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Abstract. Serial matrices are a preferred choice for building diffusion
layers of lightweight block ciphers as one just needs to implement the
last row of such a matrix. In this work we analyze a new class of serial
matrices which are the lightest possible 4 × 4 serial matrix that can be
used to build diffusion layers. With this new matrix we show that block
ciphers like LED can be implemented with a reduced area in hardware de-
signs, though it has to be cycled for more iterations. Further, we suggest
the usage of an alternative S-box to the standard S-box used in LED with
similar cryptographic robustness, albeit having lesser area footprint. Fi-
nally, we combine these ideas in an end-end FPGA based prototype of
LED. We show that with these optimizations, there is a reduction of 16%
in area footprint of one round implementation of LED.

Keywords: MDS matrix, Serial matrix, Recursive Diffusion Layer, Lightweight,
S-box, LED.

1 Introduction

Lightweight Cryptography is an area that is focused on research and development
of cryptographic algorithms suitable for resource constrained devices like RFID
tags, wireless sensors, etc. These kind of devices have very low resource, and
as such the usual cryptographic algorithms like AES, RSA etc. are not suitable
therein. Internet of Things (IoT) is a network of devices like RFIDs/sensors.
Therefore, lightweight cryptography plays a crucial role in securing the data that
flows in IoT network. IoT has wide applications, for example, health monitoring,
supply chain, defense, etc. Thus low area footprint and high throughput are two
key areas of focus in lightweight cryptography. Some known lightweight block
ciphers include PRESENT [3], PRINCE [4], CLEFIA [20].

Maximum Distance Separable (MDS) matrices are popular choice to build
diffusion layers of block ciphers as they have maximal branch number. Block
ciphers such as AES, Twofish, SHARK are some of the well known block cipher
using MDS matrices for diffusion. For a square matrix to be MDS it needs to



satisfy the condition that its every possible square sub matrix has to be non
singular. This requirement makes it challenging to find MDS matrices having
efficient implementation in hardware.

In [11] the metric XOR count that measures the implementation cost of a dif-
fusion matrix is introduced. Using this metric one can find MDS matrices which
can be efficiently implemented in resource constrained environment. In the re-
cent document produced by NIST [14], the requirement of simpler rounds as a
lightweight design principle was emphasized wherein a simple round is iterated
over multiple cycles to achieve the desired security. This idea popularized by
the lightweight hash function, PHOTON [6] and block cipher, LED [7]. However,
it is an open research problem of striving to find further lightweight construc-
tions which can be iterated multiple times to obtain the desired security levels.
This method provides an effective mechanism of obtaining lightweight imple-
mentations, while not compromising on security, albeit at the cost of extra clock
cycles. While for lightweight applications, the gate count of the design is of ut-
most priority, which can be achieved at the penalty of extra clock cycles, in some
applications it may be also a constraint to ensure that the latency does not blow
up significantly. This may be important specifically in those environments where
energy is also of utmost importance. Hence, it is an interesting research problem
of finding lightweight primitives, like linear layers, S-boxes, which can be iter-
ated or cascaded to obtain the same security. On the other hand, the architecture
should also amortize the extra latency by employing suitable techniques, which
we also strive to find in this work.

In this paper we first explore lightweight recursive MDS layers and show
that these diffusion layers can be constructed in terms of serial matrices which
have very low XOR count. Known use of 4× 4 serial matrices like [6, 7] involve
matrices S such that S4 is MDS. We extend this idea by finding new lightweight
serial matrices S for which Si are MDS for i > 4. First we characterize the MDS
property of 4×4 serial matrices, where the last row has three 1’s (Theorem 1 and
Theorem 2). We show specific constructions of these lightweight serial matrices
(Theorem 2), and show that there exist a matrix with XOR count of 13 (Corol-
lary 1), which is lesser than that of the lightest serial matrix (used for LED), where
the XOR count is 16. However, this new matrix needs to be iterated 8 times,
while that for LED needs to be repeated for 4 times. In the subsequent part of
the paper, we strive to develop a lightweight design of a LED round in hardware,
wherein the twice increase in cycles is amortized by a multiple-clock design. In
this design, the linear layer which has much lesser critical path compared to the
overall critical path (which also includes the S-box), can be operated by a faster
clock compared to the overall cipher. Furthermore, we show that ensuring the
same cryptographic strength as that of the LED S-box, one can replace with com-
positions of smaller non-linear S-boxes which have similar robustness, though at
a lesser hardware cost. Finally, we combine these ideas and show that the area
can be saved by 16% as compared to the original design. However, our design has
30% higher latency. Note that a major application of lightweight encryption is to
secure data in IoT network, where low area footprint is always a key factor. re-
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quirement of the other lightweight features like throughput, energy, etc, depends
on the applications. For example, if we consider environment monitoring as an
IoT application, then we can afford some latency in the encryption algorithm,
as this application does not require immediate action upon receiving the data
from the environment. However, as the devices are low resourced, it becomes
important to decrease the area footprint as low as possible.

