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Abstract. We propose a framework for constructing efficient designated-verifier non-interactive
zero-knowledge proofs (DVNIZK) for a wide class of algebraic languages over abelian groups,
under standard assumptions. The proofs obtained via our framework are proofs of knowledge,
enjoy statistical, and unbounded soundness (the soundness holds even when the prover
receives arbitrary feedbacks on previous proofs). Previously, no efficient DVNIZK system
satisfying any of those three properties was known. Our framework allows proving arbitrary
relations between cryptographic primitives such as Pedersen commitments, ElGamal encryp-
tions, or Paillier encryptions, in an efficient way. For the latter, we further exhibit the first
non-interactive zero-knowledge proof system in the standard model which is more efficient
than proofs obtained via the Fiat-Shamir transform, with still-meaningful security guarantees
and under standard assumptions. Our framework has numerous applications, in particular
for the design of efficient privacy-preserving non-interactive authentication.
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1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the truth of a state-
ment, without revealing anything beyond the fact that the statement is true. After their
introduction in the seminal work of Goldwasser, Micali, and Rackoff [GMR89], they have
proven to be a fundamental primitive in cryptography. Among them, non-interactive zero-
knowledge proofs (NIZK proofs), where the proof consists of a single flow from the prover to
the verifier, are of particular interest, in part due to their tremendous number of applications
in cryptographic primitives and protocols, and in part due to the theoretical and technical
challenge that they represent.

For almost two decades after their introduction in [BFM88], NIZKs coexisted in two
types: inefficient NIZKs secure under standard assumptions (such as doubly enhanced
trapdoor permutations [FLS90]) in the common reference string model, 1 and practically
efficient NIZKs built from the Fiat-Shamir heuristic [FS87,PS96], which are secure in the
random oracle model [BR93] (hence only heuristically secure in the standard model). This
state of affairs changed with the arrival of pairing-based cryptography, from which a fruitful
line of work (starting with the work of Groth, Ostrovsky, and Sahai [GOS06a,GOS06b])
introduced increasingly more efficient NIZK proof systems in the standard model. This line
of work culminated with the framework of Groth-Sahai proofs [GS08], which provided an
efficient framework of pairing-based NIZKs for a large class of useful languages. Yet, one
decade later, pairing-based NIZKs from the Groth-Sahai framework remain the only known
efficient NIZK proof system in the standard model. Building efficient NIZKs in the standard
model, without pairing-based assumptions, is a major open problem, and research in this
direction has proven elusive.
? University of Athens, Athens, Greece
?? KIT, Karlsruhe, Germany
1 The common reference string model assumes that a string is drawn from a known distribution in a setup
phase by a trusted dealer. This model is the most common model for non-interactive zero-knowledge, as
NIZKs in the plain model exist only for trivial languages [Ore87].
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1.1 Designated-Verifier Non-Interactive Zero-Knowledge

Parallel to the research on NIZKs, an alternative promisingline of research has focused on
designated-verifier non-interactive zero-knowledge proof systems (DVNIZKs). A DVNIZK
retains most of the security properties of a NIZK, but is not publicly verifiable: only the
owner of some secret information (the designated verifier) can check the proof. Nevertheless,
DVNIZKs can replace publicly verifiable NIZKs in a variety of applications. In addition,
unlike their publicly-verifiable counterpart, it is known that efficient DVNIZKs secure in
the standard model for rich classes of languages can be constructed without pairing-based
assumptions [DFN06, VV09, CG15, Lip17]. However, to date, research in DVNIZKs has
attracted less attention than NIZKs, the previously listed papers being (to our knowledge)
the only existing works on this topic, and several important questions have been left open.
We list the main open questions below.

Proofs Versus Arguments. A non-interactive zero-knowledge argument system is a
NIZK in which the soundness property is only required to hold against computationally
bounded adversaries. In a NIZK proof system, however, soundness is required to hold even
against computationallyunbounded adversaries.

Currently, while several DVNIZK argument systems have been designed in the standard
model without pairing-based assumptions, efficient DVNIZK proof systems without pairings
remain an open question.

Soundness Versus Knowledge Extraction. A non-interactive zero-knowledge proof
(or argument) system is a NIZK of knowledge if it guarantees that, when the prover succeeds
in convincing the verifier, he must know a witness for the truth of the statement. This is in
constrast with the standard soundness notion, which only guarantees that the statement is
true. Formally, this is ensured by requiring the existence ofan efficient simulator that can
extract a witness from the proof.

Non-interactive zero-knowledge proofs of knowledge are more powerful than standard
NIZKs, and the knowledge-extractability property is crucial in many applications. In
particular, they are necessary for the very common task of proving relations between values
committed with a perfectly hiding commitment scheme, and they are a core component in
privacy-preserving authentication mechanisms [BCKL08]. Currently, all known DVNIZK
argument systems are not arguments of knowledge. Designing efficient DVNIZKs of knowledge
without pairing-based assumptions remains an open question.

Bounded Soundness Versus Unbounded Soundness. The classical soundness security
notion for non-interactive zero-knowledge proof systems states that if the statement is not
true, no malicious prover can possibly convince the verifier of the truth of the statement
with non-negligible probability. While this security notion is sufficient for publicly-verifiable
NIZKs, it turns out to be insufficient when considering designated-verifier NIZKs, and
corresponds only to a passive type of security notion. Indeed, the verification of a DVNIZK
involves a secret value, known to the verifier. The fact that a DVNIZK satisfies the standard
soundness notion does not preclude the possibility for a malicious prover to learn this
secret value, e.g. by submitting a large number of proofs and receiving feedback on whether
the proof was accepted or not. Intuitively, this is the same type of issue as for encryption
schemes indistinguishable against chosen-plaintext attacks, which can be broken if the
adversary is given access to a decryption oracle, or for signature schemes secure against
key-only or known-message attacks, which can be broken if the adversary is given access
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to a signing oracle. Here, an adversary could possibly break the soundness of a DVNIZK if
it is given access to a verification oracle. In practice, this means that as soon as a proof
system with bounded soundness is used for more than a logarithmic number of proofs, the
soundness property is no longer guaranteed to hold. This calls for a stronger notion of
soundness, unbounded soundness, which guarantees security even against adversaries that
are given arbitrary access to a verification oracle.

Designing a DVNIZK with unbounded soundness has proven to be highly non-trivial. In
fact, apart from publicly-verifiable NIZKs (which can be seen as particular types of DVNIZKs
where the secret key of the verifier is the empty string), the only known construction of
DVNIZK claiming to satisfy unbounded soundness is the construction of [DFN06], where the
claim is supported by a proof of security in an idealized model. However, we found this claim
to be flawed: there is an explicit attack against the unbounded soundness of any protocol
obtained using the compiler of [DFN06], which operates by using slightly malformed proofs
to extract the verification key. In Appendix A of the supplementary material, we describe
our attack, and identify the flaw in the proof of Theorem 5 in [DFN06, Appendix A].
We have notified the authors of our finding and will update future versions of this work
with their reply. To our knowledge, constructing designated-verifier zero-knowledge proof
systems whose soundness is maintained after polynomially many interactions with the
prover remains an open question. In all current constructions, the common reference string
and the public key must be refreshed after a logarithmic number of proofs.

1.2 Our Contribution

In this work, we first introduce a framework for designated-verifier NIZKs on group-dependent
languages, in the spirit of the Groth-Sahai framework for NIZKs on languages related to
pairing-friendly elliptic curves. Our framework only requires that the underlying abelian
group on which it is instantiated has order M , where ZM is the plaintext-space of an
homomorphic cryptosystem with specific properties, and allows to prove a wide variety
statements formulated in terms of the operation associated to this abelian group. In
particular, we do not need to rely on groups equipped with a pairing. The DVNIZKs
obtained with our framework are efficient, as they only require a few group elements and
ciphertexts. In addition the class of statements that our framework handles is larger than
for the Groth-Sahai framework. The zero-knowledge property of our schemes reduces to
the IND-CPA security of the underlying encryption scheme. Additionally, our DVNIZKs
enjoy the following properties: they are (adaptively) knowledge-extractable; their knowledge-
extractability holds statistically ; their knowledge-extractability is unbounded. We stress
that previously, no efficient construction of DVNIZK in the standard model satisfying any
of the above properties was known. The third property, unbounded soundness, was only
claimed to hold for the construction of [DFN06], and this claim was formalized with a proof
in an idealized model, but as previously mentioned, we found this claim to be flawed. In
addition to the above properties, our DVNIZKs satisfy some other useful properties: they are
multi-theorem [FLS90], randomizable [BCC+09], and same-string zero-knowledge [DDO+01]
(i.e., the common reference string used by the prover and the simulator are the same).

Second, our framework comes with a dual variant, where the role of the encryption
scheme and the abelian group are reversed, to prove statements, not about elements of
the abelian group, but about the underlying homomorphic encryption scheme. This dual
variant leads to DVNIZKs satisfying adaptive statistical unbounded soundness, but not
knowledge-extractability (i.e. the dual variant does not gives proofs of knowledge).

Third, we show that if one is willing to give up unbounded soundness for efficiency, our
techniques can be used to construct extremely efficient DVNIZKs with bounded-soundness.
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The DVNIZKs that we obtain this way are more efficient than any previously known
construction of non-interactive zero-knowledge proofs, even when considering NIZKs in the
random oracle model using the Fiat-Shamir transform: the proofs we obtain are shorter
than the proofs obtained via the Fiat-Shamir transform by almost a factor two. To our
knowledge, this is the first example of a NIZK construction in the standard model which
(conditionally) improves on the Fiat-Shamir paradigm.

Instantiating the Encryption Scheme. Informally, the security properties we require
from the underlying scheme are the following: it must be additively homomorphic, with
plaintext space ZM , random source ZR, and gcd(M,R) = 1, and it must be decodable, which
means that a plaintext m can be efficiently recovered from an encryption of m with random
coin 0. A natural candidate for the above scheme is the Paillier encryption scheme [Pai99]
(and its variants, such as Damgård-Jurik [DJ01]). This gives rise to efficient DVNIZK proofs
of knowledge over abelian groups of composite order (e.g. subgroups of F∗p, with order a
prime p = k ·n+ 1 for a small k and an RSA modulus n, or composite-order elliptic curves),
as well as efficient DVNIZKs for proving relations between Paillier ciphertexts (using the
dual variant of our framework). Alternatively, the scheme can also be instantiated with
the more recent Castagnos-Laguillaumie encryption scheme [CL15] to get DVNIZKs over
prime-order abelian groups.

Our framework captures many useful zero-knowledge proofs of knowledge that are
commonly used in cryptography. This includes DVNIZK proofs of knowledge of a discrete
logarithm, of correctness of a Diffie-Hellman tuple, of multiplicative relationships between
Pedersen commitments or ElGamal ciphertexts (or variants thereof), among many others.
Our results show that, in the settings where a designated-verifier is sufficient, one can build
efficient non-interactive zero-knowledge proofs of knowledge for most statements of interest,
under well-known assumptions and with strong security properties, without having to rely
on pairing-friendly groups.

1.3 Our Method

It is known that linear relations (i.e., membership in linear subspaces) can be non-
interactively verified, using the homomorphic properties of cryptographic primitives over
abelian groups. Indeed, DVNIZK proofs for linear languages can be constructed, e.g., from
hash proof systems [KW15,GHKW16]. As made explicit in the seminal paper of Groth and
Sahai [GS08], pairings provide exactly the additional structure that allows to evaluate up
to degree-two relations, which can be easily generalized to arbitrary relations. However,
this requires to use pairing-friendly elliptic curves, and pairing-based assumptions.

An alternative road was taken in [DFN06] and subsequent works, to obtain non-
interactive zero-knowledge proofs for a wide variety of relations, in the designated-verifier
setting. To illustrate it, let us consider a prover interacting with a verifier, with a common
input (g1, g2, h1, h2) ∈ G4 in some group G of order p, where p is a λ-bit prime. The prover
wants to show that (h1, h2) have the same discrete logarithm in the basis (g1, g2), i.e., there
exists x such that (h1, h2) = (gx1 , g

x
2 ). The standard interactive zero-knowledge proof for

this statement proceeds as follows:2

1. The prover picks r $← {0, 1}3λ, and sends (a1, a2)← (gr1, g
r
2).

2. The verifier picks and sends a uniformly random challenge e $← Zp.
2 More formally, this proof only satisfies zero-knowledge against honest verifiers, but this property is
sufficient for the construction of [DFN06].
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3. The prover computes and sends d← e · x+ r. The verifier accepts the proof if and only
if (gd1 , g

d
2) = (he1a1, h

e
2a2).

