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Abstract

Many applications require robust guarantees against thousands and sometimes millions of obser-
vations, such as anonymous communication systems, privacy-enhancing database queries, or privacy-
enhancing machine-learning methods. The notion of r-fold Approximate Differential Privacy (ADP)
offers a well-established framework with a precise characterization of the degree of privacy after r obser-
vations of an attacker. However, existing bounds for r-fold ADP are loose and, if used for estimating the
required degree of noise for an application, can lead to overcautious choices for perturbation randomness
and thus to suboptimal accuracy.

We present a numerical (although widely applicable) method for capturing the privacy loss of differ-
entially private mechanisms under composition, which we call privacy buckets. With privacy buckets we
compute provable upper and lower bounds for ADP for a given number of observations. We compare our
bounds with state-of-the-art bounds for r-fold ADP, including Kairouz, Oh, and Viswanath’s composi-
tion theorem (KOV), concentrated dfferential privacy and the moment’s accountant. We compare these
bounds for the Laplace mechanism, the Gauss mechanism, for real-world timing leakage data and for
the stochastic gradient descent and we significantly improve over their results (with the exception that
the KOV bound seems tight for the Laplace mechanism). Moreover, our lower bounds almost meet our
upper bounds, showing that no significantly tighter bounds are possible.

*The authors are in alphabetical order. Both authors equally contributed to this work.

1



Contents

1 Introduction 2
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related work 3
2.1 Worst case distributions for ADP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Tight ADP on distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Practical relevance of tight privacy bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Composition of differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Privacy buckets of two distributions 10
3.1 Informal description of privacy buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 A formal description of privacy buckets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Buckets per atomic event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Reducing and bounding the error 18
4.1 Buckets with error correction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Buckets and error correction terms per element . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Helpful properties of error correction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 The approximated delta with error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Comparison to Kairouz et al.’s composition theorem 35
5.1 Embedding the Laplace mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Embedding the Gauss mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Embedding CoverUp’s data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Computing Kairouz et al.’s composition theorem . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Comparing evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Comparison to bounds based on Rényi Divergence 40
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1 Introduction

Approximate differential privacy (ADP [6]) has been designed to quantify, with two parameters (ε, δ), the
privacy leakage of systems that require a careful trade-off between the system’s usefulness and the system’s
privacy leakage. Since its introduction, ADP has been successfully used to quantify the privacy leakage
of privacy-enhancing mechanisms in various applications, including query-response of sensitive databases,
training a deep neural networks [1] while hiding the training data, and even anonymous communication [24].
This privacy leakage, i.e., the (ε, δ) parameters, inevitably grows under continual observation; thus privacy
eventually deteriorates (see Apple’s case [23]). In many application scenarios, continual attacker-observation
is unavoidable, e.g., an attacker may have thousands if not hundreds of thousands of observation points.
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On one hand, precisely computing the (ε, δ) parameters after r observations, called r-fold ADP bounds,
is hard. On the other hand, imprecise bounds on (ε, δ) can lead to either a wrong perception of the privacy
leakage (resulting, e.g., in unsatisfied customers) or to an over-cautious choice of system parameters (resulting
in unnecessarily high costs). There is a rich body of work on approximating r-fold ADP-bounds, where r
is the number of observations, for privacy-enhancing mechanisms [9, 14, 1, 18, 8, 2]. Early work did not
take the shape of the mechanism’s output distribution into account [9, 14]. We show that such bounds are
tight w.r.t. the Laplace mechanism but imprecise for many other mechanisms, e.g., the Gaussian mechanism,
as these mechanism-oblivious bounds inherently assume a worst-case behavior under composition. Recent
work [1, 18, 8, 2], in contrast, introduced mechanism-aware bounds that take the shape of output distribution
of the mechanism into account and achieve significantly tighter bounds for some particular mechanism, such
as the Gaussian mechanism. However, it is not clear how tight previous mechanism-aware bounds are and
how much these bounds can be further improved.

1.1 Contribution

We introduce a numerical method—privacy buckets—for computing upper and lower r-fold (ε, δ)-ADP
bounds that take the mechanisms and their (fixed) noise parameters into account. To this end, we utilize a
discretized version of the privacy loss random variable introduced by Dwork and Rothblum [8]. Our approach
is sufficiently general enough to subsume the generic adaptive r-fold ADP bounds of prior work [14, 19]. We
compare our upper bounds with state-of-the-art bounds on adaptive r-fold ADP and significantly improve
over all of them. Moreover, our lower bounds almost meet the upper bounds, showing that no significantly
tighter bounds are possible.

Our evaluations also illustrate the usefulness of privacy buckets in gaining insights about the composition
behavior of various mechanisms. In particular, we find that for the right choice of scale parameter and
standard-deviation, the Laplace mechanism and the Gauss mechanism converge to the same privacy leakage,
i.e., their (ε, δ) parameters coincide from a sufficiently high number of observations r onward. 1

Our method is not only useful for deriving tight bounds for classical differential privacy mechanisms
but can be applied to any privacy analysis resulting in differential privacy. We exemplify this statement by
computing bounds for the anonymous communication system Vuvuzela [24], the stochastic gradient descent
mechanism for deep learning [1] and for timing-leakage measurement histograms of a recently introduced
browser extension for deniable communication [22].

2 Background and Related work

In this section, we review the notion of differential privacy, highlight an often implicit assumption in the
analysis of differentially privacy mechanisms, generalize differential privacy to pairs of distributions, and
position our work in the work from the literature.

Differential privacy Differential privacy (DP) [5] quantifies how closely related the outputs are of a
mechanism on two similar inputs, from an information-theoretic perspective. We say that a mechanism M
is ε-DP, if for any two closely related inputs D1, D2, ∀S ⊆ U . Pr [M(D1) ∈ S] ≤ eε · Pr [M(D2) ∈ S]. To
extend the applicability of DP, approximate differential privacy [6] (ADP) has been introduced, which allows
for distributions to exceed a limiting factor ε, as long as this deviation can be limited to a small value δ in
the following way: ∀S ⊆ U . Pr [M(D1) ∈ S] ≤ eε · Pr [M(D2) ∈ S] + δ. This work focuses on ADP.

2.1 Worst case distributions for ADP

Classically, differential privacy argues about the output of a probabilistic mechanism M that is run on similar
inputs (e.g., neighboring databases). Since M is probabilistic, the application of M to any input D can be
seen as a random variable with outputs from a distribution M(D). Differential privacy requires the outputs
of M on all pairs of neighboring databases w.r.t. an application specific sensitivity-metric, i.e., all pairs of

1For the expert reader, this observation indicates that the result from Dwork and Rothblum [8], that subgaussian privacy
loss variables compose (at most as badly as) a Gaussian privacy loss variable, can be generalized.
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distributions M(D1),M(D2), where D1 and D2 are neighboring, to be closely related (quantified via the
privacy parameters ε and δ).

Our approach works on individual pairs of distributions. While at first glance a focus on single pairs of
distributions might seem to restrict the applicability to particular queries, our approach leads to far more
general results. In this section, we explain that our approach can be used to analyze mechanisms in the
presence of arbitrary adversarial queries. Many differential privacy proofs analyze inputs that are worst-
case in the following sense: in terms of privacy these inputs are as bad as any other pair of inputs for a
given sensitivity (see Definition 11). Applying such worst-case inputs (x0, x1) to a mechanism M leads to
a pair of worst-case distributions (M(x0),M(x1)). Such worst-case distributions are typically considered in
differential privacy proofs. Our approach computes adaptive r-fold ADP for a pair of distributions and can
thus be used in the analysis of a mechanisms M if it is applied to such worst-case inputs (see Corollary 1).
To understand why worst-case distributions are an integral part of proofs for differential privacy, we now
discuss, on an abstract level, how we typically prove that a mechanism is differentially private.

Most differential privacy analyses implicitly use worst-case distributions For illustration, let us
consider a mechanism, where M(D, q) (for a database D and a query q) can be divided into a precise response
f(D, q) to a query and an independent noise distribution N . In the simplest case, mechanisms are of the
form M(D, q) = f(D, q) + N , such as the Laplace mechanism, the Gauss mechanism, as well as any other
distribution of noise N added to some function f(D, q), where N does not depend on f(D, q). In all these
cases, differential privacy guarantees can be calculated based solely on the distribution of the noise and on
the sensitivity ∆f , where2

∆f = max
D1, D2 neighboring

query q

|f(D1, q)− f(D2, q)|.

To show that M satisfies (approximate) differential privacy the proof then typically analyze the following
two distributions: N and N + ∆f , implicitly assuming that f(D1, q) = 0 and f(D2, q) = ∆f . Moreover,
the proof then argues that for any value ∆′ < ∆f the distributions N and N + ∆′ also satisfy differential
privacy. From this simplified analysis, it can then (implicitly) be derived that for all other values of f(D1, q)
and f(D2, q) s.t., |f(D1, q)− f(D2, q)| ≤ ∆f , f(D1, q) +N and f(D2, q) +N also satisfy differential privacy,
which concludes the analysis. In any such analysis, the worst-case distributions are the ones that are given
N and N + ∆f and those distributions can be used for our bucket analysis.

A prominent example of such an analysis is a recent work on a differentially private a mechanism for
privacy-preserving stochastic gradient descent [1]. In this work, Abadi et al. first prove that a pair of a
Gaussian (µ0) and a mixed Gaussian ((1 − q)µ0 + qµ1), where µi is a Gaussian with mean i, is worst case
for their analysis, and they then estimate differential privacy for this pair of distributions.

What if my differential privacy analysis doesn’t implicitly use worst-case distributions? If the
mechanism does not consist of and cannot be reduced to independent noise being added to a numerical value,
the above simplified description does not immediately apply. However, Murtagh and Vadhan [20, Lemma
3.2 & Lemma 3.7] show that for any (ε, δ)-DP mechanism M there is a worst case mechanism Mε,δ operating
on a single bit such that ADP guarantees for Mε,δ translate directly to ADP guarantees for M , even under
r-fold adaptive composition.3

In more detail, they show [20, Lemma 3.2] that there is a probabilistic translation T that relates every
differentially private mechanism M on two neighboring inputs D0 and D1 to a generic pair of distributions
Mε,δ(0) and Mε,δ(1). They then leverage the post-processing property of differential privacy to show that
analyzing Mε,δ(0) and Mε,δ(1) is sufficient, even under composition.

2The notion of neighboring databases differs from application to application. For counting queries, e.g., two databases are
typically called neighboring if they differ in at most one row.

3There are mechanisms in the literature for which the privacy parameters (e.g., the standard deviation σ of a Gaussian noise
distribution) can be adaptively chosen for every run and depending on previous adversarial observations. If privacy cannot be
bounded per response or the number of responses relevant for computing privacy is unbounded, we may not find worst-case
distributions [21].
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Figure 1: A graph depicting δ(ε) for the truncated Gauss mechanism (left) and a graphical depiction of how
to compute δ(ε) for the truncated Gauss mechanism (right). Note that eε ·A is not a probability distribution.

Thus, considering such worst-case distributions and their behavior under composition is sufficient for
deriving bounds on the mechanism M . Moreover, even for different mechanisms and adaptively chosen
neighboring inputs, one can compute sound bounds on differential privacy by only considering the distribu-
tions Mε,δ(0) and Mε,δ(1). This technique gives us a fall-back plan for computing bounds on the distributions
of Mε,δ(0) and Mε,δ(1) if no more than ε and δ of the mechanism M is known. If more is known (ideally
two exact output distributions) we can derive significantly tighter bounds.

Worst-case distributions for the Laplace mechanism As an example, let us consider counting queries
q with sensitivity 1 to which Laplace noise is added: the mechanism M that gets a database D as input is
defined as M(D) := q(D) + LPλ,0, where LPλ,µ is the Laplace distribution with scale parameter λ and mean
µ (and f(D, q) := q(D)). In this example, it suffices to only consider LPλ,0 and LPλ,1, with means 0 and 1,
instead of considering M(D0) and M(D1) for all possible combinations of neighboring databases D0 and D1.
Let D0 and D1 be two such neighboring databases where the true answers to a query q are q(D0) = x and
q(D1) = x+ 1, respectively, for some numerical value x.4 We can map any output y drawn from LPλ,µ (for
µ ∈ {0, 1}) to y+x to obtain the correct adversarial view for the respective scenario M(Di) = q(Di)+LPλ,0.

2.2 Tight ADP on distributions

Approximate differential privacy is typically captured with two parameters ε and δ. In this work we show
that considering not just one such pair of parameters, but a parameter space helps to derive tight adaptive
r-fold ADP composition results. This parameter space of two distributions can be represented as a function
δ(ε) such that (ε, δ(ε))-ADP holds and δ(ε) is minimal (for ε ≥ 0). To capture this minimality, we define
(tight) differential privacy (generalized to pairs of distributions) and show how to precisely compute δ(ε).

Definition 1 ((Tight) ADP). Two distributions A and B over the universe U are (ε, δ)-ADP, if ∀ sets
S ⊆ U ,

PA(S) ≤ eεPB(S) + δ(ε) and

PB(S) ≤ eεPA(S) + δ(ε),

where PA(x) denotes the probability of the event x in A and PB(x) denotes the probability of the event x
in B A and B are tightly (ε, δ(ε))-ADP if they are (ε, δ(ε))-ADP, and ∀δ′ ≤ δ(ε) such that A and B are
(ε, δ′)-ADP we have δ(ε) = δ′.

4Since the differential privacy guarantee and analysis are symmetric, we can assume w.l.o.g. that q(D0) < q(D1).
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A note on utility and sensitivity. In the remainder of the paper, we consider pairs of distributions.
In particular analyzing the ADP-parameter of mechanisms amounts to analyzing the respective worst-case
for a given sensitivity. Hence, we can abstract away from the sensitivity of two inputs, and we can abstract
away from the utility functions of a task.

Computing a tight ADP bounds. To see that and how we can compute δ(ε), first consider that any
pair of distributions is (ε, 1)-ADP for arbitrary ε ≥ 0. More precise bounds for distributions A and B can be
captured by setting δ(ε) to the area between the probability distributions of B and a scaled-up version of A:
we multiply every point of the curve of A with eε (which is not a probability distribution anymore, because
it sums up to eε instead of to 1). We refer to Figure 1 for the (ε, δ(ε))-graph of possible (tight) ADP-bounds
for two truncated Gaussian distributions (left side) and for a graphical depiction of this intuition (right
side). Any area where B is larger than this scaled-up curve contains probability mass for events x outside
of the multiplicative bound, i.e., for which we have PA(x) ≤ eεPB(x). The difference between those terms is
precisely what we need to characterize.

Lemma 1. For every ε, two distributions A and B over a finite universe U are tightly (ε, δ)-ADP with

δ = max

(∑
x∈U

max (PA(x)− eεPB(x), 0) ,

∑
x∈U

max (PB(x)− eεPA(x), 0)

)

Proof. Let ε ≥ 0 and let A and B be two distributions over the universe U . We show the equivalence by first
showing that (1) for every set S, the calculation describes an upper bound and then that (2) there exists a
set S such that this bound is tight.

(1) We show that ∀S ⊆ U ,
PA(x ∈ S : x)− eεPB(x ∈ S : x)

≤
∑
x∈U

max (PA(x)− eεPB(x), 0)

The inverse direction then follows analogously.

PA(x ∈ S : x)− eεPB(x ∈ S : x)

=
∑
x∈S

PA(x)− eεPB(x)

≤
∑
x∈S

max (PA(x)− eεPB(x), 0)

≤
∑
x∈U

max (PA(x)− eεPB(x), 0)

(2) Let S := {x ∈ U s.t. Pr [x ∈ A] ≥ eεPr [x ∈ B]}. Then,

PA(x ∈ S : x)− eεPB(x ∈ S : x)

=
∑
x∈S

PA(x)− eεPB(x)

=
∑
x∈U

max (PA(x)− eεPB(x), 0) .
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Analogously, for S := {x ∈ U s.t. Pr [x ∈ B] ≥ eεPr [x ∈ A]},

PB(x ∈ S : x)− eεPA(x ∈ S : x)

=
∑
x∈S

PB(x)− eεPA(x)

=
∑
x∈U

max (PB(x)− eεPA(x), 0) .

Thus, for every pair of distributions A and B and for every ε ≥ 0 the distributions are tightly (ε, δ)-
differentially private, where δ is calculated as described.

If only one pair ε, δ(ε) is considered, composition can only be based on very limited information about the
distributions. In this case, for all we know, the distributions could actually have the shape of the randomized
response distributions Mε,δ(0) and Mε,δ(1).5 However, by considering more information we can derive much
better composition bounds. We refer to Figure 2 both for the guarantees of those distributions (Gaussian
versus Mε,δ(0/1)) under 512 compositions (left side) and for a graphical depiction of those distributions
(right side).

2.3 Practical relevance of tight privacy bounds

To further highlight the importance of tight privacy bounds for actual mechanisms and protocols we briefly
discuss as a case study the Vuvuzela [24] protocol, which is an anonymous communication system tailored
towards messengers. The Vuvuzela paper argues that the only leakage of their strong anonymity mechanisms
is the patterns of communication between entities. To limit this leakage, they apply noise to the patterns by
sending a random number of dummy messages, where the number of messages follows a truncated Laplace
distribution. Vuvuzela has two relevant protocol parts that can be analyzed separately: the dialing protocol
(to establish contact) and the communication protocol (to transfer messages).

