
Foundations of Differentially Oblivious Algorithms

T-H. Hubert Chan
HKU

Kai-Min Chung
Academia Sinica

Bruce Maggs
Duke

Elaine Shi
Cornell

Abstract

It is well-known that a program’s memory access pattern can leak information about its input.
To thwart such leakage, most existing works adopt the solution of oblivious RAM (ORAM)
simulation. Such a notion has stimulated much debate. Some have argued that the notion
of ORAM is too strong, and suffers from a logarithmic lower bound on simulation overhead.
Despite encouraging progress in designing efficient ORAM algorithms, it would nonetheless
be desirable to avoid the oblivious simulation overhead. Others have argued that obliviousness,
without protection of length-leakage, is too weak, and have demonstrated examples where entire
databases can be reconstructed merely from length-leakage.

Inspired by the elegant notion of differential privacy, we initiate the study of a new notion of
access pattern privacy, which we call “(ε, δ)-differential obliviousness”. We separate the notion
of (ε, δ)-differential obliviousness from classical obliviousness by considering several fundamen-
tal algorithmic abstractions including sorting small-length keys, merging two sorted lists, and
range query data structures (akin to binary search trees). We show that by adopting differential
obliviousness with reasonable choices of ε and δ, not only can one circumvent several impossibil-
ities pertaining to the classical obliviousness notion, but also in several cases, obtain meaningful
privacy with little overhead relative to the non-private baselines (i.e., having privacy “almost
for free”). On the other hand, we show that for very demanding choices of ε and δ, the same
lower bounds for oblivious algorithms would be preserved for (ε, δ)-differential obliviousness.

1 Introduction

Consider a computing paradigm where a trusted CPU accesses sensitive data stored in untrusted
memory while performing computation. This paradigm is of broad relevance in numerous applica-
tion domains. For instance, in cloud outsourcing, the CPU is a client and the memory is a cloud
server [23, 45, 52]. In secure processor design, the CPU is tamper-proof but the memory and sys-
tem buses can be easily tapped [36, 38, 42]. In secure multi-party computation (MPC) [5, 25, 37], a
trusted (abstract) CPU is instantiated with MPC, and memory is possibly shared among multiple
parties. Henceforth in this paper, we also refer to a CPU as a client, and memory as a server. It
is well-understood that data access patterns can leak highly sensitive information such as crypto-
graphic keys [28, 29, 53]. Thus understanding how to eliminate or mitigate such leakage to obtain
meaningful privacy guarantees is an important challenge.

To tackle this challenge, the majority of earlier works adopt “obliviousness” as the desired
privacy guarantee. Informally speaking, obliviousness requires that a simulator, while not knowing
the inputs to a program but possibly knowing how many records are accessed, must be able to
simulate the access pattern of a program, such that the simulated access pattern is (computationally
or statistically) indistinguishable from that generated by the real algorithm. Indeed, an exciting
line of research on oblivious RAM (ORAM) initiated by Goldreich and Ostrovsky [19, 20] has
culminated in recent improvements [10,34,50] showing that any RAM program can be compiled to
an oblivious counterpart while incurring only O(log2N) blowup in runtime.

1

Obliviousness as a privacy notion, however, is somewhat controversial. Some argue that a full
simulation notion is too strong to be efficiency-friendly: although recent works [10, 46, 50] have
tremendously improved the practical performance of ORAM, it would nonetheless be desirable
to avoid the general O(log2N) blowup of ORAM [10, 23, 34, 46, 50]. Others argue that in some
scenarios, the obliviousness notion, without protecting the lengths of queries, is too weak — for
example, the recent work by Kellaris et al. [29] suggested that under certain assumptions, even
entire databases can be reconstructed by observing merely length leakage. These philosophical
debates converge to a few important questions:

What is a good notion of access pattern privacy?

Is achieving obliviousness a necessary stepping stone in attaining any meaningful notion of access
pattern privacy?

Can we circumvent impossibility results associated with the standard notion of obliviousness and
still attain meaningful notions of access pattern privacy?

Encouragingly, our community has recently begun explorations in these directions. Our work
is inspired by the recent work of Kellaris et al. [30], who investigated how to achieve access pattern
differential privacy in outsourced database queries. Their work gives a solution for the restricted
scenario in which a static database (allowing range and other queries) is outsourced to a remote
server after preprocessing. For the case of dynamic data, Kellaris et al. [30] describes a partial
solution where they store records in an ORAM and fetch a random number of additional records
beyond what is necessary to obfuscate the true number of records matching each query. This
solution is partial in that (1) they make the following strong assumptions: the client can store an
unbounded amount of metadata, and metadata accessess are unobservable by the adversary; and (2)
their solution nevertheless resorts to using ORAM as a blackbox and thus leaves largely unexplored
whether there is a meaningful weaker or incomparable notion of access pattern privacy that does
not imply “obliviousness”, and whether such a notion is achievable without having to resort to full
obliviousness.

1.1 Differential Obliviousness

Inspired by Kellaris et al. [30], we apply the standard notion of differential privacy [16] to access
patterns, and call the resulting notion differential obliviousness. For generality, we formulate differ-
ential obliviousness for random access machines (RAMs) where a trusted CPU with O(1) registers
interacts with an untrusted memory to perform computation. Our formulation is applicable to
all the application domains mentioned earlier including cloud outsourcing, secure processors, and
MPC.

The relationship between differential obliviousness and (simulation-based) obliviousness (see
Goldreich and Ostrovsky [19, 20]) is analogous to the relationship between differential privacy [16]
and (simulation-based) privacy (see Dalenius [15]1). While obliviousness requires that the access
pattern of an algorithm be simulatable by a simulator that does not know the algorithm’s input
but possibly knowing certain length leakage, differential obliviousness requires that the algorithm’s
access pattern be close in distribution for any two neighboring inputs that differ only slightly from
each other.

Differential obliviousness can also be intuitively interpreted as differential privacy [16, 48], but
now the observables are access patterns. Informally, we would like to guarantee that an adversary

1It was pointed out that the Dalenius’s fully simulatable privacy notion is unattainable if any meaningful utility
is required [16], but fully simulatable obliviousness is of a very different nature and is possible.

2

such as a cloud server, after having observed access patterns to (encrypted)2 dataset stored on the
server, learns approximately the same amount of information about an individual or an event as if
this individual or event were not present in the dataset. Since the data can be encrypted, we assume
that the server cannot observe the contents of the data, nor does the server learn the outcome of
the algorithm (except if the algorithm “voluntarily” discloses intermediate, differentially private
statistics3).

We make a couple brief remarks at this moment regarding this new notion:

1. As we will explain in more detail later, depending on whether length-leakage is of concern, our
differentially obliviousness notion is in some cases weaker than the standard notion of oblivious-
ness (e.g., for sorting), but in other cases incomparable (e.g., for data structures — note that
earlier works on oblivious data structures [31, 39, 51] leak the number of records matching each
query which would violate our notion of differential obliviousness).

2. Our differential obliviousness notion demands some form of obfuscation of access patterns. Since
the definition is close in nature to the existing notion of differential privacy (but now the observ-
ables are access patterns), one natural question is whether and how one can leverage differentially
private mechanism design techniques to obfuscate access patterns. At first sight, though, this ap-
pears difficult since differentially private mechanisms [16,48] typically protect individual records
“in the aggregate”; but for access patterns, each (input-dependent) data movement is observable
in a singled-out fashion, and there does not appear to be any immediate way of adding noise to
such individual data movements while preserving the algorithm’s correctness.

1.2 Our Results

Equipped with this new notion, we investigate the feasibility and infeasibility of efficiently realizing
some of the most fundamental algorithmic abstractions, including sorting and data structures, while
satisfying differential obliviousness. Through this process, we not only formulate a new theory for
differentially oblivious algorithms, but also demonstrate several novel techniques for proving both
upper- and lower-bounds. Our lower bounds draw new connections to the complexity of routing
graphs that were studied in the classical algorithms literature [41]. On the upper bound front, we
are the first to integrate techniques from differentially private mechanisms and oblivious algorithms
in a non-trivial and non-blackbox manner. Perhaps somewhat counter-intuitively, we show that
indeed, meaningful notions of privacy can be attained, without resorting to full obliviousness —
this allows us to not only circumvent several impossibilities pertaining to the classical notion of
obliviousness, but also show, in several cases, that we can attain meaningful privacy with only
slightly larger overhead than the best-known non-private baselines (i.e., almost for free).

Our work should be viewed as the beginning of a fruitful line of research that will answer
many natural open questions, which will be encountered as one thoroughly explores the theoretical
landscape of differentially oblivious algorithms. We now elaborate on our results.

1.2.1 Sorting

This is one of the most fundamental and most classical algorithmic abstraction. In this paper, we
consider (possibly non-comparison-based) sorting in the balls-and-bins model: imagine that there
are N balls each tagged with a k-bit key. We would like to sort the balls based on the relative

2Our differentially oblivious definitions do not capture the encryption part, since we consider only the access
patterns as observables. In this way all of our guarantees are information theoretic in this paper.

3In our security proofs, we show that typically the access patterns depend only on these voluntarily disclosed
statistics, and hence are also differentially oblivious.

3

ordering of their keys. If how an algorithm moves elements is based only on the relative order (with
respect to the keys) of the input elements, we say that the algorithm is comparison-based; otherwise
it is said to be non-comparison-based. Unlike the keys, the balls are assumed to be opaque — they
can only be moved around but cannot be computed upon. A sorting algorithm is said to be stable,
if for any two balls with identical keys, their relative order in the output respects that in the input.

Even without privacy requirements, it is understood that 1) any comparison-based sorting algo-
rithm must incur at least Ω(N logN) comparison operations — even for sorting 1-bit keys due to
the well-known 0-1 principle; and 2) for special scenarios, non-comparison-based sorting techniques
can achieve linear running time (e.g., radix sort, counting sort, and others [2,26,27,32,47]) — and
a subset of these techniques apply to the balls-and-bins model. However, a recent manuscript by
Lin, Shi, and Xie [35] showed that interesting barriers arise if we require the classical notion of
obliviousness for sorting.

Fact 1.1 (Barriers for oblivious sorting [35]). Any oblivious 1-bit stable sorting algorithm in the
balls-and-bins model, even non-comparison-based ones, must incur at least Ω(N logN) runtime
(even when allowing a constant probability of security or correctness failure). As a direct corollary,
any general oblivious sorting algorithm in the balls-and-bins model, even non-comparison-based
ones, must incur at least Ω(N logN) runtime.

We stress that the above oblivious sorting barrier is applicable only in the balls-and-bins
model (otherwise without the balls-and-bins constraint, the feasibility or infeasibility of o(n log n)-
overhead, circuit-based sorting remains open [7]). Further, as Lin, Shi, and Xie showed [35], for
small-length keys, the barrier also goes away if the stability requirement is removed (see Section 1.4
for more explanations).

Differentially oblivious sorting. A sorting algorithm M is said to be (ε, δ)-differentially obliv-
ious, if for any two neighboring input arrays I and I ′ of equal length that differ only in one position,
for any set S of access patterns, it holds that

Pr[AccessesM (I) ∈ S] ≤ eε · Pr[AccessesM (I ′) ∈ S] + δ,

where AccessesM (I) denotes the ordered sequence of memory accesses made by the algorithm M
upon receiving the input I.

By this definition, (ε, δ)-differentially oblivious sorting is a strict relaxation of the classical
notion of oblivious sorting (which is equivalent to the case ε = δ = 0). We thus ask: can we use
this relaxation to overcome the aforementioned barriers for oblivious sorting (in the balls-and-bins
model)?

We give a two-sided answer to this question. On the positive side, we show that for reasonable
choices of ε and δ, indeed, one can sort small-length keys in o(N logN) time and attain (ε, δ)-
differential obliviousness. As a typical parameter choice, for ε = Θ(1) and δ being a suitable
negligible function in N , we can stably sort N balls tagged with 1-bit keys in O(N log logN)
time — note that in this case, the best non-private algorithm takes linear time, and thus we
show that privacy is attained “almost for free” for 1-bit stable sorting. More generally, for any
k = o(logN/ log logN), we can stably sort k-bit keys in o(N logN) time — in other words, for
small-length keys we overcome the Ω(N logN) barrier of oblivious sorting. We state our result
more formally and for generalized parameters:

Theorem 1.2 ((ε, δ)-differentially oblivious stable k-bit sorting). For any ε > 0 and any 0 <
δ < 1, there exists an (ε, δ)-differentially oblivious k-bit stable sorting algorithm that completes

4

in O(kN(log k
ε + log logN + log log 1

δ)) runtime. As a special case, for ε = Θ(1), there exists an
(ε, negl(N))-differentially oblivious stable 1-bit sorting algorithm that completes in O(N log logN)
runtime for some suitable negligible function negl(·), say, negl(N) := exp(− log2N).

Note that the above upper bound statement allows for general choices of ε and δ. We can observe
that for ε = Θ(1), if one demands an exceedingly small δ, say, δ = exp(−N0.1) or any subexponential
function, the upper bound would become O(N logN log logN) for k = 1. Interestingly, we show
that our upper bound result is optimal up to log log factors for a wide parameter range. We present
our lower bound statement for general parameters first, and then highlight several particularly
interesting parameter choices and discuss their implications. Note that our lower bound below is
applicable even to non-comparison-based sorting:

Theorem 1.3 (Lower bound for (ε, δ)-differentially oblivious sorting in the balls-and-bins model).

For any 0 < s ≤
√
N , any ε > 0, and any 0 ≤ δ ≤ e−(2εs+log2N), any (ε, δ)-differentially oblivi-

ous stable 1-bit sorting algorithm in the balls-and-bins model must incur, on some input, at least
Ω(N log s) memory accesses with high probability.

As an immediate corollary, under the same parameter assumptions, any (ε, δ)-differentially
oblivious general (possibly non-stable) balls-and-bins sorting algorithm must incur, on some input,
at least Ω(N log s) memory accesses with high probability.

We now highlight several interesting parameter choices and discuss their implications:

• First, note that how the lower bound tightly matches the upper bound (up to log log factors)
for ε = Θ(1) and typical choices of δ, e.g., δ = exp(− log2N) or δ = exp(−N0.1).

• Second, the lower bound allows a tradeoff between ε and δ. For example, here is another
interesting parametrization: if ε = Θ(1√

N
), then we rule out o(N logN) stable 1-bit sorting for

even δ = exp(−Ω(log2N)).

• Perhaps even more interestingly, if one requires that δ = 0, then we may conclude that even
when ε may be arbitrarily large, any ε-differentially oblivious sorting algorithm must suffer from
the same lower bounds as oblivious sorting (in the balls-and-bins model)! This is a surprising
conclusion because in some sense, very little privacy (or almost no privacy) is attained for large
choices of ε — and yet if δ must be 0, the same barrier for full obliviousness carries over!

1.2.2 Merging Two Sorted Lists

Merging is also a classical abstraction and has been studied extensively in algorithms [33]. Merging
in the balls-and-bins model is the following task: given two input sorted arrays (by the keys) which
together contain N balls, output a merged array containing balls from both input arrays ordered
by their keys. Without privacy requirements, clearly merging can be accomplished in O(N) time.
Interestingly, Pippenger and Valiant [41] proved that any oblivious algorithm must (in expectation)
incur at least Ω(N logN) ball movements to merge two arrays of length N — even when O(1)
correctness or security failure is allowed4.

Differentially oblivious merging. To define the notion of (ε, δ)-differential obliviousness for
merging, we must specify what it means for two inputs to be neighboring. In merging, the input
contains two sorted arrays. Due to the sortedness requirement on the input arrays, it does not

4Pippenger and Valiant’s proof [41] is in fact in a balls-and-bins circuit model, but it is not too difficult, using the
access pattern graph approach in our paper, translate their lower bound to the RAM setting.

5

make sense to flip one coordinate and change it to an arbitrary other value. Instead, we say that
two sorted arrays I and I ′ are neighboring, if the multiset defined by the two input arrays would
become identical by removing one element from each array. For merging, we say that two inputs
(I0, I1) and (I ′0, I

′
1) are neighboring if for either b = 0 or b = 1, Ib and I ′b are neighboring and

I1−b = I ′1−b. Given this new notion of neighboring, differentially oblivious for merging could be
defined in exactly the same manner as that for sorting. We stress that such a notion of neighboring
is natural and meaningful in practical applications — for example, our data structure construction
later makes use of merging as a building block where this natural notion of neighboring is desired.

We show similar results for merging as those for 1-bit stable sorting.

• First, we prove that assuming ε = Θ(1), if δ must be subexponentially small, then the same
lower bound for oblivious merging will be preserved for (ε, δ)-differentially oblivious merging.

• Second, we show that for ε = Θ(1) and δ negligibly small (but not subexponentially small), we
can achieve (ε, δ)-differentially oblivious merging in O(N log logN) time — yet another example
of having privacy with only slightly higher overhead.

• Third, just like the case of 1-bit stable sorting, both our upper- and lower-bounds are (almost)
tight for a wide parameter range that is of interest.

We present the informal theorem statements below and defer the formal versions to the detailed
technical sections.

Theorem 1.4 (Lower bound for (ε, δ)-differentially oblivious merging in the balls-and-bins model).

