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Abstract. Code-based Cryptography is one of the main areas of interest
for the Post-Quantum Cryptography Standardization call. In this paper,
we introduce DAGS4, a Key Encapsulation Mechanism (KEM) based on
Quasi-Dyadic Generalized Srivastava codes. The scheme is proved to be
IND-CCA secure in both Random Oracle Model and Quantum Random
Oracle Model. We believe that DAGS will offer competitive performance,
especially when compared with other existing code-based schemes, and
represent a valid candidate for post-quantum standardization.
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1 Introduction

The availability of large-scale quantum computers is getting ever closer
to reality, and with it, all of the public-key cryptosystems currently in
use, which rely on number theory problems (e.g., factorization), and dis-
crete logarithm problems will become obsolete [37]. Therefore, it is of
extreme importance to be able to offer a credible alternative that can re-
sist attackers equipped with quantum technology. NIST’s call for papers

4 DAGS is not only an acronym but also one of the names for the Elder Futhark rune
pictured above. The shape of the rune recalls the dyadic property of the matrices
at the core of our scheme.



for post-quantum standardization is a further reassurance about the need
for solid post-quantum proposals.

Code-based cryptography is one of the main candidates for this task.
The area is based on the Syndrome Decoding Problem [8], which shows
no vulnerabilities to quantum attacks. Over the years, since McEliece’s
seminal work [28], many cryptosystems have been proposed, trying to
balance security and efficiency and in particular dealing with inherent
flaws such as the large size of the public keys. In fact, while McEliece’s
cryptosystem, which is based binary Goppa codes, is still unbroken, it
features a key of several megabytes, which has effectively prevented its
use in many applications.

There are currently two main trends to deal with this issue, and they
both involve structured matrices: the first, is based on “traditional” alge-
braic codes such as Goppa or Srivastava codes; the second suggests to use
sparse matrices as in LDPC/MDPC codes. This work builds on the former
approach, initiated in 2009 by Berger et al. [7], who proposed Quasi-
Cyclic (QC) codes, and Misoczki and Barreto [29], suggesting Quasi-
Dyadic (QD) codes instead (later generalized to Quasi-Monoidic (QM)
codes [6]). Both proposals feature very compact public keys due to the
introduction of the extra algebraic structure, but unfortunately this also
leads to a vulnerability. Indeed, Faugère, Otmani, Perret and Tillich [18]
devised a clever attack (known simply as FOPT) which exploits the alge-
braic structure to build a system of equations, which can successively be
solved using Gröbner bases techniques. As a result, the QC proposal is
definitely compromised, while the QD/QM approach needs to be treated
with caution. In fact, for a proper choice of parameters, it is still possi-
ble to design secure schemes, using for instance binary Goppa codes, or
Generalized Srivastava (GS) codes as suggested by Persichetti in [33].

Our Contribution. In this paper, we present DAGS, a Key Encapsu-
lation Mechanism (KEM) that follows the QD approach using GS codes.
KEMs are the primitive favored by NIST for Key Exchange schemes,
and can be used to build encryption schemes with the Hybrid Encryp-
tion paradigm introduced by Cramer and Shoup [16]. To the best of our
knowledge, this is the first code-based KEM that uses structured algebraic
codes. The KEM achieves IND-CCA security following the recent frame-
work by Kiltz et al. [24], and features compact public keys and efficient
encapsulation and decapsulation algorithms. We modulate our parame-
ters to achieve an efficient scheme, while at the same time keeping out of
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range of the FOPT attack. We provide an initial performance analysis of
our scheme; a full implementation using C++ code is underway and will
be included in the full version of this paper.

