

Suppose H = h0h1h2h3h4h5h6h7 is the 512-bit hash value where each hi is
of 64 bits. We know that we can invert the last row of H and obtain the exact
values of h

′

0, h
′

1, h
′

2, h
′

3 and h
′

4(shown in figure 4) using the formula given below.
The same cannot be done for the second last row.

h
′

i = hi + (hi+1 + 1).(hi+2 + (hi+3 + 1).hi+4)

By equating the 3rd state of figure 3 and 2nd state of figure 4, we get the
exact values of d2, d3, d4 and two linear equations

a0 + d0 = h
′

0

a6 + d1 = h
′

1
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Fig. 4. Inverse operation on hash values

By applying χ on the 3rd state of figure 3, we have the following equations

a3(28) + d3(28) + (d4(20) + 1)d0(3) = h5

d4(20) + (d0(3) + 1)d1(45) = h6

d0(3) + (d1(45) + 1)d2(61) = h7

The 2nd equation is quadratic while the other two are linear. It can be easily
seen that for many cases, there isn’t a solution to this system of equations. For
example, take the case where d4 = h

′

4 = 0 and d2 = h
′

2 = 0. Then,

(d0(3) + 1)d1(45) = h6

d0(3) = h7

The above equations cannot be solved simultaneously if h7 = 1 and h6 = 1. So
we need a different approach to attack 1 round of KECCAK-512.

4 Preimage-Attack

In this section, we discuss in detail the preimage-attack against 1-Round KECCAK-
512. For this attack, we consider the message to be of length 2880 bits which
will include the padding bits, i.e., the message will contain five blocks A,B,C,D
and E. In the analysis, we will ensure that the last bit of E will be 1, so that
the padded bits are of form {10∗1}. Let S be the initial state of 1600 bits where
each bit is zero.

S ⊕A ι◦χ◦π◦ρ◦θ−−−−−−−→ X

X ⊕B ι◦χ◦π◦ρ◦θ−−−−−−−→ Y

Y ⊕ C ι◦χ◦π◦ρ◦θ−−−−−−−→ Z

Z ⊕D ι◦χ◦π◦ρ◦θ−−−−−−−→W



W ⊕ E ι◦χ◦π◦ρ◦θ−−−−−−−→ S′

The first 512 bits of S′ denoted by h0, h1, h2, h3, h4, h5, h6, h7 represents the
hash value of the message. Now we invert the last round by applying ρ−1 ◦π−1 ◦
χ−1 ◦ ι−1.
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Fig. 5. Inverting last round

In above figure, we do not worry about the blank lanes because we will ensure
that θ will act as a identity. Notice that the value of one of the lanes is 1 in-order
to invert the χ operation. The following are the values of h

′

i.

h
′

7 = h7

h
′

6 = (h6 + h7)

h
′

5 = h5 + (h6 + h7)h7

h
′

0 = h0 +RC0 + (h1)(h2 + h3h4)

h
′

1 = h1 + (h2)(h3 + h4(h0 +RC0))

h
′

2 = h2 + (h3)(h4 + (h0 +RC0)h1)



h
′

3 = h3 + (h4)(h0 +RC0 + h1h2)

h
′

4 = h4 + (h0 +RC0)(h1 + h2h3)

4.1 Making θ ineffective

In-order to nullify the effect of θ in each round, we just have to ensure that the
parity of every column in the state after being XORed with the message block
is zero(or one). This can be ensured because we have the freedom to choose the
message block. If the message block M = m0m1m2m3m4m5m6m7m8 is being
XORed with state S, we can set

m4 =

4⊕
i=0

S[4][i]

Similarly, for other columns, we have two lanes as variables, from which we
will keep one as a variable and the other to make parity zero.

mj = m(j+5 mod 10)

4⊕
i=0

S[j][i]

4.2 Finding first four message blocks

In S ⊕A, to make all column parities zero we have the following assignments

a0 = a5, a1 = a6, a2 = a7, a3 = a8 and a4 = 0

This gives a compact representation of state after applying 1 round over message
block A. In Appendix, we have shown how to get the equation of state at the end
of single f function in the terms of input state and message block. By making
sure the column parity of each round as zero, we get

w10 = h′7(61), w16 = 1, w12 = h′2(21), w18 = h′3(43), w24 = h′4(50) and w9 = h′6(44)

We now give the equation for w12,w18,w24,w9,w10 and w16.



w9 =z22(61) + (z3(28) + d3(28))z9(20)