Rest of the paper is organized as follows: in Section 2 we recall some intro-
ductory results on serial matrices, XOR counts followed by Section 3 in which
we present some new recursive MDS matrices defined by extremely lightweight
serial matrices. In Section 4 we describe details of implementation of or new
primitives in LED block cipher and the resulting optimizations.

2 Preliminaries

Here we briefly recall some basic facts about linear diffusion layers and MDS
matrices. Denote by F2m finite field of size 2m. For any x = (x0, . . . , xn−1) ∈ Fn

2m

its m-weight wtm(x) (or simply wt(x) when there no ambiguity) is the count of
non zero elements in x. An n × n linear diffusion layer over m-bit words is a
linear map T : Fn

2m −→ Fn
2m . Diffusion property of T is measured in terms of

differential branch number , which is defined as

BN(T ) = min
x∈Fn

2m
,x6=0
{wt(x) + wt(T x)}.

It is well known [5, Ch 9] that BN(T ) ≤ n+ 1 and a diffusion layer that attains
the maximum is known as perfect diffusion layer?. Linear diffusion layers are
closely connected with MDS codes. Let C = [2n, n] be a linear code defined over
F2m . Suppose that [I|C] is a generator matrix of C, where I is n × n identity
matrix and C is a non singular matrix of the same size. Such a code is MDS
if the minimum distance of the code attains Singleton bound [13], i.e., if the
minimum distance is 2n − n + 1 = n + 1. Note that the matrix C can be used
to define an n× n linear diffusion layer over F2m and the code C is MDS if and
only if BN(C) = n + 1. Extending the notion of MDS codes to matrices, we say
that the matrix C is MDS if the code C is MDS. Another independent way of
characterizing an MDS matrix is given below which we will be using to check if
a given square matrix is MDS:
Fact 1 [13, Ch.4] An n × n matrix M over F2m is MDS if and only if every
square submatrix of M is nonsingular.

2.1 XOR Counts

The finite field F2m is also a m dimensional vector space over F2. This vec-
tor space has several bases but we use only the polynomial basis given by

? The term “perfect diffusion layer” was coined by Vaudenay in [22] wherein he sug-
gested for the first time that MDS matrices can be used to design linear diffusion
layers.
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{α, α2, . . . , αm−1} where α is the root of the irreducible polynomial that de-
fines F2m over F2. The notion of XOR count defined below, was introduced
in [11] to measure the cost of field multiplication in F2m .

Definition 1. Let B be a vector space basis of F2m over F2. For any a ∈ F2m

the XOR count of a with respect to B is denoted by XOR (a) and is defined as
the number of XOR s needed to implement the field multiplication of a with an
arbitrary element b ∈ F2m

Though the XOR count of a depends on basis of F2m , we simply denote it by
XOR (a) whenever there is no ambiguity. Using this metric one can find diffusion
matrices which can be efficiently implemented.

