
New MILP Modeling: Improved Conditional
Cube Attacks to Keccak-based Constructions

Ling Song1,2,3, Jian Guo2, and Danping Shi1,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, China

2 Nanyang Technological University, Singapore
3 Data Assurance and Communication Research Center,

Chinese Academy of Sciences, China

{songling.alpha,ntu.guo}@gmail.com, shidanping@iie.ac.cn

Abstract. In this paper, we provide a new MILP modeling to find bet-
ter/optimal choices of conditional cubes. These choices generally find
new or improved attacks against the keyed constructions based on Kec-
cak permutations, including Keccak-MAC, KMAC, Kravatte, Keyak,
and Ketje, in terms of attack complexities or the number of attacked
rounds. Specifically, we find new key recovery attacks against KMAC128
and KMAC256, which are NIST standard way of constructing MAC from
SHA-3, reduced to 7 and 9 rounds respectively. For Kravatte, up to 10
out of 14 rounds can be attacked similarly. The best attack against Lake
Keyak with 128-bit keys is improved from 6 to 8 rounds in the nonce
respected setting and 9 rounds of Lake Keyak can be attacked if the
key size is 256. Attack complexity improvements are found generally on
other constructions. To verify the correctness of our attacks, reduced-
variants of the attacks against KMAC are implemented and tested on a PC
practically.

Keywords: Keccak, SHA-3, KMAC, Kravatte, Keyak, Ketje, condi-
tional cube attack, MILP

1 Introduction

The Keccak hash function family [4] is a proposal designed by Bertoni et al. and
submitted to the SHA-3 competition [17] in 2008. It was selected as the final win-
ner of the competition in 2012 , and subsequently standardized as SHA-3 [21] in
2015 by the National Institute of Standards and Technology of the U.S. (NIST).
It supports four digest sizes from {224, 256, 384, 512} to achieve different security
levels. The standard SHA-3 and the original Keccak design differ only in the
way how messages are padded, hence they share almost all security analysis.

Since the Keccak hash function was made public in 2008, it has attracted
intensive cryptanalysis from the research community in many different settings.
Against the three major properties of hash functions: collision, preimage and
second-preimage resistance, the best practical collision/preimage attacks are up

to 6 and 4 out of the total 24 rounds, respectively. By observing the low algebraic
degree of the Sbox in Keccak, Guo et al. [13] proposed the linear structures
for up to 3 rounds of Keccak, where the Sbox can be re-expressed as linear
transformations when the input is restricted to specific affine subspaces. In [19],
Song et al. [19] found the first practical collision against 5-round Keccak-224,
where they used 3-round “connectors” based on the pioneer work by Qiao et
al. [18] and Dinur et al. [9]. There is also a line of research on analyzing the
security of keyed constructions based on Keccak-p— the Keccak permutations
with variable width and rounds.

Message authentication codes are naturally among the first keyed construc-
tions based on Keccak-p, e.g., Keccak-MAC [3] and KMAC [22]. In [10], Dinur
et al. proposed the first cube attack against Keccak-MAC for up to 7-round
key recovery and 8-round forgery attacks. The attack complexities were sub-
sequently improved by Huang et al. using conditional cube attacks [14]. The
authenticated encryption schemes Keyak [6] and Ketje [5] are also based on
Keccak-p and its variants. Similar to the attacks against Keccak-MAC, the
conditional cube attack was applied to Keyak for up to 8 out of 12 rounds [14],
and to Ketje [12, 15] for up to 7 out of 13 rounds.

Following a similar design strategy used for Keccak-MAC, KMAC [22] is the
standard way of constructing MAC from SHA-3 by NIST. The major design dif-
ference is that, the master key is processed as an independent data block before
processing the message in KMAC, while it was processed together with some mes-
sage bits as the first data block in Keccak-MAC. Hence, at the point of inject-
ing the first message block, the internal state for KMAC is totally unknown, while
the most bits of that for Keccak-MAC are known. Similar observations were
discovered and made use of in the so-called “Full-State Keyed Sponge (FKS)” [16]
to improve the efficiency of keyed sponge constructions. It is interesting to note,
despite the great similarity of Keccak-MAC and KMAC, there is no existing
cryptanalysis results against KMAC to the best of our knowledge.

More recently, a new permutation-based construction for building a psue-
dorandom function named Farfalle was proposed by Bertoni et al. [1]. An in-
stance of this construction, named Kravatte, was proposed together based on
Keccak-p. Similar to KMAC, a key dependent variable was added to the internal
state where the message block is injected, hence unknown to attackers. In what
follows, we call these constructions with fully unknown internal states.

Our contributions. Based on the previous works [12,14,15] on conditional cube
attacks against Keccak-based keyed constructions, we provide a new MILP
modeling. While the length of cube tester (the zero-sum property) is determined
entirely by the algebraic degrees of the underlying permutations, the conditional
cube attack could only be improved by finding cube variables with lesser con-
ditions and keep the cube size large enough in the meanwhile. Our new MILP
modeling is able to capture the characteristics of 2 Keccak rounds, as well as
the linear structures used in the first round. This new modeling is generic and im-

2

Table 1: Summary of our attacks on KMAC, Kravatte, and Keccak-MAC with related
works.

Target Key Size Capacity nr Rounds Complexity Reference
KMAC128 128 256 7 276

Section 5
KMAC256 256 512 9 2147

Kravatte
128 - 8 265

Section 6.1256 - 9 2129

320 - 10 2257

Keccak-MAC 128

256/512 7 272 [14]
768 7 275

[15]
1024 6 258.3

1024 6 241 Section 4

poses no unnecessary conditions, hence could be able to find optimal conditional
cube variables whenever possible. This comes with a few key observations:

1. Instead of the initial state, the internal state value just before the first Sbox
layer are used as (conditional) variables by setting the variables in the column
parity kernel. This simple change removes all the unnecessary constraints
brought up by the linear layer of the first Keccak round, and enlarges the
space covered by our search program.

2. We are able to model 2 Keccak rounds together, i.e., Sbox layer of the
first round, linear layer followed by Sbox layer again of the second round.
To do this, we exhaustively list the propagations of variables through the
Sbox so to keep the output of the Sbox linear. To deal with the linear layer
of the second round, we divide the θ operation into two cases depending on
whether there is spreading of variables and model them each individually.
With all these together, we are able to convert all the necessary constraints
in the search of better conditional cubes into the MILP language.

We apply this new MILP modeling to Keccak-based keyed constructions
including Keccak-MAC, KMAC, Kravatte, Keyak, and Ketje, and find gen-
erally new or better results for each of the constructions. Specifically

– For KMAC, due to the fact that it processes the key as an independent block
compared with Keccak-MAC, it should provide better security and hence
becomes harder for attacker. With the same security level of 128 bits, we find
attacks against KMAC128 reduced to 7 rounds, the same number of rounds
found for Keccak-MAC in previous works. For KMAC256 aiming for 256 bits
security, we find attacks up to 9 rounds combining a technique to invert the
last round.

– 8, 9 and 10 rounds could be attacked for Kravatte with 128, 256 and 320
bit keys, as summarized in Table 1.

– General complexity improvements are also found on the attacks against
Keyak and Ketje. Notably, we improve the attack against Lake Keyak

3

Table 2: Summary of our attacks on Keyak, Ketje and comparison with related
works

Target Key Size nr Rounds Complexity Nonce respected Reference

Lake Keyak

128 6 237 Yes [10]
128 8 271.01 Yes Section 6.2
128 8 274 No [14]
256 9 2137.05 Yes

Section 6.2
River Keyak 128 8 277 Yes

Ketje Major
128 7 283 Yes [15]
128 7 271.24 Yes Section 6.2

Ketje Minor
128 7 281 Yes [15]
128 7 273.03 Yes Section 6.2

Ketje SR v1‡ 128 7 2115 Yes [12]
128 7 292 Yes Section 6.2

‡ For Ketje SR, better attacks are found only for v1, while for Ketje Major
and Ketje Minor, better attacks are found for both v1 and v2 but only results
for the latest v2 are listed due to space limit.

with 128-bit keys from 6 to 8 rounds in the nonce respected setting and 9
rounds of Lake Keyak can be attacked if the key size is 256. Details are
summarized in Table 2.

Organization. The rest of the paper is organized as follows. Section 2 gives a
detailed description of Keccak-p based constructions, including Keccak, KMAC,
Kravatte, Keyak and Ketje, followed by an introduction in Section 3 to the
related works. Our new MILP method is presented in Section 4, and applied to
the key recovery attack of KMAC in Section 5. The application of our new model to
Kravatte, Keyak and Ketje is introduced in 6. Finally, Section 7 concludes
the paper. Some technical details of the attacks are postponed to Appendix.

2 Description of KMAC, Kravatte, Keyak and Ketje

2.1 Keccak-p

The Keccak-p permutations are specified with two parameters: the width of the
permutation in bits b and the number of rounds nr. The Keccak-p permutation
with nr rounds and width b is denoted by Keccak-p[b, nr], where nr is any
positive integer and b can be any value of the form 25·2l for l = 0, . . . , 6. The b-bit
state a for the Keccak-p[b, nr] permutation is seen as a three-dimensional array
of bits, namely a[5][5][w] with w = 2l. The expression a[x][y][z] with 0 ≤ x, y < 5,
0 ≤ z < w, denotes the bit with (x, y, z) coordinate. The coordinates are always
considered within modulo 5 for x and y and modulo w for z. The one-dimensional

4

portion a[∗][y][z] is called a row, a[x][∗][z] a column and a[x][y][∗] a lane. A lane
of the state is also denoted by a[x][y] by omitting the z index. At lane level, the
state a[x][y] becomes a 5× 5 array as shown in Figure 1 with x for the column
index and y for the row index.

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

Figure 1: Lane coordinates. Each square stands for a lane in the state.

The Keccak-p[b, nr] permutation iterates an identical round function (up
to a difference of round-dependent constant addition) nr times, each of which
consists of five bijective mappings R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with details as follows.

θ : A[x][y][z]← A[x][y][z] + Σ4
y=0A[x− 1][y][z] + Σ4

y=0A[x + 1][y][z − 1],
ρ : A[x][y][z]← A[x][y][(z + T (x, y))], where T (x, y)s are pre-defined rotation constants,
π : A[y][2x + 3y][z]← A[x][y][z],
χ : A[x][y][z]← A[x][y][z] + ((A[x + 1][y][z] + 1) ·A[x + 2][y][z]),
ι : A[0][0]← A[0][0] + RCir , where RCir is the round constant for the ir-th round.

Here, ‘+’ denotes XOR and ‘·’ denotes logic AND. Expressions in the x and y
coordinates should, as mentioned, be taken in modulo 5 and expressions in the
z coordinate modulo w.

The Keccak-f family of permutations is a specification of the Keccak-p
family to the case of nr = 12+ 2l, that is Keccak-f [b] = Keccak-p[b, 12+2l].
The permutation underlying SHA-3 and KMAC is of width 1600 bits and 24 rounds,
i.e., Keccak-f [1600] = Keccak-p[1600, 24].

2.2 The sponge construction and KMAC

The sponge construction is a framework for constructing hash functions from
permutations, as depicted in Fig. 2. The construction consists of three com-
ponents: an underlying b-bit permutation f , a parameter r called rate and a
padding rule. The capacity is defined as c := b − r. A hash function following
this construction takes in a message M as input and outputs a digest of d bits.
Given the message M , it is first padded and split into r-bit blocks. The b-bit
state is initialized to be all zeros. The sponge construction then proceeds in two
phases. In the absorbing phase, each message block is XORed into the first r

5

bits of the state, followed by application of the permutation f . This process is
repeated until all message blocks are processed. Then, the sponge construction
switches to the squeezing phase, where each iteration returns the first r bits of
the state as output and then applies the permutation f to the current state.
This repeats until all d bits digest are obtained.

Figure 2: Sponge Construction [2].

The Keccak hash function follows the sponge construction and takes Keccak-
f [b] as the underlying permutation. In 2015, Keccak was formally standardized
by NIST as SHA-3 [21], based on which more functions, including cSHAKE128,
cSHAKE256 and KMAC, are derived in the NIST Special Publication 800-185 [22].

KMAC (Keccak Message Authentication Code) is a keyed hash function with
a variable-length output, and can be used as a pseudorandom function. It has
two variants: KMAC128 and KMAC256, based on Keccak[c=256](M, L) and Kec-
cak[c=512](M, L), whose capacities are set to be 256 and 512 bits, respectively.
The input of KMAC consists of the key K, the main message M , the output
length L, the name string N = “KMAC” and the optional customization bit
string S of any length (including 0). Given these inputs, KMAC first processes
a block encoded from the public values N and S. Then it accepts a block of
the padded key, and absorbs message blocks from the third call of permutation
f onwards. Figure 3 demonstrates the procedure of KMAC processing one mes-
sage block. Different from Keccak, KMAC supports variable length output, e.g.,
KMAC128 supports any output of length no less than 256 bits and at least 512
bits for KMAC256.