The idea of [DFN06] is to squash this interactive protocol into a (designated-verifier)
non-interactive proof, by giving the challenge to the prover in advance. As knowing the
challenge before sending the first flow gives the prover the ability to cheat, the challenge is
encrypted with an additively homomorphic encryption scheme. That way, the prover cannot
see the challenge; yet, he can still compute an encryption of the value d homomorphically,
using the encryption of e. The verifier, who is given the secret verification key, can decrypt
the last flow and perform the above check. Thus, the proof is a tuple (a1, a2, cd), where cd
is an encryption of d homomorphicallycomputed from (x, r) and an encryption ce of the
challenge e.

Although natural, this intuitive approach has proven quite tough to analyze. In [DFN06],
the authors had to rely on a new complexity-leveraging-type assumption tailored to their
scheme, which (informally) states that the simulator cannot break the security of the
encryption scheme, even if he is powerful enough to break the problem underlying the
protocol (in the above example, the discrete logarithm problem over G). Even in the
bounded setting, analyzing the soundness guarantees of the protocols obtained by this
compilation technique (and its variants) is non-trivial, and it has been the subject of several
subsequent works [VV09,CG15,Lip17]. Additionally, in the unbounded setting, where we
must give an efficient simulator that can successfully answer to the proofs submitted by
any malicious prover, this compilation technique breaks down. Furthermore, for DVNIZKs
constructed with this method, soundness holds only computationally, and security does not
guarantee that the simulator can extract a witness for the statement.

Our core idea to overcome all of the above issues is to implement the same strategy
in a slightly different way: rather than encrypting the challenge e as the plaintext of an
homomorphic encryption scheme, we encrypt it as the random coin of an encryption scheme
which is also homomorphic over the coins. To understand how this allows us to improve
over all previous constructions, suppose that we have an encryption scheme Enc which is
homomorphic over both the plaintext and the random coins, with plaintext space ZM and
random source ZR, and that M is coprime to R. Consider the previously described protocol
for proving equality of two discrete logarithms. Given an encryption Enc(0; e) of 0, where
the challenge is the random coin, a prover holding (x, r) can compute and send Enc(x; ρ)
and Enc(r;−eρ), for some random ρ. This allows the verifier, who knows e, to compute
Enc(x · e+ r; 0), from which she can extract d = x · e+ r mod M (note that the verifier only
needs to know e; unlike in previous work, she does not need to know the decryption key of
Enc). Observe that the extracted value depends only on e modulo M . At the same time,
however, the ciphertext E(0; e) only leaks e modulo R, even to an unbounded adversary.
By picking e to be sufficiently large (e > MR), as M is coprime to R, the verifier can
ensure that this leaks no information (statistically) about e mod M . Therefore, we can use
a statistical argument to show that the prover cannot cheat when the verification using d
succeeds. To allow for efficient simulation of the verifier, we simply give to the simulator
the secret key of the scheme, which will allow him to extract all encrypted values, and to
check the validity of the equations, without knowing e mod M . As the simulator is able
to extract the values encrypted with Enc, the scheme can be proven to be (statistically)
knowledge-extractable.

Note that in previous constructions of DVNIZKs, the secret key of the underlying
encryption scheme was the verification key, which is used by the verifier in the real game.
Here, we use a different approach: the verifier does not know the secret key of the underlying
scheme (knowing it would break the zero-knowledge property), but only the value of a
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specific random coin. The secret key is given only to the simulator, who uses it to extract
information in the simulated game.

Example: DVNIZK Proof of Knowledge of a Discrete Logarithm. We illustrate
our method with the classical example of proving knowledge of a discrete logarithm. For
concreteness, we describe an explicit protocol using the Paillier encryption scheme; therefore,
this section assumes some basic knowledge of the Paillier encryption scheme. All necessary
preliminaries can be found in Section 2. Let G be a group of order n, where n = p · q is an
RSA modulus (i.e., a product of two strong primes). Let g be a generator of G, and let
T be a group element. A prover P wishes to prove to a verifier V that he knows a value
t ∈ Zn such that gt = T .

Let h ← un mod n2, where u denotes an arbitrary generator of Jn, the subgroup of
elements of Z∗n with Jacobi symbol 1. The Paillier encryption of a message m ∈ Zn with
randomness r ∈ Zϕ(n)/2 is Enc(m; r) = (1 + n)mhr mod n2. The public key of the DVNIZK
is E = he ∈ Z∗n2 , for a random e� n · ϕ(n)/2; observe that this is exactly Enc(0; e). The
secret key is e. The DVNIZK proceeds as follows:

The prover P picks x $← Zn and a Paillier random coin r, and computes X ← gx,
T ′ ← (1 + n)thr mod n2, and X ′ ← (1 + n)xE−r mod n2. The verifier V computes D ←
T eX mod n2 and D′ ← (T ′)eX ′ mod n2. Then, she checks that D′ is of the form (1 +
n)d mod n2. If so, V computes d mod n from D′, and checks that D = gd. V accepts iff
both checks succeeded.

Let us provide an intuition of the security of this scheme. Correctness follows easily
by inspection. Zero-knowledge comes from the fact that T ′ hides t, under the IND-CPA
security of Paillier. For statistical knowledge extractability, note E only reveals e mod ϕ(n)
to an unbounded adversary, which leaks (statistically) no information on e mod n as ϕ(n)
is coprime to n. This ensures the value t′ encrypted in T ′ must be equal to t, otherwise the
verification equations would uniquely define e mod n, which is statistically unknown to the
prover3. The simulator knows ϕ(n) (but not e mod n) and gets t by decrypting T ′.

1.4 Applications

A natural application of non-interactive zero-knowledge proofs of knowledge is the design
of privacy-preserving non-interactive authentication schemes. This includes classical au-
thentication protocols, but also P-signatures [BCKL08] and their many applications, such
as anonymous credentials [BCKL08], group signatures [Cv91], electronic cash [CFN90], or
anonymous authentication [TFS04]. Our framework can lead to a variety of efficient new
constructions of designated-verifier variants for the above applications without pairings,
whereas all previous constructions either had to rely on the random oracle model, or
use pairing-based cryptography.4 In many scenarios of non-interactive authentication, the
designated-verifier property is not an issue.

In addition, the aforementioned applications build upon the Groth-Sahai framework for
NIZKs. However, Groth-Sahai NIZKs only satisfy a restricted notion of extractability, called
f -extractability in [BCKL08]. As a result, constructions of privacy-preserving authentication
mechanisms from Groth-Sahai NIZKs require a careful security analysis. Our framework
3 In fact, we can only prove that the verification equations uniquely define e modulo at least one of the
prime factors of n, but as n has only large factors, this is sufficient to complete the proof.

4 These applications typically require a proof-friendly signature scheme, but designated-verifier variants of
such scheme can easily be constructed (without pairings) from algebraic MACs [CMZ14,KPW15], by
committing to the secret key of the MAC and proving knowledge of the committed value with a DVNIZK;
such statements are naturally handled by our framework.
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leads to fully extractable zero-knowledge proofs, which could potentially simplify the design
of some of the above applications. We note that our DVNIZKs are additionally randomizable,
which has applications for delegatable anonymous credential schemes [BCC+09].

Other potential applications of our framework include round-efficient two-party compu-
tation protocols secure against malicious adversaries, electronic voting (see e.g. [CG15]), as
well as designated-verifier variants of standard cryptographic primitives, such as verifiable
encryption [CD00], or verifiable pseudorandom-functions [BCKL09]. Potential applications
to the construction of adaptive oblivious transfers can also be envisioned: in [GH08], the
authors mention that an adaptive oblivious transfer protocol can be designed by replacing
the interactive zero-knowledge proofs of the protocol of [CNs07] by non-interactive one.
They raise two issues to this approach, namely, that Groth-Sahai proofs are only witness-
indistinguishable for the required class of statements, and that they only satisfy a weak
form of extractability. None of these restrictions apply to our DVNIZK constructions.

1.5 Related Work

Non-interactive zero-knowledge proofs have been first introduced in [BFM88]. Efficient
publicly-verifiable non-interactive zero-knowledge proofs can be constructed in the random
oracle model [FS87,PS96,Fis05], or in the non-programmable random oracle model [Lin15]
(additionaly using a common reference string). In the standard model, the main construction
of efficient publicly-verifiable NIZKs is the Groth-Sahai framework [GS08].

Designated-verifier NIZKs for linear languages can be constructed from hash proof
systems [CS02,KW15,GHKW16]. Such NIZKs are perfectly zero-knowledge and statistically
adaptively sound, but are not proofs of knowledge and are restricted to very specific
statements, captured by linear equations.

Efficient designated-verifier NIZKs for more general statements were first introduced
in [DFN06]. The authors describe a general compiler that converts any three-round (honest-
verifier) zero-knowledge protocol satisfying some (mild) requirements into a DVNIZK.
However, the construction has several drawbacks: the soundness only holds under a very
specific complexity-leveraging assumption, and only against adversaries making at most
O(log λ) proofs (as already mentioned, the paper claims that the construction enjoy un-
bounded soundness as well, but this claim is flawed, see Appendix A of the supplementary
material). In addition, the proofs obtained with this compiler are not proofs of knowledge.

In subsequent works [VV09,CG15], variations of the compilation technique of [DFN06]
are described, where the complexity-leveraging assumption was replaced by more stan-
dard assumptions (although achieving a more restricted type of soundness) by relying
on encryption schemes with additional properties. Eventually, [Lip17] removes some of
the constraints of the constructions of [CG15], and provides new protocols that can be
compiled using the transformation. However, all the constructions obtained in these papers
are only computationally sound, do not enjoy unbounded soundness, and are not proofs of
knowledge; this strongly limits their scope, and in particular, prevents them from being
used in the previously discussed applications.

1.6 Organization

In Section 2, we introduce our notation, classical preliminaries, and necessary primitives.
Section 2 also describes the notion of a DVNIZK-friendly encryption scheme, which is
central to our framework. In Section 3, we introduce our framework for building DVNIZKs
of knowledge over an abelian group, illustrate it with practical examples, and prove
its security. In Section 4, we describe the dual variant of our framework for proving
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statements over plaintexts of a DVNIZK-friendly encryption scheme. Then, in Section 5,
we focus on optimizing the efficiency of DVNIZKs for relations between plaintexts of a
DVNIZK-friendly scheme, by eschewing unbounded soundness. Finally, in Appendix A of
the supplementary material, we describe our attack on the unbounded soundness property
of the compilerof [DFN06].

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic polynomial time
algorithm (PPT, also denoted efficient algorithm) runs in time polynomial in the (implicit)
security parameter λ. A positive function f is negligible if for any polynomial p there exists
a bound B > 0 such that, for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on
λ occurs with overwhelming probability when its probability is at least 1 − negl(λ) for a
negligible function negl. Given a finite set S, the notation x $← S means a uniformly random
assignment of an element of S to the variable x. We represent adversaries as interactive
probabilistic Turing machines; the notation A O indicates that the machine A is given
oracle access to O. Adversaries will sometime output an arbitrary state st to capture stateful
interactions.

Abelian Groups and Modules. We use additive notation for groups for convenience, and
write (G, ) for an abelian group of order k. When it is clear from the context, we denote 0
its neutral element (otherwise, we denote it 0G). We denote by • the scalar-multiplication
algorithm (i.e. for any (x,G) ∈ Zk × G, x • G = G G . . . G, where the sum contains
x terms). Observe that we can naturally view G as a Zk-module (G, , •), for the ring
(Zk,+, ·). For simplicity, we write G for (−1) •G. We use lower case to denote elements of
Zk, upper case to denote elements of G, and bold notations to denote vectors. We extend
the notations ( , ) to vectors and matrices in the natural way, and write x •G to denote
the scalar product x1 •G1 . . . xt •Gt (where x,G are vectors of the same length t). For
a vector v, we denote by vᵀ its transpose. By GGen(1λ), we denote a probabilistic efficient
algorithm that, given the security parameter λ, generates an abelian group G such that the
best known algorithm for solving discrete logs in G takes time 2λ. In the following, we write
(G, k)

$← GGen(1λ). Additionally, we denote by GGen(1λ, k) a group generation algorithm
that allows us to select the order k beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also a prime. We
call RSA modulus a product n = pq of two strong primes. We denote by ϕ Euler’s totient
function; it holds that ϕ(n) = (p− 1)(q − 1). We denote by Jn the cyclic subgroup of Z∗n
of elements with Jacobi symbol 1 (the order of this group is ϕ(n)/2), and by QRn the
cyclic subroup of squares of Z∗n (which is also a subgroup of Jn and has order ϕ(n)/4). By
Gen(1λ), we denote a probabilistic efficient algorithm that, given the security parameter
λ, generates a strong RSA modulus n and secret parameters (p, q) where n = pq, such
that the best known algorithm for factoring n takes time 2λ. In the following, we write
(n, (p, q))

$← Gen(1λ).

