
New MILP Modeling: Improved Conditional
Cube Attacks on Keccak-based Constructions

Ling Song1,2,3, Jian Guo2, Danping Shi1,3, and San Ling2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, China

2 Nanyang Technological University, Singapore
3 Data Assurance and Communication Research Center,

Chinese Academy of Sciences, China

{songling,shidanping}@iie.ac.cn, {guojian,lingsan}@ntu.edu.sg

Abstract. In this paper, we propose a new MILP modeling to find
better or even optimal choices of conditional cubes, under the general
framework of conditional cube attacks. These choices generally find new
or improved attacks against the keyed constructions based on Keccak
permutation and its variants, including Keccak-MAC, KMAC, Keyak,
and Ketje, in terms of attack complexities or the number of attacked
rounds. Interestingly, conditional cube attacks were applied to round-
reduced Keccak-MAC, but not KMAC despite the great similarity be-
tween Keccak-MAC and KMAC, and the fact that KMAC is the NIST stan-
dard way of constructing MAC from SHA-3. As examples to demonstrate
the effectiveness of our new modeling, we report key recovery attacks
against KMAC128 and KMAC256 reduced to 7 and 9 rounds, respectively;
the best attack against Lake Keyak with 128-bit keys is improved from
6 to 8 rounds in the nonce-respected setting and 9 rounds of Lake Keyak
can be attacked if the key size is of 256 bits; attack complexity improve-
ments are found generally on other constructions. Our new model is also
applied to Keccak-based full-state keyed sponge and gives a positive
answer to the open question proposed by Bertoni et al. that whether
cube attacks can be extended to more rounds by exploiting full-state ab-
sorbing. To verify the correctness of our attacks, reduced-variants of the
attacks are implemented and verified on a PC practically. It is remarked
that this work does not threaten the security of any instance analyzed
in this paper.

Keywords: Keccak, SHA-3, KMAC, Keyak, Ketje, Full-state, Condi-
tional cube attack, MILP

1 Introduction

The Keccak hash function family [5] is a proposal designed by Bertoni et al. and
submitted to the SHA-3 competition [22] in 2008. It was selected as the final win-
ner of the competition in 2012, and subsequently standardized as SHA-3 [28] in
2015 by the National Institute of Standards and Technology of the U.S. (NIST).

It supports four digest sizes from {224, 256, 384, 512} to achieve different security
levels. The standard SHA-3 and the original Keccak design differ only in the
way how messages are padded, and hence share almost all security analysis.

Since the Keccak hash function was made public in 2008, it has attracted
intensive cryptanalysis from the research community in many different settings.
Against the three major properties of hash functions: collision, preimage and
second-preimage resistance, the best practical collision/preimage attacks are up
to 6 and 4 out of the total 24 rounds, respectively. By observing the low algebraic
degree of the Sbox in Keccak, Guo et al. [17] proposed the linear structures
for up to 3 rounds of Keccak, where the Sbox can be re-expressed as linear
transformations when the input is restricted to specific affine subspaces. In [25],
Song et al. found the first practical collision against 5-round Keccak-224, where
they used 3-round “connectors” based on the pioneer work by Qiao et al. [23]
and Dinur et al. [12].

There is also a line of research on analyzing the security of keyed construc-
tions based on Keccak-p — the Keccak permutations with variable width and
rounds. Message authentication codes are naturally among the first keyed con-
structions based on Keccak-p, e.g., Keccak-MAC [3] and KMAC [29]. In [13],
Dinur et al. proposed the first cube attack against Keccak-MAC for up to
7-round key recovery and 8-round forgery attacks. The attack complexities were
subsequently improved by Huang et al. using conditional cube attacks [19]. The
authenticated encryption schemes Keyak [7] and Ketje [6] are also based on
Keccak-p and its variants. Similar to the attacks against Keccak-MAC, the
conditional cube attack was applied to Keyak for up to 8 out of 12 rounds [19],
and to Ketje [15, 20] for up to 7 out of 13 rounds. Differently from the tradi-
tional way of reducing the strength of the design by round number, there is a
recent attack against full Ketje with tweaked rate size by Fuhr et al. [16]. Kra-
vatte [2] is a pseudorandom function by instantiating the Farfalle construction
with Keccak-p. Algebraic attacks on Kravatte, including cube attacks, which
take advantage of structural properties of Farfalle, were proposed in [9].

Following a similar design strategy used for Keccak-MAC, KMAC [29] is the
standard way of constructing MAC from SHA-3 by NIST. The major design dif-
ference is that, the master key is processed as an independent data block before
processing the message in KMAC, while it was processed together with some mes-
sage bits as the first data block in Keccak-MAC. Hence, at the point of inject-
ing the first message block, the internal state for KMAC is totally unknown, while
most bits of that for Keccak-MAC are known. Similar observations were discov-
ered and made use of in the so-called “Full-State Keyed Duplex (FKD)” [10,21]
to improve the efficiency of keyed sponge constructions. It is interesting to note,
despite the great similarity of Keccak-MAC and KMAC, there is no existing
cryptanalysis result against KMAC to the best of our knowledge. Also, for FKD
no cube attack is proposed by exploiting the full-state absorption, as stated by
the Keyak designers in [7]:

Whether these attacks can still be extended to more rounds by exploiting
full-state absorbing remains an open question.

2

Our contributions. Based on the previous works [15, 19, 20] on conditional
cube attacks against Keccak-based keyed constructions, we propose a new
Mixed integer linear programming modeling. While the length of cube tester
(the zero-sum property) is determined entirely by the algebraic degrees of the
underlying permutations, the conditional cube attack could only be improved by
finding cube variables with lesser conditions and keep the cube size large enough
meanwhile. Our new MILP modeling is able to capture the characteristics of 2
Keccak rounds, as well as the linear structures used in the first round. This
new modeling is generic and imposes no unnecessary conditions, hence could
be able to find optimal conditional cubes, in terms of cube size and number of
conditions, whenever possible. This comes with a few key techniques:

1. We are able to model 2 Keccak rounds together, i.e., Sbox layer of the first
round, the linear layer followed by the Sbox layer again of the second round.
To do this, we exhaustively list the propagations of variables through the
Sbox so to keep the output of the Sbox linear. The second round is dealt in
different ways.

– For normal Keccak-based constructions, we classify the linear layer in
the second round into two cases depending on whether there is spreading
of variables and model them each individually.

– For FKD, we describe column sums of the state after the Sbox layer of
the first round with inequalities. With this, the diffusion of the second
round can be described exactly with MILP.

With all these together, we are able to convert all the necessary constraints
in the search of conditional cubes into the MILP language.

2. For FKD, instead of the initial state, the internal state value just before the
first Sbox layer are used as (conditional) variables by setting the variables
in the column parity kernel. This simple change removes all the unnecessary
constraints brought up by the linear layer of the first Keccak round, and
enlarges the space covered by our search program.

We apply this new MILP modeling to Keccak-based keyed constructions
including Keccak-MAC, KMAC, Keyak, Ketje, and FKD and find new or
better results for each of the constructions. Specifically

– For KMAC, due to the fact that it processes the key as an independent block
compared with Keccak-MAC, it should provide better security and hence
becomes harder for the attacker. With the same security level of 128 bits,
we find attacks against KMAC128 reduced to 7 rounds, the same number of
rounds found for Keccak-MAC in previous works. For KMAC256 aiming for
256 bits security, we find attacks up to 9 rounds combining a technique to
invert the last round. Details are summarized in Table 1.

– General complexity improvements are also found on the attacks against
Keyak and Ketje. Notably, we improve the attack against Lake Keyak
with 128-bit keys from 6 to 8 rounds in the nonce-respected setting and 9
rounds of Lake Keyak can be attacked if the key size is 256. Details are
summarized in Table 2.

3

– Conditional cubes that fully linearize the first two rounds are targeted by
our modeling and the open question of FKD is answered by extending cube
attacks by one additional round.

Table 1: Summary of our attacks on KMAC, and Keccak-MAC with related works.
Target Key Size Capacity nr Rounds Complexity Reference
KMAC128 128 256 7 276

Section 6.1
KMAC256 256 512 9 2147

Keccak-MAC 128

256/512 7 272 [19]
768 7 275

[20]
1024 6 258.3

1024 6 240 Section 5.3
1024 7 2112.6 [8]

Table 2: Summary of our attacks on Keyak, Ketje and comparison with related
works

Target Key Size nr Rounds Complexity nonce-respected Reference

Lake Keyak

128 6 237 Yes [13]
128 8 274 No [19]
128 8 271.01 Yes

Section 6.2
256 9 2137.05 Yes

River Keyak 128 8 277 Yes Section 6.2

Ketje Major
128 7 283 Yes [20]
128 7 271.24 Yes Section 6.2

Ketje Minor
128 7 281 Yes [20]
128 7 273.03 Yes Section 6.2

Ketje SR v1
128 7 2115 Yes [15]
128 7 291 Yes Section 6.2

FKD[1600] 128 9 290 No Section 6.3

Lake Keyak 128 8 279.6 Yes
[8]Ketje Major 128 7 294 Yes

Ketje Minor 128 7 2113 Yes

Recently on ePrint, Bi et al. [8] revisited the cube-attack-like cryptanalysis
proposed by Dinur et al. [13], and obtained some new results for keyed Keccak
modes. In particular, 7 rounds of Keccak-MAC-512 can be attacked. In cube-

4

attack-like cryptanalysis, only the first round is linearized and the idea is to
choose cube variables such that they multiple with a small number of key bits
in the first round. Therefore, one only needs to pay attention to the diffusion
of the linear layer in the first round. Due to this, cube-attack-like cryptanalysis
performs well especially when the degrees of freedom is limited, e.g., Keccak-
MAC-512. The drawback is that cube-attack-like cryptanalysis does not work
for constructions with fully unknown internal state, e.g., KMAC and Keccak-
based FKD which are main targets of conditional cube attacks. Whereas, in
conditional cube attacks, one has to deal with two rounds in which more degrees
of freedom are needed to control the diffusion of cube variables. Also, finding
good conditional cubes is more challenging. However, if sufficient degrees of
freedom are available, conditional cube attacks can exploit this and provide
better attacks. Examples include attacks on all instances of Keyak, Ketje
Major and Ketje Minor.

Organization. The remaining part of the paper is organized as follows. Sec-
tion 2 gives a detailed description of Keccak-p based constructions, including
Keccak, KMAC, Keyak and Ketje, followed by an introduction in Section 3 to
related works. Our new MILP model is presented in Section 4 and 5, and applied
to the key recovery attacks of KMAC, Keyak, Ketje and full-state keyed sponge
(FKD) in Section 6. Finally, Section 7 concludes the paper. Some technical de-
tails of the attacks are postponed to Appendix.

2 Description of KMAC, Keyak and Ketje

2.1 Keccak-p

The Keccak-p permutations are specified with two parameters: the width of the
permutation in bits b and the number of rounds nr. The Keccak-p permutation
with nr rounds and width b is denoted by Keccak-p[b, nr], where nr is any
positive integer and b can be any value of the form 25 · 2l for l = 0, · · · , 6. The
b-bit state a for the Keccak-p[b, nr] permutation is seen as a three-dimensional
array of bits, namely a[5][5][w] with w = 2l. The expression a[x][y][z] with 0 ≤
x, y < 5, 0 ≤ z < w, denotes the bit with (x, y, z) coordinate. The coordinates
are always considered within modulo 5 for x and y and modulo w for z. The one-
dimensional portion a[∗][y][z] is called a row, a[x][∗][z] a column and a[x][y][∗] a
lane. A lane of the state is also denoted by a[x][y] by omitting the z index. At
lane level, the state a[x][y] becomes a 5 × 5 array as shown in Figure 1 with x
for the column index and y for the row index.

The Keccak-p[b, nr] permutation iterates an identical round function (up
to a difference of round-dependent constant addition) nr times, each of which
consists of five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with details as follows.

θ: a[x][y][z] = a[x][y][z] ⊕
⊕4

y=0 a[x − 1][y][z] ⊕
⊕4

y=0 a[x + 1][y][z − 1].
ρ: a[x][y][z] = a[x][y][(z − T (x, y))], where T (x, y)s are rotation constants.

5

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

Figure 1: Lane coordinates. Each square stands for a lane in the state.

π: a[y][2x + 3y][z] = a[x][y][z].
χ: a[x][y][z] = a[x][y][z] ⊕ ((a[x + 1][y][z] ⊕ 1) · a[x + 2][y][z]).
ι: a[0][0] = a[0][0] ⊕ RCir , where RCir is the ir-th round constant.

Here, ‘⊕’ denotes XOR and ‘·’ denotes logic AND. Expressions in the x and y
coordinates should, as mentioned, be taken in modulo 5 and expressions in the
z coordinate modulo w.

The Keccak-f family of permutations is a specification of the Keccak-p
family to the case of nr = 12+ 2l, that is Keccak-f [b] = Keccak-p[b, 12+2l].
The permutation underlying SHA-3 and KMAC is of width 1600 bits and 24 rounds,
i.e., Keccak-f [1600] = Keccak-p[1600, 24].

2.2 The Sponge Construction and KMAC

The sponge construction is a framework for constructing hash functions from
permutations, as depicted in Figure 2. The construction consists of three com-
ponents: an underlying b-bit permutation f , a parameter r called rate and a
padding rule. The capacity is defined as c := b − r. A hash function following
this construction takes in a message M as input and outputs a digest of d bits.
Given the message M , it is first padded and split into r-bit blocks. The b-bit
state is initialized to be all zeros. The sponge construction then proceeds in two
phases. In the absorbing phase, each message block is XORed into the first r
bits of the state, followed by application of the permutation f . This process is
repeated until all message blocks are processed. Then, the sponge construction
switches to the squeezing phase, where each iteration returns the first r bits of
the state as output and then applies the permutation f to the current state.
This repeats until d bits digest are obtained.

The Keccak hash function follows the sponge construction and takes Keccak-
f [1600] as the underlying permutation. In 2015, Keccak was formally stan-
dardized by NIST as SHA-3 [28], based on which more functions, including
cSHAKE128, cSHAKE256 and KMAC, are derived in the NIST Special Publi-
cation 800-185 [29].

KMAC (Keccak Message Authentication Code) is a keyed hash function with
a variable-length output, and can be used as a pseudorandom function. It has
two variants: KMAC128 and KMAC256, based on Keccak[c = 256](M, L) and

6

Figure 2: Sponge construction [4].