=z22(61) + (z3(28) + d3(28))[a1(57)a2(62) + a3(10)]

w10 =z1(1) + d1(1) + (z7(6) + d7(6))(z13(25))

w12 =a2(23) + [a0(60)a1(40) + b4(60) + 1][a3(33) + b5(5)]+

[b2(41) + (a3(62) + b8(34))a1(19)a2(24) + 1][b6(6) + c1(26)]+

[y23(0) + (y4(35) + c4(35))(y5(44) + c5(44)) + 1]

[y2(16) + c2(16) + (y8(9) + c8(9))y14(57)]

w16 =z5(36) + d5(36) + z11(10)z17(15)

w18 =b7(31) + a1(51)a0(5) + (a2(46) + a2(20) + 1)(a3(0))(b2(5))+

[a0(60)a1(40) + b4(60) + (a3(33) + b5(5))a2(49)+

(a3(13) + b8(49) + 1)(a2(2)a3(59) + c2(54)) + 1][z4(27) + d4(27)]

w24 =a0(10) + a0(21) + b3(21) + c8(57)+

(a2(57) + (a1(22) + b1(42))b7(47) + 1)

(a0(6)a1(50) + b4(6) + (a3(43) + b5(15) + 1)a2(59))+

(z2(62) + d2(62))(z8(55) + d8(55))

We want a solution of these non-linear equations by using message blocks
A,B,C and D. Following are the observations and analysis done on the above
equations to get the values of A,B,C and D

1. In state X, all the elements in 2nd column are zero (refer Appendix A) and
so we must have b7 = b2 to make the column parity 0.

2. We assign a1 = 0 and b1 = 0 which will be helpful later.

3. We assign a2(23) = w12. By using this assignment, we can see that apart
from a2(23), the rest of the terms in the equation of w12 must vanish. To
achieve this, we set

– b5(5) = a3(33)

– b8(34) = a3(62) which is same as b8(49) = a3(13)

– b2(41) = a2(24)

Now, we have

w12 =a2(23) + [b6(6) + c1(26)]+

[y23(0) + (y4(35) + c4(35))(y5(44) + c5(44)) + 1]

[y2(16) + c2(16) + (y8(9) + c8(9))y14(57)]

Later, we will assign c1 with appropriate value so that only a2(23) remains.



4. By looking at the equation for w9, since a1 = 0, if we set a3(10) = a2(62)+1,
we get

w9 = z22(61) + z3(28) + d3(28) + 1

5. We are only left with a0 for A. This can be achieved from the equation of
w18 by assigning properly the value of c2 which will be done later. So, we
get

a0(5) = w18 + b7(31) + [a2(46) + a2(20) + 1]a3(0)b2(5)

6. Since we now have the first message block A, by applying one round of f on
it, we can obtain X. Since we know the values of b5,b1,b2, b7 and b8, we can
fix the other lanes of message block B such that column parities in X ⊕ B
are zero and then compute Y .

7. As seen earlier, to get the value of a0, we must properly assign the value of
c2, which is

c2(54) = 1 + a2(2)a3(59) + b4(60) + [a3(33) + b5(5)]a2(49)

8. To find the value of c8, we use the equation of w24 and setting d2 = z2, i.e,
we get

c8(57) = w24+a0(10)+a0(21)+b3(21)+[a2(57) + b7(47)][b4(6)+(a3(43) + b5(15))a2(59)]

9. We randomly choose c0 and find c5, c7, c3, c4 such that the column parity of
their respective column is zero.

10. Finally, to find c1, we again use the equation of w12.

u1 = y23(56) + (y4(27) + c4(27))(y5(36) + c5(36))

u2 = y2(62) + c2(62) + (y8(55) + c8(55))y14(39)

c1(26) = b6(6) + u1(8)u2(18)

Using c1, we can also find the value of c6 to make the column parity is zero.
11. Now,we know message block C, so we can apply the 1 round of KECCAK-f

permutation on Y ⊕ C and compute Z.
12. From step 4, we can set

d3(28) = w9 + z22(61) + z3(28) + 1

13. We can find the value of d7, using d2 and Z ensuring that the column parity
is zero. From the equation of w10, we get

d1(1) = w10 + z1(1) + (z7(6) + d7(6) + 1)z13(25)

and from w16, we have

d5(36) = w16 + z5(36) + z11(10)z17(15)

14. We can now find d0, d6, d8, d4 to make the column parity zero.



4.3 Finding last message block

Now we want state W ⊕E should have column parities as zero and 1st , 4th ,7th

lane is equal to h
′

0, h
′

5(36), h
′

1(20) respectively.

e0 = w0 + h
′

0

e6 = w6 + h
′

1

e3 = w3 + h
′

5

Choose e2 randomly and fix e5, e1, e7, e8, e4 such that column parity is zero.

