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Abstract

The robustness of (approximate) differential privacy (DP) guarantees in the presence of thousands
and even hundreds of thousands observations is crucial for many realistic application scenarios, such as
anonymous communication systems, privacy-enhancing DB queries, or privacy-enhancing ML methods.
Composition theorems capture DP under repeated observations, but previous work provides untight
bounds, which can tremendously amplify after hundreds of thousands of compositions.

This work improves on previous work by providing upper and lower bounds for approximate DP,
which enables us to quantify how untight our upper bound is. We introduce a numerical method and an
implementation for computing provable upper and lower bounds for approximate DP for a given number
of observations. In contrast to previous work, our bucketing method retains the shape of the distributions
which enables us to compute tighter bounds. We show that, while previous work seems to be tight for
the Laplace mechanism on statistical queries, our work is significantly tighter for other scenarios, such
as the Gaussian mechanism on statistical queries or for real-world timing leakage data. We show that it
is worth to conduct a tight privacy analysis by improving, as a case study, the privacy analysis of the
anonymous communication system Vuvuzela. We show that for the same privacy target as in the original
Vuvuzela paper, 5 to 10 times (depending on the assumed number of observations) less noise already
suffices, which significantly reduces Vuvuzela’s overall bandwidth requirement.

∗both authors equally contributed to this work
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1 Introduction

Privacy analyses of privacy-enhancing systems, such as anonymous communication systems [15], privacy-
enhancing DB queries [4], and privacy-enhancing ML methods [1], play a crucial role in understanding the
effectiveness of these systems. The notion of differential privacy, written as ε-DP [4] and its important
relaxation approximate differential privacy, written as (ε, δ)-DP [13, 6] quantify, in terms of two parameters
ε and δ, the privacy leakage against a strong worst-case attacker and have become a de-facto standard in the
field. In many application scenarios, the privacy has to hold under continued observations, which enables
potential attackers to make thousands if not hundreds of thousands of observations. The parameters ε and
δ inevitably grow under continued observation and with them the degree of privacy deteriorates under a
sufficiently long period of continued observation.

In the original (ε, δ)-DP paper [4, 13], a notion of privacy under continued observation (called k-fold
(ε, δ)-DP) was presented and generic bounds were proven in a composition theorem. It turned out that these
bounds could be dramatically improved. As understanding the precise degree of privacy under continued
observations is crucial for understanding a system’s realistic potential for enhancing privacy, there have been
significant efforts [7, 10] to find tighter bounds on DP under continued observation.
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While previous work [10] made significant improvements on the initial näıve bounds and even seems to
be tight w.r.t. the Laplace mechanism, this paper shows that for other mechanisms these generic results are
not tight and substantially better bounds can be found, e.g., for the Gaussian mechanism or for estimating
the privacy leakage of timing side-channels. The previous work lacks one major ingredient: it is completely
oblivious to the underlying distributions and cannot, by its very nature, make use of the nature of the
distribution-specific behavior under continued observation. In a sense, such generic results inherently assume
those distributions that leak most under continued observation.

1.1 Contribution

This work presents a numerical method and an implementation for computing provable upper and lower
bounds for k-fold (ε, δ)-DP, for a given number of k observations. We show that our results are significantly
tighter than the bounds from previous work [10]. As a short disclaimer, this work is meant to be a powerful
tool for finding tight bounds in a (ε, δ)-DP privacy analysis of a privacy-enhancing system; this work does not
attempt to contribute to the task of finding the right level of abstraction, a useful attacker model, suitable
usage behaviors, the right privacy mechanism (e.g., the shape of the noise), and other tasks that are needed
in a useful privacy analysis.

The notion of (ε, δ)-DP ultimately describes a relationship between a pair of distributions, such as the
outputs of a privacy-enhancing mechanism on related inputs.1 The core idea of this work is to compute for
all atomic events x within a pair of distributions V,W the quotient V (x)/W (x) and to throw all atomic
events with the same quotient into the same bucket. This representation soundly abstracts away from the
exact events within the distributions but retains the shape of the distributions. These buckets can be used to
compute (ε, δ)-DP and the increase of ε and δ for a given number of observations. As there are in practice too
many such buckets (particularly for distributions with an infinite support), we approximate these buckets by
dividing the set of buckets into B sets, thereby approximating the buckets. We show that we can use these
approximate buckets to compute (ε, δ)-DP under a up to a million observations. Our method can generically
deal with distributions with finite support and we show how to embed the continuous Laplace distribution
into these buckets, which does not have a finite support.

We illustrate that our method is tighter than previous work. We study how our bucketing approach
compares to Kairouz et al.’s composition theorem [10]. While it seems as if Kairouz et al.’s composition
theorem provides bounds that are tight for the Laplace mechanism, we show that they are not tight for the
Gaussian mechanism or for a model of timing-leakage measurements from the anonymous communication
system CoverUp [14]. We show that our bucketing approach is significantly tighter in these cases.

Moreover, our approach allows for analyzing how different distributions compose in terms of differential
privacy. We find that the (ε, δ)-DP of Laplace noise under composition converges to the (ε, δ)-DP of Gauss
noise under composition, if the Gaussian noise has half the variance of the Laplace noise. Note that this
is not an example of the central limit theorem 2 as the composition is not the convolution but the product
of distributions. Additionally, we show that for the same variance, Gaussian noise provides significantly
stronger privacy guarantees under a high number of observations.

Finally, we apply our results to illustrate that a tight analysis of a privacy-enhancing system can lead to
a significant reduction in the protocols overhead without reducing the required degree of privacy. As a case
study, we improve the privacy analysis of the anonymity network Vuvuzela[15], which uses random noise to
increase the privacy. First, we show that an improved analysis alone can enable a 2 to 4-fold reduction in
noise while achieving the same privacy goals under hundreds of thousands of observations, depending on the
number of observations.3 If we do not reduce the amount of noise but keep the amount recommended in the
Vuvuzela paper, we show that a precise analysis leads to privacy bounds that are roughly 3 to 4 orders of
magnitude better. Second, we additionally propose to improve the shape of the noise from Laplace noise to
Gaussian noise. In this case, we achieve a 5 to 10-fold reduction of noise for the same privacy goals, and if we
stick to the amount of noise from the Vuvuzela paper, we show a 4 to 6 orders of magnitude improvements
of the privacy bounds.

1As an example, when applying the Laplace mechanism to two databases with sensitivity 1, (ε, 0)-DP analyzes a pair of
Laplace distributions with scale parameter 1/ε with mean 0 and mean 1.

2The central limit theorem shows that the sum of many independent random variables is normally distributed.
3The more observations are estimated the higher the error of a loose bound; hence, in those cases the tightness of our bounds

leads to a more significant improvement.
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The example of Vuvuzela highlights several important contributions of our approach for practical privacy-
enhancing mechanisms: First, our bucketing method allows for a fast, uncomplicated (re-)evaluation of
existing privacy analyses. Such a re-evaluation using state-of-the-art composition results such as Kairouz et
al.’s composition theorem or our bucketing can yield impressively better results than näıve privacy bounds.
Second, in contrast to Kairouz et al.’s generic composition theorem, our bucketing method retains the shape
of the distributions which allows us to effectively compare different noise mechanisms and this can again
significantly impact the resulting bounds. Third, our bucketing provides lower bounds and thus shows exactly
to which extend our results could potentially be further improved. In many cases where the lower bounds
(almost) equal the upper bounds our method is provably optimal (up to the slight difference in the bounds).

While our result expects concrete distributions as input, we show that in many cases concrete worst-
case distributions can be found for k-fold (ε, δ)-DP with a given sensitivity. Worst-case distributions in
this sense are the output distribution of the mechanism under worst-case inputs. As an example consider
counting queries under the Gaussian mechanism on a database. While the definition of k-fold (ε, δ)-DP
allows the attacker to choose two new databases that have a given sensitivity in every rounds (i.e., for every
observation), it suffices to analyze in every round the leakage of a pair of the same Gaussian distributions
with the same scale parameter and with means differing by the sensitivity of the databases.

The dominant factor in the runtime complexity of calculating a composition with our method is in the
order of O(B2), where B is the number of buckets, i.e., the granularity of the approximation. If the worst-
case inputs don’t change from one observation to the next, which is the case for most applications of DP, we
perform repeated squaring and thus only need to compute log2(k) composition operations.

2 Related work

Differential privacy Differential Privacy (DP) [4] quantifies how closely related two similar distributions
are from an information-theoretic perspective. The probability of any event in any one of the two distributions
is almost the same as the probability of the event in the other distribution, bounded by a multiplicative
factor eε, where ε is a small positive number and we say the distributions are ε-DP. Formally, we say that two
distributions A and B over the universe U are ε-DP, if ∀S ⊆ U . Pr [x ∈ S|x← A] ≤ eε ·Pr [x ∈ S|x← B] (and
vice versa). To extend the applicability of DP, approximate differential privacy [5] allows for distributions to
exceed limiting factor ε, as long as it is exceeded, in total only by a small value δ. Formally, we say that two
distributions A and B over the universe U are (ε, δ)-DP, if ∀S ⊆ U . Pr [x ∈ S|x← A] ≤ eε ·Pr [x ∈ S|x← B]+
δ (and vice versa). The notion of computational differential privacy [13] replaces the sets S of events by
adversarial distinguisher machines.

How to use distributions to calculate differential privacy Classically, differential privacy is defined
for all pairs of neighboring databases while relaxations leave the choice over the databases to an adversary. In
either case, the notion argues about all possible such scenarios and adversarial choices, which is in contrast to
our numerical approach: we require two concrete distributions, not a set of possible distributions. However,
in practice, there is a direct connection between the worst-case choices of scenarios or adversarial decisions
and very simple concrete distributions. For example, when considering sum queries with sensitivity 1 to
which Laplacian noise is added, we can simply compare the respective Laplacian distributions with means
0 and 1 respectively instead of considering all possible combinations of neighboring databases. To formally
apply our approach, we require the choice of two fitting distributions and the existence of a reduction: given
a description of the scenario or an adversarial choice as well as an output of the distributions we consider
in our calculation, the reduction produces the respective output within the differential privacy scenario of
choice. Returning to our example of sum queries q for two neighboring databases D1 and D2 where the true
answers for the databases are q(D1) = x and q(D2) = x+ 1 respectively, one can map any output y from a
distribution to y + x to obtain the correct adversarial view for the respective scenario.

Composition of differential privacy One of the main and most important benefits of differential privacy
is that it withstands composition, albeit with a loss. The composition of ε-DP is straight forward: two
distribution pairs that are respectively ε1-DP and ε2-DP together are (ε1 + ε2)-DP and, as long as ε is tight,
this is the best possible result. If the distribution pairs are (ε1, δ1)-DP and (ε2, δ2)-DP, a straight-forward
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result shows that their composition is (ε1 +ε2, δ1 +δ2)-DP, however, this result is not necessarily tight. Since
many privacy-preserving systems are subject to small privacy leakages for every adversarial observation,
previous work has investigated tighter bounds of (ε, δ)-DP under composition [7, 10], which we discuss in
detail in Section 3.3. Other composition results focus on special cases and provide even tighter bounds [9, 12].

All these works have in common that they are oblivious to the actual distributions and their bounds only
rely on the initial values for ε and δ.

Dependencies The work of Liu, Chakraborty and Mittal [12] discusses the importance of correctly mea-
suring the sensitivity of databases for differential privacy. They show that in real-world examples entries
can be correlated and thus cannot be independently exchanged as by DP’s basic definition. Their approach,
however, finally results in the same techniques being used to achieve the same goal: noise applied to database
queries results in differential privacy, although the sensitivity is calculated in a more complex manner. Our
results can directly be applied in such a setting as well: given the (final) distributions that potentially
consider dependent entries we calculate differential privacy guarantees for these distributions.

Optimal distributions There has been recent work [8, 11] on finding optimal mechanisms for differential
privacy for a large utility functions. However, these results concentrate on a single observation and do not
characterize how these mechanism behave under k-fold composition.

3 Bucketing two distributions

3.1 Informal description of bucketing

Calculating differential privacy guarantees under composition is typically done independently of the shape
of the underlying distributions, simply based on the differential privacy guarantees before the composition.
This obliviousness is both the greatest strength and greatest weakness of this method: One doesn’t need to
know the shape of the distributions to give sound differential privacy guarantees under manifold composition.

We now introduce an alternative approach: We approximate the distributions and the ways they are
related. Given two distributions A and B, for differential privacy the most important aspect of each event x
is the factor between the probability that the event occurs in A, denoted by Pr [x← A], and the probability

that the same event occurs in B, denoted Pr [x← B]. Consequently, we group events by this factor Pr[x←A]
Pr[x←B]

and accumulate them with a very similar factor.
As our main aim is to compose the distributions efficiently and without unnecessary losses, we scale each

group of events, which we also call a bucket, exponentially: given a factor f > 1, a bucket B(i) contains all

events where f i−1 < Pr[x←A]
Pr[x←B] ≤ f

i. The value B(i) is then the sum over the probabilities of all those events

(according to distribution A). Thus, under composition of A and B with distributions C and D we can then
simply combine buckets B(i) and BC(j) multiplicatively and yield probability of all events in BA×C(i + j),

for which we still have Pr[x←A]
Pr[x←B] ·

Pr[x←C]
Pr[x←D] ≤ f

i+j .

3.2 Differential privacy

We repeat the definition for approximate differential privacy and adapt it to suit our cause. Approximate
differential privacy characterizes privacy by a multiplicative value ε and an additive error value δ. In
particular, we introduce tight differential privacy to characterize the smallest values of ε and δ for which
differential privacy is satisfied.

Definition 1 ((Tight) (ε, δ)-differential privacy). Two distributions A and B over the universe U are (ε, δ)-
differentially private, if for every set S,

Pr [x ∈ S : x← A] ≤ eεPr [x ∈ S : x← B] + δ and

Pr [x ∈ S : x← B] ≤ eεPr [x ∈ S : x← B] + δ.

We say that A and B are tightly (ε, δ)-differentially private if they are (ε, δ)-differentially private, but
∀δ′ < δ, A and B are not (ε, δ′)-differentially private.
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Note that we can also say that A and B are ε-tightly (ε, δ)-differentially private if they are (ε, δ)-
differentially private, but ∀ε′ < ε, A and B are not (ε′, δ)-differentially private. However, we will consider ε
to be a goal or input to our system and thus not pursue ε-tightness.

We argue that this can be characterized precisely by the following calculation:

Lemma 1. For every ε, two distributions A and B over the finite universe U are tightly (ε, δ)-differentially
private with

δ = max

(∑
x∈U

max (Pr [x← A]− eεPr [x← B] , 0) ,

∑
x∈U

max (Pr [x← B]− eεPr [x← A] , 0)

)
Proof. Let ε ≥ 0 and let A and B be two distributions over the universe U . We show the equivalence by first
showing that (1) for every set S, the calculation describes an upper bound and then that (2) there exists a
set S such that this bound is tight.

(1) We show that ∀S ⊆ U ,

Pr [x ∈ S : x← A]− eεPr [x ∈ S : x← B]

≤
∑
x∈U

max (Pr [x← A]− eεPr [x← B] , 0)

The inverse direction then follows analogously.

