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Abstract

We implemented (a simplified version of) the branching-program obfuscator due to Gentry
et al. (GGH15), which is itself a variation of the first obfuscation candidate by Garg et al.
(GGHRSW13). To keep within the realm of feasibility, we had to give up on some aspects of
the construction, specifically the “multiplicative bundling” factors that protect against mixed-
input attacks. Hence our implementation can only support read-once branching programs.

To be able to handle anything more than just toy problems, we developed a host of algo-
rithmic and code-level optimizations. These include new variants of discrete Gaussian sampler
and lattice trapdoor sampler, efficient matrix-manipulation routines, and many tradeoffs. We
expect that these optimizations will find other uses in lattice-based cryptography beyond just
obfuscation.

Our implementation is the first obfuscation attempt using the GGH15 graded encoding
scheme, offering performance advantages over other graded encoding methods when obfuscating
finite-state machines with many states. In out most demanding setting, we were able to obfuscate
programs with input length of 20 nibbles (80 bits) and over 100 states, which seems out of reach
for prior implementations. Although further optimizations are surely possible, we do not expect
any implementation of current schemes to be able to handle much larger parameters.

Keywords. Implementation, Multilinear Maps, Obfuscation, Trapdoor Lattice Sampling

Supported by the Defense Advanced Research Projects Agency (DARPA) and Army Research
Office(ARO) under Contract No. W911NF-15-C-0236.

∗Work done while visiting IBM

1



Contents

1 Introduction 1
1.1 High-Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Obfuscating Branching Programs 4
2.1 Randomizing the Transition Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 No “multiplicative bundling” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Non-binary input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Graph-Induced Encoding 6
3.1 The GGH15 “Safeguards” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 A Few Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Trapdoor Sampling 9
4.1 Background: The Micciancio-Peikert Trapdoor Sampling Procedure . . . . . . . . . . 9
4.2 The Gadget Matrix G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 The G-Sampling Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Working with ~u in CRT Representation . . . . . . . . . . . . . . . . . . . . . 11
4.4 Sampling Gaussian Distributions Over Z . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Using a Stash of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Setting the Parameters 15
5.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Putting it together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Efficient matrix arithmetic 19
6.1 Matrix multiplication in Zt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Matrix inversion in Zt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Integration into NTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Multi-dimensional Gaussian sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Implementation Details 22
7.1 Initialization, Obfuscation, and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Parallelization Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2.1 Parallelism Across Different Nodes . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2.2 Trapdoor Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2.3 Gaussian Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.4 CRT-level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.5 Lower-level Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.6 Disk I/O Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2.7 Parallelizing the Evaluation Stage . . . . . . . . . . . . . . . . . . . . . . . . 24

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



8 Conclusions 25

References 26

A More Performance Details 27
A.1 Experimental results for matrix arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Asymptotics of Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Concrete Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



1 Introduction

General-purpose code obfuscation is an amazingly powerful technique, letting one hide secrets in
arbitrary running software. The emergence of plausible constructions for cryptographic general-
purpose obfuscation has transformed our thinking about what can and cannot be done in cryp-
tography. Following the first construction by Garg et al. [10] (herein GGHRSW), most contem-
porary candidates include a “core component” that obfuscates simple functions (usually expressed
as branching programs), and a transformation that bootstraps this core component to deal with
arbitrary circuits. The core branching-program obfuscator consists of two steps:

• We first randomize the branching program to obscure intermediate states without changing
the final outcome.

• Then we encode the randomized programs using a graded-encoding scheme [9], roughly “en-
crypting” the randomized program while still supporting the operations needed to evaluate
it on any given input.

Unfortunately, we essentially have only three candidate graded-encoding schemes to use for the
second step, namely GGH13 [9], CLT13 [7], and GGH15 [11], and they are all very inefficient.1 As
a result, so are all existing branching-program obfuscators, to the point that it is not clear if they
can be used for any non-trivial purpose.

In this report, we describe our implementation of (a simplified version of) the branching-program
obfuscator due to Gentry et al. [11], which is itself a variation of the GGHRSW construction, ad-
justed to use the GGH15 graph-based graded encoding scheme [11]. To keep within the realm
of feasibility, we had to give up on some aspects of the construction, specifically the “multiplica-
tive bundling” factors that protect against mixed-input attacks. Hence, our implementation can
securely obfuscate only read-once branching programs. Nonetheless, when stretched to its limits,
our implementation can obfuscate some non-trivial programs (beyond just point functions). Our
use of the GGH15 encoding may offer performance advantages over implementations that use the
encoding from GGH13 [9] or CLT13 [7], especially for obfuscating finite-state machines with many
states. For example we were able to obfuscate read-once branching programs with input of 20
nibbles (80 bits) and over 100 states, which seems out of reach for all prior implemented systems
that we know of.

Such branching programs can be used to implement multi-point functions or even multiple-
substring match functions, checking if the input contains at least one out of a list of 100 possible
substrings. They can also be used to obfuscate superstring match functions, checking if the input
is contained in a longer string of length up to 100 + 20 nibbles (or contained in one of two strings,
each of length 50 + 20, etc.).

To handle length 20 branching programs with 100 states over nibbles, our implementation uses
about 400 Gigabytes of memory and runs for about 23 days.2 Moreover, each obfuscated program
takes about 9 Terabytes of disk space to specify. Evaluating this obfuscated program takes under
25 minutes per input. We note that further optimization of the current implementation is surely
possible, but this scheme probably cannot extend too much beyond what we achieved.

1Moreover, their security properties are still poorly understood.
2The results in Table 2 are for a binary alphabet, featuring the same RAM consumptions but 1/8 of the disk space

and running time as compared to size-16 alphabet.
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Obfuscation [10, 11] (Section 2)

Graded encoding [11] (Section 3)

Trapdoor Sampling [18] & Matrix manipulations (Sections 4 & 6)

Figure 1: High-level structure of our implementation

Why GGH15? Our choice of using the encoding scheme from [11] was mainly due to the fact
that using this scheme in an implementation was not attempted before, and our expectation that
using GGH15 would have somewhat smaller complexity than the GGH13 and CLT13 encoding
schemes when obfuscating programs with many states.

Specifically, GGH13 and CLT13 encode individual elements, but branching-program obfuscators
need to encode matrices. As a result, the performance of obfuscators based on CLT13 or GGH13
degrades quadratically with the matrix dimension.3 In contrast, GGH15 natively encodes matrices,
and its performance is a lot less sensitive to the dimension of the encoded matrices. Very very
roughly, the performance of encoding an n-by-nmatrix scales like (M+n)2, whereM is a large factor
that depends on security considerations — see more details in Section 5. From the performance
numbers reported in [16] and in this work, it seems that CLT13 should be the graded encoding
scheme of choice for small-dimension matrices, while GGH15 would start outperforming CLT for
programs with about 50 states.

Moreover the optimizations that we developed in this work are likely to be useful beyond
obfuscation. In particular our Gaussian and trapdoor sampling optimizations are likely useful in
lattice cryptography (and of course our optimized matrix manipulations would be useful in many
other settings).

1.1 High-Level Overview

Our implementation consists of three layers, as illustrated in Figure 1. Our implementation consists
of three layers: At the top layer, we implemented a simplified variant of the GGH15 obfuscator from
[11] (see Section 2). Below it, in the middle layer, we implemented the GGH15 graded-encoding
scheme [11], including the “safeguards” suggested there (see Section 3). The main operations
needed in the GGH15 encoding scheme are lattice trapdoor sampling and matrix manipulations,
which are implemented in the bottom layer of our system (see Sections 4 and 6, respectively). The
most notable aspects of our implementations are:

New Gaussian sampler. We implemented a sampling procedure for the ellipsoidal discrete Gaus-
sian distribution that can directly work with the covariance matrix (rather than its square
root). Recall that sampling an ellipsoidal Gaussian over Zn with covariance matrix Σ is equiv-
alent to sampling a spherical Gaussian over the lattice whose basis is B =

√
Σ. Hence, one

way to implement it would be computing the basis B and then using the procedure of GPV
[13] or Peikert [19]. However, computing

√
Σ is somewhat inefficient, so we instead devised a

different method which is somewhat similar to the GPV sampler but works directly with Σ,
without having to find its square root. This method is described in Section 4.4.

3Some obfuscation constructions can handle non-square matrices, but even then it is likely that both dimensions
would grow together.
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Trapdoor sampling in the CRT representation. We implemented the Micciancio-Peikert
trapdoor sampling algorithm [18], using a procedure that keeps all the large integers in the
Chinese-Remainder representation (CRT), without having to convert back and forth between
the CRT and standard integer representations. See Section 4.3.

Efficient matrix manipulation. Our implementation routinely handles matrices of dimension
above 10,000, so efficient matrix multiplication and inversion is critical. We implemented
highly optimized routines, taking advantage of the available hardware (cache friendly, SIMD
enabled, multi-threaded, etc.). These routines, which were incorporated into the NTL library
[20], are described in Section 6.

Threading/memory tradeoffs. We explored multiple parallelization strategies, trading off the
level of parallelism against the need to severely conserve memory. Details are available in
Section 7.2.

Some Design Choices. Most of our design choices were taken for the sake of speed. For example,
this is why we chose to work with integers in CRT representation (with the CRT basis being either
23-bit numbers or 60-bit numbers, depending on the hardware platform4). That choice dictated
that our “gadget matrix” G would be based on mixed-radix representation relative to our CRT
base, rather than binary representation (see Section 4.3). Another choice made in the name of
speed was to use 1-dimensional rounded continuous Gaussian distribution instead of the discrete
Gaussian distribution (see Section 4.4).

