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Abstract

It is well-known that a program’s memory access pattern can leak information about its
input. To thwart such leakage, most existing works adopt the technique of oblivious RAM
(ORAM) simulation. Such an obliviousness notion has stimulated much debate. Although
ORAM techniques have significantly improved over the past few years, the concrete overheads
are arguably still undesirable for real-world systems — part of this overhead is in fact inherent
due to a well-known logarithmic ORAM lower bound by Goldreich and Ostrovsky. To make
matters worse, when the program’s runtime or output length depend on secret inputs, it may be
necessary to perform worst-case padding to achieve full obliviousness and thus incurring possibly
(super-)linear overheads.

Inspired by the elegant notion of differential privacy, we initiate the study of a new notion of
access pattern privacy, which we call “(ε, δ)-differential obliviousness”. We separate the notion
of (ε, δ)-differential obliviousness from classical obliviousness by considering several fundamental
algorithmic abstractions including sorting small-length keys, merging two sorted lists, and range
query data structures (akin to binary search trees). We show that by adopting differential obliv-
iousness with reasonable choices of ε and δ, not only can one circumvent several impossibilities
pertaining to full obliviousness, one can also, in several cases, obtain meaningful privacy with
little overhead relative to the non-private baselines (i.e., having privacy “almost for free”). On
the other hand, we show that for very demanding choices of ε and δ, the same lower bounds for
oblivious algorithms would be preserved for (ε, δ)-differential obliviousness.

1 Introduction

Suppose that there is a database consisting of sensitive user records (e.g., medical records), and one
would like to perform data analytics or queries over this dataset in a way that respects individual
users’ privacy. More concretely, we imagine the following two scenarios:

1. The database is encrypted and outsourced to an untrusted cloud server that is equipped with
a trusted secure processor such as Intel’s SGX [2, 35], such that only the secure processor can
decrypt and compute over the data.

2. The database is horizontally partitioned across multiple nodes, e.g., each hospital holds records
for their own patients.

To provide formal and mathematical guarantees of users’ privacy, one natural approach is to
require that any information about the dataset that is disclosed during the computation must satisfy
differential privacy (DP). Specifically, differential privacy is a well-established notion first proposed
in the ground-breaking work by Dwork et al. [14]. Naturally, in the former scenario, we can have
the secure processor compute differentially private statistics to be released or differentially private
answers to analysts’ queries. In the latter scenario, since the data is distributed, we can rely on
multi-party computation (MPC) [19, 47] to emulate a secure CPU, and compute a differentially
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private mechanism securely (i.e., revealing only the differentially private answer but nothing else).
The above approaches (assuming that the program is executed in the RAM-model) indeed ensure
that the statistics computed by the secure processor or the MPC protocol are safe to release. How-
ever, this is not sufficient for privacy: specifically, the program’s execution behavior (in particular,
memory access patterns) can nonetheless leak sensitive information.

Classical notion of access pattern privacy: full obliviousness. To defeat access pattern
leakage, a line of work has focused on oblivious algorithms [17,24,34] and Oblivious RAM (ORAM)
constructions [18,20]. These works adopt “full obliviousness” as a privacy notion, i.e., the program’s
memory access patterns (including the length of the access sequence) must be indistinguishable
regardless of the secret database or inputs to the program. Such a full obliviousness notion has at
least the following drawbacks:

1. First, to achieve full obliviousness, a generic approach is to apply an Oblivious RAM (ORAM)
compiler, an elegant algorithmic technique originally proposed by Goldreich and Ostrovsky [18,
20]. Although ORAM constructions have significantly improved over the past few years [40,
41, 45], their concrete performance is still somewhat undesirable — and some of this overhead
is, in fact, inherent due to the well-known logarithmic ORAM lower bound by Goldreich and
Ostrovsky [18,20].

2. Second, to make matters worse, in cases where the program’s output length or runtime also
depends on the secret input, it may be necessary to pad the program’s output length and
runtime to the maximum possible to achieve full obliviousness. Such padding can sometimes
incur even linear or super-linear overhead, e.g., see our range query database example later in
the paper.

Our new notion: differential obliviousness. Recall that our final goal is to achieve a notion of
“end-to-end differential privacy”, that is, any information disclosed (including any statistics explic-
itly released as well as the program’s execution behavior) must be differentially private. Although
securely executing an oblivious DP-mechanism would indeed achieve this goal, the full oblivious-
ness notion appears to be an overkill. In this paper, we formulate a new notion of access pattern
privacy called differential obliviousness. Differential obliviousness requires that if the memory ac-
cess patterns of a program are viewed as a form of statistics disclosed, then such “statistics” must
satisfy differential privacy too. Note that applying standard composition theorems of DP [16], the
combination of statistics disclosed and access patterns would jointly be DP too (and thus achieving
the aforementioned “end-to-end DP” goal).

Our differential obliviousness notion can be viewed as a relaxation of full obliviousness (when
both are defined with information theoretic security). Clearly, such a relaxation is only interesting
if it allows for significantly smaller overheads than full obliviousness. Indeed, with this new notion,
we can hope to overcome both drawbacks for full obliviousness mentioned above. First, it might
seem natural that with differential obliviousness, we can avoid worst-case padding which can be
prohibitive. Second, even when padding is a non-issue (i.e., when the program’s runtime and output
length are fixed), an exciting question remains:

Can we asymptotically outperform full obliviousness with this new notion? In other words, can
we achieve differential obliviousness without relying on full obliviousness as a stepping stone?

The answer to this question seems technically challenging. In the classical DP literature, we
typically achieve differential privacy by adding noise to intermediate or output statistics [14]. To

2



apply the same techniques here would require adding noise to a program’s memory access patterns
— this seems counter-intuitive at first sight since access patterns arise almost as a side effect of a
program’s execution.

Our results and contributions. Our paper is the first to show non-trivial lower- and upper-
bound results establishing that differential obliviousness is an interesting and meaningful notion of
access pattern privacy, and can significantly outperform full obliviousness (even when padding is a
non-issue). We show results of the following nature:

1. New lower bounds on full obliviousness. On one hand, we show that for several fundamen-
tal algorithmic building blocks (such as sorting, merging and range query data structures),
any oblivious simulation would incur at least Ω(logN) overhead where N is the data size.
Our oblivious algorithm lower bounds can be viewed as a strengthening of Goldreich and
Ostrovsky’s ORAM lower bounds [18,20]. Since the logarithmic ORAM lower bounds do not
imply a logarithmic lower bound for any specific algorithm, our lower bounds (for specific
algorithms) are necessary to show a separation between differential obliviousness and full
obliviousness.

2. Almost-for-free differentially oblivious algorithms. On the other hand, excitingly we show for
the first time that for the same tasks mentioned above, differentially oblivious algorithms
exist which incur only O(log logN) overhead (we sometimes refer to these algorithms as
“almost-for-free”).

3. Separations between various definitional variants. We explore various ways of defining differ-
ential obliviousness and theoretical separations between these notions. For example, we show
an intriguing separation between ε-differential obliviousness and (ε, δ)-differential oblivious-
ness. Specifically, just like ε-DP and (ε, δ)-DP, a non-zero δ term allows for a (negligibly)
small probability of privacy failure. We show that interestingly, permitting a non-zero but
negligibly small failure probability (i.e., a non-zero δ) turns out to be crucial if we would like
to outperform classical full obliviousness! Indeed, our “almost-for-free” differential oblivious
algorithms critically make use of this non-zero δ term. Perhaps more surprisingly, most of
our logarithmic full obliviousness lower bounds would still apply had we required ε-differential
obliviousness for arbitrarily large ε (even though intuitively, very little privacy is preserved
for large values of ε)!

Both our lower bounds and upper bounds require novel techniques. Our lower bounds draw con-
nections to the complexity of non-blocking graphs [38] that were extensively studied in the classical
algorithms literature. For upper bounds, to the best of our knowledge, our algorithms show for
the first time how to combine oblivious algorithms techniques and differential privacy techniques
in non-blackbox manners to achieve non-trivial results. Our upper bounds also demonstrate a
new algorithmic paradigm for constructing differentially oblivious algorithms: first we show how to
make certain DP mechanisms oblivious and we rely on these oblivious DP mechanisms to compute
a set of intermediate DP-statistics. Then, we design algorithms whose memory access patterns are
“simulatable” with knowledge of these intermediate DP statistics — and here again, we make use
of oblivious algorithm building blocks.

1.1 Differential Obliviousness

We formulate differential obliviousness for random access machines (RAMs) where a trusted CPU
with O(1) registers interacts with an untrusted memory and performs computation. We assume
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that the adversary is able to observe the memory addresses the CPU reads and writes, but is unable
to observe the contents of the data (e.g., the data is encrypted or secret-shared by multiple parties).
This abstraction applies both of the motivating scenarios described at the beginning of our paper.

Differential obliviousness can be intuitively interpreted as differential privacy [14, 43], but now
the observables are access patterns. Informally, we would like to guarantee that an adversary, after
having observed access patterns to (encrypted)1 dataset stored on the server, learns approximately
the same amount of information about an individual or an event as if this individual or event were
not present in the dataset.

Basic definition of differential obliviousness. Let M be an algorithm that is expressed as a
RAM program. We say that two input databases I and I ′ are neighboring iff they differ only in
one entry. The algorithm M is said to be (ε, δ)-differentially oblivious, iff for any two neighboring
input databases I and I ′, for any set S of access patterns, it holds that

Pr[AccessesM (I) ∈ S] ≤ eε · Pr[AccessesM (I ′) ∈ S] + δ, (1)

where AccessesM (I) denotes the ordered sequence of memory accesses made by the algorithm M
upon receiving the input I. Therefore, (ε, δ)-differential obliviousness can be thought of as (ε, δ)-DP
but where the observables are the access patterns.

The term δ can be thought of as a small probability of privacy failure that we are willing to
tolerate. For all of our upper bounds, we typically require that δ be negligibly small in some security
parameter λ. When δ = 0, we also say that M satisfies ε-differential obliviousness.

Comparison with full obliviousness. It is interesting to contrast the notion of differential
obliviousness with the classical notion of full obliviousness [18, 20]. An algorithm M (expressed
as a RAM program) is said to be (statistically) δ-oblivious iff for any input databases I and I ′

of equal length, it holds that AccessesM (I)
δ≡ AccessesM (I ′) where

δ≡ denotes that the two
distributions have statistical distance at most δ. When δ = 0, we say that the algorithm M
satisfies perfect obliviousness. Note that to satisfy the above definition requires that the length of
the access sequence be identically distributed or statistically close for any input of a fixed length
— as mentioned earlier, one way to achieve this is to pad the length/runtime to the worst case.

It is not difficult to observe that (ε, δ)-differential obliviousness is a relaxation of δ-obliviousness;
and likewise ε-differential obliviousness is a relaxation of perfect obliviousness. Technically the
relaxation arises from the following aspects:

1. First, differential obliviousness requires that the access patterns be close only for neighboring
inputs; as the inputs become more dissimilar, the access patterns they induce are also allowed to
be more dissimilar. By contrast, full obliviousness requires that the access patterns be close for
any input of a fixed length.

2. Differential obliviousness permits a multiplicative eε difference in the distribution of the access
patterns incurred by neighboring inputs (besides the δ failure probability); whereas full oblivi-
ousness does not permit this eε relaxation.

Later in the paper, we shall see that although ε-differential obliviousness seems much weaker
than obliviousness, surprisingly the same logarithmic lower bounds pertaining to full obliviousness
carry over to ε-differential obliviousness for several algorithmic abstractions we are concerned with.

1Our differentially oblivious definitions do not capture the encryption part, since we consider only the access
patterns as observables. In this way all of our guarantees are information theoretic in this paper.
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However, by additionally permitting a non-zero (but negligibly small) failure probability δ, we can
achieve almost-for-free differentially oblivious algorithms.

Definition of differential obliviousness for stateful algorithms. We will also be concerned
about stateful algorithms where the memory stores persistent state in between multiple invocations
of the algorithm. Concretely, we will consider range-query data structures (akin to binary search
trees), where the entries of a database can be inserted dynamically over time, and range queries
can be made in between these insertions. In such a dynamic database setting, we will define an
adaptive notion of differential obliviousness where the adversary is allowed to adaptively choose
both the entries inserted into the database, as well as the queries — and yet we require that the
access patterns induced be “close” by Equation (1) for any two neighoring databases (inserted
dynamically). Our notion of adaptive differential obliviousness is akin to the standard adaptive
DP notion for dynamic databases [16], but again our observables are now memory access patterns
rather than released statistics. We defer the full definition to later technical sections.

1.2 Our Results

Equipped with the new differentially oblivious notion, we will now try to understand the follow-
ing questions: 1) does differential obliviousness permit asymptotically faster algorithms than full
obliviousness? 2) how do the choices of ε and δ affect the asymptotical performance of differen-
tially oblivious algorithms? To this end, we consider a few fundamental algorithmic abstractions
including sorting, merging, and data structures — these algorithmic abstractions were not only ex-
tensively studied in the algorithms literature, but also heavily studied in the ORAM and oblivious
algorithms literature as important building blocks.

1.2.1 Sorting

We consider (possibly non-comparison-based) sorting in the balls-and-bins model: imagine that
there are N balls (i.e., records) each tagged with a k-bit key. We would like to sort the balls
based on the relative ordering of their keys.2 If how an algorithm moves elements is based only
on the relative order (with respect to the keys) of the input elements, we say that the algorithm is
comparison-based; otherwise it is said to be non-comparison-based. Unlike the keys, the balls are
assumed to be opaque — they can only be moved around but cannot be computed upon. A sorting
algorithm is said to be stable, if for any two balls with identical keys, their relative order in the
output respects that in the input.

First, even without privacy requirements, it is understood that 1) any comparison-based sorting
algorithm must incur at least Ω(N logN) comparison operations — even for sorting 1-bit keys due to
the well-known 0-1 principle; and 2) for special scenarios, non-comparison-based sorting techniques
can achieve linear running time (e.g., radix sort, counting sort, and others [3,26,27,31,42]) — and
a subset of these techniques apply to the balls-and-bins model. A recent manuscript by Lin, Shi,
and Xie [33] showed that interesting barriers arise if we require full obliviousness for sorting:

Fact 1.1 (Barriers for oblivious sorting [33]). Any oblivious 1-bit stable sorting algorithm in the
balls-and-bins model, even non-comparison-based ones, must incur at least Ω(N logN) runtime
(even when allowing a constant probability of security or correctness failure). As a direct corollary,
any general oblivious sorting algorithm in the balls-and-bins model, even non-comparison-based
ones, must incur at least Ω(N logN) runtime.

2For example, if the key is 1-bit, a non-balls-and-bins algorithm could just count the number of 0s and 1s and
write down an answer; but a balls-and-bins algorithm would have to sort the balls themselves.
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We stress that the above oblivious sorting barrier is applicable only in the balls-and-bins
model (otherwise without the balls-and-bins constraint, the feasibility or infeasibility of o(n log n)-
overhead, circuit-based sorting remains open [7]). Further, as Lin, Shi, and Xie showed [33], for
small-length keys, the barrier also goes away if the stability requirement is removed (see Section 1.3).

Differentially oblivious sorting. Can we use the differential obliviousness relaxation to over-
come the above oblivious sorting barrier (in the balls-and-bins model)? We show both upper- and
lower-bounds. For upper bounds, we show that for choices of ε and δ that give reasonable privacy,
one can indeed sort small-length keys in o(N logN) time and attain (ε, δ)-differential obliviousness.
As a typical parameter choice, for ε = Θ(1) and δ being a suitable negligible function in N , we
can stably sort N balls tagged with 1-bit keys in O(N log logN) time — note that in this case, the
best non-private algorithm takes linear time, and thus we show that privacy is attained “almost for
free” for 1-bit stable sorting. More generally, for any k = o(logN/ log logN), we can stably sort
k-bit keys in o(N logN) time — in other words, for small-length keys we overcome the Ω(N logN)
barrier of oblivious sorting.

We state our result more formally and for generalized parameters:

Theorem 1.2 ((ε, δ)-differentially oblivious stable k-bit sorting). For any ε > 0 and any 0 <
δ < 1, there exists an (ε, δ)-differentially oblivious k-bit stable sorting algorithm that completes
in O(kN(log k

ε + log logN + log log 1
δ )) runtime. As a special case, for ε = Θ(1), there exists an

(ε, negl(N))-differentially oblivious stable 1-bit sorting algorithm that completes in O(N log logN)
runtime for some suitable negligible function negl(·), say, negl(N) := exp(− log2N).

Note that the above upper bound statement allows for general choices of ε and δ. Interestingly,
we show that our upper bound result is optimal up to log log factors for a wide parameter range.
We present our lower bound statement for general parameters first, and then highlight several
particularly interesting parameter choices and discuss their implications. Note that our lower
bound below is applicable even to non-comparison-based sorting:

Theorem 1.3 (Limits of (ε, δ)-differentially oblivious sorting in the balls-and-bins model). For any

0 < s ≤
√
N , any ε > 0, and any 0 ≤ δ ≤ e−(2εs+log2N), any (ε, δ)-differentially oblivious stable

1-bit sorting algorithm in the balls-and-bins model must incur, on some input, at least Ω(N log s)
memory accesses with high probability3.

As a corollary, under the same parameters, any (ε, δ)-differentially oblivious Ω(logN)-bit-
key balls-and-bins sorting algorithm, even non-stable ones, must incur, on some input, at least
Ω(N log s) memory accesses with high probability.