Pr [x ∈ S : x← A]− eεPr [x ∈ S : x← B]

=
∑
x∈S

Pr [x← A]− eεPr [x← B]

≤
∑
x∈S

max (Pr [x← A]− eεPr [x← B] , 0)

≤
∑
x∈U

max (Pr [x← A]− eεPr [x← B] , 0)

(2) Let S := {x ∈ U s.t. Pr [x ∈ A] ≥ eεPr [x ∈ B]}. Then,

Pr [x ∈ S : x← A]− eεPr [x ∈ S : x← B]

=
∑
x∈S

Pr [x← A]− eεPr [x← B]

=
∑
x∈U

max (Pr [x← A]− eεPr [x← B] , 0) .

Analogously, for S := {x ∈ U s.t. Pr [x ∈ B] ≥ eεPr [x ∈ A]},

Pr [x ∈ S : x← B]− eεPr [x ∈ S : x← A]

=
∑
x∈S

Pr [x← B]− eεPr [x← A]

=
∑
x∈U

max (Pr [x← B]− eεPr [x← A] , 0) .

Thus, for every pair of distributions A and B and for every ε ≥ 0 the distributions are tightly (ε, δ)-
differentially private, where δ is calculated as described.
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Trade-off between ε and δ. Leveraging the calculations from above, we can immediately see that for
every value of ε, there is an optimal value for δ, such that tight (ε, δ)-differential privacy holds. We can draw
a graph portraying the relationship between those two variables. For some distributions there is a value ε0,
the distributions are ε0-differentially private. However, (ε, δ)-differential privacy guarantees for arbitrarily
small values of ε can be achieved as well, where δ is calculated as in Lemma 1.

3.3 Composition of differential privacy

One of the main advantages of differential privacy is the fact that guarantees are still sound under composi-
tion, albeit with increasing values for ε and δ.

Definition 2 (k-fold (ε, δ)-DP of a mechanism). A randomized algorithm M with domain D and range U is
k-fold (ε, δ)-differentially private for sensitivity s if for all S ⊆ Uk and for all (x1, . . . , xk), (y1, . . . , yk) ∈ Dk
such that ∀1 ≤ i ≤ k. ||xi − yi||1 ≤ s:

Pr[(M(x1), . . . ,M(xk) ∈ S] ≤ eε Pr[M(y1, . . . , yk) ∈ S] + δ

Note that when we describe differential privacy in terms of distributions over the worst-case inputs, the
composition of differential privacy is equivalent to considering differential privacy for product distributions.
If x0, x1 are the worst-case inputs for a mechanism M , resulting in the distributions M(x0) and M(x1),
then the k-fold composition is described Definition 1 on the distributions A = M(x0)k and B = M(x1)k.
Similarly, a composition of two different mechanisms M and M ′ with worst-case inputs x0, x1 and x′0, x

′
1

respectively, boils down to Definition 1 on the distributions A = M(x0)×M ′(x′0) and B = M(x1)×M ′(x′1).
The main composition results we compare our work with are: naive composition, slightly less naive

composition and two composition result with improved bounds [7, 10]. We recall these results here.

Lemma 2 (Näıve Composition). Let (A1, B1) and (A2, B2) be two pairs of distributions, such that A1 and
B1 are (ε1, δ1)-differentially private and A2 and B2 are (ε2, δ2)-differentially private. Then A1 × A2 and
B1 ×B2 are (ε1 + ε2, δ1 + δ2)-differentially private.

Lemma 3 (Adaptive Composition). Let (A1, B1) and (A2, B2) be two pairs of distributions, such that A1

and B1 are (ε1, δ1)-differentially private and A2 and B2 are (ε2, δ2)-differentially private. Then A1×A2 and
B1 ×B2 are (ε1 + ε2, δ1 + (1− δ1) · δ2)-differentially private.

Lemma 4 (Boosting and Differential Privacy (Advanced Composition) [7]). Let (A1, B1), . . . , (Ak, Bk) be
pairs of distributions, such that Ai and Bi are (ε, δ)-differentially private for all i ∈ {1, . . . , k}. Then

A1 × . . . × Ak and B1 × . . . × Bk are (ε̂δ̂, δ̂)-differentially private, where δ̂ typically is k · δ and ε̂δ̂ =

O

(
kε2 + ε

√
k log

(
e+ (ε

√
k/δ̂)

))
Lemma 5 (Kairouz et al’.s Composition [10]). For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-differentially
private mechanisms satisfies

(ε′, δ′)-differential privacy

under k-fold composition, for all i ∈ {0, . . . , bk/2c} where ε′ = (k − 2i)ε and δ′ = 1− (1− δ)k(1− δi)

δi =

∑i−1
`=0

(
k
`

) (
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

These composition results allow for deriving differential-privacy guarantees under composition in a black-
box manner, i.e., only depending on ε and δ. Consequently, they are oblivious to how the underlying
distributions actually compose and present, in a way, worst-case results under composition. Thus, we cannot
expect that they come close to the tight differential privacy guarantee of the composed distributions. In the
remainder of this paper we introduce, prove sound and discuss our main idea: approximating the distributions
A1, A2, B1, B2 in a way that allows for a sound calculation of a differential-privacy guarantee that takes into
account features of the distribution even under manifold composition. Moreover, we use the same technique
to derive a lower bound for the guarantee, to bound the (unknown) tight differential privacy guarantee from
both directions.
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Buckets for given parameters f and n.

Bucket factor: f−n f−n+1 . . . f−2 f−1 f0 f1 f2 . . . fn−1 fn > fn

Index: −n −n+ 1 . . . −2 −1 0 1 2 . . . n− 1 n ∞

Figure 1: Depiction of the buckets (separately) constructed for both BA and BB . For BA each bucket BA(i)
with i ∈ {−n+ 1, . . . , n} contains all elements x ∈ U with f i−1Pr [x← B] ≤ Pr [x← A] ≤ f iPr [x← B], the
bucket BA(−n) contains all elements with Pr [x← A] ≤ f−nPr [x← B] and the bucket BA(∞) contains all
elements with Pr [x← A] > fnPr [x← B].

3.4 Bucketing

In this section we introduce the technique of bucketing a pair of distributions, by which we mean to derive
a precise approximation of the features underlying the pair of distributions that is sufficient for calculating
differential privacy and that comes with an efficient way for computing the composition of several such pairs
of distributions.

Independence We assume that all distributions Ai, Bi are independent and moreover independent from
all distributions Aj , Bj for i 6= j. In our composition we acknowledge a certain amount of dependence by
composing all distributions Ai with each other and all distributions Bi with each other. Thus, an adversary
can indeed gain more information with every step. However, the random choices made by the distributions
have to be independent. A result for dependent distributions could be achieved under certain conditions as
well, but for the sake of simplicity, we leave such additional complications for future work.

The infinity symbol ∞ In this paper we will write ∞ to describe the corner case accumulated in the
largest bucket B∞ of our bucket distributions. We consider ∞ to be a distinct symbol and in an abuse of
notation, we use the following mathematical rules to interact with it:

• ∞ > i for all i ∈ Z.

• ∞+ i =∞ for all i ∈ Z.

Bucket distribution Our main idea is to divide the universe of all outcomes of the two distributions A
and B into sets of elementary events, depending on the ratio between their probabilities in A and in B. If

x is an elementary event from the universe U , we consider Pr[x←A]
Pr[x←B] and, depending on this value, decide

in which set we put the event. If this fraction is undefined because Pr [x← B] = 0, we put the event in a
specific set.

The sets we create depend on two parameters: a separation-factor f and a limit n. We then create
2 · n+ 2 sets as follows: For i ∈ {−n, . . . , n} we assign an elementary event x to the set Si, if Pr [x← A] ≤
f iPr [x← B] and if for all j ∈ {−n, . . . , n} with j < i we have Pr [x← A] > f jPr [x← B]. All remaining
events with fnPr [x← B] < Pr [x← A] are assigned to the special set S∞. For each such set Si (including for
S∞) we accumulate the probabilities of all events we put into them to yield the respective bucket Bi. After
creating the buckets we do not need to keep information about the elementary events or the sets anymore:
All further calculations are based on our list of 2 · n + 2 buckets B(−n), . . . ,B(n),B(∞), which we coin a
bucket distribution. Thus, the runtime of all further calculations only depends on the number of buckets.
After composing two such bucket distributions with each other, we yield another bucketing with the same
parameters for f and n. The precision of our method may decrease with the number of compositions, but
the complexity of all operations remains the same. We refer to Figure 1 for a graphical presentation of the
buckets.

Note that we define a bucket distribution asymmetrically: we consider the probabilities of events occuring
in A in relation to the probabilities of the same events occuring in B. We over-approximate the factor between
them slightly. Thus, a bucket distribution only delivers guarantees on one direction of differential privacy –
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in practice we simply create two bucket distributions: one for relating A with B and one for relating B with
A.

Definition 3. Let A,B be two distributions over the same universe U and let f ∈ R with f > 1 and even
n ∈ N (i.e., there is a q ∈ N such that n = 2q). Then, B(A,B, f, n) describes a bucket distribution B over
the universe {−n,−n+ 1, . . . , n} ∪ {∞} s.t.

∀i ∈ {−n,−n+ 1, . . . , n} ∪ {∞} .B(i) =
∑
x∈Si

Pr [x← A] ,

where the sets Si are defined as follows:

S∞ = {x ∈ U .Pr [x← A] > fnPr [x← B]}
∀i ∈ {−n+ 1, . . . , n}Si =

{
x ∈ U . f i−1Pr [x← B] < Pr [x← A] ≤ f iPr [x← B]

}
S−n =

{
x ∈ U .Pr [x← A] ≤ f−nPr [x← B]

}
.

Note that since the sets Si for i ∈ {−n, . . . , n} ∪ {∞} describe a partitioning of U , we have∑
i∈{−n,...,n}∪{∞}

B(i) = 1.

We now define differential privacy for bucket distributions. For all events x in a bucket B(i) 6= B(∞)
we know that Pr [x← A] ≤ f iPr [x← B]. We over-approximate slightly by treating this inequality as an
equality and calculate the delta for differential privacy as in Lemma 1. For the events in B(∞) we simply
add their full probability to δ, which corresponds to considering these events as total breakdowns of privacy.

Definition 4 (Delta). Let f > 1 and n ∈ N and let B(A,B, f, n) = B be a bucket distribution. We say that
B(A,B, f, n) is (ε, δ)-DP, if ∑

i∈{−n,...,n}

(
max

(
0,B(i) · (1− eε

f i
)

))
+ B(∞) ≤ δ

Computing the composition on buckets We proceed by defining how to compose bucket distributions.
Our composition shows our main guiding principle behind creating buckets in an exponential manner, de-
scribed by fractions f i: Consider the distributions A1, A2, B1, B2. When composing two buckets B1(i) and
B2(j), we write the result into the bucket B3 with index i + j. The idea behind this strategy is as follows
(illustrated in Figure 2). Since events x1 in B1(i) satisfy Pr [x1 ← A1] ≤ f iPr [x← B1] and events x2 in
B2(j) satisfy Pr [x2 ← A2] ≤ f jPr [x← B2], we trivially know that the combined events (x1, x2) will satisfy

Pr [(x1, x2)← A1 ×A2] = Pr [x1 ← A1] · Pr [x2 ← A2]

≤ f iPr [x1 ← B1] · f jPr [x2 ← B2]

= f i+jPr [(x1, x2)← B1 ×B2] .

Following this strategy, we can hence maintain the desired property Pr [x← A] ≤ f iPr [x← B] for all events
in bucket i, even after composition. We refer to Figure 3 for a graphical depiction of the bucket composition
for one bucket. More formally, we define the composition of two bucket distributions as follows.

Definition 5 (Composition of Buckets). Let f > 1 and n ∈ N and let B(A1, B1, f, n) = B1 and B(A2, B2, f, n) =
B2 be two bucket distributions. We define the composition of the pairs as B1 × B2, where

∀i ∈ {−n,−n+ 1, . . . , n} ∪ {∞} .B1 × B2(i) =
∑

(j,k)∈Si

B1(j) · B2(k),

where the sets Si are defined as follows:

S∞ =
{

(j, k) ∈ {−n, . . . , n,∞}2 .j + k > n
}

∀i ∈ {−n+ 1, . . . , n}Si =
{

(j, k) ∈ {−n, . . . , n}2 .j + k = i
}

S−n =
{

(j, k) ∈ {−n, . . . , n}2 .j + k ≤ −n
}
.
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Bucket composition example for two events for n = 5.

B1:

B2:

B1 × B2:

Indexes:

x1

x2

x1 · x2

−5 −4 −3 −2 −1 0 1 2 3 4 5 ∞

Figure 2: Depiction of how individual events x1 and x2 compose into new buckets.

Bucket composition example for bucket indes 1 for n = 5, only showing the bucket indexes.

B1:

B2:

B1 × B2:

Indexes:

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10

k10 k9 k8 k7 k6 k5 k4 k3 k2 k1

−5 −4 −3 −2 −1 0 1 2 3 4 5 ∞

Figure 3: Depiction of the bucket composition for the (new) bucket with index i = 1. We calculate the
value of the bucket i by summing over the product of all B1(ji) · B2(ki). Graphically, buckets with the
same color are combined. Note that none of the buckets ∞ and −5 are used for the composition, as for all
j ∈ {−5, . . . , 5}, ∞+ j 6= 1 and −5 + j 6= 1.

Note that since the sets Si for i ∈ {−n, . . . , n} ∪ {∞} describe a partitioning of U and since additionally
the buckets B1 and B2 add up to 1, we have∑

i∈{−n,...,n}∪{∞}

B1 × B2(i) = 1.

When composing bucket distributions, they naturally “broaden”, i.e., more and more events populate
buckets that are further away from the middle bucket with factor f0. When creating a bucket distribution for
a given number n, this effect leads to a trade-off between the granularity (i.e., the choice of the bucket factor
f) and the expected number of compositions: the smaller f , the more precise does the bucket distribution
model the features of the distributions, but the fewer compositions before a significant amount of events
reaches the corner buckets (B(−n) and B(∞)), which again reduces the precision. To counter this (rather
annoying) effect, we introduce an additional operation which we coin squaring : we square the factor f , thus
halving the precision of the buckets, and soundly merge buckets into this new, more coarse-grained bucket
distribution. Squaring allows us to start with a much more fine-grained bucket distribution and reduce
the granularity as we compose, which can improve the overall precision of the approach significantly. We
choose to square f instead of increasing it to an arbitrary f ′ to ease the computation of the new bucket
distribution: we simply combine buckets 2i− 1 and 2i with factors f2i−1 and f2i into the new bucket i with
factor (f2)i = f2i. We refer to Figure 4 for a graphical depiction of squaring.

The composition of bucket distributions is commutative, but not associative and the number of times
and also the times at which the squaring was performed are relevant as well. Hence, we need to keep track
of the order in which we applied composition and squaring. To this end, we define composition trees that
are important for our proofs, but not for calculating actual results (since we show that any composition tree
leads to sound results), and can thus be considered a purely technical definition.

Definition 6 (Composition trees). For two sets of tuples (A1, . . . , AW) and (B1, . . . , BW) of the same size
u, a composition tree over (A1, . . . , AW) and (B1, . . . , BW) is a tree with three kinds of nodes that are all

10



Bucket squaring example for n = 4.

B:

†B:

Indexes: −4 −3 −2 −1 0 1 2 3 4 ∞

Figure 4: Depiction of the bucket squaring. Events from each bucket B(i) are moved into bucket B(di/2e),
with the exception of B(∞), which remains unchanged.

labeled with a bucket factor f > 1; leaves (T = l(Ai, Bi)) are additionally labelled with a pair of distributions,
composition nodes (T = T1 × T2) with exactly two child nodes and squaring nodes (T = †T1) with exactly
one child node. We require that each pair of distributions (Ai, Bi) is the label of exactly one leaf, that for
each composition node the child nodes have the same f in the label, and that the label of each squaring node
contains f2 if the child node’s label contains f .