Related Work. We show that our proposal compares well with other
post-quantum KEMs. These include the well-known McBits [10], as well
as more recent proposals such as CAKE [5]. The former, built using bi-
nary Goppa codes, benefits from a well-understood security assessment
(following the work of Persichetti [34]), but suffers from the same pub-
lic key size issue as “classic” McEliece-like cryptosystems. On the other
hand, CAKE, a protocol based on QC-MDPC codes, possesses some very
nice features like compact keys and an easy implementation approach,
but the QC-MDPC encryption scheme on which it is based suffers from
a security-related drawback. This means that, in order to circumvent the
Guo-Johansson-Stankovski (GJS) attack [22], the protocol is forced to
employ ephemeral keys. Moreover, due to its non-trivial Decoding Fail-
ure Rate (DFR), achieving IND-CCA security becomes very hard, so that
the CAKE protocol only claims to be IND-CPA secure.
More distantly-related are lattice-based schemes like NewHope [2] and
Frodo [12], based respectively on LWE and its Ring variant. While these
schemes are not necessarily a direct comparison term, it is nice to observe
that DAGS offers comparable performance.

Organization of the Paper. This paper is organized as follows. We
start by giving some preliminary notions in Section 2. We describe the
DAGS protocol in Section 3, and we discuss its provable security in Sec-
tion 4, showing that DAGS is IND-CCA secure in the Random Oracle
Model. Section 5 features a discussion about practical security, includ-
ing general decoding attacks (ISD) and the FOPT attack, and presents
parameters for the scheme. Performance details are given in Section 6.
Finally, we conclude in Section 7.

2 Preliminaries

2.1 Linear Codes

The Hamming weight of a vector x ∈ Fnq is given by the number wt(x) of
its nonzero components. We define a linear code using the metric induced
by the Hamming weight.

Definition 1. An (n, k)-linear code C of length n and dimension k over
Fq is a k-dimensional vector subspace of Fnq .
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A linear code can be represented by means of a matrix G ∈ Fk×nq ,
called generator matrix, whose rows form a basis for the vector space
defining the code. Alternatively, a linear code can also be represented

as kernel of a matrix H ∈ F(n−k)×n
q , known as parity-check matrix, i.e.

C = {c : HcT = 0}. Thanks to the generator matrix, we can easily define
the codeword u corresponding to a vector µ ∈ Fkq as u = µG. Finally, we

call syndrome of a vector c ∈ Fnq the vector y = HcT .

2.2 Structured Matrices and GS Codes

Definition 2. Given a ring R (in our case the finite field Fqm) and a
vector h̄ = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix ∆(h̄) ∈ Rn×n is the
symmetric matrix with components ∆ij = hi⊕j, where ⊕ stands for bitwise
exclusive-or on the binary representations of the indices. The sequence h̄ is
called its signature. Moreover, ∆(t, h̄) denotes the matrix ∆(h̄) truncated
to its first t rows. Finally, we call a matrix quasi-dyadic if it is a block
matrix whose component blocks are t× t dyadic submatrices.

If n is a power of 2, then every 2k × 2k dyadic matrix can be described
recursively as

M =

(
A B
B A

)

where each block is a 2k−1 × 2k−1 dyadic matrix (and where any 1 × 1
matrix is dyadic).

Definition 3. For m,n, s, t ∈ N and a prime power q, let ᾱ = (α1, . . . , αn),
w̄ = (w1, . . . , ws) be n + s distinct elements of Fqm, and (z1, . . . , zn) be
nonzero elements of Fqm. The Generalized Srivastava (GS) code of order
st and length n is defined by a parity-check matrix of the form:

H =


H1

H2
...
Hs


where each block is
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Hi =



z1
α1 − wi

. . .
zn

αn − wi
z1

(α1 − wi)2
. . .

zn
(αn − wi)2

...
...

...

z1
(α1 − wi)t

. . .
zn

(αn − wi)t


.

The parameters for such a code are the length n ≤ qm − s, dimension
k ≥ n−mst and minimum distance d ≥ st+ 1. GS codes are part of the
family of Alternant codes, and therefore benefit of an efficient decoding
algorithm. Moreover, it can be easily proved that every GS code with
t = 1 is a Goppa code. More information about this class of codes can be
found in [27, Ch. 12, §6].

3 DAGS

In this section we introduce the three algorithms that form DAGS – a
key-encapsulation mechanism based on Quasi-Dyadic GS codes. System
parameters are the code length n and dimension k, the values s and t
which define a GS code, the cardinality of the base field q and the degree
of the field extension m. In addition, we have k = k′ + k′′, where k′ is
another parameter that is set to be “small”. In practice, k′ is such that a
vector of length k′ can be efficiently stored in 256 bits, depending on the
base field. This makes the hash functions (see below) easy to compute, and
ensures that the overhead due to the IND-CCA2 security in the QROM
is minimal.