First, note that how the lower bound tightly matches the upper bound (up to log log factors)
for ε = Θ(1) and typical choices of δ, e.g., δ = exp(− log2N) or δ = exp(−N0.1). Second, the lower
bound allows a tradeoff between ε and δ. For example, if ε = Θ( 1√

N
), then we rule out o(N logN)

stable 1-bit sorting for even δ = exp(−Ω(log2N)).
The case of δ = 0 is more interesting: if δ is required to be 0, then even when ε may be arbitrarily

large, any ε-differentially oblivious sorting algorithm must suffer from the same lower bounds as
oblivious sorting (in the balls-and-bins model)! This is a surprising conclusion because in some
sense, very little privacy (or almost no privacy) is attained for large choices of ε — and yet if δ
must be 0, the same barrier for full obliviousness carries over!

3All lower bounds in this paper can be extended to handle imperfect correctness as we show in the Appendices
(Section C)
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1.2.2 Merging Two Sorted Lists

Merging is also a classical abstraction and has been studied extensively in algorithms [32]. Merging
in the balls-and-bins model is the following task: given two input sorted arrays (by the keys) which
together contain N balls, output a merged array containing balls from both input arrays ordered
by their keys. Without privacy requirements, clearly merging can be accomplished in O(N) time.
Interestingly, Pippenger and Valiant [38] proved that any oblivious algorithm must (in expectation)
incur at least Ω(N logN) ball movements to merge two arrays of length N — even when O(1)
correctness or security failure is allowed4.

Differentially oblivious merging. Since merging requires that the input arrays be sorted, we
clarify the most natural notion of “neighboring”: by the most natural definition, two inputs (I0, I1)
and (I ′0, I

′
1) are considered neighboring if for each b ∈ {0, 1}, set(Ib) and set(I ′b) differ in exactly one

record. Given this technical notion of neighboring, differential obliviousness is defined for merging
in the same manner as before.

We show similar results for merging as those for 1-bit stable sorting as stated in the following
informal theorems.

Theorem 1.4 (Limits of (ε, δ)-differentially oblivious merging in the balls-and-bins model). For

any 0 < s ≤
√
N , any ε > 0, and any 0 ≤ δ ≤ e−(2εs+log2N), any (ε, δ)-differentially oblivious merg-

ing algorithm in the balls-and-bins model must incur, on some input, at least Ω(N log s) memory
accesses with high probability.

Theorem 1.5 ((ε, δ)-differentially oblivious merging). For any ε > 0 and any 0 < δ < 1, there
exists an (ε, δ)-differentially oblivious merging algorithm that completes in O(N(log 1

ε + log logN +
log log 1

δ )) runtime. As a special case, for ε = Θ(1), there exists an (ε, negl(N))-differentially
oblivious merging algorithm that completes in O(N log logN) runtime for some suitable negligible
function negl(·).

The above theorems are stated for general choices of ε and δ, below we point out several notable
special cases:

1. First, assuming ε = Θ(1), if δ must be subexponentially small, then the same lower bound for
oblivious merging will be preserved for (ε, δ)-differentially oblivious merging.

2. Second, for ε = Θ(1) and δ negligibly small (but not subexponentially small), we can achieve
(ε, δ)-differentially oblivious merging in O(N log logN) time — yet another example of having
privacy “almost-for-free”.

3. Third, just like the case of 1-bit stable sorting, both our upper- and lower-bounds are (almost)
tight for a wide parameter range that is of interest.

4. Finally, when δ = 0, surprisingly, the Ω(N logN) barrier for oblivious merging will be preserved
no matter how large ε is (and how little privacy we get from such a large ε).

4Pippenger and Valiant’s proof [38] is in fact in a balls-and-bins circuit model, but it is not too difficult, using the
access pattern graph approach in our paper, translate their lower bound to the RAM setting.
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1.2.3 Data Structures

Data structures are stateful algorithms, where memory states persist across multiple invocations.
Data structures are also of fundamental importance to computer science. We thus investigate the
feasibilities and infeasibilities of efficient, differentially oblivious data structures. Our upper-bounds
work for range query data structures: in such a data structure, one can make insertion and range
queries over time, where each insertion specifies a record tagged with a numerical key, and each
range query specifies a range and should return all records whose keys fall within the range. Our
lower-bounds work for point query data structures that are basically the same as range query data
structures but each range query must be “equality to a specific key” (note that restricting the
queries makes our lower bounds stronger).

The technical definition of differential obliviousness for stateful algorithms is similar to the
earlier notion for stateless algorithms. We shall define a static notion and an adaptive notion —
the static notion is used in our lower bounds and the adaptive notion is for our upper bounds (this
makes both our lower- and upper-bounds stronger):

• Static notion: here we assume that the adversary commits to an insertion and query sequence
upfront;

• Adaptive notion: here we assume that the adversary can adaptively choose insertions and range
queries over time after having observed previous transcripts in the protocol. Our adaptive notion
is equivalent to the standard adaptive DP notion for dynamic datasets [16] except that in our
case, the observables are memory access patterns.

We defer the full definitions to the main technical sections. We note that for both the static and
adaptive versions, as in the standard DP literature, we assume that the data records are private and
need to be protected but the queries are public (in particular the standard DP literature considers
the queries as part of the mechanisms [16]).

The issue of length leakage and comparison with oblivious data structures. Recall
for the earlier sorting and merging abstractions, the output length is always fixed (assuming the
input length is fixed). For range query data structures, however, an additional issue arises, i.e., the
number of records returned can depend on the query and the database itself. Such length disclosure
can leak secret information about the data records.

In the earlier line of work on oblivious data structures [30, 36, 46] and ORAM [18, 20, 23, 41,
45] considered in prior works, this length leakage issue is somewhat shoved under the rug. It is
understood that to achieve full obliviousness, we need to pad the number of records returned to
the maximum possible, i.e., as large as the database size — this will be prohibitive in practice.
Many earlier works that considered oblivious data structures [18, 20, 23, 30, 36, 41, 45, 46] instead
allow length leakage to avoid worst-case padding.

In comparison, in some sense our differential obliviousness notion gives a way to reason about
such length leakage. By adopting our notion, one can achieve meaningful privacy by adding (small)
noise to the output length, and without resorting to worst-case padding that can cause linear
blowup.

Upper bound results. As mentioned, our upper bounds work for range query data structures
that support insertion and range queries. Besides the standard overhead metrics, here we also
consider an additional performance metric, that is, locality of the data accesses. Specifically we
will use the number of discontiguous memory regions required by each query to characterize the
locality of the data structure, a metric frequently adopted by recent works [4, 5, 9].
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As a baseline, without any privacy requirement, such a range query data structure can be
realized with a standard binary search tree, where each insertion incurs O(logN) time where N is
an upper bound on the total records inserted; and each range query can be served in O(logN +L)
time and accessing only O(logN) discontiguous memory regions where L denotes the number of
matching records. We show the following results (stated informally).

Theorem 1.6 ((ε, δ)-differentially oblivious data structures). Suppose that ε = Θ(1) and that
negl(·) is a suitable negligible function. There is an (ε, negl(N))-differentially oblivious data struc-
ture supporting insertions and range queries, where each of the N insertions incurs amortized
O(logN log logN) runtime, and each query costs O(poly logN + L) runtime where L denotes the
number of matching records, and requires accessing only O(logN) discontiguous memory regions
regardless of L.

The best way to understand our upper bound results is to contrast with oblivious data struc-
tures [30,36,46] and the non-private baseline:

1. We asymptotically outperform known oblivious data structures that have logarithmic (multi-
plicative) overheads [30, 36, 46] (even when length leakage is permitted). Our algorithms are
again “almost-for-free” in comparison with the non-private baseline mentioned earlier for both
insertions and for queries that match sufficiently many records, i.e., when L ≥ poly logN .

2. We address the issue of length leakage effectively by adding polylogarithmic noise to the number
of matching records; whereas full obliviousness would have required padding to the maximum
(and thus incurring linear overhead).

3. Our constructions achieve logarithmic locality for range queries whereas almost all known oblivi-
ous data structures or ORAM techniques require accessing Ω(L) discontiguous regions of memory
if the answer is of size L.

4. Finally, although not explicitly stated in the above theorem, it will be obvious later that our
constructions are also non-interactive when applied to a client-server setting (assuming that the
server is capable of performing computation). By contrast, we do not know any oblivious data
structure construction that achieves statistical security and non-interactivity at the same time.

In our detailed technical sections we will also discuss applications of our differentially oblivious
data structures in designated-client and public-client settings.

Lower bounds. In the context of data structures, we also prove lower bounds to demonstrate the
price of differential obliviousness. As mentioned, for our lower bounds, we consider point queries
which is a special case of range queries; further, we consider static rather than adaptive differential
obliviousness — these make our lower bound stronger. We prove the following theorem.

Theorem 1.7 (Limits of (ε, δ)-differentially oblivious data structures). Suppose that N = poly(λ)
for some fixed polynomial poly(·). Let the integers r < s ≤

√
N be such that r divides s; furthermore,

let ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Suppose that DS is a perfectly correct and (ε, δ)-differentially
oblivious data structure supporting point queries. Then, there exists an operational sequence with
N insertion and N

r query operations interleaved, where each of N
r distinct keys from the domain

{0, 1, . . . , Nr − 1} is inserted r times, such that the total number of accesses DS makes for serving
this sequence is Ω(N log s

r ) with probability at least 1− negl(N).
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One immediate observation we can draw is that our earlier range query upper bound (The-
orem 1.6) is optimal up to log logN factors assuming that the batch size matching the query is
at least polylogarithmic in size. We defer more detailed technical discussions and proofs to the
subsequent formal sections.

1.3 Closely Related Work

We are inspired by the recent work of Kellaris et al. [29]. They also consider differential privacy
for access patterns for range query databases. In comparison, our work is novel in the following
respects:

• Kellaris et al. [29] present a computational differential privacy definition for the specific applica-
tion of statically outsourced databases in a client-server setting.

In comparison, our differential obliviousness is more general and is defined for any (stateless
and stateful) algorithms in the RAM model; and for stateful algorithms, we define an adaptive
notion of differential obliviousness. Although Kellaris et al. also describe a construction for
dynamic databases, they lack formal definitions for this case, and they implicitly assume that
the client can store an unbounded amount of data and that metadata operations are for free —
in our model where metadata storage and retrieval is no longer for free, their dynamic database
scheme would incur on average Ω(N) cost per query, where N is the database size.

• Second, to support a dynamic range (or point) query database, Kellaris et al. rely on a blackbox
ORAM and add noise to the result length. This approach has is at least as expensive as generic
ORAMs, and thus they do not answer the main question in our paper, that is, can we achieve
differential obliviousness without incurring the cost of generic ORAM or oblivious algorithms.

Another closely related work is by Wagh et al. [44], where they proposed a notion of differentially
private ORAM — in their notion, neighboring is defined over the sequence of logical memory
requests over time for a generic RAM program (and in general it is not clear how neighboring
for the logical memory requests would translate to neighboring of the inputs where the latter is
typically what we care about). Their main algorithm changes the way Path ORAM [41] assigns
blocks to random paths: they propose to make such assignments using non-uniform distributions to
reduce the stash — and thus their approach can only achieve constant-factor savings in comparison
with Path ORAM.

Lin, Shi, and Xie [33] recently showed thatN balls each tagged with a k-bit key can be obliviously
sorted in O(kN log logN/ log k) time using non-comparison-based techniques — but their algorithm
is not stable, and as Theorem 1.1 explains, this is inevitable for oblivious sort. Our results for sorting
small-length keys differentially obliviously match Lin et al. [33] in asymptotical performance (up
to log log factors) but we additionally achieve stability, and thus circumventing known barriers
pertaining to oblivious sort.

2 Definitions

2.1 Model of Computation

Abstractly, we consider a standard Random-Access-Machine (RAM) model of computation that
involves a CPU and a memory. We assume that the memory allows the CPU to perform two
types of operations: 1) read a value from a specified physical address; and 2) write a value to a
specified physical address. In a cloud outsourcing scenario, one can think of the CPU as a client
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and the memory as the server (which provides only storage but no computation); therefore, in the
remainder of the paper, we often refer to the CPU as the client and the memory as the server.

A (possibly stateful) program in the RAM model makes a sequence of memory accesses during
its execution. We define a (possibly stateful) program’s access patterns to include the ordered
sequence of physical addresses accessed by the program as well as whether each access is a read or
write operation.

2.1.1 Algorithms in the Balls-and-Bins Model

In this paper, we consider a set of classical algorithms and data structures in the balls-and-bins
model (note that data structures are stateful algorithms.) The inputs to the (possibly stateful)
algorithm consist of a sequence of balls each tagged with a key. Throughout the paper, we assume
that arbitrary computation can be performed on the keys, but the balls are opaque and can only be
moved around. Each ball tagged with its key is often referred to as an element or a record whenever
convenient. For example, a record can represent a patient’s medical record or an event collected
by a temperature sensor.

Unless otherwise noted, we assume that the RAM’s word size is large enough to store its own
address as well as a record (including the ball and its key). Sometimes when we present our
algorithms, we may assume that the RAM can operate on real numbers and sample from certain
distributions in unit cost — but in all cases these assumptions can eventually be removed and we
can simulate real number arithmetic on a finite-word-width RAM preserving the same asymptotical
performance (and absorbing the loss in precision into the δ term of (ε, δ)-differential obliviousness).
We defer discussions on simulating real arithmetic on a finite-word-width RAM to the Appendices.

2.1.2 Additional Assumptions

We make the following additional assumptions:

• We consider possibly randomized RAM programs — we assume that whenever needed, the CPU
has access to private random coins that are unobservable by the adversary. Throughout the
paper, unless otherwise noted, for any randomized algorithm we require perfect correctness5.

• Henceforth in this paper, we assume that the CPU can store O(1) number of records in its
private cache.

• For simplicity, we assume that arbitrary precision real arithmetic and sampling from certain
distributions (e.g., a Laplacian or geometric distribution) consume unit cost. This assumption
can be removed in some cases such that our algorithms can be implemented on a finite-word-
length RAM if we allow a δ probability of privacy failure (see our Appendices).

2.2 Differentially Oblivious Algorithms and Oblivious Algorithms

We first define differential obliviousness for stateless algorithms. Suppose that M(λ, I) is a stateless
algorithm expressed as a RAM program. Further, M takes in two inputs, a security parameter λ
and an input array (or database) denoted I. We say that two input arrays I and I ′ are neighboring
iff they are of the same length and differ in exactly one entry.

5Jumping ahead, given an (ε, δ)-differentially oblivious algorithm that incurs δ′ correctness error, as long as the
algorithm can detect its own error during computation, it can be converted into an algorithm that is perfectly correct
and (ε, δ + δ′)-differentially oblivious: specifically, if an error is encountered, the algorithm simply computes and
outputs a non-private answer.
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Definition 2.1 (Differentially oblivious (stateless) algorithms). Let ε, δ be functions in a security
parameter λ. We say that the stateless algorithm M satisfies (ε, δ)-differential obliviousness, iff for
any neighboring inputs I and I ′, for any λ, for any set S of access patterns, it holds that

Pr[AccessesM (λ, I) ∈ S] ≤ eε(λ) · Pr[AccessesM (λ, I ′) ∈ S] + δ(λ)

where AccessesM (λ, I) is a random variable denoting the ordered sequence of memory accesses the
algorithm M makes upon receiving the input λ and I.

In the above, the term δ behaves somewhat like a failure probability, i.e., the probability of
privacy failure for any individual’s record or any event. For our upper bounds subsequently, we
typically would like δ to be a negligible function in the security parameter λ, i.e., every individual
can rest assured that as long as λ is sufficiently large, its own privacy is unlikely to be harmed. On
the other hand, we would like ε not to grow w.r.t. λ, and thus a desirable choice for ε is ε(λ) = O(1)
— e.g., we may want that ε = 1 or ε = 1

log λ .
We also present the classical notion of oblivious algorithms since we will later be concerned

about showing separations between differential obliviousness and classical obliviousness.

Definition 2.2 (Oblivious (stateless) algorithms). We say that the stateless algorithm M satisfies
δ-statistical obliviousness, iff for any inputs I and I ′ of equal length, for any λ, it holds that

AccessesM (λ, I)
δ(λ)
≡ AccessesM (λ, I ′) where

δ(λ)
≡ denotes that the two distributions have at most

δ(λ) statistical distance. For the δ = 0 special case, we say that M is perfectly oblivious.

It is not hard to see that if an algorithm M is δ-statistically oblivious, it must also be (ε, δ)-
differentially oblivious. In other words, (ε, δ)-differentially obliviousness is a strict relaxation of
δ-statistical obliviousness. Technically speaking, the relaxation comes from two aspects: 1) differ-
ential obliviousness requires that the access patterns be close in distribution only for neighboring
inputs; and the access patterns for inputs that are dissimilar are allowed to be more dissimilar
too; and 2) differential obliviousness additionally allows the access pattern distributions induced
by neighboring inputs to differ by an eε multiplicative factor.

Definitions for stateful algorithms. So far, our definitions for differential obliviousness and
obliviousness focus on stateless algorithms. Later in our paper, we will also be interested in dif-
ferentially oblivious data structures. Data structures are stateful algorithms where memory states
persist in between multiple invocations. The definition of differential obliviousness is somewhat
more subtle for data structures, especially when the adversary can adaptively choose the entries to
insert into the data structure, and adaptively choose the queries as well. For readability, we defer
defining differentially oblivious data structures (i.e., stateful algorithms) to later technical sections.