For ease of notation we write (Ai, Bi) to describe the tree consisting only of a leaf l(Ai, Bi). For brevity,
we even write Ai or Bi for the same tree, if we only talk about the respective distribution.

For discussing our results and the soundness of our results we want to compare the differential privacy
guarantees of bucket distributions with the real differential privacy guarantees (calculating which might not
be feasible). To this end and for talking about individual elementary events we assign an index to each such
event. The index specifies the (one) bucket the respective event influences. For a bucket distribution that has
been created from distributions (and not composed), this index is simply the bucket the event was assigned
to. After composition, the index depends on how the indexes of the respective buckets interacted: in the
most simple case, if x1 and x2 are events with indexes i and j, then the event (x1, x2) will have the index
i+ j. However, the corner cases can modify the index, as the index can only be in the set {−n, . . . , n,∞}.

Definition 7 (Index of an event according to buckets). Let (Ak, Bk)Wk=1 be pairs of distributions over the
universes (Ui)Wk=1, let f > 1 and n ∈ N.

We define the set of indexes for events x = (x1, . . . , xW) ∈ (Ui)Wk=1 as follows. First, we define for the
individual components xk ∈ Uk with k ∈ {1, . . . ,W},

il(Ak,Bk)(xk) :=


l if l ∈ {−n+ 1, . . . , n}

∧f l−1Pr [xk ← Bk] < Pr [xk ← Ak] ≤ f lPr [xk ← Bk]

∞ if Pr [xk ← Ak] > fnPr [xk ← Bk]

−n otherwise

For any pair of composition trees T1, T2 over some probability distributions, and

• for T = T1 × T2 we define the index of x = (x1, x2) as

iT (x) = iT1×T2(x1, x2) :=


−n if iT1

(x1) + iT2
(x2) < −n

∞ if iT1
(x1) + iT2

(x2) > n

iT1
(x1) + iT2

(x2) otherwise,

where we assume that ∀y, z ∈ Z, y +∞ =∞ > z.

• for T = †T1 we define the index of x as

iT (x) = i†T1
(x) :=

{
diT1

(x)/2e if iT1
(x) 6=∞

∞ otherwise,

11



We stress that iT1×T2(x1, x2) is not necessarily associative, i.e., there are distributionsA1, A2, A3, B1, B2, B3,
and x1, x2, x3 such that

i(T1×T2)×T3
(x1, x2, x3) 6= iT1×(T2×T3)(x1, x2, x3)

Soundness of differential privacy guarantees for bucket distributions We can now start to argue
about the differential privacy guarantees we calculate for bucket distributions. We will show that if a bucket
distribution is (ε, δ)-differentially private, then the distributions from which the pair was created (either
directly or via composition) is also (ε, δ)-differentially private. Simply put, the guarantees we calculate are
sound.

We begin by showing a helpful lemma that directly follows our main strategy: all elementary events x
that are assigned an index i 6=∞ (according to a composition tree T ) satisfy Pr [x← A] ≤ f iPr [x← B].

Lemma 6. Let (Ak, Bk)Wk=1 be pairs of distributions over the universes (Ui)Wk=1, let n ∈ N and let for all

k ∈ {1, . . . , u}. Let A :=
∏W
k=1Ak and B :=

∏W
k=1Bk.

For all x ∈
∏W
k=1 Uk and for every composition tree T over A1, . . . , AW such that iT (x) 6= ∞ and the

root node has f in the label, we have Pr [x← A] ≤ f iT (x)Pr [x← B]. Analogously, with iTB (x) 6=∞ we have
Pr [x← B] ≤ f iT (x)Pr [x← A].

Proof. We show the lemma by a structural induction over the composition tree.

• For the leaves (i.e., Tk = l(Ak, Bk)), if iT (x) 6=∞, then for all k ∈ {1, . . . , k} il(Ak,Bk)(xk) 6=∞.

For each k such that il(Ak,Bk)(xk) = −n, from the case distinction of il(Ak,Bk)(xk) in Definition 7 it
follows that

Pr [xk ← Ak] ≤ f−nPr [xk ← Bk] (1)

Pr [xk ← Ak] ≤ f il(Ak,Bk)(xk)Pr [xk ← Bk] . (2)

Hence, we get from Definition 7 and Equation (2) that for all k such that il(Ak,Bk)(xk) 6=∞, we have

Pr [xk ← Ak] ≤ f il(Ak,Bk)(xk)Pr [xk ← Bk] . (3)

• For composition nodes (i.e., T = T1 × T2), where both children are labelled with f (and consequently
the composition node is also labelled with f), we get for x

Pr [x← A] =

W∏
k=1

Pr [xk ← Ak]︸ ︷︷ ︸
≤fil(Ak,Bk)(xk)

Pr[xk←Bk]

≤
W∏
k=1

f il(Ak,Bk)(xk)Pr [xk ← Bk] =

W∏
k=1

f il(Ak,Bk)(xk)

︸ ︷︷ ︸
≤fiT (x)

W∏
k=1

Pr [xk ← Bk]︸ ︷︷ ︸
=Pr[x←B]

≤f iT (x)Pr [x← B]

Note that
∑

k∈{1,...,W}
il(Ak,Bk) ≤ iT (x) holds by definition of the index over any composition tree: at

every node at least the sum of the underlying nodes is considered (or −n if that sum is < −n).

• For squaring nodes (i.e., T = †T1), where the child node is labelled with f (and the re-scale node thus
is labelled with f2), we know that iT (x) 6=∞ ≡ iT1

(x) 6=∞. For iT1
(x) 6=∞ we know by the induction

hypothesis that Pr [x← A] ≤ f iT1 (x)Pr [x← B]. By definition, we have

Pr [x← A] ≤ f iT1 (x)Pr [x← B]

= f2iT1 (x)/2Pr [x← B]

≤ (f2)diT1 (x)/2ePr [x← B]

= (f2)iT (x)Pr [x← B]
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We now state the first theorem of our paper: the buckets are sound.

Theorem 1 (Buckets are sound). Let A,B be two distributions over the same universe U , let f > 1 and
n ∈ N and let B(A,B, f, n) = B be a bucket distribution. If for ε, δ ≥ 0, B(A,B, f, n) is (ε, δ)-DP, then A
and B are (ε, δ)-differentially private.

Proof. The theorem can be shown directly; however, as it follows quite trivially from the proof of a more
complicated case we consider in the subsequent chapter, we omit the proof here and refer to Lemma 12
instead.

Corollary 1. For any privacy-enhancing mechanism M for which there exist worst-case inputs x0, x1, let
B(M(x0),M(x1), f, n) = B be a bucket distribution. If for ε, δ ≥ 0, B(M(x0),M(x1), f, n) is (ε, δ)-DP,
then M is (ε, δ)-differentially private. Moreover, if B(M(x0),M(x1), f, n)k is (ε, δ)-DP then then M is
(ε, δ)-differentially private under k-fold composition.

As described in Section 2, distributions can be used to calculate differential privacy in a variety of
applications. Technically, we require the existence of worst-case inputs that allow us to directly derive the
relevant distributions.

Definition 8 (Worst-case inputs). Inputs x0, x1 are worst-case inputs for a given sensitivity s and a mech-
anism M if Pr[M(x0) ∈ S] ≤ eε Pr[M(x1) ∈ S] + δ, then M is (ε, δ)-DP for all inputs with sensitivity s.
Such worst-case inputs typically exist for practical privacy-preserving mechanisms that achieve (ε, δ)-DP.

Proof. Consider the reduction that replaces all inputs of the attacker with sensitivity s with the worst case
inputs for sensitivity s. If there were inputs x′0, x

′
1 such that for any ε

Pr[M(x′0) ∈ S] ≥ eε Pr[M(x′1) ∈ S] + δ′,

although
Pr[M(x0) ∈ S] ≤ eε Pr[M(x1) ∈ S] + δ

and δ′ > δ, then x0, x1 cannot be the worst-case inputs.

Our approach can be applied whenever worst-case inputs for instance of the mechanism can be found
independently of the random coins used by the mechanism in the previous rounds. This is commonly the
case when differential privacy is applied.

4 Reducing and bounding the error

We have already presented a sound way of approximating a distribuion pair by creating a bucket distribution.
Our calculations from the previous section lead to sound and, in many cases, better results than generic
composition theorems from the literature. In this section we explore the precision of our results: we define
error (correction) terms that help us to both find a lower bound on the differential privacy guarantee for
the considered distributions even under manifold composition, and to find a tighter guarantee for differential
privacy.

We distinguish between two types of error correction terms: the real error correction term ` that captures
the value we use to tighten our result in a sound way and the virtual error correction term ˜̀ that captures the
maximal influence an error correction term can have. The virtual error correction term accurately captures
the difference between the probability an event x appears to have in the alternative distribution (using the

bucket factor) Pr[x←A]
fi and the probability that it actually has in the alternative Pr [x← B]. In some cases,

however, we misplace an event, s.t., it ends up an a bucket with an index that is too large: events x that
should not be considered for the overall guarantee, i.e., that have Pr [x← A]−eεPr [x)← B] < 0 can appear
in a bucket with index i s.t. eε < f i. Thus, correctly calculating the error correction term while possibly
misplacing events can lead to wrong results.
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Bucket error calculation foran event x in the bucket with index i.

B:

Pr[x←A]
Pr[x←B]

what we want = Pr [x← B]

Pr [x← A]

f i

Pr[x←A]

fi
= what we have

`(x)

operation: Pr[x←A]
[...]

Figure 5: Depiction of how and why we calculate the error. We only preserve f i and (accumulated)

Pr [x← A], but would like to preserve Pr [x← B], which we can approximately get by: Pr[x←A]
fi and thus we

store the difference between those values in the error term.

There are two reasons for why events can be misplaced: First, when composing bucket distributions,
events can be misplaced by one bucket. We take care of this by not including the error correction terms of
a certain number of buckets, depending on the number of compositions. Second, when events are put into
the smallest bucket (with index −n), they can be arbitrarily “misplaced”, particularly after a composition.
To counter this effect, we introduce the real error correction term, in which we do not include the error of
the smallest bucket (with index −n).

4.1 Buckets with error correction terms

Our strategy is as follows, assuming two distributions A and B: Whenever we enter an event x into a bucket
B(i), we remember the difference between the probability that the event occurs in A, adjusted by the bucket

factor, and the probability that the same event occurs in B: `(i)+ = Pr [x← B]− Pr[x←A]
fi . Recall that the

main purpose of the buckets is to keep track of the ratio between those two probabilities. We sum up all
these error correction terms per individual bucket.

Let us, for the sake of illustration, consider one bucket B(i), containing events x ∈ Si for a set Si.

B(i)

f i
− `(i) =

∑
x∈Si Pr [x← A]

f i
−
∑
x∈Si

(
Pr [x← B]− Pr [x← A]

f i

)
=

∑
x∈Si

Pr [x← B] .

Thus, only considering one additional value per bucket, we can precisely remember the probability that the
events occurred in B and we can then use this probability to calculate a more precise differential privacy
guarantee. We ommit the error correction terms for the bucket B(∞, as there is no bucket factor attached
to it (so there is no value the error correction term could correct).

We later see that given a value for ε we need to be careful when dealing with exactly one bucket: the
bucket B(j) with f j−1 < eε ≤ f j . If we were precise in our calculations, we would only consider some of
the events from the bucket, namely the ones with Pr [x← A] ≤ eεPr [x← B], but since we combined them
all into one bucket, we cannot distinguish the individual events anymore. To retain a sound guarantee, we
don’t consider the error correction term of this bucket when calculating δ. Under composition this error
slightly increases, as events can be “misplaced” by more than one bucket when we compose the buckets.
Consequently, every composition increases the number of buckets for which we don’t consider an error
correction term.

Definition 9 (Bucket distribution with error correction terms). Let A,B be a pair of distributions over the
universes U , let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W}
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We define the bucket distribution with error correction terms B(A,B, f, n) = (B, ˜̀, `, f, 1), as

∀i ∈ {−n, . . . , n,∞}

B(i) :=
∑

x∈U s.t. i(x)=i

Pr [x← A]

where we define the error correction terms as

∀i ∈ {−n, . . . , n}

˜̀(i) :=
∑

x∈U s.t. i(x)=i

Pr [x← B]− Pr [x← A]

f i

˜̀(∞) := 0

∀i ∈ {−n+ 1, . . . , n}
`(i) := ˜̀(i)

`(−n) := `(∞) := 0.

For completeness we re-define the composition and squaring of buckets first (which is unchanged from
the previous section) and then define how the error terms behave under both composition and squaring:
under composition, we want to calculate a perfect error correction term for the combined events, i.e.,

given events x1 and x2 with (individual) error terms Pr [x1 ← B1]− Pr[x←A1]
fi1

and Pr [x2 ← B2]− Pr[x2←A2]
fi2

we want (in the typical case, ignoring corner cases) to have an error correction term for the pair of the

form Pr [(x1, x2)← B1 ×B2] − Pr[(x1,x2)←A1×A2]
fi1+i2

. However, the buckets cannot keep track of the value for

Pr [(x1, x2)← B1 ×B2] – recall that this is precisely why we have introduced the error terms. Fortunately,
we can calculate the desired error correction terms from the previous error correction terms, the bucket
values, and the bucket factors.

Similarly, for the squaring, we quantify how the error terms change when we modify the buckets. Although
each new bucket is composed of two previous buckets, the bucket factor actually only changes for one half
of the values: the evenly indexed buckets B(2i) with factor f2i are now moved into buckets B(i) with the
same factor (f2)i and thus there error correction terms are still correct. The other half of buckets B(2i− 1)
with factor f2i−1 are moved into the same buckets B(i) with factor (f2)i and thus the error correction terms
need to be modified to capture this change in the bucket factor.

We define the composition and squaring as follows.

Definition 10 (Composition and squaring with error correction terms). For two bucket distributions (B1, ˜̀
1, `1, f1, u1)

over a universe
∏W1

k=1 Uk and (B2, ˜̀
2, `2, f2, u2) over a universe

∏W1+W2

k=W1+1 Uk, with f1 = f2 = f , we have

(B1, ˜̀
1, `1, f1, u1)× (B2, ˜̀

2, `2, f2, u2)

:=(B1 × B2, ˜̀
1 × ˜̀

2, `1 × `2, f, u1 + u2)

where BX × BY (for X ∈ {A1, A2} and Y ∈ {B1, B2}) is defined as

B1 × B2(−n) :=
∑

j,k∈{−n,...,n}2 s.t. j+k≤−n

B1(j) · B2(k)

∀i ∈ {−n+ 1, . . . , n} B1 × B2(i) :=
∑

j,k∈{−n,...,n}2 s.t. j+k=i

B1(j) · B2(k)

B1 × B2(∞) :=
∑

j,k∈{−n,...,n,∞}2 s.t. j+k>−n

B1(j) · B2(k)
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where we define the error correction terms as

∀i ∈ {−n+ 1, . . . , n}

˜̀
1 × ˜̀

2(i) :=
∑

(k,l)∈{−n,...,n}2,k+l=i

(
B1(k)

fk
+ ˜̀

1(k)

)
˜̀
2(l) + ˜̀

1(k)

(
B2(l)

f l
+ ˜̀

2(l)

)
− ˜̀

1(k)˜̀
2(l)

˜̀
1 × ˜̀

2(−n) :=
∑

(k,l)∈{−n,...,n}2,k+l≤−n

(
B1(k)

fk
+ ˜̀

1(k)

)
˜̀
2(l) + ˜̀

1(k)

(
B2(l)

f l
+ ˜̀

2(l)

)
− ˜̀

1(k)˜̀
2(l)

˜̀
1 × ˜̀

2(∞) := 0

∀i ∈ {−n, . . . , n}

`1 × `2(i) :=
∑

(k,l)∈{−n,...,n}2,k+l=i

(
B1(k)

fk
+ `1(k)

)
`2(l) + `1(k)

(
B2(l)

f l
+ `2(l)

)
− `1(k)`2(l)

`1 × `2(−n) := `1 × `2(∞) := 0.