The linear diffusion layers in block ciphers are defined by MDS matrices.
In [11] the notion of XOR count of an element was extended to XOR count of a
row of a matrix. Suppose Ri is a row Ri = (βi,0, . . . , βi,n−1) ∈ Fn

2m of a matrix.
Denote by ρi the number of non zero entries in Ri, then the XOR s needed to
implement row Ri is given by

n−1∑
j=0

XOR (βi,j) + (ρi − 1) ·m. (1)

This notion of XOR count was further extended to the full matrix in [18] as

XOR (M) =

n∑
i=0

n−1∑
j=0

XOR (βi,j) +

n∑
i=0

(ρi − 1) ·m, (2)

where M is an n × n matrix over F2m . In this paper we are mainly focused on
Serial matrices, in which we only need to know the cost of the last row (1).

Based on the notion of XOR count several works followed [12,17,21] in order
to obtain MDS matrices with low XOR counts. For instance, [18] showed the
minimum value of XOR count that 4× 4 MDS matrices can have over F24 and
F28 . Recently [19] presented 8 × 8 MDS MDS matrices with the lowest known
XOR counts over F24 and F28 .

3 Recursive MDS Matrices

A serial matrix of order n× n over F2m is a matrix of the form

S =


0 1 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 1
a0 a1 . . . an−1

 , (3)
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which is usually denoted by S = Serial (a0, . . . , an−1). The matrix S is companion
matrix of the monic polynomial a0 +a1X+ . . .+an−1X

n−1 +Xn ∈ F2m [X] with
a0 6= 0. One can easily see that inverse of S is

S−1 =


a1

a0

a2

a0
. . . an−1

a0

1
a0

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

0 0 . . . 1 0

 . (4)

By a recursive MDS matrix we mean a MDS matrix M such that M = Si

for some serial matrix S and positive integer i. Recursive MDS matrices are a
preferred choice for diffusion layers in lightweight cryptography as only the last
row of such a matrix needs to be implemented. However, the downside is that
it causes latency since the output of diffusion layer is obtained by applying S
recursively as

(y0, . . . , yn−1) = S . . . (S︸ ︷︷ ︸
i times

(x0, . . . , xn−1)) . . .). (5)

An additional advantage of using recursive MDS matrix in block cipher is that
its inverse also has simple form (as in (4)) and can be implemented efficiently.

Several techniques have been proposed to construct recursive diffusion layers.
In [1, 16, 23] authors presented construction of recursive diffusion layers using
binary linear maps instead of matrices defined over F2m . Later Augot and Finiasz
constructed recursive MDS matrices from shortened BCH codes [2] following
which more general characterization of Recursive MDS matrices is presented
in [8,9]. In [10] authors discussed construction of 4×4 MDS matrices from serial
matrices defined over sets of the form {1, α, α2, α+ 1} ⊂ F2m .

3.1 Lightweight Recursive MDS Matrices

If S = Serial (a0, . . . , an−1) is an n × n serial matrix defined over F2m then it
is easy to see that the least possible value of i for which Si is MDS is i = n.
Consequently while constructing such MDS matrices the usual practice is to
find an n × n serial matrices S for which Sn is MDS. This is done mainly to
minimize throughput latency: If Si is MDS then we need i iterations to compute
the output y = (Si) ·x (see (5)) and hence optimal throughput is achieved when
i = n. However, it is possible to find new lightweight serial matrices S such that
Si is MDS if we assume i ≥ n.

In this section we present some new lightweight recursive MDS matrices
which have not been analyzed so far. To begin we briefly recall some termi-
nology from [2] which will be useful in presenting new results. Suppose S =
Serial (a0, . . . , an−1) be the companion matrix of the polynomial f(X) = a0 +
a1X + . . .+an−1X

n−1 +Xn defined over F2m . We can interpret the matrix S as
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S =


0 1 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 1
a0 a1 . . . an−1

 =


X
X2

...
Xn−1

Xn mod f(X)


︸ ︷︷ ︸

(∗)

(6)

where elements of each row in the matrix (∗) consists of coefficients of the poly-
nomial given in that row. With these notations it is easy to see that for any
i ≥ 1 the matrix Si is given by

Si =


Xi mod f(X)
Xi+1 mod f(X)

...
Xi+(n−1) mod f(X)

. (7)

Recall that in general one is interested in n × n serial matrices S for which Sn

is MDS in order to optimize the throughput. However in many cases it is not
possible to obtain such MDS matrices. In the following we identify two such
classes.