For any 0 < s ≤
√
N , any ε > 0, and any 0 ≤ δ ≤ e−(2εs+log2N), any (ε, δ)-differentially oblivi-

ous merging algorithm in the balls-and-bins model must incur, on some input, at least Ω(N log s)
memory accesses with high probability.

Theorem 1.5 ((ε, δ)-differentially oblivious merging). For any ε > 0 and any 0 < δ < 1, there
exists an (ε, δ)-differentially oblivious merging algorithm that completes in O(N(log 1

ε + log logN +
log log 1

δ)) runtime5. As a special case, for ε = Θ(1), there exists an (ε, negl(N))-differentially
oblivious merging algorithm that completes in O(N log logN) runtime for some suitable negligible
function negl(·).

Note that the parameter constraints in the lower- and upper-bounds resemble those of the 1-bit
stable sorting. Thus, we can interpret these results in a similar fashion as 1-bit stable sorting, e.g.,
by observing how the lower- and upper-bounds tightly match (up to log log factors) for a wide range
of parameters, and by observing how, when δ = 0, surprisingly, the oblivious merging Ω(N logN)
barrier will be preserved no matter how larger ε is (and how little privacy we get from such a large
ε).

1.2.3 Data Structures Supporting Insertion and Query

Unlike sorting, data structures are stateful (rather than stateless) algorithms, where memory states
persist across multiple invocations. Like sorting, data structures are also of fundamental importance
to computer science. We thus investigate the feasibilities and infeasibilities of efficient, differentially
oblivious data structures.

5Here we assume here that arithmetic computations on real numbers and sampling from appropriate distributions
take unit time. In the appendices, we show how to remove this assumption for a finite-word-length RAM and for
negligibly small δ.

6

For simplicity, we describe only the static notion of differential obliviousness here — we use the
static notion for our lower bounds but as we argue later, our upper bounds in fact satisfy adaptive
differential obliviousness where the adversary can choose the operations adaptively over time.

Let DS be a data structure supporting insertions and queries from a query family Q. We say
that two operational sequences ops0 and ops1 are query-consistent neighboring, if they differ in
exactly one position i such that ops0[i] and ops1[i] must both be insertion operations.

We say that DS is (ε, δ)-differentially oblivious, if for any operational sequences ops0 and ops1
that are query-consistent neighboring, for any set S of access patterns, it holds that

Pr[AccessesDS(ops0) ∈ S] ≤ eε · Pr[AccessesDS(ops1) ∈ S] + δ.

Similarly as before, such a privacy notion guarantees that an adversary such as a cloud server,
having observed the access patterns to the outsourced data structure over all time, learns ap-
proximately the same amount of information about any individual record or any event as if that
individual record or event did not get inserted in the database. Note that our privacy definition pro-
tects the privacy of individual records that get inserted into the database over time, but assumes
that queries are public — thus the notion is applicable in scenarios where the data records are
sensitive (e.g., hospital patient records) but the queries are not (e.g., medical researchers running
standard statistical tests over the dataset). We also show later that any scheme that additionally
protects the queries in a differentially oblivious sense must, on some databases (where records are
inserted over time), incur Ω(N) runtime per query even when the number of matching records is
small — such privacy notions are less useful since they rule out efficient constructions.

Relation to oblivious data structures. Here our differentially oblivious notion is incomparable
to the standard notion of oblivious data structures [31,39,51] and ORAM [19,20,23,46,50] considered
in prior works. Specifically, oblivious data structures or ORAMs require that the access patterns
be simulatable not knowing either insertions or queries, but knowing length leakage — in other
words, oblivious data structures and ORAMs do not hide the number of records matching each
query. In comparison, here we weaken the fully simulatable notion but on the other hand, our
notion requires obfuscating length leakages, such that reconstruction attacks such as Kellaris et
al. [29] are provably defeated.

Upper bound results. We consider data structures that support insertions and range queries.
Every insertion operation inserts a record indexed by a search key, and each range query searches
for all records whose keys fall within a specified range [s, t]. Absent any privacy requirement, such
a data structure can be realized with a standard binary search tree, where each insertion incurs
O(logN) time where N is an upper bound on the total records inserted; and each range query can
be served in O(logN + L) time and accessing only O(logN) discontiguous memory regions where
L denotes the number of matching records. Note that here we use the number of discontiguous
memory regions required by each query to characterize the locality of the data structure, a metric
frequently adopted by recent works [3, 4, 9]. We show the following results (stated informally).

Theorem 1.6 (Differentially oblivious data structure upper bound). Suppose that ε = Θ(1) and
that negl(·) is a suitable negligible function. There is an (ε, negl(N))-differentially oblivious data
structure supporting insertions and range queries, where each of the N insertions incurs amortized
O(logN log logN) runtime, and each query costs O(poly logN + L) runtime where L denotes the
number of matching records, and requires accessing only O(logN) discontiguous memory regions
regardless of L.

7

In comparison with the non-private solution (i.e., binary search trees), an immediate obser-
vation is that for insertions, we achieve privacy with only a slightly higher overhead; and the
same can be said for queries that match sufficiently many records, i.e. L ≥ poly logN . Another
compelling feature is that when deployed in a client-server setting, our scheme can additionally
achieve non-interactiveness, i.e., the server can return all matching results in a single roundtrip.
Non-interactivity can be achieved in either designated-client or public-client settings. We use the
term designated-client setting to refer to the scenario where the data owner who performs inser-
tions is also the query-maker. We use public-client setting to refer to the scenario where queries
are made by third parties other than the data owner who performs insertions. Specifically, in the
designated-client setting, we may assume that data is encrypted under the client’s private key;
whereas in the public-client setting, we may assume that data is encrypted under attribute-based
encryption [24,43] such that the data owner can issue policy-based keys to different query-makers.

We stress that if the classical obliviousness notion is required, even when allowing length leak-
age, we know of no solution that can simultaneously achieve statistical security (considering only
distributions of access patterns), non-interactiveness, and yet retain non-trivial efficiency — not
even in the designated client setting. Perhaps the most relevant point of comparison is oblivi-
ous data structures [31, 39, 51] and ORAM-based solutions [19, 20, 23, 34, 46, 50]. Unfortunately all
known solutions require logarithmically many roundtrips (unless assuming large block size or large
client storage), and incur logarithmic or super-logarithmic blowup in cost in comparison with the
non-private baseline (recall that our solution attains privacy with only slight increase in overhead).
Finally, except for the recent construction by Asharov et al. [3], all other known constructions
would suffer linear in L blowup in locality, where L is the number of matching records for a query.

Lower bounds. In the context of data structures, we also prove lower bounds to demonstrate
the price of differential obliviousness. Specifically, consider a data structure supporting insertions
and point queries, each of which requests all records matching a single specified key. Such data
structures are commonly referred to as key-value stores and have broad applications in practice.
It is well-known that without privacy guarantees, each insertion takes O(1) time and each query
takes L + O(1) time, where L is the number of matching records [22]. On the contrary, we show
that with differential obliviousness, some additional costs are necessary depending on the choices
of ε and δ.

We defer the detailed statements and proofs to the technical sections later.

1.3 Technical Highlights

Our upper bound results in fact establish a new paradigm for designing differentially oblivious al-
gorithms. Most of our algorithms adopt the following design pattern: we first rely on differentially
private mechanisms to determine a set of intermediate statistics that are safe to release. Impor-
tantly, in some cases we show how to make existing differential privacy mechanisms “oblivious” such
that their own access patterns do not leak information about the secret data. We then rely on these
differentially private statistics such that our algorithms could somewhat approximate the behavior
of the non-private algorithms and yet still be safe. Then, we use oblivious algorithms techniques
once again, such that our entire algorithm’s access patterns are simulatable after having observed
the differentially private intermediate statistics. We believe that the tightly-coupled interactions
between oblivious algorithms and differential privacy techniques may be of independent interest.

For our lower bounds, well-known ORAM lower bound techniques [19, 20] do not get us very
far: for example, using (certain modifications of) Goldreich and Ostrovsky’s ORAM lower bound
proof [19, 20], we could (for a few cases) prove some non-trivial lower bounds but only for δ = 0.

8

To prove tight lower bounds covering a wide range of parameter choices, we unveil new connections
to the study of routing graph complexity in the classical algorithms literature [41] (note that the
concurrent work by Lin et. al. [35] also adopted similar techniques to prove new lower bounds for
certain oblivious algorithms). Specifically, we first use probabilistic reasoning to translate lower
bounds for differentially oblivious algorithms into an alternative form where we ask: given a fixed
access pattern graph, how many input possibilities must be plausible for this access pattern graph
to ensure privacy? In particular, some input is plausible for an access pattern graph iff there
exist node disjoint paths to route from a subset of the input locations to desired output locations.
As a concrete example, in sorting, such routing over the access pattern graph allows the input
balls to be routed to the correct output locations in memory. We then rely on the elegant results
by Pippenger and Valiant on routing graph complexity [41] to derive our tight lower bounds for
differentially oblivious algorithms.

1.4 Related Work

Our differential obliviousness notion is inspired by 1) the elegant notion of differential privacy
originally proposed by Dwork, McSherry, Nissim and Smith [16]; and 2) the rich line of research on
ORAMs [14,19,20,23,44] first proposed in a ground-breaking work by Goldreich and Ostrovsky [19,
20], and numerous results on efficient oblivious algorithms [21,37,40].

Interestingly, differentially oblivious algorithms can be directly applied to the following popular
setting considered in the differential privacy literature. For instance, data analysts would like
to query statistics from a sensitive database — but now, imagine that the curator would like
to outsource the dataset to an untrusted cloud server. Using differentially oblivious algorithms,
we can guarantee that even if the cloud server can observe accesses incurred in the lifetime of
the database, it cannot harm any individual’s privacy — thus allowing us to provide “end-to-end
differential privacy” in such a scenario.

Most closely related works. We are inspired by the recent work of Kellaris et al. [30]. To
construct a dynamic database supporting point and range queries, Kellaris et al. [30] relied on a
generic ORAM to obfuscate access patterns and break input-output links. Then, noise is added to
perturb the number of records matching each query to avoid length-leakage. Kellaris et al. assumed
that the client can store an unbounded amount of metadata, and that metadata operations are for
free. In our model where metadata storage and retrieval is no longer for free, their dynamic
database scheme would incur on average Ω(N) cost per query, where N is the database size. Thus,
Kellaris et al. does not give a satisfying answer for the main questions phrased in our paper, i.e.,
whether one could achieve meaningful notions of access pattern privacy without leveraging ORAM
as an intermediate stepping stone, and whether one could circumvent impossibilities pertaining to
oblivious algorithms and still achieve meaningful access pattern privacy. On the other hand, since
they did adopt a full ORAM, their scheme can achieve somewhat stronger security, e.g., they would
be at least as secure as the ORAM. Interestingly, we also remark that even though our approaches
have some similarity with Kellaris et al. [30], the techniques are used in a different way. They first
use ORAM to break input-output links entirely, and then perturb the outcome lengths. On the
contrary, we first run oblivious and differentially private mechanisms to obtain intermediate noisy
statistics; and then we rely on oblivious algorithms techniques such that our entire algorithm’s
access pattern is simulatable after having observed the intermediate noisy statistics.

Another closely related work is by Wagh et al. [49], where they proposed a notion of differentially
private ORAM — in their notion, neighboring is defined over the sequence of logical memory
requests over time for a generic RAM program (and in general it is not clear how neighboring

9

for the logical memory requests would translate to neighboring of the inputs where the latter is
typically what we care about). Their main algorithm changes the way Path ORAM [46] assigns
blocks to random paths: they propose to make such assignments using non-uniform distributions to
reduce the stash — and thus their approach can only achieve constant-factor savings in comparison
with Path ORAM.

Lin, Shi, and Xie [35] recently showed thatN balls each tagged with a k-bit key can be obliviously
sorted in O(kN log logN/ log k) time using non-comparison-based techniques — but their algorithm
is not stable, and as Theorem 1.1 explains, this is inevitable for oblivious sort. Our results for sorting
small-length keys differentially obliviously match Lin et al. [35] in asymptotical performance (up
to log log factors) but we additionally achieve stability, and thus circumventing known barriers
pertaining to oblivious sort.

2 Definitions

2.1 Model of Computation

Abstractly, we consider a standard Random-Access-Machine (RAM) model of computation that
involves a CPU and a memory. We assume that the memory allows the CPU to perform two
types of operations: 1) read a value from a specified physical address; and 2) write a value to a
specified physical address. In a cloud outsourcing scenario, one can think of the CPU as a client
and the memory as the server (which provides only storage but no computation); therefore, in the
remainder of the paper, we often refer to the CPU as the client and the memory as the server.

A (possibly stateful) program in the RAM model makes a sequence of memory accesses during
its execution. We define a (possibly stateful) program’s access patterns to include the ordered
sequence of physical addresses accessed by the program as well as whether each access is a read or
write operation.

We consider possibly randomized RAM programs — we assume that whenever needed, the CPU
has access to private random coins that are unobservable by the adversary.

2.2 Algorithms in the Balls-and-Bins Model

In this paper, we consider a set of classical algorithms and data structures in the balls-and-bins
model (note that data structures are stateful algorithms.) The inputs to the (possibly stateful)
algorithm consist of a sequence of balls each tagged with a key. Throughout the paper, we assume
that arbitrary computation can be performed on the keys, but the balls are opaque and can only be
moved around. Each ball tagged with its key is often referred to as an element or a record whenever
convenient. For example, a record can represent a patient’s medical record or an event collected
by a temperature sensor.

Unless otherwise noted, we assume that the RAM’s word size is large enough to store its own
address as well as a record (including the ball and its key). Sometimes when we present our
algorithms, we may assume that the RAM can operate on real numbers and sample from certain
distributions in unit cost — but in all cases these assumptions can eventually be removed and we
can simulate real number arithmetic on a finite-word-width RAM preserving the same asymptotical
performance (and absorbing the loss in precision into the δ term of (ε, δ)-differential obliviousness).
We defer discussions on simulating real arithmetic on a finite-word-width RAM to the appendices.

Assumptions on the CPU’s private cache. Henceforth in this paper, we assume that the
CPU can store O(1) number of records in its private cache.

10

3 Differentially Oblivious Sorting: Definitions and Upper Bounds

We consider sorting in the balls-and-bins model: given an input array containing N opaque balls
each tagged with a key from a known domain [K], output an array that is a permutation of the input
such that all balls are ordered by their keys. If the sorting algorithm relies only on comparisons of
keys, it is said to be comparison-based. Otherwise, if the algorithm is allowed to perform arbitrary
computations on the keys, it is said to be non-comparison-based.

As is well-known, comparison-based sorting must suffer from Ω(N logN) runtime (even without
privacy requirements) and there are matching O(N logN) oblivious sorting algorithms [1, 21]. On
the other hand, non-private, non-comparison-based sorting algorithms can sort N elements (having
keys in a universe of cardinality O(N)) in linear time (e.g., counting sort).

3.1 Defining Differentially Oblivious Sorting

Let I denote an input array containing N balls each tagged with a k-bit key. We say that two
inputs I and I ′ are neighboring, if they are of the same length and differ in exactly one position.

Definition 3.1 (Differentially oblivious sorting). Let ε(·), δ(·) be functions of a security parameter
λ. We say that an algorithm M(λ, I) is an (ε, δ)-differential obliviousness sorting algorithm iff

• Perfect correctness. On any input I and any λ, the algorithm outputs the correctly sorted
outcome with probability 1. Further we say that the sorting algorithm is stable iff two balls with
the same key always appear in the same order in the output as in the input.

• Differential obliviousness. For any neighboring inputs I and I ′, for any λ, for any set S of access
patterns,

Pr[AccessesM (λ, I) ∈ S] ≤ eε(λ) · Pr[AccessesM (λ, I ′) ∈ S] + δ(λ)

where AccessesM (λ, I) is a random variable denoting the access patterns the algorithm M
makes upon receiving the input λ and I.

In the above, the term δ behaves somewhat like a failure probability, i.e., the probability of
privacy failure for any individual’s record or any event. An ideal choice for δ is for it to be a
negligible function in the security parameter λ, i.e., every individual can rest assured that as long
as λ is sufficiently large, its own privacy is unlikely to be harmed. On the other hand, we would
like ε not to grow w.r.t. λ, and thus a desirable choice for ε is ε(λ) = O(1) — e.g., we may want
that ε = 1 or ε = 1

log λ .
It would be interesting to contrast our differential oblivious definition with the classical notion

of oblivious sort.

Definition 3.2 (Oblivious sort). Let δ(·) be a function of the security parameter λ. A possibly
randomized algorithm denoted M(λ, I) is said to be a δ-statistically oblivious sorting algorithm iff
1) M satisfies perfect correctness defined in the same manner as above; and 2) for any two inputs I

and I ′ of equal length, it holds that Pr[AccessesM (λ, I) ∈ S]
δ(λ)
≡ Pr[AccessesM (λ, I ′) ∈ S] where

δ(λ)
≡ denotes that the two distributions are δ(λ)-statistically indistinguishable.

It is easy to observe that any δ-statistically oblivious (where δ 6= 0) sorting algorithm is also
a (ε, δ)-differentially oblivious sorting algorithm (where δ 6= 0); and any perfectly oblivious sort-
ing algorithm is also an (ε, δ = 0)-differentially oblivious sorting algorithm. In other words, our
differential obliviousness definition here is strictly weaker than classical oblivious sort. Thus the
interesting question is whether this relaxation can allow us to circumvent impossibilities related to
oblivious sorting, and under what parameter regimes we can circumvent such impossibilities.