Other choices were made for more prosaic reasons such as to simplify the software structure
of the implementation. For example, since the “safeguards” of GGH15 encoding from [11] already
include Kilian-like randomization, we chose to implement that randomization techniques at the
encoding level and leave it out of the higher-level obfuscation routine. We made many such software-
engineering choices during the implementation, but only report here on very few of them.

1.2 Prior Work

Graded encoding implementations. An implementation of the CLT13 graded encoding
scheme was provided already by Coron et al. [7], and GGHlite (which is a simplified variant of
GGH13 due to Langlois et al. [15]) was implemented by Albrecht et al. [2]. To the best of our
knowledge, ours is the first implementation of the GGH15 graded encoding scheme.

Obfuscation implementation. The first attempt at implementing the GGHRSW obfuscator
was due to Apon et al. [4], who used the CLT13 implementation for the underlying graded en-
coding scheme, and demonstrated a 14-bit point function obfuscation as a proof of concept. That
implementation work was greatly enhanced in the 5Gen work of Lewi et al. [16]: they built a flexi-
ble framework that can use either CLT13 or GGH13 encoding (but not GGH15), and implemented
obfuscation (as well as other primitives) on top of this framework, demonstrating an obfuscation
of an 80-bit point function using CLT13 encoding.

We note that point functions have branching programs of very low dimension, making the
CLT13-based approach from [16] attractive. However, our implementation should out-perform the

4We used 23-bit factors when utilizing Intel AVX, and 60 bits when AVX was not available. See Section 6.
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CLT13-based approach once the number of states (and hence the dimension) grows above a few
dozens.

Attacks. The security properties of current-day graded encoding schemes is poorly understood,
and new attacks are discovered all the time. But no attacks so far seem to apply to the construction
that we implemented. In particular, the attack due to Coron et al. [8] on GGH15-based key exchange
relies on having many encodings of the same matrices, which are not available in obfuscation. Also,
the quantum attack due to Chen et al. [6] on GGH15-based obfuscation is not applicable at all to
read-once branching programs, since it specifically targets the “bundling factors” that are used as
a defense against inconsistent evaluation. (Also that attack requires that the branching-program
matrices have full rank, which is not the case in our setting.)

1.3 Organization

The three layers of our implementation (obfuscation, graded encoding, and trapdoor sampling)
are described in Sections 2, 3, and 4, respectively. Paremeter selection is discussed in Section 5.
The matrix-manipulation optimizations are in Section 6, and more implementation details and
performance results are given in Section 7.

2 Obfuscating Branching Programs

We implemented a simplified variant of the obfuscator of Gentry et al. [11], without the “multiplica-
tive bundling” mechanism that protects against mixed-input attacks. Hence, in its current form
our implementation is only secure when used to obfuscate oblivious read-once branching programs
(equivalently, nondeterministic finite automata, NFA).

Recall that a read-once branching program for n-bit inputs is specified by a length-n list of pairs
of d× d matrices B = {(M1,0,M1,1), (M2,0,M2,1), . . . , (Mn,0,Mn,1)}, and the function computed by
this program is

fB(x) =

{
0 if

∏n
i=1Mi,xi = 0;

1 otherwise.

We remark that in other settings it is common to define the function fB(x) by comparing the product∏n
i=1Mi,xi to the identity rather than the zero matrix. But comparing to the identity requires that

all the matrices be full rank, which for read-once programs will severely limit the power of this
model. Instead, comparing to the zero matrix allow us to represent arbitrary oblivious NFAs (where
the product is zero if and only if there are no paths leading to the accept state).

Our goal is to get “meaningful obfuscation,” which is usually defined as achieving indistinguisha-
bility obfuscation (iO). Namely, we want it to be hard for an efficient distinguisher to tell apart
the obfuscation of two equivalent programs, B,B′ such that fB = fB′ . For very simple functions,
other notions may also be possible such as one-wayness or virtual black box (VBB) obfuscation.
The security analysis from [11] (sans the “bundling factors”) implies that it may be reasonable to
hope that our implementation satisfies iO for NFAs, and perhaps also the other notions for limited
classes.

The GGH15 construction proceeds in two steps: the input branching program is first random-
ized, and the resulting program is encoded using the underlying graded encoding scheme. Roughly
speaking, the goal of graded encoding is to ensure that “the only thing leaking” from the obfuscated
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program is whether or not certain matrices are equal to zero, and the goal of randomization is to
ensure that “the only way to get a zero matrix” is to faithfully evaluate the branching program on
some input x. That is, randomization needs to ensure that every expression not derived from a
faithful evaluation yields a non-zero matrix with high probability.

2.1 Randomizing the Transition Matrices

The GGH15 construction has three randomization steps: it embeds the branching program in
higher-dimensional matrices, then applies Kilian-style randomization [14], and finally multiplies by
“bundling scalars”. In our implementation, we forgo the “bundling scalars” for performance reasons
(see below), and we chose to delegate the Kilian-style randomization to the graded encoding itself
(see Section 3.1), rather than viewing it as part of the obfuscation.

Hence the only randomization that we implemented in the obfuscation layer is embedding in
high-dimensional random matrices. The transition matrix that we want to encode is embedded
in the upper-left quadrant of a higher-dimension block-diagonal matrix, setting the lower-right
quadrant to be a random (small) matrix. Specifically, we add d′ = d

√
λ/2e dimensions in the

lower-right d′× d′ quadrant (where λ is the security parameter), with random entries of magnitude
roughly 27. These random matrices therefore have significantly more than 2λ bits of min-entropy,
so they are not susceptible to guessing (or birthday-type) attacks.

This randomization impedes functionality, however, since after multiplying we can no longer
compare the result to zero. To recover functionality, we use the “dummy program” method of Garg
et al. [10], where we encode not only the randomized “real” program but also a second “dummy
program” in which all the matrices are always multiplied to the all-zero matrix. Specifically, for the
first step we use transition matrices that have the identity at the top rows and zero at the bottom;
for the last step we use matrices where the top rows are zero and the bottom have the identity;
and in between we use the identity. We randomize the “real” and “dummy” programs using the
same random low-norm matrices in the lower-right quadrants, as illustrated in Figure 2.

After this randomization step, we use the GGH15 graph-induced encoding scheme to encode
the resulting randomized matrices. As described in Section 3, the GGH15 scheme encodes matrices
relative to edges of a public directed graph, and in our case we use a construction with two separate
chains (with the same source and sink), one for encoding the “real” branch and the other for
encoding the “dummy” branch. The encoded matrices form our obfuscated branching program.
To evaluate this obfuscated branching program on some input, we choose the same matrix (0 or
1) from both the “real” and “dummy” programs, multiply in order, subtract the product of the
“dummy” program from the product of the “real” one, and test for zero.

2.2 No “multiplicative bundling”

The obfuscation scheme as described by Gorbunov et al. in [11] has another randomization step of
“multiplicative bundling” to protect against “mixed input attacks”: in general branching programs,
one has to ensure that when a single input bit controls many steps of the branching program, an
attacker is forced to either choose the matrix corresponding to zero in all of the steps or the matrix
corresponding to one (but cannot mix and match between the different steps of the same input
bit). To do that, Gorbunov et al. use a variant of the encoding scheme that encodes matrices over
a large extension ring (rather than integer matrices), and multiply different matrices by different
scalars (called “bundling factors”) from this large ring.
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First matrix:
(
M1,b

)
⇒

{
Real:

(
M1,b

R1,b

)
, Dummy:

Ibd/2c 0dd/2e
R1,b

}

Other matrices:
(
Mi,b, 1 < i < n

)
⇒

{
Real:

(
Mi,b

Ri,b

)
, Dummy:

(
Id

Ri,b

)}

Last matrix:
(
Mn,b

)
⇒

{
Real:

(
Mn,b

Rn,b

)
, Dummy:

0bd/2c
1dd/2e

Rn,b

}

Figure 2: Randomizing transition matrices, the Ri,b’s are random low-norm matrices, and the same
Ri,b is used for the “real” and “dummy”. Ik and 0k are the k × k identity matrix and k × k zero
matrix respectively.

Our implementation does not use bundling factors, since to get sufficient entropy for the
bundling scalars we would have to work with scalars from a fairly large extension ring R (rather
than just the integers). This would have required that we scale up all our parameters by a fac-
tor equal to the extension degree of the large ring (at least in the hundreds), rendering the system
unimplementable even for very short inputs. As a result, our implementation is vulnerable to mixed
input attacks if it is used for general branching programs, so it should only be used for read-once
programs.

2.3 Non-binary input

Our implementation also supports non-binary input, namely input over an alphabet ∆ with more
than two symbols. The only difference is that instead of having pairs of matrices in each step of
the program, we have |∆| matrices per step, and the input symbol determines which of them to
use. We still have only two branches in the obfuscated program (“real” and “dummy”), encoded
relative to a DAG with two chains, where on each edge in this DAG we encode |∆| matrices. The
run time and space requirements of obfuscation are linear in |∆|, while initialization and evaluation
are unaffected by the alphabet size. In our tests, we used |∆| as large as 16.