2.3 The Farfalle construction and Kravatte

Farfalle [1] is a permutation-based construction for building pseudorandom func-
tions, as shown in Figure 4. It takes a key of variable-length and a message se-
quence as input, and outputs a bit stream of desired length. Farfalle has three
parts: a key derivation, a compression layer and an expansion layer, which makes
use of four permutations pb, pc, pd, and pe, and three rolling functions rollc, rolle,
and rollf . First, the key derivation generates b-bit masks from the key using

6

Figure 3: KMAC processing one message block

stands for permutations and symbolizes rolling functions.

Figure 4: The Farfalle construction [1].

pb, rollc, and rollf . These masks derived from the key are used for pre/post-
whitening. Then, the compression layer computes a b-bit accumulator from the
message sequence by the parallel application of pc. Finally, the expansion layer
computes rolling states from the accumulator using rolle, and passes the rolling
states to pe to generate the output. Due to the inherent parallelism of the Farfalle
construction, Farfalle instances can be very efficient.

Proposed in [1], Kravatte is a Farfalle instance based on Keccak-p[b, nr].
Specifically,

pb = pc = Keccak-p[1600, 6],
pd = pe = Keccak-p[1600, 4].

7

rollf is the identity, and rolle = rollc is a linear transformation to the five lanes
a[∗][4] of the Keccak-p state:

a[x][4]← a[x + 1][4], x ∈ 0, 1, 2, 3
a[4][4][z]← a[0][4][z − 7] + a[1][4][z], z > 60
a[4][4][z]← a[0][4][z − 7] + a[1][4][z] + a[1][4][z + 3], z ≤ 60.

Besides, rolli means repeatedly applying the rolling function i times. The sug-
gested key size of Kravatte is less than or equal to 320 bits.

2.4 Keyak and Ketje

Figure 5: (a) Keyak and (b) Ketje

Keyak and Ketje [5, 6] are two Keccak-p based authenticated encryp-
tion schemes, both of which are CAESAR candidates. Figure 5 (a) shows the
scheme of Keyak processing one message block. Keyak has five instances. In
this paper, we focus on River Keyak and Lake Keyak which are based on
Keccak-p[800, 12] and Keccak-p[1600, 12] respectively. The capacity for both
versions is 256. It is noted that any attack on Lake Keyak is also applicable to
the rest three instances.

Figure 5 (b) displays the scheme of Ketje processing message blocks. It em-
ploys a twisted version of Keccak-p, denoted by Keccak-p⋆, where Keccak-p⋆

=π◦Keccak-p ◦π−1. Specifically, the underlying permutations f0 =Keccak-
p[b, 12] and f1 =Keccak-p[b, 1]. Ketje has four instances which are:

Name b ρ
Ketje JR 200 16
Ketje SR 400 32

Ketje Minor 800 128
Ketje Major 1600 256

In the old version of Ketje, Keccak-p, instead of Keccak-p⋆, is used.

8

2.5 Notations

In this paper, r and c in bold denote the rate and capacity for the sponge
construction. b in bold stands for the width in bits of the permutation. The first
three mappings θ, π, ρ of the round function of Keccak-p are linear, and we
denote their composition by λ , π ◦ρ◦θ. The nonlinear layer χ applying to each
row is called an Sbox. Unless otherwise stated, only one-block padded messages
are considered in our attacks for KMAC. The message block, whether it is a r-bit
one for KMAC or a b-bit one for Kravatte, is denoted by a[x][y][z], 0 ≤ x, y < 5,
0 ≤ z < 64, and let b = λ(a), c = χ(b).

3 Related Works

3.1 Cube attacks

The cube attack, a variant of higher order differential attacks, was introduced
by Dinur and Shamir [11] in 2009. It considers the output bit of a cipher as an
unknown Boolean polynomial f(k0, ..., kn−1, v0, ..., vm−1) where k0, ..., kn−1 are
secret input variables and v0, ..., vm−1 are public input variables. Given a mono-
mial tI , the multiplication of all variables from a set I, any Boolean polynomial
f can be written as the sum of terms which are supersets of tI and terms that
are not divisible by tI :

f(k0, ..., kn−1, v0, ..., vm−1) = tI · pSI
+ q(k0, ..., kn−1, v0, ..., vm−1),

where pSI is called the superpoly of I in f . The basic idea of cube attacks and
cube testers is that the sum of the outputs over the cube CI which contains all
possible bit vectors for variables in I is exactly pSI , while this is a random func-
tion for a random polynomial. By carefully selecting I, cube attacks aim to find
a low-degree polynomial pSI in secret bits, and cube testers aim to distinguish
pSI

from a random function.
In [10], Dinur et al. applied cube attacks and cube testers to the keyed vari-

ants of Keccak, including Keccak-MAC, Keyak and a Keccak stream ci-
pher.

3.2 Conditional cube attacks

In [14], Huang et al. developed conditional cube testers for keyed Keccak sponge
function, where the propagation of certain cube variables are controlled in the
first few rounds if some conditions are satisfied. There are two major advantages
of conditional cube testers over ordinary cube testers. One is to potentially reduce
the algebraic degree of the permutation under the conditions, and hence the
required cube dimension to carry out the attack can be reduced accordingly.
The other advantage of conditional cubes is that, the conditions, which control
how the conditional cube variables propagate in the first few rounds, are related
to the initial state values, which may contain the key information. By observing
the cube sum of the final output, one may recover the key.

9

To proceed further, we provide the definition of conditional cube variables
and a theorem from [14] below.

Definition 1 ([14]). Cube variables that have propagation controlled in the first
round and are not multiplied with each other in the second round of Keccak
are called conditional cube variables. Cube variables that are not multiplied
with each other in the first round and are not multiplied with any conditional
cube variable in the second round are called ordinary cube variables.

Theorem 1 ([14]). For (n + 2)-round Keccak sponge function (n > 0),
if there are p (0 ≤ p < 2n + 1) conditional cube variables v0, ..., vp−1, and
q = 2n+1−2p+1 ordinary cube variables, u0, ..., uq−1 (If q = 0, we set p = 2n+1),
then the term v0v1...vp−1u0...uq−1 will not appear in the output polynomials of
(n + 2)-round Keccak sponge function.

Using conditional cube testers, better key recovery attacks were obtained for
Keccak-MAC and Keyak in [14]. Later, the attacks on Keccak-MAC were
further improved with better conditional cubes found by an MILP medel in [15].

In previous works [14,15], the number of conditional cube variables is chosen
to be 1, i.e., p = 1. Then, over a conditional cube with dimension 2n, the cube
sum is zero for (n + 1)-round Keccak sponge function if the conditions are
satisfied. Conditional cubes with more conditional cube variables may exist, but
they are not so helpful. The reasons are as follows. Even though a greater p
reduces the required dimension, it also reduces the largest dimension available
due to an increasing number of conditions. On the other hand, more conditions
do not improve the complexity of the key recovery attack. Therefore, we also set
p = 1 in our attacks to be presented in Section 5 and 6.

3.3 Linear structures

In the cube attacks of keyed variants of Keccak [10], Dinur et al. proposed a
method for linearizing the first round of Keccak-f . Inspired by this method,
Guo et al. [13] developed a technique named linear structure which allows lin-
earization of Keccak-f for up to 3 rounds. Based on the linear structures, a
series of new zero-sum distinguishers of Keccak-f were proposed, as well as
several new preimage attacks against Keccak.

Let a[x, y], x = 0, 2, y = 0, 1, 2, 3 be variables and a[x, 4] =
⊕3

y=0 a[x, y]⊕αx

with any constant αx so that variables in each column sum to a constant. The
core idea is to reduce the diffusion effect of θ. With all columns sum to constants,
the variables do not propagate through θ. Note θ is the only mapping from λ with
diffusion property, so λ does not diffuse the variables under this setting. Figure 6
shows how the variables influence the internal state under the transformation of
Keccak-f round function R = ι ◦ χ ◦ π ◦ ρ ◦ θ. All bits of the lanes with orange
slashes have algebraic degree 1, those lanes in orange have algebraic degree at
most 1 (meaning it is either a variable of degree 1 or a constant), and the other
lanes are all constants where gray, light gray and white bits stand for values 1, 0,

10

and arbitrary constants, respectively. Note the algebraic degrees remain through
the linear operations θ, ρ, π, and ι. The only non-linear operation is the χ which
increases the algebraic degree through the AND operation of two neighboring
bits. As shown in the figure, all variables before χ are not adjacent to each other,
which makes sure that the algebraic degree of the state bits remains at most 1
after one round function R.

Moreover, bit 1 (0) on the left (right) of the variable helps to restrict the dif-
fusion, while an unknown constant diffuses the variable in an uncertain way, as
denoted by orange lanes where the bits may be variables or constants. This struc-
ture has degrees of freedom 512. Also, it can be regarded as a cube of dimension
512. Inspired by this linear structure, the diffusion effect of variables through
χ are carefully studied in the next section, and a new MILP model is provided
for searching conditional cube attacks for Keccak-p based constructions, es-
pecially finding conditional cubes with minimal bit conditions for constructions
with fully unknown internal state.

0,4 0,4

0,3 0,3

0,2 0,2

0,1 0,1

0,0 0,0

1,4 1,4

1,3 1,3

1,2 1,2

1,1 1,1

1,0 1,0

2,4 2,4

2,3 2,3

2,2 2,2

2,1 2,1

2,0 2,0

3,4 3,4

3,3 3,3

3,2 3,2

3,1 3,1

3,0 3,0

4,4 4,4

4,3 4,3

4,2 4,2

4,1 4,1

4,0 4,0

θ π ◦ ρ

0,0 0,0

0,1 0,1

0,2 0,2

0,3 0,3

0,4 0,41,0 1,0

1,1 1,1

1,2 1,2

1,3 1,3

1,4 1,42,0 2,0

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,43,0 3,0

3,1 3,1

3,2 3,2

3,3 3,3

3,4 3,44,0 4,0

4,1 4,1

4,2 4,2

4,3 4,3

4,4 4,4

ι ◦ χ

Figure 6: 1-round linear structure of Keccak-p with the degrees of freedom up to
512, with orange bits of degree at most 1, and gray, light gray and white bits being
values 1, 0, and arbitrary unknown constants, respectively.

4 New MILP-Based Method for Finding Conditional
Cubes

In this section, techniques are introduced for searching conditional cubes for
Keccak-p based constructions, especially those with fully unknown internal
state. Using these techniques, the internal state is recovered first and the key
can be calculated from the internal state. Taking KMAC as an example, we first
give a simple 1-round linear structure and list several observations upon which
a new MILP model is introduced for finding (optimal) conditional cubes for
Keccak-p based constructions (with fully unknown internal state).

4.1 1-Round linear structure

Suppose the internal state before processing messages is denoted by k[x][y],
0 ≤ x, y < 5. For convenience, the r-bit message block is denoted as a[x][y],
0 ≤ x, y < 5, where the last c bits are set to 0. Figure 7 provides a 1-round linear

11

structure of KMAC128 and shows the transformation of the internal state under
the first round function R after absorbing the message block. Following the same
notations as in Section 3.3, lanes with orange slashes denote variables, orange
lanes have algebraic degree at most 1, and bits in white lanes are constants.
Here, the first four lanes of the first and the third columns of a[x][y] are set
to be variables such that the sum

⊕3
y=0 a[x, y] equals to certain constants for

x = 0, 2 . The capacity of KMAC128 consists of four lanes, so these lanes can not
be chosen as variables. As can be seen from Figure 7, the output of the first
round function is linear since there are no adjacent variables at the input of χ.
This 1-round linear structure of KMAC128 in Figure 7 has a degree of freedom up
to 384. A similar 1-round linear structure can also be constructed for KMAC256.
These 1-round linear structures have large degrees of freedom, which are helpful
for constructing conditional cubes upon them.

The major difference of this linear structure with those proposed in [13] is
that, all the constants before χ of the first round are unknown due to unknown
initial states. Hence, it is impossible to determine how the variables are prop-
agated due to the logic AND, where ANDing with 1 allows propagation, and
no propagation otherwise. This makes it hard to track the positions of all vari-
ables in the second round deterministically, hence increases the difficulty to find
better (lesser conditions and larger cube dimensions) conditional cube variables
fulfilling the condition that there is no multiplication (a.k.a. AND operation)
with any other variables in the second round. This is the key difficulty raised
from fully unknown states, and we are to solve it in our new MILP modeling in
the next subsection.