For a bucket distributions (B1, ˜̀
1, `1, f1, u1) over a universe

∏W1

k=1 Uk, we have

†(B1, ˜̀
1, `1, f1, u1)

:=(†B1, †˜̀
1, †`1, f21 , du1/2e+ 1)

where we define

†B1(−n/2) := B1(−n)

∀i ∈ {−n/2 + 1, . . . , n/2} †B1(i) := B1(2 · i− 1) + B1(2 · i)
†B1(∞) := B1(∞)

∀i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n} †B1(i) := 0

where we define the error correction terms as

∀i ∈ {−n/2 + 1, . . . , n/2}

†˜̀
1(i) := ˜̀

1(2i− 1) + B1(2i− 1)

(
1

f2i−11

− 1

f2i1

)
+ ˜̀

1(2i)

†˜̀
1(−n/2) := ˜̀

1(−n)

∀i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n,∞} †˜̀
1(i) := 0

∀i ∈ {−n/2 + 1, . . . , n/2}

†`1(i) := `1(2i− 1) + B1(2i− 1)

(
1

f2i−11

− 1

f2i1

)
+ `1(2i)

∀i ∈ {−n, . . . ,−n/2, n/2 + 1, . . . , n,∞} †`1(i) := 0.

To improve the readability of our proofs we introduce a more compact notation for bucket distributions
that stem from a composition tree, by slightly abusing the

∏
symbol.

Definition 11 (Notation for composing bucket distributions). Given a composition tree T = l(A,B) over
the distributions A and B, we write

T∏
k∈{1}

B(Ak, Bk, fk, n) = B(A,B, f, n).
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Given a composition tree T = T1 × T2, where T1 is over the distributions (A1, . . . , Aj) and (B1, . . . , Bj)
and T2 is over the distributions (Aj+1, . . . , AW) and (Bj+1, . . . , BW), we write

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n) =

 T1∏
k∈{1,...,j}

B(Ak, Bk, fk, n)

×
 T2∏
k∈{j+1,...,W}

B(Ak, Bk, fk, n)

 .

Given a composition tree T = †T1, where T1 is over the distributions (A1, . . . , AW), we write

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n) = †

 T1∏
k∈{1,...,j}

B(Ak, Bk, fk, n)

 .

Whenever we say that a bucketing (B, ˜̀, `, f, u) over a universe
∏W
k=1 Uk is defined for a value n and with

a composition tree T , we mean

(B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

where (l(A1, B1), . . . ,l(AW , BW)) are the leaf nodes of T .

4.2 Buckets and error correction terms per element

Before we can show the first helpful lemmas for the soundness of our error correction terms, we introduce
the impact that each individual event x has on the bucket terms that are influenced by x. We first simply
define these terms per element separately and then continue by showing that each bucket value (and error
correction term) is simply the sum over the respective terms of all elements contributing to this bucket. This
marks a significant step in the correctness (and tightness) of our results: Although we only consider a few
values (one bucket value and one error correction value per bucket) we still capture all individual events.
The only exception to this precision then comes from misplaced events, which we will analyze subsequently.

Definition 12 (Bucket distribution with error correction terms per element). Let A,B be a pair of distri-
butions over the universes U , let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W}

We define the bucket distribution with error correction terms B(A,B, f, n) = (B, ˜̀, `, f, 1), as follows

B(x) := Pr [x← A]

if il(A,B)(x) ∈ {−n, . . . , n} , ˜̀(x) := Pr [x← B]− Pr [x← A]

f iT (x)

if il(A,B)(x) =∞, ˜̀(x) := 0

if il(A,B)(x) ∈ {−n+ 1, . . . , n,∞} , `(x) := ˜̀(x)

if il(A,B)(x) = −n, `(x) := 0.

Both the composition and squaring for our terms per element behave identically to the corresponding
terms per bucket. The only difference here is that we rely on the index per element iT instead of the bucket
indexes.

Definition 13 (Composition with error correction terms per element). For two bucket distributions (B1, ˜̀
1, `1, f1, u1)

over a universe
∏W1

k=1 Uk and (B2, ˜̀
2, `2, f2, u2) over a universe

∏W1+W2

k=W1+1 Uk, both defined with the same val-

ues f and n, and with composition trees T1 and T2 we have for each x = (x1, x2) ∈
∏W1

k=1 U×
∏W1+W2

k=W1+1 Uk,

B1 × B2(x) := B1(x1) · B2(x2)
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and we define the error correction terms as

if iT1×T2
(x) ∈ {−n, . . . , n}

˜̀
1 × ˜̀

2(x) :=

(
B1(x1)

f iT1 (x1)
+ ˜̀

1(x1)

)
˜̀
2(x2) + ˜̀

1(x2)

(
B2(x2)

f iT2 (x2)
+ ˜̀

2(x2)

)
− ˜̀

1(x1)˜̀
2(x2)

if iT1×T2(x) ∈ {∞}
˜̀
1 × ˜̀

2(x) := 0

if iT1×T2
(x) ∈ {−n+ 1, . . . , n,∞}

`1 × `2(x) :=

(
B1(x1)

f iT1 (x1)
+ `1(x1)

)
`2(x2) + `1(x2)

(
B2(x2)

f iT2 (x2)
+ `2(x2)

)
− `1(x1)`2(x2)

if iT1×T2(x) ∈ {−n,∞}
`1 × `2(x) := 0.

For a squaring node (T = †T1), we keep the bucket value as †B1(x) := B1(x1) and we define the error
correction terms as follows (where f is the old factor, from the label of T1):

if iT1
(x) ∈ {−n, . . . , n}

†˜̀
1(x) := ˜̀

1(x) + B1(x) ·
(

1

f iT1 (x)
− 1

f2·diT1 (x)/2e

)
if iT1(x) ∈ {∞}
†˜̀

1(x) := 0

if iT1
(x) ∈ {−n+ 1, . . . , n}

†`1(x) := `1(x) + B1(x) ·
(

1

f iT1 (x)
− 1

f2·diT1 (x)/2e

)
if iT1

(x) ∈ {−n,∞}
†`1(x) := 0.

We now show our first important lemma for the soundness of our buckets and error correction terms:
the terms we defined just previously indeed characterize the impact of each individual event on the overall
bucket values and error correction terms. These terms indeed are just the sum of the respective values per
element for all elements of an index that equals the bucket index.

Lemma 7 (All values are sums over atomic events). Let (Ak, Bk)Wk=1 be pairs of distributions over the

universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1) be

bucket distributions (with error correction terms) and let T be a composition tree. Let ε ≥ 0. Let

(B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

Then, the following statements hold for all i ∈ {−n, . . . , n,∞}:

• B(i) =
∑
x s.t. iT (x)=i

B(x)

• ˜̀(i) =
∑
x s.t. iT (x)=i

˜̀(x)

• `(i) =
∑
x s.t. iT (x)=i

`(x)

Proof. We show the lemma via structural induction over T . We only show the lemma for A, but the proof
follows analogously for B.
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If T = l(Ai, Bi): Let i ∈ {−n, . . . , n,∞}.

• By definition, B(x) = Pr [x← A] (c.f., Definition 12). Thus, B(i) =
∑
x s.t. i(x)=i Pr [x← A] =∑

x s.t. i(x)=i B(x).

• If i ∈ {−n, . . . , n}, then ˜̀(i) =
∑
x s.t. i(x)=i Pr [x← B] − Pr[x←A]

fi =
∑
x s.t. i(x)=i

˜̀(x). Otherwise
˜̀(i) = 0 =

∑
x s.t. i(x)=i 0 =

∑
x s.t. i(x)=i

˜̀(x).

• If i ∈ {−n+ 1, . . . , n}, then `(i) =
∑
x s.t. i(x)=i Pr [x← B]− Pr[x←A]

fi =
∑
x s.t. i(x)=i `(x). Otherwise

`(i) = 0 =
∑
x s.t. i(x)=i 0 =

∑
x s.t. i(x)=i `(x).

If T = T1 × T2: We assume the lemma holds for two bucket distributions (B1, ˜̀
1, `1, f1, u1) over a universe

U1 and (B2, ˜̀
2, `2, f2, u2) over a universe U2 with composition trees T1 and T2. Then, with U = U1 ×U2 and

T = T1 × T2, we have for i ∈ {−n+ 1, . . . , n}

B1 × B2(i) =
∑

j,k∈{−n,...,n} s.t.j+k=i

B1(j) · B2(k)

IV
=

∑
j,k∈{−n,...,n} s.t. j+k=i

 ∑
x1∈U1s.t. iT1 (x1)=j

B1(x1)

 ·
 ∑
x2∈U2s.t. iT2 (x2)=k

B2(x2)


=

∑
x=(x1,x2)∈U1×U2 s.t. iT1 (x1)+iT2 (x2)=i

B1(x1) · B2(x2)

We know from Definition 7 that iT (x) = iT1(x1) + iT2(x2), since iT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x=(x1,x2)∈U1×U2 s.t. iT (x)=i

B1(x1) · B2(x2)

=
∑

x=(x1,x2)∈U s.t. iT (x)=i

B(x).

For i ∈ {−n,∞} the proof follows analogously, where for −n we have j + k ≤ −n and we know from
Definition 7 that iT (x) = −n is equivalent to iT1(x1) + iT2(x2) ≤ −n and for ∞ we have j + k > n and we
know from Definition 7 that iT (x) =∞ is equivalent to iT1

(x1) + iT2
(x2) ≥ n.

For the virtual error, we distinguish the following cases:
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• iT (x) ∈ {−n+ 1, . . . , n}. Then,

˜̀
1 × ˜̀

2(i)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

(
B1(k)

fk
+ ˜̀

1(k)

)
˜̀
2(l) + ˜̀

1(k)

(
B2(l)

f l
+ ˜̀

2(l)

)
− ˜̀

1(k)˜̀
2(l)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

B1(k)

fk
˜̀
2(l) + ˜̀

1(k)
B2(l)

f l
+ ˜̀

1(k)˜̀
2(l)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

(∑
x1∈U1s.t. iT1 (x1)=k

B1(x1)

fk

 ∑
x2∈U2s.t. iT2 (x2)=l

˜̀
2(x2)


+

 ∑
x1∈U1s.t. iT1 (x1)=k

˜̀
1(x1)

∑x2∈U2s.t. iT2 (x2)=l
B2(l)

f l

+

 ∑
x1∈U1s.t. iT1 (x1)=k

˜̀
1(x1)

 ∑
x2∈U2s.t. iT2 (x2)=l

˜̀
2(x2)

)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

∑
x1∈U1s.t. iT1 (x1)=k

∑
x2∈U2s.t. iT2 (x2)=l

(
B1(x1)

fk
˜̀
2(x2)

+ ˜̀
1(x1)

B2(l)

f l
+ ˜̀

1(x1)˜̀
2(x2)

)

=
∑

(x1,x2)∈U1×U2 s.t. iT1 (x1)+iT2 (x2)=i

(
B1(x1)

f iT1 (x1)
˜̀
2(x2) + ˜̀

1(x1)
B2(l)

f iT2 (x2)
+ ˜̀

1(x1)˜̀
2(x2)

)

We know from Definition 7 that iT (x) = iT1(x1) + iT2(x2), since iT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x∈U s.t. iT (x)=i

˜̀(x)

• iT (x) = −n. The proof of the case from above follows analogously with k + l ≤ −n, since we know
from Definition 7 that iT (x) = −n is equivalent to iT1

(x1) + iT2
(x2) ≤ −n.

• iT (x) =∞.

˜̀
1 × ˜̀

2(i)

= 0 =
∑

x∈U s.t. iT (x)=i

0

=
∑

x∈U s.t. iT (x)=i

˜̀(x).

If T = †T1:

We assume the lemma holds for two bucket distributions (B1, ˜̀
1, `1, f1, u1) over a universe U1 with a

composition tree T1. Then, with U = U1 and T = †T1, we have for i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}

†B1(i) = 0 =
∑
x∈∅

B1(x) =
∑

x∈U s.t. iT=i

B1(x)
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For i =∞, we have

†B1(∞) = B1(∞)
IH
=

∑
x∈U s.t. iT1 (x)=∞

B(x) =
∑

x∈U s.t. iT (x)=∞

B(x).

For i ∈ {−n/2 + 1, . . . , n/2} we have

†B1(i) = B1(2i) + B1(2i− 1)

IH
=

∑
x∈U s.t. iT1 (x)=2i

B1(x) +
∑

x∈U s.t. iT1 (x)=2i−1

B1(x)

=
∑

x∈U s.t. iT1 (x)=2i

B(x) +
∑

x∈U s.t. iT1 (x)=2i−1

B(x)

=
∑

x∈U s.t. iT (x)=i

B(x).

For i = −n/2 we have

†B1(−n/2) = B1(−n)

IH
=

∑
x∈U s.t. iT1 (x)=−n

B1(x)

=
∑

x∈U s.t. iT1 (x)=−n

B(x)

=
∑

x∈U s.t. iT (x)=−n/2

B(x).

We hence go forward to show the lemma for the error correction terms.

For the error correction terms and for i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}

†˜̀
1(i) = 0 =

∑
x∈∅

˜̀
1(x) =

∑
x∈U s.t. iT=i

˜̀
1(x)

For i =∞, we have

†˜̀
1(∞) = 0 =

∑
x∈U s.t. iT (x)=∞

0 =
∑

x∈U s.t. iT1 (x)=∞

˜̀(x) =
∑

x∈U s.t. iT (x)=∞

˜̀(x).
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For i ∈ {−n/2 + 1, . . . , n/2} we have

†˜̀
1(i) = ˜̀

1(2i− 1) + B1(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ ˜̀

1(2i)

IH
=

∑
x∈U s.t. iT1 (x)=2i−1

˜̀
1(x) +

∑
x∈U s.t. iT1 (x)=2i−1

B1(x)

(
1

f2i−1
− 1

f2i

)
+

∑
x∈U s.t. iT1 (x)=2i

˜̀
1(x)

=
∑

x∈U s.t. iT1 (x)=2i−1

†˜̀
1(x)− B1(x) ·

(
1

f iT1 (x)
− 1

f2·diT1 (x)/2e

)

+
∑

x∈U s.t. iT1 (x)=2i−1

B1(x)

(
1

f2i−1
− 1

f2i

)

+
∑

x∈U s.t. iT1 (x)=2i

†˜̀
1(x)− B1(x) ·

(
1

f iT1 (x)
− 1

f2·diT1 (x)/2e

)

=
∑

x∈U s.t. iT1 (x)=2i−1

†˜̀
1(x)− B1(x) ·

(
1

f2i−1
− 1

f2i

)
+ B1(x)

(
1

f2i−1
− 1

f2i

)
+

∑
x∈U s.t. iT1 (x)=2i

†˜̀
1(x)

=
∑

x∈U s.t. iT (x)=i

†˜̀
1(x)

The proof for ˜̀(i) in case i = −n/2 and the `(i) follow analogously to the proof for ˜̀(i) with the exception
that the case −n/2 is analogous to the case ∞ instead to the cases i ∈ {−n+ 1, . . . , n} for `(i).