3 Graph-Induced Encoding

Graded encoding schemes are the main tool in contemporary obfuscation techniques. They allow
us to “encode” values to hide them, while allowing a user to manipulate these hidden values. A
graded encoding scheme has three parts: key generation, which outputs a public key and a secret
key; an encoding procedure, which uses the secret key to encode values of interest; and operations
that act on the encoded values using the public key. (These encoding schemes are “graded” in
that the encoded values are tagged and operations are only available on encoded values relative to
“compatible” tags.)

In the GGH15 graph-induced encoding scheme of Gentry, Gorbunov, and Halevi [11], the tags
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correspond to edges in a transitive directed acyclic graph (DAG). The DAG has a single source
node s and a single sink node t. An instance of this scheme is parameterized by the underlying
graph, and also by some integers n < m < b < q that can be derived from the graph and the
security parameter. (Roughly, we have m = O(n log q), q = nO(d), where d is the diameter of the
graph and b = qδ for some δ < 1.) With these parameters, the functionality of the GGH15 scheme
is as follows:

• The plaintext space consists of integer matrices M ∈ Zn×n. An encoding of such an integer
matrix M (relative to any edge i → j) is a matrix C ∈ Zm×mq over Zq. There is an efficient
procedure that takes the secret key, a matrix M ∈ Zn×n, and two vertices i, j, and produces
a matrix C ∈ Zm×mq that encodes M relative to i→ j.

• If C1, C2 encode M1,M2, respectively, relative to the same edge i → j, then their sum
modulo q, C = [C1 +C2]q, encodes the matrix M1 +M2 relative to the same edge. (Here and
throughout the paper we use [·]q to denote operations modulo q, representing elements in Zq
as integers in the interval [−q/2, q/2).)

• If C1, C2 encode M1,M2, relative to consecutive edges i → j, j → k, respectively, and
if in addition the entries of M1 are all smaller than b in magnitude, then their product
C = [C1 × C2]q encodes the matrix M1 ×M2 relative to the edge i → k (in the transitive
closure).

• There is an efficient zero-test procedure that, given the public key and an encoding of some
matrix M relative to the source-to-sink edge s→ t, determines if M = 0.

In more detail, key generation in the basic GGH15 scheme chooses for every vertex i a matrix
Ai ∈ Zn×mq , together with a trapdoor as in [18] (see Section 4.1). The secret key consists of all
the matrices and their trapdoors, and the public key consists of the source-node matrix As. An
encoding of a plaintext matrix M with respect to edge i → j is a “low-norm” matrix C ∈ Zm×m
such that AiC = MAj + E (mod q), for a “low-norm” noise matrix E ∈ Zn×m. The encoding
procedure chooses a random small-norm error matrix E, computes B = [MAj + E]q, and uses
trapdoor-sampling to find a small-norm matrix C as above. Encoded matrices relative to the
same edge Ai → Aj can be added, and we have Ai(C + C ′) = (M + M ′)Aj + (E + E′) (mod q).
Furthermore, encoded matrices relative to consecutive edges i→ j, j → k can be multiplied, such
that

Ai(C × C ′) = (MAj + E)× C ′ = M(M ′Ak + E′) + EC ′

= MM ′Ak + (ME′ + EC ′) (mod q).

More generally, if we have a sequence of Ci’s representing Mi’s relative to (i − 1) → i for
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i = 1, 2, . . . , k, then we can set C∗ =
[∏k

i=1Ci
]
q

and we have

A0C
∗ =

( k∏
i=1

Mi

)
Ak +

( k−1∏
i=1

Mi

)
Ek +

( k−2∏
i=1

Mi

)
Ek−1Ck + · · ·

+ M1E2

( k∏
i=3

Ci
)

+ E1

( k∏
i=2

Ci
)

=
( k∏
i=1

Mi

)
Ak +

k∑
j=1

( j−1∏
i=1

Mi

)
Ej
( k∏
i=j+1

Ci
)

︸ ︷︷ ︸
E∗ :=

(mod q).

If we set the parameters so as to ensure that ‖E∗‖ � q, then we still have the invariant that C∗

is an encoding of M∗ =
∏
Mi relative to the source-to-sink edge 0→ k. By publishing the matrix

A0, we make it possible to recognize the case M∗ = 0 by checking that ‖A0C
∗‖ � q.

3.1 The GGH15 “Safeguards”

Since the security properties of their construction are still unclear, Gentry et al. proposed in [11]
certain “safeguards” that can plausibly make it harder to attack. With every matrix Ai, we also
choose a low-norm “inner transformation matrix” Pi ∈ Zn×n and a random “outer transformation
matrix” Ti ∈ Zm×mq , both invertible modulo q. For the source node A0 and sink node Ak, we use
the identity matrices P0 = Pk = In×n and T0 = Tk = Im×m.

To encode a matrix M ∈ Zn×n relative to the edge i→ j, we first apply the inner transformation
to the plaintext, setting M ′ = [P−1

i MPj ]q, then compute a low-norm C as before satisfying AiC =

M ′Aj +E, and finally apply the outer transformation to the encoding, outputting Ĉ = [TiCT
−1
j ]q.

For the invariant of this encoding scheme, Ĉ encodes M relative to i→ j if

Ai(T
−1
i ĈTj) = (P−1

i MPj)Aj + E (mod q), (1)

where E and C = [T−1
i ĈTj ]q have low norm. Since we get telescopic cancellation on multiplication

(and the 0 and k transformation matrices are the identity), then the non-small matrices all cancel
out on a source-to-sink product. Setting C∗ =

[∏k
i=1 Ĉi

]
q
, we get

A0C
∗ =

( k∏
i=1

Mi

)
Ak +

k∑
j=1

( j−1∏
i=1

Mi

)
Pj−1Ej

( k∏
i=j+1

Ci
)

(mod q). (2)

Remark. Gentry et al. described in [11] a slightly more restricted form of the inner transforma-
tion, in which both P and its inverse had low norm. But in fact there is no need for P−1 to be
small. Indeed, Eqn. (2) depends only on the Pi’s and not their inverses.

3.2 A Few Optimizations

Special case for source-based encoding. Encoding relative to an edge 0→ i can be substan-
tially optimized. This is easier to see without the safeguards, where instead of publishing the vertex-
matrix A0 and the encoding-matrix C, we can directly publish their product A0C = [MAj + E]q.
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Trapdoor Generation & Sampling (§4.1)

G-sampling (§4.3) Ellipsoidal Gaussians (§4.4)

Stash (§4.5) 1-dimensional Gaussians (§4.4)

Figure 3: Components of our trapdoor-sampling.

Not only would this save some space (since A0C has dimension n × m rather than m × m), we
could also do away with the need to use the trapdoor to compute a low-norm C. Instead, we just
choose the low-norm E and compute B = [MAj + E]q.

When using the safeguards, we recall that P0 and T0 are both set as the identity, and so to
encode M we would compute M ′ = [MPj ]q, then set B = [M ′Aj + E]q, and output B̂ = [BT−1

j ]q.

Special case for sink-bound encoding. We can also optimize encodings relative to an edge
j → k by choosing a much lower-dimensional matrix Ak. Specifically, we make A ∈ Zn×1

q , i.e. a
single column vector. Note that we cannot choose such a matrix with a trapdoor, but we never
need to use a trapdoor for the sink Ak.

Encoding M relative to j → k is done by choosing a low-norm column vector E, setting
B = [P−1

j MAk + E]q ∈ Zn×1
q , using the Aj trapdoor to sample a small C ∈ Zm×1

q such that

AjC = B (mod q), and finally outputting C̃ = [T−1
j C]q.

4 Trapdoor Sampling

We implemented the trapdoor-sampling procedure of Micciancio and Peikert [18]. The structure
of this implementation is depicted in Figure 3. At the bottom level, we have an implementation of
one-dimensional discrete Gaussian sampling, with a stash for keeping unused samples. At the next
level, we have procedures for sampling high-dimension ellipsoidal discrete Gaussians and solutions
to equations of the form G~z = ~v (mod q), where G is the “easy gadget matrix.” At the top level,
we have procedures for choosing a matrix A with a trapdoor and then using the trapdoor to sample
solutions to equalities of the form A~x = ~u (mod q).

4.1 Background: The Micciancio-Peikert Trapdoor Sampling Procedure

Recall that the Micciancio-Peikert approach [18] is based on a “gadget matrix” G ∈ Zn×w for
which it is easy to sample small solutions ~z to equations of the form G~z = ~v (mod q). The
trapdoor-generation procedure outputs a (pseudo)random matrix A ∈ Zn×mq together with a low-

norm trapdoor matrix R ∈ Zm̄×w such that A ×
(
R
I

)
= G (mod q), where

(
R
I

)
has the top rows

taken from R and the bottom rows taken from the identity matrix I. In our implementation, the
entries of R are drawn independently from a Gaussian distribution over the integers with parameter
r = 4.

Given the matrix A, the trapdoor R, and a target syndrome vector ~u ∈ Znq , Micciancio and
Peikert described the following procedure for sampling small solutions to A~x = ~u (mod q):

1. Sample a small perturbation vector ~p ∈ Zm according to an ellipsoidal discrete Gaussian
distribution, with covariance matrix that depends on R.
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2. Set ~v = ~u−A~p mod q.

3. Sample a small solution ~z to the equation G~z = ~v (mod q), according to a spherical discrete
Gaussian.

4. Output ~x = ~p+
(
R
I

)
~z mod q.

Note that this indeed yields a solution to A~x = ~u (mod q), since

A~x = A
(
~p+

(
R
I

)
~z
)

= A~p+G~z = A~p+ ~v = ~u (mod q).