To quantify the improvements of a tight analysis, Figure 19 plots the growth of ε and the growth of
δ, respectively, with an increasing number of observations r for the conversation protocol, one of the two
relevant parts of their system. The original paper [24] proposed to increase privacy with dummy messages
that are distributed according to a Laplace distribution. We propose to use a Gaussian distribution with a

5Kairouz, Oh, and Viswanath [14] proved that if a mechanism satisfies (ε, δ)-ADP, it cannot have more leakage than Mε,δ.
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Figure 3: Vuvuzela conversion protocol: bounds on ε and δ over r (log-scale). We compare the original bounds
for the originally recommended mechanisms with 150k, 300k, 450k, analyzed with previous bounds [9] and
our recommended mechanism with 45k messages overhead per round, analyzed using privacy buckets.

smaller mean that significantly reduces the noise-overhead. The original paper proposed three configurations
with different noise overhead (150k, 300k, and 450k noise messages per round) and privacy guarantees. We
show that with Gaussian noise and a tighter analysis, we can achieve a higher degree of privacy than the
previous highest-noise configuration with a lower overhead (45k noise messages per round) than the lowest-
noise configuration. Our proposal, achieves with a factor 10 reduction in the overhead than the highest-noise
configuration the same degree of privacy.

Moreover, a tight analysis reveals several other potential improvements. For r = 500, 000 the high
configuration of Laplace noise (LP-high) provides a privacy of δ almost 4 orders of magnitude lower, and
the corresponding Gaussian noise (with the same variance and mean) more than 6 orders of magnitude
lower in comparison to their original guarantees. Furthermore, we can see that even a Gaussian noise with
1/3 of the average noise of even GS-new2 meets the privacy requirements of eε ≤ 2 and δ ≤ 10−4 for
r = 500, 000 observations. We also analyze the dialing protocol, where similar improvements are possible:
5 times lower Gaussian noise suffice for matching their best guarantees and using Laplace noise incurs a
privacy improvement of 3 orders of magnitude, whereas comparable Gaussian noise allows an improvement
of 4 orders of magnitude.

We refer the interested reader to Section 8 for a more detailed description of our Vuvuzela analysis.

2.4 Composition of differential privacy

One of the main advantages of differential privacy is the fact that guarantees are still sound under composi-
tion, albeit with increasing values for ε and δ.

Definition 2 (k-fold DP of a mechanism). A randomized algorithm M with domain D and range U is k-fold
(ε, δ)-differentially private for sensitivity s if for all S ⊆ Uk and for all (x1, . . . , xk), (y1, . . . , yk) ∈ Dk such
that ∀1 ≤ i ≤ k. ||xi − yi||1 ≤ s:

Pr[(M(x1), . . . ,M(xk)) ∈ S]

≤eε Pr[(M(y1), . . . ,M(yk)) ∈ S] + δ

Note that when we describe differential privacy in terms of distributions over the worst-case inputs, the
composition of differential privacy is equivalent to considering differential privacy for product distributions. If
x0, x1 are the worst-case inputs for a mechanism M , resulting in the distributions M(x0) and M(x1), then the
k-fold composition is described in Definition 1 on the distributions A = M(x0)k and B = M(x1)k. Similarly,
a composition of two different mechanisms M and M ′ with worst-case inputs (in the sense of Section 2.1)
x0, x1 and x′0, x

′
1 respectively, boils down to Definition 1 on the distributions A = M(x0) ×M ′(x′0) and

B = M(x1)×M ′(x′1).
The main composition results we compare our work with are: naive composition, slightly less naive

composition and two composition result with improved bounds [9, 14]. We recall these results here.
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Lemma 2 (Näıve Composition). Let (A1, B1) and (A2, B2) be two pairs of distributions, such that A1 and
B1 are (ε1, δ1)-differentially private and A2 and B2 are (ε2, δ2)-differentially private. Then A1 × A2 and
B1 ×B2 are (ε1 + ε2, δ1 + δ2)-differentially private.

Lemma 3 (Adaptive Composition). Let (A1, B1) and (A2, B2) be two pairs of distributions, such that A1

and B1 are (ε1, δ1)-differentially private and A2 and B2 are (ε2, δ2)-differentially private. Then A1×A2 and
B1 ×B2 are (ε1 + ε2, δ1 + (1− δ1) · δ2)-differentially private.

Lemma 4 (Boosting and Differential Privacy (Advanced Composition) [9]). Let (A1, B1), . . . , (Ak, Bk) be
pairs of distributions, such that Ai and Bi are (ε, δ)-differentially private for all i ∈ {1, . . . , k}. Then A1 ×
. . .×Ak and B1×. . .×Bk are (ε̂δ̂, δ̂)-differentially private, where δ̂ = k·δ and ε̂δ̂ = O

(
kε2 + ε

√
k log

(
e+ (ε

√
k/δ̂)

))
Lemma 5 (Kairouz et al.’s Composition [14]). For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-differentially
private mechanisms satisfies

(ε′, δ′)-differential privacy

under k-fold composition, for all i ∈ {0, . . . , bk/2c} where ε′ = (k − 2i)ε and δ′ = 1− (1− δ)k(1− δi)

δi =

∑i−1
`=0

(
k
`

) (
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

These composition results allow for deriving differential-privacy guarantees under composition in a black-
box manner, i.e., only depending on ε and δ. Consequently, these results are oblivious to how the underlying
distributions actually compose and present, in a way, worst-case results under composition. Thus, we cannot
expect that they come close to the tight differential privacy guarantee of the composed distributions. In the
remainder of this paper we introduce, prove sound and discuss our main idea: approximating the distributions
A1, A2, B1, B2 in a way that allows for a sound calculation of a differential-privacy guarantee that takes into
account features of the distribution even under manifold composition. Moreover, we use the same technique
to derive a lower bound for the guarantee, to bound the (unknown) tight differential privacy guarantee from
both directions.

2.5 Related work

Mechanism-oblivious bounds for adaptive composition Early composition bounds for adaptive r-
fold ADP [9, 14, 19] only provide mechanism-oblivious bounds, i.e., these bounds are oblivious to the actual
mechanisms. These results only rely on the initial values (ε0, δ0). Our work, in contrast, is mechanism-
aware in the sense that it takes the shape of the distributions (/mechanisms) into account. Our results yield
mechanism-aware δ-tight bounds for adaptive composition and thereby lead to significantly tighter bounds.

Mechanism-aware bounds for adaptive composition Recent work [8, 2, 1, 18] partially take the
shape of the mechanism into account by computing the Rényi divergence of the corresponding worst-case
distributions, i.e., the moments of the distribution of ratios, to achieve tighter privacy bounds. Similarly,
Abadi et al. [1] use the moments accountant based on Rényi divergence to find tighter bounds. These
approaches indeed find tighter bounds in comparison to composition results and, in special cases, better
than the best mechanism-oblivious composition theorem. As shown in our comparisons , however, our
bounds are even tighter and—in contrast to all previous work—also include lower bounds and thereby a
means to estimating their precision. Additionally, our work provides tight bounds for very low epsilon, even
epsilon = 0, i.e., the statistical distance (also called total variation), which is used to formalize statistical
indistinguishability.

Adaptively chosen privacy parameters As in previous work [9, 1, 14] our technique satisfies adaptive
composition [9] in the following sense: sequences of mechanisms are composed where each query can be
adaptively chosen by the attacker and depend on previously observed responses, but the noise distributions
of each mechanism have to be independent of these previously observed responses to the attacker. This kind

9



of adaptive composition results does not hold for some mechanisms that achieve ADP under continual obser-
vation that use carefully correlated noise and/or only use noise when necessary [7, 10, 12, 13]. Nevertheless,
the proofs of these adaptive mechanisms can still benefit from our results as they often over-approximate a
subset of these correlated distributions with independent distributions

Probabilistic differential privacy (PDP) vs ADP It might appear preferable to only use δ such that
it is only the probability of distinguishing events, in order to guarantee pure ε-DP with probability (1− δ)
(which is also called PDP). However, if delta would only contain distinguishing events, both ε and δ would
grow linearly in the number of compositions. Thus, better ε-bounds can only be achieved by allowing some
of the probability mass of the non-distinguishing events to be hidden within the δ parameter. While using
PDP with distinguishing events has an intuitive interpretation, it is not closed under post-processing [17].
Hence, this work concentrates on ADP.

Optimal mechanisms for a given utility function Recent work [11, 15] made progress on finding opti-
mal mechanisms for DP for a large class of utility functions. These results concentrate on single observations
and do not characterize how these mechanism behave under k-fold composition.

Dependencies The work of Liu, Chakraborty and Mittal [16] discusses the importance of correctly mea-
suring the sensitivity of databases for differential privacy. They show that in real-world examples entries
can be correlated and thus cannot be independently exchanged as in DP’s basic definition. Their approach,
however, finally results in the same techniques as in previous work being used to achieve the same goal:
noise applied to database queries results in differential privacy, although the sensitivity is calculated in a
more complex manner. Our results can directly be applied in such a setting as well: given the (final) dis-
tributions that potentially consider dependent entries we calculate differential privacy guarantees for these
distributions.

3 Privacy buckets of two distributions

3.1 Informal description of privacy buckets

Generic bounds for differential privacy under continual observation [9, 14] are stated independently of the
shape of the underlying distributions, simply based on the ADP guarantees before the composition. This
obliviousness is both strength and weakness: the exact shape of the distribution does not need to be charac-
terized to apply these results, but they cannot devise tight bounds that are derivable from the shape of the
distributions. We now introduce an alternative approach: we approximate the distributions with an explicit
focus on their most important features for ADP, the privacy loss of atomic events.

Recall from Lemma 1 that for distributions A and B over the universe U we can calculate a value δ(ε)
for every value ε ≥ 0 so that A and B are tightly (ε, δ(ε))-ADP:

δ(ε) = max

(∑
x∈U

max (PA(x)− eεPB(x), 0) ,

∑
x∈U

max (PB(x)− eεPA(x), 0)

)
,

For simplicity we consider δ(ε) =
∑
x∈U max (PA(x)− eεPB(x), 0) for now. Consequently, the contribution

of each atomic event x ∈ U to δ(ε) is δ(x, ε) = max(PA(x)−eεPB(x), 0) and their sum is
∑
x δx = δ(ε). This

is of course not surprising. Let us observe that if PB(x) = 0, we have δ(x, ε) = PA(x). We can combine all
atomic events x with PB(x) = 0 into one non-atomic event x∞ of all such events.

For events x with PB(x) > 0, let L(x)
(A||B) = ln PA(x)

PB(x) be the logarithmic privacy loss of x [8]. For ease of

use, we do define the privacy loss without the logarithm as eL(x)
(A||B) = e

L(x)

(A||B) = PA(x)
PB(x) , which is simply the

ratio between the two probabilities. Based on the privacy loss we can calculate the contribution δx of an

10



B:

eL(x )
(A | |B) =

PA(x )
PB (x )

PA(x)

f if i−1

ℓ(x)

PB (x) or PA(x )
f i

Figure 4: Depiction of how an element x is placed into a bucket when f i−1 < eL(x)
(A||B) ≤ f i. Buckets store

f i and PA(x) (accumulated over all elements in the bucket). We approximate PB(x) with PA(x)
fi , accepting

an error of `(x) = PB(x)− PA(x)
fi .

atomic event x as

δ(x, ε) = max (PA(x)− eεPB(x), 0)

= max

PA(x)− eε PA(x)

eL(x)
(A||B)

, 0


= PA(x) ·max

1− eε

eL(x)
(A||B)

 , 0

 .

Combining the contributions of several events For any two disjoint events x, y with the same privacy

loss p = eL(x)
(A||B) = eL(y)

(A||B), their contribution can be combined without loss of information to

δ(x ∪ y, ε) = δ(x, ε) + δ(y, ε)

= (PA(x) + PA(y)) ·max

((
1− eε

p

)
, 0

)
,

requiring us to only remember the privacy loss p and the sum of their probabilities PA(x) + PA(y). In
other words, we can combine all atomic events with the same ratio without losses. If we allow for a slight
imprecision, we can soundly combine disjoint events x and y with approximately the same privacy loss by

summing the probabilities PA(x) + PA(y) and choosing p = max(eL(x)
(A||B), eL

(y)
(A||B)) and yield δ(ε)(x ∪ y) ≥

δ(x, ε) + δ(y, ε).

Constructing privacy buckets from atomic events To render our approach feasible, we fix a finite
set of privacy loss values {f i|i ∈ {−n, . . . , n}} based on a factor f that parametrizes the coarseness of
the values and a limit n ∈ N that limits the number of values we consider. We then collect all atomic
events x with a similar privacy loss into one combined event, which we call a bucket as follows. Given a

factor f > 1, the bucket B(i) summarizes all atomic events where f i−1 < eL(x)
(A||B) ≤ f i (illustrated in

Figure 4). The value of B(i) is the sum over the probabilities PA(x) of all those atomic events (according to

distribution A). Here, eL(x)
(A||B) ≤ f i guarantees soundness, whereas f i−1 < eL(x)

(A||B) limits the imprecision

of our approximation: For each PB(x) we introduce an error of `(x) = PB(x)− PA(x)
fi ≤ PA(x) ·

(
1

fi−1 − 1
fi

)
.

We define “corner buckets” that collect all atomic events with privacy loss outside of [f−n, fn], where B(−n)
contains all atomic events with a very small privacy loss and B(∞) contains all atomic events with a very
large (or even infinite) privacy loss. Using these n + 2 buckets, we can now compute a bound for ADP as

δ′ε =
∑
i∈{−n,...,n} B(i) ·max

((
1− eε

fi

)
, 0
)

+ B(∞).
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Buckets for given parameters f and n.

Bucket factor: f−n f−n+1 . . . f−2 f−1 f0 f1 f2 . . . fn−1 fn > fn

Index: −n −n+ 1 . . . −2 −1 0 1 2 . . . n− 1 n ∞

Figure 5: Depiction of the buckets (separately) constructed for both BA and BB . For BA each bucket BA(i)
with i ∈ {−n+ 1, . . . , n} contains all elements x ∈ U with f i−1PB(x) ≤ PA(x) ≤ f iPB(x), the bucket
BA(−n) contains all elements with PA(x) ≤ f−nPB(x) and the bucket BA(∞) contains all elements with
PA(x) > fnPB(x).

This buckets representation does not only allow us to directly derive a bound δ on δ(ε). It also is
particularly well suited for calculating ADP after composing several pairs of distributions. Note that we
include “privacy loss” values that are smaller than 1. Those values by definition cannot influence δ(ε)
directly, but they are crucial for computing tight bounds under composition.

Composition Consider a pair of distributions, say (A1, B1) and (A2, B2) over universes U1,U2, where
A1, A2 are independent and B1, B2 are independent. We first create B1 from (A1, B1) and B2 from (A2, B2).
For each event (x, y) ∈ U1×U2 where x was placed in B1(i) and y was placed in B2(j) we can now immediately

derive an upper bound for the privacy loss:
PA1

(x)

PB1
(x) ·

PA2
(y)

PB2
(y) ≤ f i+j (c.f. Figure 8).

As the A1 and A2 are independent and B1 and B2 are independent, we can generate a new set of buckets
B′(i) =

∑
j,k,j+k=i B1(j) · B2(k) and for these buckets B′ we can directly compute δ′ε s.t. for every choice of

ε ≥ 0, (A1 ×A2, B1 ×B2) satisfy (ε, δ′ε)-ADP.

Squaring When composing privacy buckets, the bucket list naturally “broadens”, i.e., the buckets that
are farther away from the middle bucket (with factor f0) gain higher values. When creating privacy buckets
for a given number n, this effect leads to a trade-off between the granularity (i.e., the choice of the bucket
factor f) and the expected number of compositions: the smaller the value of f , the more precise the privacy
buckets model of the features of the distributions, but the fewer compositions before a significant amount
of events reaches the corner buckets

(
B(−n) and B(∞)

)
, which again reduces the precision. To counter this

effect, we introduce an additional operation which we call squaring : we square the factor f , thus halving the
precision of the privacy buckets, and merge the privacy buckets into these new, more coarse-grained privacy
buckets. Squaring allows us to start with much more fine-grained privacy buckets and reduce the granularity
as we compose, which can significantly improve the overall precision of the approach. We choose to square
f instead of increasing it to an arbitrary f ′ to ease the computation of the new privacy buckets: we simply
combine buckets 2i− 1 and 2i with factors f2i−1 and f2i into the new bucket i with factor (f2)i = f2i. We
refer to Figure 9 for a graphical depiction of squaring.

3.2 A formal description of privacy buckets

We now formalize privacy buckets, our approximation of the pair of distributions based on the privacy loss
of all atomic events, which is sufficient for calculating (ε, δ)-ADP, the privacy buckets, and that comes with
an efficient way for computing r-fold (ε, δ)-ADP from a sequence of privacy buckets.

The infinity symbol ∞ In this paper we will write ∞ to describe the corner case accumulated in the
largest bucket B∞ of our bucket lists. We consider ∞ to be a distinct symbol and in an abuse of notation,
we use the following mathematical rules to interact with it:

� ∞ > i for all i ∈ Z.

� ∞+ i =∞ for all i ∈ Z.

The composition of privacy buckets is commutative but not associative. Moreover, when and how often
the squaring is performed influences the resulting privacy buckets. Hence, we need to keep track of the order
in which we applied composition and squaring. To this end, we define composition trees.
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PA(x) the prob. that x happens in A.
ε, δ parameters for ADP.
U universe of all atomic events.
f factor (close to 1) with f > 1.
∞ symbol for any ratio > fn.
n index of the last bucket before ∞.
N bucket indexes {−n, . . . , n}.

N∞ bucket indexes with ∞, N ∪ {∞}.
T composition tree

l(A,B, f, n) leaf node of A/B privacy buckets without
error correction with indexes N∞
and ratios {≤ f−n, . . . ,≤ fn, > fn}.

T1 × T2 node for composition of T1 and T2

sT node for squaring of T
AT (A1, . . . , Ak) for a composition tree T with

leafs l(Ai, Bi, f, n)ki=1

BT (B1, . . . , Bk) for a composition tree T with
leafs l(Ai, Bi, f, n)ki=1

BT (i) for i ∈ N∞ privacy bucket of tree T with index i.