Lemma 1. Let n ≥ 4 and S = Serial (a0, . . . , an−1), be defined over F2m . Then
Sn is not MDS if an−1 = an−2 = 1 or an−1 = an−3 = 1.

Proof. Suppose f(X) = a0 + . . .+ an−1X
n−1 +Xn be the the polynomial asso-

ciated with the matrix S. We define c, ci as follows. Let c = a2n−1 + an−2 and for
i = 0, . . . , n− 3,

ci = ai · an−1 + ai−1, (8)

where we use the convention that ai = 0 for i < 0. Using these notations one
can check that

Xn+2 mod f(X) = a0 · c +

n−2∑
i=1

(ai c+ ci−1)Xi + (a3n−1 + an−3)Xn−1. (9)

From (7) it follows that the coefficients occurring in above polynomial form
third row in the matrix Sn. If an−1 = an−2 = 1 then we get that c = 0 and
consequently the matrix Sn is not MDS. Similarly if an−1 = an−3 = 1 then the
coefficient of Xn−1 in (9) becomes zero and the matrix Sn is not MDS. ut

Lemma 2. Let S = Serial (a0, . . . , an−1) be a matrix defined over F2m . Then Sn

is not MDS if ai−1 = ai = an−1 = 1 for any i = 1, . . . , n− 2

Proof. Using ci as in (8) we have

Xn+1 mod f(X) = a0an−1 +

n−2∑
i=1

ciX
i + (a2n−1 + an−2)Xn−1 (10)
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coefficients of which occur as second row in the matrix Sn. Here we have defined
cn−2 precisely as in (8). If ai−1 = ai = an−1 = 1 for any i = 1, . . . , n − 2 then
ci = 0 and hence the matrix Sn is not MDS. ut
While searching for lightweight recursive MDS matrices one would like to con-
sider the lightest possible serial matrix, S = Serial (1, . . . , 1) which consists of
only ’1’ as entries. However, one can easily check that in this case Si is not MDS
for any i ≥ 1. We state this observation as a fact:

Fact 2. Let S = Serial (1, . . . , 1) be an n × n be defined over F2m . Then Si is
not MDS for any i ≥ 1.

Following Fact 2, the lightest possible recursive matrix could be of the form
S = Serial (a0, . . . , an−1) where ai 6= 1 for some 0 ≤ i ≤ n − 1 and aj = 1 for
every 0 ≤ j 6= i ≤ n−1. Our objective is to find the lightest possible such matrix
for which Si is MDS with the minimum i ≥ n.

In practice size of the diffusion matrix used in a lightweight block cipher is
4 × 4. Keeping this in mind we fix n = 4 in the remaining part of this Section.
In [10] authors show that if S = Serial (a0, a1, a2, a3) is such that ai = 1 for more
than 2 values of i then S4 is never MDS over F2m . If we relax the condition that
S4 need to be MDS and consider matrices such that Si is MDS for i > 4, then
we get new serial matrices which are the lightest possible. In the following we
analyze MDS property of Si, where S = Serial (a0, a1, a2, a3) such that ai = 1
for 3 values of i

Theorem 1. Let S = Serial (a0, a1, a2, a3) be a serial matrix defined over F2m

in which ai = 1 for precisely 3 values of i. For 1 ≤ i ≤ 8 the matrices Si are not
MDS if

(i) S = Serial (a, 1, 1, 1)
(ii) S = Serial (1, a, 1, 1)
(iii) S = Serial (1, 1, 1, a),

where a /∈ {0, 1}.
Proof. Let S = Serial (a0, a1, a2, a3) be a serial matrix defined over F2m . From
(7) it follows directly that for i = 1, 2, 3 the matrix Si has 0 entries and hence
cannot be MDS. Remains to show that Si is not MDS for 4 ≤ i ≤ 8 whenever S
is in any of the form (i),(ii),(iii) as given in theorem. We do this by considering
each form separately. In the following we denote the polynomial associated with
the serial matrix S by f(X)

Case 1. S = Serial (a, 1, 1, 1), a /∈ {0, 1}.
The polynomial corresponding to the serial matrix S is f(X) = a + X + X2 +
X3 +X4 from which it follows that

X7 mod f(X) = 0 + 0 ·X + aX2 + (a+ 1)X3.