The key generation process uses the following fundamental equation

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
. (1)

to build the vector h̄ = (h0, . . . , hn−1) of elements of Fqm known as signa-
ture of a dyadic matrix. This is then used to form a Cauchy matrix, i.e.
a matrix C(ū, v̄) with components Cij = 1

ui−vj . The matrix is then suc-

cessively powered (element by element) forming several blocks which are
superimposed and then multiplied by a random diagonal matrix. Finally,
the resulting matrix is projected onto the base field and row-reduced to
systematic form. The process is described in detail below.
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Algorithm 1. Key Generation

1. Generate dyadic signature h̄. To do this:

(a) Choose random non-zero distinct h0 and hj for j = 2l, l = 0, . . . , blog qmc.

(b) Form the remaining elements using (1).

(c) Return a selection5 of blocks of dimension s up to length n.

2. Build the Cauchy support. To do this:

(a) Choose a random6 offset ω
$←Fqm .

(b) Set ui = 1/hi + ω and vj = 1/hj + 1/h0 + ω for i = 0, . . . , s − 1
and j = 0, . . . , n− 1.

(c) Set ū = (u0, . . . , us−1) and v̄ = (v0, . . . , vn−1).

3. Form Cauchy matrix Ĥ1 = C(ū, v̄).

4. Build blocks Ĥi, i = 1, . . . t, by raising each element of Ĥ1 to the
power of i.

5. Superimpose blocks to form matrix Ĥ.

6. Choose random elements zi
$←Fqm with the restriction zis+j = zis for

i = 0, . . . , n0 − 1, j = 0, . . . , s− 1.

7. Form H = Ĥ ·Diag(z̄).

8. Project H onto the base field Fq using the co-trace function.

9. Compute systematic form (M | In−k).

10. The public key is the generator matrix G = (Ik |MT ).

11. The private key is the pair (H, ū).

The encapsulation and decapsulation algorithms make use of two hash
functions G : Fk′q → Fkq and H : Fk′q → Fk′q , the former with the task of
generating randomness for the scheme, the latter to provide “plaintext
confirmation” as in [24]. The shared symmetric key is obtained via another
hash function K : {0, 1}∗ → {0, 1}`, where ` is the desired key length.

5 Making sure to exclude any block containing an undefined entry.
6 See Appendix A for restrictions about the choice of the offset.
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Algorithm 2. Encapsulation

1. Choose µ
$←Fk′q .

2. Compute r = G(µ) and d = H(µ).

3. Parse r as (ρ ‖ σ) then set u = (ρ ‖ µ).

4. Generate error vector e of length n and weight w from σ.

5. Compute c = uG+ e.

6. Compute K = K(µ).

7. Output C = (c, d); the encapsulated key is K.

Algorithm 3. Decapsulation

1. Decode c to obtain codeword u′G and error e′.

2. Output ⊥ if decoding fails or wt(e′) 6= w

3. Recover u′ and parse it as (ρ′ ‖ µ′).

4. Compute r′ = G(µ′) and d′ = H(µ′).

5. Parse r′ as (ρ′′ ‖ σ′).

6. Generate error vector e′′ of length n and weight w from σ′.

7. If e′ 6= e′′ ∨ ρ′ 6= ρ′′ ∨ d 6= d′ output ⊥.

8. Else compute K = K(µ′).

9. The decapsulated key is K.

DAGS is built upon the McEliece encryption framework, with a no-
table exception. In fact, we incorporate the “randomized” version of
McEliece by Nojima et al. [32] into our scheme. This is extremely ben-
eficial for two distinct aspects: first of all, it allows us to use a much
shorter vector m to generate the remaining components of the scheme,
greatly improving efficiency. Secondly, as we will see in Section 4, it allows
us to get tighter security bounds. Note that our protocol differs slightly
from the paradigm presented in [24], in the fact that we don’t perform
a full re-encryption in the decapsulation algorithm. Instead, we simply
re-generate the randomness and compare it with the one obtained after
decoding. This is possible since, unlike a generic PKE, McEliece decryp-
tion reveals the randomness used, in our case e (and ρ). It is clear that
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if the re-generated randomness is equal to the retrieved one, the result-
ing encryption will also be equal. This trick allows us to further decrease
computation time.