3 Differentially Oblivious Sorting: Upper Bounds

We consider sorting in the balls-and-bins model: given an input array containing N opaque balls
each tagged with a key from a known domain [K], output an array that is a permutation of the input
such that all balls are ordered by their keys. If the sorting algorithm relies only on comparisons of
keys, it is said to be comparison-based. Otherwise, if the algorithm is allowed to perform arbitrary
computations on the keys, it is said to be non-comparison-based.

As is well-known, comparison-based sorting must suffer from Ω(N logN) runtime (even without
privacy requirements) and there are matching O(N logN) oblivious sorting algorithms [1, 21]. On
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the other hand, non-private, non-comparison-based sorting algorithms can sort N elements (having
keys in a universe of cardinality O(N)) in linear time (e.g., counting sort).

In this section, we will show that for certain cases of sorting, the notions of differential oblivi-
ousness and obliviousness result in a separation in performance.

3.1 Stably Sorting 1-Bit Keys

We start with stably sorting 1-bit keys and later extend to more bits. Stable 1-bit-key sorting is
the following problem: given an input array containing N balls each tagged with a key from {0, 1},
output a stably sorted permutation of the input array. Specifically, stability requires that if two
balls have the same key, their relative ordering in the output must respect their ordering in the
input.

We choose to start with this special case because interestingly, stable 1-bit-key sorting in the
balls-and-bins model has a Ω(N logN) lower bound due to the recent work by Lin, Shi, and Xie [33]
— and the lower bound holds even for non-comparison-based sorting algorithms that can perform
arbitrary computation on keys. More specifically, they showed that for any constant 0 < δ < 1 any
δ-oblivious stable 1-bit-key sorting algorithm must in expectation perform at least Ω(N logN) ball
movements.

In this section, we will show that by adopting our more relaxed differential obliviousness notion,
we can circumvent the lower bound for oblivious 1-bit-key stable (balls-and-bins) sorting. Specif-
ically, for a suitable negligible function δ and for ε = Θ(1), we can accomplish (ε, δ)-differentially
oblivious 1-bit-key stable sorting in O(N log logN) time. Unsurprisingly, our algorithm is non-
comparison-based, since due to the 0-1 principle, any comparison-based sorting algorithm, even for
1-bit keys, must make at least Ω(N logN) comparisons.

3.1.1 A Closely Related Abstraction: Tight Stable Compaction

Instead of constructing stable 1-bit-key sorting directly, we first construct a tight stable compaction
algorithm: given some input array, tight stable compaction outputs an array containing only the
1-balls contained in the input, padded with dummies to the input array’s size. Further, we require
that the relative order of appearance of the 1-balls in the output respect the order in the input.

Given a tight stable compaction algorithm running in time t(N), we can easily realize a stable
1-bit-key sorting algorithm that completes in time O(t(N) +N) in the following way:

1. Run tight stable compaction to stably move all 0-balls to the front of the array — let X be the
resulting array;

2. Run tight stable compaction to stably move all 1-balls to the end of the array — let Y be the
resulting array (note that this can be done by running tight stable compaction on the reversed
input array, and then reversing the result again);

3. In one synchronized scan of X and Y , select an element at each position from either X or Y
and write it into an output array.

Moreover, if each instance of tight stable compaction is (ε, δ)-differentially oblivious, then the
resulting 1-bit-key stable sorting algorithm is (2ε, 2δ)-differentially oblivious.

3.1.2 Intuition

Absent privacy requirements, clearly tight stable compaction can be accomplished in linear time, by
making one scan of the input array, and writing it out whenever a real element is encountered. In
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this algorithm, there are two pointers pointing to the input array and the output array respectively.
Observing how fast these pointers advance allows the adversary to gain sensitive information about
the input, specifically, whether each element is real or dummy. Our main idea is to approximately
simulate this non-private algorithm, but obfuscate how fast each pointer advances just about enough
to obtain differential obliviousness. To achieve this we need to combine oblivious algorithms building
blocks and differential privacy mechanisms.

First, we rely on batching: every time we read a small batch of s elements into a working buffer,
obliviously sort the working buffer to move all dummies to the end, and then emit some number
of elements into the output. The challenge is to determine how many elements must be output
when the input scan reaches position i. Now, suppose that we have a building block that allows
us to differentially privately estimate how many real elements have been encountered till position
i in the input for every such i — earlier works on differentially private mechanisms have shown
how to achieve this [11, 12, 15]. For example, suppose we know that the number of real elements
till position i is in between [Ci − s, Ci + s] with high probability, then our algorithm will know to
output exactly Ci − s elements when the input array’s pointer reaches position i. Furthermore, at
this moment, at most 2s real elements will have been scanned but have not been output — and
these elements will remain in the working buffer. We can now rely on oblivious sorting again to
truncate the working buffer and remove dummies, such that the working buffer’s size will never
grow too large — note that this is important since otherwise obliviously sorting the working buffer
will become too expensive. Below we elaborate on how to make this idea fully work.

3.1.3 Preliminary: Differentially Private Prefix Sum

Dwork et al. [15] and Chan et al. [11,12] proposed a differentially private algorithm for computing
all N prefix sums of an input stream containing N elements where each element is from {0, 1}. In
our setting, we will need to group the inputs into bins and then adapt their prefix sum algorithm
to work on the granularity of bins.

Theorem 3.1 (Differentially private prefix sum [11, 12]). For any ε, δ > 0, there exists an (ε, δ)-
differentially private algorithm, such that given a stream in ZN+ (where neigboring streams have
`e-norm at most 1), the algorithm outputs the vector of all N prefix sums, such that

• Any prefix sum that is outputted by the algorithm has only O(1ε · (logN)1.5 · log 1
δ ) additive error

(with probability 1).

• The algorithm is oblivious and completes in O(N) runtime.

We remark that the original results in [11, 12] is an (ε, 0)-differentially private algorithm such
that the outputted prefix sum has at most O(1ε ·(logN)1.5 ·log 1

δ ) addititive error with probability at
least 1− δ, which clearly implies the above theorem (by just outputting the non-private prefix-sum
when the error in the output is too large). We choose to state Theorem 3.1 since bounded error is
needed for our differentially oblivious algorithms to achieve perfect correctness.

3.1.4 Detailed Algorithm

We first describe a tight stable compaction algorithm that stably compacts an input array I given
a privacy parameter ε and a batch size s.

TightStableCompact(I, ε, s):

• Invoke an instance of the differentially private prefix sum algorithm with the privacy budget ε to
estimate for every i ∈ [N ], the total number of 1-balls in the input stream I up till position i —
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henceforth we use the notation Ỹi to denote the i-th prefix sum estimated by the differentially
private prefix sum algorithm.

• Imagine there is a working buffer initialized to be empty. We now repeat the following until there
are no more bins left in the input.

1. Fetch the next s balls from the input stream into the working buffer.

2. Obliviously sort the working buffer such that all 1-balls are moved to the front, and all 0-balls
moved to the end; we use the ball’s index in the input array to break ties for stability.

3. Suppose that k balls from the input have been operated on so far. If there are fewer than
Ỹk − s balls in the output array, pop the head of the working buffer and append to the output
array until there are Ỹk − s balls in the output array.

4. If the working buffer (after popping) is longer than 2s, truncate from the end such that the
working buffer is of size 2s.

• Finally, at the end, if the output is shorter than N , then obliviously sort the working buffer (using
the same relative ordering function as before) and write an appropriate number of balls from the
head into the output such that the output buffer is of length N .

Finally, as mentioned, we can construct stable 1-bit-key sorting by running two instances of tight
stable compaction and then in O(N) time combining the two output arrays into the final outcome.
We state our theorem below but defer the analysis and proofs to the Appendices (Section A).

Theorem 3.2 (Stable 1-bit-key sorting). For any ε > 0 and any 0 < δ < 1, there exists an (ε, δ)-
differentially oblivious algorithm such that for any input array with N balls each tagged with a 1-bit
key, the algorithm completes in O(N log(1ε log1.5N log 1

δ )) runtime and stably sorts the balls with
perfect correctness. As a special case, for ε = Θ(1), there exists an (ε, δ)-differentially oblivious
stable 1-bit-key sorting algorithm such that it completes in O(N log logN) runtime and has negligible
δ.

Optimality. In light of our lower bound to be presented in the next section (Theorem 4.7), our
1-bit-key stable sorting algorithm is in fact optimal (up to log log factors) as long as εs ≥ 2 log2N
— note that this includes most parameter ranges one might care about. For the special case
of ε = Θ(1), our upper bound is Õ(N) runtime for δ = e−poly logN and Õ(N logN) runtime for
δ = e−N

0.1
where Õ hides a log log factor — both cases match our lower bound.

3.2 Sorting More Bits

Given an algorithm for stably sorting 1-bit keys, we can easily derive an algorithm for stably
sorting k-bit keys simply using the well-known approach of Radix Sort: we sort the input bit by
bit starting from the lowest-order bit. Clearly, if the stable 1-bit-key sorting building block satisfies
(ε, δ)-differentially oblivious, then resulting k-bit-key stable sorting algorithm satisfies (kε, kδ)-
differentially oblivious. This gives rise to the following corollary.

Corollary 3.3 (Stable k-bit-key sorting). For any ε, δ > 0, there exists an (ε, δ)-differentially
oblivious algorithm such that for any input array with N balls each tagged with a k-bit key, the
algorithm completes in O(kN log(kε log1.5N log 1

kδ )) runtime and stably sorts the balls with perfect
correctness.

As a special case, for ε = Θ(1), there exists an (ε, δ)-differentially oblivious stable k-bit-key
sorting algorithm that completes in O(kN log logN) runtime and has negligible δ.
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We point out that if k = o(logN/ log logN), we obtain a stable k-bit-key sorting algorithm
that overcomes the Ω(N logN) barrier for stable δ-oblivious sort in the balls-and-bins model —
recall that Lin, Shi, and Xie [33] show that for even δ = O(1), any (possibly non-comparison-based)
stable 1-bit-key δ-oblivious sorting algorithm in the balls-and-bins model must incur Ω(N logN)
runtime. We stress that our algorithm is non-comparison-based, since otherwise due to the 0-1
principle, any comparison-based sorting algorithm — even without privacy requirements and even
for 1-bit keys — must incur at least Ω(N logN) runtime.

4 Limits of Differentially Oblivious Sorting

Earlier, we showed that for a suitable, negligibly small δ and ε = Θ(1), by adopting the weaker
notion of (ε, δ)-differential obliviousness. we can overcome the Ω(N logN) barrier for oblivious
stable sorting for small keys (in the balls-and-bins model). In this section, we show that if δ must
be subexponentially small (including the special case of requiring δ = 0), then (ε, δ)-differentially
oblivious 1-bit stable sorting would suffer from the same lower bound as the oblivious case. Without
loss of generality, we may assume that the CPU has a single register and can store a single record
(containing a ball and an associated key) and its address — since any O(1) number of registers can
be simulated by a trivial ORAM with O(1) blowup.

4.1 Definitions and Preliminaries

We begin by presenting some new notions and preliminaries that are necessary for our lower bound.

4.1.1 Plausibility of Access Patterns among Neighboring Inputs

In order to derive our lower bounds for differentially oblivious sorting, merging, and data structures,
we show that for a differentially oblivious algorithm, with high probability, the access pattern
produced for some input I is “plausible” for many inputs that are “close” to I.

Definition 4.1 (r-neighbors). Two inputs are r-neighboring, if they differ in at most r positions.

Definition 4.2 (Plausible access pattern). An access pattern A produced by a mechanism M is
plausible for an input I, if Pr[AccessesM (λ, I) = A] > 0; if Pr[AccessesM (λ, I) = A] = 0, we say
that A is implausible for I.

Lemma 4.3. Suppose I0 is some input for a mechanism M that is (ε, δ)-differentially oblivious, and
C is a collection of inputs that are r-neighbors of I0. Then, the probability that AccessesM (λ, I0)
is plausible for all inputs in C is at least 1− η, where η := |C| · eεr−1eε−1 · δ.

Proof. The proof is deferred to the Appendices (Section D.1).

4.1.2 Access Pattern Graphs under the Balls-and-Bins Model

Recall that we assume a balls-and-bins model and without loss of generality we may assume that
the CPU has a single register and can store a single ball and its key.

Access pattern graph. We model consecutive t memory accesses by an access pattern graph
defined as follows. Let N index the CPU register together with the memory locations accessed by
the CPU in those t accesses. The t memory accesses are represented by t+ 1 layers of nodes, where
the layers are indexed from i = 0 to t. The nodes and edges of the access pattern graph are defined
precisely as follows.
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(a) Nodes. For each 0 ≤ i ≤ t, layer i consists of nodes of the form (i, u), where u ∈ N represents
either the CPU or a memory location. Intuitively, the node (i, u) represents the opaque ball
stored at u after the i-th memory access.

(b) Edges. Each edge is directed and points from a node in layer i− 1 to one in layer i for some
i ≥ 1. For u ∈ N , there is a directed edge from its copy (i − 1, u) in layer i − 1 to (i, u) in
layer i. This reflects the observation that if a ball is stored at u before the i-th access, then
it is plausible that the same ball is still stored at u after the i-th access.

Suppose the CPU accesses memory location ` in the i-th access. Then, we add two directed
edges ((i−1, CPU), (i, `)) and ((i−1, `), (i, CPU)). This reflects the balls stored in the CPU
and location ` can possibly move between those two places.

Compact access pattern graph (compact graph). Observe that in each layer i, any node
that corresponds to a location not involved in the i-th access has in-degree and out-degree being 1.
Whenever there is such a node x with the in-coming edge (u, x) and the out-going edge (x, v), we
remove the node x and add the directed edge (u, v). This is repeated until there is no node with
both in-degree and out-degree being 1. We call the resulting graph the compact access pattern
graph, or simply the compact graph. The following lemma relates the number of memory accesses
to the number of edges in the compact graph.

Lemma 4.4 (Number of edges in a compact graph). Suppose N is the set indexing the CPU together
with the memory location accessed by the CPU in consecutive t accesses. Then, the compact graph
corresponding to these t accesses has 4t+ |N | − 2 ≤ 5t edges.

Proof. The proof is deferred to the Appendices (Section D.1).

4.1.3 Preliminaries on Routing Graph Complexity

We consider a routing graph. Let I and O denote a set of n input nodes and m ≥ n output nodes
respectively. We say that A is an assignment from I to O if A is an injection from nodes in I to
nodes O. A routing graph G is a directed graph, and we say that G implements the assignment A
if there exist n vertex-disjoint paths from I to O respecting the assignment A.

Let A := (A1, A2, . . . , As) denote a set of assignments from I to O. We say A is non-overlapping
if for every input x ∈ I, the assignements map x to distinct outputs, i.e., Ai(x) 6= Aj(x) for every
i 6= j ∈ [s]. Pippenger and Valiant proved the following useful result [38].

Fact 4.5 (Pippenger and Valiant [38]). Let A := (A1, A2, . . . , As) denote a set of assignments
from I to O where n = |I| ≤ |O| Let G be a graph that implements every Ai for i ∈ [s]. If A is
non-overlapping, then the number of edges in G must be at least 3n log3 s.

In our lower bound proofs, we shall make use of Fact 4.5 together with Lemma 4.4 to show
that the number of memory location accesses is large in each relevant scenario. A useful set of
non-overlapping assignments are shift assuments, defined as follows.

Definition 4.6 (Shift assignment). We say that A is a shift assignment for the input nodes I =
{x0, x1, . . . , xn−1} and output nodes O = {y0, y1, . . . , yn−1} iff there is some s such that for any
i ∈ {0, 1, . . . , n− 1}, xi is mapped to yj where j = (i+ s) mod n — we also refer to s as the shift
offset.
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4.2 Lower Bounds for Differentially Oblivious Sorting

Warmup and intuition. As a warmup, we consider a simple lower bound proof for the case
δ = 0 and for general sorting (where the input can contain arbitrary keys not just 1-bit keys).
Suppose there is some ε-differentially oblivious balls-and-bins sorting algorithm denoted sort. Now,
given a specific input array I, let G be such a compact graph encountered with non-zero probability
p. By the requirement of ε-differential obliviousness, it must be that for any input array I ′, the
probability of encountering G must be at least p · e−εN > 0. This means G must also be able to
explain any other input array I ′. In other words, for any input I ′ there must exist a feasible method
for routing the balls contained in the input I ′ to their correct location in the output locations in
G. Recall that in the compact graph G, every node (i, t) can receive a ball from either of its
two incoming edges: either from the parent (i, t′) for some t′ < t, from the parent (CPU, t − 1).
Let T be the total number of nodes in G, by construction, it holds that the number of edges in
G = Θ(T ). Now due to a single counting argument, since the graph must be able to explain all N !
possible input permutations, we have 2T ≥ N !. By taking logarithm on both sides, we conclude
that T ≥ Ω(N logN).

The more interesting question arises for δ 6= 0. We will now prove such a lower bound for δ 6= 0.
Instead of directly tackling a general sorting lower bound, we start by considering stably sorting
balls with 1-bit keys, where stability requires that any two balls with the same key must appear
in the output in the same order as in the input. Note that given any general sorting algorithm,
we can realize 1-bit-key stable sorting in a blackbox manner: every ball’s 1-bit key is appended
with its index in the input array to break ties, and then we simply sort this array. Clearly, if
the general sorting algorithm attains (ε, δ)-differential obliviousness, so does the resulting 1-bit-key
stable sorting algorithm. Thus, a lower bound for 1-bit-key stable sorting is stronger than a lower
bound for general sorting (parameters being equal).