4.4 Ensuring last bit is 1

We still have to ensure that the last bit of E is 1. e8 depends on the parity of
the fourth column of W . The equation for the parity of this column contains c0
which is chosen randomly, and hence we can expect that the last bit of e8 will
be 1. If not, we repeat the attack.

5 Conclusion and Future Works

Our approach gives a preimage attack to all the variants of 1 round KECCAK
hash functions. This is currently the fastest preimage attack known. In future,
we need to find whether this idea can be extended to 2 rounds KECCAK-384
and KECCAK-512. This idea is difficult to apply for more rounds because we
cannot nullify the θ step mapping and the degree of the equation increase by two
after each round. So, it is difficult to find the simpler equation with the extra
degree of freedom.
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A The equations of the state at the end of f function in
the terms of input state and message block

By following section 4.1, we can make every θ step as an identity operation. We
will find the equations of the state after each KECCAK-f function. Let us look
at the state X at the end of the first round.

S ⊕A KECCAK−f−−−−−−−−−→ X

In-order to make the θ step ineffective in the first round, we adopt the following
assignments.

a5 = a0, a6 = a1, a7 = a2, a8 = a3 and a4 = 0

So, at the end of the first round, the state X will be as given below.

a2(62) a3(56) 0 a2(62) a2(62)a3(55)

0 a0(36) 0 0 a0(36)

a1(1) a2(6) 0 a1(1) a1(1)a2(6)

a3(28) 0 0 a3(28) 0

a0 ⊕ RC0 a1(44) 0 a0 a0a1(44)
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Fig. 6. State X



Similarly, let’s look at state Y at the end of second round. The figure given
below shows the state obtained by XORing the first 576 bits of X with message
block B and applying π ◦ ρ ◦ θ to it.

a2(62) a3(56) 0 a2(62) a2(62)a3(55)

0 a0(36) 0 0 a0(36)

a1(1) a2(6) 0 a1(1) a1(1)a2(6)

a3(28) 0 0 a3(28) 0

a0 ⊕ RC0 a1(44) 0 a0 a0a1(44)

x20

(18)

x21

(2)

x22

(61)

x23

(56)

x24

(14)

x15

(41)

x16

(45)

x17

(15)

x18

(27)

x19

(8)

x10

(3)

x11

(10)

x12

(43)

x13

(25)

x14

(39)

b5 ⊕ x5
(36)

b6 ⊕ x6
(44)

b7 ⊕ x7
(6)

b8 ⊕ x8
(55)

x9

(20)

b0 ⊕ x0
(0)

b1 ⊕ x1
(1)

b2 ⊕ x2
(62)

b3 ⊕ x3
(28)

b4 ⊕ x4
(27)

π◦ρ◦θ
−−−−−→

b2 ⊕ x2
(62)

b8 ⊕ x8
(55)

x14

(39)

x15

(41)

x21

(2)

b4 ⊕ x4
(27)

b5 ⊕ x5
(36)

x11

(10)

x17

(15)

x23

(56)

b1 ⊕ x1
(1)

b7 ⊕ x7
(6)

x13

(25)

x19

(8)

x20

(18)

b3 ⊕ x3
(28)

x9

(20)

x10

(3)

x16

(45)

x22

(61)

b0 ⊕ x0
(0)

b6 ⊕ x6
(44)

x12

(43)

x18

(27)

x24

(14)

1

Fig. 7. Applying π ◦ ρ ◦ θ

On further applying ι ◦ χ, we get state Y which is as follows

y0 = x0(0) + b0(0) + (x6(44) + b6(44))x12(43) +RC0

y1 = x6(44) + b6(44) + x12(43)x18(21)

y2 = x12(43) + x18(21)x24(14)

y3 = x18(21) + x24(14)(x0(0) + b0(0))

y4 = x24(14) + (x0(0) + b0(0))(x6(44) + b6(44))

y5 = x3(28) + b3(28) + x9(20)x10(3)

y6 = x9(20) + x10(3)x16(45)

y7 = x10(3) + x16(45)x22(61)

y8 = x16(45) + x22(61)(x3(28) + b3(28))

y9 = x22(61) + (x3(28) + b3(28))x9(20)

y10 = x1(1) + b1(1) + (x7(6) + b7(6))x13(25)

y11 = x7(6) + b7(6) + x13(25)x19(8)

y12 = x13(25) + x19(8)x20(18)

y13 = x19(8) + x20(18)(x1(1) + b1(1))