The selection of the parameters for the scheme will be discussed in Sec-
tion 5.4.

4 KEM Security

In this section, we discuss some aspects of provable security, and in par-
ticular we show that DAGS satisfies the notion of IND-CCA security for
KEMs, as defined below.

Definition 4. The adaptive chosen-ciphertext attack game for a KEM
proceeds as follows:

1. Query a key generation oracle to obtain a public key pk.

2. Make a sequence of calls to a decryption oracle, submitting any string
C of the proper length. The oracle will respond with Decaps(sk, C).

3. Query an encryption oracle. The oracle runs Encaps(pk) to generate
a pair (K̃, C̃), then chooses a random b ∈ {0, 1} and replies with the
“challenge” ciphertext (K∗, C̃) where K∗ = K̃ if b = 1 or K∗ is a
random string of length ` otherwise.

4. Keep performing decryption queries. If the submitted ciphertext is C∗,
the oracle will return ⊥.

5. Output b∗ ∈ {0, 1}.

The adversary succeeds if b∗ = b. More precisely, we define the advantage
of A against KEM as

AdvIND−CCAKEM (A, λ) =
∣∣∣Pr[b∗ = b]− 1

2

∣∣∣. (2)

We say that a KEM is secure if the advantage AdvIND−CCAKEM of any
polynomial-time adversary A in the above CCA attack model is negligible.

Before discussing the IND-CCA security of DAGS, we show that the
underlying PKE (i.e. Randomized McEliece) satisfies a simple property.
This will allow us to get better security bounds in our reduction.

Definition 5. Consider a probabilistic PKE with randomness set R. We
say that PKE is γ-spread if for a given key pair (sk, pk), a plaintext µ
and a string y in the ciphertext domain, we have
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Pr[r
$←R | y = Encpk(µ, r)] ≤ 2−γ,

for a certain γ ∈ R.

The definition above is presented as in [24], but note that in fact this
corresponds to the notion of γ-uniformity given by Fujisaki and Okamoto
in [21], except for a change of constants. In other words, a scheme is
γ-spread if it is 2−γ-uniform.

It was proved in [14] that a simple variant of the (classic) McEliece
PKE is γ-uniform for γ = 2−k, where k is the code dimension as usual
(more in general, γ = q−k for a cryptosystem defined over Fq). We can
extend this result to our scheme as follows.

Lemma 1. Randomized McEliece is γ-uniform for γ =
q−k

′′(
n
w

) .

Proof. Let y be a generic vector of Fnq . Then either y is a word at distance
t from the code, or it isn’t. If it isn’t, the probability of y being a valid
ciphertext is clearly exactly 0. On the other hand, suppose y is at distance
t from the code; then there is only one choice of ρ and one choice of e that
satisfy the equation (since w is below the GV bound), i.e. the probability
of y being a valid ciphertext is exactly 1/qk

′′ · 1/
(
n
w

)
, which concludes the

proof. ut

We are now ready to present the security results.

Theorem 1. Let A be an IND-CCA adversary against DAGS that makes
at most qRO = qG + qK total random oracle queries7 and qD decryption
queries. Then there exists an IND-CPA adversary B against PKE, run-
ning in approximately the same time as A, such that

AdvIND−CCAKEM (A) ≤ qRO · 2−γ + 3 · AdvIND−CPAPKE (B).

Proof. The thesis is a consequence of the results presented in Section 3.3
of [24]. In fact, our scheme follows the KEM⊥m framework that consists of
applying two generic transformations to a public-key encryption scheme.
The first step consists of transforming the IND-CPA encryption scheme
into a OW-PCVA (i.e. Plaintext and Validity Checking) scheme. Then,
the resulting scheme is transformed into a KEM in a “standard” way.