2.1 Commitment Schemes

A commitment scheme allows a committer holding a secret value s to send a commitment
c of s to a verifier, and later on to open this commitment to reveal the value s. Such a
commitment should hide the committed value s to the verifier, but binds the committer in
opening only s. More formally,
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Definition 1. (Commitment Scheme) A commitment scheme C with message spaceM,
commitment space C, opening space D, and random source R, is a triple of PPT algorithms
(C.Setup, C.Com, C.Verify), such that

– C.Setup(1λ) generates the public parameters pp of the scheme,
– C.Compp(m; r), given the message m ∈ M and some random coins r ∈ R, outputs a
commitment-opening pair (c, d),

– C.Verifypp(c, d,m), outputs a bit b whose value depends on the validity of the opening
(m, d) with respect to the commitment c,

which satisfies the correctness, hiding, and binding properties defined below.

Definition 2. (Correctness of a Commitment Scheme) A commitment scheme C is correct
if for any pp

$← C.Setup(1λ), any message m ∈ M, and any random coin r ∈ R, for
(c, d)← C.Compp(m; r), it holds that C.Verifypp(c, d,m) = 1.

Definition 3. (Hiding Property of a Commitment Scheme) A commitment scheme C is
hiding if for any PPT adversary A , it holds that

Pr

pp $← C.Setup(1λ), (m0,m1, st)← A (pp),

b
$← {0, 1}, r

$← R, : b′ = b
b′ ← A (st, c), (c, d)← C.Com(mb; r)

 ≤ 1

2
+ µ(λ)

for some function µ(λ) = negl(λ).

Definition 4. (Binding Property of a Commitment Scheme) A commitment scheme C is
binding if for any PPT adversary A , it holds that

Pr

[
pp

$← C.Setup(1λ), (c, d,m0,m1)← A (pp) :
m0 6= m1 ∧ C.Verify(c, d,m0) = C.Verify(c, d,m1) = 1

]
≤ µ(λ)

for some function µ(λ) = negl(λ).

Homomorphic Commitment Scheme. A commitment scheme can also be homomorphic, if
for a group law ∗ on the message spaceM, from (c0, d0) ← Com(m0; r0) and (c1, d1) ←
Com(m1; r1), one can generate (c, d) from (c0, c1) so that Verify(c, d,m0 ∗m1) = 1.

Example: the Pedersen Commitment. We recall below the Pedersen commitment
scheme, which commits to integers in Zp over a group G of order p. This scheme is perfectly
hiding, and binding under the discrete logarithm assumption over G. In addition, the
Pedersen scheme is homomorphic over Zp.

– C.Setup(1λ) : output pp = (G,H)
$← G2.

– C.Compp(m; r): given the message m ∈ Zp and some random coins r ∈ Zp, output
c = m •G r •H and d = r.

– C.Verifypp(c, d,m): output 1 if c = m •G d •H, and 0 otherwise.

2.2 Encryption Schemes

We recall the definition of a public-key encryption scheme:

Definition 5. (Public-Key Encryption Scheme) A public-key encryption scheme S is a
triple of PPT algorithms (S.KeyGen, S.Enc, S.Dec), such that
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– S.KeyGen(1λ), generates a pair (ek, dk), ek is the public encryption key and ek is the
secret decryption key. We assume that ek specifies the ciphertext space C, the message
spaceM, and the random source R;

– S.Encek(m; r), given the message m ∈ M and some random coins r ∈ R, outputs a
ciphertext c;

– S.Decdk(c), output a message m ∈M;

which satisfies the correctness and IND-CPA security properties defined below.

We extend in a natural way the algorithm Enc over vectors: for vectorsm = (mi)i ∈ Z∗M
and r = (ri)i ∈ Z∗R of the same size, S.Encek(m; r) denotes the vector (S.Encek(mi, ri))i.
We extend the algorithm Dec to vectors of ciphertexts in a similar way.

Definition 6. (Correctness of an Encryption Scheme) A public-key encryption scheme S
is correct if for any pair (ek, dk)

$← S.KeyGen(1λ), any message m ∈M, and any random
coin r ∈ R, decryption is the reverse operation of encryption: S.Decdk(S.Encek(m; r)) = m.

Definition 7. (IND-CPA Security Property of a Public-Key Encryption Scheme) A public-
key encryption scheme S is IND-CPA secure if for any PPT adversary A , it holds that

Pr

 (ek, dk)
$← S.KeyGen(1λ),

(m0,m1, st)
$← A (ek), b

$← {0, 1} : A (st, c) = b

r
$← R, c← S.Encek(mb; r)

 ≤ 1

2
+ µ(λ)

for some function µ(λ) = negl(λ).

In this work, we will focus on additively homomorphic encryption schemes, which
are homomorphic for both the message and the random coin. More formally, we require
that the message spaceM and the random source R are integer sets (ZM ,ZR) for some
integers (M,R), and that there exists an efficient operation ⊕ such that for any (ek, sk)

$←
KeyGen(1λ), any (m1,m2) ∈ Z2

M and (r1, r2) ∈ Z2
R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2,

it holds that C1 ⊕ C2 = S.Encek(m1 +m2 mod M ; r1 + r2 mod R). We say an encryption
scheme is strongly additive if it satisfies these requirements. Note that the existence of
⊕ implies (via a standard square-and-multiply method) the existence of an algorithm
that, on input a ciphertext C = S.Encek(m; r) and an integer ρ ∈ Z, outputs a ciphertext
C ′ = S.Encek(ρm mod M ; ρr mod R). We denote by ρ� C the external multiplication of a
ciphertext C by an integer ρ, and by 	 the operation C ⊕ (−1)� C ′ for two ciphertexts
(C,C ′). We will sometimes slightly abuse these notations, and write C ⊕m (resp. C 	m)
for a plaintext m to denote C ⊕ S.Encek(m; 0) (resp. C 	 S.Encek(m; 0)).

A simple observation on strongly additively homomorphic encryption schemes is that
IND-CPA security implies that R must either be equal to 0 mod M , or unknown given ek.
Otherwise, an IND-CPA adversary would set (m0,m1) = (0, 1) and check if R� C equals
S.Encek(0; 0) or S.Encek(R; 0).

The Paillier Encryption Scheme. The Paillier encryption scheme [Pai99] is a famous
additively homomorphic encryption scheme over Zn for an RSA modulus n. We describe
here a standard variant [DJN10, Lip17], where the random coin is an exponent over Jn
rather than a group element. Note that the exponent space of Jn is Zϕ(n)/2, which is a
group of unknown order; however, it suffices to draw exponents at random from Zn/2 to get
a distribution statistically close from uniform over Zϕ(n)/2.
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– KeyGen(1λ): run (n, (p, q))
$← Gen(1λ), pick g $← Jn, set h← gn mod n2, and compute

δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime). Return ek = (n, h) and dk = δ;
– Enc(ek,m; r): given m ∈ Zn, for a random r

$← Zn/2, compute and output c ←
(1 + n)m · hr mod n2;

– Dec(dk, c): compute x← cdk mod n and c0 ← [c ·x−n mod n2]. Return m← (c0−1)/n.

Note that knowing dk is equivalent to knowing the factorization of n. The IND-CPA
security of the Paillier encryption scheme reduces to the decisional composite residuosity
(DCR) assumption, which states that it is computationally infeasible to distinguish random
n’th powers over Z∗n2 from random elements of Z∗n2 .5 It is also strongly additive, where the
homomorphic addition of ciphertexts is the multiplication over Z∗n2 .

The ElGamal Encryption Scheme. We recall the additive variant of the famous
ElGamal cryptosystem [ElG84], over an abelian group (G, ) of order k.

– KeyGen(1λ): pick G $← G, pick s $← Zk, set G ← s • G, and return ek = (G,H) and
dk = s;

– Enc(ek,m; r): givenm ∈ Zk, for a random r
$← Zk, output C ← (r•G, (m•G) (r•H));

– Dec(dk,C): parse C as (C0, C1), and compute M ← C1 (dk • C0). Compute the
discrete logarithm m of M in base G, and return m.

The IND-CPA security of the ElGamal encryption scheme reduces to the decisional
Diffie-Hellman (DDH) assumption over G, which states that it is computationally infeasible
to distinguish tuples of the form (G,H, x •G, x •H) for random x from uniformly random
4-tuples over G. It is also strongly additive (and the homomorphic operation is the vector
addition over G). However, the decryption procedure is not efficient in general, as it requires
to compute a discrete logarithm. For the decryption process to be efficient, the message m
must be restricted to come from a subset of Zk of polynomial size.

DVNIZK-Friendly Encryption Scheme. We say that a strongly additive encryption
scheme is DVNIZK-friendly, when it satisfies the following additional properties:
– Coprimality Property: we require that the size M of the plaintext space and the size R

of the random source are coprime6, i.e., gcd(M,R) = 1;
– Decodable: for any (ek, sk)

$← KeyGen(1λ), the function fek : m 7→ Encek(m; 0) must be
efficiently invertible (i.e., there is a PPT algorithm, which is given ek, computing f−1

ek
on any value from the image of fek).

One can observe that the Paillier cryptosystem is DVNIZK-friendly (gcd(n, ϕ(n)) = 1,
and any message m can be efficiently recovered from Encek(m; 0) = (1 +n)m mod n2), while
the ElGamal cryptosystem is not (it satisfies none of the above properties). Other DVNIZK-
friendly cryptosystems include variants of the Paillier cryptosystem [DJ01,CS02,BCP03,
DJ03,DJN10], and the more recent Castagnos-Laguillaumie cryptosystem [CL15], with
prime-order plaintext space. For simplicity, we will also assume that all prime factors of the
size M of the plaintext space of a DVNIZK-friendly cryptosystem are of superpolynomial
size; our results can be extended to cryptosystems with a small plaintext space (or a
plaintext space with small prime factors), but at a cost in efficiency. Note that by the
homomorphic property, the decodability property implies that a plaintext can always be
recovered from a ciphertext if the random coin is known.
5 In the variant we consider here, we must restrict our attention to elements of Z∗n2 which have Jacobi
symbol 1 when reduced modulo n as g ∈ Jn, but this can be checked in polynomial time anyway.

6 In view of our previous observation on IND-CPA security for strongly additive cryptosystems, this implies
that R is secret.
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2.3 Non-Interactive Zero-Knowledge Proof Systems

In the definitions below, we focus on proof systems for NP-languages that admit an efficient
(polynomial-time) prover. For an NP-language L , we denote RL its associated relation, i.e.,
a polynomial-time algorithm which satisfies L = {x | ∃w, |w|= poly(|x|) ∧RL (x,w) = 1}.
It is well known that non-interactive proof systems cannot exist for non-trivial languages
in the plain model [Ore87]; our constructions will be described in the common reference
string model. We note that all of our constructions can be readily adapted to work in the
registered public-key model as well, a relaxation of the common reference string model
introduced by Barak et al in [BCNP04].

While languages are naturally associated to statements of membership, the constructions
of this paper will mainly consider statements of knowledge. We write St(x) = K{w :
R(x,w) = 1} to denote the statement “I know a witness w such that R(x,w) = 1” for a
word x and a polytime relation R. Similarly, we write St(x) = ∃{w : R(x,w) = 1} to denote
the existential statement “there exists a witness w such that R(x,w) = 1”.

Definition 8. (Non-Interactive Zero-Knowledge Proof System) A non-interactive zero-
knowledge (NIZK) proof system Π between for a family of languages L = {Lcrs}crs is a
quadruple of probabilistic polynomial-time algorithms (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify)
such that

– Π.Setup(1λ), outputs a common reference string crs (which specifies the language Lcrs),
– Π.KeyGen(1λ), outputs a public key pk and a verification key vk,
– Π.Prove(pk, x, w), on input the public key pk, a word x ∈ Lcrs, and a witness w, outputs
a proof π,

– Π.Verify(pk, vk, x, π), on input the public key pk, the verification key vk, a word x, and
a proof π, outputs b ∈ {0, 1},

which satisfies the completeness, zero-knowledge, and soundness properties defined below.

We assume for simplicity that once it is generated, the common reference string crs
is implicitly passed as argument to the algorithms (Π.KeyGen,Π.Prove,Π.Verify). In the
above definition of NIZK proof systems, we let the key generation algorithm generate a
verification key vk which is used by the verifier to check the proofs. We call publicly verifiable
non-interactive zero-knowledge proof system a NIZK proof system in which vk is set to the
empty string (or, equivalently, in which vk is made part of the public key). Otherwise, we
call it a designated-verifier non-interactive zero-knowledge proof system.

Definition 9. (Completeness) A NIZK proof system Π = (Π.Setup,Π.KeyGen,Π.Prove,
Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the (per-
fect,statistical) completeness property if for crs $← Π.Setup(1λ), for every x ∈ Lcrs and every
witness w such that Rcrs(x,w) = 1,

Pr

[
(pk, vk)

$← Π.KeyGen(1λ),
π ← Π.Prove(pk, x, w)

: Π.Verify(pk, vk, x, π) = 1

]
= 1− µ(λ)

where µ(λ) = 0 for perfect completeness, and µ(λ) = negl(λ) for statistical completeness.