Figure 3: KMAC processing one message block

Keccak[c = 512](M, L), whose capacities are set to be 256 and 512 bits, re-
spectively. The input of KMAC consists of the key K, the main message M , the
output length L, the name string N = “KMAC” and the optional customization
bit string S of any length (including 0). Given these inputs, KMAC first processes
a block encoded from the public values N and S. Then it accepts a block of
the padded key, and absorbs message blocks from the third call of permutation
f onwards. Figure 3 demonstrates the procedure of KMAC processing one mes-
sage block. Different from Keccak, KMAC supports variable-length output, e.g.,
KMAC128 supports any output of length no less than 256 bits and at least 512
bits for KMAC256.

Keccak-MAC [3] is a Keccak-based MAC where Keccak directly takes
the combination of a key and a message, i.e., K||M as input. The key size is
assume to be 128 bits.

2.3 The Duplex Construction and Keyak, Ketje

The duplex construction [3] is closely related to the sponge construction, and
mostly serves authenticated encryption. Following variants of the duplex con-
struction, Keyak and Ketje [6, 7] are two Keccak-p based authenticated en-
cryption schemes. Figure 4 (a) shows the scheme of Keyak which employs an
almost full-state keyed duplex construction [10]. It consists of five instances. In

7

this paper, we focus on River Keyak and Lake Keyak which are based on
Keccak-p[800, 12] and Keccak-p[1600, 12] respectively. The capacity for both
versions is 256. Note that any attack on Lake Keyak is also applicable to the
rest three instances.

Figure 4: (a) Keyak and (b) Ketje

Figure 4 (b) displays the scheme of Ketje. It employs a twisted version of
Keccak-p, denoted by Keccak-p⋆, where Keccak-p⋆ = π◦Keccak-p ◦π−1.
Specifically, the underlying permutations f0 = Keccak-p[b, 12] and f1 = Keccak-
p[b, 1]. Ketje has four instances which are:

Name b ρ
Ketje JR 200 16
Ketje SR 400 32

Ketje Minor 800 128
Ketje Major 1600 256

In the old version of Ketje, Keccak-p, instead of Keccak-p⋆, is used.
Full-state Keyed Duplex (resp. Full-state Keyed Sponge) [10,21] is generalized

from duplex (resp. sponge) for better efficiency by allowing full-state absorption.
This idea has been applied to Keyak which absorbs message blocks of length
greater than r bits.

2.4 Notations

In this paper, r and c in bold denote the rate and capacity for the sponge
construction. b in bold stands for the width in bits of the permutation. The
nonlinear layer χ applying to each row is called an Sbox. Only one-block padded
messages are considered in our attacks for KMAC while there is no restriction on
message length for attacks on other instances.

8

3 Related Works and Motivations

3.1 Cube Attacks

The cube attack, a variant of higher order differential attacks, was introduced
by Dinur and Shamir [14] in 2009. It considers the output bit of a cipher as an
unknown Boolean polynomial f(k0, · · · , kn−1, v0, · · · , vm−1) where k0, · · · , kn−1
are secret input variables and v0, · · · , vm−1 are public input variables. Given a
monomial tI = vi1 · · · vid

, I = {i1, · · · , id} (d ≤ m), any Boolean polynomial f
can be written as the sum of terms which are supersets of tI and terms that are
not divisible by tI :

f(k0, · · · , kn−1, v0, · · · , vm−1) = tI · pSI
+ q(k0, · · · , kn−1, v0, · · · , vm−1),

where pSI
is called the superpoly of I in f . The basic idea of cube attacks and

cube testers [1] is that the sum of the outputs over the cube which contains
all possible values for vi1 , · · · , vid

which are called cube variables is exactly pSI
,

while this is a random function for a random polynomial. By carefully selecting
I, cube attacks aim to find a low-degree polynomial pSI

in secret variables, and
cube testers aim to distinguish pSI from a random function.

In [13], Dinur et al. applied cube attacks and cube testers to the keyed vari-
ants of Keccak, including Keccak-MAC, Keyak and a Keccak stream ci-
pher.

3.2 Conditional Cube Attacks

In [19], Huang et al. developed conditional cube testers for the keyed Keccak
sponge function, where the propagation of certain cube variables are controlled in
the first few rounds if some conditions are satisfied. There are two major advan-
tages of conditional cube testers over ordinary cube testers. One is to potentially
reduce the algebraic degree of the permutation under the conditions, and hence
the required cube dimension to carry out the attack can be reduced accordingly.
The other advantage of conditional cubes is that the conditions, which control
how the conditional cube variables propagate in the first few rounds, are related
to the initial state values, which may contain the key information. By observing
the cube sum of the final output, one may recover the key.

To proceed further, we recall the definition of conditional cube variables and
a theorem from [19] below.

Definition 1 ([19]). Cube variables that have propagation controlled in the first
round and are not multiplied with each other in the second round of Keccak
are called conditional cube variables. Cube variables that are not multiplied
with each other in the first round and are not multiplied with any conditional
cube variable in the second round are called ordinary cube variables.

Theorem 1 ([19]). For (n + 2)-round Keccak sponge function (n > 0), if
there are p (0 ≤ p < 2n + 1) conditional cube variables v0, · · · , vp−1, and q =

9

2n+1 −2p+1 ordinary cube variables, u0, · · · , uq−1 (If q = 0, we set p = 2n +1),
then the term v0v1 · · · vp−1u0 · · · uq−1 will not appear in the output polynomials
of (n + 2)-round Keccak sponge function.

Using conditional cube testers, better key recovery attacks were obtained for
Keccak-MAC and Keyak in [19]. Later, the attacks on Keccak-MAC were
further improved with better conditional cubes found by an MILP model in [20].

Attack procedure. In previous works [19,20], the number of conditional cube
variables is chosen to be 1, i.e., p = 1. Then, over a conditional cube with dimen-
sion d = 2n, the cube sum is zero for (n + 1)-round Keccak sponge function if
the conditions are satisfied. For such a conditional cube whose conditions involve
t-bit secret information, the (n + 1)-round attack follows a 2-step procedure.

1. Guess the t-bit secret information and set the conditions accordingly.
2. Query the 2d = 22n outputs and calculate the cube sum. If the cube sum is

zero, mark the guess as a candidate for the t-bit secret information.

The procedure costs a time and data complexity of 2d+t = 22n+t. If t is far less
than the output length, the t-bit secret information can be recovered uniquely.
Even though there may exist conditions that do not involve any secret infor-
mation, as can be seen, only conditions involving secret information affect the
complexities. In the following, t is referred to the number of involved key infor-
mation.

3.3 Linear Structures

In the cube attacks of keyed variants of Keccak [13], Dinur et al. proposed a
method for linearizing the first round of Keccak-f . Inspired by this method,
Guo et al. [17] developed a technique named linear structure which allows lin-
earization of Keccak-f for up to 3 rounds. Based on the linear structures, a
series of new zero-sum distinguishers of Keccak-f were proposed, as well as
several new preimage attacks against Keccak.

Let a[x][y], x = 0, 2, y = 0, 1, 2, 3 be variables and a[x][4] =
⊕3

y=0 a[x][y]⊕αx

with any constant αx so that variables in each column sum to a constant. The
core idea is to reduce the diffusion effect of θ. With all columns sum to constants,
the variables do not propagate through θ. Note θ is the only mapping from λ with
diffusion property, so λ does not diffuse the variables under this setting. Figure 5
shows how the variables influence the internal state under the transformation of
Keccak-f round function R = ι ◦ χ ◦ π ◦ ρ ◦ θ. All bits of the lanes with orange
slashes have algebraic degree 1, those lanes with orange dots have algebraic
degree at most 1 (meaning it is either a variable of degree 1 or a constant), and
the other lanes are all constants where gray, light gray and white bits stand
for values 1, 0, and arbitrary constants, respectively. Note the algebraic degrees
remain through the linear operations θ, ρ, π, and ι. The only non-linear operation
is the χ which increases the algebraic degree through the AND operation of two

10

neighboring bits. As shown in the figure, all variables before χ are not adjacent to
each other, which makes sure that the algebraic degree of the state bits remains
at most 1 after one round function R.

Moreover, bit 1 (0) on the left (right) of the variable helps to restrict the
diffusion of variables through χ, while an unknown neighboring constant diffuses
the variable in an uncertain way, as denoted by lanes with orange dots where
the variable has an uncertain coefficient. This structure has degrees of freedom
512. Also, it can be regarded as a cube of dimension 512 that linearizes the first
round.

0,4 0,4

0,3 0,3

0,2 0,2

0,1 0,1

0,0 0,0

1,4 1,4

1,3 1,3

1,2 1,2

1,1 1,1

1,0 1,0

2,4 2,4

2,3 2,3

2,2 2,2

2,1 2,1

2,0 2,0

3,4 3,4

3,3 3,3

3,2 3,2

3,1 3,1

3,0 3,0

4,4 4,4

4,3 4,3

4,2 4,2

4,1 4,1

4,0 4,0

θ π ◦ ρ

0,0 0,0

0,1 0,1

0,2 0,2

0,3 0,3

0,4 0,41,0 1,0

1,1 1,1

1,2 1,2

1,3 1,3

1,4 1,42,0 2,0

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,43,0 3,0

3,1 3,1

3,2 3,2

3,3 3,3

3,4 3,44,0 4,0

4,1 4,1

4,2 4,2

4,3 4,3

4,4 4,4

ι ◦ χ

Figure 5: 1-round linear structure of Keccak-p with the degrees of freedom up to
512, with bits in orange dots of degree at most 1, and gray, light gray and white bits
being values 1, 0, and arbitrary unknown constants, respectively.

3.4 Motivations

Through the linear structure, the diffusion effect of variables through χ is illus-
trated, which enables us to give a full description of χ using MILP. Then we
consider the possibility of building a new MILP model for searching conditional
cube attacks for Keccak-p based constructions, especially for finding optimal
conditional cubes for constructions with fully unknown internal state.

Impact of p. If the number of conditional cube variables p increases by 1, the
dimension d of the required cube reduces by 1 but t increases by at least 1. So
there is no need to have more than one conditional cube variable for most cases.
Therefore, we set p = 1 in our attacks on KMAC, Keyak and Ketje.

However, multiple conditional cube variables may be useful for analyzing
Full-state Keyed Sponge (FKS) or Full-state Keyed Duplex (FKD) [10,21] where
full-state message absorption is used. Due to full-state degrees of freedom, a large
number of conditional cube variables may exist and even without any condition.
The following table shows the comparison between two extreme cases where
p = 1 and p = 2n + 1, latter of which means all cube variables are conditional
cube variables and thus the first two rounds are fully linearized. If p is large
enough and 2d+t = 22n+1−p+1+t < 2|K|, the cube attack can be extended by one
round.

For clarity, we define two types of conditional cubes as follows.

11

p Dimension nr rounds with zero sum
1 2n n + 1

2n + 1 2n + 1 n + 2

Type I Among all cube variables, there is only one conditional cube variable.
Type II All cube variables are conditional cube variables, i.e., all the cube

variables do not multiply with each other in the first two rounds.

In [7], it is stated that whether cube attacks can be extended to more rounds
by exploiting full-state absorbing remains an open question. In this paper, we
try to answer the open question by exploiting Type II cubes.

4 Modeling Each Step with MILP

Mixed integer linear programming (MILP) is a general mathematical tool, which
takes an objective function and a system of linear inequalities with respect to
real numbers as input, and aims to search for an optimal solution which not only
satisfies all the inequalities but also minimizes/maximizes the objective function.

In this section, through a 1-round linear structure of KMAC we first show where
the conditions come from, and formulate the time complexity of conditional cube
attacks. Then we describe each step of the Keccak-p round function using
inequalities. The model for searching conditional cubes will be introduced in the
next section. Note that our modeling is described under the assumption that the
internal state of the target constructions is fully unknown. The difference of the
model for constructions with partially known internal state will be discussed in
Section 5.3.

4.1 A 1-Round Linear Structure of KMAC

Suppose the internal state before processing messages is denoted by k[x][y],
0 ≤ x, y < 5. For convenience, the r-bit message block is denoted as a[x][y],
0 ≤ x, y < 5, where the last c bits are set to 0. Figure 6 provides a 1-round
linear structure of KMAC128 and shows the transformation of the internal state
under the first round function R after absorbing the message block. Following
the same notations in Section 3.3, lanes with orange slashes denote variables,
lanes with orange dots have algebraic degree at most 1, and bits in white lanes
are constants. Here, the first four lanes of the first and the third columns of
a[x][y] are set to be variables such that the sum

⊕3
y=0 a[x, y] equals to certain

constants for x = 0, 2 . The capacity of KMAC128 consists of four lanes, so these
lanes can not be chosen as variables. As can be seen from Figure 6, the output
of the first round function is linear since there are no adjacent variables at the
input of χ. This 1-round linear structure of KMAC128 has a degree of freedom up
to 384. A similar 1-round linear structure can also be constructed for KMAC256.

12

As can be seen, the first round can be linearized without any condition on
constants by just excluding neighboring variables before χ. Let us consider con-
structing a conditional cube, where at least one variable should be selected such
that it is not multiplied with any other variables in the second round, while
there is no such restriction for the rest variables. Specifically, if an input bit of
the χ in the second round contains the conditional variable, its two neighboring
bits should be constants. According to the property of Keccak-p (specifically
the θ), each neighboring bit is calculated from 11 output bits of the first round.
These 11 bits may be variables or constants, depending on the actual constant
values involved in the χ of the first round.

0,4 0,4

0,3 0,3

0,2 0,2

0,1 0,1

0,0 0,0

1,4 1,4

1,3 1,3

1,2 1,2

1,1 1,1

1,0 1,0

2,4 2,4

2,3 2,3

2,2 2,2

2,1 2,1

2,0 2,0

3,4 3,4

3,3 3,3

3,2 3,2

3,1 3,1

3,0 3,0

4,4 4,4

4,3 4,3

4,2 4,2

4,1 4,1

4,0 4,0

θ π ◦ ρ

0,0 0,0

0,1 0,1

0,2 0,2

0,3 0,3

0,4 0,41,0 1,0

1,1 1,1

1,2 1,2

1,3 1,3

1,4 1,42,0 2,0

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,43,0 3,0

3,1 3,1

3,2 3,2

3,3 3,3

3,4 3,44,0 4,0

4,1 4,1

4,2 4,2

4,3 4,3

4,4 4,4

ι ◦ χ

Figure 6: 1-round linear structure of KMAC128 with the degrees of freedom up to 384,
with bits in orange dots of degree at most 1, light gray and white bits being values 0,
and arbitrary constants, respectively.

Unlike the linear structure proposed in [17], all the constants before χ of the
first round are not controllable because of the unknown initial state. Hence, it
is impossible to determine how the variables are propagated due to the logic
AND, where ANDing with 1 allows propagation, and no propagation otherwise.
This makes it hard to track the positions of all variables in the second round
deterministically, hence increases the difficulty to find conditional cubes fulfilling
the requirement that there is no multiplication (a.k.a. AND operation) with any
conditional cube variables in the second round. However, if part of constants
meets certain conditions, then it can be guaranteed that the conditional cube
variable do not multiply with any variable in the second round and thus con-
ditional cubes can be constructed. This is where bit conditions come from for
conditional cubes.