Note that this polynomial has zero coefficients and that these coefficients form a
row in the matrices Si for 4 ≤ i ≤ 7 as can be seen from (7). Consequently none
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of these matrices can be MDS. Using same argument we see that the matrix S8

cannot be MDS because the coefficients of

X10 mod f(X) = a2 + 0 · T + (a2 + 1) · T 2 + 0 · T 3.

form a row in this matrix.
Case 2. S = Serial (1, a, 1, 1), a /∈ {0, 1}.
In this case we see that

X7 mod f(X) = (a+ 1) + (a2 + a) ·X + a ·X2 + 0 ·X3, and (11a)

X8 mod f(X) = 0 + (a+ 1) ·X + (a2 + a) ·X2 + a ·X3. (11b)

Using the argument as in Case 1 we see that the matrices Si cannot be MDS
for 4 ≤ i ≤ 7 because of zero coefficients in (11a) and the matrix S8 cannot be
MDS because of zero coefficients in (11b).
Case 3. S = Serial (1, 1, 1, a), a /∈ {0, 1}.
Unlike previous cases, here all the matrices Si contain non zero entries for 4 ≤
i ≤ 8. However each of this matrix has a 2× 2 singular submatrix. To prove this
first note that

X7 mod f(X) = a3 + 1 + (a3 + a2)X + (a3 + a2 + a)X2 + (a4 + a2)X3 (12a)

X8 mod f(X) = a4 + a2 + (a4 + a3 + a2 + 1)X+

(a4 + a3)X2 + (a5 + a2 + a)X3
(12b)

For i ≥ 1 let Ri = (ri,0, ri,1, ri,2, ri,3) where ri,j is the Coefficient of Xj in
the polynomial (Xi mod f(X)). Using (7) we know that R7, R8 occur as two
consecutive rows in the matrices Si for i = 5, 6, 7. From (12a) and (12b) it is
easy to see that r7,0r8,2 + r8,0r7,2 = 0 which implies that the matrices Si have a
2× 2 singular submatrix for i = 5, 6, 7 and hence are not MDS matrices. Finally
it remains to show that S8 is also not MDS. We have

X10 mod f(X) = (a6 + a4 + a2) + (a6 + a5 + a4 + a)X+

(a6 + a5 + a2 + a)X2 + (a7 + a4 + a+ 1)X3
(13)

and
X11 mod f(X) = a7 + a4 + a+ 1 + (a7 + a6 + a2 + a+ 1)X+

(a7 + a6 + a5 + 1)X2 + (a8 + a6)X3
(14)

The rows R10, R11 occur in the matrix S8 and from (13) and (14) we see that
the sub matrix [

r10,1, r10,2
r11,1, r11,2

]
(15)

is a singular submatrix of S8 making it non MDS. ut

Theorem 2. Let S = Serial (1, 1, a, 1) be defined over F2m , then Si is not MDS
for 1 ≤ i ≤ 7. Further, S8 is MDS precisely in either the following two cases:
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(1) If the minimal polynomial of a over F2 is X4 +X + 1
(2) If the degree of the minimal polynomial of a over F2 is ≥ 5 and the minimal

polynomial is not in the set {X5 +X4 +X2 +X + 1, X5 +X3 +X2 +X +
1, X5 +X4 +X3 +X2 + 1}

Proof. Let f(x) = 1 + x + a x2 + x3 + x4 be the associated polynomial of the
serial matrix S = Serial (1, 1, a, 1) from which we can easily see that

x7 mod f(x) = 0 + (a+ 1)x+ a x2 + (a2 + a)x3.

Using the argument as in Case 1 of Theorem 1 we conclude that Si is not MDS
for 1 ≤ i ≤ 7.