11

Remark 3.3. We note that any (ε, δ)-differentially oblivious sorting algorithm that has δ′ statistical
correctness error can be converted to a (ε, δ + δ′)-differentially oblivious algorithm with perfect
correctness: we may simply check the outcome and if wrong retry — this may prolong the running
time of the algorithm but only with small probability (assuming that δ′ is small). Thus requiring
perfect correctness in our definition is without loss of generality.

3.2 Stably Sorting 1-Bit Keys

We start with stably sorting 1-bit keys and later extend to more bits. Stable 1-bit sorting is the
following problem: given an input array containing N balls each tagged with a key from {0, 1},
output a stably sorted permutation of the input array.

We choose to start with this special case because interestingly, stable 1-bit sorting in the balls-
and-bins model has a Ω(N logN) lower bound due to the recent work by Lin, Shi, and Xie [35]
— and the lower bound holds even for non-comparison-based sorting algorithms that can perform
arbitrary computation on keys. More specifically, they showed that for any constant 0 < δ < 1
any δ-oblivious stable 1-bit sorting algorithm must in expectation perform at least Ω(N logN) ball
movements.

In this section, we will show that adopting our more relaxed differential obliviousness notion
can allow us to circumvent the lower bound for oblivious 1-bit stable sorting (in the balls-and-bins
model). In particular, for a suitable negligible function δ, we can accomplish 1-bit stable sorting
in O(N log logN) time for ε = Θ(1). Unsurprisingly, our algorithm is non-comparison-based, since
due to the 0-1 principle, any comparison-based sorting algorithm, even for 1-bit keys, must make
at least Ω(N logN) comparisons.

3.2.1 Intuition

Absent privacy requirements, clearly tight stable compaction can be accomplished in linear time, by
making one scan of the input array, and writing it out whenever a real element is encountered. In
this algorithm, there are two pointers pointing to the input array and the output array respectively.
Observing how fast these pointers advance allows the adversary to gain sensitive information about
the input, specifically, whether each element is real or dummy. Our main idea is to approximately
simulate this non-private algorithm, but obfuscate how fast each pointer advances just about enough
to obtain differential obliviousness. To achieve this we need to combine oblivious algorithms building
blocks and differential privacy mechanisms.

First, we rely on batching: every time we read a small batch of s elements into a working buffer,
obliviously sort the working buffer to move all dummies to the end, and then emit some number
of elements into the output. The challenge is to determine how many elements must be output
when the input scan reaches position i. Now, suppose that we have a building block that allows
us to differentially privately estimate how many real elements have been encountered till position
i in the input for every such i — earlier works on differentially private mechanisms have shown
how to achieve this [11, 12, 17]. For example, suppose we know that the number of real elements
till position i is in between [Ci − s, Ci + s] with high probability, then our algorithm will know to
output exactly Ci − s elements when the input array’s pointer reaches position i. Furthermore, at
this moment, at most 2s real elements will have been scanned but have not been output — and
these elements will remain in the working buffer. We can now rely on oblivious sorting again to
truncate the working buffer and remove dummies, such that the working buffer’s size will never
grow too large — note that this is important since otherwise obliviously sorting the working buffer
will become too expensive. Below we elaborate on how to make this idea fully work.

12

3.2.2 Preliminary: Differentially Private Prefix Sum

Dwork et al. [17] and Chan et al. [11,12] proposed a differentially private algorithm for computing
all N prefix sums of an input stream containing N elements where each element is from {0, 1}. In
our setting, we will need to group the inputs into bins and then adapt their prefix sum algorithm
to work on the granularity of bins. However, we first state the result by Chan et al. [11,12] (whose
stated parameters slightly tighter than Dwork et al. [17]).

Theorem 3.4 (Differentially private prefix sum [11,12]). For any ε, there exists an ε-differentially
private algorithm, such that given a stream in ZN+ (where neigboring streams have `e-norm at most
1), the algorithm outputs the vector of all N prefix sums, such that

• For any δ, with 1−δ probability, any prefix sum output by the algorithm has only O(1ε ·(logN)1.5 ·
log 1

δ) additive error.

• The algorithm is oblivious and completes in O(N) runtime.

3.2.3 Algorithm for Sorting 1-Bit Keys

It suffices to derive a tight stable compaction algorithm: tight stable compaction outputs an array
containing only the 1-balls in the input, padded with dummies to the input array’s size. Further,
we require that the relative order of appearance of the 1-balls in the output respect the order in the
input. Since given a tight stable compaction algorithm running in time t(N), we can easily realize
a stable 1-bit sorting algorithm that completes in time O(t(N) +N) in the following way:

1. Run tight stable compaction to stably move all 0-balls to the front of the array — let X be the
resulting array;

2. Run tight stable compaction to stably move all 1-balls to the end of the array — let Y be the
resulting array (note that this can be done by running tight stable compaction on the reversed
input array, and then reversing the result again);

3. In one synchronized scan of X and Y , select the right element at each position from either X
or Y and write it into an output array.

If each instance of tight stable compaction is (ε, δ)-differentially oblivious, then the resulting 1-bit
stable sorting algorithm is (2ε, 2δ)-differentially oblivious.

We thus focus on describing a tight stable compaction algorithm that stably compacts an input
array I given a privacy parameter ε and a batch size s.

TightStableCompact(I, ε, s):

• Invoke an instance of the differentially private prefix sum algorithm with the privacy budget ε to
estimate for every i ∈ [N], the total number of 1-balls in the input stream I up till position i —
henceforth we use the notation Ỹi to denote the i-th prefix sum estimated by the differentially
private prefix sum algorithm, and we use the notation Yi to denote the true i-th prefix sum.

• Imagine there is a working buffer initialized to be empty. We now repeat the following until
there are no more bins left in the input.

1. Fetch the next s balls from the input stream into the working buffer.

2. Obliviously sort the working buffer such that all 1-balls are moved to the front, and all 0-balls
moved to the end; we use the ball’s index in the input array to break ties for stability.

13

3. Let s be an appropriate slack parameter. Suppose that k balls from the input have been
operated on so far. If there are fewer than Yk − s balls in the output array, pop the head of
the working buffer and append to the output array until there are Yk − s balls in the output
array.

4. If the working buffer (after popping) is longer than 2s, truncate from the end such that the
working buffer is of size 2s.

• Finally, at the end, if the output is shorter N , then obliviously sort the working buffer (using
the same relative ordering function as before) and write an appropriate number of balls from
the head into the output such that the output buffer is of length N .

Theorem 3.5 (Tight stable compaction). For any ε, δ > 0, for any input array I containing N
elements, let s = 1

ε · log1.5N · log 1
δ , then the algorithm TightStableCompact(I, ε, s) satisfies (ε, 0)-

DO and with 1 − δ probability, produces a correct outcome. Further, the algorithm completes in
O(N log s) runtime. As a special case, for any ε = Θ(1) and s = log3N , the algorithm satisfies
(ε, 0)-DO, completes in O(N log logN) runtime, and with 1−negl(N) probability, produces a correct
outcome where negl(·) is some negligible function.

Proof. Notice that the access patterns of the algorithm is uniquely determined by the set of prefix
sums computed. Thus it suffices to prove that the set of prefix sums resulting from the prefix
sum algorithm satisfies ε-differential privacy. This follows in a straightforward manner from The-
orem 3.4. Correctness of the algorithm is guaranteed as long as no prefix sum has more than s
additive error, thus the correctness statement also follows from Theorem 3.4. The runtime of the
algorithm is dominated by O(N/s) number of oblivious sortings of the working buffer whose size,
by construction, is at most O(s). Thus the runtime claims follows naturally.

Corollary 3.6 (Stable 1-bit sorting). For any ε > 0 and any 0 < δ < 1, there exists an (ε, 0)-
differentially oblivious algorithm such that for any input array with N balls each tagged with a
1-bit key, the algorithm completes in O(N log(1ε log1.5N log 1

δ)) runtime and stably sorts the balls
correctly except with δ probability. As a special case, for ε = Θ(1), there exists an (ε, 0)-differentially
oblivious stable 1-bit sorting algorithm such that completes in O(N log logN) runtime and errs only
with probability negl(N) for some negligible function negl(·).

Proof. As mentioned, we can construct stable 1-bit sorting by running two instances of tight stable
compaction and then in O(N) time combining the two output arrays into the final outcome. Thus
the corollary follows in a straightforward fashion from Theorem 3.5.

Optimality. In light of our lower bound to be presented in the next section (Theorem 4.7), our 1-
bit stable sorting algorithm is in fact optimal (up to log log factors) as long as εs ≥ 2 log2N — note
that this includes most parameter ranges one might care about. For the special case of ε = Θ(1),
our upper bound is Õ(N) runtime for δ = e−poly logN and Õ(N logN) runtime for δ = e−N

0.1
where

Õ hides a log log factor — both cases match our lower bound.

3.3 Sorting More Bits

Given an algorithm for stably sorting 1-bit keys, we can easily derive an algorithm for stably
sorting k-bit keys simply by adopting Radix Sort where we sort the input bit by bit starting from
the lowest-order bit. Clearly, if the stable 1-bit sorting building block satisfies (ε, δ)-differentially
oblivious, then resulting k-bit stable sorting algorithm satisfies (kε, kδ)-differentially oblivious. This
gives rise to the following corollary.

14

Corollary 3.7 (Stable k-bit sorting). For any ε, δ > 0, there exists an (ε, 0)-differentially oblivious
algorithm such that for any input array with N balls each tagged with a k-bit key, the algorithm
completes in O(kN log(kε log1.5N log 1

kδ)) runtime and stably sorts the balls correctly except with kδ
probability.

As a special case, for ε = Θ(1), there exists an (ε, 0)-differentially oblivious stable k-bit sorting
algorithm that completes in O(kN log logN) runtime and errs only with probability negl(N) for
some negligible function negl(·).

We point out that if k = o(logN/ log logN), we obtain a stable k-bit sorting algorithm that
overcomes the Ω(N logN) barrier for stable δ-oblivious sort in the balls-and-bins model — recall
that Lin, Shi, and Xie [35] show that for even δ = O(1), any (possibly non-comparison-based) stable
1-bit δ-oblivious sorting algorithm in the balls-and-bins model must incur Ω(N logN) runtime. We
stress that our algorithm is non-comparison-based, since otherwise due to the 0-1 principle, any
comparison-based sorting algorithm — even without privacy requirements and even for 1-bit keys
— must incur at least Ω(N logN) runtime.

4 Limits of Differentially Oblivious Sorting

Earlier, we showed that for a suitable, negligibly small δ and ε = Θ(1), by adopting the weaker
notion of (ε, δ)-differential obliviousness. we can overcome the Ω(N logN) barrier for oblivious
stable sorting for small keys (in the balls-and-bins model). In this section, we show that if δ must
be subexponentially small (including the special case of requiring δ = 0), then (ε, δ)-differentially
oblivious 1-bit stable sorting would suffer from the same lower bound as the oblivious case (despite
the relaxation in definition).

Without loss of generality, we may assume that the CPU has a single register and can store a
single record (containing a ball and an associated key) and its address — since any O(1) number
of registers can simply be simulated by a trivial ORAM with O(1) blowup.

4.1 Warmup and Intuition

As a warmup, we consider a simple lower bound proof for the case δ = 0 and for general sort-
ing (where the input can contain arbitrary keys not just 1-bit keys). Suppose there is some ε-
differentially oblivious balls-and-bins sorting algorithm denoted sort. Now, given a specific input
array I, let G be such a compact graph encountered with non-zero probability p. By the requirement
of ε-differential obliviousness, it must be that for any input array I ′, the probability of encountering
G must be at least p ·e−εN > 0. This means G must also be able to explain any other input array I ′.
In other words, for any input I ′ there must exist a feasible method for routing the balls contained
in the input I ′ to their correct location in the output locations in G. Recall that in the compact
graph G, every node (i, t) can receive a ball from either of its two incoming edges: either from the
parent (i, t′) for some t′ < t, from the parent (CPU, t− 1). Let T be the total number of nodes in
G, by construction, it holds that the number of edges in G = Θ(T). Now due to a single counting
argument, since the graph must be able to explain all N ! possible input permutations, we have
2T ≥ N !. By taking logarithm on both sides, we conclude that T ≥ Ω(N logN).

The more interesting question arises for δ 6= 0. In the remainder of this section, we will prove
such a lower bound for δ 6= 0 — our proofs draw an interesting connection to the study of routing
graph complexity in the classical algorithms literature [41]. Specifically, we model balls-and-bins
sorting as routing multiple commodities to destinations over node-disjoint paths, and we study the

15

complexity of such a routing graph given that a single routing graph must satisfy many different
input-output assignments.

Instead of directly tackling a general sorting lower bound, we start by considering stably sorting
balls with 1-bit keys, where stability requires that any two balls with the same key must appear in
the output in the same order as in the input. Note that given any general sorting algorithm, we
can realize 1-bit stable sorting in a blackbox manner: every ball’s 1-bit key is appended with its
index in the input array to break ties, and then we simply sort this array. Clearly, if the general
sorting algorithm attains (ε, δ)-differential obliviousness, so does the resulting 1-bit stable sorting
algorithm. Thus, a lower bound for 1-bit stable sorting is stronger than a lower bound for general
sorting (parameters being equal). To derive our lower bound proofs, we must first introduce several
new definitions and preliminaries.

4.2 Plausibility of Access Patterns among Neighboring Inputs

In order to derive our lower bounds for differentially oblivious sorting, merging, and data struc-
tures, we show that for a differentiall oblivious algorithm, with high probability, the access pattern
produced for some input I is “plausible” for many inputs that are “close” to I.

Definition 4.1 (r-Neighbors). Two inputs are r-neighboring, if they differ in at most r positions.
This applies to the various notions of neighboring defined in Section 6.2.1.

Definition 4.2 (Plausible Access Pattern). An access pattern A produced by a mechanism M is
plausible for an input I, if Pr[AccessesM (λ, I) = A] > 0; if Pr[AccessesM (λ, I) = A] = 0, we say
that A is implausible for I.

Lemma 4.3. Suppose I0 is some input for a mechanism M that is (ε, δ)-differentially oblivious, and
C is a collection of inputs that are r-neighbors of I0. Then, the probability that AccessesM (λ, I0)
is plausible for all inputs in C is at least 1− η, where η := |C| · eεr−1eε−1 · δ.

Proof. The proof is deferred to appendices A.1.

4.3 Access Pattern Graphs under the Balls-and-Bins Model

Recall that we assume a balls-and-bins model and as argued, without loss of generality we may
assume that the CPU has a single register and can store a single ball and its key.
Access Pattern Graph. We model consecutive t memory accesses by an access pattern graph
defined as follows. Let N index the CPU register together with the memory locations accessed by
the CPU in those t accesses. The t memory accesses are represented by t+ 1 layers of nodes, where
the layers are indexed from i = 0 to t. The nodes and edges of the access pattern graph are defined
precisely as follows.

(a) Nodes. For each 0 ≤ i ≤ t, layer i consists of nodes of the form (i, u), where u ∈ N represents
either the CPU or a memory location. Intuitively, the node (i, u) represents the opaque ball
stored at u after the i-th memory access.

(b) Edges. Each edge is directed and points from a node in layer i− 1 to one in layer i for some
i ≥ 1. For u ∈ N , there is a directed edge from its copy (i − 1, u) in layer i − 1 to (i, u) in
layer i. This reflects the observation that if a ball is stored at u before the i-th access, then
it is plausible that the same ball is still stored at u after the i-th access.

Suppose the CPU accesses memory location ` in the i-th access. Then, we add two directed
edges ((i−1, CPU), (i, `)) and ((i−1, `), (i, CPU)). This reflects the balls stored in the CPU
and location ` can possibly move between those two places.

16

Compact Access Pattern Graph. (Compact Graph) Observe that in each layer i, any node
that corresponds to a location not involved in the i-th access has in-degree and out-degree being 1.
Whenever there is such a node x with the in-coming edge (u, x) and the out-going edge (x, v), we
remove the node x and add the directed edge (u, v). This is repeated until there is no node with
both in-degree and out-degree being 1. We call the resulting graph the compact access pattern
graph, or simply the compact graph. The following lemma relates the number of memory accesses
to the number of edges in the compact graph.

Lemma 4.4 (Number of Edges in Compact Graph). Suppose N is the set indexing the CPU together
with the memory location accessed by the CPU in consecutive t accesses. Then, the compact graph
corresponding to these t accesses has 4t+ |N | − 2 ≤ 5t edges.

Proof. The proof is deferred to appendices A.1.

4.4 Preliminaries on Routing Graph Complexity

We consider a routing graph. Let I and O denote a set of n input nodes and m ≥ n output nodes
respectively. We say that A is an assignment from I to O if A is an injection from nodes in I to
nodes O. A routing graph G is a directed graph, and we say that G implements the assignment A
if there exist n vertex-disjoint paths from I to O respecting the assignment A.

Pippenger and Valiant proved the following useful result [41].