Given a 2n-dimensional conditional cube with one conditional cube variable
and t bit conditions, it requires a time complexity of 22n+t to recover t bits of
the internal state for an (n+1)-round Keccak-p based construction. Hence the
overall complexity to recover the internal state is around ⌈ |b|

t ⌉ · 22n+t. Once the
internal state is recovered, the key can be computed directly. It is inferred that
the smaller t is, the lower the time complexity would be. So the aim of our new
MILP model is to find conditional cubes with minimal bit conditions, meanwhile
keeping the cube dimension large enough.

13

4.2 Modeling the Non-Linear Layer

The first observation before giving the MILP model is that, although one input
bit to the first χ is calculated from 11 bits of the initial state, it is unnecessary
for us to start from the initial state, as there is a bijective relation (the λ)
between it and the state just before the χ. In the meanwhile, the 1-round linear
structure could be started from the middle as well. Hence, instead of trying to
derive everything from the very beginning, we start from the state just before
χ. This simple yet crucial observation will reduce the complexity of the problem
significantly, as will be seen later.

In order to describe our MILP model, more notations are needed. Recall that
the message block is denoted by a, and b = λ(a), and k stands for the secret
internal state. Let k′ = λ(k). Thus, b⊕k′ is the input of the first χ and c indicates
the output. The tuple (x, y, z) denotes the coordinates of one bit in the state.
Additional notations A, B, C, V and H are used for the modeling. Specifically,
A[x][y][z] (B[x][y][z] or C[x][y][z]) is 1 if a[x][y][z] (b[x][y][z] or c[x][y][z]) is a
variable and 0 otherwise, while V [x][y][z] = 1 indicates a bit condition that
b[x][y][z] + k′[x][y][z] should be fixed to H[x][y][z]. The number of bit conditions
is denoted by t.

Note, we are to model two rounds of χ. Without losing any degree of freedom,
we do it in two steps by modeling the first χ without imposing any additional
condition, and the second χ using the output from our modeling of the first χ,
i.e., nested modeling. This may cost higher search complexity compared with
previous works at first glance, we will see the effectiveness and power later. Due
to the generality of our modeling, we could find optimal solutions whenever
possible.

Although χ is the only non-linear operation of Keccak-p, modeling it into
inequalities is non-trivial. Let us look at the computation of one bit through χ.
According to the algebraic expression of χ, c[x][y][z] = b[x][y][z] ⊕ (1 ⊕ b[x +
1][y][z]) · b[x + 2][y][z]. For a conditional cube, the output bits of the first round
should be linear, which can be guaranteed by the constraint that variables do not
appear in adjacent input bits, namely A[x][y][z] + A[x + 1][y][z] ≤ 1. However,
the value of input constants influences the diffusion of variables through χ and
further influences the second round, as shown in Figure 5. However, as we find
out, the diffusion patterns of variables through χ fall in a smaller than expected
set as listed in Table 3, which makes the modeling of all cases possible without
imposing any additional conditions.

Now all patterns of the diffusion effect of χ are included in Table 3 and forms
a finite set of discrete points in R8. To generate inequalities describing this set,
as suggested by Sun et al. in [26], we first generate its convex hull. The convex
hull of a set Q of discrete points in Rn is the smallest convex set that contains
Q and can be described as a set of inequalities. The convex hull of a set in Rn

can be generated by the inequality_generator() function in SageMath system.
Usually, the number of inequalities returned by inequality_generator() is very
large. However, a minimal set of inequalities can be selected using an additional

14

Table 3: Diffusion of variables through χ, where coordinates [y][z]s are omitted and
symbol ‘*’ denotes arbitrary value.

B[x] B[x + 1] B[x + 2] V [x + 1] V [x + 2] H[x + 1] H[x + 2] C[x]
0 0 0 * * * * 0
0 0 1 0 0 * * 1
0 0 1 1 0 1 * 0
0 0 1 1 0 0 * 1†

0 1 0 0 0 * * 1
0 1 0 0 1 * 0 0
0 1 0 0 1 * 1 1
1 0 0 * * * * 1
1 0 1 0 0 * * 1
1 0 1 1 0 * * 1

† The case in this line can be omitted since it costs a bit condition
but still diffuses the variable from b[x+2][x][y] to c[x][y][z]. If this
line is deleted, one less inequality is required to describe χ.

algorithm [24]. The reduced set of inequalities describing the diffusion effect of
χ is given in Table 4.

Table 4: Inequalities modeling the non-linear operation χ in the first round, where
coordinates [y][z]s are omitted.

−B[x] − B[x + 1] ≥ −1
−B[x] + C[x] ≥ 0

−B[x + 2] − V [x + 2] ≥ −1
−B[x + 1] − V [x + 1] ≥ −1

−B[x] − B[x + 1] − H[x + 2] + C[x] ≥ −1
B[x] − V [x + 1] − H[x + 1] − C[x] ≥ −2
B[x] − V [x + 2] + H[x + 2] − C[x] ≥ −1
B[x] + B[x + 1] + B[x + 2] − C[x] ≥ 0

−B[x + 1] − B[x + 2] + V [x + 1] + V [x + 2] + C[x] ≥ 0
−B[x + 1] − B[x + 2] + V [x + 2] + H[x + 1] + C[x] ≥ 0

4.3 Modeling the Linear Layer

The linear layer λ consists of three steps: θ, ρ and π, the latter two of which just
change the positions of the state bits. Hence, we focus on modeling θ. θ adds

15

two columns to a bit. If both columns have even parity, then the bit does not
change at all after θ. If all columns have even parity, then it is said that the state
is in the column parity kernel (CP-kernel). While the original column parity is
defined on values, in the context of cube attacks, it refers to activeness.

We introduce F [x][z] and G[x][z] to describe the parity of a column in the
state.

– The column is not active, i.e., there is no variable: F [x][z] = 0, G[x][z] = 0;
– The column has one variable: F [x][z] = 0, G[x][z] = 1;
– The column has more than one variable and even parity: F [x][z] = 1, G[x][z] =

0;
– The column has more than one variable and odd parity: F [x][z] = 0, G[x][z] =

1.

As can be seen, G[x][z] = 1 indicates that the column sum contains variables,
and only constants otherwise. If G[x][z] = 0 for all columns, then the cubes
lies in the CP-kernel. F [x][z] = 1 means that the column contains variables but
the variables sum to certain constant, by consuming one bit degree of freedom.
Suppose A[x][y][z], y = 0, · · · , 4 stands for the activeness of column (x, z), then
the patterns of A[x][y][z], y = 0, · · · , 4 and F [x][z], G[x][z] fall into a set of
1 + 5 + (32 − 6) × 2 = 58 discrete points in R7. The inequalities model this set
are derived and listed in Table 5.

Table 5: Inequalities modeling the parity of a column

−F [x][z] − G[x][z] ≥ −1
−A[x][0][z] + F [x][z] + G[x][z] ≥ 0
−A[x][1][z] + F [x][z] + G[x][z] ≥ 0
−A[x][2][z] + F [x][z] + G[x][z] ≥ 0
−A[x][3][z] + F [x][z] + G[x][z] ≥ 0
−A[x][4][z] + F [x][z] + G[x][z] ≥ 0

A[x][0][z] + A[x][1][z] + A[x][2][z] + A[x][3][z] + A[x][4][z] − 2F [x][z] − G[x][z] ≥ 0

The activeness of the output of θ now can be calculated from A[x][y][z]
and G[x][z]. Assume B[x][y][z] denotes the activeness of θ’s output (elsewhere
B[x][y][z] denotes the activeness of the output of the linear layer). Then B[x][y][z]
= 1 if any of A[x][y][z], G[x−1][z] and G[x+1][z−1] is 1; otherwise B[x][y][z] = 0.
This can be modeled by the following inequalities.

B[x][y][z] − A[x][y][z] ≥ 0,

B[x][y][z] − G[x − 1][z] ≥ 0, B[x][y][z] − G[x + 1][z − 1] ≥ 0,

A[x][y][z] + G[x − 1][z] + G[x + 1][z − 1] − B[x][y][z] ≥ 0. (1)

16

If only cubes in the CP-kernel are of interest, set G[x][z] = 0 and inequalities
in (1) can be removed. In this way, the model of the linear layer is simplified.

5 Modeling the Search for Conditional Cubes

This section presents a full model for searching conditional cubes of both types.
The conditional cube requires conditional cube variables not to multiply with
any variable even in the second round, which means their neighboring bits before
the second χ should be constants. For the Type I, we could fix the position of
the conditional cube variable and focus only on it and its neighboring bits.
Whereas for Type II, attention should be paid to the diffusion of all variables
in the second round. Due to this difference for the second round, our model for
searching conditional cubes of both types will be constructed separately.

5.1 Model for Searching Conditional Cubes of Type I

Modeling the second round The neighboring bits of the conditional cube
variable before the second χ should be constants. Suppose these neighboring
bits are denoted by si. According to the round function R, each neighboring
bit si is calculated from 11 bits of c[x][y][z]. There are two cases depending on
whether there is any variable among the 11 bits:

Case 1 For these 11 bits, none of them are variables, i.e., C[x][y][z] = 0;
Case 2 There are variables among the 11 bits and the XOR of these 11 bits

form a linear equation which consumes one bit degree of freedom.

We introduce one more dummy variable Si for si to indicate which case
happens, where Si = 0 for Case 1 and Si = 1 for Case 2. Case 1 is simple,
while for Case 2 one needs to pay attention to “uncertain propagations” or
lanes with orange dots in Figure 6 since no exact information can be derived
from a linear equation containing variables with uncertain coefficients. So once
Case 2 happens, additional conditions should be imposed to avoid uncertain
propagations.

Similarly, all possible patterns of Si and its related bits can be enumerated,
see Table 6 for details and the set of inequalities are provided in Table 7. Specif-
ically, if c[x][y][z] is required in calculating si, the inequalities in Table 7 are
added to the MILP model.

Modeling the search for conditional cubes The following constraints are
generated for searching conditional cubes.

1. Constraints for the linear layer of the first round, according to Section 4.3;
2. Constraints for the nonlinear layer of the first round, according to Table 4;

17

Table 6: Influence of conditional cube variables in the second round. Symbol ‘*’ de-
notes arbitrary value.

Si B[x][y][z] B[x + 1][y][z] B[x + 2][y][z] V [x + 1][y][z] V [x + 2][y][z]
0 * * * * *
1 0 0 0 * *
1 1 0 0 * *
1 1 0 1 1 0
1 0 0 1 1 0
1 0 1 0 0 1

Table 7: Inequalities modeling the non-linear operation χ in the second round

−Si − B[x + 1][y][z] − B[x + 2][y][z] ≥ −2
−Si − B[x + 1][y][z] + V [x + 2][y][z] ≥ −1
−Si − B[x + 2][y][z] + V [x + 1][y][z] ≥ −1
−Si − B[x + 1][y][z] − V [x + 1][y][z] ≥ −2
−Si − B[x + 2][y][z] − V [x + 2][y][z] ≥ −2

−Si − B[x][y][z] − B[x + 1][y][z] ≥ −2

3. Constraints for the conditional cube variable in the first round. If B[x][y][z]
indicates a conditional cube variable, then the neighboring bits should be
fixed constants such that it does not diffuse to other positions. It requires

B[x − 1][y][z] = 0, B[x + 1][y][z] = 0,

V [x − 1][y][z] = 1, V [x + 1][y][z] = 1.

H[x − 1][y][z] = 1, H[x + 1][y][z] = 0. (2)

4. Constraints for the conditional cube variable in the second round, according
to Table 7;

5. Constraint for the dimension. If a 2n-dimensional conditional cube is desired,
then set ∑

A[x][y][z] −
∑

F [x][z] −
∑

Si = 2n, (3)

where
∑

F [x][z] +
∑

Si is the number of consumed degrees of freedom.
6. Objective. The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (4)

Besides, there may exist additional constraints. For example, the last c bits and
some padded bits cannot be variables. When all constraints are generated, an
MILP solver is invoked to find a solution that minimizes the objective.

18

5.2 Model for Searching Conditional Cubes of Type II

Modeling the second round For Type II conditional cubes, all the cube
variables should not multiply with each other in the second round. Therefore
the diffusion of each cube variable in the second round becomes indispensable
and must be modeled. Beside the activeness of the input of the second round,
the diffusion of cube variables also depends on the column parities which is the
core part to model.

Recall that we start from b, the input of χ in the first round and c = χ(b).
Let d = λ(c) by omitting the ι step of the first round, and D[x][y][z] denotes
the activeness of d. From the algebraic expression of χ, namely, c[x][y][z] =
b[x][y][z] ⊕ (1 ⊕ b[x + 1][y][z]) · b[x + 2][y][z], it is known that if B[x][y][z] = 1,
then C[x][y][z] = 1. If the column (x, z) of b has even parity, then in what
circumstance the column (x, z) of c also has even parity? This is what we need
to explore. Note that, columns with even parity do not diffuse to other columns,
which is beneficial to the linearization of the second round.

Suppose G1[x][z] = 1 means the sum of column (x, z) in b contains variables
and G1[x][z = 0] otherwise. Let G2[x][z] play the same role for c. With G2[x][z]
and C[x][y][z], the linear layer in the second round can be modeled just as the
linear layer in the first round. To make the second round linear, we only need to
add the constraint D[x][y][z] + D[x + 1][y][z] ≤ 1. So the only problem unsolved
is to model the column parity of c.

The column parity G2[x][z] of c is influence by three columns of b at (x, z), (x+
1, z) and (x+1, z). This is the most complex relation to be modeled in this paper.
Specifically, variables at position (x, y, z) of b propagate to position (x, y, z) of c
for sure; variables at positions (x + 1, y, z) and (x + 2, y, z) of b may diffuse to
position (x, y, z) of c. The column (x, z) of c has even parity, i.e., G2[x][z] = 0
only if all the following three conditions hold.

– G1[x][z] = 0.
– No variable in column (x + 1) of b propagates to column (x, z) of c.
– (a) No variable in column (x + 2) of b propagates to column (x, z) of c, or

(b) all the variables in column (x + 2) of b propagate to column (x, z) of c
and G1[x + 2][z] = 04.

In the following, the three conditions will be analyzed in detail individually.