BCT (x) for x ∈ U impact of the atomic event x in tree T .

`T (i), `CT (x) “real” error correction term for index i
or atomic event x.

˜̀
T (i), ˜̀C

T (x) bound on the maximum error,
“virtual” error correction term.

ιT (x) index of x w.r.t. composition tree T .
jε smallest j such that f j ≥ eε.
Si the set of atomic events that contribute to B(i).

Figure 6: Notation for our privacy buckets.

Definition 3 (Composition trees). For two tuples of distributions (A1, . . . , AW) and (B1, . . . , BW) of the
same size W, a composition tree is a tree with three kinds of nodes: leaves (T = l(Ai, Bi, f, n)) that are
labeled with a pair of distributions Ai and Bi a factor f > 1 and a n ∈ N, squaring nodes (T = sT1) with
exactly one child node, and composition nodes (T = T1 × T2) with exactly two child nodes.

The bucket factor fT for a composition tree T is fl(A,B,f,n) := f , fsT1
:= (fT1

)2, and fT1×T2
:= fT1

if fT1
= fT2

and undefined otherwise. The number of buckets nT of a composition tree T is constant:
nl(A,B,f,n) := n, nsT = nT , and nT1×T2

:= nT1
if nT1

= nT2
and undefined otherwise.

For the distributions over which each composition tree is defined, we write Al(A,B,f,n) = A,Bl(A,B,f,n) =
B, AT1×T2 = AT1 ×AT2 , and AsT1 = AT1 and analogously BT1×T2 = BT1 ×BT2 , and BsT1 = BT1 . We write
UT for the support of the distributions as UT = [AT ] ∪ [BT ].

We call a composition tree T valid if for the product distributions AT = ΠWk=1Ak all Aj , As are pairwise
independent (j, s ∈ {1, . . . ,W}) and analogously for BT = ΠWk=1Bk all Bj , Bs are pairwise independent
(j, s ∈ {1, . . . ,W}), fT and nT are defined, fT > 1 and nT is an even natural number (i.e., there is a q ∈ N
such that n = 2q). We sometimes write f instead of fT , n instead of nT , A instead of AT , and B instead of
BT if the composition tree is clear from the context.

We now define the privacy buckets associated with a valid composition tree T , starting with the base
case of leaf nodes.
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Bucket composition example for two events for n = 4.

B1:

B2:

B1×B2:

Index:

x1

x2

x1 · x2

−4 −3 −2 −1 0 1 2 3 4 ∞

Figure 7: Depiction of how individual events x1 with index −2 and x2 with index 4 compose into their new
bucket with index −2 + 4 = 2.

Bucket composition for bucket index 2, n = 4.

B1:

B2:

B1×B2:

Index:

j1 j2 j3 j4 j5 j6 j7

k7 k6 k5 k4 k3 k2 k1

∑
q
jqkq

−4 −3 −2 −1 0 1 2 3 4 ∞

Figure 8: Depiction of the bucket composition for the (new) bucket with index i = 2. We calculate the value
of bucket i by summing over the product of all B1(jt) · B2(kt) for t ∈ {1, . . . , 7}. Graphically, buckets with
the same color are combined. Note that none of the buckets ∞,−3 and −4 are used for the composition, as
for all j ∈ {−4, . . . , 4}, ∞+ j 6= 2,−3 + j 6= 2 and −4 + j 6= 2.

Computing delta and evaluating a composition tree

Definition 4 (Privacy buckets of a composition tree). Let T be a valid composition tree with f := fT ,
U := UT and n := nT . For N∞ := {−n,−n+ 1, . . . , n} ∪ {∞}, we define the AT /BT privacy buckets
BT : N∞ → [0, 1] recursively as follows.

If T = l(A,B, f, n), we define for i ∈ N∞,
Bl(A,B,f,n)(i) =

∑
x∈Si PA(x),

where the sets Si are defined as follows:

S∞ = {x ∈ U .PA(x) > fnPB(x)}
∀i ∈ {−n+ 1, . . . , n}Si =

{
x ∈ U . f i−1PB(x) < PA(x) ≤ f iPB(x)

}
S−n =

{
x ∈ U .PA(x) ≤ f−nPB(x)

}
.

If T = T1 × T2, we define

BT1×T2(i) :=


∑
j+k=i BT1(j) · BT2(k) i ∈ N \ {−n}∑
j+k≤−n BT1(j) · BT2(k) i = −n∑
j+k>n BT1

(j) · BT2
(k) i =∞

If T = sT1,

BsT1
(i) :=


BT1(2i− 1) + BT1(2i) i ∈ [−n/2 + 1, n/2]

BT1
(∞) i =∞

0 otherwise
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Bucket squaring example for n = 4.

B:

sB:

Index:−4 −3 −2 −1 0 1 2 3 4 ∞

Figure 9: Depiction of the bucket squaring. Events from each bucket B(i) are moved into bucket B(di/2e),
with the exception of B(∞), which remains unchanged.

Note that since the sets Si for i ∈ {−n, . . . , n} ∪ {∞} describe a partitioning of U , we have∑
i∈{−n,...,n}∪{∞} B(i) = 1.

We next define ADP directly on a privacy bucket list. For all atomic events x in Si 6= S∞, we
know that PA(x) ≤ f iPB(x). We perform a slight over-approximation by treating this inequality as an
equality and then use PA(x)−PA(x)/f i as in Lemma 1. For x ∈ S∞, we add PA(x) to δ, counting them
as total privacy-breakdowns.

Definition 5 (Delta). Let T be a valid composition tree labeled with f := fT and n := nT , then

δT (ε) = BT (∞) +
∑
i∈{−n,...,n}max(0,BT (i) · (1− eε

fi ))

We say that the privacy buckets with composition tree T are (ε, δ)-ADP, if δT (ε) ≤ δ.

3.3 Buckets per atomic event

For discussing our results and their soundness, we compare the differential privacy guarantees of privacy
buckets with the real differential privacy guarantees (calculating which might not be feasible). To this end
and for talking about individual atomic events, we assign an index to each such event. The index specifies the
(one) bucket the respective event influences. For privacy buckets that have been created from distributions
(and not composed), this index is simply the bucket the event was assigned to. After composition, the index
depends on how the indexes of the respective buckets interacted: in the most simple case, if x1 and x2 are
events with indexes i and j, then the event (x1, x2) will have the index i+ j. However, the corner cases can
modify the index, as the index can only be in the set {−n, . . . , n,∞}.

Definition 6 (Index of an event according to a composition tree). For a valid composition tree T with
AT = ΠWk=1Ak and BT = ΠWk=1Bk, and UT = ΠWk=1Ui, f := fT , and n := nT , we define the set of indexes
for atomic events x = (x1, . . . , xW) ∈ ΠWk=1Uk as follows.

First, we define for T = l(Ak, Bk, f, n) and consequently for atomic elements xk ∈ Uk with k ∈
{1, . . . ,W}, the index of xk as

ιT (xk) :=


l if l ∈ {−n+ 1, . . . , n}∧

f l−1PBk(xk) < PAk(xk) ≤ f lPBk(xk)

∞ if PAk(xk) > fnPBk(xk)

−n otherwise

For a pair of composition trees T1, T2 and for T = T1 × T2 we define the index of x = (x1, x2) ∈ AT1
× AT2
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as

ιT (x) = ιT1×T2(x1, x2) :=


−n if ιT1

(x1) + ιT2
(x2) < −n

∞ if ιT1
(x1) + ιT2

(x2) > n

ιT1
(x1)+ιT2

(x2) otherwise,

where we assume that ∀y, z ∈ Z, y +∞ =∞ > z.

For T = sT1 we define the index of x ∈ AT as

ιT (x) = ιsT1
(x) :=

{
dιT1(x)/2e if ιT1(x) 6=∞
∞ otherwise,

Recall that composition is not necessarily associative, i.e., there are composition trees T1, T2, T3 and
x1, x2, x3 such that

ι(T1×T2)×T3
(x1, x2, x3) 6= ιT1×(T2×T3)(x1, x2, x3).

Soundness of differential privacy guarantees for privacy buckets We can now show the soundness
of the bounds on ADP we calculate using privacy buckets. We will show that if privacy buckets are (ε, δ)-
ADP, then the distributions from which they were created (either directly or via composition) are also
(ε, δ)-ADP. Simply put, the guarantees we calculate are sound.

We begin by showing a helpful lemma that directly follows our main strategy: all atomic events x that
are assigned an index ιT (x) = i 6=∞ (according to a composition tree T ) satisfy PA(x) ≤ f iPB(x).

Lemma 6. Let T be a valid composition tree For all x ∈ UT with ιT (x) 6= ∞ and for f = fT , we have

PAT (x) ≤ f ιT (x)PBT (x), i.e., f ιT (x) ≤ eL(x)
(AT ||BT ).

Proof. We show the lemma by a structural induction over the composition tree T . Let x ∈ UT with
ιT (x) 6=∞.

Case T = l(A,B, f, n).
If ιl(A,B,f,n)(x) = −n, it follows that

PA(x) ≤ f−nPB(x) (1)

PA(x) ≤ f ιl(A,B,f,n)(x)PB(x). (2)

Thus, for all ιl(A,B,f,n)(x) 6=∞ we get from Definition 6 and Equation (2) that for

PAk(xk) ≤ f ιl(Ak,Bk,f,n)(xk)PBk(xk). (3)

For composition nodes (i.e., T = T1 × T2), where T1 and T2 are valid composition trees, let x = (x1, x2)
with x1 ∈ U1 and x2 ∈ U2, f := fT1 = fT2 . We know from Definition 6 that ιT1×T2 6=∞⇒ ιT1 6=∞∧ιT2 6=∞.
Moreover,

PAT1×T2 (x) = PAT1 (x1) · PAT2 (x2)

IH
≤
(
f ιT1 (x1)PBT1 (x1)

)
·
(
f ιT2 (x2)PBT2 (x2)

)
= f ιT1 (x1)+ιT2 (x2)

(
PBT1 (x1)PBT1 (x2)

)
≤ f ιT1×T2 (x)PBT1×T2 (x)

Note that f ιT1 (x1)+ιT2 (x2) ≤ f ιT1×T2 (x) holds by definition.
For squaring nodes (i.e., T = sT1) with f := fT1 (and consequently fsT1 = f2), we know that ιT (x) 6=

∞⇔ ιT1(x) 6=∞. By definition, we have

PAsT1
(x) = PAT1 (x)

IH
≤ f ιT1 (x)PBT1 (x) = f2ιT1 (x)/2PBT1 (x)

≤ (f2)dιT1 (x)/2ePBT1 (x) = (fsT1
)ιsT1 (x)PBsT1

(x)
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BucketDelta(A,B, f, n, t, ε):
T =l(A,B, f, n)
for i from 0 to t do
T ′ = T × T
if BT ′(∞) > 2.2 · BT (∞) then
T = sT

T = T × T
return δT (ε)

Figure 10: Depiction of how we create buckets – for simplicity without error correction terms and for the
common special case where we compose the same distributions (A1 = A2 = . . . = Ar and B1 = B2 = . . . =
Br). We use repeated squaring to compute r-fold DP for r = 2t compositions.

Lemma 7 (Bucket values are sums over atomic events). Let T be a valid composition tree. Then, for all
i ∈ {−nT , . . . , nT ,∞},

BT (i) =
∑

x∈UT s.t. ιT (x)=i
PAT (x).

Proof. We show the lemma via structural induction over T . Let N := {−nT , . . . , nT }.
If T = l(A,B, f, n): Let i ∈ N ∪ {∞}. By Definitions 4 and 6 with Si as in Definition 4,

Bl(A,B,f,n)(i) =
∑
x∈Si PA(x) =

∑
x,ι(x)=i PA(x).

Otherwise, assume the lemma holds for composition trees T1 and T2. If T = T1 × T2, we have for
i ∈ N \ {−nT },

BT1×T2(i) =
∑

j,k∈N.j+k=i

BT1(j) · BT2(k)

IH
=

∑
j,k∈N s.t. j+k=i

 ∑
x1∈UT1s.t. ιT1 (x1)=j

BT1(x1)

 ·
 ∑
x2∈UT2s.t. ιT2 (x2)=k

BT2(x2)


=

∑
x=(x1,x2)∈UT1×UT2 s.t. ιT1 (x1)+ιT2 (x2)=i

BT1
(x1) · BT2

(x2)

We know from Definition 6 that ιT (x) = ιT1(x1) + ιT2(x2), since ιT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x=(x1,x2)∈UT1×UT2 s.t. ιT (x)=i

BT1(x1) · BT2(x2)

Definition 6
=

∑
x=(x1,x2)∈U s.t. ιT (x)=i

BT1×T2
(x).

For i ∈ {−nT ,∞} the proof follows analogously, where for −n we have j + k ≤ −n and we know from
Definition 6 that ιT (x) = −n is equivalent to ιT1

(x1) + ιT2
(x2) ≤ −n and for ∞ we have j + k > n and we

know from Definition 6 that ιT (x) =∞ is equivalent to ιT1
(x1) + ιT2

(x2) ≥ n.
Figure 10 describes the algorithm of our bucketing that we suggest for practice.
If T = sT1, we have for i ∈ {−nT , . . . ,−nT /2 − 1, nT /2 + 1, . . . , nT }, BsT1(i) = 0 =

∑
x∈∅ PA1(x) =∑

x∈U1,ιsT1=i PAT1 (x).

For i =∞, we have BsT1
(∞) = BT1

(∞), so the statement follows from the IH. For i ∈ {−nT /2 + 1, . . . , nT /2}
we have

BsT1(i) = BT1(2i) + BT1(2i− 1)

IH
=
∑
x∈UT1 ,ιT1 (x)=2i PAT1 (x) +

∑
x∈UT1 ,ιT1 (x)=2i−1 PAT1 (x)

=
∑
x∈UsT1 ιT (x)=i PAsT1

(x).
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The statement for BsT1(−nT /2) follows analogously.

We now state the first theorem of our paper: the buckets are sound.

Theorem 1 (Buckets are sound). Let X and Y be two distributions and let TX||Y and TY ||X be valid
composition trees with ATX||Y = BTY ||X = X and BTX||Y = ATY ||X = Y .

Then for every ε ≥ 0 and for any δ ≥ max
(
δTX||Y (ε), δTY ||X (ε)

)
, X and Y are (ε, δ)-ADP.

The theorem follows quite trivially from the proof of Lemma 13 in the subsequent chapter. We still
present a self-contained proof as it could be helpful in understanding the soundness of our privacy buckets.

Proof. We show that δTX||Y (ε) ≤ δ implies δ ≥ ∑
x∈UTX||Y

max(PX(x) − eεPY (x), 0) (one direction in

Lemma 1); the proof for TY ||X and the other direction follows analogously. Let n = nTX||Y , N = {−n, . . . , n},
U = UTX||Y and f = fTX||Y . By definition,

δTX||Y (ε) =
∑
i∈N

(
max

(
0,BTX||Y (i) · (1− eε/f i)

))
+ BTX||Y (∞).

We ignore BTX||Y (∞) for now and apply Lemma 7 and get

∑
i∈N

(
max

(
0,
∑
x∈U.ιTX||Y (x)=i PX(x) · (1− eε

fi )
))

=
∑
i∈N.fi>eε

(∑
x∈U.ιTX||Y (x)=i PX(x) · (1− eε

fi )
)

Using Lemma 6 we get ∑
x∈U.ιT (x)=∈N.f

ιTX||Y
(x)
>eε

max (0, PX(x)− eεPY (x)) .

With BTX||Y (∞) (where we also apply Lemma 7) we yield∑
x∈U.ιTX||Y (x)∈N.f

ιTX||Y
(x)
>eε

max (0, PX(x)− eεPY (x))

+
∑
x∈U.ιTX||Y (x)=∞ PX(x)

≥∑x∈U max (0, PX(x)− eεPY (x)) .

We repeat the calculation analogously for TY ||X and then we use Lemma 1 to see that X and Y are
indeed (ε, δ)-ADP.

4 Reducing and bounding the error

We have already presented a sound way of approximating a distribution pair by creating privacy buckets.
Our calculations from the previous section lead to sound and, in many cases, better results than generic
composition theorems from the literature. In this section we explore the precision of our results: we define
error (correction) terms that help us to both find a lower bound on the differential privacy guarantee for
the considered distributions even under manifold composition, and to find a tighter guarantee for differential
privacy.

We distinguish between two types of error correction (EC) terms: the real EC term ` that captures the
value we use to tighten our result in a sound way and the virtual EC term ˜̀ that captures the maximal
influence an EC term can have. The virtual EC term accurately captures the difference between the prob-

ability an event x appears to have in the alternative distribution (using the bucket factor) PA(x)
fι and the

probability that it actually has in the alternative PB(x). In some cases, however, we misplace an event such
that it ends up in a bucket with an index that is too large: events x that should not be considered for the
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overall guarantee, i.e., that have PA(x) − eεPB(x)) < 0 can appear in a bucket with index i s.t. eε < f i.
Thus, correctly calculating the EC term while possibly misplacing events can lead to wrong results.

There are two reasons for why events can be misplaced: First, when composing privacy buckets, events
can be misplaced by one bucket. We take care of this by not including the EC terms of a certain number
of buckets, depending on the number of compositions. Second, when events are put into the smallest bucket
(with index −n), they can be arbitrarily “misplaced”, particularly after a composition. To counter this
effect, we introduce the real EC term, in which we do not include the error of the smallest bucket (with
index −n).