Fact 4.5 (Pippenger and Valiant [41]). Let A := (A1, A2, . . . , As) denote a set of assignments from
I to O where n = |I| ≥ |O|, such that each input in I is assigned to s different outputs in O by
the s assignments in A. Let G be a graph that implements every Ai for i ∈ [s]. It holds that the
number of edges in G must be at least 3n log3 s.

In our lower bound proofs, we shall make use of Fact 4.5 together with Lemma 4.4 to show that
the number of memory location accesses is large in each relevant scenario.

Definition 4.6 (Shift assignment). We say that A is a shift assignment for the input nodes I =
{x0, x1, . . . , xn−1} and output nodes O = {y0, y1, . . . , yn−1} iff there is some s such that for any
i ∈ {0, 1, . . . , n− 1}, xi is mapped to yj where j = (i+ s) mod n — we also refer to s as the shift
offset.

4.5 Lower Bounds for Differentially Oblivious Sorting

We prove a lower bound for differentially oblivious, 1-bit stable sorting in the balls-and-bins model.
Interestingly, our lower bound (almost) tightly matches our earlier upper bound for 1-bit stable
sorting for a wide parameter range.

Theorem 4.7 (Limits of differentially oblivious 1-bit stable sorting). Let 0 < s ≤
√
N be an

integer. Suppose ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Then, any (randomized) stable 1-bit sorting
algorithm (in the balls-and-bins model) that is (ε, δ)-DO must have some input, on which it incurs
at least Ω(N log s) memory accesses with probability at least 1−negl(N) for some negligible function
negl(·).

Proof. We assume that the input is given in N specific memory locations Input[0..N − 1], and
the stable sorting algorithm M must write the output in another N specific memory locations
Output[0..N − 1].

17

For each 0 ≤ i ≤ s, we define the input scenario Ii as follows, such that in each scenario, there
are exactly s elements with key value 0 and N − s elements with key value 1. Specifically, in
scenario Ii, the first s− i and the last i elements in Input[0..N − 1] have key value 0, while all other
elements have key value 1. It can be checked that any two scenarios are 2s-neighboring.

Moreover, observe that for 0 ≤ i ≤ s, in scenario Ii, any ball with non-zero key in Input[j]
is supposed to go to Output[j + i] (where addition j + i is performed modulo N) after the stable
sorting algorithm is run.

Observe that a stable sorting algorithm can only guarantee that all the elements with key 0 will
appear at the prefix of Output according to their original output order. However, after running the
stable sorting algorithm, we can use an extra oblivious sorting network on the first s elements to
ensure that in the input scenario Ii, any element with key 0 in Input[j] originally will end up finally
at Output[j + i]. Therefore, the resulting algorithm is still (ε, δ)-DO.

Therefore, by Lemma 4.3, with probability at least 1− η (where η := s · eε·2s−1eε−1 · δ = negl(N)),
running the algorithm M on input I0 produces an access pattern A that is plausible for Ii for all
1 ≤ i ≤ s. Let G be the compact graph (defined Section 4.3) corresponding to A.

Observe that A is plausible for Ii implies that G contains N vertex-disjoint paths, where for
0 ≤ j < N , there is such a path from the node corresponding to the initial memory location Input[j]
to the node corresponding to the final memory location Output[j + i].

Then, Fact 4.5 implies that G has at least Ω(N log s) edges. Hence, Lemma 4.4 implies that
the access pattern A makes at least Ω(N log s) memory accesses. Since our extra sorting network
takes at most O(s log s) memory accesses, it follows that the original sorting algorithm makes at
least Ω(N log s) accesses.

Notice that given any general sorting algorithm (not just for 1-bit keys), one can construct
1-bit stable sorting easily by using the index as low-order tie-breaking bits. Thus our lower bound
for stable 1-bit sorting also implies a lower bound for general sorting as stated in the following
corollary.

Corollary 4.8. Let 0 < s ≤
√
N be an integer. Suppose ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Then,

any (randomized) sorting algorithm that is (ε, δ)-DO must have some input, on which it incurs at
least Ω(N log s) memory accesses with probability at least 1− negl(N) for some negligible function
negl(·).

5 Merging Two Sorted Lists

Merging in the balls-and-bins model is the following abstraction: given two input arrays each of
which contains N balls sorted by their tagged keys, merge them into a single sorted array. Pippenger
and Valiant [41] showed that any oblivious merging algorithm in the balls-and-bins model must incur
at least Ω(N logN) movements of balls.

In this section, we show that when ε = O(1) and δ is negligibly small (but not be subexponen-
tially small), we can accomplish (ε, δ)-differentially oblivious merging in O(N log logN) time! This
is yet another separation between obliviousness and our new notion of differential obliviousness.

5.1 Defining Differentially Oblivious Merging

In merging, both input arrays must be sorted. As a result, to define the notion of neighboring
inputs, it does not make sense to take an input array and flip a position to an arbitrarily value —
since obviously this would break the sortedness requirement. Instead, we define two arrays I and

18

I ′ to be neighboring iff they are of the same length and there is exactly one element in I but not
in I ′ and vice versa. We say that two inputs (I0, I1) and (I ′0, I

′
1) are neighboring if for either b = 0

or b = 1, Ib and I ′b are neighboring and I1−b = I ′1−b. Based on this notion of neighboring, we can
define (ε, δ)-differentially oblivious merging in the same manner as we defined (ε, δ)-differentially
sorting (see Section 3.1).

5.2 Intuition

The näıve non-private merging algorithm keeps track of the head pointer of each array, and performs
merging in linear time. However, how fast each head pointer advances leaks the relative order of
elements in the two input arrays. Oblivious merging hides this information completely but as
mentioned, must incur Ω(N logN) runtime in the balls-and-bins model. Since our requirement is
differential obliviousness, this means that we can reveal some noisy aggregate statistics about the
two input arrays. We next highlight our techniques for achieving better runtimes.

Noisy-boundary binning. Inspired by Bun et al. [8], we can divide each sorted input array into
poly log λ-sized bins (where λ is the security parameter). In order to help our merging algorithm to
decide how fast to advance the head pointer, a differentially private mechanism by Bun et al. [8] is
used to return an interior point of each bin, where an interior point is defined to be any value that
is between the minimum and the maximum (inclusively) elements of the bin.

However, we would like to localize the influence of one change in the input, e.g., inserting one
one small element at the beginning of an input array should not affect the contents of all bins. We
use an idea in Bun et al. [8], where a random number of real elements are put in each bin, which
is padded with dummies to its maximum capacity Z = poly log λ. Hence, one change in the input
can be masqueraded by the random noise.

Challenges of implementing noisy-boundary binning. For privacy, it is critical that each
bin’s actual load cannot be revealed to the adversary. In the case of Bun et al. [8], implementing the
noisy-boundary binning idea is simple because in their setting the mechanism is run by a trusted
curator.

One immediate approach is to resort to oblivious algorithms — but oblivious sorting in the balls-
and-bins model has a well-known Ω(N logN) lower bound [35] and thus would be too expensive.

Flawed batching. The next idea is to rely on a buffer. We could, each time, read in a small
batch of mZ

2 number of elements from the input stream into a working buffer, and write out m− 2
bins by executing oblivious bin placement on this small batch. As described in the appendices, such
oblivious bin placement for elements in a batch only needs to use oblivious sorting on instances
with size poly log λ, thereby reducing the total running time.

However, the issue with this approach is that very soon the working buffer will accumulate too
many elements, leading to a queuing excess problem. The reason is that to hide the real loads of
bins with all but negligible probability, the rate of elements entering the buffer needs to be slightly
larger than that of elements leaving.

Defeating queuing excess with differentially private prefix sum. Suppose we somehow
know that the number of real elements in the first i bins is in the range [Ci, C

′
i]. Then, to output

the first i bins, it suffices to read the input stream up till position C ′i. After the first i bins have
been emitted (through oblivious bin placement), there are at most C ′i − Ci elements left in the
working buffer, and thus the working buffer will never be too large.

19

Fortunately, we have differentially private mechanisms for computing prefix sums [11, 12, 17]
that can be used to provide an estimate that is accurate enough. At first sight, it would seem
like releasing differentially private prefix sum of bin-loads is defeating the effects of noisy boundary
binning, since the prefix sums release some information about the random bin-loads. However,
in our appendices, we will formally prove a binning composition theorem, showing that with our
noisy-boundary binning, it is safe to release any statistic that is differentially private w.r.t. to the
binning outcome — the resulting statistic would actually be differentially private w.r.t. the original
input too.

Putting it together: creating thresh-bins. Putting all of the above together, we devise an
almost linear-time, differentially oblivious procedure for dividing input elements into bins with
random bin loads, where each bin is tagged with a differentially private interior point — henceforth
we call this list of bins tagged with interior points thresh-bins.

Merging lists of thresh-bins. Once we have converted each input array to a list of thresh-bins,
the idea is to perform merging by reading bins from the two input arrays, and using each bin’s
interior point to inform the merging algorithm which head pointer to advance. Since each bin’s
load is a random variable, it is actually not clear how many elements to emit after reading each
bin. Hence, a similar queuing excess problem arises, but we can rely on the differentially private
prefix sum trick again to tackle such queuing excess and make sure that at any time, the number
of elements remaining in the working buffer is small.

5.3 Preliminaries

Oblivious bin placement. Oblivious bin placement is the following abstraction: given an input
array X, and a vector V where V [i] denotes the intended load of bin i, the goal is to place the first
V [1] elements of X into bin 1, place the next V [2] elements of X into bin 2, and so on. All output
bins are padded with dummies to a maximum capacity Z. Once the input X is fully consumed, all
remaining bins will contain solely dummies.

We construct an oblivious algorithm for solving the bin placement problem. Our algorithm
invokes building blocks such as oblivious sorting and oblivious propagation constant number of
times, and thus it completes in O(n log n) runtime where n = max(|X|, Z · |V |). We present the
theorem statement for this building block and defer the details to the appendices.

Theorem 5.1 (Oblivious bin placement). There exists a deterministic, oblivious algorithm that
realizes the aforementioned bin placement abstraction and completes in time O(n log n) where n =
max(|X|, Z · |V |).

Truncated geometric distribution. Let Z > µ be a positive integer, and α ≥ 1. The truncated
geometric distribution GeomZ(µ, α) has support with the integers in [0..Z] such that its probability
mass function at x ∈ [0, Z] is proportional to α−|µ−x|. We consider the special case µ = Z

2 (where

Z is even) and use the shorthand GeomZ(α) := GeomZ(Z2 , α). In this case, the probability mass

function at x ∈ [0..Z] is α−1
α+1−2α−

Z
2
· α−|

Z
2
−i|.

5.4 Subroutine: Differentially Oblivious Interior Point Mechanism

Bun et al. [8] propose a differentially private interior point algorithm: given an array I containing
sufficient samples, they show how to release an interior point that is between [min(I),max(I)] in a

20

differentially private manner. Unfortunately, their algorithm does not offer access pattern privacy
if executed in näıve manners. In the appendices, we show how to design an oblivious algorithm that
efficiently realizes the interior point mechanism — our approach makes use of oblivious algorithm
techniques (e.g., oblivious sorting and oblivious aggregation) that were adopted in the design of
ORAM and OPRAM schemes [6, 10, 19, 20, 23, 40]. Importantly, since our main algorithm will call
this oblivious interior point mechanism on bins containing dummy elements, we also need to make
sure that our oblivious algorithm is compatible with the existence of dummy elements and not
disclose how many dummy elements there are.

In the following theorem, for convenience, we assume a RAM where computations on arbitrary-
precision real numbers and sampling from an exponential distribution have unit cost — in the
appendices, we show how to relax this assumption. We also present the proofs in the appendices.

Theorem 5.2 (Differentially private interior point). For any ε, δ > 0, there exists an algorithm
such that given any input bin of capacity Z consisting of n real elements, whose real elements have
keys from a finite universe [0..U − 1] and n ≥ 18500

ε · 2log∗ U · log∗ U · ln 4 log∗ U
βεδ , the algorithm

• completes consuming only O(Z logZ) time and number of memory accesses.

• the algorithm produces an outcome that is (ε, δ)-differentially private;

• with probability at least 1− β, the outcome is an interior point of the input bin; and

• the algorithm’s memory access pattern depends only on Z, and in particular, is independent of
the number of real elements the bin contains.

5.5 Subroutine: Creating Thresh-Bins

In the ThreshBins subroutine, we aim to place elements in an input array X into bins where each
bin contains random number of real elements (following a truncated geometric distribution), and
each bin is padded with dummies to a maximum capacity of Z. The ThreshBins will emit exactly
B bins. Later when we call ThreshBins we guarantee that B bins will almost surely consume all
elements in X. Logically, one may imagine that X is followed by infinitely many ∞ elements such
that there are always more elements to draw from the input stream when creating the bins. Note
that ∞s are treated as filler elements with maximum key and not treated as dummies (and this is
important for the interior point mechanism to work).

ThreshBins(λ,X,B, ε0):

Assume:

1. B ≤ poly(λ) for some fixed polynomial poly(·).

2. ε0 < c for some constant c that is independent of λ.

3. The keys of all elements are chosen from a finite universe denoted [0..U − 1], where log∗ U ≤
log log λ (note that this is a very weak assumption).

4. Let the bin size Z := 1
ε0

log8 λ, m = log2 λ (assume B is a multiple of m), s = 1
ε0
· log3 λ

Algorithm:

• Recall that the elements in X are sorted; if the length of the input X is too small, append
an appropriate number of elements with key ∞ at the end such that it has length at least
BZ
2 (1 + 1

log2 λ
).

21

This makes sure that with overwhelming probability, the real elements in the input stream do
not deplete prematurely in the algorithm below.

• For i = 1 to B, let Ri = GeomZ(exp(ε0)) be independently sampled truncated geometric random
variables. Denote the vector R := (R1, R2, . . . , RB).

Call D := PrefixSum(λ,R, ε04) ∈ ZB+ , which is the ε0
4 -differentially private subroutine in Theo-

rem 3.4 that privately estimates prefix sums, each of which has additive error at most s with all
but exp(−Θ(log2 λ)) probability.

• Let k := B
m . Define the vector C ∈ Zk+, where C[j] := D[jm], for 1 ≤ j ≤ k. We use the

convention C[0] := 0.

• Let Buf be a buffer with capacity mZ
2 (1 + 1

log2 λ
) + 2s = O(mZ). Initially, we place the first s

elements of X in Buf.

• For i = 1 to k:

– Read the next batch of elements from the input stream X with indices from C[i− 1] + s+ 1
to C[i] + s, and add these elements to the buffer Buf.

This can be done by temporarily increasing the capacity of Buf by appending these elements
at the end. Then, oblivious sorting can be used to move any dummy elements to the end,
after which we can truncate Buf back to its original capacity.

– Make a copy of Buf denoted Buf ′, for every element in Buf after positionR∗ :=
∑im

j=(i−1)m+1Rj ,

mark it as dummy in Buf ′.

– Now, call ObliviousBinPlace(Buf ′, (R(i−1)m+1..Rim), Z) to place elements in Buf ′ into the next
m bins where each bin is padded with dummies to the maximum capacity Z.

Moreover, we use the (ε04 , δ)-differentially oblivious interior point mechanism in Section 5.4
to tag each bin with an interior point, denoted by a vector P = (P1, . . . , PB), where δ :=
1
4 exp(−0.1 log2 λ); we also tag each bin with its estimated prefix sum from vector D.

Append the m bins to the output list T .

– Mark every element in Buf at position R∗ or smaller as dummy.

5.6 Subroutine: Merging Two Lists of Thresh-Bins

We next describe an algorithm to merge two lists of thresh-bins. Recall that the elements in a list
of thresh-bins are sorted, where each bin is tagged with an interior point and also an estimate of
the prefix sum of the number of real elements up to that bin.

MergeThreshBins(λ, T0, T1, ε0):

Assume:

1. The input is T0 and T1, each of which is a list of thresh-bins, where each bin has capacity
Z = 1

ε0
log8 λ size and B := |T0|+ |T1| is the total number of bins. Recall that the bins in T0 and

T1 are tagged with interior points P0 and P1 and estimated prefix sums D0 and D1, respectively.

2. The output is an array of sorted elements from T0 and T1, where any dummy elements appear
at the end of the array. The length of the array is M := dZ2 · (|T0|+ |T1|)(1 + 1

log2 λ
)e.

Algorithm:

22

• Let m = log2 λ, s = 1
ε0

log3 λ.

• Initialize an empty array Output[0..M − 1] of length M := dZ2 · (|T0|+ |T1|)(1 + 1
log2 λ

)e.

Initialize count := 0, the number of elements already delivered to Output.

• Initialize an empty buffer Buf with capacity K := d (m+10)Z
2 (1 + 1

log2 λ
) + 4se = O(mZ).

• Let L be the list of sorted bins from T0 and T1 according to the tagged interior points. (Observe
that we do not need oblivious sort in this step.)

This is the order in which the bins are fetched and processed. Let B := |T0| + |T1|, the total
number of bins.

• For i = 1 to dBme:

– Let W be the set of the next m+ 2 bins from the beginning of the list L. Do not remove any
bins from the list yet.

– Denote j0 as the largest index such that the bin T0[j0] is in W ; if there is no such index, set
j0 := 0. Define j1 similarly for T1. (Note that we use the convention that the first bin in T0
or T − 1 has index 1.)