0,4 0,4

0,3 0,3

0,2 0,2

0,1 0,1

0,0 0,0

1,4 1,4

1,3 1,3

1,2 1,2

1,1 1,1

1,0 1,0

2,4 2,4

2,3 2,3

2,2 2,2

2,1 2,1

2,0 2,0

3,4 3,4

3,3 3,3

3,2 3,2

3,1 3,1

3,0 3,0

4,4 4,4

4,3 4,3

4,2 4,2

4,1 4,1

4,0 4,0

θ π ◦ ρ

0,0 0,0

0,1 0,1

0,2 0,2

0,3 0,3

0,4 0,41,0 1,0

1,1 1,1

1,2 1,2

1,3 1,3

1,4 1,42,0 2,0

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,43,0 3,0

3,1 3,1

3,2 3,2

3,3 3,3

3,4 3,44,0 4,0

4,1 4,1

4,2 4,2

4,3 4,3

4,4 4,4

ι ◦ χ

Figure 7: 1-round linear structure of KMAC128 with the degrees of freedom up to 384,
with orange bits of degree at most 1, light gray and white bits being values 0, and
arbitrary constants, respectively

From the 1-round linear structure, it is learnt that the algebraic degree of the
internal state will remain as 1 without any condition. To construct a conditional
cube, at least one variable should be selected such that it is not multiplied with
any other variables in the second round, while there is no such restriction for
the rest variables. Specifically, if an input bit of the χ in the second round
contains the conditional variable, its two neighbouring bits should be constants.
According to the property of Keccak-p (specifically the θ), each neighbouring
bit is calculated from 11 output bits of the first round. These 11 bits may be

12

variables or constants, depending on the actual constant values involved in the
χ of the first round. In the next subsection, this issue is settled by formalizing
the diffusion effect of variables through χ.

Given a 2n-dimensional conditional cube with one conditional cube variable
and t bit conditions, it requires a time complexity of 22n+t to recover t bits of
the internal state for an (n + 1)-round Keccak-p based construction (with fully
unknown internal state), hence the overall complexity to recover the internal
state is around ⌈ |b|

t ⌉ · 2
2n+t. Once the internal state is recovered, the key can

be computed directly. It is inferred that the smaller t is, the lower the time
complexity would be. So one aim of our new MILP model is to find conditional
cubes with minimal bit conditions, meanwhile keeping the cube dimension large
enough.

4.2 Modeling the non-linear layer χ

Mixed integer linear programming (MILP) is a general mathematical tool, which
takes an objective function and a system of linear inequalities with respect to
real numbers as input, and aims to search for an optimal solution which not only
satisfies all the inequalities but also minimizes/maximizes the objective function.

The first observation before giving the MILP model is that, although one
input bit to the first χ is calculated from 11 bits of the initial state, it is unnec-
essary for us to start from the initial state, as there is a bijective relation (the λ)
between it and the state just before the χ. In the meanwhile, the 1-round linear
structure could be started from the middle as well. Hence, instead of trying to
derive everything from the very beginning, we start from the state just before
χ. This simple yet crucial observation will reduce the complexity of the problem
significantly, as will be seen later.

In order to describe our MILP model, more notations are needed here. Recall
that the message block is denoted by a, and b = λ(a), and k stands for the
secret internal state. Let k′ = λ(k). Thus, b⊕ k′ is the input of the first χ and c
indicates the output. The tuple (x, y, z) denotes the coordinates of one bit in the
state. Additional notations A, B, C and V are used for modeling the search for
cubes. Specifically, A[x][y][z] (B[x][y][z] or C[x][y][z]) is 1 if a[x][y][z] (b[x][y][z]
or c[x][y][z]) is a variable and 0 otherwise, while V [x][y][z] = 1 indicates a bit
condition that b[x][y][z]+k′[x][y][z] should be fixed. The number of bit conditions
is denoted by t.

Note, we are to model two rounds of χ. Without losing any degree of freedom,
we do it in two steps by modeling the first χ without imposing any additional
condition, and the second χ using the output from our modeling of the first χ,
i.e., nested modeling. This may cost higher search complexity compared with
previous works at first glance, we will see the effectiveness and power later. Due
to the generality of our modeling, we could find optimal solutions whenever
possible.

Modeling the first χ. Although χ is the only non-linear operation of Keccak-
p, modeling it into inequalities is non-trivial. Let us look at the computation

13

of one bit through χ. According to the algebraic expression of χ, c[x][y][z] =
b[x][y][z] + (1 + b[x + 1][y][z]) · b[x + 2][y][z]. For a conditional cube, the output
bits of the first round should be linear, which can be guaranteed by the constraint
that variables do not appear in adjacent input bits, namely A[x][y][z] + A[x +
1][y][z] ≤ 1. However, the value of input constants influence the diffusion of
variables through χ and further influence the second round, as shown in Figure 6.
However, as we find out, the diffusion patterns of variables through χ fall in a
smaller than expected set as listed in Table 3, which makes the modeling of all
cases possible without imposing any additional conditions.

Table 3: Diffusion of variables through χ. Symbol ‘*’ denotes arbitrary value.
B[x][y][z] B[x + 1][y][z] B[x + 2][y][z] V [x + 1][y][z] V [x + 2][y][z] C[x][y][z]

0 0 0 * * 0
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 0 1 0
1 0 0 * * 1
1 0 1 0 0 1
1 0 1 1 0 1

Table 4: Inequalities modeling the non-linear operation χ in the first round

B[x][y][z] − B[x + 1][y][z] − B[x + 2][y][z] − V [x + 1][y][z] − V [x + 2][y][z] − C[x][y][z] ≥ −2
−B[x][y][z] − B[x + 1][y][z] + V [x + 2][y][z] + C[x][y][z] ≥ 0

−B[x + 2][y][z] − V [x + 2][y][z] ≥ −1
B[x][y][z] + B[x + 1][y][z] + B[x + 2][y][z] − C[x][y][z] ≥ 0

−B[x][y][z] + C[x][y][z] ≥ 0
−B[x + 1][y][z] − B[x + 2][y][z] + V [x + 1][y][z] + V [x + 2][y][z] + C[x][y][z] ≥ 0

−B[x][y][z] − B[x + 1][y][z] ≥ −1

Now all patterns of the diffusion effect of χ are included in Table 3, and
forms a finite set of discrete points in R6. To generate inequalities describing
this set, as suggested by Sun et al. in [20], we first generate its convex hull. The
convex hull of a set Q of discrete points in Rn is the smallest convex set that
contains Q and can be described as a set of inequalities. The convex hull of a
set in Rn can be generated by the inequality_generator() function in SageMath
system. Usually, the number of inequalities returned by inequality_generator() is
very large. However, a reduced set of inequalities can be selected using a greedy

14

algorithm from [20]. The reduced set of inequalities describing the diffusion effect
of χ is given in Table 4.

Modeling the second χ. The conditional cube requires that conditional cube
variables do not multiply with any other variables in the second round, which
means their neighbouring bits Si before the second χ should be constants. Ac-
cording to the round function R, each neighbouring bit Si is calculated from 11
bits of c[x][y][z]. There are two cases depending on whether there is any variable
among the 11 bits:

Case 1 For these 11 bits, none of them are variables, i.e., C[x][y][z] = 0;
Case 2 There are variables among the 11 bits and the XOR of these 11 bits

form a linear equation which consumes 1 bit degree of freedom.

We introduce one more dummy variable ei for Si to indicate which case hap-
pens, where ei = 0 for Case 1 and ei = 1 for Case 2. Case 1 is simple, while for
Case 2 one needs to pay attention to “uncertain propagations” or orange lanes in
Figure 7 since no exact information can be derived from a linear equation con-
taining variables with uncertain coefficients. So once Case 2 happens, additional
conditions should be imposed to avoid uncertain propagation.

Similarly, all possible patterns of ei and its related bits can be enumerated, see
Table 5 for details and the set of inequalities are provided in Table 6. Specifically,
if c[x][y][z] is required in calculating Si, the inequalities in Table 6 are added to
the MILP model.

Table 5: Influence of conditional cube variables of the second χ. Symbol ‘*’ denotes
arbitrary value.

ei B[x][y][z] B[x + 1][y][z] B[x + 2][y][z] V [x + 1][y][z] V [x + 2][y][z]
0 * * * * *
1 0 0 0 * *
1 1 0 0 * *
1 1 0 1 1 0
1 0 0 1 1 0
1 0 1 0 0 1

4.3 Modeling the search for conditional cubes.

After introducing techniques for modeling χ, the following constraints are gen-
erated for searching conditional cubes.

Constraints for θ in the first round: Following the 1-round linear struc-
ture, the variables in each column of the message block, a[x][y][z], 0 ≤ y < 5

15

Table 6: Inequalities modeling the non-linear operation χ in the second round

−ei − B[x + 1][y][z] − −B[x + 2][y][z] ≥ −2
−ei + B[x][y][z] − B[x + 1][y][z] + V [x + 2][y][z] ≥ −1

−ei − B[x + 2][y][z] + V [x + 1][y][z] ≥ −1
−ei − B[x + 1][y][z] − V [x + 1][y][z] ≥ −2
−ei − B[x + 2][y][z] − V [x + 2][y][z] ≥ −2

−ei − B[x][y][z] − B[x + 1][y][z] ≥ −2

sum to constants such that θ acts like identity w.r.t. the variables. That is,
A[x][y][z] = B[x][y][z] in our search program, 0 ≤ x, y < 5, 0 ≤ z < 64. As
similarly done in [15], a dummy variable D[x][z] is introduced for each column,
and inequalities for each column are as follows.

D[x][z] ≥ A[x][0][z], D[x][z] ≥ A[x][1][z],
D[x][z] ≥ A[x][2][z], D[x][z] ≥ A[x][3][z], D[x][z] ≥ A[x][4][z],

A[x][0][z] + A[x][1][z] + A[x][2][z] + A[x][3][z] + A[x][4][z] ≥ 2 · D[x][z]. (1)

Constrains for χ of the first round:

1. If B[x][y][z] indicates a conditional cube variable, then the neighbouring bits
should be fixed constants such that it do not diffuse to other positions. It
requires

B[x − 1][y][z] = 0, B[x + 1][y][z] = 0,

V [x − 1][y][z] = 1, V [x + 1][y][z] = 1. (2)

Additionally, B[x− 2][y][z] = 0 should be satisfied to avoid the conditional
variable from diffusing to C[x− 2][y][z].

2. If B[x][y][z] does not indicate a conditional cube variable, then the inequali-
ties in Table 4 should hold. Note that the inequalities in Table 4 also exclude
the cases where variables appear in two adjacent positions.

Constraints for χ of the second round: In the second round, only con-
straints for conditional cube variables are needed. Given the positions of condi-
tional cube variables before the χ of the second round, a set of c[x][y][z] can be
determined for calculating each neighbouring bit Si through the linear layer λ.
Suppose T is the set of c[x][y][z] for calculating all neighbouring bits Si. Then
impose inequalities in Table 5 to (ei, B[x][y][z], B[x+1][y][z], B[x+2][y][z], V [x+
1][y][z], V [x + 2][y][z]) once c[x][y][z] ∈ T :

For c[x][y][z] ∈ T, apply inequalities in Table 5. (3)

16

Constraint for the dimension: If a 2n-dimensional conditional cube is
desired, then set ∑

A[x][y][z] −
∑

D[x][z] −
∑

ei = 2n, (4)

where
∑

D[x][z] +
∑

ei is the number of consumed degrees of freedom.
Objective: The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (5)

Besides, there may exist additional constraint. For example, the last c bits
and some padded bits cannot be variables. When all constraints are generated,
an MILP solver is invoked to find a solution that minimizes the objective.

Extracting the bit conditions from the solution. In the model, V [x][y][z] =
1 indicates a bit condition. However, whether the input bit k′[x][y][z] + b[x][y][z]
should be 0 or 1 is not explicitly displayed. To this, we use Algorithm 1 to
determine the constants. In fact, inequalities in Table 4 confine the solution of
(B[x][y][z], B[x + 1][y][z], B[x + 2][y][z], V [x + 1][y][z], V [x + 2][y][z], C[x][y][z])
to the patterns in Table 3. There are three patterns where V [x + 1][y][z] or
V [x + 2][y][z] is 1, but the third one is a shifted version of the second one.
Therefore, we just need to determine whether it follows the first one or not, as
in Algorithm 1. If it follows the first pattern, the constant is 1, otherwise, the
constant is 0.

Algorithm 1: Extracting the bit conditions from the solution.
Input: A solution where all bits of B, V and C are assigned.
Output: Bit conditions
con = ∅;
for All V [x][y][z] do

if V [x][y][z] = 1 then
i← (B[x− 1][y][z], B[x][y][z], B[x + 1][y][z], 1, V [x + 1][y][z], C[x−
1][y][z]);
if i = (0, 0, 1, 1, 0, 0) then

con← b[x][y][z] + k[x][y][z] + 1;
else

con← b[x][y][z] + k[x][y][z];
end

end
end
return con;

4.4 Comparison with the existing MILP model

Very recently, Li et al. proposed an MILP model for searching conditional cubes [15]
which sets every b[x][y][z] to a constant if it relates to the conditional variable.

17

In our model, we incorporate the full diffusion effect of χ and hence consider a
broader class of conditional cubes. In particular, b[x][y][z] can be a variable even
if it relates to the conditional variable. As a result, more conditional cubes can
be found with a greater range of dimension. As demonstrated in Table 7, better
conditional cubes are found using our model. In particular, given the dimension,
our model returns conditional cubes with much less bit conditions. For example,
the 32-dimensional conditional cube for Keccak-MAC-512 in [15] requires 24 bit
conditions involving the key, while using our model, the number of bit conditions
can be only 4 (n = 5 and t = 4), which reduces the time complexity of attacking
6-round Keccak-MAC-512 from 258.3 [15] to ⌈ |k|

t ⌉ · 2
2n+t = ⌈ 128

4 ⌉ · 2
25+4 = 241.