We now define the zero-knowledge property.

Definition 10. (Composable Zero-Knowledge) A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs satisfies the
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(perfect, statistical) composable zero-knowledge property if for any crs
$← Π.Setup(1λ), there

exists a probabilistic polynomial-time simulator Sim such that for any stateful adversary A ,∣∣∣∣∣∣Pr

 (pk, vk)
$← Π.KeyGen(1λ),

(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Π.Prove(pk, x, w)

−
Pr

 (pk, vk)
$← Π.KeyGen(1λ),

(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Sim(pk, vk, x)

∣∣∣∣∣∣ ≤ µ(λ)

where µ(λ) = 0 for perfect composable zero-knowledge, and µ(λ) = negl(λ) for statistical
composable zero-knowledge. If the composable zero-knowledge property holds against efficient
(PPT) verifiers, the proof system satisfies computational composable zero-knowledge.

The composable zero-knowledge property was first introduced in [Gro06]. It strenghtens
the standard zero-knowledge definition, in that it explicitly states that the trapdoor of the
simulator is exactly the verification key vk of the verifier. This strong security property
guarantees that the same common reference string can be used for many different proofs, as
the same trapdoor is used for simulating all proofs, which enhances the proof system with
composability properties. We note that [Gro06] additionally required indistinguishability
between real and simulated common reference string; in our constructions, this will be
trivially satisfied, as the simulated crs will be exactly the real one. We define below the
notion of (bounded) adaptive soundness, which allows the input to be adversarially picked
after the public key is fixed.

Definition 11. (Bounded Adaptive Soundness) A NIZK proof system Π = (Π.Setup,
Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs

satisfies the bounded adaptive soundness property if for crs $← Setup(1λ), for every adversary
A ,

Pr

[
(pk, vk)

$← Π.KeyGen(1λ),
(π, x)← A (pk)

: x /∈ Lpk ∧Π.Verify(pk, vk, x, π) = 1

]
= negl(λ)

Definition 11 is formulated with respect to arbitrary adversaries A , which leads to a
statistical notion of soundness. A natural relaxation of this requirement is to consider only
efficient (PPT) adversarial provers. We denote by computational soundness this relaxed
notion of soundness. Computationally sound proof systems are called argument systems.

Unbounded Soundness. Definition 11 corresponds to a bounded notion of soundness, in
the sense that soundness is only guaranteed to hold when the prover tries to forge a single
proof on a wrong statement, right after the setup phase. However, if the prover is allowed
to interact polynomially many times with the verifier before trying to forge a proof, sending
proofs and receiving feedbacks on whether the proof was accepted, the previous definition
provides no security guarantees.

Intuitively, in this situation, the distinction between bounded and unbounded soundness
is comparable to the distinction between security against chosen plaintext attacks and
security against chosen ciphertext attacks for cryptosystems. We define unbounded soundness
in a similar fashion, by giving the prover access to a verification oracle Ovk[pk] (with crs
implicitly given as parameter) which, on input (x, π), returns b← Verify(pk, vk, x, π).
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Definition 12. (Q-bounded Adaptive Soundness) A NIZK proof system Π = (Π.Setup,
Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with relations Rcrs

satisfies the Q-bounded adaptive soundness property if for crs
$← Π.Setup(1λ), and every

adversary A making at most Q queries to Ovk[pk], it holds that

Pr

[
(pk, vk)

$← Π.KeyGen(1λ),

(π, x)← A Ovk[pk](pk)
: x /∈ Lpk ∧ Verify(pk, vk, x, π)

]
= negl(λ).

Alternatively, the above definition can be formulated with respect to polynomial-time
adversarial provers, leading to computational Q-bounded adaptive soundness. Note that
the answers of the oracle are bits; therefore, if a NIZK proof system satisfies the bounded
adaptive soundness property of Definition 11, it also satisfies the above Q-bounded adaptive
soundness property for any Q = O(log λ). Indeed, if Q is logarithmic, one can always guess
in advance the answers of the verification oracle with non-negligible (inverse polynomial)
probability. We say that a NIZK proof system which is Q-bounded adaptively sound for
any Q = poly(λ) satisfies unbounded adaptive soundness.

3 A Framework for Designated-Verifier Non-Interactive
Zero-Knowledge Proofs of Knowledge

In this section, we let k be an integer, (G, ) be an abelian group of order k, and (α, β, γ) be
three integers. We will describe a framework for proving statements of knowledge over a wide
variety of algebraic relations over G, in the spirit of the Groth-Sahai framework for NIZK
proofs over bilinear groups. To describe the relations handled by our framework, we describe
languages of algebraic relations via linear maps. Such descriptions were previously used
for the languages handled by various cryptographic primitives, such as smooth projective
hash functions [BBC+13], non-interactive zero-knowledge proofs [BP13], and implicit zero-
knowledge proof [BCPW15]. While this system was previously used to describe membership
statements, we adapt it to statements of knowledge. As previously observed in [BBC+13],
this system encompasses a wider class of languages than the Groth-Sahai framework.

3.1 Statements Defined by a Linear Map over G

Let G ∈ Gα denote a vector of public parameters, and let C ∈ Gβ denote a public word.
We will consider statements StΓ(G,C) defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β as
follows:

StΓ(G,C) = K{x ∈ Zγk | x • Γ(G,C) = C}

That is, the prover knows a witness-vector x ∈ Zγk such that the equation x • Γ(G,C) = C
holds. This abstraction captures a wide class of statementsof interest in cryptography.
Below, we describe four examples of statements that can be handled by our framework.
They aim at clarifying the way the framework can be used, illustrating its power, as well as
providing useful concrete instantiations. The examples focus on the most standard primitives
(Pedersen commitments, ElGamal ciphertexts), but the reader will easily recognize they
can be naturaly generalized to all standard variants of these primitives (e.g., variants of
ElGamal secure under t-linear assumptions [BBS04], or under assumptions from the matrix
Diffie-Hellman family of assumptions [EHK+13]).

Example 1: Knowledge of Opening to a Pedersen Commitment. We consider
statements of knowledge of an opening (m, r) to a Pedersen commitment C.
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– Public Parameters: (G,H) ∈ G2;
– Word: C ∈ G;
– Witness: a pair (m, r) ∈ Z2

k such that C = m •G r •H;
– Linear Map: ΓPed : (G,H,C) 7→ (G,H)ᵀ;
– Statement: StΓPed

(G,H,C) = K{(m, r) ∈ Z2
k | (m, r) • (G,H)ᵀ = C}.

Example 2: Multiplicative Relationship Between ElGamal Ciphertexts. This
type of statement is of particular interest, as they can be easily generalized to arbitrary
(polynomial) relationships between plaintexts.

– Public Parameters: (G,H) ∈ G2;
– Word: C = ((Ui, Vi)0≤i≤2) ∈ G6;
– Witness: a 5-tuple x = (m0, r0,m1, r1, r2) ∈ Z5

k such that Ui = ri • G and Vi =
mi •G r •H for i = 0, 1, and U2 = m1 • U0 r2 •G, V2 = m1 • V0 r2 •H;

– Linear Map:

ΓEM : (G,H,C) 7→


0 G 0 0 0 0
G H 0 0 0 0
0 0 0 G U0 V0

0 0 G H 0 0
0 0 0 0 G H

 ;

– Statement: StΓEM
(G,H,C) = K{x ∈ Z5

k | x • ΓEM(G,H,C) = C}.

Example 3: Knowledge of a Discrete Logarithm. We consider statements defined as
follows:

– Public Parameters: G ∈ G;
– Word: T ∈ G;
– Witness: a value t ∈ Zk such that T = t •G;
– Linear Map: ΓDL : (G,T ) 7→ G;
– Statement: StΓDL

(G,T ) = K{t ∈ Zk | t • ΓDL(G,T ) = T}.

Example 4: ElGamal Encryption of 0. We consider statements of knowledge of a
witness for an ElGamal encryption of 0 (or equivalently, for a DDH tuple), defined as
follows:

– Public Parameters: (G,H) ∈ G2

– Word: C = (C0, C1) ∈ G2

– Witness: r ∈ Zk such that C0 = r •G and C1 = r •H;
– Linear Map: ΓEZ : (G,H,C) 7→ (G,H);
– Statement: StΓEZ

(G,H,C) = K{r ∈ Zk | r • ΓEZ(G,H,C) = C}.

Conjunction of Statements. The above framework naturally handles conjuctions of
statements. Consider two statements (StΓ0(G0,C0),StΓ1(G1,C1)), defined by linear maps
(Γ0,Γ1), with respective public parameters (G1,G1), over respective words (C0,C1), and
respective witnesses (x0,x1). Let G← (G1,G1), C ← (C0,C1), and x← (x0,x1). We
construct the linear map Γ associated to the statement StΓ(G,C) as

Γ←
(

Γ0 0
0 Γ1

)
.

One can immediatly observe that StΓ(G,C) = StΓ0(G0,C0) ∧ StΓ1(G1,C1). We will use
this observation in Section 4. Note also that the framework handles disjunction of statements
as well, as observed in [ABP15].
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3.2 A Framework for DVNIZK Proofs of Knowledge

We now introduce our framework for constructing designated-verifier non-interactive
zero-knowledge proofs of knowledge for statements defined by a linear map over G. Let
S = (S.KeyGen, S.Enc, S.Dec) denote a DVNIZK-friendly encryption scheme with plaintext
space Zk. We construct a DVNIZK of knowledge ΠK = (ΠK.Setup,ΠK.KeyGen,ΠK.Prove,
ΠK.Verify) for a statement StΓ(G,C) over a word C ∈ Gβ , with public parameters G ∈ Gα,
defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β . Our construction proceeds as follows:

– ΠK.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs ← ek. Note that ek

defines a plaintext space Zk and a random source ZR. As the IND-CPA and strong
additive properties of S require R to be unknown, we assume that a bound B on R is
publicly available. We denote `← 2λkB.

– ΠK.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Zβk , with witness x for the statement StΓ(G,C),

pick x′ $← Zγk , r
$← Zγ

2λB
, compute

X ← S.Encek(x, r), X′ ← S.Encek(x
′, 0)	 (r � pk), C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e�X ⊕X′ is decodable,

and decode it to a vector d ∈ Zγk . Note that the possibility to check that a ciphertext
is decodable is implied by the existence of a decoding algorithm. Check that

d • Γ(G,C) = e •C C′.

If all checks succeeded, accept. Otherwise, reject.

The proof π consists of 2γ ciphertexts of S, and β elements of G. Below, we illustrate
our construction of DVNIZK on the examples of statements given in the previous section.
For the sake of concreteness, we instantiate the DVNIZK-friendly encryption scheme S with
Paillier (hence the operation is instantiated as the multiplication modulo n2), so that
the message space is Zn and the randomizer space is Zϕ(n)/2 for an RSA modulus n. In the
examples, we use a bound B = n and draw Paillier random coins from Z2λB, following our
generic framework. However, observe that in the case of Paillier, we can also draw the coins
from Zn/2 to get a distribution statistically close to uniform over Zϕ(n)/2, which is more
efficient.

Example 1: Knowledge of Opening to a Pedersen Commitment.

– ΠPed.Setup(1λ) : Compute ((n, h), δ) = (ek, dk)
$← S.KeyGen(1λ). Output crs← ek. Let

`← 2λn2. Let G $← GGen(1λ, n), (G,H)
$← G2.

– ΠPed.KeyGen(1λ): pick e $← Z`, set pk← he mod n2 and vk← e.
– ΠPed.Prove(pk, C,x): on a word C ∈ G, with witness x = (m, r) ∈ Z2

n for the statement
StΓPed

(G,C), pick x′ $← Z2
n, ρ

$← Z2
2λB

, compute X ← (1 + n)xhρ mod n2,X′ ←
(1 + n)x

′
pk−ρ mod n2,C′ ← x′ • (G,H)ᵀ, and output π ← (X,X′,C′).

– ΠPed.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′ is of the form
(1 + n)d, and recover the vector d ∈ Z2

n. Check that d • (G,H)ᵀ = e •C C′.
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Example 2: Multiplicative Relationship Between ElGamal Ciphertexts.

– ΠEM.Setup(1λ) as ΠPed.Setup(1λ).
– ΠEM.KeyGen(1λ) as ΠPed.KeyGen(1λ).
– ΠEM.Prove(pk,C,x): on a word C ∈ G6, with witness x = (m0, r0,m1, r1, r2) ∈ Z5

n for
the statement StΓEM

(G,C), pick x′ $← Z5
n, ρ

$← Z5
2λB

, compute X ← (1 + n)xhρ mod
n2,X′ ← (1 + n)xpk−ρ mod n2,C′ ← x′ • ΓEM(G,C), and output π ← (X,X′,C′).

– ΠEM.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′ is of the form
(1 + n)d, and recover the vector d ∈ Z5

n. Check that d • ΓEM(G,C) = e •C C′.