Let Ŵ := W ∪ {T0[j0 + 1], T1[j1 + 1]}.
For every bin in Ŵ that has not been inserted into Buf before, insert it into Buf . This
can be done by appending the eligible bins in Ŵ at the end of Buf to temporarily increase
the size of Buf . Then, oblivious sorting followed by truncation can be used to restore its
capacity.

– Define safe bins: For b ∈ {0, 1} and some index k, a bin Tb[k] that has been inserted into
Buf is called safe, if there exists some bin from T1−b that has been inserted into Buf and
whose interior point is at least that of Tb[k+ 1]. (Observe that any element with key smaller
than that of an element in a safe bin has already been put into the buffer.)

Let S be the set of safe bins. Remove any bin in S from the list L.

– Define k0 to be the largest index such that T0[k0] is a safe bin; set k0 := 0 if there is no such
index. Define k1 similarly for T1.

– Set newcount := D0[k0] +D1[k1]− 2s.

– Remove the first (newcount − count) elements from the Buf and copy them into the next
available slots in the Output array.

Update count← newcount.

• Oblivious sort Buf to copy any remaining elements into any available slots left in Output.

5.7 Full Merging Algorithm

Finally, the full merging algorithm involves taking the two input arrays, creating thresh-bins out
of them using ThreshBins, and then calling Merge to merge the two lists of thresh-bins. We defer
concrete parameters of the full scheme and proofs to the appendices.

Merge(λ, I0, I1, ε):

Assume:

1. The input is two sorted arrays I0 and I1.

23

2. We suppose that ε < c for some constant c, log∗ U ≤ log log λ, and |I0| ≤ poly0(λ) and
|I1| ≤ poly1(λ) for some fixed polynomials poly0(·) and poly1(·).

Algorithm:

1. First, for b ∈ {0, 1}, let Bb := d2|Ib|Z (1 + 2
log2 λ

)e, call ThreshBins(λ, Ib, Bb, 0.1ε) to transform each

input array into a list of thresh-bins — let T0 and T1 denote the outcomes respectively.

2. Next, call MergeThreshBins(λ, T0, T1, 0.1ε) and let T be the sorted output array (truncated to
length |I0|+ |I1|.

Theorem 5.3. The Merge(λ, I0, I1, ε) algorithm is (ε, δ)-differentially oblivious, where δ = exp(−Θ(log2 λ)).
Moreover, its running time is O((|I0|+ |I1|)(log 1

ε + log log λ)).

We defer the proofs of the above theorem to the appendices.

5.8 Lower Bounds for Differentially Oblivious Merging

Theorem 5.4. Consider the merging problem, in which the input is two sorted lists of elements
and the output is the merging of the two input lists into a single sorted list.

Let 0 < s ≤
√
N be an integer. Suppose ε > 0 and 0 ≤ δ ≤ e−(εs+log2N). Then, any merging

algorithm that is (ε, δ)-DO must have some input consisting of two sorted lists each of length N ,
on which it incurs at least Ω(N log s) memory accesses with probability at least 1− negl(N).

Proof. We consider two input lists. The first list Input1[0..N − 1] is always the same such that
Input1[j] holds an element with key value j + 1.

We consider s + 1 scenarios for the second list. For 0 ≤ i ≤ s, in scenario Ii, Input2[0..N − 1]
contains i elements with key value 0 and N − i elements with key value N + 1. It follows that any
two such scenarios are s-neighboring.

By Lemma 4.3, on input scenario I0, any merging algorithm that is (ε, δ)-DO produces an access
pattern A that is plausible for all Ii’s (1 ≤ i ≤ s) with all but probability of s · eεs−1eε−1 · δ = negl(N).

We assume that the merging algorithm writes the merged list into the memory locations
Output[0..2N − 1]. Hence, for all 0 ≤ i ≤ s, in scenario Ii, for all 0 ≤ j < N , the element
initially stored at Input1[j] will finally appear at Output[i+ j].

Therefore, any access pattern A that is plausible for Ii must correspond to a compact graph
G that contains N vertex-disjoint paths, each of which goes from the node representing the initial
Input1[j] to the node representing the final Output[i+ j], for 0 ≤ j < N .

Hence, Lemma 4.5 implies that if A is plausible for all scenarios Ii’s, then the corresponding
compact G has Ω(N log s) edges, which by Lemma 4.4 implies that the access pattern A must make
at least Ω(N log s) memory accesses.

6 Differentially Oblivious Range Query Data Structure

6.1 Data Structures

A data structure in the RAM model is a possibly randomized stateful algorithm which, upon
receiving requests, updates the state in memory and optionally outputs an answer to the request
— without loss of generality we may assume that the answer is written down in memory addresses
[0..L− 1], where L is the length of the answer.

24

As mentioned, we consider data structures in the balls-and-bins model where every record (e.g.,
patient or event record) may be considered as an opaque ball tagged with a key. Algorithms are
allowed to perform arbitrary computations on the keys but the balls can only be moved around.

We start by considering data structures that support two types of operations, insertions and
queries. Each insertion inserts an additional record into the database and each query comes from
some query family Q. We consider two important query families: 1) for our lower bounds, we
consider point queries where each query wants to request all records that match a specified key;
2) for our upper bounds, we consider range queries where each query wants to request all records
whose keys fall within a specified range [s, t].

Correctness notion under obfuscated lengths. As Kellaris et al. [29] show, leaking the num-
ber of records matching each query can, in some settings, cause entire databases to be reconstructed.
Our differential obliviousness definitions below will protect such length leakage. As a result, more
than the exact number of matching records may be returned with each query. Thus, we require
only a relaxed correctness notion: for each query, suppose that L records are returned — we require
that all matching records must be found within the L records returned. For example, in a client-
server setting, the client can retrieve the answer-set (one by one or altogether), and then prune the
non-matching records locally.

Performance metrics: runtime and locality. For our data structure construction, besides
the classical runtime metric that we have adopted throughout the paper, we consider an additional
locality metric which was commonly adopted in recent works on searchable encryption [4, 9] and
Oblivious RAM constructions [3]. Real-life storage systems including memory and disks are op-
timized for programs that exhibit locality in its accesses — in particular, sequential accesses are
typically much cheaper than random accesses. We measure a data structure’s locality by counting
how many discontiguous memory regions it must access to serve each operation.

6.2 Defining Differentially Oblivious Data Structures

We define two notions of differential obliviousness for data structures, static and adaptive secu-
rity. Static security assumes that the data structure’s operational sequences are chosen statically
independent of the answers to previous queries; whereas adaptive security assumes that the data
structure’s operational sequences are chosen adaptively, possibly dependent on the answers to pre-
vious queries. Notice that this implies that both the queries and the database’s contents (which
are determined by the insertion operations over time) can be chosen adaptively.

As we argue later, adaptive differential obliviousness is strictly stronger than the static notion.
We will use the static notion for our lower bounds and the adaptive notion for our upper bounds
— this makes both our lower- and upper-bounds stronger.

6.2.1 Static Differential Obliviousness for Data Structures

We now define differential obliviousness for data structures. Our privacy notion captures the follow-
ing intuition: for any two neighboring databases that differ only in one record (where the database
is determined by the insertion operations over time), the access patterns incurred for insertions or
queries must be close in distribution. Such a notion protects the privacy of individual records in
the database (or of individual events), but does not protect the privacy of the queries. Thus our
notion is suitable for a scenario where the data is of a sensitive nature (e.g., hospital records) and
the queries are non-sensitive (e.g., queries by a clinical researcher). In fact we will later show that if

25

one must additionally protect the privacy of the queries, then it would be inevitable to incur Ω(N)
blowup in cost on at least some operational sequences. This observation also partly motivates our
definition, which requires meaningful and non-trivial privacy guarantees, and importantly, does not
rule out efficient solutions.

We say that two operational sequences ops0 and ops1 (consisting of insertions and queries) are
query-consistent neighboring, if the two sequences differ in exactly position i, and moreover both
ops0[i] and ops1[i] must be insertion operations.

Definition 6.1 (Static differential obliviousness for data structures). Let ε(·) and δ(·) be functions
of a security parameter λ. We say that a data structure scheme DS preserves static (ε, δ)-differential
obliviousness, if for any two query-consistent neighboring operational sequences ops0 and ops1, for
any λ, for any set S of access patterns,

Pr[AccessesDS(λ, ops0) ∈ S] ≤ eε(λ) · Pr[AccessesDS(λ, ops1) ∈ S] + δ(λ) (1)

where the random variable AccessesDS(λ, ops) denotes the access patterns incurred by the data
structure upon receiving the security parameter λ and operational sequence ops.

Discussions on alternative notions. It is interesting to consider a stronger notion where the
queries must be protected too. We consider one natural strengthening where we want to protect
the queries as well as insertions, but the fact whether each operation is an insertion or query
is considered non-sensitive. To formalize such a notion, one may simply redefine the notion of
“neighboring” in the above definition, such that any two operational sequences that are type-
consistent (i.e., they agree in the type of every operation) and differ in exactly one position are
considered neighboring — and this differing position can either be query or insertion. It would not
be too difficult to show that such a strong notion would rule out efficient solutions: for example,
consider a sequence of operations such that some keys match Ω(N) records and others match only
one record. In this case, to hide each single query, it becomes inevitable that each query must
access Ω(N) elements even when the query is requesting the key with only one occurrence.

6.2.2 Adaptive Differential Obliviousness for Data Structures

We will prove our lower bounds using the above, static notion of differential obliviousness. However,
our data structure upper bounds in fact satisfies a stronger, adaptive and composable notion of
security as we formally specify below. Here we allow the adversary to adaptively choose the database
(i.e., insertions) as well as the queries.

Definition 6.2 (Adaptive differential obliviousness for data structures). We say that a data struc-
ture DS satisfies adaptive (ε, δ)-differential obliviousness iff for any (possibly unbounded) stateful
algorithm A that is query-consistent neighbor-respecting (to be defined below), for any N , A’s view
in the following two experiments Expt0A(λ,N) and Expt1A(λ,N) satisfy the following equation:

Pr[Expt0A(λ,N) = 1] ≤ eε(λ) · Pr[Expt1A(λ,N) = 1] + δ(λ)

ExptbA(λ,N):

addresses0 = ⊥
For t = 1, 2, 3, . . . , N : (op0

t , op1
t)← A(N, addressest−1), addressest ← DS(λ, opbt)

b← A, and output b

In the above, addressest denotes the ordered sequence of physical memory locations accessed for
the t-th operation opt (including whether each access is read or write).

26

Neighbor-respecting. We say that A is query-consistent neighbor-respecting w.r.t. DS iff for
every λ and every N , for either b ∈ {0, 1}, with probability 1 in the above experiment ExptbA(λ,N),
A outputs op0

t = op1
t for all but one time step t ∈ [N]; and moreover for this differing time step t,

op0
t and op1

t must both be insertion operations.

6.3 Warmup: Range Query from Thresh-Bins

We show that using the differentially oblivious algorithmic building blocks introduced in earlier
parts of the paper, we can design an efficient differentially oblivious data structure for range queries.

We first explain how the thresh-bins structure introduced for our merging algorithm can also
be leveraged for range queries. Recall that a thresh-bins structure contains a list of bins in which
all the real elements are sorted in increasing order, and each bin is tagged with an interior point.
Given a list of thresh-bins, one can answer a range query simply by returning all bins whose interior
point fall in the queried range, as well as the two bins immediately before and after (if they exist).

Range queries Query(T, [s, t]). Let T := {Bini}i∈[B] be a list of thresh-bins where Bini’s interior
point is Mi. To query a range [s, t], we can proceed in the following steps:

1. Find a smallest set of consecutive bins i, i + 1, i + 2, . . . , j such that Mi ≤ s ≤ t ≤ Mj — for
example, this can be accomplished through binary search. To handle boundary conditions, we
may simply assume that there is an imaginery bin before the first bin with the interior point
−∞ and there is an imaginery bin at the end with the interior point ∞.

2. Now, read all bins Bini,Bini+1, . . .Binj and output the concatenation of these bins.

6.4 Range Query Data Structure Construction

When records are inserted over time one by one, we may maintain a hierarchy of thresh-bins, where
level i of the hierarchy is a list of thresh-bins containing in total 2i · Z elements. Interestingly, our
use of a hierarchical data structure is in fact inspired by hierarchical ORAM constructions [19,20,23]
— however, in hierarchical ORAMs [19, 20, 23], rebuilding a level of capacity n in the hierarchical
structure requires O(n log n) time, but we will accomplish such rebuilding in almost linear time by
using the MergeThreshBins procedure described earlier.

We now describe our data structure construction supporting insertions and range queries.

In-memory data structure. Let N denote the total number of insertions so far. The in-memory
data structure consists of the following:

• A recent buffer denoted Buf of capacity Z to store the most recently inserted items.

• A total of logN search structures henceforth denoted T0, T1, . . . , TL for L := dlogNe where Ti
contains 2i · Z real records and N denotes the total number of insertions over all time.

Algorithm for insertion, parametrized by ε. To insert some record, enter it into Buf and if
Buf now contains Z elements, we use T̃0 := ThreshBins(λ,Buf, 4, ε) to put the elements of Buf into
4 bins, and empty Buf. Now repeat the following starting at i = 0:

• If Ti is empty, let Ti := T̃i and return (i.e., terminate the procedure).

• Else call Y := MergeThreshBins(λ, Ti, T̃i, ε); and let T̃i+1 = ThreshBins(λ, Y, 4 · 2i+1, ε), let i ←
i+ 1 and repeat if i ≤ L.

27

Algorithm for range query. To query for some range [s, t], let T0, T1, . . . , TL be the search
structures in memory. For i ∈ [0, 1, . . . , L], call Query(Ti, [s, t]). Now, concatenate all these out-
comes as well as Buf, and copy the concatenated result to a designated location in memory. To
further speed up the query, we can maintain the interior points of all active levels in the hierarchical
data structure in a single binary search tree.

Theorem 6.3 (Differential obliviousness). Let N be the total number of insertion operations over
time, let ε = O(1), and suppose that the universe of key satisfies log∗ U ≤ log log λ. Then, there
exists a negligible function δ(·) such that the above scheme satisfies adaptive (4ε logN, δ)-differential
obliviousness.

Proof. The proof follows in a straightforward manner by adaptive logN -fold composition of differ-
ential privacy [18], by observing that every element is involved in only logN instances of ThreshBins
and MergeThreshBins. For adaptive security, notice that the adaptive composition theorem works
for adaptively generated database entries as well as adaptive queries [18].

Theorem 6.4 (Performance). Let N = poly(λ) be the total number of insertion operations over
time where poly(·) is some fixed polynomial. The above range query data structure achieves the
following performance:

• Each insertion operation consumes amortized O(logN log logN) runtime;

• Each range query whose result set contains L records consumes O(Z logN + L) runtime (and
number of accesses) and accesses only O(logN) discontiguous regions in memory no matter how
large L is;

• Each range query requires reading only O(logN) discontiguous memory regions, i.e., the locality
is independent of the number of matching records L.

Proof. The insertion cost is dominated by the cost for merging the search structures. In our
construction Ti and T̃i contain Z · 2i real elements and every 2i/Z operations, we must merge
Ti and T̃i once incurring Z2i log log λ time. It is easy to see that the total amortized cost is
O(logN log log λ) — note that logN = O(λ) assuming N = poly(λ). The runtime and locality
claims for each range query follow in a straighforward manner by observing that we can build a
single, standard binary search tree data structure (called the index tree) to store all the interior
points of all currently active search structures, where leaves are stored from small to large in a
consecutive memory region. During insertion, a level containing n = 2iZ elements has only O(2i)
interior points, and thus inserting or deleting all of them from the index tree takes o(n) time. For
query, it takes at most O(logN + L/Z) accesses into the index tree to identify all the bins that
match the query; and the number of discontiguous regions accessed when searching this index tree
is upper bounded by O(logN).

We stress that even absent privacy requirements, one of the best known approaches to build a
range query data structure is through a binary search tree where each insertion costs O(logN) and
each query matching L records costs O(logN + L) and requires accessing O(logN) discontiguous
memory regions. In comparison, our solution achieves differential obliviousness almost for free in
many cases: each insertion incurs only aO(log logN) blowup, and each query incurs no asymptotical
blowup if there are at least polylogarithmically many matching records and the locality loss is also
O(1).

28

6.5 Applications in the Designated-Client and Public-Client Settings

In a designated client setting, the data owner who performs insertions is simultaneously the querier.
In this case, all records can be encrypted by the data owner’s private key. In a public client
setting, the data owner performs insertions of records, whereas queries are performed by other
third parties. In this case, the data owner can encrypt the data records using Attribute-Based
Encryption (ABE) [24, 43], and then it can issue policy-binding decryption keys to third parties
to permit them to query and decrypt records that satisfy the policy predicates. In either case,
we stress that our scheme can support queries non-interactively. In particular, the differentially
private interior points can be released in the clear to the server, and the server can simply find the
matching bins on behalf of the client and return all relevant bins to the client in a single round-trip.

We stress that if the incomparable notion of obliviousness were required (say, we would like that
any two operational sequences that are query-consistent and length-consistent be indistinguishable
in access patterns), then we are not aware of any existing solution that simultaneously achieves
statistical security, non-interactiveness, and non-trivial efficiency, even for the designated-client
setting. One interesting point of comparison is ORAMs [46, 50] and oblivious data structures [51]
which can achieve statistical security, but 1) they work only for the designated-client setting but
not the public-client setting; 2) in general they incur logarithmically many rounds and O(L log2N)
cost per query (absent large block-size assumptions); and 3) except for the recent work of Asharov
et al. [3] which incurs polylogarithmic locality blowup regardless of L, all other known solutions
would suffer from (super-)linear in L locality blowup.