To prove the remaining part of the theorem denote by S(x) the matrix of
the form Serial (1, 1, x, 1) where x is an indeterminate. Let ∆i be the set of
determinants of all of the i× i submatrices of S8(x). We have

∆1 = {x3 + x2 + x, x3 + x2 + x+ 1, x4 + 1, x2, x2 + 1, x,

x4 + x2, x2 + x, x3 + x+ 1}
∆2 = {x6 + x5 + x+ 1, x5 + x4 + x, x5 + x3 + x2 + 1, x5 + x3 + x,

x6 + x4 + 1, x6 + x2, x4 + x2, x4 + x3, x7 + x6 + x5 + x3 + x+ 1,

x5 + x, x6 + x4 + x3 + x2 + x, x6, x4 + 1, x6 + x5 + x4 + x,

x7 + x5 + x3 + x, x5 + x4 + x3 + x, x8 + x6 + x2 + 1, x7 + x6 + x3 + 1}
∆3 = {x3 + x2 + x, x3 + x2 + x+ 1, x4 + 1, x2, x2 + 1, x, x4 + x2, x2 + x, x3 + x+ 1}

and ∆4 = {1}.

Denote by ∆ the set of irreducible factors of polynomials in ∆1 ∪∆2 ∪∆3. It is
easy to see that,

∆ = {x, x+ 1, x2 + x+ 1, x3 + x+ 1, x3 + x2 + 1,

x4 + x3 + 1, x4 + x3 + x2 + x+ 1,

x5 + x4 + x2 + x+ 1, x5 + x3 + x2 + x+ 1, x5 + x4 + x3 + x2 + 1}

Now, if we consider the matrix S(a) for some a ∈ F2m then S(a)8 is MDS
if and only if δ(a) 6= 0 for every δ(x) ∈ ∆. One can check that this happens
precisely in either the two cases (1), (2) stated in statement of theorem. ut

Corollary 1. The matrix S = Serial (1, 1, α, 1) defined over F24 , where α is a
root of irreducible polynomial X4 +X + 1 is the lightest serial matrix such that
S8 is MDS, and XOR (S) = 13.

Proof. As Serial (1, 1, 1, 1) can never be MDS for any (Serial (1, 1, 1, 1))i, thus
the next possibility that (Serial (a0, a1, a2, a3))8 is MDS when it is of the form
Serial (1, 1, a, 1) for some a /∈ {0, 1}. The element α which is a root ofX4+X+1 =
0 has the lowest nonzero XOR count which is 1. This results in that S is the
lightest serial matrix such that S8 is MDS, and XOR (S) = 13. ut
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4 Lightweight Architecture for Block Ciphers: A case
study on LED

In this section, we will describe the hardware implementation of datapath of typ-
ical AES-like block ciphers. We consider the particular instance of LED, though
the idea can be generalized for a larger class of block ciphers having an MDS
block as diffusion layer. Along with implementing the above discussed lightweight
linear layer, we focus on two other important aspects: 1) the design of the non-
linear S-box, and 2) the overall composition of the layers to ensure that the
two-fold increase in the iteration requirement of the modified linear layer does
not lead to a double increase in the latency. We start with discussion on the the
non-linear S-box.

We have implemented the datapath of LED, using an ASIC design flow. We
have used Synopsys Design Compiler(version: vI-2013.12-SP5-4) for synthesis
and Synopsys VCS(version: I-2014.03-SP1-1) for simulation. Standard cell li-
brary(TSL18FS120) on 180nm technology from TowerSemiconductor Ltd. is
used during synthesis, which is characterized using SiliconSmart Software (ver-
sion: 2008.02-SP1p1) under Fast-Fast process(P), 1.98V voltage(V) and -40 de-
gree C temperature(T).