Also, if ~p is chosen relative to covariance matrix Σp and ~z is chosen from a spherical discrete Gaussian
with parameter σz, then the covariance matrix of the resulting ~x will be Σx = Σp+σ2

z ·
(
R
I

)
×
(
RT |I

)
.

Thus, to get a solution ~x sampled from a spherical Gaussian with (large enough) parameter Sx =
σxI, we need to set the covariance matrix for ~p to Σp = σ2

xI − σ2
z

(
R
I

)
(R|I). (This means that σx

must be sufficiently large relative to σz and the singular values of R, so that Σp is positive definite.)

4.2 The Gadget Matrix G

The “Gadget matrix” in [18] is based on binary representation, but for our implementation we
use a mixed radix representation instead (which makes CRT-based processing easier, see below).
Specifically, we use a list of small co-prime factors (in the range from 71 to 181), which we denote
here by p1, p2, . . . , pk.

We also have a parameter e that specifies how many times we repeat each factor (by default
e = 3). Thus our big modulus is q =

∏k
i=1 p

e
i , where we take k large enough to give us as many

bits in q as we need.
Given all these co-prime factors, we define the vector ~g as the mixed-radix vector with the pi’s

appearing e times each. That is, the first entry is ~g[0] = 1, and for each following entry we have
~g[i+ 1] = ~g[i] · pbi/ec:

~gT =
(
1, p1, . . . , p

e−1
1 , pe1, p2p

e
1, . . . , p

e−1
2 pe1, . . . P ∗, pkP

∗, . . . , pe−1
k P ∗

)
.

where P ∗ =
∏
i<k p

e
i . In other words, the vector ~g has dimension e·k, with indexing i = 0, . . . , ek−1,

and the ith entry in ~g is obtained by setting t = bi/ec and s = i mod e, and then ~g[i] = pst+1·
∏t
j=1 p

e
j .

Once ~g is defined, our gadget matrix is just the tensor Gn = ~gT ⊗ In, whose dimensions are n-by-w
for w = e · k · n.

4.3 The G-Sampling Routine

Our G-sampling routine is an extension of the power-of-two procedure from [18, Sec. 4.2]. Specif-
ically, we are given as input a syndrome vector ~u ∈ Znq , in CRT representation, and we need to

sample a random small vector ~z ∈ Znek such that Gn × ~z = ~u (mod q).
Since Gn = ~gT ⊗ In, each block of ek entries of ~z can be sampled separately. In particular,

for each entry u in ~u, we sample ~z ′ ∈ Zek such that 〈~z ′, ~g 〉 = u (mod q). It is straightforward
to generalize the power-of-two procedure from [18, Sec. 4.2] for choosing ~z ′ to our mixed-radix
representation. The generalized procedure would work as depicted in Figure 4. For Step 2 in this
procedure, we sample from the distribution DpiZ+u,σ with Gaussian parameter σ = 4 · 181 = 724,
where p1 = 181 is the largest of our small factors.
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Parameters: σ, e, k and the pi’s
Input: u ∈ Z
1. for i = 0 to k − 1, for j = 0 to e− 1
2. t← DpiZ+u,σ // Sample a σ-short t ∈ Z, t = u (mod pi)
3. Set ~z ′[j + i · e] := t
4. Set u := (u− t)/pi // Update u after each iteration
5. Output ~z ′

Figure 4: The G-sampling procedure

4.3.1 Working with ~u in CRT Representation

One of the main reasons for our use of a modulus of the form q =
∏k
i=1 p

e
i is to be able to use

Chinese-Remainder (CRT) representation for elements in Zq. Namely, each element x ∈ Zq is
represented by a vector (xi = x mod pei )i∈[1,k]. Using a CRT representation allows for significantly
faster processing.

In our implementation, we are given as input the syndrome vector ~u in the CRT representation,
so an entry u in ~u is itself represented by a vector ~v = (u mod pej)j∈[1,k]. We would like to implement
the procedure from Figure 4 without having to convert the entries of ~u from the CRT representation
to the standard representation. We stress that while we use CRT encoding for the input, the output
~z ′ consists of only short integers and is returned in binary representation.

Considering the code in Figure 4, most of it can be applied as-is to each coefficient of the CRT
representation of u. The only parts that require attention are Step 2, when we need to compute
u mod pi, and Step 4, when we update u := (u − t)/pi. In Step 2, we see that knowing vi = u
(mod pei ) is all we need in order to compute u mod pi. All of the other components can be ignored
for the purpose of that step.

In Step 4, we have two cases: one is how to update the components vj = u (mod pej) for j 6= i,
and the other is how to update the component vi = u (mod pei ). Updating vj for j 6= i is easy:
since pi and pj are co-prime we can simply set vj := [(vj − t) · p−1

i ]pej . In our implementation, we

pre-compute all the values p−1
i mod pej for i 6= j, so that updating each vj takes only one modular

subtraction and one modular multiplication.
Updating the component vi = u (mod pei ) is a different story. Clearly the new value (u −

t)/pi mod pei depends not only on the value of vi itself but on the values of all the vj ’s, so we cannot
hope to be able to compute the updated vi without reconstructing the entire integer u. Luckily, it
turns out that in this case we do not need to fully update vi. To see this, notice that the only reason
we need the value of vi = u (mod pei ) in this computation is to be able to compute u (mod pi) in
Step 2, and we only need to use it e times. After the first time, we can update vi := (vi − t)/pi
(treating vi as an integer and using the fact that t = u = vi (mod pi) and therefore vi−t is divisible
by pi). The updated vi may no longer satisfy vi = u (mod pei ), but we do have the guarantee that
vi = u (mod pe−1

i ), and this is sufficient for us since all we need is to be able to use vi for computing
u mod pi. More generally, after the kth time that we use vi, we update it as vi := (vi − t)/pi, and
we know that the updated value satisfies vi = u (mod pe−ki ). We also do not need to update any
of the vj ’s for j < i, since we will never need them again in this computation. The resulting code
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Parameters: σ, e, k and the pi’s
Input: ~v ∈ Zk // v[j] = u mod pej
1. for i = 0 to k − 1, for j = 0 to e− 1
2. t← DpiZ+v[i],σ // Sample a σ-short t ∈ Z s.t. t = v[i] = u (mod pi)

3. Set ~z ′[j + i · e] := t
4. for m = i+ 1 to k − 1 // Update v[m] for m > i

5. v[m] :=
[
(v[m]− t) · p−1

i

]
pem

6. v[i] := (v[i]− t)/pi // Update v[i] as an integer
7. Output ~z ′

Figure 5: The G-sampling procedure in CRT representation

for implementing the G-sampling routine with u in CRT representation is given in Figure 5.

Lazy update of the vj’s. Updating each of the vj ’s requires modular arithmetic modulo pej ,
which may mean using some pre-computed tables for this modulus. As written, the code in Figure 5
would need to constantly shuffle these tables into memory, since every iteration requires updating
many vj ’s modulo many different pej ’s. We note, however, that we only use the value of vj when
we get to i = j in Step 1, and so in our implementation we delay updating vj until it is needed and
do all the mod-pej operations only then.

4.4 Sampling Gaussian Distributions Over Z

One-dimensional Gaussians. Our current implementation uses the “shortcut” of sampling
from the one-dimensional rounded continuous Gaussian distribution instead of the discrete Gaussian
distribution. (I.e., instead of DZ−x,r, we sample from the corresponding one-dimensional continuous
Gaussian distribution and round to the nearest z−x for integral z.) This “shortcut” makes our one-
dimensional sampling routine faster and easier to implement, but introduces a noticeable variation.
We are not aware of any security vulnerability due to this deviation. We also note that any one-
dimensional sampling implementation can be plugged in to our code without changing anything
else, but this is one aspect that we did not experiment with.

Multi-dimensional ellipsoidal Gaussians. Recall that the perturbation vector ~p in the
Micciancio-Peikert procedure is drawn from an ellipsoidal discrete Gaussian distribution with co-
variance matrix Σp = σ2

xI − σ2
z

(
R
I

) (
RT |I

)
. Prior work due to Gentry et al. [13] and Peikert [19]

showed how to sample from this distribution by first computing
√

Σp, a rather expensive operation.
Instead, we devised and implemented a sampling procedure for the ellipsoidal discrete Gaussian
that is somewhat similar to the GPV sampler in [13] but can work directly with the covariance
matrix rather than its square root. Specifically, we choose each entry in ~p from a one-dimensional
discrete Gaussian distribution, conditioned on the previous entries. To approximate the conditional
mean and variance, we use the corresponding values from the continuous case. Specifically, for a
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vector (x, y) with covariance matrix Σ and mean µ we have:

ΣY |X = ΣY,Y − ΣY,X Σ−1
X,X ΣX,Y

µY |X=x = µY + ΣY,X Σ−1
X,X(x− µX)

(3)

where ΣX,X ,ΣX,Y ,ΣY,X ,ΣY,Y are the four quadrants of the covariance matrix Σ, and µX , µY are
the two parts of the mean vector µ. (Note that when x is one-dimensional, as in our case, then
Σ−1
X,X is just 1/σ2

x.) Below we show that this procedure yields the right probability distribution up

to a negligible error, as long as the singular values of the matrix Σp are all ω(log(λn)). 5

Analysis of the ellipsoidal Gaussian sampler. Below we use DZn,
√

Σ to denote the n-
dimensional discrete Gaussian distribution with covariance matrix Σ. For index sets A,B ⊂ [n],
we define ΣA,B to be the submatrix obtained by restricting Σ to the rows in A and the columns in
B. (When the set only has one element, we simply write, e.g., ΣA,i instead of ΣA,{i}.) We will be
interested in the kth diagonal entry Σk,k, the top-left (k − 1)× (k − 1) submatrix Σ[k−1],[k−1], and

the submatrices Σk,[k−1] and Σ[k−1],k. (Note that Σk,[k−1] = ΣT
k,[k−1], since Σ is positive definite

and therefore symmetric.)
We then define

Sk := Σk,k − Σk,[k−1]Σ
−1
[k−1],[k−1]Σ[k−1],k , and (4)

~vk := Σ−1
[k−1],[k−1]Σk,[k−1] .