Example 3: Knowledge of a Discrete Logarithm. ΠDL allows a prover to show that
he knows t ∈ Zn | t • ΓDL(G,T ) = t •G = T for a publicly known G.

– ΠDL.Setup(1λ) : Compute ((n, h), δ) = (ek, dk)
$← S.KeyGen(1λ). Output crs← ek. Let

`← 2λn2. Let G $← GGen(1λ, n), and G $← G.
– ΠDL.KeyGen(1λ): as ΠPed.KeyGen(1λ).
– ΠDL.Prove(pk, T, t): On a word T ∈ G with witness t ∈ Zn pick t′ $← Zn, r $← Z2λn,

compute

X ← (1 + n)thr mod n2, X ′ ← (1 + n)t
′
pk−r mod n2, T ′ ← t′ •G,

and output π ← (X,X ′, T ′).
– ΠDL.Verify(pk, vk, T,π): parse π as (X,X ′, T ′). Check that XeX ′ is of the form (1 +
n)d mod n2, and recover d ∈ Zn. Check that d •G = e • T T ′.

Example 4: ElGamal Encryption of 0.

– ΠEZ.Setup(1λ) : as ΠPed.Setup(1λ).
– ΠEZ.KeyGen(1λ) as ΠPed.KeyGen(1λ).
– ΠEZ.Prove(pk,C, x): on a word C ∈ G2, with witness x ∈ Zn for the statement

StΓEZ
(G,C), pick x′ $← Zn, r $← Z2λB, compute

X ← (1 + n)xhr mod n2, X ′ ← (1 + n)x
′
pk−r mod n2, C′ ← x′ • ΓEZ(G,C),

and output π ← (X,X ′,C′).
– ΠEZ.Verify(pk, vk,C,π): parse π as (X,X ′,C′). Check thatXeX ′ is of the form (1+n)d,

and recover d ∈ Zn. Check that d • ΓEZ(G,C) = e •C C′.

3.3 Security Proof

We now prove the generic DVNIZK construction from Section 3.2 is secure.

Perfect Completeness. It follows from straighforward calculations: e � X ⊕ X′ =
S.Encek(e · x + x′; e · r − e · r) = S.Encek(e · x + x′; 0) is decodable and decodes to
d = e ·x+x′ mod k. Then, d • Γ(G,C) = e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′ by
the correctness of the statement (x • Γ(G,C) = C) and by construction of C′.
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Composable Zero-Knowledge. We prove the following theorem:

Theorem 13 (Zero-Knowledge of ΠK). If the encryption scheme S is IND-CPA secure,
then the DVNIZK scheme ΠK satisfies composable zero-knowledge.

We describe a simulator Sim(C, pk, vk) producing proofs computationally indistinguish-
able from those produced by an honest prover on true statements. The simulator operates
as follows: let d $← Zγk, and C

′ ← d • Γ(G,C) e • C. Sample x $← Zγk, r
$← Zγ

2λB
, and

compute X ← S.Encek(x, r),X′ ← S.Encek(d− e · x,−e · r). Output πs = (X,X′,C′).
Let A be an adversary that can distinguish Sim from Prove. We will build a reduction

against the IND-CPA security of S. The reduction obtains C,x from A , samples x̃← Zγk ,
sends (x, x̃) to the IND-CPA game and sets X to be the challenge from the IND-CPA game.
Now, the reduction samples d ← Zγk and sets X′ := S.Encek(d; 0) 	X � e. Finally, the
reduction sets C′ := d • Γ(G,C) e •C. Send π∗ = (X,X′,C) to A .

Direct calculation shows that if the IND-CPA game outputs an encryption of X̃, then
X,X′,C are distributed as those produced by Sim, whereas when it outputs an encryption
of X then π∗ is distributed identical to a real proof. Thus, whatever advantage A has in
distinguishing Sim from Prove is also achieved by the reduction against IND-CPA. Note
that for simplicity, our proof assume that the IND-CPA game is directly played over vectors,
but standard methods allow to reduce this to the classical IND-CPA game with a single
challenge ciphertext.

Adaptive Unbounded Knowledge-Extractability. We start by showing that ΠK sat-
isfies statistical adaptive unbounded knowledge-extractability. More precisely, we prove the
following theorem:

Theorem 14 (Soundness of ΠK). There is an efficient simulator Sim such that for any
(possibly unbounded) adversary A that outputs an accepting proof π with probability ε on
an arbitrary word C after making at most Q queries to the oracle Ovk[pk], Sim extracts a
valid witness for the statement StΓ(G,C) with probability at least ε− (Q+ 1)β/pk, where
pk is the smallest prime factor of k.

The proof describes an efficient simulator Sim that correctly emulates the verifier,
without knowing vk mod k. The simulation is done as follows:

– Sim.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs← ek. The encryption

key ek defines a plaintext space Zk and a random source ZR with bound B. Let
`← 2λkB.

– Sim.KeyGen(1λ): compute (pk, vk)
$← ΠK.KeyGen(1λ), output pk, store eR ← vk mod R,

and erase vk.
– Sim.Verify(pk, dk, eR,C,π): parse π as (X,X′,C′). Using the secret key dk of S,

decryptX to a vector x, andX′ to a vector x′. Check that (−eR)�(X	x) = X′	x′.
Check that x • Γ(G,C) = C, and that x′ • Γ(G,C) = C′. If all checks succeeded,
accept. Otherwise, reject.

The simulator Sim first calls Sim.Setup(1λ) to generate the common reference string (note
that our simulator generates the common reference string honestly, hence the simulation
of Setup cannot be distinguished from an honest run of Setup), and stores dk. Each
time the adversary A sends a query (C,π) to the oracle Ovk[pk], Sim simulates Ovk[pk]
(without knowing vk mod k) by running Sim.Verify(pk, dk, eR,C,π), and accepts or rejects
accordingly. When A outputs a final answer (C,π), Sim computes a witness x for StΓ(G,C)
by decrypting C with dk.
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Observe that the distribution {(pk, vk)
$← ΠK.KeyGen(1λ), ek ← vk mod k : (pk, ek)}

is statistically indistinguishable from the distribution {(pk, vk)
$← ΠK.KeyGen(1λ), ek

$←
Zk : (pk, ek)}. Put otherwise, the distribution of vk mod k is statistically indistinguishable
from random, even given pk. Indeed, as S is a DVNIZK-friendly encryption scheme, it
holds by definition that gcd(k,R) = 1. As ` = 2λBk ≥ 2λRk, the distribution {e $←
Z`, ek ← e mod k, eR ← e mod R : (ek, eR)} is statistically indistinguishable from the
uniform distribution over Zk × ZR, and the value pk only leaks eR, even to an unbounded
adversary (as S.Encek(0; e) = S.Encek(0; e mod R)). We now prove the following claim:

Claim. For any public parameters G and word C, it holds that

Pr

 (pk, vk)
$← ΠK.KeyGen(1λ),

b← Sim.Verify(pk, dk,C,π), : b′ = b
b′ ← ΠK.Verify(pk, vk,C,π)

 ≥ 1− β/pk,

where pk is one of the prime factors of k.

Proof. First, we show that if b = 1, then b′ = 1. Indeed, let us denote (x,x′) the plaintexts
associated to (X,X′). Let (r, r′) be the random coins of the ciphertexts (X,X′). Observe
that, by the homomorphic properties of S, the equation (−eR) � (X 	 x) = X′ 	 x′ is
equivalent to S.Encek(0;−eR · r) = S.Encek(0; r′), which is equivalent to e �X ⊕X′ =
S.Enc(e · x + x′ mod k; e · r + r′ mod R) = S.Enc(e · x + x′ mod k; 0) as e = eR mod R.
Therefore, the verifier’s check that e�X ⊕X′ is decodable succeeds if and only if Sim’s
first check succeeds, and the decoded value d ∈ Zγk satisfies d = e ·x+x′ mod k. Moreover,
if the equations x • Γ(G,C) = C and x′ • Γ(G,C) = C′ are both satisfied (i.e. Sim’s
other checks succeed), then it necessarily holds that d • Γ(G,C) = (e ·x+x′) • Γ(G,C) =
e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′. This concludes the proof that, conditioned on
Sim’s checks succeeding, the verifier’s checks necessarily succeed.

Now, assume for the sake of contradiction that the converse is not true: suppose
that Sim rejected the proof, while the verifier accepted. We already showed that the
equation (−eR) � (X 	 x) = X′ 	 x′ is equivalent to the equation e � X ⊕ X′ =
S.Enc(e ·x+x′ mod k; 0); therefore, if e�X⊕X′ is decodable (it has random coin 0), then
Sim’s check that (−eR)� (X 	x) = X′	x′ succeeds. As we assumed that Sim rejects the
proof, this means that at least one of Sim’s last checks must fail: either x • Γ(G,C) 6= C,
or x′ • Γ(G,C) 6= C′. By the first check of the verifier, it holds that e � X ⊕ X′ is
decodable; denoting (x,x′) the plaintexts associated to (X,X′), it therefore decodes to
d = e·x+x′ mod k. By the second check of the verifier, it holds that d•Γ(G,C) = e•C C′,
which implies e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′. This last equation rewrites to

e • (x • Γ(G,C) C) = C′ x′ • Γ(G,C) (1)

Now, recall that by assumption, either x • Γ(G,C) 6= C, or x′ • Γ(G,C) 6= C′. Observe
that Equation 1 further implies, as e 6= 0 (with overwhelming probability), that x′ •
Γ(G,C) C′ 6= 0 if and only if x•Γ(G,C) C 6= 0. Therefore, conditioned on Sim rejecting
the proof, it necessarily holds that x • Γ(G,C) C 6= 0 and x′ • Γ(G,C) C′ 6= 0. Let
(µi, νi) be two non-zero entries of the vectors (x • Γ(G,C) C,C′ x′ • Γ(G,C)) at the
same position i ≤ β; by Equation 1, it holds that e = νi · µ−1

i mod p for at least one of
the prime factors p of k. However, recall that the value e mod k is statistically hidden to
the prover (and therefore, so is the value e mod p), hence the probability of this event
happening can be upper-bounded by β/p ≤ β/pk. This concludes the proof of the claim. ut



20

Now, consider an adversary A that outputs an accepting proof (C,π) with probability
at least ε after a polynomial number Q of interactions with the oracle Ovk[pk]. By the above
claim and a union bound, it necessarily holds that A outputs an accepting proof (C,π)
with probability at least ε−Qβ/pk after interacting Q times with Sim.Verify(pk, dk, eR, ·, ·);
moreover, with probability at least 1− βpk, this proof is also accepted by Sim’s verification
algorithm. Overall, Sim obtains a proof accepted by his verification algorithm with probabil-
ity at least ε− (Q+ 1)β/pk. In particular, this implies that the vector x extracted by Sim
from π satisfies x • Γ(G,C) = C with probability at least ε− (Q+ 1)β/pk. Therefore, Sim
extracts a valid witness for the knowledge statement StΓ(G,C) with probability at least
ε−(Q+1)β/pk. As the size k of a DVNIZK-friendly cryptosystem has only superpolynomially
large prime-factors, it holds that pk is superpolynomially large. As (Q+ 1)β is polynomial,
we conclude that if A outputs an accepting proof with non-negligible probability, then Sim
extracts a valid witness with non-negligible probability.

4 Dual Variant of the Framework

In the previous section, we described a framework for constructing efficient DVNIZKs
of knowledge for relations between words defined over an abelian group (G, ), using a
cryptosystem with specific properties as the underlying commitment scheme for the proof
system. In this section, we show that the framework can also be used in a dual way, by
considering languages of relations between the plaintexts of the underlying encryption
scheme – we call this variant ‘dual variant’ of the framework, as the roles of the underlying
encryption scheme (which is used as a commitment scheme for the proof) and of the abelian
group (which contains the words on which the proof is made) are partially exchanged.
This allows for example to handle languages of relations between Paillier ciphertexts. To
instantiate the framework, it suffices to have any perfectly binding commitment scheme
defined over G. This dual variant leads to efficient DVNIZK proofs for relations between,
e.g., Paillier ciphertexts, whose zero-knowledge property reduces to the binding property
of the commitment scheme over G (e.g. the DDH assumption, or its variants), and with
statistical (unbounded, adaptive) soundness.