4.1 Buckets with error correction terms

Our strategy is as follows. Assume two distributions A and B: Whenever we add an event x to a bucket B(i),
we store the difference between the probability that the event occurs in A, adjusted by the bucket factor, and

the probability that the same event occurs in B: PB(x)− PA(x)
fi . Recall that the main purpose of the buckets

is to keep track of the ratio between those two probabilities. We sum up all these error correction terms (or
EC terms) per individual bucket B(i) and yield EC terms `(i). We refer to Figure 4 (in Section 3.1) for a
graphical intuition of our error correction.

As an example consider one bucket B(i), containing events x ∈ Si for a set Si:

B(i)

f i
− `(i) =

∑
x∈Si PA(x)

f i

−
∑
x∈Si

(
PB(x)− PA(x)

f i

)
=
∑
x∈Si

PB(x).

Thus, only considering one additional value per bucket, we can precisely remember the probability that the
events occurred in B and we can then use this probability to calculate a more precise differential privacy
guarantee. We omit the EC terms for the bucket B(∞), as there is no bucket factor attached to it (so there
is no value the error correction term could correct).

Although the error correction precisely captures the error per event x, we need to be careful which
events we consider for calculating δ. Consider the bucket B(j) with f j−1 < eε ≤ f j . If we were precise
in our calculations, we would only consider some of the events from the bucket, namely the ones with
PA(x) ≤ eεPB(x), but since we combined them all into one bucket, we cannot distinguish the individual
events anymore. To retain a sound guarantee, we don’t consider the EC term of this bucket when calculating
δ. Under composition this error slightly increases, as events can be “misplaced” by more than one bucket
when we compose the buckets. Consequently, every composition increases the number of buckets for which we
don’t consider an EC term. Whenever events land in the bucket with index −n, an arbitrary “misplacement”
can occur and our aforementioned strategy does not suffice. Thus, we distinguish between the virtual EC
term ˜̀, which applies to index −n and the real EC term `, where we always set `(−n) = 0. For our sound
upper bound on δ we will use the real EC term `, and we will use the slightly too large ˜̀ to derive a lower
bound on δ.

For the composition, we want to calculate the error correction (EC) term for the combined events: given

events x1 and x2 with (individual) error terms PB1(x1)− PA1
(x)

fι1 and PB2(x2)− PA2
(x2)

fι2 we want (in the typical

case, ignoring corner cases) to have an EC term for the pair of the form PB1×B2
((x1, x2))− PA1×A2

((x1,x2))

fι1+ι2
.

However, the buckets cannot keep track of the value for PB1×B2((x1, x2))– recall that this is precisely why
we have introduced the error terms. Fortunately, we can calculate the desired EC terms from the previous
EC terms `T1

, `T2
, the bucket values BT1

,BT2
, and the bucket factor f as

`T1×T2(i) :=
∑
j+k=i

BT1 (j)

fj `T2(k) +
BT2 (k)

fk
`T1(j) + `T1(j)`T2(k).

Similarly, for the squaring, we quantify how the error terms change when we modify the buckets. Although
each new bucket is composed of two previous buckets, the bucket factor actually only changes for one half of
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the values: the evenly indexed buckets BT (2i) with factor f2i are now moved into buckets BsT (i) with the
same factor (f2)i and thus their EC terms are still correct. The other half of buckets BT (2i− 1) with factor
f2i−1 are moved into the same buckets BsT (i) with factor (f2)i and thus the EC terms need to be modified
to capture this change in the bucket factor, based on the previous EC terms `T and bucket values BT :

`sT (i) := `T (2i− 1) + BT (2i− 1)

(
1

f2i−1
− 1

f2i

)
+ `T (2i).

Definition 7 (Privacy buckets with error correction terms). Let T be a valid composition tree with n := nT
and let N = {−n, . . . , n}. We define AT /BT privacy buckets with EC terms as as follows. BT , fT , and nT
are exactly defined as in Definition 4, and ˜̀

T , `T , and uT are defined as follows

˜̀
l(A,B,f,n)(i) :=

{∑
x∈U,ι(x)=i PB(x)− PA(x)

fi i ∈ N
0 i =∞

`l(A,B,f,n)(i) :=

{
˜̀
l(A,B,f,n)(i) i ∈ N \ {−n}

0 i ∈ {−n,∞}
ul(A,B,f,n) :=1

For composition we require that fT1 = fT2 and we write f = fT1 . To ease readability we define

V (j, k, x, y) =
BT1 (j)

fj y(k) +
BT2 (k)

fk
x(j) + x(j)y(k) and based on V we define the EC terms as

˜̀
T1×T2(i) :=


∑
j+k=i V (j, k, ˜̀

T1
, ˜̀
T2

) i ∈ N \ {−n}∑
j+k≤−n V (j, k, ˜̀

T1
, ˜̀
T2

) i = −n
0 i =∞

`T1×T2
(i) :=

{∑
j+k=i V (j, k, `T1

, `T2
) i ∈ N \ {−n}

0 i ∈ {−n,∞}
uT1×T2

(i) :=uT1
+ uT2

To ease the readability we define a function W (i, x) := x(2i− 1) +B1(2i− 1)

(
1

f2i−1
T1

− 1
f2i
T1

)
+ x(2i). We

define the EC terms as

˜̀
sT1

(i) :=


W (i, ˜̀

T1) i ∈ [−n/2 + 1, n/2]
˜̀
T1(−n) i = −n/2

0 otherwise

`sT1(i) :=

{
W (i, `T1

) i ∈ [−n/2 + 1, n/2]

0 otherwise

usT1(i) :=duT1e+ 1

4.2 Buckets and error correction terms per element

Before we can show the first helpful lemmas for the soundness of our error correction (EC) terms, we introduce
the impact that each individual event x has on the bucket terms that are influenced by x. We first simply
define these terms per element separately and then continue by showing that each bucket value (and EC
term) is simply the sum over the respective terms of all elements contributing to this bucket. This marks a
significant step in the correctness (and tightness) of our results: Although we only consider a few values (one
bucket value and one EC value per bucket) we still capture all individual events. The only exception to this
precision then comes from misplaced events, which we will analyze subsequently. To distinguish terms per
element from our previous (accumulated) terms, we mark terms considering only individual (atomic) events
with a special symbol C.
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Definition 8 (Privacy buckets with EC terms per element). Let T be a valid composition tree with n := nT
an f := fT and N = {−n, . . . , n}.

For T = l(A,B, f, n) with UT =: U , we define for all x ∈ U

BCl(A,B,f,n)(x) := PA(x)

˜̀C
l(A,B,f,n)(x) :=

{
PB(x)− PA(x)

f
ιl(A,B,f,n)(x)

ιl(A,B,f,n)(x) ∈ N,
0 ιl(A,B,f,n)(x) =∞,

`Cl(A,B,f,n)(x) :=

{
˜̀C
l(A,B,f,n)(x) ιl(A,B,f,n)(x) ∈ N \ {−n} ,

0 ιl(A,B,f,n)(x) ∈ {−n,∞} .

For T = T1 × T2with Ui = UTi (for i ∈ {1, 2}), we define for all x = (x1, x2) with x1 ∈ U1 and x2 ∈ U2

BCT1×T2
(x) := BT1

(x1) · BT2
(x2)

and we define the EC terms as

if ιT1×T2
(x) ∈ {−n, . . . , n}

˜̀C
T1×T2

(x) :=

(
BCT1

(x1)

f ιT1 (x1)
+ ˜̀C

T1
(x1)

)
˜̀C
T2

(x2) + ˜̀C
T1

(x2)

(
BCT2

(x2)

f ιT2 (x2)
+ ˜̀C

T2
(x2)

)
− ˜̀C

T1
(x1)˜̀C

T2
(x2)

if ιT1×T2(x) ∈ {∞}
˜̀C
T1×T2

(x) := 0

if ιT1×T2(x) ∈ {−n+ 1, . . . , n,∞}

`CT1×T2
(x) :=

(
BCT1

(x1)

f ιT1 (x1)
+ `CT1

(x1)

)
`CT2

(x2) + `CT1
(x2)

(
BCT2

(x2)

f ιT2 (x2)
+ `CT2

(x2)

)
− `CT1

(x1)`CT2
(x2)

if ιT1×T2
(x) ∈ {−n,∞}

`CT1×T2
(x) := 0.

For a squaring node (T = sT1), we keep the bucket value as BCsT1
(x) := BCT1

(x1) and we define the EC
terms as follows for f = fT1

:

if ιT1(x) ∈ {−n, . . . , n}

˜̀C
sT1

(x) := ˜̀C
T1

(x) + BCT1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
if ιT1

(x) ∈ {∞}
˜̀C
sT1

(x) := 0

if ιT1
(x) ∈ {−n+ 1, . . . , n}

`CsT1
(x) := `CT1

(x) + BCT1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
if ιT1(x) ∈ {−n,∞}
`CsT1

(x) := 0.

We now show our first important lemma for the soundness of our buckets and EC terms: the terms we
defined just previously indeed characterize the impact of each individual event on the overall bucket values
and EC terms. These terms indeed are just the sum of the respective values per element for all elements of
an index that equals the bucket index.
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Lemma 8 (All values are sums over atomic events). Let T be a valid composition tree, labeled with n ∈ N .
Then, the following statements hold for all i ∈ {−n, . . . , n,∞} and x ∈ UT :

� BT (i) =
∑
x∈U s.t. ιT (x)=i BCT (x)

�
˜̀
T (i) =

∑
x∈U s.t. ιT (x)=i

˜̀C
T (x)

� `T (i) =
∑
x∈U s.t. ιT (x)=i `

C

T (x)

Proof. We show the lemma via structural induction over T .

If T = l(A,B, f, n): Let i ∈ {−n, . . . , n,∞} and x ∈ UT .

� By definition, BCT (x) = PA(x) (c.f., Definition 8). Thus, BCT (i) =
∑
x s.t. ι(x)=i PA(x) =

∑
x s.t. ι(x)=i BCT (x).

� If i ∈ {−n, . . . , n}, then ˜̀
T (i) =

∑
x s.t. ι(x)=i PB(x)− PA(x)

fi =
∑
x s.t. ι(x)=i

˜̀C
T (x). Otherwise ˜̀

T (i) =

0 =
∑
x s.t. ι(x)=i 0 =

∑
x s.t. ι(x)=i

˜̀C
T (x).

� If i ∈ {−n+ 1, . . . , n}, then `T (i) =
∑
x s.t. ι(x)=i PB(x) − PA(x)

fi =
∑
x s.t. ι(x)=i `

C

T (x). Otherwise

`T (i) = 0 =
∑
x s.t. ι(x)=i 0 =

∑
x s.t. ι(x)=i `

C

T (x).

If T = T1 × T2: We assume the lemma holds for the composition trees T1 and T2.
For i ∈ {−n+ 1, . . . , n} and x ∈ UT and f := fT

BT1×T2
(i) =

∑
j,k∈{−n,...,n} s.t.j+k=i

BT1
(j) · BT2

(k)

IV
=

∑
j,k∈{−n,...,n} s.t. j+k=i

 ∑
x1∈U1s.t. ιT1 (x1)=j

BCT1
(x1)

 ·
 ∑
x2∈U2s.t. ιT2 (x2)=k

BCT2
(x2)


=

∑
x=(x1,x2)∈U1×U2 s.t. ιT1 (x1)+ιT2 (x2)=i

BCT1
(x1) · BCT2

(x2)

We know from Definition 6 that ιT (x) = ιT1
(x1) + ιT2

(x2), since ιT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x=(x1,x2)∈U1×U2 s.t. ιT (x)=i

BCT1
(x1) · BCT2

(x2)

=
∑

x=(x1,x2)∈U s.t. ιT (x)=i

BCT1×T2
(x).

For i ∈ {−n,∞} the proof follows analogously, where for −n we have j + k ≤ −n and we know from
Definition 6 that ιT (x) = −n is equivalent to ιT1(x1) + ιT2(x2) ≤ −n and for ∞ we have j + k > n and we
know from Definition 6 that ιT (x) =∞ is equivalent to ιT1

(x1) + ιT2
(x2) ≥ n.

For the virtual error, we distinguish the following cases:
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� ιT (x) ∈ {−n+ 1, . . . , n}. Then,

˜̀
T1×T2

(i)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

(BT1
(k)

fk
+ ˜̀

T1(k)

)
˜̀
T2(l) + ˜̀

T1(k)

(BT2
(l)

f l
+ ˜̀

T2(l)

)
− ˜̀

T1(k)˜̀
T2(l)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

BT1
(k)

fk
˜̀
T2

(l) + ˜̀
T1

(k)
BT2

(l)

f l
+ ˜̀

T1
(k)˜̀

T2
(l)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

(∑
x1∈U1s.t. ιT1 (x1)=k BCT1

(x1)

fk

 ∑
x2∈U2s.t. ιT2 (x2)=l

˜̀C
T2

(x2)


+

 ∑
x1∈U1s.t. ιT1 (x1)=k

˜̀C
T1

(x1)

∑x2∈U2s.t. ιT2 (x2)=l BCT2
(x2)

f l

+

 ∑
x1∈U1s.t. ιT1 (x1)=k

˜̀C
T1

(x1)

 ∑
x2∈U2s.t. ιT2 (x2)=l

˜̀C
T2

(x2)

)

=
∑

(k,l)∈{−n,...,n}2,k+l=i

∑
x1∈U1s.t. ιT1 (x1)=k

∑
x2∈U2s.t. ιT2 (x2)=l

(
BCT1

(x1)

fk
˜̀C
T2

(x2)

+ ˜̀C
T1

(x1)
BCT2

(x2)

f l
+ ˜̀C

T1
(x1)˜̀C

T2
(x2)

)

=
∑

(x1,x2)∈U1×U2 s.t. ιT1 (x1)+ιT2 (x2)=i

(
BCT1

(x1)

f ιT1 (x1)
˜̀C
T2

(x2) + ˜̀C
T1

(x1)
BCT2

(x2)

f ιT2 (x2)
+ ˜̀C

T1
(x1)˜̀C

T2
(x2)

)

We know from Definition 6 that ιT (x) = ιT1(x1) + ιT2(x2), since ιT (x) ∈ {−n+ 1, . . . , n}.

=
∑

x∈U s.t. ιT (x)=i

˜̀C
T1×T2

(x)

� ιT (x) = −n. The proof of the case from above follows analogously with k + l ≤ −n, since we know
from Definition 6 that ιT (x) = −n is equivalent to ιT1

(x1) + ιT2
(x2) ≤ −n.

� ιT (x) =∞.

˜̀
T1×T2

(i)

= 0 =
∑

x∈U s.t. ιT (x)=i

0

=
∑

x∈U s.t. ιT (x)=i

˜̀C
T1×T2

(x).

If T = sT1:

We assume the lemma holds for a composition tree T1, we have for i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}
and x ∈ UT

BsT1
(i) = 0 =

∑
x∈∅
BCsT1

(x) =
∑

x∈U s.t. ιsT=i

BCsT1
(x)
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For i =∞, we have

BsT1
(∞) = BT1

(∞)
IH
=

∑
x∈U s.t. ιT1 (x)=∞

BCT1
(x) =

∑
x∈U s.t. ιsT1 (x)=∞

BCsT1
(x).

For i ∈ {−n/2 + 1, . . . , n/2} we have

BsT1
(i) = BT1

(2i) + BT1
(2i− 1)

IH
=

∑
x∈U s.t. ιT1 (x)=2i

BCT1
(x) +

∑
x∈U s.t. ιT1 (x)=2i−1

BCT1
(x)

=
∑

x∈U s.t. ιT1 (x)=2i

BCsT1
(x) +

∑
x∈U s.t. ιT1 (x)=2i−1

BCsT1
(x)

=
∑

x∈U s.t. ιsT (x)=i

BCsT1
(x).

For i = −n/2 we have

BsT1(−n/2) = B1(−n)

IH
=

∑
x∈U s.t. ιT1 (x)=−n

BT1(x)

=
∑

x∈U s.t. ιT1 (x)=−n
BCsT1

(x)

=
∑

x∈U s.t. ιsT1 (x)=−n/2
BCsT1

(x).

We hence go forward to show the lemma for the EC terms.

For the EC terms and for i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n}

˜̀
sT1

(i) = 0 =
∑
x∈∅

˜̀C
sT1

(x) =
∑

x∈U s.t. ιsT1=i

˜̀C
sT1

(x)

For i =∞, we have

˜̀
sT1

(∞) = 0 =
∑

x∈U s.t. ιsT1 (x)=∞
0

=
∑

x∈U s.t. ιT1 (x)=∞

˜̀C
sT1

(x) =
∑

x∈U s.t. ιsT1 (x)=∞

˜̀C
sT1

(x).
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For i ∈ {−n/2 + 1, . . . , n/2}, let f := fT1 . Then we have

˜̀
sT1

(i) = ˜̀
T1

(2i− 1) + BT1
(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ ˜̀

T1
(2i)

IH
=

∑
x∈U s.t. ιT1 (x)=2i−1

˜̀C
T1

(x) +
∑

x∈U s.t. ιT1 (x)=2i−1

BCT1
(x)

(
1

f2i−1
− 1

f2i

)
+

∑
x∈U s.t. ιT1 (x)=2i

˜̀C
T1

(x)

=
∑

x∈U s.t. ιT1 (x)=2i−1

˜̀C
sT1

(x)− BCT1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)

+
∑

x∈U s.t. ιT1 (x)=2i−1

BCT1
(x)

(
1

f2i−1
− 1

f2i

)

+
∑

x∈U s.t. ιT1 (x)=2i

˜̀C
sT1

(x)− BCT1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)

=
∑

x∈U s.t. ιT1 (x)=2i−1

˜̀C
sT1

(x)− BCT1
(x) ·

(
1

f2i−1
− 1

f2i

)
+ BCT1

(x)

(
1

f2i−1
− 1

f2i

)
+

∑
x∈U s.t. ιT1 (x)=2i

˜̀C
sT1

(x)

=
∑

x∈U s.t. ιsT1 (x)=i

˜̀C
sT1

(x)

The proof for ˜̀
sT1(i) in case i = −n/2 and the `sT1(i) follow analogously to the proof for ˜̀

sT1(i) with
the exception that the case −n/2 is analogous to the case ∞ instead to the cases i ∈ {−n+ 1, . . . , n} for
`sT1

(i).