(Note that Sk ∈ R is a scalar and ~vk ∈ Rk−1 is a (k − 1)-dimensional vector. For convenience, we
also define S1 := Σ1,1 and ~v1 := ~0.) Sk is known as the Schur complement of Σ[k−1],[k−1] in Σ[k],[k],
a very well-studied object [21]. In particular, the following claim shows that the kth coordinate of
a (continuous) Gaussian with covariance Σ conditioned on the first k − 1 coordinates taking the
value ~x ′ ∈ Rk−1 is exactly the Gaussian with variance Sk and mean 〈~vk, ~x ′〉, as we discussed above.

Claim 1. For any vector ~x ∈ Rn and symmetric matrix Σ ∈ Rn×n, let Sn and ~vn be defined as
above, and let ~x ′ ∈ Rn−1 be the first n− 1 coordinates of ~x. Then, if Sn and Σn,n are non-zero and
Σ[n−1],[n−1] is invertible, then ~xTΣ−1~x = (xn − 〈~vn, ~x ′〉)2/Sn + ~x′TΣ[n−1],[n−1]~x

′ .

Proof. Note that

Σ−1 =

 Σ−1
[n−1],[n−1] + ~vn~v

T
n /Sn −~vn/Sn

−~vTn /Sn 1/Sn

 .

(One can check this by simply multiplying by Σ. We note that the identity does not hold when Σ
is not symmetric.) The result then follows by directly computing ~xTΣ−1~x.

We will also need the following well-known fact, which follows immediately from the Poisson sum-
mation formula.

5The proof below works when the underlying one-dimensional sampling is from a discrete Gaussian, and will incur
noticeable deviation when using rounded continuous Gaussian.
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Lemma 2. For any s ≥ 1 and any x ∈ R,

(1− 2−s
2
) · ρs(Z) ≤ ρs(Z− x) ≤ ρs(Z) .

Here, ρs(x) is the one-dimensional Gaussian function with parameter s, and for a set of points
X, ρs(X) is the sum of ρs over these points. We now prove the correctness of our sampler.

Theorem 1. Consider the following procedure that takes as input a positive-definite matrix Σ ∈
Rn×n.

1. Set ~z ← ~0.

2. For k = 1, . . . , n, compute Sk and ~vk as defined above.

3. For k = 1, . . . , n, sample zk from µk+DZ−µk,
√
Sk

, where µk := 〈~vk, ~z 〉, and set ~z ← ~z+zk ·~ek.

4. Return ~z.

Then, the output vector ~z is within statistical distance n2−S of DZ,
√

Σ, where S := mink Sk.

Proof. Note that the first coordinate of ~z is distributed exactly as DZ,
√
S1

= DZ,
√

Σ1,1
. Let Σ′ :=

Σ[k−1],[k−1]. We assume for induction that the first k − 1 coordinates of ~z, which we call ~z ′, are

within statistical distance (k−1) ·2−S of DZk−1,
√

Σ′ . If this were exactly the distribution of ~z ′, then

for any fixed integer vector ~y ∈ Zk with first k coordinates ~y ′, we would have

Pr[~z ′ = ~y ′ and zk = yk] =
ρ√Σ′(~y

′)

ρ√Σ′(Zk−1)

·
ρ√Sk

(yk − µk)
ρ√Sk

(Z− µk)
.

Here, the ρ functions are multi-dimensional Gaussians. By Claim 1, we have ρ√Σ′(~y
′) · ρ√Sk

(yk −
µk) = ρ√Σ[k],[k]

(~y). And, by Lemma 2, we have that

(1− 2−Sk) · ρ√Sk
(Z) ≤ ρ√Sk

(Z− µk) ≤ ρ√Sk
(Z) .

Therefore, Pr[~z ′ = ~y ′ and zk = yk] is within a factor of 1 − 2−Sk of ρ√Σ[k],[k]
(~y)/ρ√Σ[k],[k]

(Zk).
It follows that the real distribution of the first k coordinates of ~z is within statistical distance
(k − 1)2−S + 2−Sk ≤ k2−S of DZk,

√
Σ[k],[k]

, as needed.

Finally, we note that we can relate the Schur complement to the eigenvalues of Σ, which makes it
easier to compare the performance of our sampler with prior work, such as [13, 19].

Lemma 3. [17, Corollary 2.4] For any positive-definite matrix Σ ∈ Rn×n, σn(Σ) ≤ Sk ≤ σ1(Σ)
for all k = 1, . . . , n, where σi is the ith largest eigenvalue of Σ.

Corollary 4. The output of the procedure described in Theorem 1 is within statistical distance
n2−σn(Σ) of DZn,

√
Σ, where σn(Σ) is the smallest eigenvalue of Σ.
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4.5 Using a Stash of Samples

Our G-Sampling Routine (see Section 4.3) requires us to sample from DpZ+u,σ for a factor p taken
from the short list in Section 4.2 and an input integer u. For the small factors p that we use (all
between 71 and 181), this is done by repeatedly sampling short integers from DZ,σ until we hit one
that satisfies t = u (mod p). A naive implementation of this procedure will need to sample p/2 > 50
times (on the average) before it hits a suitable t, making for a very slow implementation. In our
tests, this naive implementation spent about 30% of the obfuscation time sampling 1D Gaussians.

To do better, we keep for each factor p a stash of unused samples. Whenever we need a new
sample we first check the stash. Only if there are no hits in the stash do we sample new points, and
all the points which are not equal to u modulo p are then stored in the stash for future use. (This
is similar to the “bucketing” approach described in [18, Sec. 4.1], but without the online/offline
distinction.)

The stash itself is implemented as a simple size-p array of integers, where stashp[i] contains
the latest sample that was equal to i modulo p (if that sample was not yet used). An alternative
approach would be to keep for each entry i a queue of all sample values satisfying x = i (mod p),
but such an implementation would be considerably more complex.

It is easy to see that the use of stash does not bias the distribution from which we sample: by
definition each non-empty entry j contains a random element x ← D, constrained only by x = j
(mod pi). (Note that we use a separate stash for each factor pi.)

As we show now, that simple stash implementation already reduces the required number of
trials per sample from p/2 to ≈

√
2p, reducing the sampling time from 30% to about 3% of the

total running time. To see how the simple implementation above reduces the overhead, denote by f
the fraction of full entries in the stash just prior to a sample operation. The expected change in the
number of full entries after the sample operation (where u mod p is uniform in Zp) is described by
the formula

E[ch] = f · (−1) + (1− f) · ((1− f) · p− 1)/2 =
1

2
· ((1− f)2 · p− 1− f) ,

where the second term follows from the fact that each empty entry other than i has 1/2 probability
of being filled before we sample a match. Assuming that the sampler reaches a steady state (with
expected change equal to zero), the value of f ∈ [0, 1] is

f =
1 + 2p−

√
1 + 8p

2p
= 1−

√
2/p+ Θ(1/p) .

The expected work per sampling operation is therefore f · 1 + (1− f) · p ≈
√

2p.

Thread-safety of our stash implementation. One important reason that we chose to imple-
ment the stash using the simple procedure above (rather than implementing a full queue per entry)
is that it is easier to make it thread-safe. Implementing a queue per entry would require the use of
semaphores to coordinate between the threads, whereas having only one integer per entry lets us
use simple atomic test-and-set operations (implemented via the C++11’s atomic<int> type.

5 Setting the Parameters

In setting the parameters, we try to minimize the dimension m and the bit size of the modulus q,
subject to functionality and security. For security, we need the dimensions m, m̄ to be large enough
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relative to q, so that the relevant computational problems are hard (m̄ is the number of rows in
the trapdoor matrix R). For functionality, we need q to be sufficiently larger than the largest noise
component that we get, and we also need the large dimension m to be sufficiently large (relative
to n log q) for our trapdoor sampling procedure. These security and functionality considerations
imply a set of constraints, described in Equations (7) through (10) below, and our implementation
searches for the smallest values that satisfy all these constraints.

5.1 Functionality

Basic facts. We use the bound from [18, Lemma 2.9] on the singular values of random matrices.
Namely, if the entries of an a-by-b matrix X are chosen from a Gaussian with parameter σ, then
the largest singular value of X (denoted s(X)) is bounded by

Pr
[
s(X) > const · (

√
a+
√
b+ t)

]
< 2−t

2
(5)

for some absolute constant const, and our empirical results show that we can use const = 1. Below
we use Eqn. (5) also in situations where the entries of X are not independent, such as when every
column of X is chosen using the trapdoor sampling procedure from Section 4.1. Namely, if C is
an m-by-m encoding matrix (before the “outer transformation”) with the columns chosen from a
Gaussian with parameter σx (over some coset in Zm), then we heuristically use 2

√
m to estimate

its largest singular value.