Theorem 4.7 (Limits of differentially oblivious 1-bit-key stable sorting). Let 0 < s ≤
√
N be an

integer. Suppose ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Then, any (randomized) stable 1-bit-key sorting
algorithm (in the balls-and-bins model) that is (ε, δ)-differentially oblivious must have some input,
on which it incurs at least Ω(N log s) memory accesses with probability at least 1−negl(N) for some
negligible function negl(·).

Proof. We assume that the input is given in N specific memory locations Input[0..N − 1], and
the stable sorting algorithm M must write the output in another N specific memory locations
Output[0..N − 1].

For each 0 ≤ i ≤ s, we define the input scenario Ii as follows, such that in each scenario, there
are exactly s elements with key value 0 and N − s elements with key value 1. Specifically, in
scenario Ii, the first s− i and the last i elements in Input[0..N − 1] have key value 0, while all other
elements have key value 1. It can be checked that any two scenarios are 2s-neighboring.

Moreover, observe that for 0 ≤ i ≤ s, in scenario Ii, any ball with non-zero key in Input[j]
is supposed to go to Output[j + i] (where addition j + i is performed modulo N) after the stable
sorting algorithm is run.

Observe that a stable sorting algorithm can only guarantee that all the elements with key 0 will
appear at the prefix of Output according to their original input order. However, after running the
stable sorting algorithm, we can use an extra oblivious sorting network on the first s elements to
ensure that in the input scenario Ii, any element with key 0 in Input[j] originally will end up finally
at Output[j + i]. Therefore, the resulting algorithm is still (ε, δ)-differentially oblivious.

Therefore, by Lemma 4.3, with probability at least 1− η (where η := s · eε·2s−1eε−1 · δ = negl(N)),
running the algorithm M on input I0 produces an access pattern A that is plausible for Ii for all
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1 ≤ i ≤ s. Let G be the compact graph (defined Section 4.1.2) corresponding to A.
Observe that A is plausible for Ii implies that G contains N vertex-disjoint paths, where for

0 ≤ j < N , there is such a path from the node corresponding to the initial memory location Input[j]
to the node corresponding to the final memory location Output[j + i].

Then, Fact 4.5 implies that G has at least Ω(N log s) edges. Hence, Lemma 4.4 implies that
the access pattern A makes at least Ω(N log s) memory accesses. Since our extra sorting network
takes at most O(s log s) memory accesses, it follows that the original sorting algorithm makes at
least Ω(N log s) accesses.

Notice that given any general sorting algorithm (not just for 1-bit keys), one can construct
1-bit-key stable sorting easily by using the index as low-order tie-breaking bits. Thus our lower
bound for stable 1-bit-key sorting also implies a lower bound for general sorting as stated in the
following corollary.

Corollary 4.8. Let 0 < s ≤
√
N be an integer. Suppose ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Then,

any (randomized) sorting algorithm that is (ε, δ)-differentially oblivious must have some input, on
which it incurs at least Ω(N log s) memory accesses with probability at least 1 − negl(N) for some
negligible function negl(·).

Finally, just like our upper bounds, our lower bounds here assume that the algorithm must be
perfectly correct. In the Appendices (Section C), we show how to generalize the lower bound to
work for algorithms that can make mistakes with a small probability.

5 Differentially Oblivious Merging: Upper Bounds

Merging in the balls-and-bins model is the following abstraction: given two input arrays each of
which contains at most N balls sorted by their tagged keys, merge them into a single sorted array.
Pippenger and Valiant [38] showed that any oblivious merging algorithm in the balls-and-bins model
must incur at least Ω(N logN) movements of balls.

In this section, we show that when ε = O(1) and δ is negligibly small (but not be subexponen-
tially small), we can accomplish (ε, δ)-differentially oblivious merging in O(N log logN) time! This
is yet another separation between obliviousness and our new notion of differential obliviousness.

Clarifications: definition of neighboring inputs for merging. In merging, both input arrays
must be sorted. As a result, to define the notion of neighboring inputs, it does not make sense to
take an input array and flip a position to an arbitrarily value — since obviously this would break
the sortedness requirement. Instead, we say that two inputs (I0, I1) and (I ′0, I

′
1) are neighboring iff

for each of b ∈ {0, 1}, the two (multi-)sets set(Ib) and set(I ′b) differ in exactly one record. Based
on this notion of neighboring, (ε, δ)-differentially obliviousness for merging is defined in the same
manner as in Section 2.2.

5.1 Intuition

The näıve non-private merging algorithm keeps track of the head pointer of each array, and performs
merging in linear time. However, how fast each head pointer advances leaks the relative order of
elements in the two input arrays. Oblivious merging hides this information completely but as
mentioned, must incur Ω(N logN) runtime in the balls-and-bins model. Since our requirement is
differential obliviousness, this means that we can reveal some noisy aggregate statistics about the
two input arrays. We next highlight our techniques for achieving better runtimes.
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Noisy-boundary binning and interior points. Inspired by Bun et al. [8], we divide each
sorted input array into poly log λ-sized bins (where λ is the security parameter). To help our
merging algorithm decide how fast to advance the head pointer, a differentially private mechanism
by Bun et al. [8] is used to return an interior point of each bin, where an interior point is defined
to be any value that is (inclusively) between the minimum and the maximum elements of the bin.
Technically, the following components are important for our proofs to work.

1. Random bin loads and localization: each bin must contain a random number of real elements
padded with dummies to the bin’s maximum capacity Z = poly log λ — this is inspired by
Bun et al. [8]. The randomization in bin load allows a “localization” technique in our proofs,
since inserting one element into the input array can be obfuscated by local noise and will not
significantly affect the distribution of the loads of too many bins.

2. Secret bin load. For privacy, it is important that the actual bin loads be kept private from the
adversary. This raises a technical challenge: since the adversary can observe the access patterns
when the bins are constructed, how can we make sure that the access patterns do not reveal the
bins’ loads? One näıve approach is to resort to oblivious algorithms — but oblivious sorting in
the balls-and-bins model has a well-known Ω(N logN) lower bound [33] and thus would be too
expensive.

Creating the bins privately. To answer the above question of how to construct the bins securely
without disclosing the bins’ actual loads, we again rely on a batching and queuing technique similiar
in spirit to our tight stable compaction algorithm. At a high level, for every iteration i : 1) we
shall read a small, poly-logarithmically sized batch of elements from the input stream into a small,
poly-logarithmically sized working buffer; 2) we rely on oblivious algorithms to construct the i-th
bin containing the smallest Ri elements in the buffer padded with dummies, where the load Ri
has been sampled from an appropriate distribution. These elements will then be removed from the
working buffer.

The key to making this algorithm work is to ensure that at any time, the number of elements
remaining in the buffer is at most polylogarithmic (in the security parameter). This way, running
oblivious algorithms (e.g., oblivious sorting) on this small buffer would incur only log log overheads.
To this end, we again rely on a differentially private prefix sum mechanism (which must be made
oblivious first) to estimate how many real elements will be placed in the first i bins for every choice
of i. Suppose that the number of real elements in the first i bins is in the range [Ci, C

′
i] (except with

negligible probability); then when constructing the i-th bin, it suffices to read the input stream
upto position C ′i.

It would seem like the above idea still leaks some information about each bin’s actual load
— but we will prove that this leakage is safe. Concretely, in our Appendices, we will prove a
binning composition theorem, showing that with our noisy-boundary binning, it is safe to release
any statistic that is differentially private with respect to the binning outcome — the resulting
statistic would also be differentially private with respect to the original input.

Putting the above together, we devise an almost linear-time, differentially oblivious procedure
for dividing input elements into bins with random bin loads, where each bin is tagged with a
differentially private interior point — henceforth we call this list of bins tagged with interior points
thresh-bins.

Merging lists of thresh-bins. Once we have converted each input array to a list of thresh-bins,
the idea is to perform merging by reading bins from the two input arrays, and using each bin’s
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interior point to inform the merging algorithm which head pointer to advance. Since each bin’s
load is a random variable, it is actually not clear how many elements to emit after reading each bin.
Here again, we rely on a differentially private prefix sum mechanism to estimate how many elements
to emit, and store all the remaining elements in a poly-logarithmically sized working buffer. In this
manner, we can apply oblivious algorithm techniques to the small working buffer incurring only
log log blowup in performance.

5.2 Preliminaries

Oblivious bin placement. Oblivious bin placement is the following abstraction: given an input
array X, and a vector V where V [i] denotes the intended load of bin i, the goal is to place the first
V [1] elements of X into bin 1, place the next V [2] elements of X into bin 2, and so on. All output
bins are padded with dummies to a maximum capacity Z. Once the input X is fully consumed, all
remaining bins will contain solely dummies.

We construct an oblivious algorithm for solving the bin placement problem. Our algorithm
invokes building blocks such as oblivious sorting and oblivious propagation constant number of
times, and thus it completes in O(n log n) runtime where n = max(|X|, Z · |V |). We present the
theorem statement for this building block and defer the details to the Appendices.

Theorem 5.1 (Oblivious bin placement). There exists a deterministic, oblivious algorithm that
realizes the aforementioned bin placement abstraction and completes in time O(n log n) where n =
max(|X|, Z · |V |).

Truncated geometric distribution. Let Z > µ be a positive integer, and α ≥ 1. The truncated
geometric distribution GeomZ(µ, α) has support with the integers in [0..Z] such that its probability
mass function at x ∈ [0, Z] is proportional to α−|µ−x|. We consider the special case µ = Z

2 (where

Z is even) and use the shorthand GeomZ(α) := GeomZ(Z2 , α). In this case, the probability mass

function at x ∈ [0..Z] is α−1
α+1−2α−

Z
2
· α−|

Z
2
−i|.

5.3 Subroutine: Differentially Oblivious Interior Point Mechanism

Bun et al. [8] propose a differentially private interior point algorithm: given an array I containing
sufficient samples, they show how to release an interior point that is between [min(I),max(I)] in a
differentially private manner. Unfortunately, their algorithm does not offer access pattern privacy if
executed in a näıve manner. In the Appendices, we show how to design an oblivious algorithm that
efficiently realizes the interior point mechanism — our approach makes use of oblivious algorithm
techniques (e.g., oblivious sorting and oblivious aggregation) that were adopted in the design of
ORAM and OPRAM schemes [6, 10, 18, 20, 23, 37]. Importantly, since our main algorithm will
call this oblivious interior point mechanism on bins containing dummy elements, we also need to
make sure that our oblivious algorithm is compatible with the existence of dummy elements and not
disclose how many dummy elements there are. We present the following theorem while deferring its
detailed proof to the Appendices. In the Appendices, we also discuss how to realize the oblivious
interior point mechanism on finite-word-length RAMs without assuming arbitrary-precision real
arithmetic.

Theorem 5.2 (Differentially private interior point). For any ε, δ > 0, there exists an algorithm
such that given any input bin of capacity Z consisting of n real elements, whose real elements have
keys from a finite universe [0..U − 1] and n ≥ 18500

ε · 2log∗ U · log∗ U · ln 4 log∗ U
εδ , the algorithm
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• completes consuming only O(Z logZ) time and number of memory accesses.

• the algorithm produces an outcome that is (ε, δ)-differentially private;

• the algorithm has perfect correctness, i.e., the outcome is an interior point of the input bin with
probability 1; and

• the algorithm’s memory access pattern depends only on Z, and in particular, is independent of
the number of real elements the bin contains.

5.4 Subroutine: Creating Thresh-Bins

In the ThreshBins subroutine, we aim to place elements in an input array X into bins where each
bin contains a random number of real elements (following a truncated geometric distribution), and
each bin is padded with dummies to the maximum capacity Z. The ThreshBins will emit exactly
B bins. Later when we call ThreshBins we guarantee that B bins will almost surely consume all
elements in X. Logically, one may imagine that X is followed by infinitely many ∞ elements such
that there are always more elements to draw from the input stream when creating the bins. Note
that ∞’s are treated as filler elements with maximum key and not treated as dummies (and this is
important for the interior point mechanism to work).

ThreshBins(λ,X,B, ε0):

Assume:

1. B ≤ poly(λ) for some fixed polynomial poly(·).

2. ε0 < c for some constant c that is independent of λ.

3. The keys of all elements are chosen from a finite universe denoted [0..U − 1], where log∗ U ≤
log log λ (note that this is a very weak assumption).

4. Let the bin capacity Z := 1
ε0

log8 λ, and s = 1
ε0
· log3 λ

Algorithm:

• Recall that the elements in X are sorted; if the length of the input X is too small, append an
appropriate number of elements with key ∞ at the end such that it has length at least 2BZ.

This makes sure that the real elements in the input stream do not deplete prematurely in process
below.

• For i = 1 to B, let Ri = GeomZ(exp(ε0)) be independently sampled truncated geometric random
variables. Denote the vector R := (R1, R2, . . . , RB).

• Call D := PrefixSum(λ,R, ε04 , δ0) ∈ Z
B
+ , which is the ( ε04 , δ0)-differentially private subroutine in

Theorem 3.1 that privately estimates prefix sums, where δ0 is set so that the additive error is at
most s. We use the convention that D[0] = 0.

• Let Buf be a buffer with capacity Z + s = O(Z). Initially, we place the first s elements of X in
Buf.

• For i = 1 to B:

– Read the next batch of elements from the input stream X with indices from D[i− 1] + s+ 1
to D[i] + s, and add these elements to the buffer Buf.
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This is done by temporarily increasing the capacity of Buf by appending these elements at
the end. Then, oblivious sorting can be used to move any dummy elements to the end, after
which we can truncate Buf back to its original capacity.

– Call ObliviousBinPlace(Buf, (Ri), Z) to place the first Ri elements in Buf into the next bin and
the bin is padded with dummies to the maximum capacity Z.

– Mark every element in Buf at position Ri or smaller as dummy. (This is done by a linear scan
so that the access pattern hides Ri and effectively removes the first Ri elements in Buf in the
next oblivious sort.)

• Tag each bin with its estimated prefix sum from vector D. Moreover, we use the ( ε04 , δ)-
differentially oblivious interior point mechanism in Section 5.3 to tag each bin with an interior
point, denoted by a vector P = (P1, . . . , PB), where δ := 1

4 exp(−0.1 log2 λ).

• Output the B bins.

5.5 Subroutine: Merging Two Lists of Thresh-Bins

We next describe an algorithm to merge two lists of thresh-bins. Recall that the elements in a list
of thresh-bins are sorted, where each bin is tagged with an interior point and also an estimate of
the prefix sum of the number of real elements up to that bin.

MergeThreshBins(λ, T0, T1, ε0):

Assume:

1. The input is T0 and T1, each of which is a list of thresh-bins, where each bin has capacity
Z = 1

ε0
log8 λ size. For b ∈ {0, 1}, let Bb = |Tb| be the number of bins in Tb, and B := B0 + B1

is the total number of bins. Recall that the bins in T0 and T1 are tagged with interior points P0

and P1 and estimated prefix sums D0 and D1, respectively.

2. The output is an array of sorted elements from T0 and T1, where any dummy elements appear
at the end of the array. The length of the array is M := BZ.

Algorithm:

• Let s = 1
ε0

log3 λ.

• Initialize an empty array Output[0..M − 1] of length M := BZ.

Initialize count := 0, the number of elements already delivered to Output.

• Initialize indices j0 = j1 = 0 and a buffer Buf with capacity K := 6(Z+s) = O(Z). Add elemnts
in T0[1] and T1[1] to Buf.

• Let L be the list of sorted bins from T0 and T1 according to the tagged interior points. (Observe
that we do not need oblivious sort in this step.) We will use this list to decide which bins to
add to Buf.

• For i = 1 to B:

– Update the indices j0, j1: if the bin L[i] belongs to Tb, update jb ← jb + 1. (This maintains
that L[i] = Tb[jb].)
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– Add elements in bin Tb[jb + 1] (if exists) to Buf. This is done by appending elements in
Tb[jb + 1] at the end of Buf to temporarily increase the size of Buf, and then use oblivious
sorting followed by truncation to restore its capacity. (Note that Tb[jb + 1] may not be the
next bin in the list L.) Note that the elements in Buf are always sorted.

– Determine safe bins k0, k1: For b ∈ {0, 1}, let kb be the maximal index k such that the
following holds: (i) Tb[k] is inserted in Buf, (ii) there exists some bin T1−b[u] from T1−b
that has been inserted into Buf and whose interior point is at least that of Tb[k + 1], i.e.,
P1−b[u] ≥ Pb[k + 1]. (Observe that any element with key smaller than that of an element in
a safe bin has already been put into the buffer.) If there is no such index, set kb = 0. Note
that the last bin Bb cannot be safe.

– Remove safe bins from Buf: Set newcount := D0[k0]+D1[k1]−2s. Remove the first (newcount−
count) elements from the Buf and copy them into the next available slots in the Output array.
Then update count← newcount.

• Output the remaining elements: Let newcount = min{D0[B0]+D1[B1]+2s,BZ}. Copy the first
(newcount− count) into the next available slots in the Output array.

5.6 Full Merging Algorithm

Finally, the full merging algorithm involves taking the two input arrays, creating thresh-bins out
of them using ThreshBins, and then calling Merge to merge the two lists of thresh-bins. We defer
concrete parameters of the full scheme and proofs to the Appendices.