The largest cube of Keccak-MAC-512 found by our method has dimension 54,
which is provided in Table 10.

Table 7: Comparison with the previous MILP model on Keccak-MAC with the
conditional cube placed at (2, 0, 0) and (2, 1, 0). The number of bit conditions only
takes those involving key bits into account.

Variant Dimension #Conditions Reference

Keccak-MAC-384
65 8 [15]
97 8

This
65 2

Keccak-MAC-512

32 24 [15]
47 24

This32 4
54 42

5 Application to KMAC

In this section, techniques described in Section 4 are used to find conditional
cubes for KMAC, based on which key recovery attacks can be mounted on 7-round
KMAC128 and 9-round KMAC256 respectively.

5.1 Cube attack on KMAC128

For KMAC128, the capacity is 256, which covers only four lanes. By setting two
bits in a[x][y][z], 0 ≤ y < 4 as the conditional cube variables4, our MILP model
could find large conditional cubes with 4 bit conditions which are least possible
conditions. To make the attack clear, a toy cube of KMAC is introduced first, as
4 There is an exception that no conditional cube can be found for conditional vari-

ables chosen from lanes (1, 0), (1, 1). The reason is that Constraint 3 involves the
conditional cube variables, leading the model infeasible.

18

shown in Table 8. This cube has dimension 16, and a[0][0][0], a[0][1][0] are chosen
to be the conditional cube variable. The 4 bit conditions can be derived directly
from the positions of the conditional cube variable since only the conditional cube
variable contributes to bit conditions in this case. Otherwise, Algorithm 1 is used
to deduce bit conditions. Note that, b = λ(a) and the relation between a[x][y][z]
and b[x][y][z] is not expressed explicitly in the bit conditions. The rest 15 ordinary
cube variables can be extracted from A[x][y][z], 0 ≤ x, y < 5, 0 ≤ z < 64 which
are represented as a 5×5 array of lanes and labeled as ‘Positions of cube variables’
in the table. In the remainder of the paper, the bit conditions are omitted if they
come only from the conditional cube variable.

Table 8: A toy cube of KMAC. Positions of cube variables are derived from a 5×5 array
of lanes in hexadecimal using little-endian format where ‘0’ is replaced with ‘-’.

Positions of cube variables
4--8--168D-2---1|----------------|--8------------1|----------------|----------------
66-8--16C3-28-19|----------------|1-C-8----1-----1|----------------|----------------
26----1-4F4-8-18|----------------|1-4-8----1------|----------------|----------------
24-----2--4---1-	----------------	----------------	----------------	----------------

The conditional cube variable: a[0][0][0] = a[0][1][0] = v0

Ordinary cube variables

a[0][1][4] = v1, a[0][1][24] = a[0][2][24] = v6, a[0][1][61] = v11,

a[0][2][4] = v2, a[0][1][30] = a[0][2][30] = v7, a[0][2][61] = v12,

a[0][3][4] = v1 + v2, a[0][1][57] = a[0][2][57] = v8, a[0][3][61] = v11 + v12,

a[0][1][15] = a[0][2][15] = v3, a[0][1][58] = v9, a[0][0][62] = a[0][1][62] = v13,

a[0][0][17] = a[0][1][17] = v4, a[0][2][58] = v10, a[2][0][0] = a[2][1][0] = v14,

a[0][2][22] = a[0][3][22] = v5, a[0][3][58] = v9 + v10, a[2][1][24] = a[2][2][24] = v15.

Conditions
b[0][3][36] = k

′[0][3][36] + 1, b[2][3][36] = k
′[2][3][36],

b[4][0][0] = k
′[4][0][0] + 1, b[1][0][0] = k

′[1][0][0].

For KMAC128, 64-dimensional conditional cubes are enough for attacking 7
rounds of KMAC128. In the following, multiple 64-dimensional conditional cubes
are used for the recovery of the internal state.

1. Recover t bits of the internal state. Given a 64-dimensional conditional
cube with t bit conditions where t = 4 for KMAC128, the t bits of the secret
internal state k′[x][y][z] involving in the conditions are guessed and then the
constant part of the messages is chosen such that the t bit conditions are
satisfied. The right guess is detected by assigning all possible values to each
cube variable and checking the sum of all outputs under the guess. If the cube
sum is zero, then the corresponding guess is the right one with overwhelming
probability and the t bits of the secret internal state are recovered. The time
complexity for recovering the t bits of the internal state is 264+t = 268.

19

2. Recover t lanes of the internal state. Due to the z-axis translation in-
variance of Keccak-f , a conditional cube is still a conditional cube after
being rotated along the z-axis. A cube and all its rotations are z-axis equiv-
alent. However, for KMAC the padding rule may break the z-axis equivalence.
To avoid it from happening, the last lane of the r-bit message block is set to
be inactive. Therefore, by rotating the cube bit by bit, t lanes of the internal
state would be recovered in 26 · 268 = 274 calls of 7-round KMAC128.

3. Recover the whole internal state. Ten z-axis equivalent conditional
cubes are used to recover the full internal state. The details of these cubes are
given in Table 11 and 12, and the order of the lanes recovered are displayed
in Figure 8. The total time complexity of recovering the whole internal state
is 26 · 264(1 · 24 + 3 · 23 + 6 · 22) = 276.

1 1
1 1

1 1
1 1

2

2 2

1 1
1 1

2

2 2

3
3 3

1 1
1 1

2

2 2

3
3 3 4
4 4

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

7 7 1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

7 7

8 8

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

7 7

8 8

9 9

1 1
1 1

2

2 2

3
3 2 4
4 2 5

5
6 6

7 7

8 8

9 9

10 10

Figure 8: The lanes recovered using ten z-axis equivalent conditional cubes. The un-
derline means bits of these lanes are involved in conditions but they are already known.

5.2 Cube attack on KMAC256

KMAC256 has a capacity of 512 which is equivalent to 8 lanes. Including the last
lane of the message block where certain bits are padded, there are 9 lanes which
can not contain variables. Apart from this, the cube search for KMAC256 remains
as that for KMAC128. Our MILP model could find many 128-dimensional condi-
tional cubes which can be used to attack 8 rounds of KMAC256. Since the output
length of KMAC256 can be more than 320 bits, the first 5 lanes of the output
can be reversed through the χ of the last round. This immediately increases the
attacked rounds by one, as this inversion covers the χ of the last round, while
λ does not increase algebraic degree. As a result, 9 rounds of KMAC256 can be
attacked.

Choice of the conditional cube variable. By setting two bits in a[x][y][z],
0 ≤ y < 3 as the conditional cube variables, the obtained cubes have more than
30 bit conditions. The increase of bit conditions is caused by the increase of

20

capacity. In order to reduce the number of bit conditions, we place the conditional
cube variable in a 2-round column parity kernel (CP-kernel), and thus it does
not diffuse even in the second round, leading to a small Constraint 3. As studied
in [8], the minimal Hamming weight of a 2-round CP-kernel differential trail
of Keccak-f [1600] is 6. Among all the 2-round CP-kernel differential trails,
only those which have no difference in the last 9 lanes can be applied to the
conditional cube search of KMAC256. Fortunately, there is one (only one) 2-round
CP-kernel differential trail satisfying this requirement. The active bit positions
of the 2-round CP-kernel differential trail are

[(0, 0, 0), (0, 1, 0), (1, 0, 63), (1, 2, 63), (2, 1, 30), (2, 2, 30)].

By setting the conditional cube variable to these six bit positions, our MILP
model returns 128-dimensional cubes with 12 bit conditions, with which 11 lanes
(one lane overlapped) of the internal state can be recovered. With these 11 lanes
known, cubes with the conditional cube variable placed in a column of a[x][y][z],
0 ≤ y < 3 can then be exploited to recover the rest lanes.

To recover the whole internal state, three z-axis equivalent conditional cubes
as shown in Table 13 are used and lanes recovered in each cube are displayed in
Figure 9. As can be learned from the figure, the time complexity of the internal
state recovery is 26 · 2128(212 + 211 + 23) ≈ 2147 calls of 9-round KMAC256.

1 11

1 1
1 11 1

1 1
1
1

1

1
1 1

1
1

1 1

1

2
2

2

2

2

2
2

2

2

2 2

1
1

1

1
1 1

1
1

1 1

1

2
2

2

2

2

2
2

2

2

2 2
3

3
3

Figure 9: The lanes recovered using three z-axis equivalent conditional cubes. The
underline means bits of these lanes are involved in conditions but they are already
known.

5.3 Experimental verification

Since the attacks on both variants of KMAC are impractical with current compu-
tation power, the correctness of the attacks is verified on conditional cubes with
small dimensions. We do no change to the attacks except reducing the number
of rounds for the cube tester in the middle, so the attack complexity reduces
to a practical level. We implement two conditional cube attacks5: one based the
16-dimensional toy cube in Table 8 for fast verification, and the other based on a
32-dimensional cube for attacking 7-round KMAC256 (or 6-round KMAC128). The
correctness of our attacks are confirmed by both experiments.
5 The source codes will available online soon.

21

6 Other Applications

In this section, our new model are applied to other Keccak-p based construc-
tions, including Kravatte, Keyak and Ketje.

6.1 Application to Kravatte

Cube attacks on Kravatte can be done by changing one of the input message
blocks while keeping the rest the same. In Kravatte, b-bit message blocks are
XORed with a b-bit mask before being processed by the underlying permutation.
The b-bit masks, derived from the key, are fully unknown. Considering the mask
as the internal state, the attacks in Section 5 can be directly applied to Kra-
vatte. That is, key recovery attacks can be achieved on 7/8-round Kravatte
with 128/256-bit keys. It is interesting to note, although there is an additional
layer of mask added as post-whitening key, it does not change the effectiveness of
the attack since this post-whitening key can be viewed as an unknown constant
added to the last round and it does not affect the algebraic degree of the cube
tester.

Moreover, Kravatte imposes less constraints on cube variables since full-
state message blocks are used. Even though the message blocks are XORed with
the mask before applying θ of the first round, we could choose the values of
the message block before χ, that is b[x][y][z]. In this way, the diffusion effect of
θ in the first round is skipped. By setting two bits in b[x][y][z], 0 ≤ y < 5 as
the conditional cube variable, sufficiently many 256/512-dimensional cubes are
obtained with four bit conditions. Examples of 256/512-dimensional conditional
cubes is given in Table 9.

Inversion the last round. First, we consider the case that the output contains
as lest one row of lanes of the state but not the whole state. If the last round
can be reversed, then one more round can be attacked with the same cube, as
the attacks of KMAC256 in Section 5. To make an inversion of the last round
possible, the post-whitening key is needed. However, to detect the right guess of
the internal state bits involved in the conditions, an inversion of a few Sboxes are
enough. Suppose the post whitening key related to u Sboxes are guessed. Namely,
5u bits are guessed. For each output of the cube, an additional inversion of the u
Sboxes is processed under each value of the 5u post-whitening key bits and check
the cube sum on the 5u-bit inputs to the u Sboxes. If there are t bit conditions,
then 5u > t should hold to make the cube sum distinguishable. Briefly, the t-bit
internal state and the 5u-bit post-whitening key are recovered as follows.

1. Recover the first t bits of the internal state.
(a) Guess the t-bit internal state;

i. Construct a conditional cube such that the t bit conditions are sat-
isfied.

ii. Get the outputs of this cube and keep u sets of 5-bit outputs related
to the u Sboxes such that each element in the sets appears odd times
in the outputs (discard those appear even times).

22

iii. For each of the u Sboxes, guess the corresponding 5-bit post-whitening
key and check the cube sum of the inputs of the Sbox. Save the guess
such that the cube sum is zero. On average, there is one candidate
left for each Sbox.

(b) For each t-bit guess, there remains one 5u-bit post-whitening key on
average. Using additional 2t more conditional cubes by changing the
constant part, the unique value for the t + 5u bits can be recovered.

2. Recover the rest b− t bits of the internal state.
– The 5u-bit post-whitening key is known and now the u Sboxes of the

last round can be reversed. which make it possible to recover the rest
b − t bits of the internal state without guessing additional bit of the
post-whitening key.

In Step (iii), each set contains at most 32 elements and is processed indepen-
dently, so the time complexity of this step is less than u ·25 ·25 = u ·210 and can
be neglected. In short, the recovery of the (t+5u) bits in Step 1 and 2 take a time
complexity of (2t + 2t) · 22n and 22n+t · 26 · 10 respectively for a 22n-dimensional
conditional cube, where 26+t · 10 < 214 is the estimated factor of recovering the
internal state using conditional cubes with t = 4 bit conditions, as the attack of
KMAC128 in Section 5.1.