7 Respectively qG many queries to the random oracle G and qK many queries to the
random oracle K.
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Both proofs are obtained via a sequence of games, and the combination
of them shows that breaking IND-CCA security of the KEM would lead to
break the IND-CPA security of the underlying encryption scheme. Note
that Randomized McEliece, instantiated with Quasi-Dyadic GS codes,
presents no correctness error (the value δ in [24]), which greatly simplifies
the resulting bound. ut

The value d included in the KEM ciphertext does not contribute to
the security result above, but it is a crucial factor to provide security in
the Quantum Random Oracle Model (QROM). We present this in the
next theorem.

Theorem 2. Let A be a quantum IND-CCA adversary against DAGS
that makes at most qRO = qG + qK total quantum random oracle queries8

and qD (classical) decryption queries. Then there exists a OW-CPA ad-
versary B against PKE, running in approximately the same time as A,
such that

AdvIND−CCAKEM (A) ≤ 8qRO ·
√
qRO ·

√
AdvOW−CPAPKE (B).

Proof. The thesis is a consequence of the results presented in Section 4.4
of [24]. In fact, our scheme follows the QKEM⊥m framework that consists of
applying two generic transformations to a public-key encryption scheme.
The first step transforming the IND-CPA encryption scheme into a OW-
PCVA (i.e. Plaintext and Validity Checking) scheme, is the same as in
the previous case. Now, the resulting scheme is transformed into a KEM
with techniques suitable for the QROM. The combination of the two
proofs shows that breaking IND-CCA security of the KEM would lead to
break the OW-CPA security of the underlying encryption scheme. Note,
therefore, that the IND-CPA security of the underlying PKE has in this
case no further effect on the final result, and can be considered instead
just a guarantee that the scheme is indeed OW-CPA secure. The bound
obtained is a “simplified” and “concrete” version (as presented by the
authors) and, in particular, it is easy to notice that it does not depend
on the number of queries qG presented to the random oracle H. The
bound is further simplified since, as above, the underlying PKE presents
no correctness error. ut
8 Same as above.
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5 Practical Security and Parameters

Having proved that DAGS satisfies the notion of IND-CCA security for
KEMs, we now move onto a treatment of practical security issues. In
particular, we will briefly present the hard problem on which DAGS is
based, and then discuss the main attacks on the scheme and related se-
curity concerns.

5.1 Hard Problems from Coding Theory

Most of the code-based cryptographic constructions are based on the
hardness of the following problem, known as the (q-ary) Syndrome De-
coding Problem (SDP).

Problem 1. Given an (n−k)×n full-rank matrix H and a vector y, both
defined over Fq, and a non-negative integer w, find a vector e ∈ Fnq of

weight w such that HeT = y.

The corresponding decision problem was proved to be NP-complete
in 1978 [8], but only for binary codes. In 1994, A. Barg proved that this
result holds for codes over all finite fields ([3], in Russian, and [4, Theorem
4.1]).

In addition, many schemes (including the original McEliece proposal)
require the following computational assumption.

Assumption 1 The public matrix output by the key generation algorithm
is computationally indistinguishable from a uniformly chosen matrix of
the same size.

The assumption above is historically believed to be true, except for
very particular cases. For instance, there exists a distinguisher (Faugère
et al. [17]) for cryptographic protocols that make use of high-rate Goppa
codes (like the CFS signature scheme [15]). Moreover, it is worth men-
tioning that the “classical” methods for obtaining an indistinguishable
public matrix, such as the use of scrambling matrices S and P , are rather
outdated and unpractical and can introduce vulnerabilities to the scheme
as per the work of Strenzke et al. ([38,39]). Thus, traditionally, the safest
method (Biswas and Sendrier, [11]) to obtain the public matrix is simply
to compute the systematic form of the private matrix.

11



5.2 Decoding Attacks

The main approach for solving SDP is the technique known as Informa-
tion Set Decoding (ISD), first introduced by Prange [36]. Among several
variants and generalizations, Peters showed [35] that it is possible to ap-
ply Prange’s approach to generic q-ary codes. Other approaches such as
Statistical Decoding [25,30] are usually considered less efficient. Thus,
when choosing parameters, we will focus mainly on defeating attacks of
the ISD family.