Merge(λ, I0, I1, ε):

Assume:

1. The input is two sorted arrays I0 and I1.

2. We suppose that ε < c for some constant c, log∗ U ≤ log log λ, and |I0| ≤ poly0(λ) and
|I1| ≤ poly1(λ) for some fixed polynomials poly0(·) and poly1(·).

Algorithm:

1. First, for b ∈ {0, 1}, let Bb := d2|Ib|Z (1 + 2
log2 λ

)e, call ThreshBins(λ, Ib, Bb, 0.1ε) to transform each

input array into a list of thresh-bins — let T0 and T1 denote the outcomes respectively.

2. Next, call MergeThreshBins(λ, T0, T1, 0.1ε) and let T be the sorted output array (truncated to
length |I0|+ |I1|).

3. Do a linear scan on T, I0, I1 to check if T contains the same number of non-dummy elements
as in the input (I0, I1). If so, output T . Otherwise (this can happen when the bin load in the
thresh-bins are too small so that some elements are dropped), perform a non-private merge to
output a correct merged array.

Theorem 5.3 (Differentially oblivious merging). The Merge(λ, I0, I1, ε) algorithm is (ε, δ)-differentially
oblivious, where δ = exp(−Θ(log2 λ)). Moreover, its running time is O((|I0|+|I1|)(log 1

ε+log log λ))
and it has perfect correctness.

We defer the proofs of the above theorem to the Appendices.
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5.7 Limits of Differentially Oblivious Merging

In this section, we prove a lower bound regarding the performance of differentially oblivious merging.

Theorem 5.4 (Limits of (ε, δ)-differentially oblivious merging). Consider the merging problem, in
which the input is two sorted lists of elements and the output is the merging of the two input lists
into a single sorted list.

Let 0 < s ≤
√
N be an integer. Suppose ε > 0 and 0 ≤ δ ≤ e−(εs+log2N). Then, any merging

algorithm that is (ε, δ)-differentially oblivious must have some input consisting of two sorted lists
each of length N , on which it incurs at least Ω(N log s) memory accesses with probability at least
1− negl(N).

Proof. We consider two input lists. The first list Input1[0..N − 1] is always the same such that
Input1[j] holds an element with key value j + 1.

We consider s + 1 scenarios for the second list. For 0 ≤ i ≤ s, in scenario Ii, Input2[0..N − 1]
contains i elements with key value 0 and N − i elements with key value N + 1. It follows that any
two such scenarios are s-neighboring.

By Lemma 4.3, on input scenario I0, any merging algorithm that is (ε, δ)-differentially oblivious
produces an access pattern A that is plausible for all Ii’s (1 ≤ i ≤ s) with all but probability of
s · eεs−1eε−1 · δ = negl(N).

We assume that the merging algorithm writes the merged list into the memory locations
Output[0..2N − 1]. Hence, for all 0 ≤ i ≤ s, in scenario Ii, for all 0 ≤ j < N , the element
initially stored at Input1[j] will finally appear at Output[i+ j].

Therefore, any access pattern A that is plausible for Ii must correspond to a compact graph
G that contains N vertex-disjoint paths, each of which goes from the node representing the initial
Input1[j] to the node representing the final Output[i+ j], for 0 ≤ j < N .

Hence, Lemma 4.5 implies that if A is plausible for all scenarios Ii’s, then the corresponding
compact G has Ω(N log s) edges, which by Lemma 4.4 implies that the access pattern A must make
at least Ω(N log s) memory accesses.

6 Differentially Oblivious Range Query Data Structure

6.1 Data Structures

A data structure in the RAM model is a possibly randomized stateful algorithm which, upon
receiving requests, updates the state in memory and optionally outputs an answer to the request
— without loss of generality we may assume that the answer is written down in memory addresses
[0..L− 1], where L is the length of the answer.

As mentioned, we consider data structures in the balls-and-bins model where every record (e.g.,
patient or event record) may be considered as an opaque ball tagged with a key. Algorithms are
allowed to perform arbitrary computations on the keys but the balls can only be moved around.

We start by considering data structures that support two types of operations, insertions and
queries. Each insertion inserts an additional record into the database and each query comes from
some query family Q. We consider two important query families: 1) for our lower bounds, we
consider point queries where each query wants to request all records that match a specified key;
2) for our upper bounds, we consider range queries where each query wants to request all records
whose keys fall within a specified range [s, t].
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Correctness notion under obfuscated lengths. As Kellaris et al. [28] show, leaking the num-
ber of records matching each query can, in some settings, cause entire databases to be reconstructed.
Our differential obliviousness definitions below will protect such length leakage. As a result, more
than the exact number of matching records may be returned with each query. Thus, we require
only a relaxed correctness notion: for each query, suppose that L records are returned — we require
that all matching records must be found within the L records returned. For example, in a client-
server setting, the client can retrieve the answer-set (one by one or altogether), and then prune the
non-matching records locally.

Performance metrics: runtime and locality. For our data structure construction, besides
the classical runtime metric that we have adopted throughout the paper, we consider an additional
locality metric which was commonly adopted in recent works on searchable encryption [5, 9] and
Oblivious RAM constructions [4]. Real-life storage systems including memory and disks are op-
timized for programs that exhibit locality in its accesses — in particular, sequential accesses are
typically much cheaper than random accesses. We measure a data structure’s locality by counting
how many discontiguous memory regions it must access to serve each operation.

6.2 Defining Differentially Oblivious Data Structures

We define two notions of differential obliviousness for data structures, static and adaptive secu-
rity. Static security assumes that the data structure’s operational sequences are chosen statically
independent of the answers to previous queries; whereas adaptive security assumes that the data
structure’s operational sequences are chosen adaptively, possibly dependent on the answers to pre-
vious queries. Notice that this implies that both the queries and the database’s contents (which
are determined by the insertion operations over time) can be chosen adaptively.

As we argue later, adaptive differential obliviousness is strictly stronger than the static notion.
We will use the static notion for our lower bounds and the adaptive notion for our upper bounds
— this makes both our lower- and upper-bounds stronger.

6.2.1 Static Differential Obliviousness for Data Structures

We now define differential obliviousness for data structures. Our privacy notion captures the follow-
ing intuition: for any two neighboring databases that differ only in one record (where the database
is determined by the insertion operations over time), the access patterns incurred for insertions or
queries must be close in distribution. Such a notion protects the privacy of individual records in
the database (or of individual events), but does not protect the privacy of the queries. Thus our
notion is suitable for a scenario where the data is of a sensitive nature (e.g., hospital records) and
the queries are non-sensitive (e.g., queries by a clinical researcher). In fact we will later show that if
one must additionally protect the privacy of the queries, then it would be inevitable to incur Ω(N)
blowup in cost on at least some operational sequences. This observation also partly motivates our
definition, which requires meaningful and non-trivial privacy guarantees, and importantly, does not
rule out efficient solutions.

We say that two operational sequences ops0 and ops1 (consisting of insertions and queries) are
query-consistent neighboring, if the two sequences differ in exactly position i, and moreover both
ops0[i] and ops1[i] must be insertion operations.

Definition 6.1 (Static differential obliviousness for data structures). Let ε(·) and δ(·) be functions
of a security parameter λ. We say that a data structure scheme DS preserves static (ε, δ)-differential
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obliviousness, if for any two query-consistent neighboring operational sequences ops0 and ops1, for
any λ, for any set S of access patterns,

Pr[AccessesDS(λ, ops0) ∈ S] ≤ eε(λ) · Pr[AccessesDS(λ, ops1) ∈ S] + δ(λ) (2)

where the random variable AccessesDS(λ, ops) denotes the access patterns incurred by the data
structure upon receiving the security parameter λ and operational sequence ops.

Discussions on alternative notions. It is interesting to consider a stronger notion where the
queries must be protected too. We consider one natural strengthening where we want to protect
the queries as well as insertions, but the fact whether each operation is an insertion or query
is considered non-sensitive. To formalize such a notion, one may simply redefine the notion of
“neighboring” in the above definition, such that any two operational sequences that are type-
consistent (i.e., they agree in the type of every operation) and differ in exactly one position are
considered neighboring — and this differing position can either be query or insertion. It would not
be too difficult to show that such a strong notion would rule out efficient solutions: for example,
consider a sequence of operations such that some keys match Ω(N) records and others match only
one record. In this case, to hide each single query, it becomes inevitable that each query must
access Ω(N) elements even when the query is requesting the key with only one occurrence.

6.2.2 Adaptive Differential Obliviousness for Data Structures

We will prove our lower bounds using the above, static notion of differential obliviousness. However,
our data structure upper bounds in fact satisfies a stronger, adaptive and composable notion of
security as we formally specify below. Here we allow the adversary to adaptively choose the database
(i.e., insertions) as well as the queries.

Definition 6.2 (Adaptive differential obliviousness for data structures). We say that a data struc-
ture DS satisfies adaptive (ε, δ)-differential obliviousness iff for any (possibly unbounded) stateful
algorithm A that is query-consistent neighbor-respecting (to be defined below), for any N , A’s view
in the following two experiments Expt0A(λ,N) and Expt1A(λ,N) satisfy the following equation:

Pr[Expt0A(λ,N) = 1] ≤ eε(λ) · Pr[Expt1A(λ,N) = 1] + δ(λ)

ExptbA(λ,N):

addresses0 = ⊥
For t = 1, 2, . . . , N :

(op0
t , op1

t )← A(N, addressest−1), addressest ← DS(λ, opbt)
b′ ← A, and output b′

In the above, addressest denotes the ordered sequence of physical memory locations accessed for
the t-th operation opt (including whether each access is read or write).

Neighbor-respecting. We say that A is query-consistent neighbor-respecting w.r.t. DS iff for
every λ and every N , for either b ∈ {0, 1}, with probability 1 in the above experiment ExptbA(λ,N),
A outputs op0

t = op1
t for all but one time step t ∈ [N ]; and moreover for this differing time step t,

op0
t and op1

t must both be insertion operations.
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6.3 Warmup: Range Query from Thresh-Bins

We show that using the differentially oblivious algorithmic building blocks introduced in earlier
parts of the paper, we can design an efficient differentially oblivious data structure for range queries.

We first explain how the thresh-bins structure introduced for our merging algorithm can also
be leveraged for range queries. Recall that a thresh-bins structure contains a list of bins in which
all the real elements are sorted in increasing order, and each bin is tagged with an interior point.
Given a list of thresh-bins, one can answer a range query simply by returning all bins whose interior
point fall in the queried range, as well as the two bins immediately before and after (if they exist).

Range queries Query(T, [s, t]). Let T := {Bini}i∈[B] be a list of thresh-bins where Bini’s interior
point is Mi. To query a range [s, t], we can proceed in the following steps:

1. Find a smallest set of consecutive bins i, i + 1, i + 2, . . . , j such that Mi ≤ s ≤ t ≤ Mj — for
example, this can be accomplished through binary search. To handle boundary conditions, we
may simply assume that there is an imaginery bin before the first bin with the interior point
−∞ and there is an imaginery bin at the end with the interior point ∞.

2. Now, read all bins Bini,Bini+1, . . .Binj and output the concatenation of these bins.

6.4 Range Query Data Structure Construction

When records are inserted over time one by one, we may maintain a hierarchy of thresh-bins, where
level i of the hierarchy is a list of thresh-bins containing in total 2i · Z elements. Interestingly, our
use of a hierarchical data structure is in fact inspired by hierarchical ORAM constructions [18,20,23]
— however, in hierarchical ORAMs [18, 20, 23], rebuilding a level of capacity n in the hierarchical
structure requires O(n log n) time, but we will accomplish such rebuilding in almost linear time by
using the MergeThreshBins procedure described earlier.

We now describe our data structure construction supporting insertions and range queries. The
algorithm is parametrized by a privacy parameter ε.

In-memory data structure. Let N denote the total number of insertions so far. The in-memory
data structure consists of the following:

• A recent buffer denoted Buf of capacity Z to store the most recently inserted items, where
Z := 1

ε log8 λ.

• A total of logN search structures henceforth denoted T0, T1, . . . , TL for L := dlogNe where Ti
contains 2i · Z real records and N denotes the total number of insertions over all time.

Algorithm for insertion. To insert some record, enter it into Buf and if Buf now contains Z
elements, we use T̃0 := ThreshBins(λ,Buf, 4, ε) to put the elements of Buf into 4 bins, and empty
Buf. Now repeat the following starting at i = 0:

• If Ti is empty, let Ti := T̃i and return (i.e., terminate the procedure).

• Else call Y := MergeThreshBins(λ, Ti, T̃i, ε); and let T̃i+1 = ThreshBins(λ, Y, 4 · 2i+1, ε), let i ←
i+ 1 and repeat if i ≤ L.
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• For each call of ThreshBins, check if ThreshBins produces correct answers by counting the non-
dummy elements using a linear scan (to make sure no non-dummy elements are dropped due to
too small bin loads R). If ThreshBins produce incorrect answers, compute a non-private answer
with bin load size Ri = Z/2 for all i.

Algorithm for range query. To query for some range [s, t], let T0, T1, . . . , TL be the search
structures in memory. For i ∈ [0, 1, . . . , L], call Query(Ti, [s, t]). Now, concatenate all these out-
comes as well as Buf, and copy the concatenated result to a designated location in memory. To
further speed up the query, we can maintain the interior points of all active levels in the hierarchical
data structure in a single binary search tree.

Theorem 6.3 (Differential obliviousness). Let N be the total number of insertion operations over
time, let ε = O(1), and suppose that the universe of key satisfies log∗ U ≤ log log λ. Then, there
exists a negligible function δ(·) such that the above scheme satisfies adaptive (4ε logN, δ)-differential
obliviousness. Furthermore, the above scheme achieves perfect correctness.

Proof. We first prove perfect correctness. in Lemma B.7, we show that ThreshBins 0-obliviously
realize Fthresbins, which implies that ThreshBins always enter input elements in the bins according
to its bin load R correctly. Also in the proof of Lemma B.7, we show that MergeThreshBins
always produce correct merged results. Therefore, the only errror is when the bin load R is too
small to store all input elements, which happens with probability at most O(exp(−Θ(log2 λ))) by
Lemma D.4. When this happens, the scheme detects the error and outputs a correct non-private
answer. Therefore, the scheme achieves perfect correctness at the cost of increasing the privacy
error by O(exp(−Θ(log2 λ))).

Now, differential obliviousness follows in a straightforward manner by adaptive logN -fold com-
position of differential privacy [16], by observing that every element is involved in only logN
instances of ThreshBins and MergeThreshBins (and also account for the above O(exp(−Θ(log2 λ)))
error). For adaptive security, notice that the adaptive composition theorem works for adaptively
generated database entries as well as adaptive queries [16].

Theorem 6.4 (Performance). Let N = poly(λ) be the total number of insertion operations over
time where poly(·) is some fixed polynomial. The above range query data structure achieves the
following performance:

• Each insertion operation consumes amortized O(logN log logN) runtime;

• Each range query whose result set contains L records consumes O(Z logN + L) runtime (and
number of accesses) and accesses only O(logN) discontiguous regions in memory no matter how
large L is, i.e., the locality is independent of the number of matching records L.

Proof. The insertion cost is dominated by the cost for merging the search structures. In our
construction Ti and T̃i contain Z · 2i real elements and every 2i/Z operations, we must merge
Ti and T̃i once incurring Z2i log log λ time. It is easy to see that the total amortized cost is
O(logN log log λ) — note that logN = O(λ) assuming N = poly(λ). The runtime and locality
claims for each range query follow in a straighforward manner by observing that we can build a
single, standard binary search tree data structure (called the index tree) to store all the interior
points of all currently active search structures, where leaves are stored from small to large in a
consecutive memory region. During insertion, a level containing n = 2iZ elements has only O(2i)
interior points, and thus inserting or deleting all of them from the index tree takes o(n) time. For
query, it takes at most O(logN + L/Z) accesses into the index tree to identify all the bins that
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match the query; and the number of discontiguous regions accessed when searching this index tree
is upper bounded by O(logN).

We stress that even absent privacy requirements, one of the best known approaches to build a
range query data structure is through a binary search tree where each insertion costs O(logN) and
each query matching L records costs O(logN + L) and requires accessing O(logN) discontiguous
memory regions. In comparison, our solution achieves differential obliviousness almost for free in
many cases: each insertion incurs only aO(log logN) blowup, and each query incurs no asymptotical
blowup if there are at least polylogarithmically many matching records and the locality loss is also
O(1).

6.5 Applications in the Designated-Client and Public-Client Settings

In a designated client setting, the data owner who performs insertions is simultaneously the querier.
In this case, all records can be encrypted by the data owner’s private key. In a public client
setting, the data owner performs insertions of records, whereas queries are performed by other
third parties. In this case, the data owner can encrypt the data records using Attribute-Based
Encryption (ABE) [25, 39], and then it can issue policy-binding decryption keys to third parties
to permit them to query and decrypt records that satisfy the policy predicates. In either case,
we stress that our scheme can support queries non-interactively. In particular, the differentially
private interior points can be released in the clear to the server, and the server can simply find the
matching bins on behalf of the client and return all relevant bins to the client in a single round-trip.