The proof for BB , ˜̀
B , and ` is symmetric.

With Lemma 7 we now have a powerful tool for proving a set of properties for our error correction terms
that will ultimately allow us to show the soundness of our results: We can relate every bucket value and
every error correction term to the underlying events and can thus analyze our properties per event.

4.3 Helpful properties of error correction terms

In this rather technical subsection we present and show a set of helpful properties of our error correction
terms that we require for our proof of soundness (and for our lower bound). We show that all error terms
are positive (which means that not considering one of them can only increase the δ of our result), we show
that our real error correction term is always smaller than the virtual error correction term and finally we
show that for every event x, the virtual error correction term after an arbitrary amount of composition and

squaring following the composition tree T still precisely captures Pr [x← B]− Pr[x←A]
fiT

.

Lemma 8 (Positive real and virtual error correction terms). Let (Ak, Bk)Wk=1 be pairs of distributions over

the universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be bucket distributions (with error correction terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B1, ˜̀
1, `1, f1, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

The real error correction terms `(i) and `B(i) for i ∈ {−n, . . . , n,∞} are positive, i.e., `(i) ≥ 0 and `B(i) ≥ 0.
Moreover, the virtual error correction terms ˜̀(i) and ˜̀

B(i) for i ∈ {−n, . . . , n,∞} are positive as well.

Proof. We show the lemma via structural induction over T .
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For T = l(A,B), the real error correction term of an initial bucketing is calculated as the sum of error

correction terms for each x ∈ U `(x) = Pr [x← B] − Pr[x←A]

fiT (x) if iT (x) /∈ {n−,∞} and 0 otherwise. For

iT (x) ∈ {−n, . . . , n} by definition we have Pr [x← A] ≤ f iT (x)Pr [x← B]. Thus, for all i ∈ {−n, . . . , n,∞}
are positive, i.e., `(i) ≥ 0 and analogously we get `B(i) ≥ 0.

For T = T1 × T2, BT is the result of composing two bucket distributions (B1, ˜̀
1, `1, f1, u1) and

(B2, ˜̀
2, `2, f2, u2). By induction hypothesis, `1 and `2 are positive. We calculate the composed error correc-

tion terms as either 0 (if i ∈ {−n,∞}) or as

`(i) = `A1×A2
(i) =

∑
j,k s.t. j+k=i

((
BA1(j)

f j

)
`2(k) +

(
BA2

(k)

fk

)
`1(j) + `1(j)˜̀

2(k)

)
,

which is positive as well since all the error correction terms and all bucket terms are positive.

For T = †T1, We calculate the error correction terms as either 0 (if i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n,∞})
or as

`(i) = †`1(i) =`1(2i− 1) + B1(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ `1(2i),

which is positive as well since all the error correction terms and all bucket terms are positive. 4 Analogously,
we can show that the virtual error correction terms ˜̀ are positive as well.

We now show that the real error correction term is smaller than the virtual error correction term.

Lemma 9 (The real error ` is smaller than the virtual error ˜̀). Let (Ak, Bk)Wk=1 be pairs of distributions over

the universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be bucket distributions (with error correction terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

Then, the real error is always smaller than the virtual error: `(x) ≤ ˜̀(x) and `B(x) ≤ ˜̀
B(x).

Proof. We show the lemma via structural induction over T .

For T = l(A,B): We know that ˜̀(x) ≥ 0. By definition, for u = 1, either `(x) = 0 or `T (x) = ˜̀
T (x)

holds. Thus, `T (x) ≤ ˜̀
T (x).

For T = T1×T2: BT is the result of composing two bucket distributions (B1, ˜̀
1, `1, f1, u1) and (B2, ˜̀

2, `2, f2, u2).
By induction hypothesis, `1 ≤ ˜̀

1 and `2 ≤ ˜̀
2. For iT (x) = −n, `(x) = 0. By Lemma 8 we know that 0 ≤ ˜̀(x),

hence `(x) = 0 ≤ ˜̀(x). For iT (x) 6= −n, with x1 ∈ U1 and x2 ∈ U2 we have

`(x) = `1 × `2(x) =

(
Pr [x1 ← A1]

f iT1 (x1)
+ `1(x1)

)
`2(x2) +

(
Pr [x2 ← A2]

f iT2 (x2)
+ `2(x2)

)
`1(x1)− `1(x1)`2(x2)

=

(
Pr [x1 ← A1]

f iT1 (x1)

)
`2(x2)︸ ︷︷ ︸
IH

≤˜̀
2(x2)

+

(
Pr [x2 ← A2]

f iT2 (x2)

)
`1(x1)︸ ︷︷ ︸
IH

≤˜̀
1(x1)

+ `1(x1)︸ ︷︷ ︸
IH

≤˜̀
1(x1)

`2(x2)︸ ︷︷ ︸
IH

≤˜̀
2(x2)

IH
≤
(

Pr [x1 ← A1]

f iT1 (x1)

)
˜̀
2(x2) +

(
Pr [x2 ← A2]

f iT2 (x2)

)
˜̀
1(x1) + ˜̀

1(x1)˜̀
2(x2)

=˜̀
1 × ˜̀

2(x) = ˜̀(x)
4Note that in the case −n/2 there is only one term instead of two. This term, however, is still positive.
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For T = †T1: This case directly holds by induction hypothesis, as the squaring operation is analogously
defined for the real and the virtual error.

We now show our main lemma for the lower bound on δ: the virtual error correction term is precise for
any event with an index other than ∞. We can directly use this lemma to get a lower bound for δ if we
ignore the bucket with index ∞. Note that although the virtual error is precise on a per-event basis, events
can still be misplaced and thus negatively contribute to δ if we use the virtual error correction term. For
our upper bound on δ we circumvent this problem by over-approximating misplaced events (using the real
error correction term) and by not using error correction terms in some buckets with a bucket factor f i close
to eε.

Lemma 10 (Characterizing the virtual error after compositions and rescaling). Let (Ak, Bk)Wk=1 be pairs
of distributions over the universes (Ui)Wi=1, let f > 1 be the bucketing factor of the root node and n ∈ N and
let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀

k, `k, fk, 1) be bucket distributions (with error correction
terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

Then, for all i ∈ {−n, . . . , n} we have

˜̀(x) = Pr [x← B]− Pr [x← A]

f iT (x)

Proof. We show the lemma via structural induction over T . For T = l(A1, B1), the statement follows by
construction:

Pr [x← B]− Pr [x← A]

f i
= Pr [x← B1]− Pr [x← A1]

f i
= ˜̀(i),

where f is the bucketing factor of the leaf.
For T = T1 × T2, BT is the result of composing two bucket distributions (B1, ˜̀

1, `1, f1, u1) and
(B2, ˜̀

2, `2, f2, u2), both with the same bucketing factor f as the composition node. By induction hypothesis,
the statement holds for ˜̀

1 and ˜̀
2. By definition of the error correction term composition we get with x1 ∈ U1
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and x2 ∈ U2

˜̀(x) =(˜̀
1 × ˜̀

2)(x)

=

(
Pr [x1 ← A1]

f iT1 (x1)
+ ˜̀

1(x1)

)
˜̀
2(x2) +

(
Pr [x2 ← A2]

f iT2 (x2)
+ ˜̀

2(x2)

)
˜̀
1(x1)− ˜̀

1(x1)˜̀
2(x2)

=
Pr [x1 ← A1]

f iT1 (x1)
· ˜̀2(x2) +

Pr [x2 ← A2]

f iT2 (x2)
· ˜̀1(x1) + ˜̀

1(x1)˜̀
2(x2)

IH
=

Pr [x1 ← A1]

f iT1 (x1)
·
(

Pr [x2 ← B2]− Pr [x2 ← A2]

f iT2 (x2)

)
+

Pr [x2 ← A2]

f iT2 (x2)
·
(

Pr [x1 ← B1]− Pr [x1 ← A1]

f iT1 (x1)

)
+

(
Pr [x1 ← B1]− Pr [x1 ← A1]

f iT1 (x1)

)
·
(

Pr [x2 ← B2]− Pr [x2 ← A2]

f iT2 (x2)

)
=

Pr [x1 ← A1]

f iT1 (x1)
· Pr [x2 ← B2]− Pr [x← A]

f iT (x)

+
Pr [x2 ← A2]

f iT2 (x2)
· Pr [x1 ← B1]− Pr [x← A]

f iT (x)

+ Pr [x← B]− Pr [x1 ← A1]

f iT1 (x1)
· Pr [x2 ← B2]− Pr [x2 ← A2]

f iT2 (x2)
· Pr [x1 ← B1] +

Pr [x← A]

f iT (x)

=Pr [x← B]− Pr [x← A]

f iT (x)

For T = †T1, we know that for all x ∈ U , iT1
(x) ∈ {−n/2, . . . , n/2}∪{∞}. Since the index∞ is excluded

in our lemma, we focus on the remaining values for the index. Note that the bucketing factor in this case
changes from f (of the child node) to f2 (of the squaring node). By induction hypothesis, we have

˜̀
1(x) = Pr [x← B]− Pr [x← A1]

f iT (x)

Consequently and since iT1(x) ∈ {−n/2, . . . , n/2}, we get,

˜̀(x) = †˜̀
1(x) = ˜̀

1(x) + BA1
(x) ·

(
1

f iT1 (x)
− 1

f2·diT1 (x)/2e

)
IH
= Pr [x← B]− Pr [x← A]

f iT1 (x)
+ Pr [x← A] ·

(
1

f iT1 (x)
− 1

f2·diT1 (x)/2e

)
= Pr [x← B]− Pr [x← A]

f iT1 (x)
+ Pr [x← A] ·

(
1

f iT1 (x)
− 1

f2iT (x)

)
= Pr [x← B]− Pr [x← A]

(f2)iT (x)
.

4.4 The approximated delta with error correction

Finally, we define how to calculate a sound upper bound on δ based on a bucket distribution with error
correction terms. We note that when using the real error correction term, events cannot harm the soundness
by being misplaced as a result of parts of the event having been placed in the smallest bucket (with index −n).
However, every composition can misplace an arbitrary event by one bucket. This slight misplacement poses
a problem for a small number of buckets with a bucket factor very close to eε, as they can now contain events
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that actually have a negative contribution to δ: Pr [x← A] − eεPr [x← B] < 0. Every bucket distribution
carries a value u that increases by 1 for every composition (and that can be reduced by squaring). If jε is the
index of the bucket with the smallest bucket factor larger than eε, we don’t consider the the error correction
term for buckets with index i < jε + u and instead fall back to the definition from Definition 4 for those
buckets. For the remaining buckets withi ≥ jε + u, which typically is the vast majority of buckets, we make
use of the real error correction term to reduce the error.

Definition 14 (Approximated delta with error correction). Let (Ak, Bk)Wk=1 be pairs of distributions over

the universes (Ui)Wi=1, let ε > 0 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1)

be bucket distributions (with error correction terms) and let T be a composition tree. Let ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

We define δ(BT , ε) with jε ∈ N such that f jε−1 < eε ≤ f jε as

δ(BT , ε) :=∑
i∈{jε,...,jε+u−1}

B(i)− eεB(i)

f i

+
∑

i∈{jε+u,...,n}

(
B(i)− eε

(
B(i)

f i
+ `(i)

))
+ B(∞)

Moreover, for all individual events x← U we define

δ(BT , x, ε) :=


Pr [x← A] ·

(
1− eε

fiT (x)

)
1. if jε ≤ iT (x) ≤ jε + u− 1

Pr [x← A]− eε
(

Pr[x←A]

fiT (x) + `E(x)
)

2. if jε + u ≤ iT (x) ≤ n
Pr [x← A] 3. if iT (x) =∞
0 4. otherwise

Note that if j > n, we only consider elements in the bucket B∞.
Next we show that the real error correction terms are bounded by the value of u: For every event x

the real error correction term `(x) can never exceed a fraction of 1
fiT (x)−u − 1

fiT (x) of the probability of the

event. Intuitively, this means that the value of the real error correction term can never be larger than what
a misplacement by u buckets would result in.

Lemma 11 (An upper bound for `). Let (Ak, Bk)Wk=1 be pairs of distributions over the universes (Ui)Wi=1, let

f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) = (Bk, ˜̀
k, `k, fk, 1) be bucket distributions

(with error correction terms) and let T be a composition tree. Let ε ≥ 0 and with jε ∈ N such that
f jε−1 < eε ≤ f jε . Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

If jε+u ≤ iT (x) 6=∞, then the error correction term never makes a negative contribution to the approximated
delta with error correction:

`(x) ≤ Pr [x← A]

f iT (x)−u
− Pr [x← A]

f iT (x)

Proof. We show the lemma via structural induction over T .

Let T = l(A,B). If iT (x) = −n then

`(x) = 0 ≤ Pr [x← A] ·
(

1

f−n−1
− 1

f−n

)
.
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Otherwise, if iT (x) > −n, we know that by definition of iT (x) we have f iT (x)−1Pr [x← B] ≤ Pr [x← A]

`(x) =Pr [x← B]− Pr [x← A]

f iT (x)

≤Pr [x← A]

f iT (x)−1
− Pr [x← A]

f iT (x)
.