Here, details of the attack are omitted for Kravatte. Since 64/128/256/512-
dimensional conditional cubes can be found with 4 bit conditions, we set t = 4
and choose u = 2. Thus, the time complexity of the attack is about 22n+14. As
a result, 8/9/10-round Kravatte can be attacked with time complexities 278,
2142 and 2270 if the key size is greater than 78, 142 bits and 270 bits, respectively.
As an extreme case, when n = 9, there is an attack against 11-round Kravatte
of complexity 2526. This is a valid attack when the scheme uses a key of length
more than 526 bits, and claims a security level higher than 526 as well. However,
the recommended key length is no more than 320 bits, so the 11-round attack is
of theoretical use.

Second, if the whole state is taken as the output, a simpler attack of Kra-
vatte can be obtained by recovering the post-whitening key. In this case, an
ordinary cube with dimension 2n + 1 is used. Similar to Step (ii) and (iii), the
post-whitening key can be recovered Sbox by Sbox. The time complexity will be
dominated by the computation of the cube, i.e., 22n+1. So the time complexities
of attacking 8/9/10-round Kravatte could be 265, 2129 and 2257 if the key size
is greater than 65, 129 bits and 257 bits, respectively.

6.2 Application to Keyak and Ketje

This section considers conditional cube attacks of Keyak and Ketje under the
nonce respect setting, i.e., cube variables are chosen from the positions where
the nonce is loaded.

Figure 10 shows the key pack of Keyak and Ketje respectively (for Ketje,
it shows the key pack after π−1), where blue positions stand for the key, light

23

Lake Keyak128 Lake Keyak256 River Keyak

Ketje Major Ketje Minor Ketje SR

Figure 10: Key pack of Keyak and Ketje where blue means the key, light blue
denotes padded or encoded bits and white lanes are the nonce.

blue positions denote padded or encoded bits and white positions are the nonce.
This means that cube variables should be chosen from white lanes.

All instances of Keyak and Ketje considered in this paper use 128-bit keys,
except Lake Keyak, where 256-bit keys are supported by replacing Keccak-p
[1600, 12] with Keccak-p[1600, 14]. Our main results are as follows and summa-
rized in Table 2.

Lake Keyak128 Using a 64-dimensional cube with 2 bit conditions involving
the key (see Table 14), the key recovery attack of 8-round Lake Keyak128
costs a data and time complexities 22 · 264 · 32 + 264 = 271.01 where the last
χ can be partially reversed due to large output length.

Lake Keyak256 Using a 128-dimensional cube with 4 bit conditions involving
the key (see Table 15), the key recovery attack of 9-round Lake Keyak256
costs a data and time complexities less than 24 · 2128 + 23 · 2128 · 63 + 2128 =
2137.05.

River Keyak Using a 64-dimensional cube with 12 bit conditions involving the
key (see Table 16, these 12 bit conditions involve 11 bits key information),
the key recovery attack of 8-round River Keyak costs a data and time
complexities 211 · 264 + 210 · 264 · 6 + 2128−71 = 277.

Ketje Major Using a 64-dimensional cube with 3 bit conditions involving the
key (see Table 17), the key recovery attack of 7-round Ketje Major costs a
data and time complexities 23 ·264 ·3+22 ·264 ·2+21 ·264 ·(64−5)+264 = 271.24.

Ketje Minor Using a 64-dimensional cube with 4 bit conditions involving the
key (see Table 18), the key recovery attack of 7-round Ketje Minor costs a
data and time complexities less than 24 · 264 + 23 · 264 · 63 + 264 = 273.03.

24

For Ketje SR and Ketje JR, our model could not find attacks which are
better than the existing ones in [12]. However, for Ketje SR with Keccak-p as
the underlying permutation, namely, Ketje SR v1, better attacks on 7-round
Ketje SR are found using a 64-dimensional cube with 27 bit conditions (see
Table 19, all bit conditions involve the key) and the time and data complexities
are 227 · 264 · 2 + 2128−54 = 292. Therefore, Ketje instances using Keccak-p⋆

are stronger than those instances using Keccak-p under our attacks.

7 Conclusions

In the paper, we proposed a new MILP model for searching conditional cubes
for Keccak-p based keyed constructions. Particularly, we incorporated the dif-
fusion effect of variables through the non-linear layer and took a broader class
of conditional cubes into account. With the new model, conditional cubes with
desired dimensions and least bit conditions were found for two Keccak-p based
constructions with unknown internal state, KMAC and Kravatte. As a result,
key recovery attacks of 7-round KMAC128, 9-round KMAC256 and up to 10-round
Kravatte can be mounted respectively. To the best of our knowledge, these are
the first cryptanalysis results against KMAC and Kravatte. The application of
our model to Keyak and Ketje gives rise to new attacks or better attacks with
reduced complexities.

Open discussion. The conditional cube attack on Kravatte is also applicable
to full-state keyed sponge [16] or duplex [7], both of which take in b-bit instead
of r-bit message blocks. In addition, each time the duplex absorbs a message
block, it leaks r bits of the internal state as output, which decreases the time
complexity slightly. For existing Keccak-p based full-state keyed constructions,
conditional cubes of relatively large dimensions can be found. Regarding this,
conditional cubes that fully linearize the first two rounds might exist and can be
used to improve attacks on Keccak-p based full-state keyed constructions with
short key length, e.g., 128 bits. However, due to the difficulties in controlling all
cube variables in the second round, finding such conditional cubes remains an
open problem.

References

1. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: Parallel Permutation-Based Cryptography. Cryptology ePrint Archive,
Report 2016/1188 (2016), https://eprint.iacr.org/2016/1188

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge
functions. Submission to NIST (Round 3) (2011), http://sponge.noekeon.org/
CSF-0.1.pdf

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) Selected Areas in Cryptography - 18th International Workshop,

25

https://eprint.iacr.org/2016/1188
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf

SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Pa-
pers. LNCS, vol. 7118, pp. 320–337. Springer (2011), https://doi.org/10.1007/
978-3-642-28496-0_19

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference.
http://keccak.noekeon.org (January 2011), version 3.0

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2. Candidate of CAESAR Competition (September 2016)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Keyak v2. Candidate of CAESAR Competition (September 2016)

7. Daemen, J., Mennink, B., Van Assche, G.: Full-State Keyed Duplex With Built-
In Multi-User Support. to appear in ASIACRYPT 2017, available at https://
eprint.iacr.org/2017/498 (2017)

8. Daemen, J., Van Assche, G.: Differential propagation analysis of keccak. In: Can-
teaut, A. (ed.) Fast Software Encryption: 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers. pp. 422–441.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

9. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
keccak. Journal of Cryptology 27(2), 183–209 (2014)

10. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube Attacks and
Cube-Attack-Like Cryptanalysis on the Round-Reduced Keccak Sponge Function.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. LNCS, vol. 9056, pp. 733–
761. Springer (2015)

11. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings. LNCS, vol. 5479, pp. 278–299. Springer
(2009), https://doi.org/10.1007/978-3-642-01001-9_16

12. Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like Attack on Round-Reduced Initial-
ization of Ketje Sr. IACR Trans. Symmetric Cryptol. 2017(1), 259–280 (2017),
https://doi.org/10.13154/tosc.v2017.i1.259-280

13. Guo, J., Liu, M., Song, L.: Linear Structures: Applications to Cryptanalysis of
Round-Reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
- ASIACRYPT 2016, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I.
LNCS, vol. 10031, pp. 249–274 (2016)

14. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional Cube Attack on
Reduced-Round Keccak Sponge Function. In: Coron, J., Nielsen, J.B. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part II. LNCS, vol. 10211, pp. 259–288 (2017),
https://doi.org/10.1007/978-3-319-56614-6_9

15. Li, Z., Bi, W., Dong, X., Wang, X.: Improved Conditional Cube Attacks on Keccak
Keyed Modes with MILP Method. to appear in ASIACRYPT 2017, available at
https://eprint.iacr.org/2017/804 (2017)

16. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of Full-State Keyed Sponge
and Duplex: Applications to Authenticated Encryption. In: Iwata, T., Cheon, J.H.
(eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part
II. LNCS, vol. 9453, pp. 465–489. Springer (2015), https://doi.org/10.1007/
978-3-662-48800-3_19

26

https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
http://keccak.noekeon.org
https://eprint.iacr.org/2017/498
https://eprint.iacr.org/2017/498
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.13154/tosc.v2017.i1.259-280
https://doi.org/10.1007/978-3-319-56614-6_9
https://eprint.iacr.org/2017/804
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-48800-3_19

17. NIST: SHA-3 COMPETITION. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html (2007-2012)

18. Qiao, K., Song, L., Liu, M., Guo, J.: New Collision Attacks on Round-Reduced
Keccak. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT
2017, Paris, France, April 30 - May 4, 2017, Proceedings, Part III. LNCS, vol.
10212, pp. 216–243 (2017)

19. Song, L., Liao, G., Guo, J.: Non-full Sbox Linearization: Applications to Colli-
sion Attacks on Round-Reduced Keccak. In: Katz, J., Shacham, H. (eds.) Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II. LNCS, vol. 10402, pp. 428–451. Springer (2017), https://doi.org/10.1007/
978-3-319-63715-0_15

20. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic Security Eval-
uation and (Related-key) Differential Characteristic Search: Application to SI-
MON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In:
Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I. LNCS, vol. 8873, pp. 158–178. Springer (2014), https://doi.org/10.1007/
978-3-662-45611-8_9

21. The U.S. National Institute of Standards and Technology: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions . Federal Information
Processing Standard, FIPS 202 (5th August 2015), http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.pdf

22. The U.S. National Institute of Standards and Technology: SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special Pub-
lication 800-185 (21st December 2016), http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf

A Appendix: Conditional Cubes of KMAC, Kravatte,
Keccak-MAC, Keyak and Ketje

27

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-45611-8_9
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

Table 9: Two conditional cubes of Kravatte with dimension 256 and 512 respectively

256

Positions of cube variables
-81-81-1-8---841 E2A-1--8-2-A---- 18-C-58-----22-- -25-8--12----82- --8254-2-51141-2
D8-154--2-24---1 ---8-322C288--9- 8--58-5-2-2-724- 4--8-3---------1 2--2--7--41221-8
-------8--2-3--- 582-8-5183-8-461 --1414--1----A-- 31-----18-2----- 8-92-E4-141--151
-4-----12-8----- -1811-1--A-82-4F -C24-1-2----42-- -1--18412-82--48 1-832-8-8C3-81-1
82484-28--416-24 --8--1124-2----1 32-55-21--C2C89- -948--42--3-2-24 1--1--8---828-81

Position of the conditional cube variable
(0,0,0), (0,1,0)

512

Positions of cube variables
38A885217146-889 865-385682896-42 69AC418-384-1634 -45-A679C184A8C8 83-31-86-C115112
F1--24-2----88-1 --51-3B4E3-A24F2 9824D84318E54A-- 6248-21-8---8-41 -49359ED4C77752A
9449-1-C8-2-2-14 4AA-EC833B4B9CEA 211D12444---2215 56A-4113A9254428 2112BEC-545289C3
-5--4-C93-42-8-2 7--1-612CAA9A479 88F4912-----1A84 25-142-76-438478 DAFA382-8DB471-5
C44-9-2911E-4-F4 1B11255-EA-294-B E48448A1--C122-4 -37B111891365-7- 18--4642-8-1A4-B

Position of the conditional cube variable
(0,0,0), (0,1,0)

28

Table 10: 54-dimensional conditional cube for Keccak-MAC 512. There are 58 bit
conditions (42 of them involve the key) which can be exacted from B, V and C using
Algorithm 1. The second round consumes 5 degrees of freedom.