With Lemma 8 we now have a powerful tool for proving a set of properties for our EC terms that will
ultimately allow us to show the soundness of our results: We can relate every bucket value and every EC
term to the underlying events and can thus analyze our properties per event.

4.3 Helpful properties of error correction terms

In this rather technical subsection we present and show a set of helpful properties of our EC terms that
we require for our proof of soundness (and for our lower bound). We show that all error terms are positive
(which means that not considering one of them can only increase the δ of our result), we show that our
real EC term is always smaller than the virtual EC term, which we use for proving the soundness of the
approximation (Lemma 13). Finally, we show that for every event x, the virtual EC term after an arbitrary

amount of composition and squaring following the composition tree T still precisely captures PB(x)− PA(x)
fιT .

Lemma 9 (Positive real and virtual error correction terms). Let T be a valid composition tree with n := nT .
Then for all i ∈ {−n, . . . , n,∞}, both the real and virtual EC terms are positive, i.e., `T (i) ≥ 0 and ˜̀

T (i) ≥ 0.

Proof. We show the lemma via structural induction over T . For leaf nodes T = l(A,B, f, n), the real EC

term of an initial bucketing is calculated as the sum of EC terms for each x ∈ U , which are either PB(x)− PA(x)

fιT (x)

or 0. By definition we know that PA(x) ≤ f ιT (x)PB(x), so all these values are positive. For composition

T1×T2 with fT1
= fT2

=: f we have either 0 or V (j, k, x, y) =
BT1 (j)

fj y(k)+
BT2 (k)

fk
x(j)+x(j)y(k), which is the

sum and product of positive terms (the latter we know from the induction invariant). Analogously we notice
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that for squaring sT1 with fT1
=: f we have either 0 or `T1

(2i − 1) + BT1
(2i − 1)

(
1

f2i−1 − 1
f2i

)
+ `T1

(2i),

which again consists purely of positive terms (again via induction invariant).
More precisely, we distinguish the following cases:

For T = l(A,B, f, n), the real EC term of an initial bucketing is calculated as the sum of EC terms

for each x ∈ U , `CT (x) = PB(x) − PA(x)

fιT (x) if ιT (x) /∈ {−n,∞} and 0 otherwise. For ιT (x) ∈ {−n, . . . , n} by

definition we have PA(x) ≤ f ιT (x)PB(x). Thus, for all i ∈ {−n, . . . , n,∞} are positive, i.e., `T (i) ≥ 0.

For T = T1 × T2, BT with fT1
= fT2

=: f , by induction hypothesis, `T1
and `T2

are positive. We calculate
the composed EC terms as either 0 (if i ∈ {−n,∞}) or as

`T1×T2
(i) = `T1×T2

(i) =
∑

j,k s.t. j+k=i

((BA1
(j)

f j

)
`T2(k) +

(BT2
(k)

fk

)
`T1(j) + `T1(j)`T2(k)

)
,

which is positive as well since all the EC terms and all bucket terms are positive.

For T = sT1, We calculate, with f := fT1
, the EC terms as either 0 (if i ∈ {−n, . . . ,−n/2− 1, n/2 + 1, . . . , n,∞})

or as

`sT1
(i) = s`T1

(i) =`T1
(2i− 1) + BT1

(2i− 1)

(
1

f2i−1
− 1

f2i

)
+ `T1

(2i),

which is positive as well since all the EC terms and all bucket terms are positive. 6 Analogously, we can
show that the virtual EC terms ˜̀ are positive as well.

We now show that the real EC term is smaller than the virtual EC term.

Lemma 10 (The real error ` is smaller than the virtual error ˜̀). Let T be a valid composition tree labeled
n ∈ N with U := UT . Then, the real error is always smaller than the virtual error: `CT (x) ≤ ˜̀C

T (x).

Proof. We show the lemma via structural induction over T .

For T = l(A,B, f, n): We know that ˜̀C
l(A,B,f,n)(x) ≥ 0. By definition, since ul(A,B,f,n) = 1, either

`C
l(A,B,f,n)(x) = 0 or `C

l(A,B,f,n)(x) = ˜̀C
l(A,B,f,n)(x) holds. Thus, `C

l(A,B,f,n)(x) ≤ ˜̀C
l(A,B,f,n)(x).

For T = T1 × T2: Let U1 be the universe of T1 and U2 be the universe of T2. By induction hypothesis,
`CT1
≤ ˜̀C

T1
and `CT2

≤ ˜̀C
T2

. Let f = fT1
= fT2

. For ιT (x) = −n, `CT1×T2
(x) = 0. By Lemma 9 we know that

0 ≤ ˜̀C
T1×T2

(x), hence `CT1×T2
(x) = 0 ≤ ˜̀C

T1×T2
(x). For ιT1×T2

(x) 6= −n, with x1 ∈ U1 and x2 ∈ U2 we have

`CT1×T2
(x) =

(
PA1(x1)

f ιT1 (x1)
+ `CT1

(x1)

)
`CT2

(x2) +

(
PA2(x2)

f ιT2 (x2)
+ `CT2

(x2)

)
`CT1

(x1)− `CT1
(x1)`CT2

(x2)

=

(
PA1(x1)

f ιT1 (x1)

)
`CT2

(x2)︸ ︷︷ ︸
IH

≤˜̀C
T2

(x2)

+

(
PA2(x2)

f ιT2 (x2)

)
`CT1

(x1)︸ ︷︷ ︸
IH

≤˜̀C
T1

(x1)

+ `CT1
(x1)︸ ︷︷ ︸
IH

≤˜̀C
T1

(x1)

`CT2
(x2)︸ ︷︷ ︸
IH

≤˜̀C
T2

(x2)

IH
≤
(
PA1(x1)

f ιT1 (x1)

)
˜̀C
T2

(x2) +

(
PA2(x2)

f ιT2 (x2)

)
˜̀C
T1

(x1) + ˜̀C
T1

(x1)˜̀C
T2

(x2)

=˜̀C
T1
× ˜̀C

T2
(x) = ˜̀C

T1×T2
(x)

6Note that in the case −n/2 there is only one term instead of two. This term, however, is still positive.
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For T = sT1: This case directly holds by induction hypothesis, as the squaring operation is analogously
defined for the real and the virtual error.

We now show our main lemma for the lower bound on δ: the virtual EC term is precise for any event
with an index other than ∞. We can directly use this lemma to get a lower bound for δ if we ignore the
bucket with index ∞. Note that although the virtual error is precise on a per-event basis, events can still
be misplaced and thus negatively contribute to δ if we use the virtual EC term. For our upper bound on δ
we circumvent this problem by over-approximating misplaced events (using the real EC term) and by not
using EC terms in some buckets with a bucket factor f i close to eε.

Lemma 11 (Characterizing the virtual error after compositions and rescaling). Let T be a valid composition
tree with A := AT , B := BT , U := UT , n := nT , and f := fT . Then, for x ∈ U with ιT (x) 6=∞ we have

˜̀C
T (x) = PB(x)− PA(x)

f ιT (x)

Proof. We show the lemma via structural induction over T . For T = l(A,B, f, n), the statement follows
by construction:

˜̀C
T (x),= PB(x)− PA(x)

f ιT (x)

and fl(A,B,f,n) = f .
For T = T1×T2 with Ai := ATi , Bi := BTi , Ui := UTi , f := fT , and set A := A1×A2 and B := B1×B2.

By induction hypothesis, the statement holds for ˜̀C
T1

and ˜̀C
T2

. By definition of the EC term composition we
get for all x1 ∈ U1 and x2 ∈ U2

˜̀C
T1×T2

(x) =

(
PA1

(x1)

f ιT1 (x1)
+ ˜̀C

T1
(x1)

)
˜̀C
T2

(x2) +

(
PA2

(x2)

f ιT2 (x2)
+ ˜̀C

T2
(x2)

)
˜̀C
T1

(x1)− ˜̀C
T1

(x1)˜̀C
T2

(x2)

=
PA1

(x1)

f ιT1 (x1)
· ˜̀CT2

(x2) +
PA2

(x2)

f ιT2 (x2)
· ˜̀CT1

(x1) + ˜̀C
T1

(x1)˜̀C
T2

(x2)

IH
=
PA1

(x1)

f ιT1 (x1)
·
(
PB2

(x2)− PA2
(x2)

f ιT2 (x2)

)
+
PA2(x2)

f ιT2 (x2)
·
(
PB1

(x1)− PA1(x1)

f ιT1 (x1)

)
+

(
PB1(x1)− PA1(x1)

f ιT1 (x1)

)
·
(
PB2

(x2)− PA2(x2)

f ιT2 (x2)

)
=
PA1(x1)

f ιT1 (x1)
· PB2(x2)− PA(x)

f ιT (x)

+
PA2(x2)

f ιT2 (x2)
· PB1(x1)− PA(x)

f ιT (x)

+ PB(x)− PA1(x1)

f ιT1 (x1)
· PB2(x2)− PA2(x2)

f ιT2 (x2)
· PB1(x1) +

PA(x)

f ιT (x)

=PB(x)− PA(x)

f ιT (x)

For T = sT1, where T1 is a composition tree over the distributions A/B over the universe U , we know
that for all x ∈ U , ιsT1

(x) ∈ {−n/2, . . . , n/2} ∪ {∞}. Since the index ∞ is excluded in our lemma, we focus
on the remaining values for the index. Note that the bucket factor in this case changes from fT1

=: f (of
the child node) to fsT1 = (fT1)2 = f2 (of the squaring node). By induction hypothesis, we have

˜̀C
T1

(x) = PB(x)− PA1(x)

f ιT (x)
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Consequently and since ιsT1(x) ∈ {−n/2, . . . , n/2} and BCT1
= PA(x), we get,

˜̀C
sT1

(x) = ˜̀C
T1

(x) + BCT1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
IH
= PB(x)− PA(x)

f ιT1 (x)
+ PA(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
= PB(x)− PA(x)

f ιT1 (x)
+ PA(x) ·

(
1

f ιT1 (x)
− 1

f2ιT (x)

)
= PB(x)− PA(x)

(f2)ιT (x)
.

4.4 The approximated delta with error correction

Finally, we define how to calculate a sound upper bound on δ based on privacy buckets with EC terms. We
note that when using the real EC term, events cannot harm the soundness by being misplaced as a result of
parts of the event having been placed in the smallest bucket (with index −n). However, every composition
can misplace events into the next larger bucket. This slight misplacement poses a problem for a small number
of buckets with a bucket factor f i just slightly larger than eε, as they can now contain events that should
have been placed in a lower bucket (with factor f i

∗
< eε) and that now actually have a negative contribution

to δ: PA(x)− eεPB(x) < 0. All composition trees for privacy buckets carry a value u = 1 at each leaf that
increases by 1 for every composition and that is halved by squaring. If jε is the index of the bucket with the
smallest bucket factor larger than eε, we don’t consider the the EC term for buckets with index i < jε + u
and instead fall back to Definition 5 for those buckets. For the remaining buckets with i ≥ jε + u, which
typically is the vast majority of buckets, we make use of the real EC term to reduce the error.

Definition 9 (Approximated delta with error correction). Let T be a valid composition tree with A := AT ,
U := UT , n := nT , and f := fT .

We define δT (ε) with jε ∈ N such that f jε−1 < eε ≤ f jε as

δT (ε) :=
∑

i∈{jε,...,jε+uT−1}
BT (i)− eεBT (i)

f i

+
∑

i∈{jε+uT ,...,n}

(
BT (i)− eε

(BT (i)

f i
+ `T (i)

))
+ BT (∞)

Moreover, for all individual events x ∈ U we define

δCT (x, ε) :=


PA(x) ·

(
1− eε

fιT (x)

)
1. if jε ≤ ιT (x) ≤ jε + uT − 1

PA(x)− eε
(
PA(x)

fιT (x) + `CT (x)
)

2. if jε + uT ≤ ιT (x) ≤ n
PA(x) 3. if ιT (x) =∞
0 4. otherwise

Let for any composition tree T , ε ≥ 0 and jε s.t., f jε−1
T < eε ≤ f jεT ,

δlow
T :=

∑
i∈{jε,...,nT }max

(
0,BT (i)− eε

(
BT (i)
(fT )i + ˜̀

T (i)
))

Note that if j > n, we only consider elements in the bucket B∞.
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Next we show that the real EC terms are bounded by the value of uT : For every event x the real EC
term `CT (x) can never exceed a fraction of 1

fιT (x)−u − 1
fιT (x) of the probability of the event. Intuitively, this

means that the value of the real EC term can never be larger than what a misplacement by u buckets would
result in.

Lemma 12 (An upper bound for `). Let T be a valid composition tree with A := AT , U := UT , f := fT ,
and u := uT . Let ε ≥ 0 and with jε ∈ N such that f jε−1 < eε ≤ f jε .

If jε+u ≤ ιT (x) 6=∞ (x ∈ U), then the EC term never makes a negative contribution to the approximated

delta with EC: `CT (x) ≤ PA(x)
(

1
fιT (x)−u − 1

fιT (x)

)
.

Proof. We show the lemma via structural induction over T .

Let T = l(A,B, f, n). If ιl(A,B,f,n)(x) = −n then

`Cl(A,B,f,n)(x) = 0 ≤ PA(x) ·
(

1

f−n−1
− 1

f−n

)
.

Otherwise, if ιl(A,B,f,n)(x) > −n, we know that by definition of ιl(A,B,f,n)(x) we have f ιl(A,B,f,n)(x)−1PB(x) ≤
PA(x)

`Cl(A,B,f,n)(x) =PB(x)− PA(x)

f ιl(A,B,f,n)(x)

≤ PA(x)

f ιl(A,B,f,n)(x)−1
− PA(x)

f ιl(A,B,f,n)(x)
.

Let T = T1×T2. If ιT1×T2(x) = −n, then `CT1×T2
(x) = 0 ≤ PA(x)

f
ιT1×T2 (x)−uT1×T2

− PA(x)

f
ιT1×T2 (x) , since uT1×T2 ≥ 0.

Otherwise, by induction hypothesis, the statement holds for `T1 `T2 . For x1 ∈ U1 and x2 ∈ U2 we know
that ιT (x) = ιT1

(x1) + ιT2
(x2), since ιT 6= ∞. Moreover, we know that PA(x) = PA1

(x1) · PA2
(x2) and

u := uT1×T2
= uT1

+ uT2
and we get

`CT1×T2
(x) =

(
PA1

(x1)

f ιT1 (x1)
+ `CT1

(x1)

)
`CT2

(x2) +

(
PA2

(x2)

f ιT2 (x2)
+ `CT2

(x2)

)
`CT1

(x1)− `CT1
(x1)`CT2

(x2)

=

(
PA1

(x1)

f ιT1 (x1)

)
`CT2

(x2) +

(
PA2

(x2)

f ιT2 (x2)

)
`CT1

(x1) + `CT1
(x1)`CT2

(x2)
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IH
≤
(
PA1(x1)

f ιT1 (x1)

)(
PA2(x2)

f ιT2 (x2)−(u−uT1 )
− PA2(x2)

f ιT2 (x2)

)
+

(
PA2

(x2)

f ιT2 (x2)

)(
PA1(x1)

f ιT1 (x1)−uT1
− PA1

(x1)

f ιT1 (x1)

)
+

(
PA1

(x1)

f ιT1 (x1)−uT1
− PA1

(x1)

f ιT1 (x1)

)(
PA2

(x2)

f ιT2 (x2)−(u−uT1 )
− PA2

(x2)

f ιT2 (x2)

)
=

PA(x)

f ιT (x)−(u−uT1 )
− PA(x)

f ιT (x)

+
PA(x)

f ιT2 (x2)+ιT1 (x1)−uT1
− PA(x)

f ιT2 (x2)+ιT1 (x1)

+
PA(x)

f ιT (x)−uT1−(u−uT1 )
− PA(x)

f ιT (x)−(u−uT1 )
− PA(x)

f ιT (x)−uT1
+
PA(x)

f ιT (x)

=
PA(x)

f ιT (x)−uT2
− PA(x)

f ιT (x)

+
PA(x)

f ιT (x)−uT1
− PA(x)

f ιT (x)

+
PA(x)

f ιT (x)−u −
PA(x)

f ιT (x)−uT2
− PA(x)

f ιT (x)−uT1
+
PA(x)

f ιT (x)

=
PA(x)

f ιT (x)−u −
PA(x)

f ιT (x)

Let T = sT1. For f = fT1
we have fsT1

= f2 and u = usT1
= duT1

/2e + 1. We know that `CsT1
(x) =

`CT1
(x) + BCT1

(x) ·
(

1

f
ιT1

(x) − 1

f
2·dιT1 (x)/2e

)
. Since we excluded ιT (x) =∞ = ιT1 and jε + u ≤ ιT (x), we know

that ιT (x) ∈ {0, . . . , n/2}.
Thus,

`CsT1
(x) = `CT1

(x) + BCT1
(x) ·

(
1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
IH
≤ PA(x)

f ιT1 (x)−u1
− PA(x)

f ιT1 (x)
+ BCT1

(x) ·
(

1

f ιT1 (x)
− 1

f2·dιT1 (x)/2e

)
=

PA(x)

f ιT1 (x)−u1
− PA(x)

f ιT1 (x)
+
PA(x)

f ιT1 (x)
− PA(x)

f2·dιT1 (x)/2e

=
PA(x)

(f2)
ιT1

(x)−u1
2

− PA(x)

(f2)ιT (x)

≤ PA(x)

(f2)dιT1 (x)/2e−(du1/2e+1)
− PA(x)

(f2)ιT (x)

=
PA(x)

(f2)ιT (x)−u −
PA(x)

(f2)ιT (x)

From Lemma 12 we can deduct that no event in a bucket with index i ≥ jε + u can have a negative
impact on δ. Since moreover for each event we consider an impact that is at least as large as the actual
impact of the event (as in the precise calculation of δ from Lemma 1) we can show the soundness of our
result:
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Lemma 13 (Soundness of the approximated delta with error correction). Let T be a valid composition tree
with A := AT , B := BT , and U := UT . Then, for all ε ≥ 0, the following statement holds:

δT (ε) ≥
∑
x∈U

max (0, PA(x)− eεPB(x))

Proof. Let f = fT , jε ∈ N, s.t. f jε−1 < eε ≤ f jε .
We first show that δT (ε) =

∑
x∈U δ

C

T (x, ε). Let N− = {jε, . . . , jε + u− 1} and N+ = {jε + u, . . . , n}.