1. The effect of variables in column (x, z). C[x][z] = 1 if B[x][z] = 1, so
G2[x][z] = 1 if G1[x][z] = 1.

2. The effect of variables in column (x + 1, z) of b depends on conditions in
column (x + 2, z). If there is any uncertain propagation of variables from

4 The reason why the modeling for the effects of column (x+2, z) and column (x+1, z)
are different lies in the following fact. If the constant on the right side of a cube
variable consumes a condition, we can constrained the constant to 0 directly, since 1
is worse under all circumstance as shown in Table 3. On the contrary, if the condition
is imposed to the constant on the left side of a cube variable, the constant can be
restricted to either 0 or 1 and no one has an absolute advantage over the other.

19

column (x + 1, z), G[x][z] = 1. Additionally, P [x][y][z] is introduced where
P [x][y][z] = 1 if the variable at (x + 1, y, z) is propagated to (x, y, z) with an
uncertain coefficient and P [x][y][z] = 0 otherwise. The relation of P [x][y][z]
and B[x+1][y][z], V [x+2][y][z] is described in the following table. The effect

P [x] B[x + 1] V [x + 2] inequalities
0 0 * −P [x] + B[x + 1] ≥ 0
1 1 0 −P [x] − V [x + 2] ≥ −1
0 1 1 P [x] − B[x + 1] + V [x + 2] ≥ 0

of column (x+1, z) to column (x, z) is denoted by M [x][z] where M [x][z] = 1,
i.e. there exists uncertain propagation of variables from column (x + 1, z) if
any P [x][y][z], y = 0, · · · , 4 is 1. This can be described with inequalities
in (5).

M [x][z] − P [x][y][z] ≥ 0, y = 0, · · · , 4.∑
y

P [x][y][z] − M [x][z] ≥ 0. (5)

3. The effect of variables in column (x + 2, z) of b is relatively complicated. As
shown previously, there are two cases that column (x+2, z) of b does not af-
fect G2[x][z]. To identify these two cases, we introduce Q1[x][y][z], Q2[x][y][z],
N1[x][z], N2[x][z] and N3[x][z]. Q1[x][y][z] and N1[x][z] play similar roles as
P [x][y][z] and M [x][z], i.e., N1[x][z] = 1 if there is uncertain propagation
from column (x + 2, z).
Q2[x][y][z] = 1 if the variable at (x+2, y, z) of b is propagated to (x, y, z) of c
for sure. Let N2[x][z] = 0 if and only if

∑
y Q2[x][y][z] = 0. Let N3[x][z] = 0

if
∑

y Q2[x][y][z] =
∑

y B[x + 2][y][z], i.e., all variables in column (x + 2, z)
of b are diffused to column (x, z) of c.
Q1[x][y][z] and Q2[x][y][z] can be modeled as shown in the following table.
The relation between N1[x][z], N2[x][z] and Q1[x][y][z], Q2[x][y][z] can also

Q1[x] Q2[x] B[x + 2] V [x + 1] H[x + 1] inequalities
0 0 0 0 * −Q1[x] − Q2[x] + B[x + 2] ≥ 0
0 0 0 1 * Q1[x] − B[x + 2] + V [x + 1] ≥ 0
1 0 1 0 * −Q1[x] − B[x + 2] − V [x + 1] ≥ −1
0 1 1 1 0 Q1[x] + Q2[x] − B[x + 2] − H[x + 1] ≥ 0
0 0 1 1 1 −Q2[x] − H[x + 1] ≥ −1

be described in the same way as in (5). To model N3[x][z], a large integer I
is used to express the IF-ELSE logic that N3[x][z] = 0 if

∑
y Q2[x][y][z] =∑

y B[x+2][y][z] as long as I is larger than 5, say 100. The exact inequalities

20

are shown in (6).∑
y

Q2[x][y][z] −
∑

y

B[x + 2][y][z] + I · N3[x][z] ≤ I − 1,

∑
y

Q2[x][y][z] −
∑

y

B[x + 2][y][z] + I · N3[x][z] ≥ 0. (6)

According to our model, (N1[x][z], N2[x][z], N3[x][z]) = (0, 0, ∗) indicates the
first case, and (N1[x][z], N2[x][z], N3[x][z]) = (0, 1, 0) stands for the second
case.

As can be derived from the above analysis, when (a) (M [x][z], N1[x][z],
N2[x][z], N3[x][z]) = (0, 0, 0, ∗), or (b) (M [x][z], N1[x][z], N2[x][z], N3[x][z]) =
(0, 0, 1, 0), and G1[x + 2][z] = 0, G2[x][z] = G1[x][y][z]; otherwise G2[x][z] is 1.
The inequalities in Table 8 can be used to model this property.

Table 8: Inequalities modeling the column parity of the input of the second round.

G2[x][z] − G1[x][z] ≥ 0
G2[x][z] − N1[x][z] ≥ 0
G2[x][z] − M [x][z] ≥ 0

−G2[x][z] + G1[x][z] + M [x][z] + N1[x][z] + N2[x][z] ≥ 0
G2[x][z] − G1[x + 2][z] − N2[x][z] ≥ −1

G2[x][z] − N2[x][z] − N3[x][z] ≥ −1
−G2[x][z] + G1[x][z] + G1[x + 2][z] + M [x][z] + N1[x][z] + N3[x][z] ≥ 0

Modeling the search for conditional cubes After introducing special tech-
niques for modeling the column parity of the state in the second round, we can
build the whole model for searching conditional cubes that linearize the first two
rounds. Note that we start from the input of χ in the first round.

1. Describe the column parity of b using G1[x][z], F1[x][z], according to Table 5.
2. Constraints for χ in the first round, according to Sect. 4.2;
3. Constraints for modeling the column parity of c, according to this subsection.
4. Constraints for the linear layer in the second round, according to Sect. 4.3;
5. Constraints for χ in the second round, i.e., D[x][y][z] + D[x + 1][y][z] ≤ 1.
6. Constraint for the dimension. If a (2n + 1)-dimensional conditional cube is

desired, then set ∑
C[x][y][z] −

∑
F1[x][z] = 2n + 1, (7)

where
∑

F1[x][z] is the number of consumed degrees of freedom.

21

7. Objective. The objective is to minimize bit conditions. That is

Minimize :
∑

V [x][y][z]. (8)

5.3 Discussion and Comparison

Model for constructions with partially known internal state While min-
imal conditions means optimal conditional cubes for Keccak-p-based construc-
tion with fully unknown internal state, such as KMAC, it is not the case if the
internal state is partially known even though the number of conditions involving
the key is still minimized. Note that the conditions are imposed on certain input
bits of the first χ and each bit involves some key information. For Keccak-
p-based construction with partially unknown internal state, t bit conditions do
not necessarily contain t-bit key information. For example, in the 64-dimensional
cube of Ketje SR v1, there are 27 bit conditions all of which involve the key
but contain only 26-bit information of the key due to dependency.

Comparison with the existing MILP model Recently, Li et al. proposed an
MILP model for searching cubes of Type I [20]. Their model sets every b[x][y][z]
to a constant if it relates to the neighboring bits of the conditional variable. In
our models, we incorporate the full diffusion effect of χ and hence consider a
broader class of conditional cubes. In particular, b[x][y][z] can be a variable even
if it relates to the neighboring bits of the conditional variable. As a result, more
conditional cubes can be found with a greater range of dimension. As demon-
strated in Table 9, better conditional cubes are found using our model under
the same setting. In particular, given the dimension, our model returns condi-
tional cubes with much fewer bit conditions. For example, the 32-dimensional
conditional cube of Keccak-MAC-512 in [20] requires 24 bit conditions involv-
ing the key, while using our model, the number of bit conditions can be only
3 (n = 5 and t = 3), which reduces the time complexity of attacking 6-round
Keccak-MAC-512 from 258.3 [20] to ⌈ |k|

t ⌉ · 22n+t = ⌈ 128
3 ⌉ · 225+3 ≈ 240. Our

cube of Keccak-MAC-512 is provided in Table 12. Moreover, our models cover
both types of conditional cubes while Li et al.’s model aims for only Type I.

6 Applications

In this section, we apply our models to conditional cubes attacks on KMAC, Keyak
and Ketje where Type I cubes are used. In order to extend the cube attacks on
Keccak-p based constructions where full-state absorption is used, we exploit
Type II cubes.

6.1 Conditional Cube Attacks on KMAC

In this subsection, techniques described in Section 4 and 5.1 are used to find
conditional cubes for KMAC, based on which key recovery attacks can be mounted
on 7-round KMAC128 and 9-round KMAC256 respectively.

22

Table 9: Comparison with the previous MILP model on Keccak-MAC with the
conditional cube placed at (2, 0, 0) and (2, 1, 0). The number of bit conditions only
takes those involving key bits into account.

Variant Dimension #Conditions Reference

Keccak-MAC-384
65 8 [20]
97 8

This
65 2

Keccak-MAC-512
32 24 [20]
32 3

This
50 24

Cube attack on KMAC128 For KMAC128, the capacity is 256, which covers only
four lanes. By setting two bits in a[x][y][z], 0 ≤ y < 4 as the conditional cube
variables5, our MILP model could find large conditional cubes with 4 bit condi-
tions which are least possible conditions. To make the attack clear, a toy cube
of KMAC is introduced first, as shown in Table 10. This cube is selected from
the CP-kernel and has dimension 16, and a[0][0][0], a[0][1][0] are chosen to be
the conditional cube variable. The 4-bit conditions can be derived directly from
the positions of the conditional cube variable since only the conditional cube
variable contributes to bit conditions in this case. Note that, b = λ(a) and the
relation between a[x][y][z] and b[x][y][z] is not expressed explicitly in the bit
conditions. The remaining 15 ordinary cube variables can be extracted from
A[x][y][z], 0 ≤ x, y < 5, 0 ≤ z < 64 which are represented as a 5 × 5 array of
lanes and labeled as ‘Positions of cube variables’ in the table. In the remainder of
the paper, the bit conditions are omitted if they come only from the conditional
cube variable.

For KMAC128, 64-dimensional conditional cubes are enough for attacking 7
rounds of KMAC128. In the following, multiple 64-dimensional conditional cubes
are used for the recovery of the internal state.

1. Recover t bits of the internal state. Given a 64-dimensional conditional
cube with t bit conditions where t = 4 for KMAC128, the t bits of the secret
internal state k′[x][y][z] involving in the conditions are guessed and then
the constant part of the messages is chosen such that the t bit conditions
are satisfied. The right guess is detected by assigning all possible values to
each cube variable and checking the sum of all outputs under the guess. If
the cube sum is zero, then the corresponding guess is the right one with
overwhelming probability and then the t bits of the secret internal state are
recovered. The time complexity for recovering the t bits of the internal state
is 264+t = 268.

5 There is an exception that no conditional cube can be found when the conditional
variable is chosen from lanes (1, 0), (1, 1).

23

Table 10: A conditional cube of KMAC in the CP-kernel. Positions of cube variables
are derived from a 5 × 5 array of lanes in hexadecimal using the little-endian format
where ‘0’ is replaced with ‘-’.

Positions of cube variables
4----------2---1|----------------|---------------1|----------------|----------------
66------41-28-11|----------------|---------1-----1|----------------|----------------
26------414-8-1-|----------------|---------1------|----------------|----------------
24--------4---1-	----------------	----------------	----------------	----------------

The conditional cube variable: a[0][0][0] = a[0][1][0] = v0

Ordinary cube variables

a[0][1][4] = v1, a[0][1][24] = a[0][2][24] = v6, a[0][1][61] = v11,

a[0][2][4] = v2, a[0][1][30] = a[0][2][30] = v7, a[0][2][61] = v12,

a[0][3][4] = v1 + v2, a[0][1][57] = a[0][2][57] = v8, a[0][3][61] = v11 + v12,

a[0][1][15] = a[0][2][15] = v3, a[0][1][58] = v9, a[0][0][62] = a[0][1][62] = v13,

a[0][0][17] = a[0][1][17] = v4, a[0][2][58] = v10, a[2][0][0] = a[2][1][0] = v14,

a[0][2][22] = a[0][3][22] = v5, a[0][3][58] = v9 + v10, a[2][1][24] = a[2][2][24] = v15.

Conditions

b[0][3][36] = k
′[0][3][36] + 1, b[2][3][36] = k

′[2][3][36],

b[4][0][0] = k
′[4][0][0] + 1, b[1][0][0] = k

′[1][0][0].

2. Recover t lanes of the internal state. Due to the z-axis translation in-
variance of Keccak-f , a conditional cube is still a conditional cube after
being rotated along the z-axis. A cube and all its rotations are z-axis equiv-
alent. However, for KMAC the padding rule may break the z-axis equivalence.
To avoid it from happening, the last lane of the r-bit message block is set to
be inactive. Therefore, by rotating the cube bit by bit, t lanes of the internal
state would be recovered in 26 · 268 = 274 calls of 7-round KMAC128.

3. Recover the whole internal state. Ten z-axis equivalent conditional
cubes are used to recover the full internal state. The details of these cubes are
given in Table 13 and 14, and the order of the lanes recovered are displayed
in Figure 7. The total time complexity of recovering the whole internal state
is 26 · 264(1 · 24 + 3 · 23 + 6 · 22) = 276.

Cube attack on KMAC256 KMAC256 has a capacity of 512 bits which is equivalent
to 8 lanes. Including the last lane of the message block where certain bits are
padded, there are 9 lanes which can not contain variables. Apart from this, the
cube search for KMAC256 remains as that for KMAC128. Our MILP model could
find many 128-dimensional conditional cubes which can be used to attack 8
rounds of KMAC256. Since the output length of KMAC256 can be more than 320
bits, the first 5 lanes of the output can be reversed through the χ of the last
round. This immediately increases the attacked rounds by one, as this inversion
covers the χ of the last round, while λ does not increase the algebraic degree.
As a result, 9 rounds of KMAC256 can be attacked.

24

1 1
1 1

1 1
1 1

2

2 2

1 1
1 1

2

2 2

3
3 3

1 1
1 1

2

2 2

3
3 3 4
4 4

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

7 7 1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

7 7

8 8

1 1
1 1

2

2 2

3
3 3 4
4 2 5

5
6 6

7 7

8 8

9 9

1 1
1 1

2

2 2

3
3 2 4
4 2 5

5
6 6

7 7

8 8

9 9

10 10

Figure 7: The lanes recovered using ten z-axis equivalent conditional cubes. The un-
derline means bits of these lanes are involved in conditions but they are already known.

Choice of the conditional cube variable. By setting two bits in a[x][y][z], 0 ≤ y <
3 as the conditional cube variables, the obtained cubes have more than 30 bit
conditions. The increase of bit conditions is caused by the increase of capacity.
In order to reduce the number of bit conditions, we place the conditional cube
variable in a 2-round CP-kernel, and thus it does not diffuse even in the second
round, leading to a small set of constraints for the conditional cube variable. As
studied in [11], the minimal Hamming weight of a 2-round CP-kernel differential
trail of Keccak-f [1600] is 6. Among all the 2-round CP-kernel differential trails,
only those which have no difference in the last 9 lanes can be applied to the
conditional cube search of KMAC256. Fortunately, there is one (only one) 2-round
CP-kernel differential trail satisfying this requirement. The active bit positions
of the 2-round CP-kernel differential trail are

[(0, 0, 0), (0, 1, 0), (1, 0, 63), (1, 2, 63), (2, 1, 30), (2, 2, 30)].