y14 = x20(18) + (x1(1) + b1(1))(x7(6) + b7(6))

y15 = x4(27) + b4(27) + (x5(36) + b5(36))x11(10)

y16 = x5(36) + b5(36) + x11(10)x17(15)



y17 = x11(10) + x17(15)x23(56)

y18 = x17(15) + x23(56)(x4(27) + b4(27))

y19 = x23(56) + (x4(27) + b4(27))(x5(36) + b5(36))

y20 = x2(62) + b2(62) + (x8(55) + b8(55))x14(39)

y21 = x8(55) + b8(55) + x14(39)x15(41)

y22 = x14(39) + x15(41)x21(2)

y23 = x15(41) + x21(2)(x2(62) + b2(62))

y24 = x21(2) + (x2(62) + b2(62))(x8(55) + b8(55))

Similarly we will find the output state Z in terms of Y and C and the output
state W in terms of Z and D. Now, we shall write w9,w10,w12,w16,w18 and w24

in their simplified form by substituting those variables whose values are known.

w9 =z22(61) + (z3(28) + d3(28))z9(20)

=z22(61) + (z3(28) + d3(28))[y22(17) + (y3(48) + c3(48))y9(40)]

=z22(61) + (z3(28) + d3(28))[x14(56) + x15(48)x21(19)+

[x18(5) + x24(62)(x0(48) + b0(48)) + c3(48)][x22(37) + (x3(4) + b3(4))x9(60)]]

=z22(61) + (z3(28) + d3(28))[a1(57)a2(62) + a3(10)]

w10 =z1(1) + d1(1) + (z7(6) + d7(6))(z13(25))

w12 =z13(25) + z19(8)z20(18)

=y19(33) + y20(43)(y1(26) + c1(26)) + [y23(0) + (y4(35) + c4(35))(y5(44) + c5(44))]

[y2(16) + c2(16) + (y8(9) + c8(9))y14(57)]

=x23(25) + (x4(60) + b4(60))(x5(5) + b5(5)) + [x2(41) + b2(41) + (x8(34) + b8(34))x14(18)]

[x6(6) + b6(6) + x12(5)x18(47) + c1(26)] + [y23(0) + (y4(35) + c4(35))(y5(44) + c5(44))]

[y2(16) + c2(16) + (y8(9) + c8(9))y14(57)]

=a2(23) + [a0(60)a1(40) + b4(60) + 1][a3(33) + b5(5)]+

[b2(41) + (a3(62) + b8(34))a1(19)a2(24) + 1][b6(6) + c1(26)]+

[y23(0) + (y4(35) + c4(35)(y5(44) + c5(44)) + 1]

[y2(16) + c2(16) + (y8(9) + c8(9))y14(57)]

w16 =z5(36) + d5(36) + z11(10)z17(15)



w18 =z17(15) + z23(56)(z4(27) + d4(27))

=y11(25) + y17(30)y23(7) + [y15(33) + y21(58)(y2(54) + c2(54))][z4(27) + d4(27)]

=x7(31) + b7(31) + x13(50)x19(33) + (x11(40) + x17(45)x23(22))(x15(48) + x21(9)(x2(5) + b2(5)))+

[x4(60) + b4(60) + (x5(5) + b5(5))x11(43) + (x8(49) + b8(49) + x14(33)x15(35))

(x12(33) + x18(11)x24(4) + c2(54)) + 1](z4(27) + d4(27))

=b7(31) + a1(51)a0(5) + (a2(46) + a2(20) + 1)(a3(0))(b2(5))+

[a0(60)a1(40) + b4(60) + (a3(33) + b5(5))a2(49)+

(a3(13) + b8(49) + 1)(a2(2)a3(59) + c2(54)) + 1][z4(27) + d4(27)]

w24 =z21(2) + (z2(62) + d2(62))(z8(55) + d8(55))

=y8(57) + c8(57) + y14(41)y15(43) + +(z2(62) + d2(62))(z8(55) + d8(55))

=x16(38) + x22(54)(x3(21) + b3(21)) + c8(57)+

[x20(59) + (x1(42) + b1(42))(x7(47) + b7(47))][x4(6) + b4(6) + (x5(15) + b5(15))x11(53)]+

(z2(62) + d2(62))(z8(55) + d8(55))

=a0(10) + a0(21) + b3(21) + c8(57)+

(a2(57) + (a1(22) + b1(42))b7(47) + 1)

(a0(6)a1(50) + b4(6) + (a3(43) + b5(15) + 1)a2(59))+

(z2(62) + d2(62))(z8(55) + d8(55))
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