6.6 Lower Bounds for Differentially Oblivious Data Structures

For lower bounds, we first focus on point queries — a special case of the range queries considered
in our upper bounds.

Non-private baseline. To put our results in perspective and clearly illustrate the cost of pri-
vacy, we first point out that absent any privacy requirements, we can build a data structure that
support point queries (in the balls-and-bins model) such that except with negligible probability,
each insertion completes in O(1) time; each point query completes in O(L) time and accessing only
O(1) discontiguous memory regions where L is the number of matching records [22].

Limits of differential oblivious data structures. We now prove lower bounds showing that
assuming ε = O(1), if one desires sub-exponentially small δ, then any (ε, δ)-differentially oblivious
data structure must on some sequences of length N , incur at least Ω(N logN) ball movements. We
prove lower bounds for the case of distinct keys and repeated keys separately: in the former case,
each key has multiplicty 1 and upon query only 1 record is returned; in the latter, each key has
more general multiplicity.

Theorem 6.5 (Limits of (ε, δ)-DO: Distinct Keys). Suppose that N = poly(λ) for some fixed

polynomial poly(·) and 0 < s ≤
√
N are integers. Let ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Suppose

that DS is a perfectly correct, (ε, δ)-DO data structure supporting point queries.
Then, there exists an operational sequence with N insertion and N query operations interleaved

together, where the N keys inserted are distinct and are from the domain {0, 1, . . . , N} such that
the total number of accesses DS makes for serving this sequence is Ω(N log s) with probability at
least 1− negl(N) for some negligible function negl(·).

29

Proof. Define T := bNs c. For 1 ≤ i ≤ T , define the sub-domain Xi := {(i− 1)s+ j : 0 ≤ j < s} of
keys. Each of the operational sequences we consider in the lower bound can be partitioned into T
epochs. For 1 ≤ i ≤ T , the i-th epoch consists of the following operations:

1. s insertion operations: the s keys in Xi are inserted one by one. The order in which the keys
in Xi are inserted is private. In this lower bound, it suffices to consider s cyclic shifts of the
keys in Xi.

2. s query operations: this is done in the (publicly-known) increasing order of keys in Xi.

Observe that the keys involved between different epochs are disjoint. It suffices to prove that
the number of memory accesses made in each epoch is at least Ω(s log s) with probability at least
1− negl(N); this immediately implies the result.

Fix some epoch i, and consider the s different cyclic shift orders of Xi in which the keys are
inserted. For 0 ≤ j < s, let Ij be the input scenario where ordering of the keys in Xi is shifted
with offset j.

Observe that if we only change the insertion operations in epoch i and keep all operations in
other epochs unchanged, we have input scenarios that are s-neighbors. Therefore, by Lemma 4.3,
with probability at least 1− η (where η := s · eε·s−1eε−1 · δ = negl(N)), the input scenario I0 in epoch i
produces an access pattern A that is plausible for Ij for all 1 ≤ j < s. Let G be the compact graph
(defined Section 4.3) corresponding to A.

Since we know that in every input scenario Ij , each key in Xi is inserted exactly once, we can
assume that the s insertions in epoch i correspond to some memory locations Input[0..s − 1] and
the s queries correspond to some memory locations Output[0..s − 1], where Output[k] is supposed
to return the element with key (i− 1)s+ k.

Moreover, observe that for 0 ≤ j < s, in scenario Ij , the element inserted at Input[k] is supposed
to be returned at Output[k + j] (where addition j + i is performed modulo s) during qeury.

Observe that an access pattern A is plausible for Ij implies that G contains n vertex-disjoint
paths, where for 0 ≤ k < s, there is such a path from the node corresponding to the initial memory
location Input[k] to the node corresponding to the final memory location Output[k + j].

Then, Fact 4.5 implies that if G is the compact graph of an access pattern A that is plausible
for all Ij ’s, then G has at least Ω(s log s) edges. Hence, Lemma 4.4 implies that the access pattern
A makes at least Ω(s log s) memory accesses. This completes the lower bound proof for the number
of memory accesses in one epoch, which, as mentioned above, implies the required result.

Theorem 6.6 (Limits of (ε, δ)-DO: Repeated Keys). Suppose that N = poly(λ) for some fixed
polynomial poly(·) and fix some integer r = poly log(N). Let r < s ≤

√
N such that r divides s,

ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Suppose that DS is a perfectly correct, (ε, δ)-DO data structure
supporting point queries.

Then, there exists an operational sequence with N insertion and N query operations interleaved
together, where each of N

r distinct keys from the domain {0, 1, . . . , Nr } is inserted r times, such that
the total number of accesses DS makes for serving this sequence is Ω(N log s

r) with probability at
least 1− negl(N).

Proof. The proof structure follows that of Theorem 6.5, in which there are T := bNs c epochs. For
1 ≤ i ≤ T , the i-th epoch is defined as follows:

1. s insertion operations: the s keys are from the sub-domain Xi := { sr · (i− 1) + j : 0 ≤ j < s
r},

where each distinct is inserted r times in a batch. The order in which the distinct keys in

30

Xi are inserted is private. In this lower bound, we consider s
r different cyclic shifts of the s

r
batches.

2. s query operations: this is done in the (publicly-known) increasing order of keys in Xi, where
each query should return r repeated keys.

As in Theorem 6.5, it suffices to show that epoch i requires Ω(s log s
r) accesses with all but

negl(N) probability. The proof uses the same technique of routing graphs, except that there are
only s

r input scenarios, each of which correspond to a bijection from some Input[0..s − 1] memory
locations to some Output[0..s− 1] locations; moreover, each input location is mapped to s

r distinct
output locations by the s

r bijections. Hence, it follows that with all but negl(N) probablity, epoch i
takes Ω(s log s

r) memory accesses, as required.

Acknowledgments

Elaine Shi is extremely grateful to Dov Gordon for multiple helpful discussions about relaxing the
notion of oblivious data accesses over the past several years, including back at Maryland and recently
— these discussions partly inspired the present work. She is also grateful to Abhradeep Guha
Thakurta for numerous discussions about differential privacy over the past many years including
during the preparation of the present paper. We are grateful to Wei-Kai Lin and Tiancheng Xie
for numerous inspiring discussions especially regarding the Pippenger-Valiant result [41]. We thank
Kobbi Nissim, George Kellaris, and Rafael Pass for helpful discussions and suggestions.

This work is supported in part by NSF grants CNS-1314857, CNS-1514261, CNS-1544613,
CNS-1561209, CNS-1601879, CNS-1617676, an Office of Naval Research Young Investigator Pro-
gram Award, a Packard Fellowship, a DARPA Safeware grant (subcontractor under IBM), a Sloan
Fellowship, Google Faculty Research Awards, a Baidu Research Award, and a VMWare Research
Award.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(N logN) sorting network. In STOC, 1983.

[2] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? J. Comput.
Syst. Sci., 57(1):74–93, Aug. 1998.

[3] G. Asharov, T.-H. H. Chan, K. Nayak, R. Pass, L. Ren, and E. Shi. Oblivious computation
with data locality. Cryptology ePrint Archive 2017/772, 2017.

[4] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: optimal
locality in linear space via two-dimensional balanced allocations. In STOC, 2016.

[5] E. Boyle, K. Chung, and R. Pass. Large-scale secure computation: Multi-party computation
for (parallel) RAM programs. In CRYPTO, 2015.

[6] E. Boyle, K. Chung, and R. Pass. Oblivious parallel RAM and applications. In TCC, 2016.

[7] E. Boyle and M. Naor. Is there an oblivious RAM lower bound? In ITCS, 2016.

[8] M. Bun, K. Nissim, U. Stemmer, and S. P. Vadhan. Differentially private release and learning
of threshold functions. In FOCS, 2015.

31

[9] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Eurocrypt, 2014.

[10] T.-H. H. Chan and E. Shi. Circuit OPRAM: Unifying statistically and computationally secure
ORAMs and OPRAMs. In TCC, 2017.

[11] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. In ICALP,
2010.

[12] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. TISSEC, 2011.

[13] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault toler-
ance. In FC, 2012.

[14] K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure ORAM with Õ(log2 n) overhead. In
Asiacrypt, 2014.

[15] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik Tidskrift,
15(429-444):2–1, 1977.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference (TCC), 2006.

[17] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual
observation. In STOC, 2010.

[18] C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and differential privacy. In FOCS,
pages 51–60. IEEE Computer Society, 2010.

[19] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
ACM Symposium on Theory of Computing (STOC), 1987.

[20] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. J.
ACM, 1996.

[21] M. T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm run-
ning in o(n log n) time. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC ’14.

[22] M. T. Goodrich, D. S. Hirschberg, M. Mitzenmacher, and J. Thaler. Cache-oblivious dictio-
naries and multimaps with negligible failure probability. In Design and Analysis of Algorithms
- MedAlg, 2012.

[23] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via
oblivious RAM simulation. In ICALP, 2011.

[24] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In
submission to STOC 2013.

[25] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y. Vahlis. Secure
two-party computation in sublinear (amortized) time. In CCS, 2012.

[26] Y. Han. Deterministic sorting in o(nloglogn) time and linear space. J. Algorithms, 50(1):96–
105, 2004.

32

[27] Y. Han and M. Thorup. Integer sorting in 0(n sqrt (log log n)) expected time and linear space.
In FOCS, 2002.

[28] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In NDSS, 2012.

[29] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure outsourced
databases. In CCS, 2016.

[30] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Accessing data while preserving privacy.
CoRR, abs/1706.01552, 2017.

[31] M. Keller and P. Scholl. Efficient, oblivious data structures for mpc. In Asiacrypt, 2014.

[32] D. G. Kirkpatrick and S. Reisch. Upper bounds for sorting integers on random access machines.
Technical report, 1981.

[33] D. E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Searching.
1998.

[34] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious RAM
and a new balancing scheme. In SODA, 2012.

[35] W.-K. Lin, E. Shi, and T. Xie. Can we overcome the n log n barrier for oblivious sort?
Manuscript, 2017.

[36] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi. Ghostrider: A hardware-software
system for memory trace oblivious computation. In ASPLOS, 2015.

[37] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A programming framework
for secure computation. In S&P, 2015.

[38] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and D. Song.
Phantom: Practical oblivious computation in a secure processor. In ACM Conference on
Computer and Communications Security (CCS), 2013.

[39] J. C. Mitchell and J. Zimmerman. Data-oblivious data structures. In STACS, pages 554–565,
2014.

[40] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi. GraphSC: Parallel
Secure Computation Made Easy. In IEEE S & P, 2015.

[41] N. Pippenger and L. G. Valiant. Shifting graphs and their applications. J. ACM, 23(3):423–
432, July 1976.

[42] L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas. Design space exploration and
optimization of path oblivious RAM in secure processors. In ISCA, pages 571–582, 2013.

[43] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[44] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((logN)3) worst-case
cost. In ASIACRYPT, pages 197–214, 2011.

[45] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud storage. In IEEE
Symposium on Security and Privacy (S & P), 2013.

33

[46] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM –
an extremely simple oblivious ram protocol. In CCS, 2013.

[47] M. Thorup. Randomized sorting in o(nloglogn) time and linear space using addition, shift,
and bit-wise boolean operations. J. Algorithms, 42(2):205–230, 2002.

[48] S. Vahdan. The Complexity of Differential Privacy.

[49] S. Wagh, P. Cuff, and P. Mittal. Root ORAM: A tunable differentially private oblivious RAM.
CoRR, abs/1601.03378, 2016.

[50] X. S. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM: On Tightness of the Goldreich-
Ostrovsky Lower Bound. In CCS, 2015.

[51] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and Y. Huang. Oblivious
data structures. In CCS, 2014.

[52] P. Williams, R. Sion, and A. Tomescu. Privatefs: A parallel oblivious file system. In ACM
Conference on Computer and Communications Security (CCS), 2012.

[53] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In S & P, 2015.

34

A Extra Preliminaries

A.1 Technical Lemmas concerning r-Neighbors

Fact A.1 (r-Neighbors Produce Similar Access Patterns [48]). Suppose a (randomized) algorithm
M satisfies (ε, δ)-differential obliviousness, where ε and δ can depend on some security parameter λ.
Then, for any two inputs I and I ′ that are r-neighboring and any set S of access patterns, we have

Pr[AccessesM (λ, I) ∈ S] ≤ erε · Pr[AccessesM (λ, I ′) ∈ S] +
eεr − 1

eε − 1
· δ.

Proof of Lemma 4.3. Let S be the set of access patterns that are plausible for input I0. For each
Ii ∈ C, define Si ⊂ S to be the subset of access patterns in S that are implausible for Ii.

By Fact A.1, we have

Pr[AccessesM (λ, I0) ∈ Si] ≤ erε · Pr[AccessesM (λ, I0) ∈ Si] +
eεr − 1

eε − 1
· δ =

eεr − 1

eε − 1
· δ,

where the last equality follows because the access patterns in Si are implausible for Ii. Therefore,
by the union bound, we have

Pr[AccessesM (λ, I0) ∈ ∪Ii∈CSi] ≤ |C| ·
eεr − 1

eε − 1
· δ.

Finally, observe that AccessesM (λ, I0) ∈ ∪Ii∈CSi is the complement of the event that AccessesM (λ, I0)
is plausible for all inputs in C. Hence, the result follows.
Proof of Lemma 4.4. Before contraction, there are exactly t · |N |+ 2t edges in the access pattern
graph. For each layer 1 ≤ i ≤ t− 1, there are exactly |N | − 2 nodes with in-degree and out-degree
being 1. Therefore, the number of edges decreases by (t− 1) · (|N | − 2) to form the compact graph.

Finally, we observe that |N | ≤ t, because at most t memory location can be accessed in t
accesses.

A.2 Stochastic Analysis for Geometric Distribution

The following simple fact follows in a straightforward manner from the definition of Geom.

Fact A.2. For any even Z and any ε > 0, for any integers a, a′ ∈ [0, Z] such that |a− a′| = 1, we
have that

Pr[GeomZ(eε) = a] ≤ eε · Pr[GeomZ(eε) = a′].

Lemma A.3 (Moment Generating Function). Suppose G is a random variable having truncated
geometric distribution GeomZ(α) with support [0..Z] and mean Z

2 , for some α > 1. Then, for

|t| ≤ min{12 ,
√

2 ln (α+1)2

4α }, we have

E[etG] ≤ exp(
Z

2
· t+

4α

(α− 1)2
· t2).

Proof. Let V be a random variable whose distribution the untruncated variant of Geom(α) that is
symmetric around 0, i.e., for all integers x, its probability mass function is proportional to α−|x|.

Let W be the truncated variant of Geom(α) that is symmetric around 0 and has support in
[−Z

2 ,
Z
2]. Hence, G has the same distribution as Z

2 +W .
It can be shown that for any real t, E[etW] ≤ E[etV]. This follows from the fact that the

function i 7→ eti + e−ti is increasing for positive integers i.

35

Therefore, E[etG] ≤ e
Z
2
·t · E[etV]. Finally, the result follows from applying a technical result

from [13, Lemma 1, Appendix B.1] to get an upper bound on E[etV] the specified range of t.

Lemma A.4 (Measure concentration for truncated geometric random variables). Let GB denote
the sum of B independent GeomZ(eε0) random variables (each of which having mean Z

2 and support

[0..Z]). For any B, for sufficiently large λ and Z ≥ log5 λ
ε0

, it holds that

Pr

[
GB ≥

BZ

2
·
(

1 +
1

log2 λ

)]
≤ exp(− log2 λ)

and

Pr

[
GB ≤

BZ

2
·
(

1− 1

log2 λ

)]
≤ exp(− log2 λ).

Proof. We prove the first inequality. The second inequality can be proved using the same approach.
Denote R := Z

2 log2 λ
and α = eε0 . Using the standard argument as in the proof of the Chernoff

Bound, for positive t ≤ min{12 ,
√

2 ln (α+1)2

4α } in the range specified in Lemma A.3, we have

Pr
[
GB ≥ BZ

2 ·
(

1 + 1
log2 λ

)]
≤ exp{B(4α

(α−1)2 · t
2 −Rt)} ≤ exp{ 4α

(α−1)2 · t
2 −Rt},

where the last inequality holds if we pick t > 0 such that the exponent in the last term is
negative.

Hence, it suffices to analyze the exponent for two cases of ε0.
The first case is when ε0 is some large enough constant. In this case, we set t > 0 to be some

appropriate constant, and the exponent is −Θ(R) = −Θ(Z
2 log2 λ

) ≤ − log2 λ.

The second case is when ε0 is small. In this case, 4α
(α−1)2 = Θ(1

ε0
)2. We set t to

√
2 ln (α+1)2

4α =

Θ(ε0). Hence, the exponent is −Θ(Rε0) = −Θ(Zε0
2 log2 λ

) ≤ − log2 λ. This completes the proof of the

first inequality.

B Analysis of the Merging Algorithm

This section is devoted to prove Theorem 5.3. We start by introducing the notion of oblivious
realization of an ideal functionalities with (differentially private) leakage.