4.1 Choosing an efficient 4 × 4 S-box

The 4× 4 S-box that is used in LED has nonlinearity 4, differential uniformity 4,
and algebraic degree 3. The polynomial expression over F24 of this S-box is

(α3 + α2 + 1)x14 + (α3 + α2 + 1)x13 + (α3 + α2)x12 + (α3 + α2 + α)x11

+(α3 + 1)x10 + (α3 + 1)x9 + (α2 + α+ 1)x8 + α2x7 + (α3 + α2)x6

+(α3 + α)x5 + (α3 + α2 + α)x4 + (α2 + α+ 1)x3 + (α2 + α+ 1)x2 + α3 + α2,

where α is a primitive root of X4+X+1 = 0. Instead an S-box which is monomial
would have low hardware footprint. The monomials X 7→ Xi for i = 7, 11, 13, 14,
are such that the associated 4×4 S-box has nonlinearity 4, differential uniformity
4, and algebraic degree 3. We consider such monomial with the least i, i.e.,
X 7→ X7. As this S-box has fixed points: 0 7→ 0, 1 7→ 1, etc., we consider
X 7→ X7 + 1. The associated S-box will thus not have any fixed points, while
the other cryptographic properties like nonliearity, differential uniformity, degree
remain invariant. The proposed S-box values are shown in Table 4.1.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 1 0 A C 8 F 7 6 D 4 9 2 E 3 5 B

Table 1. S-box defined by X 7→ X7 + 1
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We also evaluate that the implementation cost of this S-box is lesser than that
of LED. We implement the proposed S-box function as X7 = X4×X2×X, which
requires 2 nibble wise multiplication operation, 1 square and 1 fourth power
calculation followed by one bit XOR . We did not not choose X7 = X4 × X3,
as X3 is heavier than the 2 multiplication operations in case of the former
decomposition. Our proposed 4 × 4 S-box occupies 359um2 area, which is 28.6
GE. Here 1 GE is the area required for one 2-input NAND gate. A 2-input lowest
drive NAND gate of our library occupies 12.544 um2 area. This design may
be compared with the standard look-up table based LED S-box implementation
occupies 391um2, which is 31.2 GE, which is 9% more than the proposed S-box.
We compare the two designs with respect to both cryptographic strengths and
area requirement using the S-Box Evaluation Tool (SET) [15] tool in Table 4.1. It
may be observed that we have reduced the hardware overhead of the non-linear
layer using our proposed method without compromising on security parameters
like non-linearity, differential uniformity and degree of a typical 4 × 4 S-box as
used in LED.

Property Proposed S-box LED S-box

Nonlinearity 4 4

Algebraic Degree 3 3

Algebraic Immunity 2 2

Differential Uniformity 4 4

Robustness to Differential Cryptanalysis 0.750 0.750

Silicon Area 359 um2 391 um2

Table 2. S-box Properties as Evaluated by S-Box Evaluation Tool

4.2 Implementing Lightweight Serial Matrix

In this section we describe the implementation strategy of our new lightweight
MDS matrix and compare it with existing MDS matrix used in LED. Denote by S1

the serial matrix Serial (α2, 1, α, α) which is the existing diffusion matrix of LED
block cipher. This matrix is considered to be lightest which has XOR (S1) = 16
with S4

1 being MDS. We implemented S1 ×X, where X = [x1, x2, x3, x4]t is a
column vector, each element xi of the vector is a nibble. This implementation
has hardware footprint 387.5um2 (31 GE) comprising of six 3-input XOR gates
and two 2-input XOR gates.

Next consider the serial matrix S2 = Serial (1, 1, α, 1) as given in Corollary
1. This serial matrix is lighter than S1 with XOR cost 13, using which MDS
matrix is calculated as S8

2. Similar to the implementation of S1, we implemented
S2 ×X, and hardware footprint reported by the synthesis tool is 365.4um2 (29
GE) comprising of five 3-input XOR gates and three 2-input XOR gates.

11



We design the entire data-path of LED using proposed transformation and
the overall design results show compaction. The critical path length and the
overall area of the linear layer and the entire data-path is shown in Table 3
below. From the table it can be seen that there is saving of 16% area in the
proposed datapath (1044.6 GE) compared to the original LED datapath (1244.2
GE). However, one may argue that in the proposed linear layer result obtained by
computing S8

2×X, (X is the state matrix) requiring 8 clock cycles, whereas in the
original LED design the linear layer result is obtained from S4

1×X which requires
only 4 clock cycles. So it may seem that the new design incurs twice latency
compared to the original design for one round implementation. Our proposed
S-box takes lesser time to execute, notably, delay for the S-box and shift row
combined is 2.47 ns for LED, whereas for the new design it is just 1.63 ns. This
helps reduce the overall delay in our design not reaching the double the delay of
LED. Then overall latency of the LED is 0.61× 4 + 2.47 = 4.91 ns, while that for
the new design it is 0.61× 8 + 1.63 = 6.51 ns. Thanks to lower latency incurred
by the S-box, the overall increase in latency of the new design is capped at 30%.