The parameter r. The starting point of our parameter setting is the smallest Gaussian pa-
rameter that we use for sampling the trapdoor R over Z. This choice ripples through the entire
implementation and has dramatic effect on efficiency, so we would like to make it as small as we
possibly could. Following Micciancio-Peikert [18], we set this parameter to r = 4 (which also seems
large enough to defeat the Arora-Ge attacks [5]).

Output size of trapdoor sampling. Next consider the size of vectors that are output by the
trapdoor sampling procedure. The trapdoor sampling procedure samples a solution ~x to A~x = ~u
(mod q), according to a spherical Gaussian distribution with some parameter σx, and we would
like to make σx as small as we can. The procedure works by sampling a perturbation vector ~p
and a solution ~z to G~z = ~u − A~p (mod q), then outputting ~x = ~p +

(
R
I

)
~z mod q. The vector

~z is drawn from a spherical Gaussian with parameter σz (to be determined shortly), and the
perturbation ~p has covariance Σp = σ2

xI−σ2
z

(
R
I

) (
Rt|I

)
. Hence the overriding constraint in setting

the parameters for this procedure is to ensure that Σp is positive definite, which we can do by
setting σ2

x > σ2
z(s + 1)2 ≈ (σzs)

2, where s is an upper bound (whp) on the largest singular value
of R.

To determine the value of σz that we can get, recall that each entry in ~z is drawn from a
Gaussian Dv+piZ,σz , where pi is one of our small co-prime factors that are listed in Section 4.2 (so
in particular pi ≤ 181). To be able to sample efficiently from this distribution, it is sufficient to set

σz = r ·max
i

(pi) = 4 · 181 = 724 (6)

Using Eqn. (5), the largest singular value of our m̄-by-w matrix R (with entries chosen with
Gaussian parameter r) is bounded whp by s = r · (

√
m̄+

√
w + 6) (to get 2−36 error probability).

Hence to ensure σx > σz · s it is enough to set
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σx > (r ·max
i

(pi)) · (r · (
√
m̄+

√
w + 6)) ≈ 2900 · (

√
m̄+

√
w + 6). (7)

As usual when setting parameters for lattice-based system, there is some weak circularity here
since m̄, w depend on the size of q, which in turn depends on the output size our sampling procedure,
that depends on σx. But this circular dependence is very weak, and it is easy to find a solution
that satisfies all the constraints. For example, in our largest setting L = 20 we have m̄ ≈ 6000 and
w ≈ 8000, for which the above bound yields σx ≈ 218.9.

The modulus q. The vectors ~x that are output by the trapdoor sampling procedure (which are
drawn from a spherical Gaussian with parameter σx over some coset in Zm) form the columns of
the GGH15 encoding matrices C before the outer transformation of the GGH15 “safeguards”. As
explained in Section 3.1, the noise term when we multiply L encodings is

noise =
L∑
j=1

( j−1∏
i=1

Mi

)
Pj−1Ej

( L∏
i=j+1

Ci
)

where the Mi’s are the “plaintext matrices” that we encode, the Pi’s are the inner transformation
matrices used in the GGH15 “safeguards”, the Ei’s are the error matrices that we choose, and the
Ci’s obtained using our trapdoor sampling procedure. Since the Ci’s are much larger than the other
matrices in this expression, the only relevant term in this sum is the first one, namely E1×

∏L
i=2Ci.

Below we use the largest singular value of the matrix product E1 ×
∏L
i=2Ci to represent its

“size”. By Eqn. (5) the singular values of all the Ci’s are bounded by σx(2
√
m+ 6) ≈ 2σx

√
m, and

that of E is bounded by 27(
√
m +

√
n + 6) ≈ 27√m. (Each entry of E is chosen from a Gaussian

with parameter 27.) Therefore we can heuristically bound the largest singular value of the product
by 27 · 2L−1 ·mL/2 · σL−1

x . For our zero-test we check that the noise is no more than q/210, so we
need q to be 210 times larger than this bound, or in other words:

log2 q ≥ 7 + log2 σx · (L− 1) + log2m · L/2 + (L− 1) + 10. (8)

Once we have a bound on q we choose the number k of co-prime factors so that the product
∏k
i=1 p

e
i

exceeds that bound. The parameter e depends on the hardware architecture: For performance
reasons we always use e = 3 when running on a platform with Intel AVX (so all the pei factors are
less than 23 bits long, see Section 6), and on platforms without Intel AVX we use e = 8 (so the
pei ’s are just under 60 bits long).

For our largest parameters (with L = 20 and σx ≈ 218.9) we need to set m ≈ 213.8 for security
breasons (see below). Hence we set log2 q ≥ 7 + 18.9 · 19 + 13.8 · 10 + 29 ≈ 535, and with e = 3 we
need k = 26 co-prime factors.

The large dimension m. To be able to generate trapdoors, we must also ensure that the
parameters m (number of columns in A) is large enough. Specifically, for a given lower bound m̄
on the number of columns in Ā (obtained by security considerations), and given the parameters k
(number of co-prime factors), e (number of times each factor repeats — either 3 or 8), and n (the
dimension of “plaintext matrices” to encode), we need to ensure that m ≥ nke+ m̄. (In all cases,
the bound that we get on m due to security considerations was larger than this functionality-based
bound.)
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5.2 Security

The trapdoor dimension m̄. Recall that trapdoor generation chooses a uniform Ā and small R,
then sets A = [Ā|G− ĀR] mod q (so that A×

(
R
I

)
= G (mod q)). We would like A to be random,

so we need to argue that G− ĀR is nearly uniform, even conditioned on Ā. This is typically done
by appealing to the leftover hash lemma, but doing so requires that each column of R has more
than n log2 q bits of min-entropy. In our implementation the entries of R have constant magnitude,
so to use the leftover hash lemma we need R to have at least Ω(n log2 q) rows (and of course Ā
must have the same number of columns).

Micciancio and Peikert observed in [18] that we can get by with lower-dimension R if we are
willing to have A pseudorandom (under LWE) rather than random. Splitting Ā into two parts

Ā = [Ā1|Ā2], and denoting the corresponding two parts of R by R =
(
R1
R2

)
(and assuming that Ā2

is square and invertible), we have that

AR = A1R1 +A2R2 = Ā2

(
(Ā−1

2 Ā1)R1 +R2

)︸ ︷︷ ︸
=A′R1+R2

,

which is pseudorandom under LWE. Using this argument requires that R be chosen from the LWE
error distribution. Our implementation therefore relies on the assumption that LWE is hard even
when the error distribution uses Gaussian parameter r = 4.

Moreover, this LWE-based assumption also requires that m̄ is large enough so we can use m̄−n
as the “security parameter” for LWE. (Recall that m̄ is the number of columns in Ā.) In our setting
of parameters, we in particular must set m̄ large enough so given Ā and A′ = ĀR it will be hard
to find R. Finding each column of R is an instance of the small-integer-solution (SIS) problem
in dimensions n-by-m̄ over Zq, so we must set m̄ large enough to get the level of security that
we want. Setting the dimension to get SIS-security is not entirely straightforward and typically
involves consulting some tables [1], but in the range that we consider (with λ ∈ [80, 256]) it behaves
very roughly as6

m̄ ≥ (
√
λ+ 2) ·

√
n log2 q. (9)

With n ≈ 100 (for NFAs with 100 states) and log2 q ≈ 535, this means that we must ensure
m̄ ≥ (

√
λ+ 2) ·

√
100 · 535 ≈ 2545.

The large dimension m. We use the formula from [12, Appendix C] to relate the lattice di-
mension m in the LWE instances to the desired security level.7 Namely to get security level λ we
need the dimension m to be at least m ≥ log2(q/fresh-noise-magnitude) · (λ+ 110)/7.2. The fresh
noise magnitude does not have a crucial impact on our parameters, so we can choose it rather large
(e.g., Gaussian of parameter ≈ 27). Thus we get the constraint

m ≥ (log2 q − 7)(λ+ 110)/7.2 . (10)

With log2 q ≈ 535 and λ = 80, this yields m ≥ (535− 7) · (80 + 110)/7.2 ≈ 213.8.

6This yields root Hermite factors of δ ≈ 1.006 for λ = 80, δ ≈ 1.0044 for λ = 128, and δ ≈ 1.0023 for λ = 256.
7That formula is somewhat out of vogue these days, and should really be replaced by more refined analyses such

as [3], but it still gives reasonable values.
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5.3 Putting it together

Given the desired program length L, the dimension of plaintext matrices n (which depends on the
number of states in the branching program), the parameter e (which depends on the hardware
platform), and the security parameter λ, our implementation tries to find the smallest number k of
co-prime factors that satisfies all the constraints above. Trying k = 1, 2, 3, . . ., we set q =

∏
i<k p

e
i ,

then set m using Eqn. (10), compute w = nek and m̄ = m − w, and verify that this value of m̄
satisfies Eqn. (9). Next we compute σx using Eqn. (7), and finally check if the value of q satisfies
the functionality constraint from Eqn. (8). Some example parameter values that we used in our
tests can be found in Table 1.