By setting the conditional cube variable to these six bit positions, our MILP
model returns 128-dimensional cubes with 12 bit conditions, with which 11 lanes
(one lane overlapped) of the internal state can be recovered. With these 11 lanes
known, cubes with the conditional cube variable placed in a column of a[x][y][z],
0 ≤ y < 3 can then be exploited to recover the rest lanes.

To recover the whole internal state, three z-axis equivalent conditional cubes
as shown in Table 15 are used and lanes recovered in each cube are displayed in
Figure 8. As can be learned from the figure, the time complexity of the internal
state recovery is 26 · 2128(212 + 211 + 23) = 2146.58 calls of 9-round KMAC256.

6.2 Conditional Cube Attacks on Keyak and Ketje

This subsection considers conditional cube attacks of Keyak and Ketje under
the nonce respect setting, i.e., cube variables are chosen from the positions where
the nonce is loaded.

Figure 9 shows the key pack of Keyak and Ketje respectively (for Ketje, it
shows the key pack after π−1), where blue positions stand for the key, light blue

25

1 11

1 1
1 11 1

1 1
1
1

1

1
1 1

1
1

1 1

1

2
2

2

2

2

2
2

2

2

2 2

1
1

1

1
1 1

1
1

1 1

1

2
2

2

2

2

2
2

2

2

2 2
3

3
3

Figure 8: The lanes recovered using three z-axis equivalent conditional cubes. The
underline means bits of these lanes are involved in conditions but they are already
known.

positions denote padded or encoded bits and white positions are the nonce. This
means that cube variables should be chosen from white lanes. Unlike KMAC, the
internal state of both Keyak and Ketje is known except the key part. Due to
the dependence of key bits in conditions, our model may not guarantee optimal
solutions.

Lake Keyak128 Lake Keyak256 River Keyak Ketje Major Ketje Minor Ketje SR

Figure 9: Key pack of Keyak and Ketje where the blue part means the key, the light
blue part denotes padded or encoded bits and the white part are the nonce.

All instances of Keyak and Ketje considered in this paper use 128-bit keys,
except Lake Keyak, where 256-bit keys are supported by replacing Keccak-p
[1600, 12] with Keccak-p[1600, 14]. Our main results are as follows and summa-
rized in Table 2.

Lake Keyak128 Using a 64-dimensional cube with 2 bit conditions involving
the key (see Table 16), the key recovery attack of 8-round Lake Keyak128
costs a data and time complexities 22 · 264 · 32 + 264 = 271.01 where the last
χ can be partially reversed due to large output length.

Lake Keyak256 Using a 128-dimensional cube with 4 bit conditions involving
the key (see Table 17), the key recovery attack of 9-round Lake Keyak256
costs a data and time complexities less than 24 · 2128 + 23 · 2128 · 63 + 2128 =
2137.05.

River Keyak Using a 64-dimensional cube with 12 bit conditions involving the
key (see Table 18, these 12 bit conditions involve 11 bits key information),
the key recovery attack of 8-round River Keyak costs a data and time
complexities 211 · 264 + 210 · 264 · 6 + 2128−71 = 277.00.

Ketje Major Using a 64-dimensional cube with 3 bit conditions involving the
key (see Table 19), the key recovery attack of 7-round Ketje Major costs a
data and time complexities 23 ·264 ·3+22 ·264 ·2+21 ·264 ·(64−5)+264 = 271.24.

26

Ketje Minor Using a 64-dimensional cube with 4 bit conditions involving the
key (see Table 20), the key recovery attack of 7-round Ketje Minor costs a
data and time complexities less than 24 · 264 + 23 · 264 · 63 + 264 = 273.03.

For Ketje SR and Ketje JR, our model could not find attacks which are
better than the existing ones in [15]. However, for Ketje SR with Keccak-p as
the underlying permutation, namely, Ketje SR v1, better attacks on 7-round
Ketje SR are found using a 64-dimensional cube with 27 bit conditions (see
Table 21, involve 26 bits key information) and the time and data complexities
are 226 · 264 · 2 + 2128−54 = 291.00. Therefore, Ketje instances using Keccak-p⋆

are stronger than those instances using Keccak-p under our attacks.

6.3 Conditional Cube Attacks on Full-State Keyed Duplex

In this subsection, we consider conditional cube attacks on Keccak-p based
FKD (or FKS) which provides full-state degrees of freedom. We assume that
the first message block is absorbed after the application of the underlying per-
mutation, as in Keyak. Therefore, the internal state before injecting the first
message block is fully unknown.

For convenience, FKD with Keccak-p[b, nr] as the underlying permutation
is denoted by FKD[b]. A direct application of linear structures shows that 512-
dimensional Type II cubes for FKD[1600] can be constructed by constraining 960
bits to certain constants. However, in key/state recovery attacks the number of
bit conditions allowed is limited. In this subsection, we apply our model for
searching Type II cubes to FKD, and try to find some useful cubes with a small
number of bit conditions.

When the number of bit conditions is set to 0, Type II cubes of FKD[1600]
can be found with dimension at least 48. If the dimension is set to 65, a Type
II cube with 25 bit conditions is found, as shown in Table 11. Since the first
two rounds are linearized, the cube sum of 8-round Keccak is zero. Thus, this
cube can be used to attack 8-round FKD[1600] by recovering the internal state
in a similar way to the attack on KMAC. As long as the rate r is greater than 320
bits, a 9-round attack of FKD[1600] can be achieved by partially reversing the
last round. The time complexity is about 265+25 = 290. For more experimental
results, please refer to Appendix A.

Compared with cube attacks on Keccak-p based constructions where r-
bit messages are absorbed, cube attacks on FKD[1600] can be extended to one
more round by exploiting the full-state absorbing. With this, the open question
proposed by the Keccak team now is answered.

The idea of full-state absorption has already been applied to Keyak which
absorbs message blocks of more than r bits each but less than b bits. For example,
Lake Keyak processes message blocks of 1536 bits, less than 1600 bits. A simple
way to adapt our attack on 9-round FKD[1600] to Lake Keyak is to find a
Type II cube with dimension 129 (65+64). However, such a cube with increased
dimension could not be found in a practical time. Therefore, the extended attack
does not apply to Lake Keyak.

27

6.4 Experimental Verification

Since the attacks in this paper are impractical with current computation power,
the correctness of the attacks is verified on cubes with small dimensions. We do
no change to the attacks except reducing the number of rounds for the cube tester
in the middle, so the attack complexity reduces to a practical level. We implement
two Type I conditional cube attacks: one based on the 16-dimensional toy cube
in Table 10 for fast verification, and the other based on a 32-dimensional cube
for attacking 7-round KMAC256 (or 6-round KMAC128). A conditional cube attack
based is also implemented with a 32-dimensional Type II cube of FKD[1600].
Note that this cube has three bit conditions which are set intentionally; other-
wise, there can be no condition. The correctness of our attacks are confirmed
by these three experiments. The source codes are available as supporting docu-
ments.

7 Conclusions

In the paper, we proposed a new MILP model for searching conditional cubes
for Keccak-p based keyed constructions. Particularly, we incorporated the dif-
fusion effect of variables through the non-linear layer and took a broader class
of conditional cubes into account. With the new model, conditional cubes with
desired dimensions and least bit conditions were found for KMAC. As a result,
key recovery attacks of 7-round KMAC128, 9-round KMAC256 can be mounted re-
spectively. To the best of our knowledge, these are the first cryptanalysis results
against KMAC. Using our model, we solve the open question of FKD by extend-
ing conditional its cube attack by one additional round. The application of our
model to Keyak and Ketje gives rise to new attacks or better attacks with
reduced complexities. Specifically, the number of rounds attacked against Lake
Keyak with 128-bit keys is improved from 6 to 8 in the nonce-respected setting
and 9 rounds of Lake Keyak can be attacked when using 256-bit keys; attack
complexities are reduced generally on other constructions.

References

1. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recov-
ery Attacks On Reduced-Round MD6 and Trivium. In: Handschuh, H., Lucks,
S., Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography, 11.01. - 16.01.2009.
Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany (2009), http://drops.dagstuhl.de/opus/volltexte/2009/
1944/

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Far-
falle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol.
2017(4), 1–38 (2017), https://tosc.iacr.org/index.php/ToSC/article/view/
801

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay, S.

28

http://drops.dagstuhl.de/opus/volltexte/2009/1944/
http://drops.dagstuhl.de/opus/volltexte/2009/1944/
https://tosc.iacr.org/index.php/ToSC/article/view/801
https://tosc.iacr.org/index.php/ToSC/article/view/801

(eds.) Selected Areas in Cryptography - 18th International Workshop, SAC 2011,
Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers. Lecture Notes
in Computer Science, vol. 7118, pp. 320–337. Springer (2011), https://doi.org/
10.1007/978-3-642-28496-0_19

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge
functions. Submission to NIST (Round 3) (2011), http://sponge.noekeon.org/
CSF-0.1.pdf

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference.
http://keccak.noekeon.org (January 2011), version 3.0

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
Submission: Ketje v2. Candidate of CAESAR Competition (September 2016)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
Submission: Keyak v2. Candidate of CAESAR Competition (September 2016)

8. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: MILP-aided Cube-attack-like Crypt-
analysis on Keccak Keyed Modes. Cryptology ePrint Archive, Report 2018/075
(2018), https://eprint.iacr.org/2018/075

9. Chaigneau, C., Fuhr, T., Gilbert, H., Guo, J., Jean, J., Reinhard, J., Song, L.:
Key-recovery attacks on full kravatte. IACR Trans. Symmetric Cryptol. 2018(1),
5–28 (2018), https://doi.org/10.13154/tosc.v2018.i1.5-28

10. Daemen, J., Mennink, B., Assche, G.V.: Full-State Keyed Duplex with Built-In
Multi-user Support. In: Takagi and Peyrin [27], pp. 606–637, https://doi.org/
10.1007/978-3-319-70697-9_21

11. Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Can-
teaut, A. (ed.) Fast Software Encryption: 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers. pp. 422–441.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

12. Dinur, I., Dunkelman, O., Shamir, A.: Improved Practical Attacks on Round-
Reduced Keccak. Journal of Cryptology 27(2), 183–209 (2014)

13. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube Attacks and
Cube-Attack-Like Cryptanalysis on the Round-Reduced Keccak Sponge Function.
In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I. LNCS, vol. 9056, pp. 733–
761. Springer (2015)

14. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings. LNCS, vol. 5479, pp. 278–299. Springer
(2009), https://doi.org/10.1007/978-3-642-01001-9_16

15. Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like Attack on Round-Reduced Initial-
ization of Ketje Sr. IACR Trans. Symmetric Cryptol. 2017(1), 259–280 (2017),
https://doi.org/10.13154/tosc.v2017.i1.259-280

16. Fuhr, T., Naya-Plasencia, M., Rotella, Y.: State-Recovery Attacks on Modified
Ketje Jr. IACR Trans. Symmetric Cryptol. 2018(1) (2018)

17. Guo, J., Liu, M., Song, L.: Linear Structures: Applications to Cryptanalysis of
Round-Reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
- ASIACRYPT 2016, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I.
LNCS, vol. 10031, pp. 249–274 (2016)

18. Gurobi: Gurobi Optimizer. http://www.gurobi.com/
19. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional Cube Attack on

Reduced-Round Keccak Sponge Function. In: Coron, J., Nielsen, J.B. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference

29

https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org
https://eprint.iacr.org/2018/075
https://doi.org/10.13154/tosc.v2018.i1.5-28
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.13154/tosc.v2017.i1.259-280
http://www.gurobi.com/

on the Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part II. LNCS, vol. 10211, pp. 259–288 (2017),
https://doi.org/10.1007/978-3-319-56614-6_9

20. Li, Z., Bi, W., Dong, X., Wang, X.: Improved Conditional Cube Attacks on Keccak
Keyed Modes with MILP Method. In: Takagi, T., Peyrin, T. (eds.) Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10624,
pp. 99–127. Springer (2017), https://doi.org/10.1007/978-3-319-70694-8_4

21. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of Full-State Keyed Sponge
and Duplex: Applications to Authenticated Encryption. In: Iwata, T., Cheon, J.H.
(eds.) Advances in Cryptology - ASIACRYPT 2015 - 21st International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part
II. LNCS, vol. 9453, pp. 465–489. Springer (2015), https://doi.org/10.1007/
978-3-662-48800-3_19

22. NIST: SHA-3 COMPETITION. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html (2007-2012)

23. Qiao, K., Song, L., Liu, M., Guo, J.: New Collision Attacks on Round-Reduced
Keccak. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT
2017, Paris, France, April 30 - May 4, 2017, Proceedings, Part III. LNCS, vol.
10212, pp. 216–243 (2017)

24. Sasaki, Y., Todo, Y.: New Algorithm for Modeling S-box in MILP Based Dif-
ferential and Division Trail Search. In: Farshim, P., Simion, E. (eds.) Innovative
Security Solutions for Information Technology and Communications - 10th Inter-
national Conference, SecITC 2017, Bucharest, Romania, June 8-9, 2017, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 10543, pp. 150–165.
Springer (2017), https://doi.org/10.1007/978-3-319-69284-5_11

25. Song, L., Liao, G., Guo, J.: Non-full Sbox Linearization: Applications to Colli-
sion Attacks on Round-Reduced Keccak. In: Katz, J., Shacham, H. (eds.) Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
II. LNCS, vol. 10402, pp. 428–451. Springer (2017), https://doi.org/10.1007/
978-3-319-63715-0_15

26. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic Security Eval-
uation and (Related-key) Differential Characteristic Search: Application to SI-
MON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In:
Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I. LNCS, vol. 8873, pp. 158–178. Springer (2014), https://doi.org/10.1007/
978-3-662-45611-8_9

27. Takagi, T., Peyrin, T. (eds.): Advances in Cryptology - ASIACRYPT 2017 -
23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceed-
ings, Part II, Lecture Notes in Computer Science, vol. 10625. Springer (2017),
https://doi.org/10.1007/978-3-319-70697-9

28. The U.S. National Institute of Standards and Technology: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions . Federal Information

30

https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-662-48800-3_19
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
https://doi.org/10.1007/978-3-319-69284-5_11
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-70697-9

Processing Standard, FIPS 202 (5th August 2015), http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.202.pdf

29. The U.S. National Institute of Standards and Technology: SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special Pub-
lication 800-185 (21st December 2016), http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf

A Experimental Details

The model for searching Type II cubes for FKD[1600] has 37440 inequalities
on 15040 variables, which is about 1.8 times of the model for searching Type I
conditional cubes. Even though the search for Type I conditional cubes takes
seconds or minutes, the solving time of the model for Type II cubes increases
exponentially. We solve the model for finding Type II conditional cubes with
Gurobi optimizer [18] on a server with 64 cores at 2.3GHZ, and Gurobi could
not finish the optimizing in a practical time.