4.1 Perfectly Binding Commitment over G

Suppose that we are given a perfectly binding homomorphic commitment C = (C.Setup,
C.Com, C.Verify), where C.Com : Zk × Zk 7→ G∗. Assume further that C.Setup generates a
public vector of parameters G ∈ G∗, and that there is a linear map ΓC associated to this
commitment such that for all (m, r) ∈ Z2

k, C.Com(m, r) = (m, r)•ΓC(G). Note this implies
the commitment scheme is homomorphic over G. ElGamal (Sect. 2.2), can be used as a
commitment scheme satisfying these properties, is hiding under the DDH assumption and
perfectly binding. We do so by using KeyGen(1λ) in place of Setup(1λ) to generate group
elements (G,H) (the public key of the encryption scheme), and commit (i.e encrypt) via
ΓC(G,H) = ((0, G)ᵀ, (G,H)ᵀ). We generalize this to commitments to length-t vectors as
follow: we let ΓC,t denote the extended matrix such that C.Com(m, r) = (m, r) • ΓC,t(G),
where (m, r) are vectors of length t (ΓC,t is simply the block-diagonal matrix whose t
blocks are all equal to ΓC). Consider now the following statement, where the word is a
vector C of commitments:

StΓC,t(G,C) = K{(m, r) | (m, r) • ΓC,t(G) = C}
= K{(m, r) | C.Com(m, r) = C}.
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One can immediatly observe that this statement (which is a proof of knowledge of openings
to a vector of commitments with C) is handled by the framework of Section 3.

4.2 Equality of Plaintexts between C and S

In this section, we describe a simple method to convert a DVNIZK on the statement
StΓC,t(G,C) = K{(m, r) | C.Com(m, r) = C} into a DVNIZK on the statement St′(G,C,Xm) =
∃{(m,ρm, r) | Xm = S.Encek(m,ρm) ∧ C = C.Com(m, r)} for a length-t vector C of
commitments with a commitment scheme over G satisfying the requirements defined in the
previous section, and a length-t vector of DVNIZK-friendly ciphertexts Xm. Instantiating
the framework of Section 3 for the statement StΓC,t(G,C), we get the following DVNIZK Π:

– Π.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs← ek. Note that ek defines

the plaintext space Zk and the random source ZR with bound B. We denote `← 2λkB.
– Π.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– Π.Prove(pk,C, (m, r)): on a word C ∈ Ztk, with witness (m, r) for the statement

StΓC,t(G,C) (where G $← C.Setup(1λ)), pick random (m′, r′), random coins (ρm,ρr)
for S, and compute

Xm ← S.Encek(m,ρm), Xr ← S.Encek(r,ρr),

X′
m ← S.Encek(m

′, 0)	 (ρm � pk), X′
r ← S.Encek(r

′, 0)	 (ρr � pk),

C′ ← (m′, r′) • ΓC,t(G,C),

and output π ← (Xm,X
′
m,Xr,X

′
r,C

′).
– ΠK.Verify(pk, vk,C,π): parse π as (Xm,X

′
m,Xr,X

′
r,C

′). Check that e�Xm⊕X′
m

and e�Xr ⊕X′
r are decodable, and decode them to vectors (dm,dr) ∈ (Ztk)2. Check

that (dm,dr) • ΓC,t(G,C) = e •C C′.

By the result of Section 3, this is an unbounded statistical adaptive knowledge-extractable
DVNIZK of knowledge of an opening for C. Suppose now that we modify the above scheme as
follow: we letXm be part of the word on which the proof is executed, rather than being com-
puted as part of the proof by the algorithm Π.Prove. That is, we consider words of the form
(C,Xm) with witness (m, r,ρm) such that (C,Xm) = (C.Com(m; r), S.Encek(m,ρm)).
Let Π′ denote the modified proof, in which Xm is part of the word and (X′

m,Xr,X
′
r,C

′)
are computed as in Π. Observe that the proof of security of our framework immediatly
implies that Π′ is a secure DVNIZK for plaintext equality between commitments with C
and encryptions with S: our statistical argument shows that a (possibly unbounded) adver-
sary has negligible probability of outputting a word C together with an accepting proof
π = (Xm,X

′
m,Xr,X

′
r,C

′) where the plaintext extracted by the simulator from Xm is
not also the plaintext of C. Hence, it is trivial that the probability of outputting a word
(C,Xm) and an accepting proof π′ = (X′

m,Xr,X
′
r,C

′) where the plaintext extracted by
the simulator from Xm is not also the plaintext of C is also negligible. Thus, we get:

Theorem 15. The proof system Π′ is an adaptive unbounded statistically sound proof
for equality between plaintexts of C and plaintexts of S, whose composable zero-knowledge
property reduces to the IND-CPA security of S.

Note that the proof Π′ is no longer a proof of knowledge: while the simulator can extract
(m, r) from the prover, he cannot necessarily extract the random coins ρm of Xm, which
are now part of the witness. Therefore, for the protocol to make sense, it is important that
C is a perfectly binding commitment scheme.
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4.3 A Framework for Relations between Plaintexts of S

The observations of the above section suggest a very natural way for designing DVNIZKs for
relations between plaintextsm ∈ Z∗k of the encryption scheme S, which intuitively operates
in two steps: first, we create commitments to the plaintexts m over G using C and prove
them consistent with the encrypted values using the method described in the previous
section. Then, we are able to use the framework of Section 3 to demonstrate the desired
relation holds between the commited values (this is a statement naturally captured by the
framework). More formally, on input a vector of ciphertexts Xm encrypting plaintexts m
with random coins ρm,

– Pick r and compute C ← C.Com(m, r).
– Construct a DVNIZK for the statement St′(G,C,Xm) with witness (m,ρm, r), using

the method described in Section 4.2.
– Construct a DVNIZK for the statement StΓ(G,C) with witness (m, r), using the

framework of Section 3.

The correctness of this approach is immediate: the second DVNIZK guarantees that the
appropriate relation is satisfied between the plaintexts of the commitments, while the first
one guarantees that the ciphertexts indeed encrypt the committed values. This leads to
a DVNIZK proof of relation between plaintexts of S, with unbounded adaptive statistical
soundness. Regarding zero-knowledge, as the proof starts by committing to m with C, we
must in addition assume that the commitment scheme is hiding (we skip the details of the
security analysis, noting that it is straightforward).

Theorem 16. The above proof system is an adaptive unbounded statistically sound proof
for relations between plaintexts of S, whose composable zero-knowledge property reduces to
the IND-CPA security of S and the hiding property of C.

We note that we can also obtain a variant of Theorem 16, where zero-knowledge only relies
on the IND-CPA of S, and hiding of C implies the soundness property, using commitment
schemes a la Groth-Sahai where the crs can be generated in two indistinguishable ways,
one leading to a perfectly hiding scheme, and one leading to a perfectly binding scheme
(such commitments are known, e.g., from the DDH assumption).

Example: Multiplicative Relationship Between Paillier Ciphertexts. We focus
now on the useful case of multiplicative relationship between plaintexts of Paillier ciphertexts.
We instantiate S with the Paillier encryption scheme over an RSA group Zn, with a public
key (n, h) (h = gn mod n2 for a generator g of Jn), and the commitment scheme C with
the ElGamal encryption scheme over a group G of order n, with public key (G,H). Let
(P0, P1, P2) ∈ (Z∗n2)3 be three Paillier ciphertexts, and let (m0,m1,m2, ρ0, ρ1, ρ2) be such
that m2 = m0m1 mod n, and P0 = (1 + n)m0hρ0 mod n2, P1 = (1 + n)m1hρ1 mod n2, P2 =
(1 + n)m2hρ2 mod n2. Let E = he mod n2 denote the public key of the verifier. The
designated-verifier NIZK for proving that P2 encrypts m0m1 proceeds as follows:

– Committing over G: pick (r0, r1, r2) and send (Ui, Vi)0≤i≤2 ← (ri •G, ri •H mi •
G)0≤i≤2 (which are commitments with ElGamal to (m0,m1,m2) over G).

– Proof of Plaintext Equality: pick (m′i, r
′
i, ρ
′
i)0≤i≤2

$← (Zn × Zn × Zn/2)3, and send
for i = 0 to 2, Xi ← (1 + n)rihρ

′
i mod n2, X ′i ← (1 + n)r

′
iE−ρ

′
i mod n2, P ′i ← (1 +

n)m
′
iE−ρi mod n2, and (U ′i , V

′
i )← (r′i •G, r′i •H m′i •G).
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– Proof of Multiplicative Relationship Between the Committed Values: apply
the proof system of Example 2 from Section 3 to the word (Ui, Vi)0≤i≤2, with public
parameters (G,H), and the witness x = (m0, r0,m1, r1, r2 − r0m1) which satisfies
(U0, V0) = (r0 •G, r0 •H m0 •G), (U1, V1) = (r1 •G, r1 •H m1 •G), and (U2, V2) =
((r2 − r0m1) •G m1 • U0, (r2 − r0m1) •H m1 • V0).

– Proof Verification: upon receving (Ui, Vi, Xi, X
′
i, P

′
i , U

′
i , V

′
i )0≤i≤2 together with the

proof of multiplicative relationship between the values committed with (Ui, Vi)i, the
verifier with verification key vk = e checks that e�Pi⊕P ′i and e�Xi⊕X ′i successfully
decode (respectively) to values pi, xi, and that e • Ui U ′i = xi • G and e • Vi V ′i =
xi •H pi •G, for i = 0 to 2. The verifier additionally checks the multiplicative proof,
as in Example 4 from Section 3. She accepts iff all checks succeed.

The proof for the multiplicative statement involves 10 Paillier ciphertexts and 3 ElGamal
ciphertexts. Overall, the total proof involves 20 Paillier ciphertexts, and 9 ElGamal cipher-
texts. However, this size is obtained by applying the framework naively; in this situation,
it introduces a lot of redudancy. For instance, instead of computing Paillier encryptions
of (m0, r0,m1, r1) in the third phase, one can simply reuse the word (P0, P1) and the
ciphertexts (X0, X1), as well as reusing (P ′i , X

′
i)i for the corresponding masks (m′i, r

′
i)i,

saving 8 Paillier ciphertexts; similar savings can be obtained for the ElGamal ciphertexts,
leading to a proof of total size 12 Paillier ciphertexts + 7 ElGamal ciphertexts.

Furthermore, if we eschew unbounded soundness and accept bounds on mi we are able
to produce a much sorter proof, comprising only two Paillier ciphertexts, outperforming
even Fiat-Shamir. We detail this in the next section.

5 Trading Unbounded Soundness for Efficiency

The dual variant of our framework, developed in Section 4, allows to non-interactively
prove relations between the plaintexts of a DVNIZK-friendly cryptosystem, such as the
Paillier cryptosystem, with strong security guarantees. However, this comes at the cost
of somewhat larger proofs than one could hope for: for instance, proving that a Paillier
ciphertext encrypts the products of the plaintexts of two other ciphertexts requires 12
Paillier ciphertexts and 7 ElGamal ciphertexts. In some scenarios, one might be willing to
sacrifice some of the strong security guarantees provided by the framework, in exchange for
an improved efficiency.

In this section, we explain how our techniques can be used in a more direct way,
without relying on an intermediate commitment scheme over an abelian group, to prove
relationships between plaintexts of a DVNIZK-friendly scheme. The DVNIZK we obtain
is statistically zero-knowledge, computationally sound, but does not enjoy unbounded
soundness. It is, however extremely efficient: proving a multiplicative relationship between
three ciphertexts requires only two ciphertexts. This leads to proofs that are shorter than
any known alternative for building non-interactive zero-knowledge proofs, almost twice
shorter than the proofs in the random oracle model obtained via the Fiat-Shamir transform.

5.1 Coin-Unextractability

Our construction relies on a DVNIZK-friendly cryptosystem, satisfying an additional security
requirement: intuitively, it must be infeasible, given a ciphertext, to extract the random
coin used to generate it, even given the decryption key of the scheme. More formally,
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Definition 17 (D-Coin-Unextractability). A DVNIZK-friendly cryptosystem S is D-
coin-unextractable, for some family of distributions D = (Dek)ek over the random source of
S, if for any pair (ek, dk)

$← S.KeyGen(1λ), and any PPT adversary A , it holds that

Pr[r
$← Dek, c← S.Enc(0; r), r′ ← A (ek, dk, c) : r′ = r] = negl(λ).

Example: The Paillier Encryption Scheme. For simplicity, let us first look at the
coin-extractability of Paillier for the uniform distribution. Let n be an RSA modulus. As
it leads to a somewhat simpler analysis, we will consider a slight variant of Paillier where
h = gn is built as the n’th power of a random element g of QRn (rather than Jn previously).
The random source of Paillier is Zϕ(n)/4. The challenger for the uniform coin-unextractability
of Paillier picks r $← Zϕ(n)/4 and returns a challenge c = hr mod n2. Given c, the goal
is to find out r; hence, given the factorization of n, the uniform coin-unextractability of
Paillier is exactly the discrete logarithm assumption over QRn. Note that given the secret
key of Paillier (i.e., the factorization of n = pq = (2p′ + 1)(2q′ + 1) for primes (p, q, p′, q′)),
the discrete logarithm assumption over QRn reduces to the discrete logarithm assumption
over both QRp and QRq (the cyclic subgroups of squares of Zp and Zq), via the chinese
remainder theorem.