We stress that if the incomparable notion of obliviousness were required (say, we would like that
any two operational sequences that are query-consistent and length-consistent be indistinguishable
in access patterns), then we are not aware of any existing solution that simultaneously achieves
statistical security, non-interactiveness, and non-trivial efficiency, even for the designated-client
setting. One interesting point of comparison is ORAMs [41, 45] and oblivious data structures [46]
which can achieve statistical security, but 1) they work only for the designated-client setting but
not the public-client setting; 2) in general they incur logarithmically many rounds and O(L log2N)
cost per query (absent large block-size assumptions); and 3) except for the recent work of Asharov
et al. [4] which incurs polylogarithmic locality blowup regardless of L, all other known solutions
would suffer from (super-)linear in L locality blowup.

6.6 Lower Bounds for Differentially Oblivious Data Structures

For lower bounds, we first focus on point queries — a special case of the range queries considered
in our upper bounds.

Non-private baseline. To put our results in perspective and clearly illustrate the cost of pri-
vacy, we first point out that absent any privacy requirements, we can build a data structure that
support point queries (in the balls-and-bins model) such that except with negligible probability,
each insertion completes in O(1) time; each point query completes in O(L) time and accessing only
O(1) discontiguous memory regions where L is the number of matching records [22].

Limits of differential oblivious data structures. We now prove lower bounds showing that
assuming ε = O(1), if one desires sub-exponentially small δ, then any (ε, δ)-differentially oblivious
data structure must on some sequences of length N , incur at least Ω(N logN) ball movements. We
prove lower bounds for the case of distinct keys and repeated keys separately: in the former case,
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each key has multiplicity 1 and upon query only 1 record is returned; in the latter, each key has
more general multiplicity.

Theorem 6.5 (Limits of (ε, δ)-differentially oblivious data structures: distinct keys). Suppose that
N = poly(λ) for some fixed polynomial poly(·) and 0 < s ≤

√
N are integers. Let ε > 0 and

0 ≤ δ ≤ e−(2εs+log2N). Suppose that DS is a perfectly correct and (ε, δ)-differentially oblivious data
structure supporting point queries.

Then, there exists an operational sequence with N insertion and N query operations interleaved
together, where the N keys inserted are distinct and are from the domain {0, 1, . . . , N} such that
the total number of accesses DS makes for serving this sequence is Ω(N log s) with probability at
least 1− negl(N) for some negligible function negl(·).

Proof. Define T := bNs c. For 1 ≤ i ≤ T , define the sub-domain Xi := {(i− 1)s+ j : 0 ≤ j < s} of
keys. Each of the operational sequences we consider in the lower bound can be partitioned into T
epochs. For 1 ≤ i ≤ T , the i-th epoch consists of the following operations:

1. s insertion operations: the s keys in Xi are inserted one by one. The order in which the keys
in Xi are inserted is private. In this lower bound, it suffices to consider s cyclic shifts of the
keys in Xi.

2. s query operations: this is done in the (publicly-known) increasing order of keys in Xi.

Observe that the keys involved between different epochs are disjoint. It suffices to prove that
the number of memory accesses made in each epoch is at least Ω(s log s) with probability at least
1− negl(N); this immediately implies the result.

Fix some epoch i, and consider the s different cyclic shift orders of Xi in which the keys are
inserted. For 0 ≤ j < s, let Ij be the input scenario where ordering of the keys in Xi is shifted
with offset j.

Observe that if we only change the insertion operations in epoch i and keep all operations in
other epochs unchanged, we have input scenarios that are s-neighbors. Therefore, by Lemma 4.3,
with probability at least 1− η (where η := s · eε·s−1eε−1 · δ = negl(N)), the input scenario I0 in epoch i
produces an access pattern A that is plausible for Ij for all 1 ≤ j < s. Let G be the compact graph
(defined Section 4.1.2) corresponding to A.

Since we know that in every input scenario Ij , each key in Xi is inserted exactly once, we can
assume that the s insertions in epoch i correspond to some memory locations Input[0..s− 1]. Even
though the result of each query can contain dummy elements, because we know that exactly one
of the returned elements must be a real element, in this case, by a final linear scan on the returned
elements, we can assume that the s queries correspond to some memory locations Output[0..s− 1],
where Output[k] is supposed to return the element with key (i− 1)s+ k.

Moreover, observe that for 0 ≤ j < s, in scenario Ij , the element inserted at Input[k] is supposed
to be returned at Output[k + j] (where addition j + i is performed modulo s) during qeury.

Observe that an access pattern A is plausible for Ij implies that G contains s vertex-disjoint
paths, where for 0 ≤ k < s, there is such a path from the node corresponding to the initial memory
location Input[k] to the node corresponding to the final memory location Output[k + j].

Then, Fact 4.5 implies that if G is the compact graph of an access pattern A that is plausible
for all Ij ’s, then G has at least Ω(s log s) edges. Hence, Lemma 4.4 implies that the access pattern
A makes at least Ω(s log s) memory accesses. This completes the lower bound proof for the number
of memory accesses in one epoch, which, as mentioned above, implies the required result.
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The following theorem is a generalization of the earlier Theorem 6.5 where each key is allowed
to have multiplicity.

Theorem 6.6 (Limits of (ε, δ)-differentially oblivious data structures: repeated keys). Suppose
that N = poly(λ) for some fixed polynomial poly(·). Let the integers r < s ≤

√
N be such that r

divides s; furthermore, let ε > 0 and 0 ≤ δ ≤ e−(2εs+log2N). Suppose that DS is a perfectly correct
and (ε, δ)-differentially oblivious data structure supporting point queries.

Then, there exists an operational sequence with N insertion and N
r query operations interleaved

together, where each of N
r distinct keys from the domain {0, 1, . . . , Nr − 1} is inserted r times, such

that the total number of accesses DS makes for serving this sequence is Ω(N log s
r ) with probability

at least 1− negl(N).

Proof. The proof structure follows that of Theorem 6.5, in which there are T := bNs c epochs. For
1 ≤ i ≤ T , the i-th epoch is defined as follows:

1. s insertion operations: the s keys are from the sub-domain Xi := { sr · (i− 1) + j : 0 ≤ j < s
r},

where each distinct key is inserted r times in a batch. The order in which the distinct keys
in Xi are batch-inserted is private. In this lower bound, we consider s

r different cyclic shifts
of the s

r batches.

2. s
r query operations: this is done in the (publicly-known) increasing order of keys in Xi, where
each query should return r repeated keys.

As in Theorem 6.5, since the keys involved between different epochs are disjoint, it suffices to
prove that the number of memory accesses made in each epoch is at least Ω(s log s

r ) with probability
at least 1− negl(N); this immediately implies the result

Fix some epoch i and observe that if we only change the insertion operations in epoch i and
keep all operations in other epochs unchanged, we have input scenarios that are s-neighbors.

We consider the s
r different cyclic shift orders of Xi in which the keys are inserted. For 0 ≤ j < s

r ,
let Ij be the input scenario where ordering of the keys in Xi is shifted with offset j. Therefore, by
Lemma 4.3, with probability at least 1− η (where η := s · eε·s−1eε−1 · δ = negl(N)), the input scenario
I0 in epoch i produces an access pattern A that is plausible for Ij for all 1 ≤ j < s

r . Let G be the
compact graph (defined Section 4.1.2) corresponding to A.

Since we know that in every input scenario Ij , each of the s
r keys in Xi is inserted exactly

r times, we can assume that the s insertions in epoch i correspond to some memory locations
Input[0..s− 1].

Moreover, each of the s
r queries returns exactly r records with the same key, maybe together

with some dummy elements. Hence, for 0 ≤ k < s
r , we can assume that the result of the query for

the key (i− 1) sr + k is returned in some array Outputk, whose length is at least r (and can contain
dummy elements).

Moreover, observe that for 0 ≤ j < s
r , in scenario Ij , the element inserted at Input[`] is supposed

to be returned in the array Outputk, where k = b `rc + j mod s
r . The important point is that the

element in Input[`] will be returned at different locations in different scenarios Ij ’s.
Observe that an access pattern A is plausible for Ij implies that G contains s vertex-disjoint

paths, where for 0 ≤ ` < s, there is such a path from the node corresponding to the initial memory
location Input[`] to the node corresponding to some final memory location inside the array Outputk,
where k = b `rc+ j mod s

r .
Then, Fact 4.5 implies that if G is the compact graph of an access pattern A that is plausible for

all Ij ’s, then G has at least Ω(s log s
r ) edges. Hence, Lemma 4.4 implies that the access pattern A
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makes at least Ω(s log s
r ) memory accesses. Hence, it follows that with all but negl(N) probablity,

epoch i takes Ω(s log s
r ) memory accesses, as required.

This completes the lower bound proof for the number of memory accesses in one epoch, which,
as mentioned above, implies the required result.
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Appendices

A Analysis of 1-Bit-Key Stable Sorting

In this section, we present proofs for the algorithms described in Section 3.

Theorem A.1 (Tight stable compaction). For any ε, δ > 0, for any input array I containing N
elements, let s = Θ(1ε ·log1.5N ·log 1

δ ), then the algorithm TightStableCompact(I, ε, s) satisfies (ε, δ)-
differential obliviousness and perfect correctness. Further, the algorithm completes in O(N log s)
runtime. As a special case, for any ε = Θ(1) and s = log3N , the algorithm satisfies (ε, δ)-
differential obliviousness with perfect correctness and negligible δ.

Proof. Notice that the access patterns of the algorithm is uniquely determined by the set of prefix
sums computed. Thus it suffices to prove that the set of prefix sums resulting from the prefix
sum algorithm satisfies (ε, δ)-differential privacy. This follows in a straightforward manner from
Theorem 3.1. Perfect correctness of the algorithm is guaranteed since the prefix sum has at most
s additive error, thus perfect correctness also follows from Theorem 3.1. The runtime of the
algorithm is dominated by O(N/s) number of oblivious sortings of the working buffer whose size,
by construction, is at most O(s). Thus the runtime claims follows naturally.

Corollary A.2 (Stable 1-bit sorting). For any ε > 0 and any 0 < δ < 1, there exists an (ε, δ)-
differentially oblivious algorithm such that for any input array with N balls each tagged with a 1-bit
key, the algorithm completes in O(N log(1ε log1.5N log 1

δ )) runtime and stably sorts the balls with
perfect correctness. As a special case, for ε = Θ(1), there exists an (ε, δ)-differentially oblivious
stable 1-bit sorting algorithm such that it completes in O(N log logN) runtime and has negligible δ.

Proof. As mentioned, we can construct stable 1-bit sorting by running two instances of tight stable
compaction and then in O(N) time combining the two output arrays into the final outcome. Thus
the corollary follows in a straightforward fashion from Theorem A.1.

B Additional Details and Analysis of the Merging Algorithm

This section is devoted to 1) proving Theorem 5.3. We start by introducing the notion of oblivious
realization of an ideal functionality with (differentially private) leakage; and 2) supplying additional
details of our differentially oblivious merging algorithm, particularly, details of the oblivious interior
point mechanism.

B.1 Oblivious Realization of Ideal Functionalities with Differentially Private
Leakage

Definition B.1. Given a (possibly randomized) functionality F , we say that some (possibly ran-
domized) algorithm Alg δ-obliviously realizes F with leakage L, if there exists a simulator Sim
(that produces simulated access pattern) such that for any λ, for any input I, define the following
executions:

• Ideal execution: choose all random bits ρ needed by F , and let Oideal ← F(λ, I, ρ), let Lideal ←
L(λ, I, ρ). Note that the leakage function L also obtains the same randomness as F , and may
use additional internal randomness.

• Real execution: let (Oreal, Lreal, addresses)← Alg(λ, I).
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Then, it must hold that the following distributions are δ(λ)-statistically close, i.e., their statistical
distance is at most δ(λ):

(Oideal, Lideal,Sim(λ, Lideal))
δ(λ)
≡ (Oreal, Lreal, addresses).

Definition B.2. We say that the leakage function L is (ε, δ)-differentially private (with respect to
the input) iff for every λ, for every neighboring inputs I and I ′ and every set S, it holds that

Pr
ρ,L

[L(λ, I, ρ) ∈ S] ≤ eε Pr
ρ,L

[L(λ, I ′, ρ) ∈ S] + δ

In the above, the notation Prρ,L means that the randomness comes from the random choice of ρ as
well as the internal coins of L.

Definition B.3. Consider some special leakage function L that is fully determined by the output
of F , i.e., L(λ, I, ρ) := L(T ) where T := F(λ, I, ρ). We say that L is (ε, δ)-differentially private
with respect to the output of F (or (ε, δ)-differentially private with respect to T ), iff for every λ,
for every neighboring T and T ′ and every set S, it holds that Pr[L(T ) ∈ S] ≤ eε Pr[L(T ′) ∈ S] + δ,
where the randomness in the probability comes from the random coins of L.

The following fact is immediate from the definition.

Fact B.4. If some algorithm Alg obliviously realizes some functionality F with leakage L, where
L is (ε, δ)-differentially private with respect to the input, then Alg satisfies (ε, δ)-differential oblivi-
ousness.

B.2 Ideal Fthreshbins Functionality

We describe a logical thresh-bin functionality Fthreshbins that the ThreshBins subroutine obliviously
realizes, and prove a lemma that formalize the main property that ThreshBins achieves.

Given an input sorted array X containing real elements (which can take a special key value∞),
a target bin number B, and a parameter ε0, the ideal thresh-bin functionality Fthreshbins outputs
an ordered list of B bins where each bin contains a random number of real elements padded with
dummies to the bin’s capacity Z = 1

ε0
log8 λ; all real elements occur in sorted order. Moreover,

each bin is tagged with an interior point. Furthermore, each bin is also tagged with an estimate of
the cumulative sum, i.e., the number of real elements in the prefix up to and including this bin.

If the input X contains too many real elements, only a prefix of them may appear in the output
bins; if the input X contains too few elements, the functionality automatically appends elements
with key∞ at the end such that there are enough elements to draw from the input. More concretely,
the functionality Fthreshbins is specified below:

Fthreshbins(λ,X,B, ε0):

Assume: The same setting as ThreshBins.

Functionality:

• For i = 1 to B:

– Sample Ri←$GeomZ(exp(ε0)).

– Draw the next Ri elements (denoted Si) from X.
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– Place these Ri elements in order in a new bin and append with an appropriate number of
dummies to reach the bin’s capacity Z.

Let T denote the list of B bins in order, and R = (R1, . . . , RB) be the bin load vector.

• Call D := PrefixSum(λ,C, ε04 ) ∈ ZB+ , which is the ε0
4 -differentially private subroutine in Theo-

rem 3.1 that privately estimates prefix sums, each of which has additive error at most s with all
but exp(−Θ(log2 λ)) probability. We tag each bin with its estimated prefix sum from vector D.

• Moreover, we use the ( ε04 , δ)-differentially oblivious interior point mechanism in Section 5.3
to tag each bin with an interior point, denoted by a vector P = (P1, . . . , PB), where δ :=
1
4 exp(−0.1 log2 λ);

• Output the thresh-bins T (which is tagged with the interior points P and the estimated prefix
sums D).

The following lemma states that for Fthreshbins, if a leakage function L is differentially private
with respect to the output T , then L is also differentially private with respect to the input X. Here,
two thresh-bins T 0 and T 1 are neighboring if they have the same number of bins, which, except for
at most one pair of corresponding bins (from T 0 and T 1), contain exactly the same elements; for
the pair of bins that may differ, their symmetric difference contains only one element.

Lemma B.5. Consider the ideal thresh-bins functionality Fthreshbins and a leakage function L(λ, T, ε0).

If the input satisfies B ≥ d2|X|Z ·(1+ 2
log2 λ

)e and the leakage function L is (ε, δ)-differentially private

with respect to the output T , then L is (2ε0 + 4ε, δbad + 4δ)-differentially private with respect to X,
where δbad ≤ O(exp(−Θ(log2 λ))).

To prove Lemma B.5, we start with some notations. Given an input array X and a bin load
vector R = (R1, . . . , RB) ∈ [Z]B, we let T (X,R) denote the resulting thresh-bins. We say two
thresh-bins T, T ′ are k-neighboring if there exists T1 = T, T2, . . . , Tk, Tk+1 = T ′ such that Ti, Ti+1

are neighboring. We partition the domain [Z]B of the bin load vectors into good ∪ bad, where
good = {R :

∑B−1
i=1 Ri ≥ |X| ∧ ∀i : 0 < Ri < Z} and bad = [Z]B\good. Let δbad be the probability

that R is in bad when R←$(GeomZ(exp(ε0)))
B. By Lemma D.4, δbad ≤ exp(− log2 λ).

We need the following technical lemma about the ideal thresh-bins functionality.

Lemma B.6. Consider two neighboring input arrays X0, X1 and parameter B such that B ≥
d2|X0|

Z · (1 + 2
log2 λ

)e. There exists an injective function f : good → [Z]B such that the following

holds. For every R0 ∈ good, let R1 = f(R0), T 0 = T (X0, R0), and T 1 = T (X1, R1). We have (i)
Pr[R0] ≤ e2ε0 Pr[R1] where the probability is drawn from (GeomZ(exp(ε0)))

B, and (ii) T 0 and T 1

are 4-neighboring.

Proof. Recall that X0, X1 are neighboring means they have equal length and differ by one element.
Thus, we can view X1 as obtained by removing some x0 from X0 and then inserting some x1 to it.
Let X ′0 denote X0\{x0}. Let i denote the location of x0 in X0, and i′ denote the location of x1 in
X ′0. We define f in two corresponding steps.