Type II cubes for FKD[1600] can be found with dimension d ≥ 65. However,
for FKD[800], when we set the number of conditions t ≤ 62 and the objective to
maximize the dimension, Gurobi shows after running 8 days that the dimension
falls in [62, 94], but to extend the cube attack of FKD[800] by one more round,
a 65-dimensional Type II conditional cube is required.

B Conditional Cubes of KMAC, Keccak-MAC, Keyak,
Ketje and FKD

Table 11: 65-dimensional Type II conditional cube for FKD[1600] with 25 bit condi-
tions

C

4006000001800000 0008000000000000 2000000000401000 000C000000000001 8000004000003000
4006000001800000 0008000000000000 2000000000401000 000C000000000001 8000004000003000
4006000001800000 0008000000000000 2000000000401000 000C000000000001 8000004000003000
4006000001800000 0008000000000000 2000000000401000 000C000000000001 8000004000003000
4006000001800000 0008000000000000 2000000000401000 000C000000000001 8000004000003000

F1 4006000001800000 0008000000000000 2000000000401000 0008000000000001 8000004000003000
G1 0000000000000000 0000000000000000 0000000000000000 0004000000000000 0000000000000000

V

0000000000000000 0000000000001000 0008000000000000 0000000000001000 0000000000000000
0000000000000000 0000000000001000 000C000000000000 0000000000001000 0000000000000000
0008000000000000 0000000000001000 000C000000000000 0000000000001000 0000000000000000
0000000000000000 2000000000401000 0008000000000000 0000000000001000 0000000000000000
0008000000000000 2000000000401000 0008000000000000 0000000000001000 4000000000800000

H

00400B1010080000 0310A00000615001 0004000800001340 80E0080240000834 0040400000000000
0040004010508000 0220301011001120 0007080000010000 0008204000280918 240C200000000100
8008082008800A40 0114082000101003 2024203080824360 80000080000A0004 4000108000802000
0064000800304000 2880641005501300 0006000101020000 1218360004080000 0001400001100400
1018000010400208 2000200200421000 04000D2208000200 0000400218020810 6402080000800400

31

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

Table 12: 32-dimensional conditional cube for Keccak-MAC-512. There are 23 bit
conditions (3 of them involve the key). Note that a[2][0][45] contains a cube variable,
but also appears in bit conditions. Actually, a[2][0][45] = v16 + cnt where cnt is a
constant. For the sake of simplicity, we omit the constant part when specifying the
positions of cube variables and a[2][0][45] in bit conditions actually means the constant
part. We follow this rule in the following representation of cubes.

Cube variables
a[2][0][0] = a[2][1][0] = v0, a[2][0][1] = a[2][1][1] = v1, a[2][0][8] = a[2][1][8] = v2,

a[2][0][12] = a[2][1][12] = v3, a[2][0][14] = a[2][1][14] = v4, a[2][0][15] = a[2][1][15] = v5,

a[2][0][19] = a[2][1][19] = v6, a[2][0][20] = a[2][1][20] = v7, a[2][0][23] = a[2][1][23] = v8,

a[2][0][24] = a[2][1][24] = v9, a[2][0][25] = a[2][1][25] = v10, a[2][0][26] = a[2][1][26] = v11,

a[2][0][28] = a[2][1][28] = v12, a[2][0][41] = a[2][1][41] = v13, a[2][0][42] = a[2][1][42] = v14,

a[2][0][43] = a[2][1][43] = v15, a[2][0][45] = a[2][1][45] = v16, a[2][0][46] = a[2][1][46] = v17,

a[2][0][52] = a[2][1][52] = v18, a[2][0][53] = a[2][1][53] = v19, a[2][0][62] = a[2][1][62] = v20,

a[2][0][63] = a[2][1][63] = v21, a[3][0][3] = a[3][1][3] = v22, a[3][0][4] = a[3][1][4] = v23,

a[3][0][9] = a[3][1][9] = v24, a[3][0][13] = a[3][1][13] = v25, a[3][0][23] = a[3][1][23] = v26,

a[3][0][39] = a[3][1][39] = v27, a[3][0][40] = a[3][1][40] = v28, a[3][0][46] = a[3][1][46] = v29,

a[3][0][56] = a[3][1][56] = v30, a[3][0][57] = a[3][1][57] = v31, a[3][0][58] = a[3][1][58] = v32,

a[3][0][61] = v33, a[3][1][61] = v34, v17 + v34 = 0, v9 + v32 = 0, v11 + v33 + v34 = 0.

Bit conditions

a[2][0][14] + a[0][1][15] + a[2][1][14] + k15 + 1 = 0, a[2][0][59] + a[0][1][60] + a[2][1][59] + k60 + 1 = 0,

a[2][0][4] + a[0][1][5] + a[2][1][4] + k5 + k69 + 1 = 0, a[2][0][21] + a[4][0][20] + a[2][1][21] = 0,

a[2][0][50] + a[4][0][49] + a[2][1][50] + a[3][1][50] = 0, a[2][0][7] + a[4][0][6] + a[2][1][7] + a[3][1][7] = 0,

a[2][0][53] + a[4][0][52] + a[2][1][53] + a[3][1][53] = 0, a[2][0][6] + a[4][0][5] + a[2][1][6] + a[3][1][6] = 0,

a[2][0][53] + a[3][0][53] + a[4][0][52] + a[2][1][53] + 1 = 0, a[2][0][4] + a[4][0][3] + a[2][1][4] = 0,

a[2][0][31] + a[3][0][31] + a[4][0][30] + a[2][1][31 = 0, a[2][0][27] + a[4][0][26] + a[2][1][27] = 0,

a[2][0][21] + a[4][0][20] + a[2][1][21] + a[3][1][21] = 0, a[2][0][20] + a[4][0][19] + a[2][1][20] = 0,

a[2][0][22] + a[4][0][21] + a[2][1][22] + a[3][1][22] = 0, a[2][0][46] + a[4][0][45] + a[2][1][46] = 0,

a[2][0][32] + a[4][0][31] + a[2][1][32] + a[3][1][32] = 0, a[2][0][45] + a[4][0][44] + a[2][1][45] = 0,

a[2][0][48] + a[4][0][47] + a[2][1][48] + a[3][1][48] = 0, a[2][0][44] + a[4][0][43] + a[2][1][44] = 0,

a[2][0][49] + a[4][0][48] + a[2][1][49] + a[3][1][49] = 0, a[2][0][43] + a[4][0][42] + a[2][1][43] = 0,

a[2][0][59] + a[4][0][58] + a[2][1][59] + a[3][1][59] = 0.

32

Table 13: Conditional cubes in the CP-kernel for attacking 7-round KMAC128 (1)

1

Positions of cube variables
3-4--2B-1CC-1--1 ---------------- C-8-84-147-4C18- ---------------- ----------------
3442-2881-4----8 ---------------- 3-8-8--24D1-8482 ---------------- ----------------
A4-5--312CD-1--9 ---------------- B---84-3-9-4-5-- ---------------- ----------------
A447-2992-1-1--- ---------------- 6-8------B1-C5-2 ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(0,0,0), (0,2,0)

2

Positions of cube variables
---------------- ---------------- -844288158-94125 ---------------- C4428A1--2-1443A
---------------- ---------------- 2C-42--111-8-12C ---------------- 84848-1---82542-
---------------- ---------------- 2454--814944-1-1 ---------------- 44C6-A1--24-1-1A
---------------- ---------------- --5--88-18454--8 ---------------- C--4-2---2C3-428
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(2,0,0), (2,2,0)

3

Positions of cube variables
6F-5B-8C-28-6--8 ---------------- ---------------- -844---7D1-8-4-1 ----------------
61-438---2E838-A ---------------- ---------------- -1-1--24848----8 ----------------
-F-128-C--4-79-A ---------------- ---------------- -945--37458444-9 ----------------
6E-18-8---28-1-- ---------------- ---------------- -8----3-5--C4--8 ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(3,0,0), (3,2,0)

4

Positions of cube variables
---------------- 4--8-8177-3--A-1 ---------------- 11-34C82-1-422EC ----------------
---------------- ---8---671-2---- ---------------- -8-24D82--1424C- ----------------
---------------- 4-88-81A6132-A-1 ---------------- 98-3488---1--AEC ----------------
---------------- --88-8-93--2---- ---------------- 89---9---1--2E-C ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(1,0,0), (1,2,0)

5

Positions of cube variables
---------------- 8E168-61-1--1-A- ---------------- ---------------- -8--2-31--2243-1
---------------- 8F-68--1---2B-3- ---------------- ---------------- --1--1B-4-9666-2
---------------- -8168-61-5--2-31 ---------------- ---------------- 8C1--1814-B667-3
---------------- -71------4-28-B1 ---------------- ---------------- 8C1-212-4-------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,0,0), (4,2,0)

33

Table 14: Conditional cubes in the CP-kernel for attacking 7-round KMAC128 (2)

6

Positions of cube variables
3--2---44D-22--A ---------------- 8488-4---8-28-28 ---------------- ----------------
24-2---444-22--B ---------------- 3-868-24-9368223 ---------------- ----------------
24-----44D9-2--B ---------------- 94-C842--964---- ---------------- ----------------
34-2-----59-2--2 ---------------- A48E-4-4-85-82-B ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(0,1,0), (0,2,0)

7

Positions of cube variables
---------------- C4-8---61-2411-8 ---------------- -2--54-88-136242 ----------------
---------------- --29---611-21--B ---------------- --284C--C-5A6242 ----------------
---------------- C421-1-C-92419-3 ---------------- 82--98--C-58-248 ----------------
---------------- 8-28-1-818-6-9-2 ---------------- 8-2894-8--4122-A ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(1,1,0), (1,2,0)

8

Positions of cube variables
---------------- ---------------- -24-2-C41A---1-- ---------------- C4-48B--1-21E42-
---------------- ---------------- 26C82--492---1-1 ---------------- 84-48B-1--62C42-
---------------- ---------------- A598-18--8-4-2-1 ---------------- 4-8418--1-61A-2-
---------------- ---------------- A1D8-1448A-4-2-- ---------------- 848492-1--4344--
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(2,1,0), (2,2,0)

9

Positions of cube variables
41132-1-4A48-928 ---------------- ---------------- 248-8---911A-3-- ----------------
43-12-8--44928-A ---------------- ---------------- 24---8--9-1----9 ----------------
--12249-46C92--2 ---------------- ---------------- 2C8---1-4912-71B ----------------
-2-1248-4889-92- ---------------- ---------------- -88-881-D9-A-412 ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(3,1,0), (3,2,0)

10

Positions of cube variables
---------------- 36118--18-811-8- ---------------- ---------------- -44-2-19--C-15-2
---------------- 1A-18--1F--6B-F- ---------------- ---------------- -97---3-4-1-29-1
---------------- 2C1-8---2-852-1- ---------------- ---------------- -D2-2-394-C43C-1
---------------- -6-18---F--38-F- ---------------- ---------------- -C7---2-4-14---2
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,1,0), (4,2,0)

34

Table 15: Conditional cubes in the CP-kernel for attacking 9-round KMAC256

1

Positions of cube variables
5D6-1149-E843113 C--4-2--1--2-182 -52-828----8C8-2 ----A-E2-4--2182 ---4--3--3---84-
D56-91-944F-511B 4--4-2-----2-182 --21C2--4-2-88-2 4--2A2A2----2-9- ------3--2--1-4-
5D-8B1494F7-D138 C--4-2--1--2-182 -5-1C-8-4-28C8-2 4--2A262-4--2112 ---4--3--1--184-
DD-8A14-45B4B122 ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(0,0,0), (0,1,0), (1,0,63), (1,2,63), (2,1,30), (2,2,30)

2

Positions of cube variables
5-58-8B1D5-87-93 342C-41822-51849 21618-843-8486-1 4-13-86486-4984E 8-38-249-3-1---2
42888-3-D---4-1- 1----21-2-----6- 3-4---841-8-86-4 4--2286-1--4984- 8-3-8--1-2-1---2
16-C8-91-7-8B49A 342C-6-8-2-51869 11218-843-84-6-5 --132-6496----4E ---88248-1------
46DC-8-1D2-8941B ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,1,0), (4,2,0)
Conditions

b[0][0][18] = k
′[0][0][18] + 1, b[1][4][29] = k

′[1][4][29] + 1, b[3][4][39] = k
′[3][4][39], b[1][0][26] = k

′[1][0][26],

b[0][1][20] = k
′[0][1][20] + 1, b[1][4][39] = k

′[1][4][39] + 1, b[2][0][46] = k
′[2][0][46], b[1][1][26] = k

′[1][1][26],

b[0][2][20] = k
′[0][2][20] + 1, b[1][4][47] = k

′[1][4][47] + 1, b[2][1][20] = k
′[2][1][20], b[1][1][52] = k

′[1][1][52],

b[0][3][56] = k
′[0][3][56] + 1, b[2][4][13] = k

′[2][4][13] + 1, b[2][2][43] = k
′[2][2][43], b[1][2][14] = k

′[1][2][14],

b[0][4][26] = k
′[0][4][26] + 1, b[2][4][32] = k

′[2][4][32] + 1, b[2][3][45] = k
′[2][3][45], b[3][1][0] = k

′[3][1][0],

b[1][1][14] = k
′[1][1][14] + 1, b[2][4][58] = k

′[2][4][58] + 1, b[2][3][46] = k
′[2][3][46], b[1][1][0] = k

′[1][1][0],

b[1][1][29] = k
′[1][1][29] + 1, b[4][0][8] = k

′[4][0][8] + 1, b[3][0][13] = k
′[3][0][13], b[1][1][1] = k

′[1][1][1],

b[1][2][36] = k
′[1][2][36] + 1, b[3][3][17] = k

′[3][3][17], b[3][1][13] = k
′[3][1][13], b[1][0][1] = k

′[1][0][1],

b[1][2][55] = k
′[1][2][55] + 1, b[3][3][44] = k

′[3][3][44], b[4][4][42] = k
′[4][4][42],

b[1][3][30] = k
′[1][3][30] + 1, b[3][3][58] = k

′[3][3][58], b[4][4][54] = k
′[4][4][54].