B

---------------- ---------------- ---------------- ---------------- ----------------
642937249274-65D ---------------- ---------------- ---------------- ----------------
---------------- 6C1F8D14DE3646D8 ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
D86C1F8D14DE3646 2493A-32EB2149B9 ---------------- ---------------- ----------------

V

---------------- ---------------- ---------------- ---------------- ----------------
---------------- 2-2-35--1------- ---------------- ---------------- 4---2--------2-1
2--4-51-18---24- ---------------- -----1---8----C- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
2-8-2-12-8-1---- 4-6415--1-8-3--- ----2--229-1-9A- ---------------- 4-4----4---2-2-2

C

---------------- ---------------- ---------------- ---------------- ----------------
642937249274-65D ---------------- ---------------- 242917249274-45C 44-9-2248274-65D
6C1F8C14D6364618 6C1F8D14DE3646D8 ---------------- ---------------- 4C1B88-4C6364498
---------------- ---------------- ---------------- ---------------- ----------------
FCFF9FBDD6FE765F 2493A-32EB2149B9 ---------------- 982C1F8914DC3444 9C1B8AADE77E4FFF

Cube variables
a[2][0][0] = a[2][1][0] = v0, a[2][0][1] = a[2][1][1] = v1, a[2][0][3] = a[2][1][3] = v2,

a[2][0][4] = a[2][1][4] = v3, a[2][0][8] = a[2][1][8] = v4, a[2][0][11] = a[2][1][11] = v5,

a[2][0][12] = a[2][1][12] = v6, a[2][0][14] = a[2][1][14] = v7, a[2][0][15] = a[2][1][15] = v8,

a[2][0][19] = a[2][1][19] = v9, a[2][0][20] = a[2][1][20] = v10, a[2][0][21] = a[2][1][21] = v11,

a[2][0][22] = a[2][1][22] = v12, a[2][0][24] = a[2][1][24] = v13, a[2][0][25] = a[2][1][25] = v14,

a[2][0][28] = a[2][1][28] = v15, a[2][0][30] = a[2][1][30] = v16, a[2][0][34] = a[2][1][34] = v17,

a[2][0][36] = a[2][1][36] = v18, a[2][0][37] = a[2][1][37] = v19, a[2][0][41] = a[2][1][41] = v20,

a[2][0][42] = a[2][1][42] = v21, a[2][0][43] = a[2][1][43] = v22, a[2][0][44] = a[2][1][44] = v23,

a[2][0][45] = a[2][1][45] = v24, a[2][0][46] = a[2][1][46] = v25, a[2][0][52] = a[2][1][52] = v26,

a[2][0][53] = a[2][1][53] = v27, a[2][0][55] = a[2][1][55] = v28, a[2][0][56] = a[2][1][56] = v29,

a[2][0][61] = a[2][1][61] = v30, a[2][0][62] = a[2][1][62] = v31, a[3][0][0] = a[3][1][0] = v32,

a[3][0][3] = a[3][1][3] = v33, a[3][0][6] = a[3][1][6] = v34, a[3][0][9] = a[3][1][9] = v35,

a[3][0][12] = a[3][1][12] = v36, a[3][0][13] = a[3][1][13] = v37, a[3][0][14] = a[3][1][14] = v38,

a[3][0][16] = a[3][1][16] = v39, a[3][0][17] = a[3][1][17] = v40, a[3][0][20] = a[3][1][20] = v41,

a[3][0][23] = a[3][1][23] = v42, a[3][0][25] = a[3][1][25] = v43, a[3][0][30] = a[3][1][30] = v44,

a[3][0][33] = a[3][1][33] = v45, a[3][0][34] = a[3][1][34] = v46, a[3][0][36] = a[3][1][36] = v47,

a[3][0][38] = a[3][1][38] = v48, a[3][0][39] = a[3][1][39] = v49, a[3][0][40] = a[3][1][40] = v50,

a[3][0][42] = a[3][1][42] = v511, a[3][0][45] = a[3][1][45] = v52, a[3][0][46] = a[3][1][46] = v53,

a[3][0][54] = a[3][1][54] = v54, a[3][0][56] = a[3][1][56] = v55, a[3][0][57] = a[3][1][57] = v56,

a[3][0][58] = a[3][1][58] = v57, a[3][0][61] = a[3][1][61] = v58,

v3 + v48 = 0, v28 + v43 = 0, v19 + v39 = 0,

v25 + v28 + v58 = 0, v13 + v57 = 0

29

Table 11: Cube variables for attacking 7-round KMAC128 (1)

1

Positions of cube variables
3-4--2B-1CC-1--1 ---------------- C-8-84-147-4C18- ---------------- ----------------
3442-2881-4----8 ---------------- 3-8-8--24D1-8482 ---------------- ----------------
A4-5--312CD-1--9 ---------------- B---84-3-9-4-5-- ---------------- ----------------
A447-2992-1-1--- ---------------- 6-8------B1-C5-2 ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(0,0,0), (0,2,0)

2

Positions of cube variables
---------------- ---------------- -844288158-94125 ---------------- C4428A1--2-1443A
---------------- ---------------- 2C-42--111-8-12C ---------------- 84848-1---82542-
---------------- ---------------- 2454--814944-1-1 ---------------- 44C6-A1--24-1-1A
---------------- ---------------- --5--88-18454--8 ---------------- C--4-2---2C3-428
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(2,0,0), (2,2,0)

3

Positions of cube variables
6F-5B-8C-28-6--8 ---------------- ---------------- -844---7D1-8-4-1 ----------------
61-438---2E838-A ---------------- ---------------- -1-1--24848----8 ----------------
-F-128-C--4-79-A ---------------- ---------------- -945--37458444-9 ----------------
6E-18-8---28-1-- ---------------- ---------------- -8----3-5--C4--8 ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(3,0,0), (3,2,0)

4

Positions of cube variables
---------------- 4--8-8177-3--A-1 ---------------- 11-34C82-1-422EC ----------------
---------------- ---8---671-2---- ---------------- -8-24D82--1424C- ----------------
---------------- 4-88-81A6132-A-1 ---------------- 98-3488---1--AEC ----------------
---------------- --88-8-93--2---- ---------------- 89---9---1--2E-C ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(1,0,0), (1,2,0)

5

Positions of cube variables
---------------- 8E168-61-1--1-A- ---------------- ---------------- -8--2-31--2243-1
---------------- 8F-68--1---2B-3- ---------------- ---------------- --1--1B-4-9666-2
---------------- -8168-61-5--2-31 ---------------- ---------------- 8C1--1814-B667-3
---------------- -71------4-28-B1 ---------------- ---------------- 8C1-212-4-------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,0,0), (4,2,0)

30

Table 12: Cube variables for attacking 7-round KMAC128 (2)

6

Positions of cube variables
3--2---44D-22--A ---------------- 8488-4---8-28-28 ---------------- ----------------
24-2---444-22--B ---------------- 3-868-24-9368223 ---------------- ----------------
24-----44D9-2--B ---------------- 94-C842--964---- ---------------- ----------------
34-2-----59-2--2 ---------------- A48E-4-4-85-82-B ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(0,1,0), (0,2,0)

7

Positions of cube variables
---------------- C4-8---61-2411-8 ---------------- -2--54-88-136242 ----------------
---------------- --29---611-21--B ---------------- --284C--C-5A6242 ----------------
---------------- C421-1-C-92419-3 ---------------- 82--98--C-58-248 ----------------
---------------- 8-28-1-818-6-9-2 ---------------- 8-2894-8--4122-A ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(1,1,0), (1,2,0)

8

Positions of cube variables
---------------- ---------------- -24-2-C41A---1-- ---------------- C4-48B--1-21E42-
---------------- ---------------- 26C82--492---1-1 ---------------- 84-48B-1--62C42-
---------------- ---------------- A598-18--8-4-2-1 ---------------- 4-8418--1-61A-2-
---------------- ---------------- A1D8-1448A-4-2-- ---------------- 848492-1--4344--
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(2,1,0), (2,2,0)

9

Positions of cube variables
41132-1-4A48-928 ---------------- ---------------- 248-8---911A-3-- ----------------
43-12-8--44928-A ---------------- ---------------- 24---8--9-1----9 ----------------
--12249-46C92--2 ---------------- ---------------- 2C8---1-4912-71B ----------------
-2-1248-4889-92- ---------------- ---------------- -88-881-D9-A-412 ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(3,1,0), (3,2,0)

10

Positions of cube variables
---------------- 36118--18-811-8- ---------------- ---------------- -44-2-19--C-15-2
---------------- 1A-18--1F--6B-F- ---------------- ---------------- -97---3-4-1-29-1
---------------- 2C1-8---2-852-1- ---------------- ---------------- -D2-2-394-C43C-1
---------------- -6-18---F--38-F- ---------------- ---------------- -C7---2-4-14---2
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,1,0), (4,2,0)

31

Table 13: Cube variables for attacking 9-round KMAC256

1

Positions of cube variables
5D6-1149-E843113 C--4-2--1--2-182 -52-828----8C8-2 ----A-E2-4--2182 ---4--3--3---84-
D56-91-944F-511B 4--4-2-----2-182 --21C2--4-2-88-2 4--2A2A2----2-9- ------3--2--1-4-
5D-8B1494F7-D138 C--4-2--1--2-182 -5-1C-8-4-28C8-2 4--2A262-4--2112 ---4--3--1--184-
DD-8A14-45B4B122 ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(0,0,0), (0,1,0), (1,0,63), (1,2,63), (2,1,30), (2,2,30)

2

Positions of cube variables
5-58-8B1D5-87-93 342C-41822-51849 21618-843-8486-1 4-13-86486-4984E 8-38-249-3-1---2
42888-3-D---4-1- 1----21-2-----6- 3-4---841-8-86-4 4--2286-1--4984- 8-3-8--1-2-1---2
16-C8-91-7-8B49A 342C-6-8-2-51869 11218-843-84-6-5 --132-6496----4E ---88248-1------
46DC-8-1D2-8941B ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,1,0), (4,2,0)
Conditions

b[0][0][18] = k
′[0][0][18] + 1, b[1][4][29] = k

′[1][4][29] + 1, b[3][4][39] = k
′[3][4][39], b[1][0][26] = k

′[1][0][26],

b[0][1][20] = k
′[0][1][20] + 1, b[1][4][39] = k

′[1][4][39] + 1, b[2][0][46] = k
′[2][0][46], b[1][1][26] = k

′[1][1][26],

b[0][2][20] = k
′[0][2][20] + 1, b[1][4][47] = k

′[1][4][47] + 1, b[2][1][20] = k
′[2][1][20], b[1][1][52] = k

′[1][1][52],

b[0][3][56] = k
′[0][3][56] + 1, b[2][4][13] = k

′[2][4][13] + 1, b[2][2][43] = k
′[2][2][43], b[1][2][14] = k

′[1][2][14],

b[0][4][26] = k
′[0][4][26] + 1, b[2][4][32] = k

′[2][4][32] + 1, b[2][3][45] = k
′[2][3][45], b[3][1][0] = k

′[3][1][0],

b[1][1][14] = k
′[1][1][14] + 1, b[2][4][58] = k

′[2][4][58] + 1, b[2][3][46] = k
′[2][3][46], b[1][1][0] = k

′[1][1][0],

b[1][1][29] = k
′[1][1][29] + 1, b[4][0][8] = k

′[4][0][8] + 1, b[3][0][13] = k
′[3][0][13], b[1][1][1] = k

′[1][1][1],

b[1][2][36] = k
′[1][2][36] + 1, b[3][3][17] = k

′[3][3][17], b[3][1][13] = k
′[3][1][13], b[1][0][1] = k

′[1][0][1],

b[1][2][55] = k
′[1][2][55] + 1, b[3][3][44] = k

′[3][3][44], b[4][4][42] = k
′[4][4][42],

b[1][3][30] = k
′[1][3][30] + 1, b[3][3][58] = k

′[3][3][58], b[4][4][54] = k
′[4][4][54].

3

Positions of cube variables
ADCA402-84-26B1- 5-E5A841----2--- 1-3----C-4-888C- -2222-18EEA-1-C- --5---115--21--1
E-18-4--8-126412 1-E-98-9----2--- --3-8--4A--4-2C4 42-36-1921A-1-C2 -91---1-5--23--1
2CDA441-841-6C92 4-45B-48-------- 1-2-8--CA4-C8AC4 4-234-19EF8---C2 -94----14---2---
E98A-43-84126392 ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,0,0), (4,1,0)
Conditions

b[0][1][20] = k
′[0][1][20] + 1, b[2][4][28] = k

′[2][4][28] + 1, b[2][1][20] = k
′[2][1][20], b[1][1][0] = k

′[1][1][0],

b[0][4][20] = k
′[0][4][20] + 1, b[4][0][31] = k

′[4][0][31] + 1, b[2][4][36] = k
′[2][4][36], b[1][4][5] = k

′[1][4][5],

b[0][4][26] = k
′[0][4][26] + 1, b[4][1][21] = k

′[4][1][21] + 1, b[3][1][17] = k
′[3][1][17], b[2][3][3] = k

′[2][3][3],

b[0][4][62] = k
′[0][4][62] + 1, b[4][3][27] = k

′[4][3][27] + 1, b[3][2][31] = k
′[3][2][31], b[2][4][3] = k

′[2][4][3],

b[1][1][16] = k
′[1][1][16] + 1, b[4][0][4] = k

′[4][0][4] + 1, b[3][2][51] = k
′[3][2][51], b[3][1][0] = k

′[3][1][0],

b[1][1][29] = k
′[1][1][29] + 1, b[4][4][4] = k

′[4][4][4] + 1, b[3][4][31] = k
′[3][4][31], b[3][1][4] = k

′[3][1][4],

b[1][2][60] = k
′[1][2][60] + 1, b[1][0][11] = k

′[1][0][11], b[4][4][40] = k
′[4][4][40], b[3][2][9] = k

′[3][2][9],

b[1][3][60] = k
′[1][3][60] + 1, b[1][0][26] = k

′[1][0][26], b[4][4][42] = k
′[4][4][42], b[3][3][0] = k

′[3][3][0],

b[1][4][29] = k
′[1][4][29] + 1, b[1][3][27] = k

′[1][3][27].