L : 5 8 10 12 14 17 20

σx : 218.0 218.3 218.4 218.6 218.7 218.8 218.9

k : 6 10 12 15 18 22 26

log2 q : 133 219 261 322 382 458 542

m̄ : 1462 2471 2950 3614 4253 4998 5955

m : 3352 5621 6730 8339 9923 11928 14145

Table 1: Parameters in our tests, security λ = 80, plaintext dimension n = 105

6 Efficient matrix arithmetic

The majority of the obfuscation time is spent doing matrix arithmetic, either modulo small integers
or over single-precision integers (or floating point numbers). We first discuss the modular matrix
arithmetic.

6.1 Matrix multiplication in Zt
As discussed in Section 4.3, we use a CRT representation of Zq, where q is the product of small
co-prime factors. The parameters are typically chosen so that each factor has a bit-length at most
23 (or at most 60), the reason for this will be explained shortly.

So assume that we are working modulo a small number t of bit-length at most 23 bits. The
two main operations of concern are large matrix multiplication and inversion over Zt, where the
dimensions of the matrices are measured in the thousands. For matrix inversion, we assume that
t is a prime power. Consider computing the product C = AB, where A and B are large matrices
over Zt.

Cache friendly memory access. To obtain cache friendly code, all the matrices are organized
into panels, which are matrices with many rows but only 32 columns. We compute the ith panel
of C by computing ABi, where Bi is ith panel of B. If multiple cores are available, we use them to
parallelize the computation, as the panels of C can be computed independently.

Next consider the computation of AP , where P is a single panel. We can write AP =
∑

j AjPj ,
where each Aj is a panel of A and each Pj is a 32× 32 square sub-matrix of P . We thus reduced
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the problem to that of computing
Q← Q+RS, (11)

where Q and R are panels, and S is a 32×32 square matrix. The matrix S is small and fits into the
first-level cache on most machines — that is why we chose a panel size of 32. While the panels Q
and R typically do not fit into the first-level cache, the data in each panel is laid out in contiguous
memory in row-major order. In the implementation of Eqn. (11), we process the panels a few rows
at a time, so the data in each panel gets processed sequentially, and we rely on hardware prefetch
(which is common on modern high-performance systems) to speed up the memory access. Indeed,
the computation of Eqn. (11) can be reduced to operations of the form

u← u+ vS, (12)

where u consists of a few rows of Q and v consists of a few rows of R. While we may need to fetch u
and v from a slower cache, the hardware prefetcher should help a bit, and, more significantly, these
slower fetches are paired with a CPU-intensive computation (involving S, which is in the first-level
cache), so the resulting code is fairly cache friendly.

Fast modular arithmetic. The basic arithmetic operation in any matrix multiplication algo-
rithm is the computation of the form x ← x + yz, where x and y are scalars. In our case, the
scalars lie in Zt. Unfortunately, modern CPUs do not provide very good direct hardware support
for arithmetic in Zt. However, by restricting t to 23 bits, we can use the underlying floating point
hardware that is commonly available and typically very fast. Indeed, if we have 23-bit numbers
w and xi and yi, for i = 1, . . . , k, then we can compute w +

∑
i xiyi exactly in floating point,

provided k is not too big: since standard (double precision) floating point can exactly represent
53-bit integers, we can take k up to 253−23·2 = 27. If k is larger than this, we can still use the
fast floating point hardware, interspersed with occasional “clean up” operations which convert the
accumulated floating point sum to an integer, reduce it mod t, and then convert it back to floating
point.

Using AVX instructions. By using this floating point implementation, we can also exploit the
fact that modern x86 CPUs come equipped with very fast SIMD instructions for quickly performing
several floating point operations concurrently. Our code is geared to Intel’s AVX (and AVX2)
instruction set, which allows us to process floating points operations 4 at a time (the next-generation
AVX512 instruction set will allow us to process 8 at a time).

The core of our matrix arithmetic code is a routine that computes Eqn. (12) in floating point
using Intel’s AVX (and AVX2) instructions. Suppose u and v are single rows. If the ith entry of
v is vi and the ith row of S is Si (for i = 1, . . . , 32), then the computation of Eqn. (12) can be
organized as u← u+

∑
i viSi.

To carry this out, we load the vector u from memory into eight AVX registers, into which
we will accumulate the result, and then store it back to memory. To accumulate the result, for
i = 1, . . . , 32, we do the following:

• Use the AVX “broadcast” instruction to initialize an AVX register r with 4 copies of vi.

• Load the values of Si four at a time into an AVX register, multiply by the register r, and add
the result into the corresponding accumulator register. (For AVX2, we use a fused multiply-
add instruction, which saves the use of an instruction and a temporary register.)
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That is the simplest implementation, but not necessarily the fastest. We experimented with a
number of different implementations. In our actual implementation, we process 2 or 3 rows of Q
and R at a time in Eqn. (11), so that u and v in Eqn. (12) consist of either 2 or 3 rows. (The
choice depends on whether we have a fused multiply-add instruction, as without it, we run out
of AVX registers more quickly.) With this strategy, values loaded from S into AVX registers can
participate in several arithmetic operations instead of just one — while loads from S are fast (it is
in first-level cache), they are still not as fast as direct register access.

6.2 Matrix inversion in Zt
Let A be a high-dimension square matrix over Zt. We perform an “in place” Gaussian elimination,
performing elementary row operations on A until we get the identity matrix, but we store the
entries of the inverse in A itself. Our algorithm works when t is a prime or a prime power.8 This
is easy to do: when selecting a pivot, instead of choosing any non-zero pivot, we always choose an
invertible pivot modulo t.

Just as for multiplication, we organize A into panels. In carrying out Gaussian elimination, we
start with the first panel, and we carry out the algorithm just on this panel, ignoring all the rest.
After this, we perform a series of panel/square operations, as in Eqn. (11) to perform the same
elementary row operations on the remaining panels of A that were performed on the first panel (if
any rows in the first panel were swapped, we first perform those same swaps of the remaining panels
before performing the panel/square operation). If multiple cores are available, these panel/square
operations can be done in parallel. After we finish with the first panel, we move on to the second
panel, and so on, until we are done with the whole matrix. We use the same floating point strategy
for arithmetic in Zt as we did above, exploiting AVX instructions, if available.

6.3 Integration into NTL

Our new matrix arithemtic has been integrated into NTL (see http://www.shoup.net/ntl/),
which has an interface that supports matrix arithmetic modulo small numbers p that “fit” into a
machine word. On 64-bit machines, the bit length of the modulus p may go up to 60 (or 62, with
a special compilation flag).

For p up to 23 bits, the strategy outlined above is used. For larger p, the code reverts to using
scalar integer instructions (rather than the AVX floating-point instructions), but still uses the same
“cache friendly” panel/square memory organization, and utilizing multiple cores, if available.

Besides matrix multiplication and inverse, the same strategies are used for general Gaussian
elimination, and image and kernel calculations.

6.4 Experimental results

We compared NTL’s new matrix multiplication and inverse code to the current versions of FFLAS,
(see http://linbox-team.github.io/fflas-ffpack/) and FLINT (see http://www.flintlib.

org/). The upshot is NTL’s multiplication code is just a bit slower than FFLAS’s, while NTL’s
inversion is just a bit faster. Both NTL and FFLAS are several times faster than FLINT. We also
mention here that for matrix inversion, both FFLAS and FLINT require that the modulus is be

8For a composite t, it can fail even if A is invertible modulo t.
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a prime number. However, in our application, the modulus is a prime power. See Section A.1 for
more details.

6.5 Multi-dimensional Gaussian sampling

In Section 4.4, we sketched our basic strategy for sampling from Gaussian distributions. As dis-
cussed in that section, to sample from a multi-dimensional Gaussian distribution, we need to
compute the conditional mean and covariance as in Eqn. (3). It turns out that this computation is
very similar in structure to Gaussian elimination (over floating point numbers). As such, we were
able to easily re-purpose our AVX-enabled floating-point code for Gaussian elimination, discussed
above, to significantly improve the performance of this computation.

With these improvements, our experiments showed a roughly 10× speedup over a straightfor-
ward implementation of the mean and covariance computation.

7 Implementation Details

7.1 Initialization, Obfuscation, and Evaluation

Our program includes three main stages: initialization, which generates the public and secret keys
for the encoding scheme, obfuscation, which uses the secret key to obfuscate a given branching
program, and evaluation, which computes the obfuscated program value on a given input (using
the public key). After each stage we write the results to disk, then read them back as needed in
the next stages.

Initialization. This is where we choose the public and secret keys. As described in Section 3,
this includes choosing random node matrices Ai with their trapdoors Ri, and also the “inner
transformation matrix” Pi ∈ Zn×n and “outer transformation matrix” Ti ∈ Zm×mq .

Once Ri and Ai are chosen, we compute the perturbation covariance matrix Σp = σxI −
σz
(
R
I

)
(R|I) as per Section 4.1 (with σx and σz as derived in Section 5), then compute the con-

ditional covariance matrices as per Eqn. (3) in Section 4.4 (and we optimize it as in Section 6.5).
We also compute the modular inverses of the transformation matrices, namely P−1 and T−1. (See
Section 6.2.)

Since keeping all these matrices in memory consumes a lot of RAM (especially T and T−1),
our initialization phase processes one node at a time, writing all the matrices to disk as soon as it
computes them and before moving to the next node.

Obfuscation. Given a branching program to obfuscate, we first randomize it as described in
Section 2, where for each matrix in the program we generate a pair of higher-dimension “real” and
“dummy” matrices. We then use the trapdoors and transformation matrices that we computed to
encode the resulting pairs of matrices. The most expensive parts of this stage are the trapdoor
sampling and the multiplication by the transformation matrices T and T−1, all of which are part
of the GGH15 encoding procedure.