In the next section, we will be interested in the coin-unextractability property of the
scheme S for a slightly more complex distribution: the distribution of uniformly random
coins smaller than some given bound. Therefore, let us show that the coin-unextractability
of Paillier for this distribution reduces to the short-exponent discrete logarithm assumption.
Let t be an integer; we will consider random coins picked at random over Zn/2t (note that
this is statistically indistinguishable from coins picked at random over Zϕ(n)/2t as long
as n/2t is superpolynomially large). The coin-unextractability property of Paillier for the
uniform distribution over Zn/2t is clearly equivalent to the discrete logarithm assumption
over QRn with exponents picked at random over Zn/2t , a type of assumption usually called
short-exponent discrete logarithm assumption (sDL). However, it is not immediate that the
sDL assumption over QRn reduces to the sDL assumption over QRp or QRq, even given the
factorization of n, because the chinese remainder theorem does not preserve the size of the
exponent in general. A slightly more involved analysis shows that this can nevertheless be
ensured in this case, hence the coin-unextractability of Paillier with bounded random coins
can be reduced to the sDL assumption over a (multiplicative subgroup of a) prime order
field. We detail the reduction from sDL over QRn to sDL over a subgroup of QRp in the
next section.

5.2 Composite-to-Prime Reduction for the Short-Exponent Discrete
Logarithm Assumption

We show that the short-exponent discrete logarithm assumption on a composite order group
can be reduced to the same assumption on a prime order group. We denote QRn (resp.
QRp) the subgroup of squares of Z∗n (resp. of Z∗p). We prove that, given an integer t, the
short-exponent discrete logarithm assumption over QRp for a bound p/2t � p′ implies
the short-exponent discrete logarithm assumption over QRn for a bound n/2t+1 � ϕ(n),
assuming |p/2t|= ω(log λ) (i.e., the set Zdp/2te is superpolynomially large). The reduction
assumes that the factorization of n is known. Note that the reduction for the standard
discrete logarithm assumption from QRp to QRn is immediate by the chinese remainder
theorem; however, as the CRT decomposition does not preserve the size of the exponents in
general, the argument is more involved for the short-exponent discrete logarithm assumption.
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Let us denote sDLt(G) the short-exponent discrete logarithm assumption over a group G,
with exponents bounded by |G|/2t.

Lemma 18. Assuming |p/2t|= ω(log λ), sDLt(QRp) =⇒ sDLt+1(QRn).

Proof. For a modulus n = pq, we denote by Distn, Distp the following distribution:

Distn = {g $← QRn, x
$← Zdp/2ke, h← gx mod n : (g, h)}

Distp = {g $← QRp, x
$← Zdn/2k+1e, h← gx mod p : (g, h)}

Let Adv be an adversary that, on input n $← Gen(1λ) and a random sample (g, h) of Distn,
outputs an integer x such that gx = h with non-negligible probability ε. We denote by
Embedp,n the following probabilistic algorithm:

Embed(p, gp, hp): On input a random strong prime p = 2p′ + 1 and a sample (gp, hp) from
Distp,k, pick a random strong prime q = 2q′ + 1 of the same size as p, a random
generator gq

$← QRq and a random exponent xq
$← Zq′ . Set n ← pq and computes

µ ← [(q′)−1 mod p′]. Set f ← gq
′µ
p g1−q′µ

q mod n, g ← fµ mod n, h ← hµpgxq mod n,
and output (n, g, h, µ, xq).

We construct an adversary Adv′ against the sDL assumption over QRp as follows:

Adv′: On input a random strong prime p = 2p′ + 1 and a sample (gp, hp) from Distp,k,
compute (n, g, h, µ, xq)

$← Embed(p, gp, hp). If x − xq = 0 mod q′, output (x − xq)/q′;
else, output ⊥.

Claim. Pr[(gp, hp)
$← Distp, xp

$← Adv′(p, gp, hp) : g
xp
p = hp mod p] ≥ ε− negl(λ)

Toward proving the claim, let Dist′p denote the output distribution of Embedn,p restricted
to the three first entries (n, g, h) of the output. We show that Dist′p and Distn are
statistically indistinguishable; the claim follows. It is clear that n is distributed exactly
as in Gen. Observe that g = gµp mod p and g = gµq mod q. As (gp, gq) are uniformly
random generators of (QRp,QRq), so are (gµp , g

µ
q ) (as µ 6= 0 mod p′ and µ 6= 0 mod q′).

As g is the unique value (modulo n) satisfying g = gµp mod p and g = gµq mod q, by the
chinese remainder theorem, g is a uniformly random generator of QRn. We now look at
the distribution of h. A direct calculation shows that h = gq

′z+xq mod n where z is the
discrete logarithm of hp in base gp (modulo p). By definition of Distp, z is uniformly
distributed over Zdp/2ke, and xq is uniformly distributed over Zq′ . Therefore, q′z + xq is
uniformly distributed over Zq′dp/2ke. To conclude the proof of the claim, it remains to
show that Zq′dp/2ke is statistically close to Zdn/2k+1e. To prove that, it suffices to show that
q′dp/2ke/dn/2ke = 1 + negl(λ). Let us write p = 2kp0 + p1, with p1 < 2k. We have

q′dp/2ke = q′p0, and

dn/2k+1e =

⌈
(2kp0 + p1)(2q′ + 1)

2k+1

⌉
= p0q

′ +

⌈
2p1q

′ + 2kp0 + p1

2k+1

⌉
Moreover, as 2p1q

′ + 2kp0 + p1 ≤ 2k+1q′ + 2kp0 + p1, we have

dn/2k+1e ≤ p0q
′ + q′ + p1 + p0/2
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which gives

1 ≤ dn/2
k+1e

q′dp/2k+1e
≤ 1 +

q′ + p1 + p0/2

p0q′
≤ 1 +

1

p0
+

2k

p0q′
+

1

2q′
≤ 1 +

2

p0
+

1

2q′
.

As |p0|= |p/2k|= ω(log λ) and q′ is exponentially large, we have that

2

p0
+

1

2q′
= negl(λ)

Which concludes the proof of the claim. ut

5.3 Efficient Proof of Multiplicative Relationship

Recall that, for a DVNIZK-friendly encryption scheme S, the encryption key ek specifies a
bound B on the size of the random source. We consider the following families of distributions:
Dt = (Dt,ek)ek, for integers t = t(λ) and encryption keys ek, where each Dt,ek is the uniform
distribution over ZB/2t . Intuitively, this corresponds to the distribution of small uniformly
random coins, where t parametrizes the size of the space from which the coins are taken.
Let S be a Dt-coin-unextractable DVNIZK-friendly encryption scheme, for some integer
t = t(λ) which will be specified afterward. Consider the following scheme Πprod for proving
multiplicative relations between DVNIZK-friendly encryptions of plaintexts of bounded size:

– Πprod.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs ← ek. Note that ek

defines a plaintext space Zk and a random source ZR with a bound B. Let pk be the
smallest prime factor of k. Let t = t(λ) be an integer such that B/2t < min(pk, R),
and such that t′ ← dt− λ+ log2(k/B)e satisfies t′ > 0. Let `← dB/2te.

– Πprod.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– Πprod.Prove(pk,x,w): given a word x = (c0, c1, c2) = (S.Encek(m0; r0), S.Encek(m1; r1),

S.Encek(m2; r2)), with m0 ≤ 2t
′ , and witness w = (mi, ri)i≤2, pick m′

$← Zk. Compute

X0 ← −r0 � pk⊕ S.Encek(m′; 0), X1 ← (r1m0 − r2)� pk⊕m′ • c1

and output π ← (X0, X1).
– Πprod.Verify(pk, vk, x, π): parse π as (X0, X1). Compute F0 ← e � c0 ⊕X0 and F1 ←
e� c2⊕X1. Check that F0 decodes to some d; otherwise, reject. Check that F1 = d� c1.
If the check fails, reject. Otherwise, accept.

Theorem 19. Let S be a Dt-coin-unextractable DVNIZK-friendly encryption scheme. Let t
be an integer, chosen as above, and let t′ be defined as above. The scheme Πprod is a secure
DVNIZK argument system of multiplicative relationship between plaintexts provided that the
size of the first plaintext is bounded by 2t

′ , which is statistically zero-knowledge and statisfies
bounded-soundness under the Dt-coin-unextractability of S.

Instantiated with the Paillier encryption scheme, this leads to a DVNIZK proof system for
multiplicative relations between Paillier ciphertext, where a proof requires only two Paillier
ciphertexts, whose bounded adaptive soundness property reduces to the short-exponent
discrete logarithm assumption over the subgroup of squares of Z∗p.



27

Comparison With Alternative Approaches. Before proving Theorem 19, let us dis-
cuss the efficiency of the proof system Πprod. For simplicity, we focus on the most natural
instantiation, with the Paillier encryption scheme. The standard way of building an efficient
non-interactive zero-knowledge proof system for multiplicative relations between Paillier ci-
phertexts is to start from the classical public-coin three-move honest-verifier zero-knowledge
proof (also called Σ-protocol) for this statement, and to compile it into a NIZK using the
Fiat-Shamir transform.

The Σ-protocol for multiplicative relation between Paillier ciphertext was first introduced
in [DJ01]. Let n be an RSA modulus. Adapting this Σ-protocol to the Paillier variant
we use here (where the random coin is an exponent), the total communication of the
protocol involves 7 log(n) bits (ignoring the cost of sending the challenge). Therefore,
the NIZK obtained by compiling this Σ-protocol with the Fiat-Shamir transform also
requires 7 log(n) bits. To our knowledge, this is the most efficient currently known method
for proving such statements non-interactively: all previous works on DVNIZKs describe
homomorphic-encryption-based compilers for Σ-protocols which lead to DVNIZKs less
efficient than the NIZK obtained with Fiat-Shamir (the DFN transform on this statement
exchanges 10 log(n) + 18λ bits, and all subsequent works require at least this amount of
communication). We note that zero-knowledge proofs with shorter communication than the
standard Σ-protocol for this statement were suggested in [LZ14], but these protocols cannot
be made non-interactive in the random oracle model (and require the prover to know the
secret key of the Paillier scheme anyway).

The protocol Πprod requires only 4 log(n) bits of communication in total, making it
almost twice as efficient as the NIZK obtained with the Fiat-Shamir transform. To our
knowledge, our protocol is the first example of a non-interactive zero-knowledge argument
in the standard model which is more efficient than proofs obtained via the Fiat-Shamir
transform in the random oracle model.

5.4 Security Analysis

In this section, we formally prove Theorem 19.

Correctness. Plugging X0 = −r0 � pk⊕ S.Encek(m′; 0) = S.Encek(m
′;−r0 · e) into F0 =

e�c0⊕X0, with c0 = S.Encek(m0; r0), we get F0 = S.Encek(e·m0+m′; 0), which successfully
decodes to d = e·m0+m′ mod k. Observe that asm0 ≤ 2t

′ , it holds that e·m0 ≤ `·2t
′ ≤ k/2λ.

As the probability that a random m′ belongs to [k · (1− 2−λ), k] is 1/2λ, which is negligible,
with overwhelming probability it must hold that e ·m0 +m′ < k, hence d = e ·m0 +m′

(over the integers).
Plugging X1 = (r1m0 − r2) � pk ⊕ m′ • c1 = S.Encek(m

′m1; (m′ + em0)r1 − er2) in
F1 = e�c2⊕X1, with c2 = S.Encek(m2; r2), we get F1 = S.Encek(e·m2+m′m1; (m′+em0)r1).
As m2 = m0m1, this reduces to F1 = (m′ + e · m0) � S.Encek(m1; r1) = d � c1, which
concludes the proof of correctness.

Computational Bounded Soundness. Consider an adversary A producing (with prob-
ability at least ε) an accepting proof (X0, X1) on a word x = (c0, c1, c2) encrypting values
(m0,m1,m2) such that m0m1 6= m2. We exhibit a simulator Sim that interacts with A and
breaks the coin-unextractability property of S with the same probability.

The simulator proceeds as follows: first, he executes the setup honestly, producing
(ek, dk)

$← S.KeyGen(1λ), and stores (ek, dk). To simulate the key generation phase, he
interacts with a challenger for the Dt-coin-unextractability property of S, and receives a
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challenge ciphertext c whose random coin was drawn uniformly from Z` (with ` = dB/2te,
for the parameter t and the bound B defined by ek). He outputs pk ← c. Note that the
simulation is trivially perfectly indistinguishable from an honest execution of the setup
and key generation algorithms. Observe also that by construction, c uniquely defines the
challenge e over the integers, as ` < R.