Let T = T1 × T2. If iT (x) = −n, then `(x) = 0 ≤ Pr[x←A]

fiT (x)−u − Pr[x←A]

fiT (x) . Otherwise, BT is the result of

composing two bucket distributions (B1, ˜̀
1, `1, f1, u1) and (B2, ˜̀

2, `2, f2, u2). By induction hypothesis, the
statement holds for `1 `2. For x1 ∈ U1 and x2 ∈ U2 we know that iT (x) = iT1(x1) + iT2(x2). Moreover, we
know that Pr [x← A] = Pr [x1 ← A1] · Pr [x2 ← A2]. Thus, for u = u1 + u2 we get

`(x) =

(
Pr [x1 ← A1]

f iT1 (x1)
+ `1(x1)

)
`2(x2) +

(
Pr [x2 ← A2]

f iT2 (x2)
+ `2(x2)

)
`1(x1)− `1(x1)`2(x2)

=

(
Pr [x1 ← A1]

f iT1 (x1)

)
`2(x2) +

(
Pr [x2 ← A2]

f iT2 (x2)

)
`1(x1) + `1(x1)`2(x2)

IH
≤
(

Pr [x1 ← A1]

f iT1 (x1)

)(
Pr [x2 ← A2]

f iT2 (x2)−(u−u1)
− Pr [x2 ← A2]

f iT2 (x2)

)
+

(
Pr [x2 ← A2]

f iT2 (x2)

)(
Pr [x1 ← A1]

f iT1 (x1)−u1
− Pr [x1 ← A1]

f iT1 (x1)

)
+

(
Pr [x1 ← A1]

f iT1 (x1)−u1
− Pr [x1 ← A1]

f iT1 (x1)

)(
Pr [x2 ← A2]

f iT2 (x2)−(u−u1)
− Pr [x2 ← A2]

f iT2 (x2)

)
=

Pr [x← A]

f iT (x)−(u−u1)
− Pr [x← A]

f iT (x)

+
Pr [x← A]

f iT2 (x2)+iT1 (x1)−u1
− Pr [x← A]

f iT2 (x2)+iT1 (x1)

+
Pr [x← A]

f iT (x)−u1−(u−u1)
− Pr [x← A]

f iT (x)−(u−u1)
− Pr [x← A]

f iT (x)−u1
+

Pr [x← A]

f iT (x)

=
Pr [x← A]

f iT (x)−u2
− Pr [x← A]

f iT (x)

+
Pr [x← A]

f iT (x)−u1
− Pr [x← A]

f iT (x)

+
Pr [x← A]

f iT (x)−u
− Pr [x← A]

f iT (x)−u2
− Pr [x← A]

f iT (x)−u1
+

Pr [x← A]

f iT (x)

=
Pr [x← A]

f iT (x)−u
− Pr [x← A]

f iT (x)

Let T = †T1. In this case, if the child node has a bucketing factor of f1 and a value of u1, the squaring
node has a bucketing factor of f21 = f and a value of u = du1/2e+ 1. We know that †`(x) = `1(x) + B1(x) ·(

1

f
iT1

(x)

1

− 1

f
2·diT1 (x)/2e
1

)
. Since we excluded iT =∞ = iT1 and jε + u ≤ iT , we know that iT ∈ {0, . . . , n/2}.
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Thus,

`(x) = †`1(x)

= `1(x) + B1(x) ·

(
1

f
iT1 (x)
1

− 1

f
2·diT1 (x)/2e
1

)
IH
≤ Pr [x← A]

f
iT1 (x)−u1

1

− Pr [x← A]

f
iT1 (x)
1

+ B1(x) ·

(
1

f
iT1 (x)
1

− 1

f
2·diT1 (x)/2e
1

)

=
Pr [x← A]

f
iT1 (x)−u1

1

− Pr [x← A]

f
iT1 (x)
1

+
Pr [x← A]

f
iT1 (x)
1

− Pr [x← A]

f
2·diT1 (x)/2e
1

=
Pr [x← A]

(f21 )
iT1

(x)−u1
2

− Pr [x← A]

(f21 )iT (x)

≤ Pr [x← A]

(f21 )diT1 (x)/2e−(du1/2e+1)
− Pr [x← A]

(f21 )iT (x)

=
Pr [x← A]

(f21 )iT (x)−u
− Pr [x← A]

(f21 )iT (x)

From Lemma 11 we can deduct that no event in a bucket with index i ≥ jε + u can have a negative
impact on δ. Since moreover for each event we consider an impact that is at least as large as the actual
impact of the event (as in the precise calculation of δ from Lemma 1) we can show the soundness of our
result:

Lemma 12 (Soundness of the approximated delta with error correction). Let (Ak, Bk)Wk=1 be pairs of dis-
tributions over the universes (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) =
(Bk, ˜̀

k, `k, fk, 1) be bucket distributions (with error correction terms) and let T be a composition tree. Let
ε ≥ 0. Let

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

Then, the following statement holds:

δ(BT , ε) ≥
∑
x∈U

max (0,Pr [x← A]− eεPr [x← B])

Proof. Let
Si = {x ∈ U s.t. iT (x) = i}

As these Si define a partitioning of U , the definition these Si implies
⋃
i∈{−n,...,n,∞} Si = U .

As δ(BT , ε) is is a sum over BA and `, Lemma 7 implies that

δ(BT , ε) =
∑
x∈U

δ(BT , x, ε)

We next distinguish the the four cases of the definition of δ(BT , x, ε).
Case 1. This case occurs if jε ≤ iT (x) ≤ jε + u− 1. By Lemma 6, we know the following

Pr [x← A] ≤f iT (x)Pr [x← B]

⇔ Pr [x← A]

f iT (x)
≤Pr [x← B]

⇔ Pr [x← A]− eεPr [x← A]

f iT (x)
≥Pr [x← A]− eεPr [x← B]
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By definition of δ(BT , ε), we get

δ(BT , x, ε) = Pr [x← A]− eεPr [x← A]

f iT (x)
≥Pr [x← A]− eεPr [x← B]

Moreover, as iT (x) >= jε, we know that eε ≤ f iT (x). Hence, we also get

δ(BT , x, ε) = Pr [x← A]− eε

f iT (x)︸ ︷︷ ︸
≤1

Pr [x← A] ≥ 0

Case 2. This case occurs if iT (x) ≥ jε + u.
We show two things: (i)

Pr [x← A]− eε
(

Pr [x← A]

f iT (x)
+ `(x)

)
by Lemma 11 we know that `(x) ≤ Pr[x←A]

fiT (x)−u − Pr[x←A]

fiT (x) holds; hence, we get

≥Pr [x← A]− eε
(

Pr [x← A]

f iT (x)
+

Pr [x← A]

f iT (x)−u
− Pr [x← A]

f iT (x)

)
=Pr [x← A]− eε

(
Pr [x← A]

f iT (x)−u

)
≥Pr [x← A]− f jε

f iT (x)−u
Pr [x← A]

=Pr [x← A] ·
(

1− f jε

f iT (x)−u

)
as by assumption iT (x) ≥ jε + u, we get

≥0

(ii) Note that

Pr [x← A]

f iT (x)
+ `(x)︸︷︷︸
≤˜̀(x)

≤ Pr [x← A]

f iT (x)
+ ˜̀(x)

Lemma 10
=

Pr [x← A]

f iT (x)
+ Pr [x← B]− Pr [x← A]

f iT (x)
= Pr [x← B]

Thus,

Pr [x← A]− eε
(

Pr [x← A]

f iT (x)
+ `(x)

)
≥ Pr [x← A]− eεPr [x← B]

From (i) and (ii) we get

δ(A,B, x, f, n, u, ε) =Pr [x← A]− eε
(

Pr [x← A]

f iT (x)
+ `(x)

)
≥max(0,Pr [x← A]− eεPr [x← B])

Case 3. By definition of δ, we have δ(x) = Pr [x← A] > max (0,Pr [x← A]− eεPr [x← B]).
Case 4. Thus, for all x with iT (x) ≤ jε,

Pr [x← A]− eεPr [x← B]

≤Pr [x← A]− f jεPr [x← B]

≤Pr [x← A]− f iT (x)Pr [x← B]
Lemma 6
≤ 0
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and thus,

δ(x) = 0 = max (0,Pr [x← A]− eεPr [x← B])

We now present our main result: Given any value for ε ≥ 0 and a value δε, s.t. the distributions are
tightly (ε, δε)-differentially private, the value δ calculated as in Definition 14 presents a sound upper bound
on δε from Lemma 1 and we introduce a lower bound δlow, s.t. δlow presents a lower bound on δε.

Theorem 2 (Buckets with error correction terms are sound). Let (Ak, Bk)Wk=1 be pairs of distributions
over the universes U := (Ui)Wi=1, let f > 1 and n ∈ N and let for all k ∈ {1, . . . ,W} B(Ak, Bk, fk, n) =
(Bk, ˜̀

k, `k, fk, 1) be bucket distributions (with error correction terms) and let T be a composition tree. Let
ε ≥ 0 and jε ∈ N s.t. f jε−1 < eε ≤ f jε ,

BT := (B, ˜̀, `, f, u) :=

T∏
k∈{1,...,W}

B(Ak, Bk, fk, n),

δε = max

(∑
x∈U

max (Pr [x← A]− eεPr [x← B] , 0) ,

∑
x∈U

max (Pr [x← B]− eεPr [x← A] , 0)

)

δlow :=
∑

i∈{jε,...,n}

max

(
0,B(i)− eε

(
B(i)

f i
+ ˜̀(i)

))
Then,

∏W
k=1Ak and

∏W
k=1Bk are (ε, δε)-differentially private, and

δlow ≤ δε ≤ δ(BT , ε),

Proof. Lemma 1 shows that
∏W
k=1Ak and

∏W
k=1Bk are (ε, δε)-differentially private, and Lemma 12 proves

that δε ≤ δ(BT , ε) holds true.
Next, we show that δlow ≤ δε:

δlow =
∑

i∈{jε,...,n}

max

(
0,B(i)− eε

(
B(i)

f i
+ ˜̀(i)

))

Lemma 7
=

∑
i∈{jε,...,n}

max

0,
∑

x∈U,iT (x)=i

Pr [x← A]− eε
(

Pr [x← A]

f i
+ ˜̀(x)

)
Lemma 10

=
∑

i∈{−n,...,n,∞}

max

0,
∑

x∈U,iT (x)=i

Pr [x← A]− eε
(

Pr [x← A]

f i
+

(
Pr [x← B]− Pr [x← A]

f iT (x)

))
=

∑
i∈{jε,...,n}

max

0,
∑

x∈U,iT (x)=i

Pr [x← A]− eεPr [x← B]


≤

∑
i∈{jε,...,n}

∑
x∈U,iT (x)=i

max (0,Pr [x← A]− eεPr [x← B])

≤
∑
x∈U

max (0,Pr [x← A]− eεPr [x← B])
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Hence, we conclude that

δlow ≤
∑
x∈U

max (0,Pr [x← A]− eεPr [x← B]) = δε

Thus, the bounds calculated present a sound over-approximation of the real differential privacy values.

4.5 Implementation

We implemented our algorithm in Python using the NumPy [2] and the SciPy [3] libraries in 740 LoC. The
most time consuming part in the computation is the composition. We phrased the composition as a series
of inner products and use the NumPy library, which has an efficient implementation of inner products. We
added a simple form of parallelization (62 LoC), but expect that a massive parallelization via GPUs should
be several orders of magnitudes more efficiency than our current implementation.

Given a bucketing factor as well as a number of buckets 2n + 2, our implementation constructs bucket
distributions from any given histogram / distribution with a limed number of events. For Laplacian noise and
Gaussian noise we have implemented special constructors that create bucket distributions for those functions
in a more-or less precise fashion.

Given any bucket distribution and a number of rounds r, our implementation then calculates both upper
bounds (with error correction) and lower bounds using repeated squaring: we compose the bucket distribution
with itself in each round, thus calculating 2r in a time linear in r (and quadratic in the number of buckets
n). Our implementation adaptively decides whether or not to perform “squaring”, i.e., to rebase the factor
depending on whether the bucket with index∞ would otherwise grow too much. Empirically, we found that
an increase of weight of the ∞ bucket by more than a factor of 2.2 is a good indicator that squaring should
be performed. Additionally, we include a parameter that disables squaring as long as the B(∞) is below this
parameter, which is important for cases where B(∞) is initially zero or very small. Finally, we compute an
ε, δ-graph by calculating δ as in Definition 14 for every ε = f i with i ∈ {0, . . . , n}.

5 Comparison to Kairouz et al.’s composition theorem

Kairouz et al. proved a composition theorem [10] that significantly improves on the standard and advanced
composition theorem. This composition theorem [10] provides a composition result where each ε, δ pair
after k-fold composition is solely derived from one ε, δ pair of the original pair of distributions. Hence, this
composition result does take the entire shape of the distribution into account. In other words, the resulting
epsilon and delta bounds are not necessarily tight in the sense of Definition 1.

Recall that we show that our bucketing approach provides an upper and a lower bound and that the
distance between these two bounds can be made arbitrarily small by increasing the granularity of the buckets.
The bucketing can be seen as an approximation of the two ε, δ graphs5 of the original pair of distributions
A and B. As a consequence, our results show that the two ε, δ graphs of A and B capture all features that
are relevant for computing the two ε, δ graphs after k-fold composition (i.e., of Ak and Bk).

We show in this section that Kairouz et al.’s composition theorem seems to be tight for the Laplace
mechanisms but not for all mechanisms, such as the Gaussian mechanism or the measured timing-leakage
of the CoverUp system [14]. While our approach does not provide significantly tighter bounds for Laplace
mechanism, our bucketing significantly improves the privacy bounds on other mechanisms, such as Gaussian
mechanism and CoverUp-data. We first describe how we compute these mechanisms and then how we
compute the composition theorem. Subsequently, we compare the tightness of the bounds from our bucketing
approach to the bounds from Kairouz et al.’s composition theorem in these three scenarios. In the three case
studies of this section we consider one-dimensional data, e.g., in responses to statistical queries over sensitive
databases or leakage due to suspicious timing delays. However, our approach and our implementation can
also deal with higher-dimensional data.

5There are two ε, δ graphs since the DP definition is asymmetric.
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5.1 Embedding the Laplace mechanism

We analyze the Laplace mechanism, the classical mechanism to achieve DP, by comparing two distributions
of Laplace noise with means 0 and 1 respectively. This case corresponds to many applications of the Laplace
mechanism for DP, such as counting queries for databases with sensitivity 1. We choose in our case study
a Laplace distribution with mean µ = 0 and scale factor γ = 200, denoted as LP(µ, γ). As a result, an
attacker either makes observations from LP(0, 200) or from LP(1, 200) (as the sensitivity is 1). We consider
truncated Laplace distributions, since that corresponds closer to real-world applications. If not mentioned
otherwise, we truncate at µ− 2500 and µ+ 2500.

We want to give strong evidence that both Kairouz et al.’s composition theorem and our bucketing
approach are tight for the bounds of the Laplace mechanism. As a consequence, we carefully embed the
Laplace mechanism in a way that has a small discretization error. The bucketing method introduced in
Definition 9 iterates over all atomic events in the support of the distributions. For modeling the Laplace
distribution, or rather, two Laplace distributions A and B, we consider the quotients of the probability
mass functions and integrate distribution A over the range of events that fall into each bucket: for B(i) we
integrate over all events E such that f i < pA(E)/pB(E) ≤ f i+1. This technique can also be applied to other
distributions with an infinitely large support, where all areas where B has a probability of zero naturally
contribute to the bucket B∞.

Recall the probability density function for the Laplace distribution with mean µ and scale parameter γ

as Laplace(x) := 1
2γ e

−|x−µ|
γ . For differential privacy we often compare two such distributions with the same

scale parameter γ and different medians µ1 and µ2, where the means are the real values to which we add
Laplace noise with scale parameter γ. We know that without composition, we get (ε, 0)-DP with ε = 1

γ .

Consequently, we can describe the quotient f at each point x as We calculate the quotient f(x) =
Laplaceµ1 (x)

Laplaceµ2 (x)

depending on the relation between the values for x, µ1 and µ2:

• x ≤ min(µ1, µ2): f(x) = e−(µ1−x)ε/e−(µ2−x)ε = e(−µ1+x−x+µ2)ε = e(µ2−µ1)ε

• µ1 ≥ x ≥ µ2: f(x) = e−(µ1−x)ε/e−(x−µ2)ε = e(−µ1+x+x−µ2)ε = e(−µ1−µ2+2x)ε

• µ1 ≤ x ≤ µ2: f(x) = e−(x−µ1)ε/e−(µ2−x)ε = e(−x+µ1+µ2−x)ε = e(µ1+µ2−2x)ε

• x ≥ max(µ1, µ2): f(x) = e−(x−µ1)ε/e−(x−µ2)ε = e(µ1−x+x−µ2)ε = e(µ1−µ2)ε

It turns out that for a pair of Laplace distributions the quotient in the region min(µ1, µ2) ≤ x ≤
max(µ1, µ2) is either monotonically increasing or monotonically decreasing. For any x smaller than min(µ1, µ2),
the quotient is stable at e−ε and for any x larger than max(µ1, µ2) the quotient is stable at eε. Recall that
our buckets capture a range of quotients: bucket i captures all x such that f i < pA(E)/pB(E) ≤ f i+1. As
a result, each bucket i contains contiguous points and defines an interval on the x− axis. For each interval
we define the bucket borders, i.e., for the bucket with index i, we call the value x with f(x) = f i−1 the left
bucket border lbb(i) and the value x with f(x) = f i the right bucket border rbb(i).