Hamdaoui and Sendrier in [23] provide non-asymptotic complexity es-
timates for ISD in the binary case. For codes over Fq, instead, a bound
is given in [31], which extends the work of Peters. For a practical evalua-
tion of the ISD running times and corresponding security level, we used
Peters’s ISDFQ script[1].

Quantum Speedup. Bernstein in [9] shows that Grover’s algorithm ap-
plies to ISD-like algorithms, effectively halving the asymptotic exponent
in the complexity estimates. Later, it was proven in [26] that more sev-
eral variants of ISD have the potential to achieve a better exponent, how-
ever the improvement was disappointingly away from the factor of 2 that
could be expected. For this reason, we decided to estimate the security
against quantum attackers by dividing by two the complexity exponent
obtained with classical attacks. We believe that, while this might seem
like a conservative choice, a more precise evaluation would probably not
be significantly different.

5.3 FOPT

While, as we discussed above, recovering a private matrix from a public
one can be in general a very difficult problem, the presence of extra struc-
ture in the code properties can have a considerable effect in lowering this
difficulty.

A very effective structural attack was introduced by Faugère, Ot-
mani, Perret and Tillich in [18]. The attack (for convenience referred
to as FOPT) relies on the simple property (valid for every linear code)
H ·GT = 0 to build an algebraic system, using then Gröbner bases tech-
niques to solve it. The special properties of alternant codes are fundamen-
tal, as they contribute to considerably reduce the number of unknowns of
the system.
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The attack was originally aimed at two variants of McEliece, intro-
duced respectively in [7] and [29]. The first variant, using quasi-cyclic
codes, was completely broken, and falls out of the scope of this paper.
The second variant, instead, only considered quasi-dyadic Goppa codes.
In this case, most of the parameters proposed have also been broken very
easily, except for the binary case (i.e. base field F2). This was, in truth,
not connected to the base field per se, but rather depended on the fact
that, with a smaller base field, the authors provided a much higher ex-
tension degree m, as they were keeping constant the value qm = 216. As
it turns out, the extension degree m plays a key role in the attack, as
it defines the dimension of the solution space, which is equal, in fact,
exactly to m− 1. In a successive paper [19], the authors provide a theo-
retical complexity bound for the attack, and point out that any scheme
for which this dimension is less or equal to 20 should be within the scope
of the attack.

Since GS codes are also alternant codes, the attack can be applied to
our proposal as well. In the case of GS codes, though, there is one impor-
tant difference to keep in mind. In fact, as shown in [33], the dimension
of the solution space is defined by mt−1, rather than m−1 as for Goppa
codes. This provides greater flexibility when designing parameters for the
code, and it allows, for example, to keep the extension degree m small.

Recently, an extension of the FOPT attack appeared in [20]. The au-
thors introduce a new technique called “folding”, and show that it is
possible to reduce the complexity of the FOPT attack to the complex-
ity of attacking a much smaller code (the “folded” code), thanks to the
strong properties of the automorphism group of the alternant codes in
use. The attack turns out to be very efficient against Goppa codes, as it
is possible to recover a folded code which is also a Goppa code. The paper
features two tables with several sets of parameters, respectively for signa-
ture schemes, and encryption schemes. The parameters are either taken
from the original papers, or generated ad hoc. While codes designed to
work for signature schemes turn out to be very easy to attack (due to their
particular nature), the situation for encryption is more complex. Despite
a refinement in the techniques used to solve the algebraic system, some
of the parameters could not be solved in practice, and even the binary
Goppa codes of [29], with their relatively low dimension of 15, require a
considerably high computational effort (at least 2150 operations).
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It is not clear how the attack performs against GS codes, since the
authors didn’t present any explicit result against this particular family
of codes, nor attempted to decode GS codes specifically. Thus, an attack
against GS codes would use generic techniques for Alternant codes, and
wouldn’t benefit from the speedups which are specific to (binary) Goppa
codes. Furthermore, the authors do not propose a concrete bound, but
only provide experimental results. For these reasons, and until an accurate
complexity analysis for an attack on GS codes is available, we choose to
attain to the latest measurable guidelines (those suggested in [19]) and
choose our parameters such that the dimension of the solution space for
the algebraic system is strictly greater than 20.