B.1 Oblivious Realization of Ideal Functionalities with Differentially Private
Leakage

Definition B.1. Given a (possibly randomized) functionality F , we say that some (possibly ran-
domized) algorithm Alg δ-obliviously realizes F with leakage L, if there exists a simulator Sim
(that produces simulated access pattern) such that for any λ, for any input I, define the following
executions:

• Ideal execution: choose all random bits ρ needed by F , and let Oideal ← F(λ, I, ρ), let Lideal ←
L(λ, I, ρ) — note that the leakage function L also obtains the same randomness as F .

• Real execution: let (Oreal, Lreal, addresses)← Alg(λ, I).

It must hold that the following distributions are δ(λ)-statistically close, i.e., their statistical distance
is at most δ(λ):

(Oideal, Lideal,Sim(λ, Lideal))
δ(λ)
≡ (Oreal, Lreal, addresses).

36

Definition B.2. We say that the leakage function L is (ε, δ)-differentially private w.r.t. the input
iff for every λ, for every neighboring I and I ′ and every set S, it holds that

Pr
ρ,L

[L(λ, I, ρ) ∈ S] ≤ eε Pr
ρ,L

[L(λ, I ′, ρ) ∈ S] + δ

In the above, the notation Prρ,L means that the randomness comes from the random choice of ρ as
well as the internal coins of L.

Definition B.3. Consider some special leakage function L that is fully determined by the output
of F , i.e., L(λ, I, ρ) := L(λ, T) where T := F(λ, I, ρ). We say that L is (ε, δ)-differentially private
w.r.t. the output of F (or (ε, δ)-differentially private w.r.t. T), iff for every λ, for every neighboring
T and T ′ and every set S, it holds that Pr[L(T) ∈ S] ≤ eε Pr[L(T ′) ∈ S] + δ where the randomness
in in the probability comes from the random coins of L.

The following fact is immediate from the definition.

Fact B.4. If some algorithm Alg obliviously realizes some functionality F with leakage L where L
is (ε, δ)-differentially private w.r.t. the input, then Alg satisfies (ε, δ)-differential obliviousness.

B.2 Ideal Fthreshbins Functionality

We describe a logical thresh-bin functionality Fthreshbins that the ThreshBins subroutine obliviously
realizes, and prove a lemma that formalize the main property that ThreshBins achieves.

Given an input sorted array X containing real elements (which can take a special key value∞),
a target bin number B, and a parameter ε0, the ideal thresh-bin functionality Fthreshbins outputs
an ordered list of B bins where each bin contains a random number of real elements padded with
dummies to the bin’s capacity Z = 1

ε0
log8 λ; all real elements occur in sorted order. Moreover,

each bin is tagged with an interior point. Furthermore, each bin is also tagged with an estimate of
the cumulative sum, i.e., the number of real elements in the prefix up to and including this bin.

If the input X contains too many real elements, only a prefix of them may appear in the output
bins; if the input X contains too few elements, the functionality automatically appends elements
with key∞ at the end such that there are enough elements to draw from the input. More concretely,
the functionality Fthreshbins is specified below:

Fthreshbins(λ,X,B, ε0):

Assume: The same setting as ThreshBins.

Functionality:

• For i = 1 to B:

– Sample Ri←$GeomZ(exp(ε0)).

– Draw the next Ri elements (denoted Si) from X.

– Place these Ri elements in order in a new bin and append with an appropriate number of
dummies to reach the bin’s capacity Z.

Let T denote the list of B bins in order, and R = (R1, . . . , RB) be the bin load vector.

• Call D := PrefixSum(λ,C, ε04) ∈ ZB+ , which is the ε0
4 -differentially private subroutine in Theo-

rem 3.4 that privately estimates prefix sums, each of which has additive error at most s with all
but exp(−Θ(log2 λ)) probability. We tag each bin with its estimated prefix sum from vector D.

37

• Moreover, we use the (ε04 , δ)-differentially oblivious interior point mechanism in Section 5.4
to tag each bin with an interior point, denoted by a vector P = (P1, . . . , PB), where δ :=
1
4 exp(−0.1 log2 λ);

• Output the thresh-bins T (which is tagged with the interior points P and the estimated prefix
sums D).

The following lemma states that for Fthreshbins, if a lekage function L is differentially private
with respect to the output T , then L is also differentially private with respect to the input X.
Here, two thresh-bins T 0 and T 1 are neighboring if they have the same number of bins and differ
by only one element.

Lemma B.5. Consider the ideal thresh-bins functionality Fthreshbins and a leakage function L(λ, T, ε0).

If the input satisfies B ≥ d2|X|Z ·(1+ 2
log2 λ

)e and the leakage function L is (ε, δ)-differentially private

with respect to the output T , then L is (2ε0 + 4ε, δbad + 4δ)-differentially private with respect to X,
where δbad ≤ O(exp(−Θ(log2 λ))).

To prove Lemma B.5, we start with some notations. Given an input array X and a bin load
vector R = (R1, . . . , RB) ∈ [Z]B, we let T (X,R) denote the resulting thresh-bins. We say two
thresh-bins T, T ′ are k-neighboring if there exists T1 = T, T2, . . . , Tk, Tk+1 = T ′ such that Ti, Ti+1

are neighboring. We partition the domain [Z]B of the bin load vectors into good ∪ bad, where
good = {R :

∑B−1
i=1 Ri ≥ |X|} and bad = [Z]B\good. Let δbad be the probability that R is in bad

when R←$(GeomZ(exp(ε0)))
B. By Lemma A.4, δbad ≤ exp(− log2 λ).

We need the following technical lemma about the ideal thresh-bins functionality.

Lemma B.6. Consider two neighboring input arrays X0, X1 and parameter B such that B ≥
d2|X0|

Z · (1 + 2
log2 λ

)e. There exists an injective function f : good → [Z]B such that the following

holds. For every R0 ∈ good, let R1 = f(R0), T 0 = T (X0, R0), and T 1 = T (X1, R1). We have (i)
Pr[R0] ≤ e2ε0 Pr[R1] where the probability is drawn from (GeomZ(exp(ε0)))

B, and (ii) T 0 and T 1

are 4-neighboring.

Proof. Recall that X0, X1 are neighboring means they have equal length and differ by one element.
Thus, we can view X1 as obtained by removing some x0 from X0 and then inserting some x1 to it.
Let X ′0 denote X0\{x0}. Let i denote the location of x0 in X0, and i′ denote the location of x1 in
X ′0. We define f in two corresponding steps.

• We first define f0. On input R0, let ` denote the bin in T (X0, R0) that contains x0. We
define f0(R0) = R′0 where R′0 is identical to R0 except that with the (`+ 1)-th coordinate is
decrease by 1, i.e., R′0`+1 = R0

`+1 − 1 and R′0i = R0
i for all i 6= `+ 1.

• We then define f1, which takes input R′0. Let `′ denote the bin in T (X0, R′0) that x1 should
be inserted in. We define f1(R′0) = R1 where R1 is identical to R′0 except that with the
(`′+ 1)-th coordinate is increased by 1, i.e., R1

`′+1 = R′0`′+1 + 1 and R1
i = R′0i for all i 6= `′+ 1.

We define f = f1 ◦ f0. Note that by the definition of the good set, `, `′ < B so f is well-defined.
We now verify the properties of f . For the injective property, let’s first argue that f0 is injective

by showing that it is invertible. The key observation is that give X0, X1 and the output R′0, the
bin ` that x0 belongs to is uniquely defined. Thus, we can compute (f0)−1(R′0) by increasing the
` + 1-th coordinate by 1. The same argument shows that f1 is injective, and hence f is injective.
The property that Pr[R0] ≤ e2ε0 Pr[R1] follows by the definition of truncated geometric and the fact
that R0 and R1 only differ in two coordinate by 1. For property (ii), observe that T (X0, R0) and

38

T (X ′0, R′0) can only differ in the `-th and `+ 1-th bins by at most one element for each bin, which
means that T (X0, R0) and T (X ′0, R′0) are 2-neighboring. Similarly, T (X ′0, R′0) and T (X1, R1) are
2-neighboring by the same observation. Hence, T 0 and T 1 are 4-neighboring.

With the above lemma, we are ready to prove Lemma B.5.

Proof. Consider two neighboring input arrays X0, X1 and parameter B such that B ≥ (4|X0|/Z)+
1. For b ∈ {0, 1}, let T b ← Fthreshbins(λ,X

b, B, ε0), L
b =← L(λ, T b, ε0), and Rb be the bin load

vector used in Fthreshbins. Let S be an arbitrary subset in the support of the leakage. We need to
show that

Pr[L0 ∈ S] ≤ e2ε0+4ε Pr[L1 ∈ S] + δbad + 4δ

This is proved by the following calculation, where the function f is from Lemma B.6.

Pr[L0 ∈ S] ≤

 ∑
R0∈good

Pr[R0] Pr[L0 ∈ S|X0, R0]

+ δbad

≤

 ∑
R0∈good

Pr[R0]
(
e4ε · Pr[L1 ∈ S|X1, f(R0)] + 4δ

)+ δbad

≤

 ∑
R0∈good

Pr[R0]
(
e4ε · Pr[L1 ∈ S|X1, f(R0)]

)+ 4δ + δbad

≤

 ∑
R0∈good

(
e2ε0 · Pr[f(R0)]

)
·
(
e4ε · Pr[L1 ∈ S|X1, f(R0)]

)+ 4δ + δbad

=

e2ε0+4ε ·
∑

R0∈good

Pr[f(R0)] · Pr[L1 ∈ S|X1, f(R0)]

+ 4δ + δbad

≤ e2ε0+4ε · Pr[L1 ∈ S] + 4δ + δbad

In the above calculation, we make Xb explicit in the conditioning even though it is not random.
The key step is the second inequality, where we use the property that T 0 = T (X0, R0) and T 1 =
T (X1, f(R0)) are 4-neighboring, and L(λ, T b, ε0) is (ε, δ)-differentially private with respect to T .
Also the fourth inequality uses the property that Pr[R0] ≤ e2ε0 · Pr[f(R1)] for R0 ∈ good. Both
properties are from Lemma B.6.

B.3 ThreshBins Obliviously Realize Fthreshbins

Here we analyze the ThreshBins subroutine and show that it obliviously realize Fthreshbins with
differentially private leakages. Specifically, the leakage is the interior points P and the esti-
mated prefix sums D associated with the output thresh-bin T . Namely, the leakage function
Lthreshbins(λ,X,B, ε0) simply output L = (P,D).

Lemma B.7. The algorithm ThreshBins δ-obliviously realize Fthresbins with δ = O(exp(−Θ(log2 λ))).
Moreover, its running time is O(BZ(log 1

ε0
+ log log λ)).

39

Proof. We first observe that by construction, the access pattern of ThreshBins is determined by the
leakage (P,D). Thus, given the leakage, the access pattern can be readily simulated. Now, note
that the output of Fthreshbins is determined by the input X, the bin load vector R, the estimated
prefix sums D and the interior points P , and that these values are computed in an identical way
in ThreshBins. Thus, the statistical distance between ideal and real execution is equal to the
probability that ThreshBins fails to compute the same output as Fthreshbins given (X,R,D, P). In
the following, we upper bound this probability.

The only non-trivial part is the k iterations involving the buffer Buf. We prove that except with
exp(−Θ(log2 λ)) probability, the following invariant holds for all 0 ≤ i ≤ k: after iteration i, the first
im bins have been output correctly, and the buffer Buf contains elements in X[1+

∑im
j=1Rj ..C[i]+s].

Observe the base case i = 0 holds trivially, and the case i = k implies the correctness of the
algorithm.

We assume that for some i ≥ 1, iteration i − 1 completes successfully according to the above
invariant, and we consider iteration i.

By the accuracy of the prefix sum estimate C guaranteed by Theorem 3.4, all elements that are
supposed to go from bin (i− 1)m+ 1 to im have indices at most C[i] + s, which are added to the
buffer Buf with all but negligible probability.

Moreover, the accuracy of C also guarantees that the number of elements with bin number
higher than im added to Buf is at most 2s (with all but negligible probability). Finally, Lemma A.4
ensures that the number of elements from bin (i − 1)m + 1 to im is at most mZ

2 (1 + 1
log2 λ

) (with

all but negligible probability).
Therefore, before Buf is truncated back to its original capacity, the number of real elements it

contains is at most mZ
2 (1 + 1

log2 λ
) + 2s. Hence, no real element is lost after truncation (with all but

negligible probability).
After this, the correctness of the inductive step is guaranteed by the ObliviousBinPlace subrou-

tine. This completes the inductive argument.
Observe that the running time of the algorithm is also dominated by the k iterations, each of

which takes time O(mZ logmZ) = O(mZ(log 1
ε0

+log log λ)) due to oblivious sorting, which implies
the desired running time.

Noting that the leakage Lthreshbins is the outputs of differentially private mechanisms with
input determined by the thresh-bins T (since T implicitly determines the bin load R), Lthreshbins
is differentially private with respect to T . By Lemma B.5, Lthreshbins is differentially private with
respect to X. We state this in the following lemma.

Lemma B.8. The leakage Lthreshbins is (O(ε0), δ)-differentially private with respect to the input X
for δ = O(exp(−Θ(log2 λ)))

B.4 Proof of Theorem 5.3

We are ready to prove Theorem 5.3. We will show that Merge obliviously realize an ideal merge
functionality Fmerge defined below with differentially private leakage Lmerge, which implies that
Merge is differentially oblivious by Fact B.4.

Fmerge(λ, I0, I1, ε):

Assume: The same setting as Merge.

Functionality:

40

• Output a sorted array T that merges elements from I0 and I1, where the dummy elements
appear at the end of the array.

The leakage function Lmerge is defined to be the concatenation of the leakage Lthreshbins on I0
and I1. Namely, Lmerge(λ, I0, I1, ε) = (Lthreshbins(λ, I0, Bb, 0.1ε),
Lthreshbins(λ, I1, B1, 0.1ε)) Clearly, the leakage is differentially private with respect to the input
(I0, I1).

Lemma B.9. The algorithm Merge δ-obliviously realize Fmerge with δ = O(exp(−Θ(log2 λ))).
Moreover, the running time is O(BZ(log 1

ε0
+ log log λ)).

Proof. We observe that by construction, the access pattern of Merge is determined by the leakage
(P0, D0, P1, D1). Thus, given the leakage, the access pattern can be readily simulated.

Let us consider a hybrid functionality F ′merge that on input (λ, I0, I1, ε), instead of merging I0
and I1 directly, F ′merge first calls Fthreshbins(λ, Ib, Bb, 0.1ε) to obtain Tb for b ∈ {0, 1}, and then
outputs T that merges elements from T0 and T1. Note that the output of Fmerge and F ′merge are
the same, except for the case that the bin load Rb is not enough to accommodate Ib for some
b ∈ {0, 1}, which happens with probability at most O(exp(−Θ(log2 λ))) by Lemma A.4. Thus,
up to an O(exp(−Θ(log2 λ))) statistical error, we can switch to consider the hybrid functionality
F ′merge.

Now, note that F ′merge and Merge call Fthreshbins(λ, Ib, Bb, 0.1ε) and ThreshBins(λ, Ib, Bb, 0.1ε)
for b ∈ {0, 1}, respectively. Since ThreshBins obliviously realized Fthreshbins with errorO(exp(− log2 λ)),
we know that the output thresh-bins Tb (which are tagged with Pb, Db) of ThreshBins and Fthreshbins

are statistically close with statistical distance at most O(exp(−Θ(log2 λ))). From here, the differ-
ence between F ′merge and Merge is that F ′merge directly merges T0 and T1, whereas Merge uses
MergeThreshBins. By an union bound, the statistical distance between the real and ideal ex-
ecutions can be upper bounded by O(exp(− log2 λ)) plus the probability that MergeThreshBins
produces incorrect merged output, given input (λ, T0, T1, 0.1ε). In the following, we upper bound
this probability.

The most non-trivial part of the MergeThreshBins algorithm is the for loop with τ := dBme
iterations. We show the following invariant for 0 ≤ i ≤ τ : after the i-iteration, the following
properties hold.

1. During iteration i, at most (m+ 4) new bins are inserted into Buf and at least m bins change
to safe during iteration i.

2. Suppose k0 and k1 are the largest indices such that the bins T0[k0] and T1[k1] are safe (at
the end of the i-th iteration). Then, the smallest max{D0[k0] + D1[k1] − 2s, 0} elements in
the two input thresh-bins have been correctly copied to the prefix of Output, with all but
exp(−Θ(log2 λ)) probability.

Then, the invariant trivially holds for i = 0. Furthermore, if the invariant holds for i = τ ,
then this means that all bins have been inserted into the Buf and there are at most 4s elements
remaining in the Buf. Hence, the last oblivious sort can deliver the remaining elements correctly
to Output.

We next prove the inductive step. Assume that for some i ≥ 1, the invariant holds at the end
of the (i− 1)-st iteration, and we consider the i-th iteration.

First, by the description of the algorithm, in each iteration, at most (m + 4) new bins (m + 2
in W plus possibly two extra bins) are inserted into Buf.