For µ1 > µ2, the right bucket border rbb(i) is the x such that

e(2x−µ1−µ2)ε =f i = e(iε/gr) =: ej

⇔ (2x− µ1 − µ2)ε =j

⇔ (2x− µ1 − µ2) =j/ε

⇔ 2x =µ1 + µ2 + j/ε

⇔ x =(µ1 + µ2 + j/ε)/2

⇔ x =(µ1 + µ2 +
(iε/gr)

ε
)/2

⇔ x =(µ1 + µ2 + i/gr)/2

=⇒ rbb(i) =1/2(µ1 + µ2 + i/gr)

=⇒ rbb(i− 1) =1/2(µ1 + µ2 + i/gr− 1/gr)

=rbb(i)− 1/(2gr)

=lbb(i)

32



For µ1 < µ2, the right bucket border rbb(i) is the x such that

e(−2x+µ1+µ2)ε =f i = e(iε/gr) =: ej

⇔ (−2x+ µ1 + µ2)ε =j

⇔ (−2x+ µ1 + µ2) =j/ε

⇔ 2x =µ1 + µ2 − j/ε
⇔ x =(µ1 + µ2 − j/ε)/2

⇔ x =(µ1 + µ2 −
(iε/gr)

ε
)/2

⇔ x =(µ1 + µ2 − i/gr)/2

=⇒ rbb(i) =1/2(µ1 + µ2 − i/gr)

=⇒ rbb(i− 1) =1/2(µ1 + µ2 − i/gr + 1/gr)

=rbb(i) + 1/(2gr)

=lbb(i)

As a result, the bucket i has the value
∫ rbb(i)

lbb(i)
Laplace(µ1, 1/ε).

We compute the error correction term as `(i) :=
∫ rbb(i)

lbb(i)

(
B(x)− A(x)

fi

)
and we can directly compute the

virtual error from this term.
For the buckets with index ±i s.t. f i = eε we integrate over the respective remaining areas B(−i) =∫ rbb(−i)

−∞ Laplace(µ1, 1/ε) and to B(i) we add
∫∞
rbb(i)

Laplace(µ1, 1/ε). As we chose f to fit eε the events in

these regions exactly have the respective quotient of the bucket and we don’t have errors for these integrals.
Consequently, the error terms for bucket B(−i) are zero and the error terms for bucket B(i) are composed
of the error terms for the values x with lbb(i) < x < rbb(i).

Truncated Laplace distributions. The truncation of each of either of these functions, causes the quotient
of a region to be either 0 or to have 0 in the denominator, which we treat as infinity. The regions are captured
by the outer buckets with indexes −n and ∞ respectively.

5.2 Embedding the Gaussian mechanism

The truncated Gaussian mechanism is also an often-used mechanism in privacy-preserving applications. It
works similar to the Laplace mechanism insofar as it convolves the input (e.g., a query response) with a
Gaussian distribution. In this work, we use a mean µ = 0 and a standard deviation σ = 200

√
2 (to achieve

the same variance as LP(0, 200)) – denoted as GS(µ, σ2) –, and we truncate these distributions at µ− 2500
and µ+ 2500, if not mentioned otherwise.

For the truncated Gaussian mechanism, we do not use a precise embedding but rather produce a histogram
for each of the two distributions, using SciPy’s scipy.stat.norm function. Then, we use the normal interface
of our bucketing implementation that parses a pair of histograms and produces a bucketlist vector, a real error
vector, and a virtual error vector. We accept that this implementation may produce significant discretization
artifacts that, however, should be both small w.r.t. the values concerned and should not lead to a significantly
different shape of the distributions under composition.

5.3 Embedding CoverUp’s data

We illustrate the expressivity of our approach by applying it to measured data from the CoverUp paper,
where the input signal is a distribution of response delays to which Gaussian noise has been added. Hence,
the original signal (the response delays) are convolved with a Gaussian distribution. CoverUp uses the
Gaussian distribution GS(0, 2002) that is truncated at −1000ms and 1000ms. This use case shows that our
approach can be applied to the analysis of complex distributions as easily as to randomized responses to
database queries with a fixed sensitivity.
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Classical anonymous communication networks (ACN) have the goal of hiding the IP address of the sender
and the recipient of a communication. Such ACNs do however not hide the participation time, i.e., whether,
when, and for how long a party uses an ACN. This participation time can be used for long-term attacks (e.g.,
intersection attacks) and can raise suspicion national state-level adversaries. Sommer et al. [14] propose a
system, called CoverUp, that has the goal of hiding this participation time leakage. CoverUp assumes a
collaborating popular web service with a significant amount of regular visitors. This webpage would be
incorporated into the usage of an ACN and trigger all its visitors to produce cover traffic. This web page
would serve an iFrame that loads content from a trusted server, which in turn would serve a piece of JavaScript
code that executes a dummy client for the ACN on the visitors browser. ACN users would act as a normal
visitor, receive the JS code, but additionally have a dedicated CoverUp browser extension installed. The
browser extension would enable a communication channel to an external application by replacing the dummy
messages from the dummy client with actual messages from an external application and by forwarding all
messages from the network to the external application. For CoverUp to properly hide the participation time
ACN users (called voluntary participants) and normal website visitors (called involuntary participants) have
to be indistinguishable. While both execute the same piece of JS code, the voluntary participants perform
additional computations. As a consequence, the response time of the voluntary participants differs by a few
milliseconds from the response time of the involuntary participants. CoverUp remedies this timing leakage
by adding random delays in the JS code, i.e., for voluntary and involuntary participants.

The CoverUp paper presents an analysis of this timing leakage (after adding the noise) and aims for a
high degree of privacy after more than 250k observations. The CoverUp authors experimentally measured
the timing delays of voluntary and involuntary participants in the lab and produced histograms of these
timing delays. These histograms are used as a model for the timing delays of voluntary and involuntary
participants to assess the timing leakage of CoverUp. We apply our algorithm to these histograms of timing
delays, to illustrate that and how well our approach works on measured data. We use data from the CoverUp
project, which is openly available online.6

In this comparison, we only consider those measured delays on a Linux system that are observable after
the webpage has been loaded, called the “periodic” measurements in the CoverUp paper.

5.4 Computing the Kairouz et al.’s composition theorem

We directly implement Kairouz et al.’s composition theorem.

Theorem 3 ([10]). For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-differentially private mechanisms satisfies

(ε′, δ′)-differential privacy

under k-fold composition, for all i ∈ {0, . . . , bk/2c} where ε′ = (k − 2i)ε and δ′ = 1− (1− δ)k(1− δi)

δi =

∑i−1
`=0

(
k
`

) (
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

We compute for a given k the composition by looking up for a fine-grid of ε values the corresponding δ
value of the original pair of distributions and then computing and storing all (ε′, δ′) pairs according to the
theorem above, i.e., for all i ∈ {0, . . . , bk/2c}. From these stored (ε′, δ′) pairs, we remove all pairs for which
we have stored lower (ε′′, δ′′) pairs, i.e., pairs such that ε′′ ≤ ε′ and δ′′ ≤ δ′. We output the remaining list
of (ε′, δ′) pairs, which form a monotonically decreasing (ε, δ)-graph. Due to our direct implementation of δi,
we can only evaluate the composition theorem up to k = 512 before the intermediate computation results
(in particular, the eO(k)-terms) become too large.

In our computation, the granularity of the grid of ε values of the original pair of distributions naturally
leads to an imprecision. We use a fine grid of eε ∈ {(1 + 10−14)1.1

j | j ∈ {0, . . . , n}}, where we choose n
as a point where the (ε, δ) after k-fold composition becomes stationary. While we concede that it might be
possible to obtain slightly lower bound from the composition theorem, we are confident that due to this fine
grid the resulting graphs for Kairouz et al’s composition theorem that we compute are representative.
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Figure 6: The ε, δ graphs computed with Kairouz et al.’s composition theorem and with our bucketing
approach after k = 512 compositions for the Laplace mechanism, the Gaussian mechanism, and the CoverUp
data. The y-axis depicts the δ-values and the x-axis the eε values. The variance of the Gaussian mechanism
and the Laplace mechanism is 80, 000, the sensitivity is 1 (the centers at µ1 = 0 and µ2 = 1) respectively,
and in both mechanisms truncation happens at −2500 and +2500 from the respective µi.

5.5 Comparing evaluations

We are finally in a position to evaluate how our bucketing approach compares against Kairouz et al.’s
composition theorem. Figure 6a shows that our upper and lower bounds coincide, i.e., our results are tight.
Also, Kairouz et al.’s composition theorem is tight with respect to a pair of Laplace distributions (i.e., the
Laplace mechanism). Figure 6b shows that for the Gaussian mechanism that composition theorem is already
after 512 compositions not very tight. Figure 6c shows that for the CoverUp-data our bucketing approach
is tight, while there is a large gap to the bounds from Kairouz et al’s composition theorem.

Figure 7 compares for fixed epsilon values the evolution of the delta bounds from Kairouz et al.’s com-
position theorem and from our approach. This comparison again uses the Laplace mechanism, the Gaussian
mechanism and the CoverUp data.

6 Comparison of the Gaussian and the Laplace mechanism

As we have seen in Section 5.5, Kairouz et al.’s composition theorem is fairly tight for the Laplace mechanism
but not for the Gaussian mechanism. Figure 8 (upper two graphs) compares a truncated Laplace and a
truncated Gaussian mechanism and find that for the same variance the Gaussian mechanism provides a
significantly higher degree of privacy. For a fixed variance of 80, 000, a sensitivity of 1 (mu1 = 0 and µ2 = 2),
and a truncation at −2500 and 2500 for µ1 (and −2499 and 2501 for µ2), the upper left graph in Figure 8
depicts how, for different but fixed epsilon values, the delta increases over the course of 512 evaluations. The
graph clearly shows that in the course of 512 compositions, the reduced leakage of the Gaussian mechanism
becomes visible. The upper right graph in Figure 8 shows the full epsilon-delta graphs of a Gaussian and a
Laplace mechanism after 512 compositions, where the two mechanisms use noise that has the same variance
(80, 000). In particular, the delta-value where the (ε, δ) graph levels out is 4 orders of magnitude lower for
Gaussian noise than it is for Laplace noise, since the Gaussian distribution falls much steeper than Laplace
distribution. This difference of the Gaussian and the Laplace mechanisms becomes even more pronounced in
our analysis and improvement of the Vuvuzela protocol in Section 7. The analysis of Vuvuzela also illustrates
that the steepness of the Gaussian distribution enables a much tighter truncation, i.e., the distribution can
be truncated much earlier than a Laplace distribution without sacrificing privacy. This tighter truncation,
in turn, leads to a smaller range of noise that is required to achieve the same privacy goals as with Laplace
noise.

6Available under http://coverup.tech.
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Figure 7: The ε, δ graphs computed with Kairouz et al.’s composition theorem and with our bucketing
approach after k = 512 compositions, on the left hand side applied to a pair of Laplace distributions with
a scale factor of γ = 200 and µ1 = 0 and µ2 = 1 (together with the lower bound) and on the right hand
side applied to a pair of histograms of timing-leakage-data measured from a real system (without the lower
bound). The y-axis depicts the δ-values and the x-axis the eε values.

Additionally, we found surprising evidence that the epsilon-delta graph of the Laplace mechanism con-
verges toward the epsilon-delta graph of the Gaussian mechanism, as long as the Gaussian mechanism has
half the variance of the Laplace mechanism. For the same sensitivity, and truncations as above, the lower
two graphs in Figure 8 illustrate that after 512 compositions these two graphs converge toward each other.
The lower left graph in Figure 8 depicts how, for different but fixed epsilon values, the delta increases over
the course of 512 evaluations. The graph clearly shows how in the course of 512 compositions, the delta
values of the Laplace mechanism converge toward the delta values of the Gaussian mechanism. The lower
right graph in Figure 8 shows the full epsilon-delta graphs of a Gaussian and a Laplace mechanism after
512 compositions, where the Laplace mechanism has twice the variance (80, 000) of the Gaussian mechanism
(40, 000). This figure shows how close the two epsilon-delta graphs are and that they almost only differ due
to their different y-values at the point where they have been truncated. This difference, however, is crucial.
As explained above, it is caused by the steepness of the Gaussian distribution and enables a much tighter
truncation, which in turn can lead to significantly less noise overhead, as we illustrate in our analysis of
Vuvuzela. We leave it for future work to investigate this connection further.

7 Application to Vuvuzela

In this section, we show how aiming for tight bounds in a privacy analysis can significantly improve the
bandwidth overhead of a protocol. We use the Vuvuzela [15] protocol as an example, which is an anonymous
communication system tailored towards messengers. Vuvuzela uses Laplace noise to achieve strong privacy
properties. Using the insights from Section 6, we go one step further and propose to change the shape of
the noise distribution from Laplace noise to Gaussian noise. With our bucketing approach, we show that
already 5 to 10 times less noise7 suffices to achieve the same strong privacy properties.

We acknowledge that for the analysis of the Laplace noise Kairouz et al.’s composition result would
already yield significantly better results than Vuvuzela’s original analysis. For the analysis of the Gaussian
noise, however, our comparison from Section 6 indicates that their result would not have provided tight
guarantees.

We refer to the original Vuvuzela paper for a full presentation and restrict our presentation to the
bare bones that are needed to understand the noise messages that Vuvuzela uses to achieve strong privacy
properties.

7The more observations are estimated, the higher the error of the advanced composition result, which is used in the original
analysis from the Vuvuzela paper; hence, in those cases the tightness of our bounds leads to a more significant improvement.
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Figure 8: Truncated Gaussian mechanisms (red) vs. truncated Laplace mechanism (blue) both with sensi-
tivity = 1. For both mechanism truncation is at µi − 2500 and µi + 2500 (µ1 = 0 and µ2 = 1). At twice the
variance the Laplace mechanism converges towards the Gaussian mechanism, so much that the blue lines
almost completely cover the red lines.

We stress that our work contributes to improving the epsilon-delta bounds and thus to improve a given
privacy analysis. This work is not meant to help in finding a suitable attacker model, a suitable definition
or accurate usage profiles. Hence, we stick to Vuvuzela’s privacy analysis, as it was presented in the original
paper.

7.1 Protocol overview

Vuvuzela clients communicate by deposing their encrypted messages in virtual locations in the one of the
mixes (the locations are called dead drops). For agreeing on such a dead drops, Vuvuzela deploys a dialing
protocol where the dialer sends the ID of a dead drop to dedicated invitation dead drops. This ID is encrypted
with the peer’s public key with an encryption schemes that is designed to hide the recipient’s identity. On
the dialer’s side directly the conversation protocol is started where the client regularly retrieves the chat
messages from and deposits chat messages to the dead drop from the invitation. If the recipient receives and
accepts the invitation, the recipient also starts the conversation protocol.
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Figure 9: The privacy bounds for Vuvuzela’s dialing protocol. The left graph shows the eε-values on the
y-axis and the number of observations r on the x-axis (i.e., r-fold composition) and the right graph shows the
corresponding δ-values on the y-axis. The solid green (µ = 8k, γ = 500), the dashed red (µ = 13k, γ = 770k),
and the dotted blue line (µ = 20k, γ = 1130) are from the original Vuvuzela paper, and the solid magenta
line (Gaussian noise, µ = 4.1k∗, σ = 320) is computed with this work’s technique.