• We first define f0. On input R0, let ` denote the bin in T (X0, R0) that contains x0. We
define f0(R0) = R′0 where R′0 is identical to R0 except that with the (`+ 1)-st coordinate is
decreased by 1, i.e., R′0`+1 = R0

`+1 − 1 and R′0i = R0
i for all i 6= `+ 1.
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• We then define f1, which takes input R′0. Let `′ denote the bin in T (X0, R′0) that x1 should
be inserted in; if it is possible to insert x1 into one of two neighboring bins, take `′ to be the
larger index of the two.

We define f1(R′0) = R1 where R1 is identical to R′0 except that with the (`′+1)-st coordinate
is increased by 1, i.e., R1

`′+1 = R′0`′+1 + 1 and R1
i = R′0i for all i 6= `′ + 1.

We define f = f1 ◦ f0. Note that by the definition of the good set, `, `′ < B so f is well-defined.
We now verify the properties of f . For the injective property, let’s first argue that f0 is injective

by showing that it is invertible. The key observation is that give X0, X1 and the output R′0, the
bin ` that x0 belongs to is uniquely defined. Thus, we can compute (f0)−1(R′0) by increasing the
`+ 1-th coordinate by 1. The same argument shows that f1 is injective, and hence f is injective.

The property that Pr[R0] ≤ e2ε0 Pr[R1] follows by the definition of truncated geometric and the
fact that R0 and R1 only differ in two coordinates by 1. For property (ii), observe that T (X0, R0)
and T (X ′0, R′0) can only differ in the `-th and ` + 1-st bins by at most one element for each
bin, which means that T (X0, R0) and T (X ′0, R′0) are 2-neighboring. Similarly, T (X ′0, R′0) and
T (X1, R1) are 2-neighboring by the same observation. Hence, T 0 and T 1 are 4-neighboring.

With the above lemma, we are ready to prove Lemma B.5.
Proof of Lemma B.5. Consider two neighboring input arrays X0, X1 and parameter B such that
B ≥ (4|X0|/Z)+1. For b ∈ {0, 1}, let T b ← Fthreshbins(λ,X

b, B, ε0), L
b =← L(λ, T b, ε0), and Rb be

the bin load vector used in Fthreshbins. Let S be an arbitrary subset in the support of the leakage.
We need to show that

Pr[L0 ∈ S] ≤ e2ε0+4ε Pr[L1 ∈ S] + δbad + 4δ

This is proved by the following calculation, where the function f is from Lemma B.6.

Pr[L0 ∈ S] ≤

 ∑
R0∈good

Pr[R0] Pr[L0 ∈ S|X0, R0]

+ δbad

≤

 ∑
R0∈good

Pr[R0]
(
e4ε · Pr[L1 ∈ S|X1, f(R0)] + 4δ

)+ δbad

≤

 ∑
R0∈good

Pr[R0]
(
e4ε · Pr[L1 ∈ S|X1, f(R0)]

)+ 4δ + δbad

≤

 ∑
R0∈good

(
e2ε0 · Pr[f(R0)]

)
·
(
e4ε · Pr[L1 ∈ S|X1, f(R0)]

)+ 4δ + δbad

=

e2ε0+4ε ·
∑

R0∈good

Pr[f(R0)] · Pr[L1 ∈ S|X1, f(R0)]

+ 4δ + δbad

≤ e2ε0+4ε · Pr[L1 ∈ S] + 4δ + δbad

In the above calculation, we make Xb explicit in the conditioning even though it is not random.
The key step is the second inequality, where we use the property that T 0 = T (X0, R0) and T 1 =
T (X1, f(R0)) are 4-neighboring, and L(λ, T b, ε0) is (ε, δ)-differentially private with respect to T .
Also the fourth inequality uses the property that Pr[R0] ≤ e2ε0 · Pr[f(R1)] for R0 ∈ good. Both
properties are from Lemma B.6.
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B.3 ThreshBins Obliviously Realize Fthreshbins

Here we analyze the ThreshBins subroutine and show that it obliviously realize Fthreshbins with
differentially private leakages. Specifically, the leakage is the interior points P and the esti-
mated prefix sums D associated with the output thresh-bin T . Namely, the leakage function
Lthreshbins(λ,X,B, ε0) simply output L = (P,D).

Lemma B.7. The algorithm ThreshBins 0-obliviously realize Fthresbins with leakage function Lthreshbins.
Moreover, its running time is O(BZ(log 1

ε0
+ log log λ)).

Proof. We first observe that by construction, the access pattern of ThreshBins is determined by the
leakage (P,D). Thus, given the leakage, the access pattern can be readily simulated. Now, note
that the output of Fthreshbins is determined by the input X, the bin load vector R, the estimated
prefix sums D and the interior points P , and that these values are computed in an identical way
in ThreshBins. Thus, it remains to show that ThreshBins computes exactly the same function as
Fthreshbins correctly for every (X,R,D, P ).

By definition, Fthreshbins simply puts the first
∑B

i=1Ri elements of X in B bins in order with
bin load specified by the vector R. On the other hand, at each iteration i, ThreshBins places the
first Ri elements in Buf in the i-th bin. We show that ThreshBins places the correct elements with
the help of the following invariant: at the beginning of iteration each i, the non-dummy elements
in Buf consists of the ((

∑i−1
j=1Rj) + 1)-th to (D[i− 1] + s)-th elements in X.

Clearly, the invariant holds for i = 1 (with the convention that (
∑i−1

j=1Rj) = 0). Assume
that the invariant holds for i, we observe that after the first step in the iteration, Buf consists
of the ((

∑i−1
j=1Rj) + 1)-th to (D[i] + s)-th elements in X in sorted order. Since the output of

PrefixSum has at most s additive error, we have (D[i] + s) ≥
∑i

j=1Rj . Also, there are at most

(D[i]+s)−(
∑i−1

j=1Rj) ≤ Z+s non-dummy elements in Buf, so no elements are lost after truncation.

Hence, ObliviousBinPlace(Buf, (Ri), Z) can place the ((
∑i−1

j=1Rj) + 1)-th to (
∑i

j=1Rj)-th elements
in X in the i-th bin as Fthreshbins. Then after the first Ri elements in Buf are marked as dummy,
the non-dummy elements in Buf consists of the ((

∑i
j=1Rj) + 1)-th to (D[i] + s)-th elements in X,

so the invariant holds for i+ 1.
Observe that the running time of the algorithm is also dominated by the B iterations, each of

which takes time O(Z logZ) = O(Z(log 1
ε0

+ log log λ)) due to oblivious sorting, which implies the
desired running time.

Noting that the leakage Lthreshbins is the outputs of differentially private mechanisms with
input determined by the thresh-bins T (since T implicitly determines the bin load R), Lthreshbins
is differentially private with respect to T . By Lemma B.5, Lthreshbins is differentially private with
respect to X. We state this in the following lemma.

Lemma B.8. The leakage Lthreshbins is (O(ε0), δ)-differentially private with respect to the input X
for δ = O(exp(−Θ(log2 λ)))

B.4 Proof of Theorem 5.3

We are ready to prove Theorem 5.3. We will show that Merge obliviously realize an ideal merge
functionality Fmerge defined below with differentially private leakage Lmerge, which implies that
Merge is differentially oblivious by Fact B.4.

Fmerge(λ, I0, I1, ε):

Assume: The same setting as Merge.
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Functionality:

• Output a sorted array T that merges elements from I0 and I1, where the dummy elements
appear at the end of the array.

The leakage function Lmerge is defined to be the concatenation of the leakage Lthreshbins on I0
and I1. Namely, Lmerge(λ, I0, I1, ε) = (Lthreshbins(λ, I0, Bb, 0.1ε),
Lthreshbins(λ, I1, B1, 0.1ε)) Clearly, the leakage is differentially private with respect to the input
(I0, I1).

Lemma B.9. The algorithm Merge δ-obliviously realize Fmerge with leakage function Lmerge and δ =
O(exp(−Θ(log2 λ))). Moreover, Merge has perfect correctness and its running time is O(BZ(log 1

ε0
+

log log λ)).

Proof. We observe that by construction, the access pattern of Merge is determined by the leakage
(P0, D0, P1, D1), unless the check in Step 3 fails. Thus, given the leakage, the access pattern can
be readily simulated if the check in Step 3 does not fail. We will show that that check fails with
exponentially small probability later and focus on the case when the check does not fail.

Let us consider a hybrid functionality F ′merge that on input (λ, I0, I1, ε), instead of merging I0
and I1 directly, F ′merge first calls Fthreshbins(λ, Ib, Bb, 0.1ε) to obtain Tb for b ∈ {0, 1}, and then
outputs T that merges elements from T0 and T1. Note that the output of Fmerge and F ′merge are
the same, except for the case that the bin load Rb is not enough to accommodate Ib for some
b ∈ {0, 1}, which happens with probability at most O(exp(−Θ(log2 λ))) by Lemma D.4. Thus,
up to an O(exp(−Θ(log2 λ))) statistical error, we can switch to consider the hybrid functionality
F ′merge.

Now, note that F ′merge and Merge call Fthreshbins(λ, Ib, Bb, 0.1ε) and ThreshBins(λ, Ib, Bb, 0.1ε)
for b ∈ {0, 1}, respectively. Since ThreshBins obliviously realized Fthreshbins (with no error), we
know that the output thresh-bins Tb (which are tagged with Pb, Db) of ThreshBins and Fthreshbins

are identical. From here, the difference between F ′merge and Merge is that F ′merge directly merges
T0 and T1, whereas Merge uses MergeThreshBins. We now argue that in fact, for any thresh-bins
T0, T1 (with tagged Pb, Db), F ′merge and MergeThreshBins produce exactly the same answers.

Observe that MergeThreshBins merges T0 and T1 by inserting the bins into a buffer Buf in a
certain order, and along the way outputting certain numbers of smallest elements in Buf. To argue
that MergeThreshBins computes the same merged result as F ′merge, it suffices to show that (i) the
buffer Buf never overflows (i.e., we never truncate non-dummy elements), and (ii) the elements
outputted from Buf are indeed the smallest elements among the remaining elements, since the two
conditions imply that MergeThreshBins correctly output smallest elements in T0 and T1 step by
step.

For (i), we claim that at any iteration i, both T0[j0 − 1] and T1[j1 − 1] are safe bins (i.e.,
kb ≥ jb − 1), and hence the number of bins that are inserted into Buf but not safe is at most
4. Note that by construction, both bins T0[j0 + 1] and T1[j1 + 1] are inserted in Buf and that
Pb[jb] ≤ P1−b[j1−b + 1] for b ∈ {0, 1}. This implies that P1−b[j1−b + 1] ≥ Pb[(jb − 1) + 1]; namely,
kb ≥ jb − 1 for b ∈ {0, 1}. Now, note that at each iteration, the first Tb[jb + 1] bins are inserted in
Buf and the first D0[k0] +D1[k1]−2s elements are outputted. Since the output of PrefixSum has at
most s additive error and the bins contains at most Z elements, the number of non-dummy elements
in Buf is at most 5Z + 2s at any point of each iteration. Thus, the bufferBuf never overflows.

For (ii), we argue that as remarked in the construction, when a bin is marked safe, any bins
with elements smaller that the elements in the safe bin are already inserted, or equivalently, all bins
that are not inserted contains only elements larger than the elements in the safe bins. Thus, the
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elements outputted from Buf are indeed the smallest elements among the remaining elements. To
see this, consider a safe bin Tb[k]. Clearly, any un-inserted bin Tb[v] from Tb has elements greater
than elements in Tb[k]. For bins in T1−b, by definition, there exists some inserted bin T1−b[u] with
P1−b[u] ≥ Pb[k+ 1]. Hence, for any un-inserted bin T1−b[v] in T1−b, the elements in T1−b[v] has key
value ≥ P1−b[u] ≥ Pb[k + 1], and hence greater than elements in Tb[k].

Now, we argued that the first two steps of Merge produces identical answers to F ′merge with
probability 1, and that F ′merge and Fmerge output identical answers, except when the bin load
Rb is not enough to accommodate Ib for some b ∈ {0, 1}, which happens with probability at
most O(exp(−Θ(log2 λ))) by Lemma D.4. Furthermore, note that when this happens, Step 3 of
Merge will detect the error and output a correct merged output by a non-private merge algorithm.
Therefore, we can conclude that Merge δ-obliviously realize Fmerge with δ = O(exp(−Θ(log2 λ))).
Furthermore, Merge outputs correct merged output with probability 1.

Finally, the running time is dominated by the operations on Buf. Since each iteration takes
O(K logK) = O(Z(log 1

ε0
+ log log λ)) time due to oblivous sorting, it follows that the total time is

O(BZ(log 1
ε0

+ log log λ)), as required.

B.5 Obliviously Realizing the Interior Point Mechanism

We start by recalling the recursive differentially private algorithm InteriorPoint of Bun et al. [8]
for the interior point problem below and then discuss how to make the algorithm oblivious and
implement it with a RAM machine with finite word size, as well as analyze its complexity. For
the algorithm to be a useful building block for differentially oblivious algorithms, we assume that
the input database may contain certain dummy elements but with sufficiently many non-dummy
elements. The following algorithm is taken almost verbatim from Bun et al. [8], where the algorihtm
simply ignores the dummy elements. We refer the readers to [8] for the intuition behind the
algorithm.

InteriorPoint(S, β, ε, δ)

Assume: Database S = (xj)
n′
j=1 ∈ (X ∪ {dummy})n′ with n non-dummy elements.

Algorithm:

1. If |X| ≤ 32, then use the exponential mechanism with privacy parameter ε and quality function
q(S, x) = min{#{j : xj ≥ x},#{j : xj ≤ x}} to choose and return a point x ∈ X. Specifically,
each x ∈ X is chosen with probability proportion to eε·q(S,x)/2 (since the sensitivity of the quality
function is 1).

2. Let k = b386ε ln( 4
βεδ )c, and let Y = (y1, y2, . . . , yn−2k) be a random permutation of the smallest

(n− 2k) elements in S.

3. For j = 1 to n−2k
2 , define zj as the length of the longest prefix for which y2j−1 agrees with y2j

(in base 2 notation).

4. Execute InteriorPoint recursively on S′ = (zj)
(n−2k)/2
j=1 ∈ (X ′)(n−2k)/2 with parameters β, ε, δ.

Recall that |X ′| = log |X|. Denote the returned value by z.

5. Use the choosing mechanism to choose a prefix L of length (z + 1) with a large number of
agreements among elements in Y . Use parameters β, ε, δ, and the quality function q : X∗ ×
{0, 1}z+1 → N, where q(Y,L) is the number of agreement on prefix L among y1, . . . , yn−2k.
Specifically, the choosing mechanism simply chooses one of prefixes with non-zero quality using
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exponential mechanism. Namely, each prefix L with q(Y,L) ≥ 1 is chosen with probability
proportion to eε·q(Y,L)/2.6

6. For σ ∈ {0, 1}, define Lσ ∈ X to be the prefix L followed by (log |X| − z − 1) appearances of σ.

7. Compute ˆbig = Lap(1ε ) + #{j : xj ≥ L1}.

8. If ˆbig ≥ 3k
2 then let ret = L1. Otherwise let ret = L0.

9. If ret is not an interior point, then return any x ∈ X. Otherwise, return ret. 7

Our goal is to implement the algorithm obliviously in a RAM machine with a finite word size
efficiently. Note that for obliviousness, we cannot reveal the number n of non-dummy elements.
This is simple for step 3, 6, 7, and 8 by adding dummy access. For the recursion step 4, we can
invoke the recursion with (n′ − 2k)/2 size database with (n − 2k)/2 non-dummy elements. For
step 2, we need to use random permutation to pair up n− 2k smallest non-dummy elements in an
oblivious way. This can be done with the help of oblivious sorting as follows.

• We first use oblivious sorting to identify the n − 2k smallest non-dummy elements in Y .
Namely, we sort the elements according to its value and mark the n−2k smallest non-dummy
elements.

• We apply a random permutation to the n′ elements. Note that this permutes the n − 2k
marked elements uniformly. Also note that we do not need to hide the permutation since it
is data independent.

• We use a stable oblivious sorting again to move the n−2k marked elements together. Specif-
ically, we view the marked and unmarked elements as having values 0 and 1, respecitvely
and we sort according to this value. The output Y = {y1, y2 . . . , yn−2k} are the first n − 2k
elements. Since we use stable sorting, the order among the n−2k elements remains randomly
permuted.

The time complexity of this step is O(n′ · log n′)
We now discuss how to implmement the exponential and choosing mechanisms in step 1 and

5, which involves sampling from a distribution defined by numbers of the form e(ε/2)·j for integer
j ∈ Z. To implement the sampling in a RAM machine with a finite word size, we need to compute
the values with enough precision to maintain privacy, which may cause efficiency overhead. We
discuss how to do it efficiently. We focus on step 5 since it is the more involved step. Step 1 can
be done in an analogous way.

To implement the choosing mechanisms in step 5, the first step is to compute the quality function
for all prefixes L ∈ {0, 1}z+1 with q(Y, L) ≥ 1 obliviously. Let P = {L : q(Y,L) ≥ 1} denote the set
of such prefixes. Recall that q(Y, L) = #{yi ∈ Y : pref(yi) = L}, where pref(yi) denote the z + 1
bits prefix of yi. This can be done by invoking oblivious aggregation (see Section D.3) with key
ki = pref(yi) and value vi = 1 (with padded dummy entries to size n′ − 2k), and the aggregation
function Aggr being the summation function. The ouput is an array {(Lj , qj)} of the same size

6See [8] for definition and properties of the choosing mechanism. Here we only describe the behavior of the
choosing mechanism is this specific case.