32

Table 14: One 64-dimensional cube of Lake Keyak
Cube variables

a[0][1][36] = v1, a[0][3][36] = v2, a[0][4][36] = v1 + v2, a[0][2][52] = a[0][3][52] = v3,

a[0][1][53] = a[0][2][53] = v4, a[0][1][62] = v5, a[0][2][62] = v6, a[0][4][62] = v5 + v6,

a[0][1][63] = v7, a[0][3][63] = v8, a[0][4][63] = v7 + v8, a[1][1][19] = v9,

a[1][2][19] = v10, a[1][3][19] = v11, a[1][4][19] = v9 + v10 + v11, a[1][1][31] = v12,

a[1][2][31] = v13, a[1][4][31] = v12 + v13, a[1][2][32] = v14, a[1][3][32] = v15,

a[1][4][32] = v14 + v15, a[1][1][34] = v16, a[1][2][34] = v17, a[1][4][34] = v16 + v17,

a[1][2][37] = a[1][3][37] = v18, a[1][1][39] = a[1][4][39] = v19, a[1][2][41] = a[1][4][41] = v20,

a[1][3][51] = a[1][4][51] = v21, a[1][1][60] = a[1][3][60] = v22, a[2][2][0] = a[2][3][0] = v0,

a[2][2][4] = a[2][4][4] = v23, a[2][1][10] = a[2][3][10] = v24, a[2][1][13] = v25,

a[2][2][13] = v26, a[2][4][13] = v25 + v26, a[2][1][19] = v27, a[2][3][19] = v28,

a[2][4][19] = v27 + v28, a[2][1][28] = v29, a[2][3][28] = v30, a[2][4][28] = v29 + v30,

a[2][3][31] = a[2][4][31] = v31, a[2][1][37] = v32, a[2][2][37] = v33, a[2][3][37] = v34,

a[2][4][37] = v32 + v33 + v34, a[2][2][39] = v35, a[2][3][39] = v36,

a[2][4][39] = v35 + v36, a[2][1][45] = a[2][4][45] = v37, a[2][2][55] = v38, a[2][3][55] = v39,

a[2][4][55] = v38 + v39, a[2][1][57] = a[2][4][57] = v40, a[2][1][60] = a[2][4][60] = v41,

a[3][1][11] = v42, a[3][3][11] = v43, a[3][4][11] = v42 + v43, a[3][1][20] = v44,

a[3][3][20] = v45, a[3][4][20] = v44 + v45, a[3][2][29] = a[3][4][29] = v46,

a[3][2][31] = a[3][3][31] = v47, a[3][2][45] = a[3][3][45] = v48, a[4][1][5] = v49,

a[4][2][5] = v50, a[4][3][5] = v49 + v50, a[4][1][14] = a[4][2][14] = v51,

a[4][2][16] = a[4][3][16] = v52, a[4][1][21] = v53, a[4][2][21] = v54, a[4][3][21] = v53 + v54,

a[4][1][22] = a[4][3][22] = v55, a[4][1][24] = a[4][3][24] = v56, a[4][1][32] = a[4][3][32] = v57,

a[4][1][34] = v58, a[4][2][34] = v59, a[4][3][34] = v58 + v59, a[4][1][43] = a[4][2][43] = v60,

a[4][1][58] = v61, a[4][2][58] = v62, a[4][3][58] = v61 + v62, a[4][2][59] = a[4][3][59] = v63.

Bit conditions

a[2][0][62] + a[1][1][63] + a[2][1][62] + a[0][2][63] + a[2][2][62] + a[2][3][62] + a[2][4][62]
+ k55 + 1 = 0,

a[0][0][5] + a[0][1][5] + a[2][1][4] + a[0][2][5] + a[1][2][5] + a[0][3][5] + a[2][3][4]
+ a[0][4][5] + k124 + 1 = 0,

a[2][0][22] + a[4][0][21] + a[2][1][22] + a[2][2][22] + a[2][3][22] + a[3][3][22] + a[2][4][22]
+ a[4][4][21] = 0,

a[2][0][23] + a[4][0][22] + a[2][1][23] + a[2][2][23] + a[4][2][22] + a[2][3][23] + a[2][4][23]
+ a[3][4][23] + a[4][4][22] = 0.

33

Table 15: One 64-dimensional cube of Lake Keyak-256
Positions of cube variables

---------------- ---------------- ---------------- ---------------- ----------------
2811C-225---411- --28-1--3-18--4- 92-411-4-2-3B-18 -9---5-3F-5746-2 --D--8---9--28-7
2-3---3--8----5- 6-A-4---2-1----3 1---31-19-C-2-18 881--18-414448-- --8--8---9-----3
-881C-124---4174 4-88-1--2--6--13 -----1-59--2--1- 811--48-114-8E12 --D------1--28-5
-8B-C-1-58----74 6-8-41--3-1E--5- 92-42--412C19-18 -----483F-178212 ----------------

Position of the conditional cube variable
(1,2,0),(1,3,0)
Bit conditions

a[4][0][38] + a[0][1][38] + a[1][1][37] + a[4][1][38] + a[1][2][37] + a[4][2][38] + a[1][3][37]
+ a[4][3][38] + a[1][4][37] + a[4][4][38] + k93 + 1 = 0,

a[4][0][42] + a[1][1][41] + a[4][1][42] + a[0][2][42] + a[1][2][41] + a[4][2][42] + a[1][3][41]
+ a[4][3][42] + a[1][4][41] + a[4][4][42] + k97 + 1 = 0,

a[1][1][59] + a[3][1][58] + a[1][2][59] + a[3][2][58] + a[1][3][59] + a[2][3][59] + a[3][3][58]
+ a[1][4][59] + a[3][4][58] + k115 + k242 = 0,

a[1][1][48] + a[3][1][47] + a[1][2][48] + a[3][2][47] + a[1][3][48] + a[3][3][47] + a[1][4][48]
+ a[2][4][48] + a[3][4][47] + k104 + k231 = 0.

34

Table 16: One 64-dimensional cube of River Keyak
Cube variables

a[0][2][5] = a[0][4][5] = v1, a[0][3][7] = a[0][4][7] = v2, a[0][3][8] = a[0][4][8] = v3,

a[0][2][15] = a[0][3][15] = v4, a[0][3][16] = a[0][4][16] = v5, a[0][2][23] = a[0][4][23] = v6,

a[0][3][28] = a[0][4][28] = v7, a[0][2][29] = a[0][4][29] = v0, a[1][2][0] = a[1][4][0] = v8,

a[1][3][1] = a[1][4][1] = v9, a[1][2][9] = v10, a[1][3][9] = v11, a[1][4][9] = v10 + v11,

a[1][2][11] = a[1][3][11] = v12, a[1][3][12] = a[1][4][12] = v13, a[1][2][15] = a[1][3][15] = v14,

a[1][2][16] = a[1][3][16] = v15, a[1][2][18] = a[1][4][18] = v16, a[1][2][19] = a[1][4][19] = v17,

a[1][2][20] = a[1][4][20] = v18, a[1][3][21] = a[1][4][21] = v19, a[1][2][25] = v20, a[1][3][25] = v21,

a[1][4][25] = v20 + v21, a[2][2][7] = a[2][3][7] = v22, a[2][2][8] = v23, a[2][3][8] = v24,

a[2][4][8] = v23 + v24, a[2][2][17] = a[2][3][17] = v25, a[2][3][18] = a[2][4][18] = v0,

a[2][3][19] = a[2][4][19] = v26, a[2][2][24] = a[2][4][24] = v27, a[2][2][29] = a[2][4][29] = v28,

a[2][2][30] = a[2][4][30] = v29, a[2][2][31] = a[2][3][31] = v30, a[3][2][0] = v31, a[3][3][0] = v32,

a[3][4][0] = v31 + v32, a[3][2][1] = v33, a[3][3][1] = v34, a[3][4][1] = v33 + v34,

a[3][2][2] = v35, a[3][3][2] = v36, a[3][4][2] = v35 + v36, a[3][2][3] = v37, a[3][3][3] = v38,

a[3][4][3] = v37 + v38, a[3][2][4] = v39, a[3][3][4] = v40, a[3][4][4] = v39 + v40,

a[3][2][5] = v41, a[3][3][5] = v42, a[3][4][5] = v41 + v42, a[3][2][9] = a[3][3][9] = v43,

a[3][3][11] = a[3][4][11] = v44, a[3][2][13] = v45, a[3][3][13] = v46, a[3][4][13] = v45 + v46,

a[3][2][17] = a[3][3][17] = v47, a[3][2][25] = a[3][3][25] = v48, a[3][2][28] = a[3][3][28] = v49,

a[4][1][1] = a[4][2][1] = v50, a[4][1][2] = a[4][2][2] = v51, a[4][1][3] = a[4][2][3] = v52,

a[4][1][7] = a[4][2][7] = v53, a[4][1][8] = a[4][3][8] = v54, a[4][1][14] = v55, a[4][2][14] = v56,

a[4][3][14] = v55 + v56, a[4][1][15] = a[4][2][15] = v57, a[4][1][16] = v58, a[4][2][16] = v59,

a[4][3][16] = v58 + v59, a[4][1][22] = a[4][2][22] = v60, a[4][2][25] = a[4][3][25] = v0,

a[4][1][27] = v61, a[4][2][27] = v62, a[4][3][27] = v61 + v62, a[4][1][31] = a[4][2][31] = v63.

Bit conditions

a[4][0][18] + a[2][1][19] + a[4][1][18] + a[2][2][19] + a[4][2][18] + a[4][3][18] + a[4][4][18] + k75

+ k107 = 0, a[0][1][14] + a[2][1][13] + a[0][2][14] + a[2][2][13] + a[0][3][14] + a[2][3][13]
+ a[0][4][14] + a[2][4][13] + k6 + k38 + k69 = 0, a[0][1][11] + a[3][1][12] + a[4][1][12]
+ a[0][2][11] + a[3][2][12] + a[0][3][11] + a[3][3][12] + a[0][4][11] + a[3][4][12] + k3 + k100

+ 1 = 0, a[4][0][8] + a[2][1][9] + a[3][1][9] + a[2][2][9] + a[4][2][8] + a[2][3][9] + a[2][4][9]
+ a[4][4][8] + k65 + 1 = 0, a[2][1][8] + a[3][2][8] + a[4][3][7] + a[4][4][7] + k64 + k127

+ 1 = 0, a[0][1][23] + a[2][1][22] + a[1][2][23] + a[2][2][22] + a[0][3][23] + a[2][3][22] + a[2][4][22]
+ k15 + k78 + 1 = 0, a[0][1][19] + a[2][1][18] + a[0][2][19] + a[2][2][18] + a[0][3][19] + a[1][3][19]
+ a[0][4][19] + k11 + k74 = 0, a[0][0][2] + a[0][1][2] + a[2][1][1] + a[0][2][2] + a[2][2][1]
+ a[0][3][2] + a[1][3][2] + a[2][3][1] + a[0][4][2] + a[2][4][1] + k57 + 1 = 0, a[0][0][6] + a[0][1][6]
+ a[3][1][7] + a[0][2][6] + a[3][2][7] + a[0][3][6] + a[3][3][7]
+ a[4][3][7] + a[0][4][6] + a[3][4][7] + k95 + 1 = 0, a[4][0][23] + a[1][1][22] + a[4][1][23]
+ a[1][2][22] + a[4][2][23] + a[0][3][23] + a[1][3][22] + a[4][3][23] + a[1][4][22] + a[4][4][23]
+ k46 = 0, a[4][0][15] + a[1][1][14] + a[1][2][14] + a[1][3][14] + a[4][3][15] + a[0][4][15]
+ a[1][4][14] + a[4][4][15] + k38 = 0, a[4][0][8] + a[2][1][9] + a[2][2][9] + a[4][2][8]
+ a[2][3][9] + a[2][4][9] + a[3][4][9] + a[4][4][8] + k65 = 0.