Privacy analysis. Vuvuzela assumes a global network-level attacker that is additionally able to compro-
mise some mixes. To achieve strong resistance against compromised servers, each path in Vuvuzela traverses
all nodes. To counter traffic correlation attacks, Vuvuzela clients produce dummy trafic at a constant rate.
The Vuvuzela paper argues that the only remaining source of leakage is the patterns of registering invitations
and patterns of access requests to these dead drops: single requests to dead drops, corresponding to dummy
messages or messages before the peer accepted the conversation, and pairs of requests to the same dead drop,
corresponding to an active conversation.

Privacy-enhancing measures. Vuvuzela reduces the information that an attacker can learn by trigger-
ing each mix to produce cover stories for potentially communicating parties. For the dialing protocol, the
mixes produce cover stories (i) by sending dummy invitation registrations and invitation requests to the
dedicated invitation dead drops. The number of these dummy registrations and dummy requests is in each
round drawn from the truncated Laplace distribution dmax(0,Laplace(γd, µd))e for some system parameters
γd and µd. For the conversation protocol, the mixes produce cover stories (ii) for idle parties, by sending
pairs of dummy access requests to uniform-randomly chosen dead drops, and (iii) for (bi-directionally) com-
municating parties, by sending (single) dummy access requests to uniform-randomly chosen dead drops. The
number of (single) dummy access requests (ii) is in each round drawn from the truncated Laplace distribu-
tion dmax(0,Laplace(γc, µc))e for a system parameters γc and µc, and the number of pairs of dummy access
requests (iii) is in each round drawn from the truncated Laplace distribution dmax(0,Laplace(γc/2, µc/2))e.
The system parameters γd, γc, µd, µc determine how much noise-overhead the protocol produces and how
much privacy it will offer.

Privacy-impact of the dummy requests. The goal of the these dummy requests and invitations is to
produce a cover stories for dialing parties (i), for idle parties (ii), and for conversing (iii). The Vuvuzela paper
separately conducts a privacy analysis for the dialing protocol ((i)) and the conversation protocol ((ii) and
(iii) combined). For the dialing protocol, the paper concludes that it suffices to bound the r-fold (ε, δ) differ-
ential privacy of max(0,Laplace(γd, µd)) and max(0,Laplace(γd, µd+2)), i.e., the (ε, δ) differential privacy of
the product distributions max(0,Laplace(γd, µd))

r and max(0,Laplace(γd, µd + 2))r. The parameter r indi-
cates the number of rounds at which that the attacker conducts an observation. For the conversation protocol,
the paper concludes that it suffices to estimate the r-fold (ε, δ) differential privacy of max(0,Laplace(γc, µc))+
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Figure 10: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).

max(0,Laplace(γc/2, µc/2)) and max(0,Laplace(γc, µc+2))+max(0,Laplace(γc/2, µc/2+1)). The Vuvuzela
paper uses the advanced composition theorem for differential privacy [7] to bound ε and δ. The paper ana-
lyzes for the conversation protocol three system parameters: µ = 150k, γ = 7.5k, µ = 300k, γ = 13.8k, and
µ = 450k, γ = 20k. We show that the resulting bounds can be significantly improved and we indicate all
new bounds with a “∗” sign in the respective figures.

7.2 Tighter privacy analysis for the dialing protocol

We apply our method to estimate tighter ε and δ bounds for Vuvuzela, and to reduce the recommended
noise. Recall that we observed in Section 6 that Gaussian noise for the same variance behaves better under
composition than Laplacian noise. This section studies how much our tighter bounds enable us to reduces
the noise in the case that Gaussian noise is used or that Laplace noise is used, and this section studies how
much the originally recommended amount of noie improves the degree of privacy, in case Gaussian noise is
used or Laplace noise is used. We stress that while in the case of Vuvuzela there is no utility function that we
have to preserve other than to minimize the bandwidth overhead, our approach is also suited for applications
where a utility function has to be preserved. In those cases, we would probably reduce the variance to an
appropriate level and then compute tight bounds.

For the dialing protocol, we show that with Gaussian noise the noise rate can be reduced by a factor of
almost 5 while still meeting the privacy requirements, and for the conversation protocol the noise rate can
be reduced by a factor of 10 while still meeting the privacy requirements. With Laplace noise the noise rate
can be reduced by a factor of 2 and for the conversation protocol by a factor of 4. As we only present the
Laplace noise for comparison, we placed the graphs for the Laplace noise (Figure 13 and 14) at the appendix,
for the sake of brevity. As the conversation protocol produces more observations (i.e., more compositions)
and the untightness of the bounds that the original Vuvuzela paper used amplifies more heavily for a high
the number of observations, the tightness of our bounds is more pronounced for the conversation protocol.

For comparability, we depict in Figure 9 the original graphs from the Vuvuzela analysis, which show the
epsilon graph and the delta graph with increasing r, respectively, for the dialing protocol and estimated with
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Figure 11: The privacy bounds for Vuvuzela’s conversion protocol. The left graph shows the eε-values on
the y-axis and the number of observations r on the x-axis (i.e., r-fold composition) and the right graph
shows the corresponding δ-values on the y-axis. The solid green line LP(150k, 7.5k), the dashed red line
LP(µ = 300k, γ = 13.8k), and the dotted blue line LP(450k, 20k) are from the original Vuvuzela paper, and
the solid magenta line GS(45k∗, 7.5k2) is Gaussian noise for which the (ε, δ) pairs have been computed with
this work’s technique.

the advanced composition result. We extend those Figures with the lowest, magenta graphs (marked with
a ∗) that show the performance of our proposed Gaussian noise that uses nearly 5 times less noise and is
computed with our bucketing approach. As our method computes not only one ε, δ pair for each number of
observations r but an entire ε, δ graph, we chose representative ε values that are close to (and even below)
the epsilon values for the highest noise configuration LP(20k, 1130) from the original Vuvuzela paper. The
figure shows that our bounds with the reduced noise and with using Gaussian noise GS(4.1k, 8332) are below
the previous bounds for the highest noise configuration LP(20k, 1130), proving that a noise reduction of
nearly a factor of 5 still yields for the dialing protocol to achieve the privacy requirements of eε ≤ 2 and
δ ≤ 10−4.

Next, we illustrate that our method computes bounds that are several orders of magnitude better than
Vuvuzela’s original bounds. For r = 8, 192 observations, Figure 10b illustrates that using the highest
noise configuration with Laplace noise LP(20k, 1130) results in a privacy bound that is almost 3 orders
of magnitude lower, in terms of the delta, and with Gaussian noise GS(20k, 15982) more than 4 orders of
magnitude. The figure depicts the ε, δ graphs computed by our approach for the highest noise configuration
LP(20k, 1130), for the corresponding Gaussian noise GS(20k, 15982), for the configuration that we propose
GS(4.1k, 8332)), and compares it against Vuvuzela’s previous bounds LP(20k, 1130). We additionally depict
the respective lower bounds, which show that our bounds are quite tight in the sense that there is not much
room for improvement. Moreover, due to the more comprehensive view that a full ε, δ graph provides, we can
see that the the highest noise configuration with Gaussian noise GS(20k, 15982) even achieves the privacy
requirements (δ ≤ 10−4) for less than eε = 1.5 after 8, 192 observations.8

We would like to stress that the lower bounds show that our result is tight up to δ ≥ 10−4 for
GS(4.1k, 8332), δ ≥ 10−6 for LP(20k, 1130), and GS(20k, 15982) for δ ≥ 10−8. This tightness is solely a
scalability issue and ultimately only depends on the number (and hence granularity) of the buckets. A
more optimized implementation (e.g., based on GPUs) would be able to significantly increase the number of
buckets, thus achieving even tighter upper and lower bounds.

For completeness, we also show in Figure 10a the ε, δ graphs for the dialing protocol for low r: r = 1024
and the recommended parameters µ = 8k, γ = 500. Here, we can see that our bound is 2 orders of magnitude
lower than Vuvuzela’s previous bounds for the noise level. The figure also shows that reducing the noise by

8Recall that the variance of GS(µ, (
√

2x)2) = 2x2 equals the variance of LP(µ, x) = 2x2.
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150k and σ = 10.3k (dotted), and the red dot represents
the ε, δ combination for µ = 150k, γ = 7.3k from the
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(b) After r = 524, 288 observations with Gaussian noise
with µ = 45k and σ = 7.5k (solid), Laplace noise µ =
450k, γ = 20k (dashed), and Gaussian noise with µ =
450k and σ = 28.2k (dotted), and the red dot represents
the ε, δ combination for µ = 450k, γ = 20k from the
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Figure 12: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).

a factor of 5, i.e., GS(1.6k, 320), still achieves the privacy requirements (eε ≤ 2 and δ ≤ 10−4).
As a comparison, using Laplace noise only enables a noise reduction of a factor of 2, as shown in Figure 13

in the appendix. Interestingly, the reduced Laplace noise achieves the same privacy bounds as the reduced
Gaussian noise if the Laplace noise has twice the variance as the Gaussian noise (i.e., γ = σ) but a 2.5 times
wider range, as indicated in Section 6. This shows what a significant effect the steepness of the Gaussian
noise can have in practice.

On a technical note, for these truncated Laplace-distributions the (ε, δ) bounds are the same no matter
whether the distributions are swapped or not; hence, we only compute the bounds for one order.

7.3 Tighter privacy analysis for the conversation protocol

Figure 11 depicts the epsilon graph and the delta graph with increasing r, respectively, for the conversation
protocol. We compare Gaussian noise GS(45k, 28.82)k with the previous bounds for the recommended noise
configurations. We again chose representative ε values that are close and even below to the epsilon values for
the highest noise configuration LP(450k, γ = 20k) from the original Vuvuzela paper and the corresponding
Gaussian noise GS(450k, 28.8k2) for the highest noise configuration. The figure shows that our bounds
GS(45k, 2.5k2) are below the previous bounds for the highest noise configuration LP(450k, 7.3k), proving
that a noise reduction by a factor of 10 is sufficient for the conversation protocol to achieve the privacy
requirements of eε ≤ 2 and δ ≤ 10−4.

The gap between our bounds and the previous Vuvuzela-bounds is even more pronounced in the analysis
of the conversation protocol. For r = 524, 288 observations, Figure 12b shows that using the highest noise
configuration LP(450k, 20k) results in privacy bounds that are almost 4 orders of magnitude lower, in terms
of the delta, and for the corresponding Gaussian noise GS(450k, 28.8k2) more than 6 orders of magnitude.
The figure depicts the ε, δ graph for the highest noise recommended configuration LP(450k, 20k)), the corre-
sponding Gaussian noise GS(450k, 28.8k), the drastically reduced lowest noise configuration GS(45k, 7.5k2)),
and compares these against Vuvuzela’s previous bounds. Also, Figure 12b shows the corresponding lower
bounds. We can see that our bounds for the reduced noise configuration GS(45k, 7.5k) are tight up to
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δ ≥ 10−5, for LP(450k, 20k) up to δ ≥ 10−8, and for GS(450k, 28.8k) up to δ ≈ 10−10. Moreover, we can
see that the highest recommended noise configuration with Gaussian noise GS(450k, 28.8k2) even meets and
exceeds the privacy requirements (eε = 1.25, δ = 10−4 or eε = 1.45, δ = 10−10) for r = 524, 288 observations.

For completeness, we also show in Figure 12a the ε, δ graphs for the conversation protocol for low
r = 65, 536 with noise configurations LP(150k, 7.3k), GS(150k, 10.3k2), and the factor-10-reduced configu-
ration GS(15k, 2.5k2). Here, we can also see the tightness of our bound: for LP(150k, 7.3k) up to δ ≥ 10−7,
for GS(150k, 10.3k2) up to δ ≥ 10−11, and for GS(15k, 2.5k2) up to δ ≥ 10−6. Moreover, we can see that the
highest noise configuration GS(150k, 10.3k2) is more than 7 orders of magnitude lower than Vuvuzela’s previ-
ous bounds for the same noise level. Moreover, we can see that the highest recommended noise configuration
with Gaussian noise GS(450k, 28.8k2) even meets and exceeds the privacy requirements (eε = 1.25, δ = 10−4

or eε = 1.4, δ = 10−11) for r = 65, 536 observations.
As a comparison, using Laplace noise only enables a noise reduction of a factor of 4, as shown in Figure 14

in the appendix. Also here, we can observe that the Laplace noise has twice the variance of the Gaussian
noise and has a 2.5 times wider range, illustrating the advantages of Gaussian noise in practice.

8 Conclusion and future work

In this paper we have presented bucketing, a sound numerical approach for computing upper and lower
bounds for differential privacy after k-fold composition. Our approach is based on concrete distributions,
but can be applied in a variety of cases, which can include adaptive composition, evolving sequences of
distributions and static distributions. All compositions, as well as our reshaping operation of squaring the
bucket factor have been shown sound and (empirically) tight in many cases.

We applied our bucketing approach to the anonymity network Vuvuzela where we computed bounds for
more than half a million compositions, deriving significantly better results than their previous analysis and
we found that by exchanging the Laplace noise with Gaussian noise, even better results can be achieved.
We also compared our approach to the Kairouz et al.’s composition theorem and found that their theorem
provides reasonably tight bounds for the Laplace mechanism but not for other distributions, such as the
Gaussian mechanism or for a pair of histograms of timing-leakage measurements from the CoverUp system.
We also observed that Gaussian mechanism behaves much better under a high number of compositions than
a Laplace mechanism wiht the same variance, and we found evidence that the (ε, δ) graph of the Gaussian
mechanism with half the variance of the Laplace mechanism converges to the (ε, δ) graph of the Laplace
mechanism.

We encourage the application of our bucketing to other DP mechanisms, such as to the optimal DP
mechanisms [8, 11] (e.g., comparing their composition behavior to the Gaussian mechanism) and to privacy-
preserving ML methods [1], as well as to improve existing privacy analyses. We consider exploring the
relationship (ε, δ)-DP of the Gaussian mechanism and the Laplace mechanism, as well as analyses probing
the development of DP provided by other noise distributions under composition an interesting direction for
future work.
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(a) After r = 1, 024 observations with Laplace noise
with µ = 4k and σ = 330 (solid), Laplace noise µ =
8k, γ = 500 (dashed), and Gaussian noise with µ = 8k
and σ = 707 (dotted), and the red dot represents the
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(b) After r = 8, 192 observations with Laplace noise
with µ = 10k and σ = 827 (solid), Laplace noise µ =
20k, γ = 1130 (dashed), and Gaussian noise with µ =
20k and σ = 1598 (dotted), and the red dot represents
the ε, δ combination for µ = 20k, γ = 1130 from the
original Vuvuzela paper.

Figure 13: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).
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(a) After r = 65, 536 observations with Laplace noise
with µ = 37.5k and σ = 2.3k (solid), Laplace noise
µ = 150k, γ = 7.3k (dashed), and Gaussian noise with
µ = 150k and σ = 10.3k (dotted), and the red dot
represents the ε, δ combination for µ = 150k, γ = 7.3k
from the original Vuvuzela paper.
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(b) After r = 524, 288 observations with Laplace noise
with µ = 112.5k and σ = 6.9k (solid), Laplace noise
µ = 450k, γ = 20k (dashed), and Gaussian noise with
µ = 450k and σ = 28.2k (dotted), and the red dot
represents the ε, δ combination for µ = 450k, γ = 20k
from the original Vuvuzela paper.

Figure 14: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).
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