3

Positions of cube variables
ADCA402-84-26B1- 5-E5A841----2--- 1-3----C-4-888C- -2222-18EEA-1-C- --5---115--21--1
E-18-4--8-126412 1-E-98-9----2--- --3-8--4A--4-2C4 42-36-1921A-1-C2 -91---1-5--23--1
2CDA441-841-6C92 4-45B-48-------- 1-2-8--CA4-C8AC4 4-234-19EF8---C2 -94----14---2---
E98A-43-84126392 ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Position of the conditional cube variable
(4,0,0), (4,1,0)
Conditions

b[0][1][20] = k
′[0][1][20] + 1, b[2][4][28] = k

′[2][4][28] + 1, b[2][1][20] = k
′[2][1][20], b[1][1][0] = k

′[1][1][0],

b[0][4][20] = k
′[0][4][20] + 1, b[4][0][31] = k

′[4][0][31] + 1, b[2][4][36] = k
′[2][4][36], b[1][4][5] = k

′[1][4][5],

b[0][4][26] = k
′[0][4][26] + 1, b[4][1][21] = k

′[4][1][21] + 1, b[3][1][17] = k
′[3][1][17], b[2][3][3] = k

′[2][3][3],

b[0][4][62] = k
′[0][4][62] + 1, b[4][3][27] = k

′[4][3][27] + 1, b[3][2][31] = k
′[3][2][31], b[2][4][3] = k

′[2][4][3],

b[1][1][16] = k
′[1][1][16] + 1, b[4][0][4] = k

′[4][0][4] + 1, b[3][2][51] = k
′[3][2][51], b[3][1][0] = k

′[3][1][0],

b[1][1][29] = k
′[1][1][29] + 1, b[4][4][4] = k

′[4][4][4] + 1, b[3][4][31] = k
′[3][4][31], b[3][1][4] = k

′[3][1][4],

b[1][2][60] = k
′[1][2][60] + 1, b[1][0][11] = k

′[1][0][11], b[4][4][40] = k
′[4][4][40], b[3][2][9] = k

′[3][2][9],

b[1][3][60] = k
′[1][3][60] + 1, b[1][0][26] = k

′[1][0][26], b[4][4][42] = k
′[4][4][42], b[3][3][0] = k

′[3][3][0],

b[1][4][29] = k
′[1][4][29] + 1, b[1][3][27] = k

′[1][3][27].

35

Table 16: One 64-dimensional cube of Lake Keyak
Cube variables

a[0][1][36] = v1, a[0][3][36] = v2, a[0][4][36] = v1 + v2, a[0][2][52] = a[0][3][52] = v3,

a[0][1][53] = a[0][2][53] = v4, a[0][1][62] = v5, a[0][2][62] = v6, a[0][4][62] = v5 + v6,

a[0][1][63] = v7, a[0][3][63] = v8, a[0][4][63] = v7 + v8, a[1][1][19] = v9,

a[1][2][19] = v10, a[1][3][19] = v11, a[1][4][19] = v9 + v10 + v11, a[1][1][31] = v12,

a[1][2][31] = v13, a[1][4][31] = v12 + v13, a[1][2][32] = v14, a[1][3][32] = v15,

a[1][4][32] = v14 + v15, a[1][1][34] = v16, a[1][2][34] = v17, a[1][4][34] = v16 + v17,

a[1][2][37] = a[1][3][37] = v18, a[1][1][39] = a[1][4][39] = v19, a[1][2][41] = a[1][4][41] = v20,

a[1][3][51] = a[1][4][51] = v21, a[1][1][60] = a[1][3][60] = v22, a[2][2][0] = a[2][3][0] = v0,

a[2][2][4] = a[2][4][4] = v23, a[2][1][10] = a[2][3][10] = v24, a[2][1][13] = v25,

a[2][2][13] = v26, a[2][4][13] = v25 + v26, a[2][1][19] = v27, a[2][3][19] = v28,

a[2][4][19] = v27 + v28, a[2][1][28] = v29, a[2][3][28] = v30, a[2][4][28] = v29 + v30,

a[2][3][31] = a[2][4][31] = v31, a[2][1][37] = v32, a[2][2][37] = v33, a[2][3][37] = v34,

a[2][4][37] = v32 + v33 + v34, a[2][2][39] = v35, a[2][3][39] = v36,

a[2][4][39] = v35 + v36, a[2][1][45] = a[2][4][45] = v37, a[2][2][55] = v38, a[2][3][55] = v39,

a[2][4][55] = v38 + v39, a[2][1][57] = a[2][4][57] = v40, a[2][1][60] = a[2][4][60] = v41,

a[3][1][11] = v42, a[3][3][11] = v43, a[3][4][11] = v42 + v43, a[3][1][20] = v44,

a[3][3][20] = v45, a[3][4][20] = v44 + v45, a[3][2][29] = a[3][4][29] = v46,

a[3][2][31] = a[3][3][31] = v47, a[3][2][45] = a[3][3][45] = v48, a[4][1][5] = v49,

a[4][2][5] = v50, a[4][3][5] = v49 + v50, a[4][1][14] = a[4][2][14] = v51,

a[4][2][16] = a[4][3][16] = v52, a[4][1][21] = v53, a[4][2][21] = v54, a[4][3][21] = v53 + v54,

a[4][1][22] = a[4][3][22] = v55, a[4][1][24] = a[4][3][24] = v56, a[4][1][32] = a[4][3][32] = v57,

a[4][1][34] = v58, a[4][2][34] = v59, a[4][3][34] = v58 + v59, a[4][1][43] = a[4][2][43] = v60,

a[4][1][58] = v61, a[4][2][58] = v62, a[4][3][58] = v61 + v62, a[4][2][59] = a[4][3][59] = v63.

Bit conditions

a[2][0][62] + a[1][1][63] + a[2][1][62] + a[0][2][63] + a[2][2][62] + a[2][3][62] + a[2][4][62]
+ k55 + 1 = 0,

a[0][0][5] + a[0][1][5] + a[2][1][4] + a[0][2][5] + a[1][2][5] + a[0][3][5] + a[2][3][4]
+ a[0][4][5] + k124 + 1 = 0,

a[2][0][22] + a[4][0][21] + a[2][1][22] + a[2][2][22] + a[2][3][22] + a[3][3][22] + a[2][4][22]
+ a[4][4][21] = 0,

a[2][0][23] + a[4][0][22] + a[2][1][23] + a[2][2][23] + a[4][2][22] + a[2][3][23] + a[2][4][23]
+ a[3][4][23] + a[4][4][22] = 0.

36

Table 17: One 64-dimensional cube in the CP-kernel of Lake Keyak-256
Positions of cube variables

---------------- ---------------- ---------------- ---------------- ----------------
2811C-225---411- --28-1--3-18--4- 92-411-4-2-3B-18 -9---5-3F-5746-2 --D--8---9--28-7
2-3---3--8----5- 6-A-4---2-1----3 1---31-19-C-2-18 881--18-414448-- --8--8---9-----3
-881C-124---4174 4-88-1--2--6--13 -----1-59--2--1- 811--48-114-8E12 --D------1--28-5
-8B-C-1-58----74 6-8-41--3-1E--5- 92-42--412C19-18 -----483F-178212 ----------------

Position of the conditional cube variable
(1,2,0),(1,3,0)
Bit conditions

a[4][0][38] + a[0][1][38] + a[1][1][37] + a[4][1][38] + a[1][2][37] + a[4][2][38] + a[1][3][37]
+ a[4][3][38] + a[1][4][37] + a[4][4][38] + k93 + 1 = 0,

a[4][0][42] + a[1][1][41] + a[4][1][42] + a[0][2][42] + a[1][2][41] + a[4][2][42] + a[1][3][41]
+ a[4][3][42] + a[1][4][41] + a[4][4][42] + k97 + 1 = 0,

a[1][1][59] + a[3][1][58] + a[1][2][59] + a[3][2][58] + a[1][3][59] + a[2][3][59] + a[3][3][58]
+ a[1][4][59] + a[3][4][58] + k115 + k242 = 0,

a[1][1][48] + a[3][1][47] + a[1][2][48] + a[3][2][47] + a[1][3][48] + a[3][3][47] + a[1][4][48]
+ a[2][4][48] + a[3][4][47] + k104 + k231 = 0.

37

Table 18: One 64-dimensional cube of River Keyak
Cube variables

a[0][2][5] = a[0][4][5] = v1, a[0][3][7] = a[0][4][7] = v2, a[0][3][8] = a[0][4][8] = v3,

a[0][2][15] = a[0][3][15] = v4, a[0][3][16] = a[0][4][16] = v5, a[0][2][23] = a[0][4][23] = v6,

a[0][3][28] = a[0][4][28] = v7, a[0][2][29] = a[0][4][29] = v0, a[1][2][0] = a[1][4][0] = v8,

a[1][3][1] = a[1][4][1] = v9, a[1][2][9] = v10, a[1][3][9] = v11, a[1][4][9] = v10 + v11,

a[1][2][11] = a[1][3][11] = v12, a[1][3][12] = a[1][4][12] = v13, a[1][2][15] = a[1][3][15] = v14,

a[1][2][16] = a[1][3][16] = v15, a[1][2][18] = a[1][4][18] = v16, a[1][2][19] = a[1][4][19] = v17,

a[1][2][20] = a[1][4][20] = v18, a[1][3][21] = a[1][4][21] = v19, a[1][2][25] = v20, a[1][3][25] = v21,

a[1][4][25] = v20 + v21, a[2][2][7] = a[2][3][7] = v22, a[2][2][8] = v23, a[2][3][8] = v24,

a[2][4][8] = v23 + v24, a[2][2][17] = a[2][3][17] = v25, a[2][3][18] = a[2][4][18] = v0,

a[2][3][19] = a[2][4][19] = v26, a[2][2][24] = a[2][4][24] = v27, a[2][2][29] = a[2][4][29] = v28,

a[2][2][30] = a[2][4][30] = v29, a[2][2][31] = a[2][3][31] = v30, a[3][2][0] = v31, a[3][3][0] = v32,

a[3][4][0] = v31 + v32, a[3][2][1] = v33, a[3][3][1] = v34, a[3][4][1] = v33 + v34,

a[3][2][2] = v35, a[3][3][2] = v36, a[3][4][2] = v35 + v36, a[3][2][3] = v37, a[3][3][3] = v38,

a[3][4][3] = v37 + v38, a[3][2][4] = v39, a[3][3][4] = v40, a[3][4][4] = v39 + v40,

a[3][2][5] = v41, a[3][3][5] = v42, a[3][4][5] = v41 + v42, a[3][2][9] = a[3][3][9] = v43,

a[3][3][11] = a[3][4][11] = v44, a[3][2][13] = v45, a[3][3][13] = v46, a[3][4][13] = v45 + v46,

a[3][2][17] = a[3][3][17] = v47, a[3][2][25] = a[3][3][25] = v48, a[3][2][28] = a[3][3][28] = v49,

a[4][1][1] = a[4][2][1] = v50, a[4][1][2] = a[4][2][2] = v51, a[4][1][3] = a[4][2][3] = v52,

a[4][1][7] = a[4][2][7] = v53, a[4][1][8] = a[4][3][8] = v54, a[4][1][14] = v55, a[4][2][14] = v56,

a[4][3][14] = v55 + v56, a[4][1][15] = a[4][2][15] = v57, a[4][1][16] = v58, a[4][2][16] = v59,

a[4][3][16] = v58 + v59, a[4][1][22] = a[4][2][22] = v60, a[4][2][25] = a[4][3][25] = v0,

a[4][1][27] = v61, a[4][2][27] = v62, a[4][3][27] = v61 + v62, a[4][1][31] = a[4][2][31] = v63.

Bit conditions

a[4][0][18] + a[2][1][19] + a[4][1][18] + a[2][2][19] + a[4][2][18] + a[4][3][18] + a[4][4][18] + k75

+ k107 = 0, a[0][1][14] + a[2][1][13] + a[0][2][14] + a[2][2][13] + a[0][3][14] + a[2][3][13]
+ a[0][4][14] + a[2][4][13] + k6 + k38 + k69 = 0, a[0][1][11] + a[3][1][12] + a[4][1][12]
+ a[0][2][11] + a[3][2][12] + a[0][3][11] + a[3][3][12] + a[0][4][11] + a[3][4][12] + k3 + k100

+ 1 = 0, a[4][0][8] + a[2][1][9] + a[3][1][9] + a[2][2][9] + a[4][2][8] + a[2][3][9] + a[2][4][9]
+ a[4][4][8] + k65 + 1 = 0, a[2][1][8] + a[3][2][8] + a[4][3][7] + a[4][4][7] + k64 + k127

+ 1 = 0, a[0][1][23] + a[2][1][22] + a[1][2][23] + a[2][2][22] + a[0][3][23] + a[2][3][22] + a[2][4][22]
+ k15 + k78 + 1 = 0, a[0][1][19] + a[2][1][18] + a[0][2][19] + a[2][2][18] + a[0][3][19] + a[1][3][19]
+ a[0][4][19] + k11 + k74 = 0, a[0][0][2] + a[0][1][2] + a[2][1][1] + a[0][2][2] + a[2][2][1]
+ a[0][3][2] + a[1][3][2] + a[2][3][1] + a[0][4][2] + a[2][4][1] + k57 + 1 = 0, a[0][0][6] + a[0][1][6]
+ a[3][1][7] + a[0][2][6] + a[3][2][7] + a[0][3][6] + a[3][3][7]
+ a[4][3][7] + a[0][4][6] + a[3][4][7] + k95 + 1 = 0, a[4][0][23] + a[1][1][22] + a[4][1][23]
+ a[1][2][22] + a[4][2][23] + a[0][3][23] + a[1][3][22] + a[4][3][23] + a[1][4][22] + a[4][4][23]
+ k46 = 0, a[4][0][15] + a[1][1][14] + a[1][2][14] + a[1][3][14] + a[4][3][15] + a[0][4][15]
+ a[1][4][14] + a[4][4][15] + k38 = 0, a[4][0][8] + a[2][1][9] + a[2][2][9] + a[4][2][8]
+ a[2][3][9] + a[2][4][9] + a[3][4][9] + a[4][4][8] + k65 = 0.