δT (ε) =
∑
i∈N−

BT (i) ·
(

1− eε

f i

)
+
∑
i∈N+

(
BT (i)− eε

(BT (i)

f i
+ `T (i)

))
+ BT (∞)

=
∑
i∈N−

 ∑
x∈U s.t. ιT (x)=i

BCT (x)

 · (1− eε

f i

)

+
∑
i∈N+

 ∑
x∈U s.t. ιT (x)=i

BCT (x)


−eε


(∑

x∈U s.t. ιT (x)=i BCT (x)
)

f i
+

 ∑
x∈U s.t. ιT (x)=i

`CT (x)


+

∑
x∈U s.t. ιT (x)=∞

BCT (x)

=
∑

x∈U,ιT (x)∈N−

(
PA(x) ·

(
1− eε

f ιT (x)

))

+
∑

x∈U,ιT (x)∈N−
PA(x)− eε

(
PA(x)

f ιT (x)
+ `CT (x)

)
+

∑
x∈U s.t. ιT (x)=∞

PA(x)

=
∑
x∈U

δCT (x, ε)

We next distinguish the the four cases of the definition of δCT (x, ε).
Case 1. This case occurs if jε ≤ ιT (x) ≤ jε + uT − 1. By Lemma 6, we know the following

PA(x) ≤f ιT (x)PB(x)

⇔ PA(x)

f ιT (x)
≤PB(x)

⇔ PA(x)− eεPA(x)

f ιT (x)
≥PA(x)− eεPB(x)

By definition of δCT (x, ε), we get

δCT (x, ε) = PA(x)− eεPA(x)

f ιT (x)
≥PA(x)− eεPB(x)
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Moreover, as ιT (x) >= jε, we know that eε ≤ f ιT (x). Hence, we also get

δCT (x, ε) = PA(x)︸ ︷︷ ︸
≥0

·

1− eε

f ιT (x)︸ ︷︷ ︸
≤1

 ≥ 0

Case 2. This case occurs if ιT (x) ≥ jε + uT , burt ιT (x) 6=∞.

We first show that δCT (x, ε) ≥ 0. By Lemma 12 we know that `CT (x) ≤ PA(x)

fιT (x)−uT
− PA(x)

fιT (x) holds; thus,

PA(x)− eε
(
PA(x)

f ιT (x)
+ `CT (x)

)
≥PA(x)− eε

(
PA(x)

f ιT (x)
+

PA(x)

f ιT (x)−uT −
PA(x)

f ιT (x)

)
=PA(x)− eε

(
PA(x)

f ιT (x)−uT

)
≥PA(x)− f jε

f ιT (x)−uT PA(x)

=PA(x) ·
(

1− f jε

f ιT (x)−uT

)
≥0,

as by assumption ιT (x) ≥ jε + uT . We now show that δCT (x, ε) ≥ PA(x)− eεPB(x).

Note that from Lemma 10 we know that `CT (x) ≤ ˜̀C
T (x).

PA(x)

f ιT (x)
+ `CT (x)︸ ︷︷ ︸
≤˜̀C

T (x)

≤ PA(x)

f ιT (x)
+ ˜̀C

T (x)
Lemma 11

=
PA(x)

f ιT (x)
+ PB(x)− PA(x)

f ιT (x)
= PB(x)

Thus,

δCT (x, ε) = PA(x)− eε
(
PA(x)

f ιT (x)
+ `CT (x)

)
≥ PA(x)− eεPB(x)

We combine these results and get

δCT (x, ε) =PA(x)− eε
(
PA(x)

f ιT (x)
+ `CT (x)

)
≥max(0, PA(x)− eεPB(x))

Case 3. This case occurs if ιT (x) =∞. By definition we have δCT (x, ε) = PA(x) > max (0, PA(x)− eεPB(x)).
Case 4. This case occurs otherwise, i.e., if ιT (x) < jε. We calculate that

PA(x)− eεPB(x)

since eε≤fjε
≤ PA(x)− f jεPB(x)

ιT (x)<jε,PB(x)≥0

≤ PA(x)− f ιT (x)PB(x)
Lemma 6
≤ 0

and thus,

δCT (x, ε) = 0 = max (0, PA(x)− eεPB(x))
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4.5 Main result

We now present our main technical theorem: Given any value for ε ≥ 0 and a value δ(ε), s.t. the distributions
are tightly (ε, δ(ε))-differentially private, the value δT calculated as in Definition 9 presents a sound upper
bound on δ(ε) from Lemma 1 and δlow presents a lower bound on δ(ε).

Definition 10 (Composition trees over distributions). Let X and Y be two distributions over the same
universe U . We call two composition trees T1 and T2 a pair of composition trees over the distributions X
and Y iff AT1

= BT2
= X and BT1

= AT2
= Y .

Theorem 2 (Buckets with EC terms are sound). Let A and B be two distributions and let T1 and T2 be
a pair of composition trees over A and B as in Definition 10. Then for every ε ≥ 0 and with δup(ε) =
max (δT1(ε), δT2(ε)) and δlow(ε) = min

(
δlow
T1

(ε), δlow
T2

(ε)
)
, the distributions A and B are (ε, δup(ε))-ADP and

δlow(ε) ≤ δ(ε) ≤ δup(ε),

where δ(ε) is the tight δ as defined in Lemma 1.

Proof. Lemma 1 shows that A and B are tightly (ε, δ(ε))-differentially private for

δ(ε) = max

(∑
x∈U

max (PA(x)− eεPB(x), 0) ,

∑
x∈U

max (PB(x)− eεPA(x), 0)

)

and Lemma 13 proves that δ(ε) ≤ δTA||B (ε) holds true (for any composition tree T and thus in particular
for TA||B).

Next, we show that δlow ≤ δ(ε). We show the computation for δlow
A||B , the computation for δlow

B||A follows
analogously:

δlow
A||B =

∑
i∈{jε,...,n}

max

(
0,BTA||B (i)− eε

(BTA||B (i)

f i
+ ˜̀

TA||B (i)

))

Lemma 8
=

∑
i∈{jε,...,n}

max

0,
∑

x∈U,ιT (x)=i

PA(x)− eε
(
PA(x)

f i
+ ˜̀C

TA||B
(x)

)
Lemma 11

=
∑

i∈{−n,...,n,∞}
max

0,
∑

x∈U,ιT (x)=i

PA(x)− eε
(
PA(x)

f i
+

(
PB(x)− PA(x)

f ιT (x)

))
=

∑
i∈{jε,...,n}

max

0,
∑

x∈U,ιT (x)=i

PA(x)− eεPB(x)


≤

∑
i∈{jε,...,n}

∑
x∈U,ιT (x)=i

max (0, PA(x)− eεPB(x))

≤
∑
x∈U

max (0, PA(x)− eεPB(x))

Hence, we conclude that

δlow
A||B ≤

∑
x∈U

max (0, PA(x)− eεPB(x)) ≤ δ(ε).

the computation for δlow
B||A follows analogously, ending with δlow

B||A ≤
∑
x∈U

max (0, PB(x)− eεPA(x)) ≤ δ(ε).
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Thus, the bounds calculated present a sound over-approximation of the real differential privacy values. As
discussed in Section 2, distributions can be used to calculate differential privacy in a variety of applications.
To this end, we require the existence of worst-case inputs that are independent of the random coins used by
the mechanism in the previous rounds.

Definition 11 (Worst-case inputs). Inputs x0, x1 are worst-case inputs for a given sensitivity s and a
mechanism M if Pr[M(x0) ∈ S] ≤ eε Pr[M(x1) ∈ S] + δ, implies M is (ε, δ)-ADP for all inputs with
sensitivity s.

These worst-case inputs commonly exist when differential privacy is applied (see Section 2.1) and they
enable us to directly derive the relevant distributions.

As a corollary to Theorem 2, we see that we can compute upper and lower bounds for a sequence of
privacy-enhancing mechanisms, where each of the mechanisms may be different from the others.

Corollary 1. Let M1, . . . ,Mr be privacy-enhancing mechanisms for which there exist worst-case inputs
(x0,1, x1,1), . . . (x0,r, x1,r). Let Mi(b) be the output distribution of the mechanism Mi on input xb,i. Let T1

and T2 be a pair of composition trees over
∏r
i=1Mi(0) and

∏r
i=1Mi(1) as in Definition 10. Then for every

ε ≥ 0 and with δup(ε) = max (δT1
(ε), δT2

(ε)) and δlow(ε) = min
(
δlow
T1

(ε), δlow
T2

(ε)
)
, the distributions A and B

are (ε, δup(ε))-ADP and
δlow(ε) ≤ δ(ε) ≤ δup(ε),

where δ(ε) is the tight δ as defined in Lemma 1.

Proof. Consider the reduction that replaces all inputs of the attacker with sensitivity s with the worst case in-
puts ((x0,1, x1,1),
. . . , (x0,r, x1,r)) for sensitivity s. Theorem 2 implies the result for the product distributions

∏r
i=1Mi(x0,i)

and
∏r
i=1Mi(x1,i). By the definition of worst-case inputs, we know that the result holds for any other

sequence of inputs ((x′0,1, x
′
1,1), . . . , (x′0,r, x

′
1,r)).

Heterogenous adaptive r-fold composition Bounds for (heterogenous) adaptive r-fold composition
classically only restrict mechanisms to the class of all (ε, δ)-ADP mechanisms. Thus, by only choosing worst-
case mechanisms Mε,δ (see Section 2) for each step, we get a for heterogeneous adaptive r-fold composition
as in [14] .

When the class of mechanisms is restricted further, e.g., the structure of the mechanisms is partially
known, we suggest to derive (and prove sound) tighter worst-case mechanisms for which we can then give
significantly better results.

4.6 Implementation

We implemented δT (ε) (c.f. Theorem 2) in Python using the NumPy [3] and the SciPy [4] libraries in 655
LoC. The most time consuming part in the computation is the composition. We phrased the composition
as a series of inner products and use the NumPy library, which has an efficient implementation of inner
products. However, a series of inner products can be massively parallelized. While we added a simple form
of parallelization (62 LoC), we expect that a massive parallelization via GPUs should improve the overall
efficiency by several orders of magnitudes.

On an early 2015 MacBook Pro 13-inch with a 2.9 GHz Intel Core i5 (2 cores, with hyperthreading 4)
and 16 GB of RAM, one composition operation took for 100, 000 buckets around 115 seconds, i.e., a little
bit less than 2 minutes, with our unoptimized prototypical implementation. Our simple parallelization was
configured to use 4 processes. Hence, with repeated squaring, computing 218 = 262, 144 compositions took
around 35 minutes. This benchmarking was done using the example gauss.py script from the provided im-
plementation (with 100, 000 instead of 10, 000 buckets and 4 instead of 1 parallel threads). All computations
in Sections 5, 7 and 8 use 100, 000 buckets.

Given a bucket factor as well as a number of buckets 2n + 2, our implementation constructs privacy
buckets from any given histogram / distribution with a limed number of events. For Laplacian noise and
Gaussian noise we have implemented special constructors that create privacy buckets for those functions in
a more-or less precise fashion.
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Given any privacy buckets and a number of rounds r, our implementation then calculates both upper
bounds (with error correction) and lower bounds using repeated squaring: we compose the bucket distribution
with itself in each round, thus calculating 2r compositions in r composition steps, with each composition
step being quadratic in the number of buckets n.7 Our implementation adaptively decides whether or not to
perform “squaring”, i.e., to rebase the factor depending on whether the bucket with index∞ would otherwise
grow too much. Empirically, we found that an increase of weight of the ∞ bucket by more than a factor
of 2.2 is a good indicator that squaring should be performed. Additionally, we include a parameter that
disables squaring as long as the B(∞) is below this parameter, which is important for cases where B(∞) is
initially zero or very small. Finally, we compute an (ε, δ)-graph by calculating δ as in Definition 9 for every
ε = f i with i ∈ {0, . . . , n}.

We refer to https://ratiobuckets.rocks for our implementation of privacy buckets.

5 Comparison to Kairouz et al.’s composition theorem

Kairouz et al. proved a composition theorem [14] that significantly improves on the standard and advanced
composition theorem. This composition theorem [14] provides a composition result where each ε, δ pair
after r-fold composition is solely derived from one ε, δ pair of the original pair of distributions. Hence, this
composition result does take the entire shape of the distribution into account. In other words, the resulting
epsilon and delta bounds are not necessarily tight in the sense of Definition 1.

Recall that we show that our privacy buckets approach provides an upper and a lower bound and that
the distance between these two bounds can be made arbitrarily small by increasing the granularity of the
buckets. The privacy buckets can be seen as an approximation of the two ε, δ graphs8 of the original pair of
distributions A and B. As a consequence, our results show that the two ε, δ graphs of A and B capture all
features that are relevant for computing the two ε, δ graphs after k-fold composition (i.e., of Ak and Bk).

We show in this section that Kairouz et al.’s composition theorem seems to be tight for the Laplace
mechanisms but not for all mechanisms, such as the Gauss mechanism or the measured timing-leakage of
the CoverUp system [22]. While our approach does not provide significantly tighter bounds for Laplace
mechanism, our privacy buckets significantly improve the privacy bounds on other mechanisms, such as
Gauss mechanism and CoverUp-data. We first describe how we compute these mechanisms and then how
we compute the composition theorem. Subsequently, we compare the tightness of the bounds from our
privacy buckets approach to the bounds from Kairouz et al.’s composition theorem in these three scenarios.
In the three case studies of this section we consider one-dimensional data, e.g., in responses to statistical
queries over sensitive databases or leakage due to suspicious timing delays. However, our approach and our
implementation can also deal with higher-dimensional data.

5.1 Embedding the Laplace mechanism

We analyze the Laplace mechanism, the classical mechanism to achieve DP, by comparing two distributions
of Laplace noise with means 0 and 1 respectively. This case corresponds to many applications of the Laplace
mechanism for DP, such as counting queries for databases with sensitivity 1. We choose in our case study
a Laplace distribution with mean µ = 0 and scale factor γ = 200, denoted as LP(µ, γ). As a result, an
attacker either makes observations from LP(0, 200) or from LP(1, 200) (as the sensitivity is 1). We consider
truncated Laplace distributions, since that corresponds closer to real-world applications. If not mentioned
otherwise, we truncate at µ− 2500 and µ+ 2500.

We want to give strong evidence that both Kairouz et al.’s composition theorem and our privacy buckets
are tight for the bounds of the Laplace mechanism. As a consequence, we carefully embed the Laplace
mechanism in a way that has a small discretization error. The bucket method introduced in Definition 7
iterates over all atomic events in the support of the distributions. For modeling the Laplace distribution,
or rather, two Laplace distributions A and B, we consider the quotients of the probability mass functions
and integrate distribution A over the range of events that fall into each bucket: for B(i) we integrate over

7Using the Fast Fourier Transformation (FFT) each composition step can be reduced to O(n logn) by representing it as a
convolution.

8There are two ε, δ graphs since the DP definition is asymmetric.
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all events x such that f i < pA(x)/pB(x) ≤ f i+1. This technique can also be applied to other distributions
with an infinitely large support, where all areas where B has a probability of zero naturally contribute to
the bucket B∞.

Recall the probability density function for the Laplace distribution with mean µ and scale parameter γ

as Laplace(x) := 1
2γ e

−|x−µ|
γ . For differential privacy we often compare two such distributions with the same

scale parameter γ and different medians µ1 and µ2, where the means are the real values to which we add
Laplace noise with scale parameter γ. We know that without composition, we get (ε, 0)-ADP with ε = 1

γ .

Consequently, we can describe the quotient f at each point x as We calculate the quotient f(x) =
Laplaceµ1 (x)

Laplaceµ2 (x)

depending on the relation between the values for x, µ1 and µ2:

� x ≤ min(µ1, µ2): f(x) = e−(µ1−x)ε/e−(µ2−x)ε = e(−µ1+x−x+µ2)ε = e(µ2−µ1)ε

� µ1 ≥ x ≥ µ2: f(x) = e−(µ1−x)ε/e−(x−µ2)ε = e(−µ1+x+x−µ2)ε = e(−µ1−µ2+2x)ε

� µ1 ≤ x ≤ µ2: f(x) = e−(x−µ1)ε/e−(µ2−x)ε = e(−x+µ1+µ2−x)ε = e(µ1+µ2−2x)ε

� x ≥ max(µ1, µ2): f(x) = e−(x−µ1)ε/e−(x−µ2)ε = e(µ1−x+x−µ2)ε = e(µ1−µ2)ε

It turns out that for a pair of Laplace distributions the quotient in the region min(µ1, µ2) ≤ x ≤
max(µ1, µ2) is either monotonically increasing or monotonically decreasing. For any x smaller than min(µ1, µ2),
the quotient is stable at e−ε and for any x larger than max(µ1, µ2) the quotient is stable at eε. Recall that
our buckets capture a range of quotients: bucket i captures all x such that f i < pA(E)/pB(E) ≤ f i+1. As
a result, each bucket i contains contiguous points and defines an interval on the x− axis. For each interval
we define the bucket borders, i.e., for the bucket with index i, we call the value x with f(x) = f i−1 the left
bucket border lbb(i) and the value x with f(x) = f i the right bucket border rbb(i).