When receiving a word x = (c0, c1, c2) and a proof (X0, X1) from A , Sim uses dk to
decrypt (c0, c1, c2, X0, X1) to (m0,m1,m2, x0, x1), and compute e′ ← (x0m1 − x1)(m2 −
m0m1)−1 mod p, where p is any prime factor of k such that (m2 − m0m1) is invertible
modulo p (which necessarily exists since (m2 − m0m1) 6= 0 mod k). He sends e′ to the
challenger. We now show that if (X0, X1) is indeed an accepting proof, then Sim correctly
answers the coin-unextractability challenge. From the verification equations, we get:

– d = e ·m0 + x0 mod k //the first equation uniquely defines the value d modulo k
– e ·m2 + x1 = d ·m1 mod k

combining the two equations, we get e · (m2 −m0m1) = x0m1 − x1 mod k. By assumption,
m2 −m0m1 6= 0 mod k, therefore, there exists a prime factor p of k such that m2 −m0m1

is invertible modulo p. This gives e = (x0m1 − x1)(m2 −m0m1)−1 mod p, which uniquely
determines e modulo p. As e < ` and ` is smaller than the smallest prime factor of k, this
uniquely determines e over the integers, hence Sim correctly computes the correct answer
to the coin-unextractability challenge with ciphertext c.

Statistical Composable Zero-Knowledge. We exhibit a simulator who, given vk, out-
put proofs which are statistically indistinguishable from honest proofs on true statements.
The simulator Sim is given (pk, vk = e) and a word (c0, c1, c2). Sim picks d $← Zk and
computes

X0 ← S.Encek(d; 0)	 (e� c0), X1 ← (d� c1)	 (e� c2).

First, observe that the value d picked by the simulator follows a distribution statistically
close from the value decoded by the verifier when interacting with an honest prover
on a true statement: the decoded value with an honest prover is e · m0 + m′, where
e ·m0 ≤ ` · 2t

′ ≤ k/2λ, and m′ is uniform over Zk. Therefore, the distribution of e ·m0 +m′

is statistically indistinguishable from uniform over Zk. As (X0, X1) are exactly the unique
pair of ciphertexts satisfying the verification equation with respect to the decoded value d,
the proof follows.
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Supplementary Material

A An Attack on the Unbounded Soundness of the DFN Transform

In this section, we describe an attack on the unbounded soundness property of a designated-
verifier non-interactive zero-knowledge proof obtained using the compiler of [DFN06]. Our
attack contradicts Theorem 5 from [DFN06, Appendix A]; for the sake of completeness,
we also identify the flaw in the proof of Theorem 5. We apply our attack to the natural
example of proving equality of discrete logarithm (which is the example given in [DFN06]),
but our attack applies as well to any protocol obtained with this compiler, showing that
this compiler cannot be used to construct DVNIZKs with unbounded soundness. We notified
the authors of [DFN06] of our findings.

A.1 The DFN Compiler

The DFN compiler applies to any Σ-protocol (which are three-move public-coin honest-
verifier zero-knowledge protocols with a specific “commitment - challenge - response” struc-
ture) satisfying the following requirements:

– Relaxed Special Soundness: for any input x outside of the language, and any first
flow a, there is a unique good challenge e, where a challenge e is said to be good if
there exist a response z such that the proof (a, e, z) on x is accepted by the verifier.

– Special Honest-Verifier Zero-Knowledge: there exists an efficient simulator which,
on input (x, e) for a word x in the language and a challenge e, outputs a conversation
(a, e, z) with distribution statistically indistinguishable from an honest interaction
between the prover and the verifier.

– Linear Answer: the last flow z of the protocol is a sequence of the form (ui + e · vi)i,
where the ui, vi are integers that can be computed efficiently from x, the random coins
of the prover, and its witness.

The DFN compilation technique uses an additively homomorphic encryption scheme S,
where the plaintext space is of the form Zk, for some k which is efficiently computable from
the encryption key ek. For simplicity, we use the same notations as [DFN06], rather than
the notations used throughout our paper. In particular, we use multiplicative notation for
the group and the homomorphic operations on ciphertexts (i.e., if c denotes an encryption
of x, cy denotes an encryption of xy). To avoid confusions, we still use λ for the security
parameter, instead of k in [DFN06]. Consider a Σ-protocol satisfying the requirements
defined above. The DFN compilation proceeds as follows:

– Key Setup: set (ek, dk)
$← S.KeyGen(1λ

′
), where λ′ is an appropriate security parame-

ter computed from λ. Pick a challenge e as in the Σ-protocol, and set ce to be a random
encryption of e with S. Set pk← (ek, ce) and vk← (dk, e).

– Proof Computation: given a word x, compute the first flow a as in the Σ-protocol.
Let (ui, vi)i be such that the last message z of the Σ-protocol is of the form (ui+ e ·vi)i;
compute cz ← (cic

vi)i, where each ci is a random encryption with S of ui. Send
x, (a, cz).

– Proof Verification: decrypt cz to some z = (ui + e · vi)i using the decryption key dk,
and execute the verification procedure of the Σ-protocol using e.
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A.2 Proving Equality of Discrete Logarithms

The main example considered in [DFN06] is a Σ-protocol for proving equality of two discrete
logarithm. We recall the Σ-protocol, taken from Sections 2.2 of [DFN06], and its compiled
version.

Protocol Peqdlog. Consider a prover P and a verifier V getting a common input (p, g1, g2,
h1, h2) where p is a strong (λ + 1)-bit prime (hence p′ = (p − 1)/2 is a λ-bit prime),
g1 generates the subgroup of squares of Z∗p (which is of order p′), and (g2, h1, h2) are
in the subgroup generated by g1. The witness of P is an exponent w ∈ Zp′ such that
(h1, h2) = (gw1 , g

w
2 ).

1. P picks r $← {0, 1}3λ and sends (a1, a2)← (gr1, g
r
2) to V .

2. V sends e $← Zp′ to P .
3. P sends z ← e · w + r to V , who checks that (gz1 , g

z
2) = (a1h

e
1, a2h

e
2).

As observed in [DFN06], this protocol satisfies all required properties for the DFN compila-
tion technique to work (relaxed special soundness, special honest-verifier zero-knowledge,
and linear answer).

Compiled Protocol. We now describe the DVNIZK obtained by compiling Peqdlog with
the DFN transform. Let λ′ ← 3λ.7 Let S be an additively homomorphic encryption scheme
over a plaintext space Zk, where k is a λ′-bit number thant can be computed from the
public key generated by S.KeyGen(1λ

′
).

– Key Setup: set (ek, dk)
$← S.KeyGen(1λ

′
). Pick e $← Zp′ , and set ce to be a random

encryption of e with S. Set pk← (ek, ce) and vk← (dk, e).
– Prover: on common input (p, g1, g2, h1, h2) and witness w such that (h1, h2) = (gw1 , g

w
2 ),

pick r $← {0, 1}3λ, compute (a1, a2) ← (gr1, g
r
2), a random encryption cr of r, and set

cz ← cwe cr. Send (a1, a2, cz) to V .
– Verifier: upon receiving (a1, a2, cz) from P , decrypt cz to some value z using dk, and

apply the verification algorithm of Peqdlog on (a1, a2, z) using challenge e.

By Theorem 1 and Theorem 2 of [DFN06, Section 3], the above protocol is complete,
statistically zero-knowledge, and sound against provers generating up to O(log λ) proofs
under a complexity-leveraging assumption. The authors report at the end of Section 3
that they believe the compiled protocol to be also secure against provers generating an
unbounded number of proofs, and Theorem 5 from Appendix A claims that this belief
holds (still under the same complexity-leveraging assumption) in an idealized model where
the prover is restricted to use S in a black-box way. In the next section, we challenge
this claim by exhibiting an attack on the above compiled protocol. Our attack extends
to any protocol compiled with the DFN transform, showing that, contrary to the beliefs
expressed in [DFN06], protocols compiled with the DFN transform do not enjoy unbounded
soundness.
7 The DFN transform allows for more general choices of security parameter, and larger security parameters
lead to a weaker complexity-leveraging assumption. We focus on the simplest case, but our results apply
to any generalization as well.
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A.3 An Attack Against the Unbounded Soundness of the Compiled Protocol

Our attack proceeds as follows: we construct a malicious prover P ∗ that adaptively sends λ
proofs to the verifier V , learning from V for each proof whether it was accepted or not. The
idea of the attack is very simple: P ∗ will compute almost-honest proofs on true statements.
The only way P ∗ deviates from the behavior of an honest prover is when picking r: instead
of picking it at random from {0, 1}3λ, P ∗ will set it so that the value z = e · w + r will be
larger than k if e exceeds some threshold, and smaller otherwise. Indeed, observe that V
does not recover z over the integers: by decrypting cz, V only recovers z mod k. This value
is equal to z over the integers if and only if z < k. When this holds, the verification will
succeed, as the statement is true and the proof was honestly constructed from w and r.
However, when z ≥ k (a modulo reduction occurs when decrypting cz), the verification
will always fail unless k is a multiple of p′. Note that k has no reason to be a multiple of
p′ in practice; furthermore, when instantiating S with the Paillier encryption scheme (as
advocated in [DFN06]), using a modulus which is a multiple of p′ would completely break
the security of the scheme (as it would leak the factorization of the modulus). Therefore,
by learning whether the proof was accepted or rejected, P ∗ learns whether e is larger than
the chosen threshold. After receiving λ such feedbacks, P ∗ can entirely learn e bit by bit,
which allows him to forge proofs on arbitrary statements with probability 1 afterward. We
formally describe the attack below.

Formal Description of the Attack. Let b0 ← 1 and (p, g1, g2) be a common input
defined as in Peqdlog, and let pk = (ek, ce) be the public key of the compiled protocol. For
i = 1 to λ, given (b0, . . . , bi−1), P ∗ performs the following steps:

– P ∗ picks wi
$← Zp′ and computes (h1,i, h2,i)← (gwi1 , gwi2 ). P ∗ sets (p, g1, g2, h1,i, h2,i) to

be the common input for the ith proof. Note that this corresponds to a true statement,
with witness wi.

– P ∗ sets ri ← k − wi ·
⌈
(
∑i−1

j=0 bj/2
j+1) · p′

⌉
, and computes (a1,i, a2,i) ← (gri1 , g

ri
2 ), a

random encryption cr,i of ri, and cz,i ← cwie cr,i.
– P ∗ sends the proof (a1,i, a2,i, cz,i) to V . If V accepts the proof, P ∗ sets bi ← 0. Otherwise,
P ∗ sets bi ← 1.

Note that when the plaintext zi decrypted from cz,i is indeed equal to e · wi + ri over
the integers (hence, no modulo reduction occured), the proof is always accepted by V , as in
this case it holds that (gzi1 , g

zi
2 ) = (a1,ih

e
1,i, a2,ih

e
2,i). Otherwise, assuming that p′ does not

divide k (i.e., [e ·wi + ri mod k] 6= e ·wi + ri mod p′), the proof is rejected. By construction,
the condition e · wi + ri < k reduces to e <

⌈
(
∑i−1

j=0 bj/2
j+1) · p′

⌉
; therefore, by checking

whether the proof was rejected or accepted, P ∗ learns whether this condition holds. One
easily observes that, by induction, bi is exactly the ith bit of e; given the i− 1 first bits
of e, P ∗ therefore learns the next bit. Hence, after λ such interactions with V , P ∗ learns
all of e. Given e, P ∗ can forge any further proof of his choice, even on false statements,
by proceeding exactly as the simulator for the zero-knowledge property of the compiled
protocol.

A.4 The Flaw in the Proof

For the sake of completeness, we attempt to isolate the flaw in the security proof. The proof
of Theorem 5 is given in an idealized model, where the adversary is restricted to compute
the ciphertext cz as S.Enc(u) · cv; i.e., the adversary only uses the homomorphic properties
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of the scheme in a black-box way (note that this is indeed the case in our attack). This is
formalized by saying that all ciphertexts are computed by sending such a pair (u, v) to an
oracle, which returns the corresponding S.Enc(u) · cv. The proof proceeds by letting the
simulator, which is given the pair (u, v) corresponding to the ciphertext cz (as he simulates
the oracle), check the following equations:

h1 = gv1 , h2 = gv2 , a1 = gu1 , a2 = gu2 .

The proof goes on by distinguishing two cases: when the statement is false, yet the proof
passes the verifier test (but not the simulator test), and when the statement is true, the
proof passes the verifier test, but was not created according to the protocol (and is thus
rejected by the simulator).

When distinguishing these two cases, the authors implicitly assumed that the following
third case never happens: the statement is true and the proof passes the check of the
simulator, yet it is refused by the verifier. Intuitively, if cz was guaranteed to be decrypted
over the integers (i.e. no modulo reduction occurs), this would indeed never happen:
(hi = gvi )∧ (ai = gui ) obviously implies that heiai = ge·v+u

i , for i = 1, 2. However, the value z
decrypted by the verifier is not e ·v+u, but e ·v+u mod k, which is different if e ·v+u > k.
When this is the case, it can be that (hi = gvi ) ∧ (ai = gui ), yet heiai 6= gzi = g

[e·v+u mod k]
i ;

this distinction is missing in the proof; this is exactly the case exploited by our attacker P ∗

in the previous section.
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