5.4 Parameter Selection

To choose our parameters, we have to first keep in mind all of the remarks
from the previous sections about decoding and structural attacks. For
FOPT, we have the condition mt ≥ 21. This guarantees at least 128
bits of security according to the bound presented in [19]. On the other
hand, for ISD to be computationally intensive we require a sufficiently
large number w of errors to decode: this is given by st/2 according to the
minimum distance of GS codes.

In addition, we tune our parameters to optimize performance. In this
regard, the best results are obtained when the extension degree m is as
small as possible. This, however, requires the base field to be large enough
to accommodate sufficiently big codes (against ISD attacks), since the
maximum size for the code length n is capped by qm − s. Realistically,
this means we want qm to be at least 212, and an optimal choice in this
sense seems to be q = 26,m = 2. Finally, note that s is constrained to be
a power of 2, and that odd values of t seem to offer best performance.

Putting all the pieces together, we are able to present three set of
parameters, in the following table. The first two columns represent the
quantum security bits (column ISD) and estimated complexity of the
structural attack (column FOPT).

Table 1: Suggested DAGS Parameters.

ISD FOPT q m n k k′ s t w

128 ≥ 128 26 2 2112 704 32 26 11 352
96 ≥ 128 26 2 1216 512 32 25 11 176
64 ≥ 128 25 2 832 416 32 24 13 104
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For practical reasons, during the rest of the paper we will refer to
these parameters respectively as DAGS 128, DAGS 96 and DAGS 64.

6 Performance Analysis

6.1 Components

For DAGS 128 and DAGS 96, the finite field F26 is built using the polyno-
mial x6 + x+ 1 and then extended to F212 using x2 + x+α34, where α is
the primitive element of F26 . For DAGS 64, we build F25 using x5 +x2 +1
and then extend it to F210 via x2 + α4x+ α.

Below we list all of the computations involved in the DAGS algo-
rithms, which are detailed as follows:

Key generation:

1. Two polynomial multiplications, respectively in Fqm and Fq.
2. Two polynomial inversions, respectively in Fqm and Fq.
3. Two polynomial squarings, respectively in Fqm and Fq.
4. One polynomial addition in Fqm and Fq.
5. One random generation of a polynomial in Fqm .

Encapsulation:

1. One polynomial multiplication in Fq.
2. One polynomial addition in Fq.
3. One random generation of a polynomial in Fq.
4. One hash function computation.

Decapsulation:

1. One polynomial multiplication in Fqm .

2. One polynomial power in Fqm .

3. One polynomial addition in Fqm .

4. One random generation of a polynomial in Fq.
5. One hash function computation.
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6.2 Measurements

In Table 2 we recall the flow between two parties P1 and P2 in a standard
Key Exchange protocol derived from a KEM.

Table 2: KEM-based Key Exchange flow

P1 P2

(pk, sk)← KEM.KeyGen
pk−−−−−−−−−−−−−−−→

(K,C)← KEM.Encaps(pk)
C←−−−−−−−−−−−−−−−

K/⊥ ← KEM.Decaps(C, sk)

Shared Key := K

When instantiated with DAGS, the public key is given by the genera-
tor matrix G. The non-identity block MT is k× (n− k) = k×mst and is
dyadic of order s, thus requires only kmst/s = kmt elements of the base
field for storage. The private key is given by the two vectors forming the
Cauchy support, plus the elements zi, respectively s, n and n0 (again,
thanks to dyadicity) elements of Fqm . Finally, the ciphertext C is the pair
(c, d), that is, a q-ary vector of length n plus 256 bits. This leads to the
following measurements (in bytes).

Table 3: Memory Requirements.

Parameter Set Public Key Private Key Ciphertext

DAGS 128 11616 3313.5 1616

DAGS 96 8448 1929 944

DAGS 64 6760 1125 552

Table 4: Communication Bandwidth.