For µ1 > µ2, the right bucket border rbb(i) is the x such that

e(2x−µ1−µ2)ε =f i = e(iε/gr) =: ej

⇔ (2x− µ1 − µ2)ε =j

⇔ (2x− µ1 − µ2) =j/ε

⇔ 2x =µ1 + µ2 + j/ε

⇔ x =(µ1 + µ2 + j/ε)/2

⇔ x =(µ1 + µ2 +
(iε/gr)

ε
)/2

⇔ x =(µ1 + µ2 + i/gr)/2

=⇒ rbb(i) =1/2(µ1 + µ2 + i/gr)

=⇒ rbb(i− 1) =1/2(µ1 + µ2 + i/gr− 1/gr)

=rbb(i)− 1/(2gr)

=lbb(i)
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For µ1 < µ2, the right bucket border rbb(i) is the x such that

e(−2x+µ1+µ2)ε =f i = e(iε/gr) =: ej

⇔ (−2x+ µ1 + µ2)ε =j

⇔ (−2x+ µ1 + µ2) =j/ε

⇔ 2x =µ1 + µ2 − j/ε
⇔ x =(µ1 + µ2 − j/ε)/2

⇔ x =(µ1 + µ2 −
(iε/gr)

ε
)/2

⇔ x =(µ1 + µ2 − i/gr)/2

=⇒ rbb(i) =1/2(µ1 + µ2 − i/gr)

=⇒ rbb(i− 1) =1/2(µ1 + µ2 − i/gr + 1/gr)

=rbb(i) + 1/(2gr)

=lbb(i)

As a result, the bucket i has the value
∫ rbb(i)

lbb(i)
Laplace(µ1, 1/ε).

We compute the error correction term as `(i) :=
∫ rbb(i)

lbb(i)

(
B(x)− A(x)

fi

)
and we can directly compute the

virtual error from this term.
For the buckets with index ±i s.t. f i = eε we integrate over the respective remaining areas B(−i) =∫ rbb(−i)

−∞ Laplace(µ1, 1/ε) and to B(i) we add
∫∞

rbb(i)
Laplace(µ1, 1/ε). As we chose f to fit eε the events in

these regions exactly have the respective quotient of the bucket and we don’t have errors for these integrals.
Consequently, the error terms for bucket B(−i) are zero and the error terms for bucket B(i) are composed
of the error terms for the values x with lbb(i) < x < rbb(i).

Truncated Laplace distributions. The truncation of each of either of these functions, causes the quotient
of a region to be either 0 or to have 0 in the denominator, which we treat as infinity. The regions are captured
by the outer buckets with indexes −n and ∞ respectively.

5.2 Embedding the Gauss mechanism

The truncated Gauss mechanism is also an often-used mechanism in privacy-preserving applications. It works
similar to the Laplace mechanism insofar as it convolves the input (e.g., a query response) with a Gaussian
distribution. In this work, we use a mean µ = 0 and a standard deviation σ = 200

√
2 (to achieve the same

variance as LP(0, 200)), denoted as GS(µ, σ2), and we truncate these distributions at µ−2500 and µ+2500, if
not mentioned otherwise. For the truncated Gauss mechanism, we do not use a precise embedding but rather
produce a histogram for each of the two distributions, using SciPy’s scipy.stat.norm function. Then, we
use the normal interface of our bucketing implementation that parses a pair of histograms and produces a
bucketlist vector, a real error vector, and a virtual error vector. We accept that this implementation may
produce discretization artifacts that, however, should be both small w.r.t. the values concerned and should
not lead to a significantly different shape of the distributions under composition.

5.3 Embedding CoverUp’s data

Classical anonymous communication networks (ACN) have the goal of hiding the IP address of the sender
and the recipient of a communication. Such ACNs do however not hide the participation time, i.e., whether,
when, and for how long a party uses an ACN. This participation time can be used for long-term attacks (e.g.,
intersection attacks) and can raise suspicion national state-level adversaries. Sommer et al. [22] propose a
system, called CoverUp, that has the goal of hiding this participation time leakage. CoverUp assumes a
collaborating popular web service with a significant amount of regular visitors. This webpage would be
incorporated into the usage of an ACN and trigger all its visitors to produce cover traffic. This web page
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would serve an iFrame that loads content from a trusted server, which in turn would serve a piece of JavaScript
code that executes a dummy client for the ACN on the visitors browser. ACN users would act as a normal
visitor, receive the JS code, but additionally have a dedicated CoverUp browser extension installed. The
browser extension would enable a communication channel to an external application by replacing the dummy
messages from the dummy client with actual messages from an external application and by forwarding all
messages from the network to the external application. For CoverUp to properly hide the participation time
ACN users (called voluntary participants) and normal website visitors (called involuntary participants) have
to be indistinguishable. While both execute the same piece of JS code, the voluntary participants perform
additional computations. As a consequence, the response time of the voluntary participants differs by a few
milliseconds from the response time of the involuntary participants. CoverUp remedies this timing leakage
by adding random delays in the JS code, i.e., for voluntary and involuntary participants.

The CoverUp paper presents an analysis of this timing leakage (after adding the noise) and aims for a
high degree of privacy after more than 250k observations. The CoverUp authors experimentally measured
the timing delays of voluntary and involuntary participants in the lab and produced histograms of these
timing delays. These histograms are used as a model for the timing delays of voluntary and involuntary
participants to assess the timing leakage of CoverUp. We apply our algorithm to these histograms of timing
delays, to illustrate that and how well our approach works on measured data. We use data from the CoverUp
project, which is openly available online.9

In this comparison, we only consider those measured delays on a Linux system that are observable after
the webpage has been loaded, called the “periodic” measurements in the CoverUp paper.

5.4 Computing Kairouz et al.’s composition theorem

We directly implement the bounds from Kairouz et al.’s theorem. We do not use any statements specific to
Gauss or Laplace, as those are simplified and provide worse bounds.

Theorem 3 ([14]). For any ε ≥ 0 and δ ∈ [0, 1], the class of (ε, δ)-ADP mechanisms satisfies (ε′, δ′)-ADP
under r-fold composition, for all i ∈ {0, . . . , br/2c} where ε′ = (r − 2i)ε and δ′ = 1− (1− δ)r(1− δi)

δi =

∑i−1
`=0

(
r
`

) (
e(r−`)ε − e(r−2i+`)ε

)
(1 + eε)r

We compute for a given number r of compositions the epsilon-delta graph by looking up for a fine-grid
of ε values the corresponding δ value of the original pair of distributions and then computing and storing all
(ε′, δ′) pairs according to the theorem above, i.e., for all i ∈ {0, . . . , br/2c}. From these stored (ε′, δ′) pairs,
we remove all pairs for which we have stored lower (ε′′, δ′′) pairs, i.e., pairs such that ε′′ ≤ ε′ and δ′′ ≤ δ′.
We output the remaining list of (ε′, δ′) pairs, which form a monotonically decreasing (ε, δ)-graph. Due to
our direct implementation of δi, we can only evaluate the composition theorem up to r = 512 before the
intermediate computation results (in particular, the eO(k)-terms) become too large.

In our computation, the granularity of the grid of ε values of the original pair of distributions naturally
leads to an imprecision. We use a fine grid of

eε ∈ {(1 + 10−14)1.1j | j ∈ {0, . . . , n}},

where we choose n as a point where the (ε, δ) after r-fold composition becomes stationary. While we concede
that it might be possible to obtain a slightly lower bound from the composition theorem, we are confident
that, due to this fine grid, the resulting graphs for Kairouz et al.’s composition theorem that we compute
are representative.

5.5 Comparing evaluations

We are finally in a position to evaluate how our privacy buckets compare against Kairouz et al.’s composition
theorem. Figure 11 and Figure 12 show our results. We see that our upper and lower bounds coincide, i.e.,
that our results are tight. Also, Kairouz et al.’s composition theorem is tight with respect to a pair of Laplace

9Available under http://coverup.tech.
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Figure 11: A group of (ε, δ)-graphs for the Laplace mechanism, the Gauss mechanism, the CoverUp mecha-
nism and the stochastic gradient descent mechanism. The first three are for r = 512, the latter for r = 216.

distributions (i.e., the Laplace mechanism). We see that for the Gauss mechanism that composition theorem
is already after 512 compositions not very tight. For the CoverUp-data our privacy buckets are tight, while
there is a large gap to the bounds from Kairouz et al’s composition theorem. We used in the computation
of all these graphs 100, 000 buckets.

Figure 13 compares for fixed epsilon values the evolution of the delta bounds from Kairouz et al.’s
composition theorem and from our approach. This comparison again uses the Laplace mechanism, the
Gauss mechanism and the CoverUp data.

The tightness of Kairouz et al.’s[14] bounds for the Laplace mechanism suggests that there is no noise
distribution with the same, or smaller, initial ε and δ values that has a worse composition behavior than the
Laplace mechanism.
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Figure 12: Comparison with the bounds from Rényi Privacy and CDP for the Gauss mechanism, i.e., the
distributions GS(0, 2 ∗ 2002) and GS(1, 2 ∗ 2002). Left: (ε, δ)-graph for 512 compositions. Right: growth of
eε over the number of compositions for δ ≤ 10−5.

6 Comparison to bounds based on Rényi Divergence

General purpose bounds [9, 14] were solely based on one (ε, δ) pair from the pair of distributions – say A,B
– in question. In contrast, the recently introduced notions of Concentrated Differential Privacy (CDP) [8, 2],
Rényi Differential Privacy (RDP) [18], and Moments Accountant [1] introduced mechanism-aware bounds
for differential privacy by using the so-called Rényi Divergence, which can be expressed10 as the higher
log-moments of our privacy buckets distributions (for α > 0):

Dα+1 =
1

α
log
∑
i

B(i) · fαi

A pair of distributions A,B satisfies (ξ, ρ)-Concentrated DP if the Rényi Divergence is bounded by an
affine linear function: Dα ≤ ξ + ρα (for all α ≥ 0). Rényi Differential Privacy directly characterizes the
privacy by the Rényi Divergences: (α,Dα)α. Rényi Differential Privacy can be translated to (ε, δ)-ADP as
follows: whenever (α,Dα)α, then also (ε, αDα − αε)-ADP holds. The Moments Accountant uses the same

10This theoretical characterization assumes a sufficiently high number of buckets such that no approximations need to be
made.
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Figure 13: Growth of eε over the number of compositions (y-axis) for fixed δ values (different line-styles) for
a growing number of compositions.

characterization and proposes (ε,minα(αDα−αε)) as ADP bounds. This section compares these mechanism-
aware bounds with our privacy buckets bounds and illustrates that we achieve significantly lower bounds.
We evaluate the Gauss mechanism, the randomized response, and a differentially privacy stochastic gradient
descent mechanism (DP-SGD), which is useful for deep learning [1]. In these three evaluations, we illustrate
two advantages of our approach: (ε, δ)-graphs for a fixed number of compositions highlight that we achieve
significantly reduced δ-bounds for very small eε, plots about eε-bounds for a fixed bound on δ but a growing
number of compositions illustrate that we achieve significantly reduced eε-bounds.

The Gauss mechanism uses the same variance and distance of the means as before: we compare GS(0,
√

2·
200) with GS(1,

√
2·200). Our privacy buckets result in the lowest bounds and that these bounds are tight, as

the lower bounds are very close to the upper bounds. While Rényi Privacy actually uses more information to
characterize the leakage than CDP (as it maintains separate bounds for each moment), CDP [2] proves tighter
ADP bounds, i.e., the translation from CDP to ADP is tighter. As the moments of the Gauss Mechanism
and the randomized response can be bounded by an affine function, CDP yields tighter bound due to the
tighter translation. We apply an optimization to MA and CDP: instead of computing the respective δ bounds
for a given ε (written as δ(ε)) from the RDP and CDP papers, the graph plots the minimum of δ(ε) and
minε(e

ε′ − eε) + δ(ε), which is a generic bound on δ for a given ε that can be derived from and (ε, δ)-ADP
graph.

The randomized response mechanism RRp,f is parametric in a bias p and is defined for a binary predicate
f : X → {0, 1}. For an input database D, if f(D) the mechanism RRp,f (D) outputs 1 with probability p and
0 with probability 1− p. If f(D) is not true, RRp,f (D) outputs 0 with probability p and 1 with probability
1− p. It can be easily shown that the pair (A,B) of distributions A(0) = p,A(1) = 1− p and B(0) = 1− p
and B(1) = p is a worst case distribution, which corresponds to the case where two databases D0, D1 are
compared with f(D0) = 0 and f(D1) = 1.11 In particular, since Differential Privacy considers worst-case
inputs, we do not need to explicitly specify the predicate f as long as there are at least two databases D0

and D1 for which f(D0) 6= f(D1), i.e., as long as f is not constantly true or false on all databases. Figure 14
shows that privacy buckets clearly lead to tighter ADP-bounds, followed by the CDP and then the RDP
bounds. As for the Gauss mechanism, CDP yields tighter bounds than RDP since the translation to ADP
is tighter.

Finally, we evaluate the DP-SGD mechanism and illustrate that this method leads to significantly tighter
bounds. Abadi et al. prove that it suffices to consider the leakage of a Gaussian mixture model (1 −
q)GS(0, σ2) + qGS(1, σ2) versus a Gaussian distribution GS(0, σ2), for some q that depends on the training
parameters. We construct privacy buckets for these two distributions and compute the composition with
100,000 buckets. To improve comparability, we use the same parameters as in the Moments Accountant

11For arbitrary D′
0, D

′
1, the reduction checks whether f(D′

0) = f(D′
1). If so, the reduction draws a p-biased coin and outputs

the result. If f(D′
0) = 1 and f(D′

1) = 0, the reduction flips the output of the game with the worst-case distributions, and if
f(D′

0) = 1 and f(D′
1) = 0 the reduction simply forwards the result of the game with the worst-case distributions.
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Figure 14: Comparison of bounds for randomized response (RR) mechanism with p = 0.51. Left: (ε, δ)-graph
for 512 compositions. Right: growth of eε over the number of compositions for δ ≤ 10−4.

paper, σ = 4, q = 0.01, δ = 10−5; however, we plot on the y-axis eε and not ε. While the Moments
Accountant-paper discusses the application to Deep Learning, we solely concentrate on the improvement of
the privacy bound and refer to the applicability to Deep Learning to the Moments Accountant paper [1]. We
see that also in this case for which the Moments Accountant/RDP is very well suited, the privacy buckets
lead to significantly tighter bounds.12 We stress that CDP is not applicable in this application, since Dα

cannot be bounded by a affine linear function .

7 Comparison of the Gaussian and the Laplace mechanism

As we have seen in Section 5.5, Kairouz et al.’s composition theorem is fairly tight for the Laplace mechanism
but not for the Gauss mechanism. Figure 15 (upper two graphs) compares a truncated Laplace and a
truncated Gauss mechanism and find that for the same variance the Gauss mechanism provides a significantly
higher degree of privacy.13 For a fixed variance of 80, 000, a sensitivity of 1 (mu1 = 0 and µ2 = 2), and
a truncation at −2500 and 2500 for µ1 (and −2499 and 2501 for µ2), the upper left graph in Figure 15
depicts how, for different but fixed epsilon values, the delta increases over the course of 512 evaluations. The
graph clearly shows that in the course of 512 compositions, the reduced leakage of the Gauss mechanism
becomes visible. The lower left graph in Figure 15 shows the full epsilon-delta graphs of a Gaussian and a
Laplace mechanism after 512 compositions, where the two mechanisms use noise that has the same variance
(80, 000). In particular, the delta-value where the (ε, δ) graph levels out is 4 orders of magnitude lower for
Gaussian noise than it is for Laplace noise, since the Gaussian distribution falls much steeper than Laplace
distribution. This difference of the Gaussian and the Laplace mechanisms becomes even more pronounced in
our analysis and improvement of the Vuvuzela protocol in Section 8. The analysis of Vuvuzela also illustrates
that the steepness of the Gaussian distribution enables a much tighter truncation, i.e., the distribution can
be truncated much earlier than a Laplace distribution without sacrificing privacy. This tighter truncation,
in turn, leads to a smaller range of noise that is required to achieve the same privacy goals as with Laplace
noise.

Additionally, we found evidence that the epsilon-delta graph of the Laplace mechanism converges toward
the epsilon-delta graph of a Gauss mechanism with half the variance of the Laplace mechanism. For the same
sensitivity, and truncations as above, the two right graphs in Figure 15 illustrate that after 512 compositions
these two graphs converge toward each other. The upper right graph in Figure 15 depicts how, for different
but fixed epsilon values, the delta increases over the course of 512 evaluations. The graph clearly shows

12We used the publicly available implementation of the Moments Accountant for our computations.
13All computations have been conducted with 100, 000 buckets.
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Figure 15: Truncated Gauss mechanisms (red) vs. truncated Laplace mechanism (blue) both with sensitivity
= 1. For both mechanism truncation is at µi − 2500 and µi + 2500 (µ1 = 0 and µ2 = 1). At twice the
variance the Laplace mechanism converges towards the Gauss mechanism, so much that the blue lines almost
completely cover the red lines.

how in the course of 512 compositions, the delta values of the Laplace mechanism converge toward the delta
values of the Gauss mechanism. The lower right graph in Figure 15 shows the full epsilon-delta graphs
of a Gaussian and a Laplace mechanism after 512 compositions, where the Laplace mechanism has twice
the variance (80, 000) of the Gauss mechanism (40, 000). This figure shows how close the two epsilon-delta
graphs are and that they almost only differ due to their different y-values at the point where they have
been truncated. This difference, however, is crucial. As explained above, it is caused by the steepness of
the Gaussian distribution and enables a much tighter truncation, which in turn can lead to significantly less
noise overhead, as we illustrate in our analysis of Vuvuzela.