35

Table 17: One 64-dimensional cube of Ketje Major.
Cube variables

a[1][3][4] = a[1][4][4] = v1, a[1][2][28] = a[1][4][28] = v2, a[1][0][29] = a[1][4][29] = v3,

a[1][0][30] = v4, a[1][2][30] = v5, a[1][3][30] = v4 + v5, a[1][2][39] = a[1][3][39] = v6,

a[1][2][44] = a[1][3][44] = v7, a[1][2][52] = a[1][3][52] = v8, a[1][3][56] = a[1][4][56] = v9,

a[1][0][57] = v10, a[1][2][57] = v11, a[1][3][57] = v12, a[1][4][57] = v10 + v11 + v12,

a[2][0][0] = a[2][1][0] = v0, a[2][3][9] = a[2][4][9] = v13, a[2][3][10] = a[2][4][10] = v14,

a[2][1][19] = a[2][2][19] = v15, a[2][0][21] = v16, a[2][2][21] = v17, a[2][3][21] = v18,

a[2][4][21] = v16 + v17 + v18, a[2][0][28] = a[2][1][28] = v19, a[2][3][33] = a[2][4][33] = v20,

a[2][2][38] = a[2][4][38] = v21, a[2][1][58] = a[2][2][58] = v22, a[3][0][3] = v23, a[3][1][3] = v24,

a[3][4][3] = v23 + v24, a[3][0][4] = v25, a[3][1][4] = v26, a[3][3][4] = v27,

a[3][4][4] = v25 + v26 + v27, a[3][1][12] = v28, a[3][2][12] = v29, a[3][3][12] = v28 + v29,

a[3][1][29] = v30, a[3][2][29] = v31, a[3][3][29] = v30 + v31, a[3][0][39] = a[3][4][39] = v32,

a[3][2][48] = a[3][3][48] = v33, a[3][0][56] = v34, a[3][1][56] = v35, a[3][2][56] = v34 + v35,

a[3][1][60] = a[3][4][60] = v36, a[4][1][1] = v37, a[4][2][1] = v38, a[4][4][1] = v37 + v38,

a[4][0][5] = v39, a[4][1][5] = v40, a[4][4][5] = v39 + v40, a[4][0][10] = v41, a[4][1][10] = v42,

a[4][2][10] = v43, a[4][3][10] = v44, a[4][4][10] = v41 + v42 + v43 + v44, a[4][1][17] = v45,

a[4][3][17] = v46, a[4][4][17] = v45 + v46, a[4][0][22] = v47, a[4][2][22] = v48,

a[4][3][22] = v47 + v48, a[4][2][23] = v49, a[4][3][23] = v50, a[4][4][23] = v49 + v50,

a[4][2][34] = v51, a[4][3][34] = v52, a[4][4][34] = v51 + v52, a[4][1][42] = v53,

a[4][2][42] = v54, a[4][3][42] = v53 + v54, a[4][0][55] = a[4][2][55] = v55, a[4][0][56] = v56,

a[4][2][56] = v57, a[4][4][56] = v56 + v57, a[4][1][61] = v58, a[4][2][61] = v59,

a[4][3][61] = v60, a[4][4][61] = v58 + v59 + v60, a[4][0][62] = v61, a[4][1][62] = v62,

a[4][2][62] = v63, a[4][3][62] = v61 + v62 + v63.

Bit conditions

a[0][0][5] + a[1][0][5] + a[2][0][4] + a[0][1][5] + a[2][1][4] + a[0][2][5] + a[0][3][5] + a[2][3][4]
+ a[0][4][5] + a[2][4][4] + k124 + 1,

a[2][0][7] + a[4][0][6] + a[2][1][7] + a[3][1][7] + a[4][1][6] + a[4][2][6] + a[2][3][7] + a[4][3][6]
+ a[2][4][7] + a[4][4][6] + k127,

a[2][0][45] + a[4][0][44] + a[2][1][45] + a[4][1][44] + a[2][2][45] + a[3][2][45] + a[4][2][44]
+ a[2][3][45] + a[4][3][44] + a[2][4][45] + a[4][4][44],
a[2][0][59] + a[0][1][60] + a[2][1][59] + a[0][2][60] + a[2][2][59] + a[0][3][60] + a[2][3][59]
+ a[0][4][60] + a[1][4][60] + a[2][4][59] + k52 + 1.

36

Table 18: One 64-dimensional cube of Ketje Minor
Cube variables

a[0][1][1] = v1, a[0][2][1] = v2, a[0][3][1] = v3, a[0][4][1] = v1 + v2 + v3,

a[0][1][7] = a[0][2][7] = v4, a[0][1][11] = v5, a[0][2][11] = v6, a[0][4][11] = v5 + v6,

a[0][1][13] = v7, a[0][2][13] = v8, a[0][3][13] = v7 + v8, a[0][1][16] = a[0][3][16] = v9,

a[0][2][17] = a[0][3][17] = v10, a[0][1][20] = v11, a[0][2][20] = v12,

a[0][3][20] = v11 + v12, a[0][1][22] = v13, a[0][2][22] = v14, a[0][3][22] = v15,

a[0][4][22] = v13 + v14 + v15, a[0][1][23] = v16, a[0][2][23] = v17,

a[0][3][23] = v16 + v17, a[0][2][26] = a[0][4][26] = v18, a[0][1][30] = v19, a[0][2][30] = v20,

a[0][4][30] = v19 + v20, a[1][0][4] = v21, a[1][2][4] = v22, a[1][3][4] = v21 + v22,

a[1][2][15] = a[1][3][15] = v23, a[1][0][19] = v24, a[1][2][19] = v25, a[1][3][19] = v24 + v25,

a[1][0][20] = a[1][2][20] = v26, a[1][0][23] = a[1][2][23] = v27, a[1][0][26] = a[1][2][26] = v28,

a[1][2][28] = a[1][3][28] = v29, a[1][0][30] = a[1][3][30] = v30, a[2][0][0] = a[2][4][0] = v31,

a[2][0][1] = a[2][3][1] = v32, a[2][3][2] = a[2][4][2] = v33, a[2][1][4] = a[2][3][4] = v34,

a[2][1][5] = a[2][3][5] = v35, a[2][0][6] = a[2][4][6] = v36, a[2][0][7] = a[2][3][7] = v37,

a[2][3][8] = a[2][4][8] = v38, a[2][0][9] = a[2][1][9] = v39, a[2][1][11] = v40, a[2][3][11] = v41,

a[2][4][11] = v40 + v41, a[2][0][17] = a[2][3][17] = v42, a[2][1][19] = a[2][4][19] = v43,

a[2][0][20] = a[2][1][20] = v44, a[2][0][22] = a[2][4][22] = v45, a[2][0][23] = a[2][4][23] = v46,

a[2][0][26] = a[2][3][26] = v47, a[2][0][27] = v48, a[2][1][27] = v49, a[2][3][27] = v48 + v49,

a[2][1][28] = v50, a[2][3][28] = v51, a[2][4][28] = v50 + v51, a[3][1][0] = a[3][4][0] = v0,

a[3][1][4] = v52, a[3][2][4] = v53, a[3][4][4] = v52 + v53, a[3][2][5] = a[3][4][5] = v54,

a[3][0][11] = v55, a[3][1][11] = v56, a[3][2][11] = v57, a[3][4][11] = v55 + v56 + v57,

a[3][2][13] = a[3][4][13] = v58, a[3][0][19] = a[3][1][19] = v59, a[3][2][23] = a[3][4][23] = v60,

a[4][0][3] = a[4][3][3] = v61, a[4][0][4] = v62, a[4][1][4] = v63, a[4][2][4] = v62 + v63,

a[4][0][9] = v64, a[4][2][9] = v65, a[4][3][9] = v64 + v65, a[4][1][10] = a[4][2][10] = v66,

a[4][0][12] = a[4][3][12] = v67, a[4][0][13] = a[4][2][13] = v68, a[4][1][14] = a[4][3][14] = v69,

a[4][1][17] = a[4][3][17] = v70, a[4][0][23] = v71, a[4][1][23] = v72, a[4][2][23] = v73,

a[4][3][23] = v71 + v72 + v73, a[4][0][26] = a[4][2][26] = v74, a[4][1][29] = v75,

a[4][2][29] = v76, a[4][3][29] = v75 + v76, a[4][0][30] = v77, a[4][1][30] = v78,

a[4][2][30] = v77 + v78, v29 + v39 + v55 + v58 + v67 = 0, v5 + v6 + v26 + v31 + v73 = 0,

v2 + v28 + v36 + v55 + v56 + v76 = 0, v3 + v48 + v49 = 0, v10 + v16 + v41 + v52 = 0,

v18 = 0, v6 + v22 = 0, v30 + v51 + v61 = 0, v16 + v17 + v24 + v25 + v30 + v32 + v42 + v62 = 0,

v21 + v22 + v33 + v64 + v65 + v78 = 0, v29 + v47 + v68 = 0, v5 + v19 + v20 + v39 + v43 = 0,

v19 + v50 + v56 + v69 = 0, v11 + v38 + v63 = 0, v7 + v8 + v26 + v37 + v46 + v69 + v74 = 0.

Bit conditions

a[3][0][29] + a[4][0][29] + a[0][1][28] + a[3][1][29] + a[0][2][28] + a[3][2][29] + a[0][3][28]
+ a[0][4][28] + a[3][4][29] + k20 + k117,

a[1][0][25] + a[2][0][25] + a[3][0][24] + a[3][1][24] + a[1][2][25] + a[3][2][24] + a[1][3][25]
+ a[1][4][25] + a[3][4][24] + k49 + k112 + 1,

a[3][0][16] + a[0][1][15] + a[3][1][16] + a[0][2][15] + a[3][2][16] + a[4][2][16] + a[0][3][15]
+ a[0][4][15] + a[3][4][16] + k7 + k104,

a[1][0][9] + a[3][0][8] + a[3][1][8] + a[1][2][9] + a[3][2][8] + a[1][3][9] + a[2][3][9] + a[1][4][9]
+ a[3][4][8] + k33 + k96 + 1.

37

Table 19: One 64-dimensional cube of Ketje SR v1
Cube variables

a[0][2][0] = a[0][4][0] = v1, a[0][2][1] = a[0][4][1] = v2, a[0][2][2] = a[0][4][2] = v3,

a[0][2][3] = a[0][4][3] = v4, a[0][2][6] = a[0][4][6] = v0, a[0][3][7] = a[0][4][7] = v5,

a[0][2][8] = v6, a[0][3][8] = v7, a[0][4][8] = v6 + v7, a[0][2][10] = a[0][4][10] = v8,

a[0][3][14] = a[0][4][14] = v9, a[0][2][15] = a[0][4][15] = v10, a[1][2][0] = a[1][4][0] = v11,

a[1][2][1] = v12, a[1][3][1] = v13, a[1][4][1] = v12 + v13, a[1][2][2] = v14,

a[1][3][2] = v15, a[1][4][2] = v14 + v15, a[1][2][3] = v16, a[1][3][3] = v17,

a[1][4][3] = v16 + v17, a[1][2][6] = a[1][4][6] = v18, a[1][2][7] = a[1][4][7] = v19,

a[1][2][8] = a[1][4][8] = v20, a[1][2][9] = a[1][4][9] = v21, a[1][3][10] = a[1][4][10] = v22,

a[1][2][11] = a[1][4][11] = v23, a[1][3][13] = a[1][4][13] = v24, a[1][2][15] = a[1][3][15] = v25,

a[2][2][0] = v26, a[2][3][0] = v27, a[2][4][0] = v26 + v27, a[2][2][4] = a[2][4][4] = v28,

a[2][2][5] = v29, a[2][3][5] = v30, a[2][4][5] = v29 + v30, a[2][2][6] = a[2][4][6] = v31,

a[2][2][7] = v32, a[2][3][7] = v33, a[2][4][7] = v32 + v33, a[2][2][8] = v34, a[2][3][8] = v35,

a[2][4][8] = v34 + v35, a[2][2][14] = a[2][4][14] = v36, a[2][2][15] = a[2][3][15] = v37,

a[3][2][0] = a[3][4][0] = v0, a[3][2][1] = v38, a[3][3][1] = v39, a[3][4][1] = v38 + v39,

a[3][2][2] = v40, a[3][3][2] = v41, a[3][4][2] = v40 + v41, a[3][2][3] = v42, a[3][3][3] = v43,

a[3][4][3] = v42 + v43, a[3][2][7] = a[3][3][7] = v44, a[3][2][8] = a[3][4][8] = v45, a[3][2][9] = v46,

a[3][3][9] = v47, a[3][4][9] = v46 + v47, a[3][2][10] = a[3][4][10] = v48,

a[3][2][11] = a[3][4][11] = v49, a[3][2][13] = a[3][4][13] = v50, a[4][2][2] = a[4][4][2] = v51,

a[4][1][3] = v52, a[4][2][3] = v53, a[4][4][3] = v52 + v53, a[4][2][4] = a[4][4][4] = v54,

a[4][2][5] = a[4][4][5] = v55, a[4][1][6] = v56, a[4][2][6] = v57, a[4][3][6] = v58,

a[4][4][6] = v56 + v57 + v58, a[4][3][7] = a[4][4][7] = v59, a[4][1][8] = a[4][2][8] = v60,

a[4][1][11] = v61, a[4][2][11] = v62, a[4][4][11] = v61 + v62, a[4][1][12] = v63, a[4][2][12] = v64,

a[4][4][12] = v63 + v64, a[4][1][13] = v65, a[4][2][13] = v66, a[4][4][13] = v65 + v66,

v16 + v17 + v34 + v35 + v59 = 0, v8 + v16 + v23 + v26 + v27 + v57 + 1 = 0,

v24 + v27 + v28 + v60.

27 bit conditions can be derived from B, V and C

B, V and C

---- ---- 8E-F 51C- -E3F | ---- ---- 4--- ---- -1C- | 8E-F 9FCF DE3F 5FFF -E3F
---- 9483 2A7C D481 283E | --8- -2-- ---- 222- 8-8- | BCFF DCDF 7E7F FCBF BC3F
---- ---- 1E5F C--- 173F | -1-- -2-- ---- -3-- 8--- | 1C5F DC5F 5E7F D63F 173F
---- ---- 3E2F C-D- -F2F | -1-- ---- ---- 212- 8-C- | 3E2F DEDF 7E3F CEFF -F2F
---- ---- BE1C --83 BF3C | ---- ---- ---- A1-- --8- | BE1C 1E9F BE3F BFBF BF3C

38

	New MILP Modeling: Improved Conditional Cube Attacks to Keccak-based Constructions