Message
Flow

Transmitted
Message

Size

DAGS 128 DAGS 96 DAGS 64

P1 → P2 G 11616 8448 6760

P2 → P1 (c, d) 1616 944 552
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7 Conclusion

In this paper, we presented DAGS, a Key Encapsulation Mechanism based
on Quasi-Dyadic Generalized Srivastava codes. We proved that DAGS is
IND-CCA secure in the Random Oracle Model, and in the Quantum
Random Oracle Model. Thanks to this feature, it is possible to employ
DAGS not only as a key-exchange protocol (for which IND-CPA would
be a sufficient requirement), but also in other contexts such as Hybrid
Encryption, where IND-CCA is of paramount importance.

In terms of performance, DAGS compares well with other code-based
protocols. The public key is dramatically smaller than systems based on
classical code families (e.g. binary Goppa codes) like McBits, and of the
same order of magnitude of CAKE. With respect to CAKE, it is possible
to notice that, for the same security level, DAGS requires lower overall
communication bandwidth. This is because, while the size of a CAKE
public key is slightly less than a DAGS key, DAGS uses much shorter
codes, and as a consequence the ciphertext is quite small compared to
a CAKE ciphertext. Moreover, we remark that CAKE uses ephemeral
keys, has a non-negligible decoding failure rate, and only claims IND-
CPA security, all factors that can restrict its use in various applications.

As is the case in most code-based protocols, all the objects involved
in the computations are vectors of finite fields elements, which in turn
are represented as binary strings; thus computations are fast. The cost
of computing the hash functions is minimized thanks to the parameter
choice that makes sure the input µ is only 256 bits. As a result, we expect
our scheme to be implemented efficiently on multiple platforms.

Another advantage of our proposal is that it doesn’t involve any de-
coding error. This is particularly favorable in a comparison with some
lattice-based schemes like [13], [2] and [12], as well as CAKE. No decod-
ing error allows for a simpler formulation and better security bounds in
the IND-CCA security proof.

Finally, we would like to highlight that a DAGS-based Key Exchange
features an “asymmetric” structure, where the bandwidth cost and com-
putational effort of the two parties are considerably different. In particu-
lar, in the flow described in Table 2, the party P2 benefits from a much
smaller message and faster computation (the encapsulation operation),
whereas P1 has to perform a key generation and a decapsulation (which
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includes a run of the decoding algorithm), and transmit a larger message
(the public matrix). This is suitable for traditional client-server appli-
cations where the server side is usually expected to respond to a large
number of requests and thus benefits from a lighter computational load.
On the other hand, it is easy to imagine an instantiation, with reversed
roles, which could be suitable for example in Internet-of-Things (IoT) ap-
plications, where it would be beneficial to lesser the burden on the client
side, due to its typical processing, memory and energy constraints. All in
all, our scheme offers great flexibility in key exchange applications, which
is not the case for traditional key exchange protocols like Diffie-Hellman.

In light of all these aspects, we believe that DAGS is a valid candidate
for post-quantum cryptography standardization as a key-encapsulation
mechanism.
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A Note on the choice of ω

In this section we point out some considerations about the choice of the
offset ω during the key generation process.

The usual decoding algorithm for alternant codes, for example as in
[27], relies on the special form of the parity-check matrix (Hij = yjx

i−1
j ).

The first step is to recover the error locator polynomial σ(x), by means
of the euclidean algorithm for polynomial division; then it proceeds by
finding the roots of σ. There is a 1-1 correspondence between these roots
and the error positions: in fact, there is an error in position i if and only
if σ(1/xi) = 0.
Of course, if one of the xi’s is equal to 0, it is not possible to find the
root, and to detect the error.

Now, the generation of the error vector is random, hence we can as-
sume the probability of having an error in position i to be around st/2n;
since the codes give the best performance when mst is close to n/2, we
can estimate this probability as 1/4m, which is reasonably low for any
nontrivial choice of m; however, we still argue that the code is not fully
decodable and we now explain how to adapt the key generation algorithm
to ensure that all the xi’s are nonzero.
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As part of the key generation algorithm we assign to each xi the value
Li, hence it is enough to restrict the possible choices for ω to the set {α ∈
Fqm |α 6= 1/hi+1/h0, i = 0, . . . , n−1}. In doing so, we considerably restrict
the possible choices for ω but we ensure that the decoding algorithm works
properly.

21