Dwork and Rothblum [8] presented a related result. They characterized the composition behavior of a
mechanisms (i.e., a pair of distributions A,B) for which the privacy loss distribution eL(A||B) is Subgaussian,
i.e., the moment-generating function (MGF) is smaller than the MGF of a Gaussian. They show that such for
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mechanisms the privacy loss distribution after r-fold composition can be bounded by a Gaussian. Moreover,
showed that the privacy loss distribution, i.e., the privacy buckets distribution, of the Gauss mechanism is
a Gaussian distribution. Complementarily, our findings show that the privacy loss distribution of a Laplace
mechanism converges towards a Gaussian, already after 512 compositions. We leave it for future work
to investigate the connection between the Laplace distribution and a Gaussian distribution with half the
variance.

8 Application to Vuvuzela

In this section, we show how aiming for tight bounds in a privacy analysis can significantly improve the
bandwidth overhead of a protocol. As a case study, we use the Vuvuzela [24] protocol, which is an anonymous
communication system tailored towards messengers. Vuvuzela uses Laplace noise to achieve strong privacy
properties. Using the insights from Section 7, we not only estimate tighter bounds for the Laplace noise but
also propose to change the shape of the noise distribution to Gaussian noise. With our bucketing approach,
we show that already 5 to 10 times less noise14 suffices to achieve the same strong privacy properties. 15

We refer to the original Vuvuzela paper for a full presentation and restrict our presentation to the
bare bones that are needed to understand the noise messages that Vuvuzela uses to achieve strong privacy
properties.

We stress that our work contributes to improving the epsilon-delta bounds and thus to improve a given
privacy analysis. This work is not meant to help in finding a suitable attacker model, a suitable definition
or accurate usage profiles. Hence, we stick to Vuvuzela’s privacy analysis, as it was presented in the original
paper.

8.1 Protocol overview

Vuvuzela clients communicate by deposing their encrypted messages in virtual locations in the one of the
mixes (the locations are called dead drops). For agreeing on such a dead drops, Vuvuzela deploys a dialing
protocol where the dialer sends the ID of a dead drop to dedicated invitation dead drops. This ID is encrypted
with the peer’s public key with an encryption schemes that is designed to hide the recipient’s identity. On
the dialer’s side directly the conversation protocol is started where the client regularly retrieves the chat
messages from and deposits chat messages to the dead drop from the invitation. If the recipient receives and
accepts the invitation, the recipient also starts the conversation protocol.

Privacy analysis Vuvuzela assumes a global network-level attacker that is additionally able to compromise
some mixes. To achieve strong resistance against compromised servers, each path in Vuvuzela traverses all
nodes. To counter traffic correlation attacks, Vuvuzela clients produce dummy traffic at a constant rate. The
Vuvuzela paper argues that the only remaining source of leakage is the patterns of registering invitations
and patterns of access requests to these dead drops: single requests to dead drops, corresponding to dummy
messages or messages before the peer accepted the conversation, and pairs of requests to the same dead drop,
corresponding to an active conversation.

Privacy-enhancing measures Vuvuzela reduces the information that an attacker can learn by triggering
each mix to produce cover stories for potentially communicating parties. For the dialing protocol, the mixes
produce cover stories (i) by sending dummy invitation registrations and invitation requests to the dedicated
invitation dead drops. The number of these dummy registrations and dummy requests is in each round
drawn from the truncated Laplace distribution dmax(0,Laplace(γd, µd))e for some system parameters γd
and µd. For the conversation protocol, the mixes produce cover stories (ii) for idle parties, by sending pairs
of dummy access requests to uniform-randomly chosen dead drops, and (iii) for (bi-directionally) commu-
nicating parties, by sending (single) dummy access requests to uniform-randomly chosen dead drops. The

14The more observations are estimated, the higher the error of the advanced composition result, which is used in the original
analysis from the Vuvuzela paper; hence, in those cases the tightness of our bounds leads to a more significant improvement.

15We acknowledge that for the analysis of the Laplace noise previous results [14] would already yield tight results, but for
the Gaussian noise our approach yields much tighter results (see Section 7).
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Figure 16: The privacy bounds for Vuvuzela’s dialing protocol. The left graph shows the eε-values on the
y-axis and the number of observations r on the x-axis (i.e., r-fold composition) in log-scale and the right
graph shows the corresponding δ-values on the y-axis. The solid green (µ = 8k, γ = 500), the dashed red
(µ = 13k, γ = 770k), and the dotted blue line (µ = 20k, γ = 1130) are from the original Vuvuzela paper,
and the solid magenta line (Gaussian noise, µ = 4.1k∗, σ = 320) is computed with this work’s technique.

number of (single) dummy access requests (ii) is in each round drawn from the truncated Laplace distribu-
tion dmax(0,Laplace(γc, µc))e for system parameters γc and µc, and the number of pairs of dummy access
requests (iii) is in each round drawn from the truncated Laplace distribution dmax(0,Laplace(µc/2, γc/2))e.
The system parameters µd, µc, γd, γc determine how much noise-overhead the protocol produces and how
much privacy it will offer.

Privacy-impact of the dummy requests The goal of the these dummy requests and invitations is to
produce a cover stories for dialing parties (i), for idle parties (ii), and for conversing (iii). The Vuvuzela
paper separately conducts a privacy analysis for the dialing protocol ((i)) and the conversation protocol
((ii) and (iii) combined). For the dialing protocol, the paper concludes that it suffices to bound the r-fold
(ε, δ) differential privacy of max(0,Laplace(µd, γd)) and max(0,Laplace(µd + 2, γd)), i.e., the (ε, δ) differ-
ential privacy of the product distributions max(0,Laplace(µd, γd))

r and max(0,Laplace(µd + 2, γd))
r. The

parameter r indicates the number of rounds at which that the attacker conducts an observation. For the
conversation protocol, the paper concludes that it suffices to estimate the r-fold (ε, δ) differential privacy of
max(0,Laplace(µc, γc))+max(0,Laplace(µc/2, γc/2)) and max(0,Laplace(µc+2, γc))+max(0,Laplace(µc/2+
1, γc/2)). The Vuvuzela paper uses the advanced composition theorem for differential privacy [9] to bound
ε and δ. The paper analyzes for the conversation protocol three system parameters: µ = 150k, γ = 7.5k,
µ = 300k, γ = 13.8k, and µ = 450k, γ = 20k. We show that the resulting bounds can be significantly
improved and we indicate all new bounds with a “∗” sign in the respective figures.

We apply our method to estimate tighter ε and δ bounds for Vuvuzela, and to reduce the recommended
noise. Recall that we observed in Section 7 that Gaussian noise for the same variance behaves better under
composition than Laplacian noise. This section studies how much our tighter bounds enable us to reduces
the noise in the case that Gaussian noise is used or that Laplace noise is used, and this section studies how
much the originally recommended amount of noise improves the degree of privacy, in case Gaussian noise
is used or Laplace noise is used. We stress that while in the case of Vuvuzela there is no utility function
that we have to preserve other than to minimize the bandwidth overhead, our approach is also suited for
applications where a utility function has to be preserved. In those cases, we would probably reduce the
variance to an appropriate level and then compute tight bounds.
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Figure 17: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).

8.2 Tighter privacy analysis for the dialing protocol

For the dialing protocol, we show that with Gaussian noise the noise rate can be reduced by a factor of
almost 5 while still meeting the privacy requirements, and for the conversation protocol the noise rate can be
reduced by a factor of 10 while still meeting the privacy requirements. With Laplace noise the noise rate can
be reduced by a factor of 2 and for the conversation protocol by a factor of 4. We refer to Figures 21 and 22,
placed in the appendix. As the conversation protocol produces more observations (i.e., more compositions)
and the looseness of the bounds that the original Vuvuzela paper used amplifies more heavily for a high the
number of observations, the tightness of our bounds is more pronounced for the conversation protocol.

For comparability, we depict in Figure 16 the original graphs from the Vuvuzela analysis, which show
the epsilon graph and the delta graph with increasing r, respectively, for the dialing protocol and estimated
with the advanced composition result. We extend those Figures with the lowest, magenta graphs (marked
with a ∗) that show the performance of our proposed Gaussian noise that uses nearly 5 times less noise
and is computed with our bucketing approach.16 As our method computes not only one ε, δ pair for each
number of observations r but an entire ε, δ graph, we chose representative ε values that are close to (and even
below) the epsilon values for the highest noise configuration LP(20k, 1130) from the original Vuvuzela paper.
The figure shows that our bounds with the reduced noise and with using Gaussian noise GS(4.1k, 8332) are
below the previous bounds for the highest noise configuration LP(20k, 1130), proving that a noise reduction
of nearly a factor of 5 still yields for the dialing protocol to achieve the privacy requirements of eε ≤ 2 and
δ ≤ 10−4.

Next, we illustrate that our method computes bounds that are several orders of magnitude better than
Vuvuzela’s original bounds. For r = 8, 192 observations, Figure 17b illustrates that using the highest
noise configuration with Laplace noise LP(20k, 1130) results in a privacy bound that is almost 3 orders
of magnitude lower, in terms of the delta, and with Gaussian noise GS(20k, 15982) more than 4 orders of
magnitude. The figure depicts the ε, δ graphs computed by our approach for the highest noise configuration
LP(20k, 1130), for the corresponding Gaussian noise GS(20k, 15982), for the configuration that we propose

16All computations have been conducted with 100, 000 buckets.
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name µ γ for LP σ2 (used for GS)
new1 15k — 2.5k2

new2 45k — 7.5k2

low 150k 7.3k 2 · 7.3k2

medium 300k 13.8k —
high 450k 20k 2 · 20k2

Figure 18: Parameters of our Vuvuzela analysis.
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Figure 19: Vuvuzela conversion protocol: bounds on ε and δ over r (log-scale). We compare the original
bounds for the originally recommended mechanisms with 150k, 300k, 450k, analyzed with previous bounds [9]
and our recommended mechanism with 45k messages overhead per round, analyzed using privacy buckets.

GS(4.1k, 8332)), and compares it against Vuvuzela’s previous bounds LP(20k, 1130). We additionally depict
the respective lower bounds, which show that our bounds are quite tight in the sense that there is not much
room for improvement. Moreover, due to the more comprehensive view that a full ε, δ graph provides, we can
see that the the highest noise configuration with Gaussian noise GS(20k, 15982) even achieves the privacy
requirements (δ ≤ 10−4) for less than eε = 1.5 after 8, 192 observations.17

We would like to stress that the lower bounds show that our result is tight up to δ ≥ 10−4 for
GS(4.1k, 8332), δ ≥ 10−6 for LP(20k, 1130), and GS(20k, 15982) for δ ≥ 10−8. This tightness is solely a
scalability issue and ultimately only depends on the number (and hence granularity) of the buckets. A
more optimized implementation (e.g., based on GPUs) would be able to significantly increase the number of
buckets, thus achieving even tighter upper and lower bounds.

For completeness, we also show in Figure 17a the ε, δ graphs for the dialing protocol for low r: r = 1024
and the recommended parameters µ = 8k, γ = 500. Here, we can see that our bound is 2 orders of magnitude
lower than Vuvuzela’s previous bounds for the noise level. The figure also shows that reducing the noise by
a factor of 5, i.e., GS(1.6k, 320), still achieves the privacy requirements (eε ≤ 2 and δ ≤ 10−4).

As a comparison, using Laplace noise only enables a noise reduction of a factor of 2, as shown in Figure 22
in the appendix. Interestingly, the reduced Laplace noise achieves the same privacy bounds as the reduced
Gaussian noise if the Laplace noise has twice the variance as the Gaussian noise (i.e., γ = σ) but a 2.5 times
wider range, as indicated in Section 7. This shows what a significant effect the steepness of the Gaussian
noise can have in practice.

17Recall that the variance of GS(µ, (
√

2x)2) = 2x2 equals the variance of LP(µ, x) = 2x2.
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Figure 20: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the conversation protocol). The figure
depicts upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green area, δ ≤ 10−4, eε ≤ 2).

8.3 Tighter privacy analysis for the conversation protocol

Figure 19 depicts the epsilon graph and the delta graph with increasing r, respectively, for the conversation
protocol. We compare Gaussian noise GS-new2 with the previous bounds for the recommended noise config-
urations. We see that although GS-new2 adds significantly less noise, the bounds outperform the ones from
the original analysis.

For r = 524, 288 observations, Figure 20b shows that using LP-high results in bounds for δ that are
almost 4 orders of magnitude lower, and for the corresponding Gaussian noise GS-high more than 6 orders
of magnitude in comparison to their original result. Also, Figure 20b shows the corresponding lower bounds.
We can see that our bounds are tight for reasonably small values of ε. Furthermore, we can see that even
GS-new1 meets the privacy requirements of eε ≤ 2 and δ ≤ 10−4 for r = 524, 288 observations.

For completeness, we also show in Figure 20a the ε, δ graphs for the conversation protocol for r = 65, 536.
Here, we can also see the tightness of our bound for reasonably small ε. We can see that GS-low is more than
7 orders of magnitude lower than Vuvuzela’s previous bounds for the same noise level. Moreover, we can see
that even GS-new2 meets the privacy requirements of eε ≤ 2 and δ ≤ 10−4 for r = 65, 536 observations.

As a comparison, using Laplace noise only enables a noise reduction of a factor of 4, as shown in Figure 21
in the appendix. Also here, we can observe that the Laplace noise has twice the variance of the Gaussian
noise and has a 2.5 times wider range, illustrating the advantages of Gaussian noise in practice.

9 Conclusion and future work

In this paper we have presented privacy buckets, a sound numerical approach for computing upper and lower
bounds for differential privacy after r-fold composition. Our approach is based on concrete distributions,
but can be applied in a variety of cases, which can include adaptive composition, evolving sequences of
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(a) After r = 65, 536 observations with Laplace noise
with µ = 37.5k and σ = 2.3k (solid), Laplace noise
µ = 150k, γ = 7.3k (dashed), and Gaussian noise with
µ = 150k and σ = 10.3k (dotted), and the red dot
represents the ε, δ combination for µ = 150k, γ = 7.3k
from the original Vuvuzela paper.
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(b) After r = 524, 288 observations with Laplace noise
with µ = 112.5k and σ = 6.9k (solid), Laplace noise
µ = 450k, γ = 20k (dashed), and Gaussian noise with
µ = 450k and σ = 28.2k (dotted), and the red dot
represents the ε, δ combination for µ = 450k, γ = 20k
from the original Vuvuzela paper.

Figure 21: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the conversation protocol). The figure
depicts upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green area, δ ≤ 10−4, eε ≤ 2).

distributions and static distributions. All compositions, as well as our reshaping operation of squaring the
bucket factor have been shown sound and (empirically) tight in many cases.

We compared our approach to the Kairouz, Oh and Viswanath’s (KOV) composition theorem, as well as
to the Moment’s Accountant (MA) bounds and bounds derived via Concentrated Differential Privacy (CDP).
We found that the KOV theorem provides reasonably tight bounds for the Laplace mechanism but not for
other distributions, such as the Gauss mechanism or for a pair of histograms of timing-leakage measurements
from the CoverUp system. Our bounds significantly improve over MA bounds and CDP bounds, which is
particularly relevant for smaller values of eε. We also observed that Gauss mechanism behaves much better
under a high number of compositions than a Laplace mechanism with the same variance, and we found
evidence that the (ε, δ)-graph of a Laplace mechanism converges to the (ε, δ)-graph of a Gauss mechanism
with half the variance. By repeating the analysis of the anonymity network Vuvuzela we show that tighter
bounds can have a significant impact on actual protocols. Moreover our analysis can help devise better
protocols, e.g., to exchange the Laplace noise with Gaussian noise for which even better results can be
achieved.

We encourage the application of our privacy buckets to other ADP mechanisms, such as to the optimal
ADP mechanisms [11, 15] (e.g., comparing their composition behavior to the Gauss mechanism) and to
measure the impact of our bounds on precision and recall of privacy-preserving ML methods [1], as well
as to improve more existing privacy analyses. We consider exploring the relationship between ADP of the
Gauss mechanism and ADP of the Laplace mechanism, as well as analyses probing the development of ADP
provided by other noise distributions under composition interesting future work.
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(a) After r = 1, 024 observations with Laplace noise
with µ = 4k and σ = 330 (solid), Laplace noise µ =
8k, γ = 500 (dashed), and Gaussian noise with µ = 8k
and σ = 707 (dotted), and the red dot represents the
ε, δ combination for µ = 8k, γ = 500 from the original
Vuvuzela paper.
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(b) After r = 8, 192 observations with Laplace noise
with µ = 10k and σ = 827 (solid), Laplace noise µ =
20k, γ = 1130 (dashed), and Gaussian noise with µ =
20k and σ = 1598 (dotted), and the red dot represents
the ε, δ combination for µ = 20k, γ = 1130 from the
original Vuvuzela paper.

Figure 22: The (ε, δ) graphs (y-axis and x axis, respectively, y-axis in log10-scale) from our method in
comparison with the bound from the original Vuvuzela paper (for the dialing protocol). The figure depicts
upper (red) and a lower bounds (blue) and Vuvuzela’s privacy target (green, δ ≤ 10−4, eε ≤ 2).
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