In IoT applications low area footprints is always a factor, whereas in some
applications like environment monitoring some latency is affordable. So, for these
class of applications our design has very high impact.

Design Crdatapath(ns)?? Crlinearlayer(ns) Adatapath (GE) Alinearlayer (GE)

LED 3.08 0.61 1244.2 123.56

Our Design 2.24 0.61 1044.6 116.5

Table 3. Area and Critical Path Time Comparison for one round implementation of
our design and LED

4.3 Restraining Latency by Double Clock Architecture

The new lightweight MDS matrix S2 requires 8 iterations to compute the full
effect of diffusion layer since S8

2 is MDS. Compared to original matrix S1 which
needs 4 iterations the matrix S2 increases latency. We now describe a solution
for reducing the latency caused by our serial matrix implementation. If the user
wants to have very low area footprint like our design, and also wants to have low
latency, then following is our suggestion. One can use double clock architecture
to check the latency of the new design. We present this in Figure 1. The figure
shows the operation of the serial matrix is done at a clock clk2 which is faster
than clk1, rests of the operations are done at clk1. With this architecture we can
curb the latency and at the same time can benefit from the low area cost.

?? This latency is due to one iteration of serial matrix along with S-box implementation
and shift row operation.
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Fig. 1. Datapath Design of our Proposed Method

Design Crdatapath (ns) Crlinearlayer (ns) Adatapath (GE) Alinearlayer (GE)

LED block Cipher 3.08 0.61 1709.4 123.56

Proposed Method 2.24 0.61 1640 116.5

Table 3. Area and Critical Path Time Comparison

5 Conclusions

Latency is inherent to the block ciphers whose di↵usion layer is based on serial
matrix. In this work we have shown that if we relax latency slightly we can
further reduce the implementation cost of the di↵usion layer. We apply our
newly discovered matrix in the di↵usion layer of LED, and on top of that we also
propose a lighter S-box for LED. The combining e↵ect of these two is that we
get a variant of LED which is lighter than the original one. We further employ in
these ideas in a multi-clock design of the LED data-path which can be used to
keep the latency increase at a check of 1.3, while the overall gate count (area) is
reduced by around 1.04 per round of LED. With this we open up the applicability
of n ⇥ n serial matrix S in lightweight block ciphers, such that Si is MDS for
i > n.
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5 Conclusions

Latency is inherent to the block ciphers whose diffusion layer is based on serial
matrices. In this work we have shown that if we relax latency slightly, then
we can further reduce the implementation cost of the diffusion layer. We have
applied our newly discovered matrix in the diffusion layer of LED, and on top of
that we also have proposed a lighter S-box. The combining effect of these two
is that we have obtained a variant of LED which is lighter than the original one.
We also have proposed a multi-clock design of the LED data-path which can be
used to restrain increase in the latency.

Our diffusion matrix opens up the applicability of an n × n serial matrix S
in lightweight block ciphers, such that Si is MDS for i > n. On the other hand,
the proposed multi-clock architecture is also interesting to explore further.

13



References

1. D. Augot and M. Finiasz. Exhaustive Search for Small Dimension Recursive MDS
Diffusion Layers for Block Ciphers and Hash Functions. In Information Theory
Proceedings (ISIT), 2013 IEEE International Symposium on, pages 1551–1555.
IEEE, 2013.

2. D. Augot and M. Finiasz. Direct Construction of Recursive MDS Diffusion Lay-
ers using Shortened BCH Codes. In International Workshop on Fast Software
Encryption, pages 3–17. Springer, 2014.

3. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems - CHES 2007, volume 4727 of LNCS, pages 450–466. Springer, 2007.
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