7We remark that the algorithm in [8] directly returns ref and may fail to output an interior point with probabiltiy
O(β). We modify it so that it always output an interior point at the price of increasing the privacy parameter by
O(β) and set β = O(δ).
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n′ − 2k where the first half contains all prefixes Lj ∈ P with qj = q(Y,Lj) ≥ 1 and the remaining
are dummy entries.

Now we need to sample a prefix Lj with probability proportion to e(ε/2)·qj . To optimize the
efficiency, we do it as follows. Let qmax = maxj qj . We compute wj = e(ε/2)·(qj−qmax) ∈ (0, 1] with
p = 2 · log(n/δ) bits of precision. We set wj = 0 for the dummy entries. Then we compute the
accumulated sum vj =

∑
`≤jb2p · wjc. Finally, we sample a uniform u ←R [vn′−2k] and output

the Lj such that vj−1 < u ≤ vj (we set v0 = 0). It is not hard to see that this samples Lj
with the correct distribution up to a o(δ) statistical distance error due to the finite precision. To
compute wj = {e(ε/2)·(qj−qmax)} with p bits of precision, note that these are values of the form
e−(ε/2)·t for t ∈ N. Since we only need p bits of precision, the value rounds to 0 when t is too
large. Let tmax = O((1/ε) · log p) be the largest t we need to consider. We precompute the values

αk = e−(ε/2)·2
k

for k ∈ {0, 1, . . . , blog tmaxc}, and compute wj by multiplying a subset of αk, i.e., by
the standard repeated squaring algorithm. (Note that for obliviousness, the access pattern needs
to go over all αk to hide the subset). Finally, to compute αk, we first compute α0 = e−ε/2 using
Taylor expansion, and then compute αk = α2

k−1 by multiplication.
We summarize below the implementation of the choosing mechanism in step 5 discussed above.

Note that it has a deterministic access pattern.

Choosing(Y, z, ε)

Assume: Y = (yj)
n′−2k
j=1 ∈ (X ∪ {dummy})n′−2k with n− 2k non-dummy elements.

Algorithm:

1. Compute the quality function: Invoke oblivious aggregation (see Section D.3) with key ki =
pref(yi) and value vi = 1 (with padded dummy entries to size n′ − 2k), and the aggregation
function Aggr being the summation function. The ouput is an array {(Lj , qj)} of the same size
n′−2k where the first half contains all prefixes Lj ∈ P with qj = q(Y,Lj) ≥ 1 and the remaining
are dummy entries.

2. Compute α0 = e−ε/2 by Taylor expansion, and αk = α2
k−1 for k ∈ {1, . . . , blog tmaxc}.

3. Compute the weights wj = e(ε/2)·(qj−qmax) by multiplying a proper subset of αk. Set wj = 0 for
the dummy entries. (Note that for oblivious security, we need to do dummy computation to go
over all αk for all j.)

4. Compute the accumulated sum vj =
∑

`≤jb2p · wjc. Set v0 = 0.

5. Sample a uniform u←R [vn′−2k]. Use a linear scan to find j such that vj−1 < u ≤ vj and output
Lj . (Note that we cannot do binary search here for oblivious security.)

We now analyze the complexity of the above choosing mechanism. The first step takesO(n′ log n′)
time for oblivious aggregation. For the sampling steps, for clarity, let us use timeadd(p), timemult(p),
timeexp(p), etc., to denote the time to perform addition and multiplication, and compute e−ε/2, etc.,
with p bits of precision. We note that the dominating cost is the computation of the weights wj ,
which takes O(n′ ·(log tmax) ·timemult(p)) time. Other costs that are linear in n′ are the computation
of accumulated sum and the search of index j such that vj−1 < u ≤ vj , which takes linear number
of addition and comparison, respectively. The remaining costs are the computation of αk’s, which
takes time timeexp +(log tmax) · timemult(p), and the sampling of u←R [vn′−2k]. Note that timeexp(p)
is at most O(p · timemult(p)) ≤ O(n′ · timemult(p)). All these terms are dominated by the cost of
computing wj ’s.
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Therefore, the total cost of InteriorPoint without considering the recursion is

O(n′ log n′) +O(n′ · (log tmax) · timemult(p)),

where log tmax = O(log((1/ε) · log(n/δ))) and p = O(log(n/δ)). Finally, note that InteriorPoint only
invokes the recursion once with size shrinking by a factor of 2, so the overall complexity remains
the same.

We remark that one may consider to precompute not only αk = e−(ε/2)·2
k

for k ∈ {0, 1, . . . , blog tmaxc},
but all the values e−(ε/2)·t for t ∈ {0, 1, . . . , tmax} so that we do not need to compute the weight
wj ’s by repeated squaring. However, note that we cannot directly fetch the precomputed value
for wj since it breaks the oblivious security, and it seems that to maintain oblivious security, an
O(log tmax) overhead is needed. This can yield a small asymptotic improvement over the above
solution, but we choose to present the above solution for simplicity.

Let w denote the word size of a RAM machine and suppose word operations have unit cost. We
know that timemult(p) ≤ O((p/w)2). When δ = negl(n′) and w = O(log n′), we have p/w = ω(1)
and the overall complexity is O(n′ log n′). We summarize the above discussion in the following
theorem.

Theorem B.10 (Differentially private interior point, finite word size version). Let w be the word
size of a RAM machine. Let β, ε, δ > 0 be parameters. There exists an algorithm such that given
any array S containing n′ elements from a finite universe X = [0..U−1] with some dummy elements
but at least n non-dummy, where n ≥ 18500

ε · 2log∗ U · log∗ U · ln 4 log∗ U
εδ , the algorithm

• completes consuming only O((n′ log n′) + (n′ · log((1/ε) · log p) · (p/w)2)) time and number of
memory accesses, where p = 2 log(n/δ).

• the algorithm produces an (ε, δ)-differential private outcome;

• the algorithm is perfect correct, i.e., the outcome is a correct interior point of the input array S
with probability 1; and

• the algorithm’s memory access patterns are independent of the input array.

C Limits of Differentially Oblivious Algorithms with Imperfect
Correctness

In this section, we discuss how to extend our lower bounds for differentially oblivious algorithms
to handle imperfect correctness (with small correctness error). The main observation is that it
sufficient to generalize Lemma 4.3 to handle imperfect correctness. Then, the lower bound follows
by replacing Lemma 4.3 to the generalized version in the original proof. We first refine the
definition of plausible access pattern.

Definition C.1 (Good access pattern). An access pattern A produced by a mechanism M is good
for an input I, if

Pr[(AccessesM (λ, I) = A) ∧ (Moutputs correct answers)] > 0;

otherwise, we say that A is bad for I.

Lemma C.2. Suppose I0 is some input for a mechanism M that is (ε, δ)-differentially oblivious with
correctness error β, and C is a collection of inputs that are r-neighbors of I0. Then, the probability
that AccessesM (λ, I0) is good for all inputs in C is at least 1−η, where η := |C|·(erε ·β+ eεr−1

eε−1 ·δ) ≤
|C| · erε · (β + δ).
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Proof. Let S be the set of access patterns that are good for input I0, which happens with probability
at least 1− β. For each Ii ∈ C, define Si ⊂ S to be the subset of access patterns in S that are bad
for Ii.

By Fact D.1, we have

Pr[AccessesM (λ, I0) ∈ Si] ≤ erε · Pr[AccessesM (λ, Ii) ∈ Si] +
eεr − 1

eε − 1
· δ ≤ erε · β +

eεr − 1

eε − 1
· δ,

where the last equality follows because the access patterns in Si are bad for Ii, which happens with
probability at most β. Therefore, by the union bound, we have

Pr[AccessesM (λ, I0) ∈ ∪Ii∈CSi] ≤ |C| · (erε · β +
eεr − 1

eε − 1
· δ).

Finally, observe that AccessesM (λ, I0) ∈ ∪Ii∈CSi is the complement of the event that AccessesM (λ, I0)
is plausible for all inputs in C. Hence, the result follows.

Extending our lower bounds for imperfect correctness. One interpretation of Lemma C.2
is that an (ε, δ)-differentially oblivious mechanism M with correctness error β can be compared

to an (ε, δ + β)-differentially oblivious mechanism M̂ that is perfectly correct. To get an informal
intuition, suppose for the special case, it can be checked (efficiently in an oblivious manner) whether
the output of mechanism M is correct. Then, in the case that the output is incorrect (which happens
with probability at most β), a non-oblivious (but always correct) algorithm can be run. Hence, the

resulting mechanism M̂ is (ε, δ+β)-differentially oblivious and perfectly correct. However, since in
general there might be no efficient and oblivious manner to check the correctness of a mechanism,
Lemma C.2 is needed to extend our lower bounds for imperfect correctness. Given Lemma C.2,
our oblivious sorting lower bound can be extended to the following:

Corollary C.3. Suppose 0 < s ≤
√
N , ε > 0 and 0 ≤ δ + β ≤ e−(2εs+log2N). Then, any

(randomized) stable 1-bit-key sorting algorithm in the balls-and-bins model that is (ε, δ)-differentially
oblivious must, on some input, incur at least Ω(N log s) memory accesses with probability at least
1− negl(N) for some negligible function negl(·).

Proof. Same as the proof for Theorem 4.7 but replace the usage of “plausible access pattern” there
with “good access pattern” instead.

Similarly, our lower bounds for merging and data structures can be extended in the same way
using Lemma C.2 to account for imperfect correctness, and we omit the detailed statements.

D Extra Preliminaries

D.1 Technical Lemmas Concerning r-Neighbors

Fact D.1 (r-Neighbors Produce Similar Access Patterns [43]). Suppose a (randomized) algorithm
M satisfies (ε, δ)-differential obliviousness, where ε and δ can depend on some security parameter λ.
Then, for any two inputs I and I ′ that are r-neighboring and any set S of access patterns, we have

Pr[AccessesM (λ, I) ∈ S] ≤ erε · Pr[AccessesM (λ, I ′) ∈ S] +
eεr − 1

eε − 1
· δ.
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Proof of Lemma 4.3. Let S be the set of access patterns that are plausible for input I0. For each
Ii ∈ C, define Si ⊂ S to be the subset of access patterns in S that are implausible for Ii.

By Fact D.1, we have

Pr[AccessesM (λ, I0) ∈ Si] ≤ erε · Pr[AccessesM (λ, Ii) ∈ Si] +
eεr − 1

eε − 1
· δ =

eεr − 1

eε − 1
· δ,

where the last equality follows because the access patterns in Si are implausible for Ii. Therefore,
by the union bound, we have

Pr[AccessesM (λ, I0) ∈ ∪Ii∈CSi] ≤ |C| ·
eεr − 1

eε − 1
· δ.

Finally, observe that AccessesM (λ, I0) ∈ ∪Ii∈CSi is the complement of the event that AccessesM (λ, I0)
is plausible for all inputs in C. Hence, the result follows.
Proof of Lemma 4.4. Before contraction, there are exactly t · |N |+ 2t edges in the access pattern
graph. For each layer 1 ≤ i ≤ t− 1, there are exactly |N | − 2 nodes with in-degree and out-degree
being 1. Therefore, the number of edges decreases by (t− 1) · (|N | − 2) to form the compact graph.

Finally, we observe that |N | ≤ t, because at most t memory location can be accessed in t
accesses.

D.2 Stochastic Analysis for Geometric Distribution

The following simple fact follows in a straightforward manner from the definition of Geom.

Fact D.2. For any even Z and any ε > 0, for any integers a, a′ ∈ [0, Z] such that |a− a′| = 1, we
have that

Pr[GeomZ(eε) = a] ≤ eε · Pr[GeomZ(eε) = a′].

Lemma D.3 (Moment Generating Function). Suppose G is a random variable having truncated
geometric distribution GeomZ(α) with support [0..Z] and mean Z

2 , for some α > 1. Then, for

|t| ≤ min{12 ,
√

2 ln (α+1)2

4α }, we have

E[etG] ≤ exp(
Z

2
· t+

4α

(α− 1)2
· t2).

Proof. Let V be a random variable whose distribution the untruncated variant of Geom(α) that is
symmetric around 0, i.e., for all integers x, its probability mass function is proportional to α−|x|.

Let W be the truncated variant of Geom(α) that is symmetric around 0 and has support in
[−Z

2 ,
Z
2 ]. Hence, G has the same distribution as Z

2 +W .
It can be shown that for any real t, E[etW ] ≤ E[etV ]. This follows from the fact that the

function i 7→ eti + e−ti is increasing for positive integers i.

Therefore, E[etG] ≤ e
Z
2
·t · E[etV ]. Finally, the result follows from applying a technical result

from [13, Lemma 1, Appendix B.1] to get an upper bound on E[etV ] the specified range of t.

Lemma D.4 (Measure concentration for truncated geometric random variables). Let GB denote
the sum of B independent GeomZ(eε0) random variables (each of which having mean Z

2 and support

[0..Z]). For any B, for sufficiently large λ and Z ≥ log5 λ
ε0

, it holds that

Pr

[
GB ≥

BZ

2
·
(

1 +
1

log2 λ

)]
≤ exp(− log2 λ)
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and

Pr

[
GB ≤

BZ

2
·
(

1− 1

log2 λ

)]
≤ exp(− log2 λ).

Proof. We prove the first inequality. The second inequality can be proved using the same approach.
Denote R := Z

2 log2 λ
and α = eε0 . Using the standard argument as in the proof of the Chernoff

Bound, for positive t ≤ min{12 ,
√

2 ln (α+1)2

4α } in the range specified in Lemma D.3, we have

Pr
[
GB ≥ BZ

2 ·
(

1 + 1
log2 λ

)]
≤ exp{B( 4α

(α−1)2 · t
2 −Rt)} ≤ exp{ 4α

(α−1)2 · t
2 −Rt},

where the last inequality holds if we pick t > 0 such that the exponent in the last term is
negative.

Hence, it suffices to analyze the exponent for two cases of ε0.
The first case is when ε0 is some large enough constant. In this case, we set t > 0 to be some

appropriate constant, and the exponent is −Θ(R) = −Θ( Z
2 log2 λ

) ≤ − log2 λ.

The second case is when ε0 is small. In this case, 4α
(α−1)2 = Θ( 1

ε0
)2. We set t to

√
2 ln (α+1)2

4α =

Θ(ε0). Hence, the exponent is −Θ(Rε0) = −Θ( Zε0
2 log2 λ

) ≤ − log2 λ. This completes the proof of the

first inequality.

D.3 Existing Building Blocks

D.3.1 Oblivious Aggregation

Oblivious aggregation is the following primitive where given an array of (key, value) pairs, each
representative element for a key will learn some aggregation function computed over all pairs with
the same key.

• Input: An array Inp := {ki, vi}i∈[n] of possibly dummy (key, value) pairs Henceforth we refer to
all elements with the same key as the same group. We say that index i ∈ [n] is a representative
for its group if i is the leftmost element of the group.

• Output: Let Aggr be a publicly known, commutative and associative aggregation function and we
assume that its output range can be described by O(1) number of blocks. The goal of oblivious
aggregation is to output the following array:

Outpi :=

{
Aggr ({(k, v)|(k, v) ∈ Inp and k = ki}) if i is a representative

⊥ o.w.

Oblivious aggregation can be implemented in time O(n log n) with a deterministic access pattern.

D.3.2 Oblivious Propagation for a Sorted Array

Oblivious propagation [37] is the opposite of aggregation. Given an array of possibly dummy (key,
value) pairs where all elements with the same key appear consecutively, we say that an element is
the representative if it is the leftmost element with its key. Oblivious propagation aims to achieve
the following: for each key, propagate the representative’s value to all other elements with the
same key. Nayak et al. [37] show that such oblivious propagation can be achieved in O(log n) steps
consuming n CPUs where n is the size of the input array.
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D.3.3 Oblivious Bin Placement

Oblivious bin placement is the following task: given an input array X, and a vector V where V [i]
denotes the intended load of bin i, the goal is to place the first V [1] elements of X into bin 1, place
the next V [2] elements of X into bin 2, and so on. All output bins are padded with dummies to a
maximum capacity Z. Once the input X is fully consumed, all remaining bins will contain solely
dummies.

ObliviousBinPlace(X,V, Z):

• Let W be the accumulated sum of V , i.e., W [i] =
∑

j≤i V [j]. Obliviously sort all elements of
X and W together, where each element carries the information whether it comes from X or Z.
The sorting is governed by the following key assignments: an element in X is assigned the key
that equals to its position in X, and the i-th element in W is assigned the key that is equal to
W [i]. If two elements have the same key, then the one from W appears later.

• In this sorted array, every element from X wants to hear from the first element from W that
appears after itself. We accomplish this by calling an oblivious propagation algorithm (see
Section D.3.2) such that at the end, each element from X learns which bin it is destined for.

• In one scan of the resulting array, mark every element from W as dummy. For every i ∈ [B]
where B = |W |, append Z filler elements destined for bin i to the array (note that fillers are
not dummies).

• Obliviously sort the outcome array by destined bin number, leaving all dummies at the end. If
two elements have the same bin number, filler appear after real elements.

• In one linear scan, mark all but the first Z elements of every bin as dummy.

• Obliviously sort by bin number, leaving all dummies at the end. If two elements have the same
bin number, break ties by arranging smaller elements first, and having fillers appear after real
elements.

• Truncate the result and preserve only the first BZ elements. In one scan, rewrite every filler as
dummy.

• Return the outcome.
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