41

Observe that out of the m + 2 bins in W (which are not safe at the beginning of iteration i)
inserted into Buf, at least m of them will change to safe. The reason is that for each b ∈ {0, 1},
except the bin from Tb with the largest index in W , all other bins in W from Tb must be safe,
because of the extra bin (in addition to the m+ 2 bins in W) from T1−b inserted.

Since the invariant holds at the end of iteration i−1, this implies that at the end of iteration i−1,
the number of elements in Buf is at most equivalent to that from 4 bins plus 4s (with all but
exp(−Θ(log2 λ)) probability).

Therefore, it follows that during iteration i, inserting elements from at most m + 4 bins into
Buf will not cause it to overflow (with all but exp(−Θ(log2 λ)) probability, due to Lemma A.4.

Next, we argue that at any moment, if x is the number of elements from all the safe bins,
then the smallest x elements from the input have already been inserted into Buf. Consider any
safe bin Tb[k]. By the definition of safe bin, any element from T1−b in a bin not inserted in Buf
must be larger than the interior point of Tb[k+ 1]. This implies that any element smaller than any
element in a safe bin must already be inserted in Buf . This implies the beginning statement of
this paragraph.

Because the invariant holds at the end of iteration i− 1, it follows that during iteration i, the
elements with total global rank from count+1 to newcount must already be in the Buf, since no real
elements have been lost so far (with all but exp(−Θ(log2 λ)) probability). Hence, those elements
can be delivered to Output after iteration i. This completes the inductive step.

Finally, the running time is dominated by the operations on Buf. Since each iteration takes
O(K logK) = O(mZ(log 1

ε0
+ log log λ)) time due to oblivous sorting, it follows that the total time

is O(BZ(log 1
ε0

+ log log λ)), as required.

C Building Blocks

C.1 Obliviously Realizing the Interior Point Mechanism

We start by recalling the recursive differentially private algorithm InteriorPoint of Bun et al. [8]
for the interior point problem below and then discuss how to make the algorithm oblivious and
implement it with a RAM machine with finite word size, as well as analyze its complexity. For
the algorithm to be a useful building block for differentially oblivious algorithms, we assume that
the input database may contain certain dummy elements but with sufficiently many non-dummy
elements. The following algorithm is taken almost verbatim from Bun et al. [8], where the algorihtm
simply ignores the dummy elements. We refer the readers to [8] for the intuition behind the
algorithm.

InteriorPoint(S, β, ε, δ)

Assume: Database S = (xj)
n′
j=1 ∈ (X ∪ {dummy})n′ with n non-dummy elements.

Algorithm:

1. If |X| ≤ 32, then use the exponential mechanism with privacy parameter ε and quality function
q(S, x) = min{#{j : xj ≥ x},#{j : xj ≤ x}} to choose and return a point x ∈ X. Specifically,
each x ∈ X is chosen with probability proportion to eε·q(S,x)/2 (since the sensitivity of the quality
function is 1).

2. Let k = b386ε ln(4
βεδ)c, and let Y = (y1, y2, . . . , yn−2k) be a random permutation of the smallest

(n− 2k) elements in S.

42

3. For j = 1 to n−2k
2 , define zj as the length of the longest prefix for which y2j−1 agrees with y2j

(in base 2 notation).

4. Execute InteriorPoint recursively on S′ = (zj)
(n−2k)/2
j=1 ∈ (X ′)(n−2k)/2 with parameters β, ε, δ.

Recall that |X ′| = log |X|. Denote the returned value by z.

5. Use the choosing mechanism to choose a prefix L of length (z + 1) with a large number of
agreements among elements in Y . Use parameters β, ε, δ, and the quality function q : X∗ ×
{0, 1}z+1 → N, where q(Y,L) is the number of agreement on prefix L among y1, . . . , yn−2k.
Specifically, the choosing mechanism simply chooses one of prefixes with non-zero quality using
exponential mechanism. Namely, each prefix L with q(Y,L) ≥ 1 is chosen with probability
proportion to eε·q(Y,L)/2.6

6. For σ ∈ {0, 1}, define Lσ ∈ X to be the prefix L followed by (log |X| − z − 1) appearances of σ.

7. Compute ˆbig = Lap(1ε) + #{j : xj ≥ L1}.

8. If ˆbig ≥ 3k
2 then return L1. Otherwise return L0.

Our goal is to implement the algorithm obliviously in a RAM machine with a finite word size
efficiently. Note that for obliviousness, we cannot reveal the number n of non-dummy elements.
This is simple for step 3, 6, 7, and 8 by adding dummy access. For the recursion step 4, we can
invoke the recursion with (n′ − 2k)/2 size database with (n − 2k)/2 non-dummy elements. For
step 2, we need to use random permutation to pair up n− 2k smallest non-dummy elements in an
oblivious way. This can be done with the help of oblivious sorting as follows.

• We first use oblivious sorting to identify the n − 2k smallest non-dummy elements in Y .
Namely, we sort the elements according to its value and mark the n−2k smallest non-dummy
elements.

• We apply a random permutation to the n′ elements. Note that this permutes the n − 2k
marked elements uniformly. Also note that we do not need to hide the permutation since it
is data independent.

• We use a stable oblivious sorting again to move the n−2k marked elements together. Specif-
ically, we view the marked and unmarked elements as having values 0 and 1, respecitvely
and we sort according to this value. The output Y = {y1, y2 . . . , yn−2k} are the first n − 2k
elements. Since we use stable sorting, the order among the n−2k elements remains randomly
permuted.

The time complexity of this step is O(n′ · log n′)
We now discuss how to implmement the exponential and choosing mechanisms in step 1 and

5, which involves sampling from a distribution defined by numbers of the form e(ε/2)·j for integer
j ∈ Z. To implement the sampling in a RAM machine with a finite word size, we need to compute
the values with enough precision to maintain privacy, which may cause efficiency overhead. We
discuss how to do it efficiently. We focus on step 5 since it is the more involved step. Step 1 can
be done in an analogous way.

To implement the choosing mechanisms in step 5, the first step is to compute the quality function
for all prefixes L ∈ {0, 1}z+1 with q(Y, L) ≥ 1 obliviously. Let P = {L : q(Y, L) ≥ 1} denote the

6See [8] for definition and properties of the choosing mechanism. Here we only describe the behavior of the
choosing mechanism is this specific case.

43

set of such prefixes. Recall that q(Y, L) = #{yi ∈ Y : pref(yi) = L}, where pref(yi) denote the
z+ 1 bits prefix of yi. This can be done by invoking oblivious aggregation (see Section C) with key
ki = pref(yi) and value vi = 1 (with padded dummy entries to size n′ − 2k), and the aggregation
function Aggr being the summation function. The ouput is an array {(Lj , qj)} of the same size
n′ − 2k where the first half contains all prefixes Lj ∈ P with qj = q(Y,Lj) ≥ 1 and the remaining
are dummy entries.

Now we need to sample a prefix Lj with probability proportion to e(ε/2)·qj . To optimize the
efficiency, we do it as follows. Let qmax = maxj qj . We compute wj = e(ε/2)·(qj−qmax) ∈ (0, 1] with
p = 2 · log(n/δ) bits of precision. We set wj = 0 for the dummy entries. Then we compute the
accumulated sum vj =

∑
`≤jb2p · wjc. Finally, we sample a uniform u ←R [vn′−2k] and output

the Lj such that vj−1 < u ≤ vj (we set v0 = 0). It is not hard to see that this samples Lj
with the correct distribution up to a o(δ) statistical distance error due to the finite precision. To
compute wj = {e(ε/2)·(qj−qmax)} with p bits of precision, note that these are values of the form
e−(ε/2)·t for t ∈ N. Since we only need p bits of precision, the value rounds to 0 when t is too
large. Let tmax = O((1/ε) · log p) be the largest t we need to consider. We precompute the values

αk = e−(ε/2)·2
k

for k ∈ {0, 1, . . . , blog tmaxc}, and compute wj by multiplying a subset of αk, i.e., by
the standard repeated squaring algorithm. (Note that for obliviousness, the access pattern needs
to go over all αk to hide the subset). Finally, to compute αk, we first compute α0 = e−ε/2 using
Taylor expansion, and then compute αk = α2

k−1 by multiplication.
We summarize below the implementation of the choosing mechanism in step 5 discussed above.

Note that it has a deterministic access pattern.

Choosing(Y, z, ε)

Assume: Y = (yj)
n′−2k
j=1 ∈ (X ∪ {dummy})n′−2k with n− 2k non-dummy elements.

Algorithm:

1. Compute the quality function: Invoke oblivious aggregation (see Section C) with key ki =
pref(yi) and value vi = 1 (with padded dummy entries to size n′ − 2k), and the aggregation
function Aggr being the summation function. The ouput is an array {(Lj , qj)} of the same size
n′−2k where the first half contains all prefixes Lj ∈ P with qj = q(Y,Lj) ≥ 1 and the remaining
are dummy entries.

2. Compute α0 = e−ε/2 by Taylor expansion, and αk = α2
k−1 for k ∈ {1, . . . , blog tmaxc}.

3. Compute the weights wj = e(ε/2)·(qj−qmax) by multiplying a proper subset of αk. Set wj = 0 for
the dummy entries. (Note that for oblivious security, we need to do dummy computation to go
over all αk for all j.)

4. Compute the accumulated sum vj =
∑

`≤jb2p · wjc. Set v0 = 0.

5. Sample a uniform u←R [vn′−2k]. Use a linear scan to find j such that vj−1 < u ≤ vj and output
Lj . (Note that we cannot do binary search here for oblivious security.)

We now analyze the complexity of the above choosing mechanism. The first step takesO(n′ log n′)
time for oblivious aggregation. For the sampling steps, for clarity, let us use timeadd(p), timemult(p),
timeexp(p), etc., to denote the time to perform addition and multiplication, and compute e−ε/2, etc.,
with p bits of precision. We note that the dominating cost is the computation of the weights wj ,
which takes O(n′ ·(log tmax) ·timemult(p)) time. Other costs that are linear in n′ are the computation
of accumulated sum and the search of index j such that vj−1 < u ≤ vj , which takes linear number

44

of addition and comparison, respectively. The remaining costs are the computation of αk’s, which
takes time timeexp +(log tmax) · timemult(p), and the sampling of u←R [vn′−2k]. Note that timeexp(p)
is at most O(p · timemult(p)) ≤ O(n′ · timemult(p)). All these terms are dominated by the cost of
computing wj ’s.

Therefore, the total cost of InteriorPoint without considering the recursion is

O(n′ log n′) +O(n′ · (log tmax) · timemult(p)),

where log tmax = O(log((1/ε) · log(n/δ))) and p = O(log(n/δ)). Finally, note that InteriorPoint only
invokes the recursion once with size shrinking by a factor of 2, so the overall complexity remains
the same.

We remark that one may consider to precompute not only αk = e−(ε/2)·2
k

for k ∈ {0, 1, . . . , blog tmaxc},
but all the values e−(ε/2)·t for t ∈ {0, 1, . . . , tmax} so that we do not need to compute the weight
wj ’s by repeated squaring. However, note that we cannot directly fetch the precomputed value
for wj since it breaks the oblivious security, and it seems that to maintain oblivious security, an
O(log tmax) overhead is needed. This can yield a small asymptotic improvement over the above
solution, but we choose to present the above solution for simplicity.

Let w denote the word size of a RAM machine and suppose word operations have unit cost. We
know that timemult(p) ≤ O((p/w)2). When δ = negl(n′) and w = O(log n′), we have p/w = ω(1)
and the overall complexity is O(n′ log n′). We summarize the above discussion in the following
theorem.

Theorem C.1 (Differentially private interior point, finite word size version). Let w be the word size
of a RAM machine. Let β, ε, δ > 0 be parameters. There exists an algorithm such that given any
array S containing n′ elements from a finite universe X = [0..U − 1] with some dummy elements
but at least n non-dummy, where n ≥ 18500

ε · 2log∗ U · log∗ U · ln 4 log∗ U
βεδ , the algorithm

• completes consuming only O((n′ log n′) + (n′ · log((1/ε) · log p) · (p/w)2)) time and number of
memory accesses, where p = 2 log(n/δ).

• the algorithm produces an (ε, δ)-differential private outcome;

• with probability 1− β, the outcome is a correct interior point of the input array S; and

• the algorithm’s memory access patterns are independent of the input array.

C.2 Oblivious aggregation

Oblivious aggregation is the following primitive where given an array of (key, value) pairs, each
representative element for a key will learn some aggregation function computed over all pairs with
the same key.

• Input: An array Inp := {ki, vi}i∈[n] of possibly dummy (key, value) pairs Henceforth we refer to
all elements with the same key as the same group. We say that index i ∈ [n] is a representative
for its group if i is the leftmost element of the group.

• Output: Let Aggr be a publicly known, commutative and associative aggregation function and we
assume that its output range can be described by O(1) number of blocks. The goal of oblivious
aggregation is to output the following array:

Outpi :=

{
Aggr ({(k, v)|(k, v) ∈ Inp and k = ki}) if i is a representative

⊥ o.w.

Oblivious aggregation can be implemented in time O(n log n) with a deterministic access pattern.

45

C.3 Oblivious Propagation for a Sorted Array

Oblivious propagation [40] is the opposite of aggregation. Given an array of possibly dummy (key,
value) pairs where all elements with the same key appear consecutively, we say that an element is
the representative if it is the leftmost element with its key. Oblivious propagation aims to achieve
the following: for each key, propagate the representative’s value to all other elements with the
same key. Nayak et al. [40] show that such oblivious propagation can be achieved in O(log n) steps
consuming n CPUs where n is the size of the input array.

C.4 Oblivious Bin Placement

Oblivious bin placement is the following task: given an input array X, and a vector V where V [i]
denotes the intended load of bin i, the goal is to place the first V [1] elements of X into bin 1, place
the next V [2] elements of X into bin 2, and so on. All output bins are padded with dummies to a
maximum capacity Z. Once the input X is fully consumed, all remaining bins will contain solely
dummies.

ObliviousBinPlace(X,V, Z):

• Let W be the accumulated sum of V , i.e., W [i] =
∑

j≤i V [j]. Obliviously sort all elements of
X and W together, where each element carries the information whether it comes from X or Z.
The sorting is governed by the following key assignments: an element in X is assigned the key
that equals to its position in X, and the i-th element in W is assigned the key that is equal to
W [i]. If two elements have the same key, then the one from W appears later.

• In this sorted array, every element from X wants to hear from the first element from W that
appears after itself. We accomplish this by calling an oblivious propagation algorithm (see
Section C.3) such that at the end, each element from X learns which bin it is destined for.

• In one scan of the resulting array, mark every element from W as dummy. For every i ∈ [B]
where B = |W |, append Z filler elements destined for bin i to the array (note that fillers are
not dummies).

• Obliviously sort the outcome array by destined bin number, leaving all dummies at the end. If
two elements have the same bin number, filler appear after real elements.

• In one linear scan, mark all but the first Z elements of every bin as dummy.

• Obliviously sort by bin number, leaving all dummies at the end. If two elements have the same
bin number, break ties by arranging smaller elements first, and having fillers appear after real
elements.

• Truncate the result and preserve only the first BZ elements. In one scan, rewrite every filler as
dummy.

• Return the outcome.

46

	Introduction
	Differential Obliviousness
	Our Results
	Sorting
	Merging Two Sorted Lists
	Data Structures Supporting Insertion and Query

	Technical Highlights
	Related Work

	Definitions
	Model of Computation
	Algorithms in the Balls-and-Bins Model

	Differentially Oblivious Sorting: Definitions and Upper Bounds
	Defining Differentially Oblivious Sorting
	Stably Sorting 1-Bit Keys
	Intuition
	Preliminary: Differentially Private Prefix Sum
	Algorithm for Sorting 1-Bit Keys

	Sorting More Bits

	Limits of Differentially Oblivious Sorting
	Warmup and Intuition
	Plausibility of Access Patterns among Neighboring Inputs
	Access Pattern Graphs under the Balls-and-Bins Model
	Preliminaries on Routing Graph Complexity
	Lower Bounds for Differentially Oblivious Sorting

	Merging Two Sorted Lists
	Defining Differentially Oblivious Merging
	Intuition
	Preliminaries
	Subroutine: Differentially Oblivious Interior Point Mechanism
	Subroutine: Creating Thresh-Bins
	Subroutine: Merging Two Lists of Thresh-Bins
	Full Merging Algorithm
	Lower Bounds for Differentially Oblivious Merging

	Differentially Oblivious Range Query Data Structure
	Data Structures
	Defining Differentially Oblivious Data Structures
	Static Differential Obliviousness for Data Structures
	Adaptive Differential Obliviousness for Data Structures

	Warmup: Range Query from Thresh-Bins
	Range Query Data Structure Construction
	Applications in the Designated-Client and Public-Client Settings
	Lower Bounds for Differentially Oblivious Data Structures

	Extra Preliminaries
	Technical Lemmas concerning r-Neighbors
	Stochastic Analysis for Geometric Distribution

	Analysis of the Merging Algorithm
	Oblivious Realization of Ideal Functionalities with Differentially Private Leakage
	Ideal Fthreshbins Functionality
	ThreshBins Obliviously Realize Fthreshbins
	Proof of Theorem 5.3

	Building Blocks
	Obliviously Realizing the Interior Point Mechanism
	Oblivious aggregation
	Oblivious Propagation for a Sorted Array
	Oblivious Bin Placement