38

Table 19: One 64-dimensional cube of Ketje Major.
Cube variables

a[1][3][4] = a[1][4][4] = v1, a[1][2][28] = a[1][4][28] = v2, a[1][0][29] = a[1][4][29] = v3,

a[1][0][30] = v4, a[1][2][30] = v5, a[1][3][30] = v4 + v5, a[1][2][39] = a[1][3][39] = v6,

a[1][2][44] = a[1][3][44] = v7, a[1][2][52] = a[1][3][52] = v8, a[1][3][56] = a[1][4][56] = v9,

a[1][0][57] = v10, a[1][2][57] = v11, a[1][3][57] = v12, a[1][4][57] = v10 + v11 + v12,

a[2][0][0] = a[2][1][0] = v0, a[2][3][9] = a[2][4][9] = v13, a[2][3][10] = a[2][4][10] = v14,

a[2][1][19] = a[2][2][19] = v15, a[2][0][21] = v16, a[2][2][21] = v17, a[2][3][21] = v18,

a[2][4][21] = v16 + v17 + v18, a[2][0][28] = a[2][1][28] = v19, a[2][3][33] = a[2][4][33] = v20,

a[2][2][38] = a[2][4][38] = v21, a[2][1][58] = a[2][2][58] = v22, a[3][0][3] = v23, a[3][1][3] = v24,

a[3][4][3] = v23 + v24, a[3][0][4] = v25, a[3][1][4] = v26, a[3][3][4] = v27,

a[3][4][4] = v25 + v26 + v27, a[3][1][12] = v28, a[3][2][12] = v29, a[3][3][12] = v28 + v29,

a[3][1][29] = v30, a[3][2][29] = v31, a[3][3][29] = v30 + v31, a[3][0][39] = a[3][4][39] = v32,

a[3][2][48] = a[3][3][48] = v33, a[3][0][56] = v34, a[3][1][56] = v35, a[3][2][56] = v34 + v35,

a[3][1][60] = a[3][4][60] = v36, a[4][1][1] = v37, a[4][2][1] = v38, a[4][4][1] = v37 + v38,

a[4][0][5] = v39, a[4][1][5] = v40, a[4][4][5] = v39 + v40, a[4][0][10] = v41, a[4][1][10] = v42,

a[4][2][10] = v43, a[4][3][10] = v44, a[4][4][10] = v41 + v42 + v43 + v44, a[4][1][17] = v45,

a[4][3][17] = v46, a[4][4][17] = v45 + v46, a[4][0][22] = v47, a[4][2][22] = v48,

a[4][3][22] = v47 + v48, a[4][2][23] = v49, a[4][3][23] = v50, a[4][4][23] = v49 + v50,

a[4][2][34] = v51, a[4][3][34] = v52, a[4][4][34] = v51 + v52, a[4][1][42] = v53,

a[4][2][42] = v54, a[4][3][42] = v53 + v54, a[4][0][55] = a[4][2][55] = v55, a[4][0][56] = v56,

a[4][2][56] = v57, a[4][4][56] = v56 + v57, a[4][1][61] = v58, a[4][2][61] = v59,

a[4][3][61] = v60, a[4][4][61] = v58 + v59 + v60, a[4][0][62] = v61, a[4][1][62] = v62,

a[4][2][62] = v63, a[4][3][62] = v61 + v62 + v63.

Bit conditions

a[0][0][5] + a[1][0][5] + a[2][0][4] + a[0][1][5] + a[2][1][4] + a[0][2][5] + a[0][3][5] + a[2][3][4]
+ a[0][4][5] + a[2][4][4] + k124 + 1,

a[2][0][7] + a[4][0][6] + a[2][1][7] + a[3][1][7] + a[4][1][6] + a[4][2][6] + a[2][3][7] + a[4][3][6]
+ a[2][4][7] + a[4][4][6] + k127,

a[2][0][45] + a[4][0][44] + a[2][1][45] + a[4][1][44] + a[2][2][45] + a[3][2][45] + a[4][2][44]
+ a[2][3][45] + a[4][3][44] + a[2][4][45] + a[4][4][44],
a[2][0][59] + a[0][1][60] + a[2][1][59] + a[0][2][60] + a[2][2][59] + a[0][3][60] + a[2][3][59]
+ a[0][4][60] + a[1][4][60] + a[2][4][59] + k52 + 1.

39

Table 20: One 64-dimensional conditional cube of Ketje Minor
Cube variables

a[0][1][1] = v1, a[0][2][1] = v2, a[0][3][1] = v3, a[0][4][1] = v1 + v2 + v3,

a[0][1][7] = a[0][2][7] = v4, a[0][1][11] = v5, a[0][2][11] = v6, a[0][4][11] = v5 + v6,

a[0][1][13] = v7, a[0][2][13] = v8, a[0][3][13] = v7 + v8, a[0][1][16] = a[0][3][16] = v9,

a[0][2][17] = a[0][3][17] = v10, a[0][1][20] = v11, a[0][2][20] = v12,

a[0][3][20] = v11 + v12, a[0][1][22] = v13, a[0][2][22] = v14, a[0][3][22] = v15,

a[0][4][22] = v13 + v14 + v15, a[0][1][23] = v16, a[0][2][23] = v17,

a[0][3][23] = v16 + v17, a[0][2][26] = a[0][4][26] = v18, a[0][1][30] = v19, a[0][2][30] = v20,

a[0][4][30] = v19 + v20, a[1][0][4] = v21, a[1][2][4] = v22, a[1][3][4] = v21 + v22,

a[1][2][15] = a[1][3][15] = v23, a[1][0][19] = v24, a[1][2][19] = v25, a[1][3][19] = v24 + v25,

a[1][0][20] = a[1][2][20] = v26, a[1][0][23] = a[1][2][23] = v27, a[1][0][26] = a[1][2][26] = v28,

a[1][2][28] = a[1][3][28] = v29, a[1][0][30] = a[1][3][30] = v30, a[2][0][0] = a[2][4][0] = v31,

a[2][0][1] = a[2][3][1] = v32, a[2][3][2] = a[2][4][2] = v33, a[2][1][4] = a[2][3][4] = v34,

a[2][1][5] = a[2][3][5] = v35, a[2][0][6] = a[2][4][6] = v36, a[2][0][7] = a[2][3][7] = v37,

a[2][3][8] = a[2][4][8] = v38, a[2][0][9] = a[2][1][9] = v39, a[2][1][11] = v40, a[2][3][11] = v41,

a[2][4][11] = v40 + v41, a[2][0][17] = a[2][3][17] = v42, a[2][1][19] = a[2][4][19] = v43,

a[2][0][20] = a[2][1][20] = v44, a[2][0][22] = a[2][4][22] = v45, a[2][0][23] = a[2][4][23] = v46,

a[2][0][26] = a[2][3][26] = v47, a[2][0][27] = v48, a[2][1][27] = v49, a[2][3][27] = v48 + v49,

a[2][1][28] = v50, a[2][3][28] = v51, a[2][4][28] = v50 + v51, a[3][1][0] = a[3][4][0] = v0,

a[3][1][4] = v52, a[3][2][4] = v53, a[3][4][4] = v52 + v53, a[3][2][5] = a[3][4][5] = v54,

a[3][0][11] = v55, a[3][1][11] = v56, a[3][2][11] = v57, a[3][4][11] = v55 + v56 + v57,

a[3][2][13] = a[3][4][13] = v58, a[3][0][19] = a[3][1][19] = v59, a[3][2][23] = a[3][4][23] = v60,

a[4][0][3] = a[4][3][3] = v61, a[4][0][4] = v62, a[4][1][4] = v63, a[4][2][4] = v62 + v63,

a[4][0][9] = v64, a[4][2][9] = v65, a[4][3][9] = v64 + v65, a[4][1][10] = a[4][2][10] = v66,

a[4][0][12] = a[4][3][12] = v67, a[4][0][13] = a[4][2][13] = v68, a[4][1][14] = a[4][3][14] = v69,

a[4][1][17] = a[4][3][17] = v70, a[4][0][23] = v71, a[4][1][23] = v72, a[4][2][23] = v73,

a[4][3][23] = v71 + v72 + v73, a[4][0][26] = a[4][2][26] = v74, a[4][1][29] = v75,

a[4][2][29] = v76, a[4][3][29] = v75 + v76, a[4][0][30] = v77, a[4][1][30] = v78,

a[4][2][30] = v77 + v78, v29 + v39 + v55 + v58 + v67 = 0, v5 + v6 + v26 + v31 + v73 = 0,

v2 + v28 + v36 + v55 + v56 + v76 = 0, v3 + v48 + v49 = 0, v10 + v16 + v41 + v52 = 0,

v18 = 0, v6 + v22 = 0, v30 + v51 + v61 = 0, v16 + v17 + v24 + v25 + v30 + v32 + v42 + v62 = 0,

v21 + v22 + v33 + v64 + v65 + v78 = 0, v29 + v47 + v68 = 0, v5 + v19 + v20 + v39 + v43 = 0,

v19 + v50 + v56 + v69 = 0, v11 + v38 + v63 = 0, v7 + v8 + v26 + v37 + v46 + v69 + v74 = 0.

Bit conditions

a[3][0][29] + a[4][0][29] + a[0][1][28] + a[3][1][29] + a[0][2][28] + a[3][2][29] + a[0][3][28]
+ a[0][4][28] + a[3][4][29] + k20 + k117,

a[1][0][25] + a[2][0][25] + a[3][0][24] + a[3][1][24] + a[1][2][25] + a[3][2][24] + a[1][3][25]
+ a[1][4][25] + a[3][4][24] + k49 + k112 + 1,

a[3][0][16] + a[0][1][15] + a[3][1][16] + a[0][2][15] + a[3][2][16] + a[4][2][16] + a[0][3][15]
+ a[0][4][15] + a[3][4][16] + k7 + k104,

a[1][0][9] + a[3][0][8] + a[3][1][8] + a[1][2][9] + a[3][2][8] + a[1][3][9] + a[2][3][9] + a[1][4][9]
+ a[3][4][8] + k33 + k96 + 1.

40

Table 21: One 64-dimensional conditional cube of Ketje SR v1
Cube variables

a[0][2][1] = a[0][4][1] = v1, a[0][2][3] = a[0][4][3] = v2, a[0][2][6] = a[0][4][6] = v0,

a[0][3][7] = a[0][4][7] = v3, a[0][2][8] = a[0][4][8] = v4, a[0][2][9] = a[0][4][9] = v5,

a[0][2][10] = a[0][4][10] = v6, a[0][2][15] = v7, a[0][3][15] = v8, a[0][4][15] = v7 + v8,

a[1][2][0] = a[1][4][0] = v9, a[1][2][1] = v10, a[1][3][1] = v11, a[1][4][1] = v10 + v11,

a[1][2][2] = a[1][4][2] = v12, a[1][2][3] = v13, a[1][3][3] = v14, a[1][4][3] = v13 + v14,

a[1][2][6] = a[1][3][6] = v15, a[1][2][7] = a[1][4][7] = v16, a[1][2][8] = a[1][4][8] = v17,

a[1][2][10] = v18, a[1][3][10] = v19, a[1][4][10] = v18 + v19, a[1][2][11] = a[1][4][11] = v20,

a[1][3][13] = a[1][4][13] = v21, a[1][2][15] = a[1][4][15] = v22, a[2][2][0] = v23, a[2][3][0] = v24,

a[2][4][0] = v23 + v24, a[2][2][4] = v25, a[2][3][4] = v26, a[2][4][4] = v25 + v26,

a[2][2][5] = a[2][4][5] = v27, a[2][2][7] = v28, a[2][3][7] = v29, a[2][4][7] = v28 + v29,

a[2][2][8] = v30, a[2][3][8] = v31, a[2][4][8] = v30 + v31, a[2][2][14] = a[2][4][14] = v32,

a[2][2][15] = v33, a[2][3][15] = v34, a[2][4][15] = v33 + v34, a[3][2][0] = a[3][4][0] = v0,

a[3][2][1] = v35, a[3][3][1] = v36, a[3][4][1] = v35 + v36, a[3][2][2] = v37, a[3][3][2] = v38,

a[3][4][2] = v37 + v38, a[3][2][3] = v39, a[3][3][3] = v40, a[3][4][3] = v39 + v40,

a[3][2][4] = a[3][4][4] = v41, a[3][2][7] = a[3][3][7] = v42, a[3][2][8] = a[3][4][8] = v43,

a[3][2][9] = v44, a[3][3][9] = v45, a[3][4][9] = v44 + v45, a[3][2][10] = a[3][4][10] = v46,

a[3][2][12] = v47, a[3][3][12] = v48, a[3][4][12] = v47 + v48, a[3][2][13] = a[3][4][13] = v49,

a[4][2][2] = a[4][4][2] = v50, a[4][1][3] = a[4][2][3] = v51, a[4][2][4] = a[4][4][4] = v52,

a[4][2][5] = a[4][4][5] = v53, a[4][1][6] = v54, a[4][2][6] = v55, a[4][3][6] = v56,

a[4][4][6] = v54 + v55 + v56, a[4][2][7] = v57, a[4][3][7] = v58, a[4][4][7] = v57 + v58,

a[4][1][11] = v59, a[4][2][11] = v60, a[4][4][11] = v59 + v60, a[4][1][12] = v61, a[4][2][12] = v62,

a[4][3][12] = v63, a[4][4][12] = v61 + v62 + v63, a[4][1][13] = v64, a[4][2][13] = v65,

a[4][4][13] = v64 + v65, a[4][1][15] = a[4][2][15] = v66, v21 + v24 + v25 = 0, v13 + v14+
v30 + v31 + v57 + v58 + v66 = 0, v6 + v13 + v20 + v23 + v24 + v41 + v45 + v55 = 0.

27 bit conditions can be derived from V and H, and among them there are 26 bits key information
V and H

0000 0000 4000 0000 01C0 | 0000 0000 0000 0000 0000
0080 0200 0000 2200 0080 | 4080 0200 0000 0000 0000
0100 0200 0000 2320 8000 | 0000 0200 0000 0100 0000
0100 0000 0000 2120 80C0 | 0000 0000 0000 0100 0000
0000 4000 0000 A000 0100 | 0000 4020 0000 0000 0000

41

	New MILP Modeling: Improved Conditional Cube Attacks on Keccak-based Constructions
	1 Introduction
	2 Description of KMAC, Keyak and Ketje
	2.1 Keccak-p
	2.2 The Sponge Construction and KMAC
	2.3 The Duplex Construction and Keyak, Ketje
	2.4 Notations

	3 Related Works and Motivations
	3.1 Cube Attacks
	3.2 Conditional Cube Attacks
	3.3 Linear Structures
	3.4 Motivations

	4 Modeling Each Step with MILP
	4.1 A 1-Round Linear Structure of KMAC
	4.2 Modeling the Non-Linear Layer
	4.3 Modeling the Linear Layer

	5 Modeling the Search for Conditional Cubes
	5.1 Model for Searching Conditional Cubes of Type I
	5.2 Model for Searching Conditional Cubes of Type II
	5.3 Discussion and Comparison

	6 Applications
	6.1 Conditional Cube Attacks on KMAC
	6.2 Conditional Cube Attacks on Keyak and Ketje
	6.3 Conditional Cube Attacks on Full-State Keyed Duplex
	6.4 Experimental Verification

	7 Conclusions
	A Experimental Details
	B Conditional Cubes of KMAC, Keccak-MAC, Keyak, Ketje and FKD