Here too, we need to conserve memory, and so we only keep in RAM one or two GGH15 nodes
at a time. As the real and dummy matrices in each pair are encoded relative to different edges,
we cannot encode them together. Hence, we first generate all the |Σ| real/dummy pairs for the
current input symbol and keep them all in memory. (These matrices only take little memory.) We
then read from disk the edge on the “real” path and encode the “real” matrices from all the pairs.
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Finally, we read the edge on the “dummy” path and encode the “dummy”” matrices from all the
pairs.

Evaluation. Once we have all the encoded matrices written on disk and we are given the input
string, we simply read the corresponding matrices from disk, multiply them, subtract the “dummy”
from the “real” product and check for smallness. One important consideration here is the order in
which to multiply the matrices. Recall from Section 3.2 that encodings relative to the sink-bound
edges consist of a single vector. So, it is much better to begin with these matrices and then multiply
backwards. In this way, we only need to do matrix-vector products as we accumulate the multipliers,
rather than full matrix-matrix products. This optimization is one reason why evaluation is many
orders of magnitude faster than obfuscation. (Another reason is that we only need to process two
matrices per step when evaluating, while during obfuscation we had to generate 2|Σ| matrices per
step.)

7.2 Parallelization Strategies

We implemented and tested various multi-threading strategies, trying to parallelize the computation
at different levels. Below we describe these different strategies, focusing mostly on the initialization
and obfuscation stages (which are much more expensive). We briefly touch on parallelism during
the evaluation stage at the end.

7.2.1 Parallelism Across Different Nodes

The easiest strategy to implement is a high-level strategy in which all of the nodes of the graph are
processed in parallel. This is trivial to implement, as the computation at each node is independent
of all other nodes. For small parameters, this strategy works quite well. Unfortunately, it does
not scale very well, as it requires the data for many nodes to be in memory at the same time. We
found that this strategy quickly consumed all available RAM, and ultimately had to be abandoned.
Instead, we opted to process the nodes in the graph sequentially, and parallelized computations
inside each node, as described below.

7.2.2 Trapdoor Sampling

As discussed in Section 3, when encoding a matrix M w.r.t. edge i→ j, we choose a low-norm E
and compute B = [MAj + E]q, then use trapdoor sampling to find a small norm matrix C such
that AiC = B (mod q). This trapdoor sampling routine samples each column of C separately,
by invoking the trapdoor sampling procedure from Section 4.1 to solve AiCk = Bk (mod q) (with
Bk the k’th column of B and Ck the corresponding column of C). In our implementation we
therefore parallelize across the different columns, sampling together as many of these columns as
we have threads. As discussed in Section 4.5, we used a stash to speed up the computation, and
we implemented the stash in a thread-safe manner so that it could be shared between the threads.

We note that it is also possible to parallelize trapdoor sampling at a lower level: specifically
the procedure for solving A~c = ~b involves solving G~z = ~u with G the “gadget matrix”. Due to the
structure of G, we can sample the entries of ~z in batches of size ek, where all the batches can be
processed independently. Although we did not test it, we expect this strategy to perform worse
than parallelism across the different columns.

/iffalse
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7.2.3 Gaussian Sampling

As discussed in Section 4.4, during initialization we compute the conditional mean and covariance
matrices as in Eqn. (3). This computation essentially has the same structure as standard Gaussian
elimination, and we implemented a parallel version of it as described in Section 6.5. /fi

7.2.4 CRT-level Parallelism
A significant amount of time is spent performing matrix multiplication and inversion operations
over Zq. Since q is chosen to be the product of small co-prime factors and the matrices represented
using Chinese remaindering, these matrix operations can be performed independently modulo each
small factor qi.

7.2.5 Lower-level Parallelism

We also implemented multi-threaded versions of matrix multiplication and inversion modulo each
of the small factors in our CRT base. However, we found empirically that it was more effective not
to parallelize at this lowest level, but rather at the higher CRT level.

7.2.6 Disk I/O Pipelining

Each of the three stages (initialize, obfuscate, evaluate) reads its inputs from disk and writes its
output to disk. The amount of data transferred between main memory and disk is huge, and we
found that a significant amount of time was just spent waiting for disk I/O operations to complete.
The problem was only made worse as the multi-threading strategy reduced the computation time
relative to the I/O time. To mitigate this problem, we used a multi-threaded “pipelining” strategy.
One thread was dedicated to reading from disk, one thread was dedicated to writing to disk, and
the remaining threads are used for the actual computations. In this way, while the next block of
data to be processed is being read in, and the previous block of data is being written out, the
current block of data is being processed.

7.2.7 Parallelizing the Evaluation Stage

Recall that in the evaluation stage, we have to multiply encodings along a “main path” and along
a “dummy path”. In our implementation, each path is processed on a different thread. Specifically,
the system sets one thread for processing the dummy branch and one for the main branch (regardless
of the total number of threads set during run-time). Then, when processing each branch, the
programs sets the number of threads to half of the overall number of threads set during run-time.
However, since only each node multiplication is parallelized, and the run-time is relatively negligible
for this function, we do not see a difference in the run-time of the evaluation for different number
of threads (see Figure 9).

7.3 Results

Most of our testing was done on a machine with Intel Xeon CPU, E5-2698 v3 @2.30GHz (which
is a Haswell processor), featuring 32 cores and 250GB of main memory. The compiler was GCC
version 4.8.5, and we used NTL version 10.3.0 and GMP version 6.0 (see http://gmplib.org).

Because of memory limitations, the largest value of L we could test on that machine was L = 17
(though initialization was also possible for L = 18). These tests are described in the top part of
Table 2. For even larger parameters, we run a few tests on a machine with 4×16-core Xeon CPUs
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L m Initialization Obfuscation Evaluation

Intel Xeon CPU,E5-2698 v3:

5 3352 66.61 249.80 5.81

6 3932 135.33 503.01 13.03

8 5621 603.06 1865.67 56.61

10 6730 1382.59 4084.14 125.39

12 8339 3207.72 8947.79 300.32

14 9923 7748.91 18469.30 621.48

16 10925 11475.60 38926.50 949.41

17 11928 16953.30 44027.80 1352.48

18 12403 20700.00 out-of-RAM

4 x 16-core Xeon CPUs:

17 11928 16523.7 84542.3 646.46

19 13564 36272.9 182001.4 1139.36

20 14145 46996.8 243525.6 1514.26

Table 2: Running time (seconds) as a function of the branching-program length, with security
λ = 80, 100 states, and a binary alphabet (L=BPlength, m=large dimension)

and 2TB of DRAM. All these tests were run on binary alphabets and security parameter λ = 80.
The results of these tests appear in the lower part of Table 2.

8 Conclusions

In this work we implemented GGH15-based branching-program obfuscation, showing that on one
hand it is feasible to use it to obfuscate non-trivial functions, and on the other hand that the class
of functions that it can handle is still extremely limited. In the course of this work we developed
many tools and optimizations, that we expect will be useful also elsewhere.
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A More Performance Details

A.1 Experimental results for matrix arithmetic

Here, we report in some detail on experimental results of the matrix arithmetix software described
in Section 6. All of our testing was done on the same Haswell platform described in Section 7.3.

We compare our implementation in NTL of multiplication and inversion to two other imple-
mentations in Table 3. These timing results are for arithmetic in Zt, where t is a 20-bit prime.

• FFLAS refers to the current version of FFLAS (version 2.2.2, available at http://

linbox-team.github.io/fflas-ffpack/). FFLAS stands for “Finite Field Linear Alge-
bra Subprograms”, and provides an interface analogous to the well-known BLAS interface
for linear algebra over floating point numbers. Roughly speaking, FFLAS works by reducing
all linear algebraic operations over Zt to matrix multiplication over floating point numbers,
and then uses a BLAS implementation for the latter. In our tests, we use the BLAS im-
plementation OpenBLAS (see http://www.openblas.net/), which is recommended by the
FFLAS authors. OpenBLAS itself is highly optimized for many different architectures. We
configured and built OpenBLAS so that it was optimized for our Haswell architecture.

For small t, this floating point strategy has some similarities to NTL’s strategy, although
NTL implements everything directly (in particular, NTL does not use BLAS and is not so
well optimized for anything other than AVX-enabled x86 CPUs).
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n = 4096 n = 8192
threads 1 4 16 1 4 16
NTL 3.7 1.28 0.52 26.4 9.49 3.12
FFLAS 3.1 0.89 0.52 21.9 6.62 3.65
FLINT 15.6 111.8

(a) Multiplication

n = 4096 n = 8192
threads 1 4 16 1 4 16
NTL 4.8 1.78 1.27 37.9 11.8 7.6
FFLAS 6.7 43.2
FLINT 32.6 219.9

(b) Inversion

Table 3: Time (in seconds) for multiplication and inversion of n×n matrices modulo a 20-bit prime

For larger t, FFLAS uses a Chinese remaindering strategy, while NTL does not (for larger,
but still word-sized t, NTL uses scalar integer arithmetic, as discussed above).

• FLINT refers to the current version of FLINT (version 2.5.2, available at http://www.

flintlib.org/). FLINT stands for “Fast Library for Number Theory”. FLINT only uses
scalar integer arithmetic — it does not use any floating point. For matrix multiplication,
it uses Strassen’s recursive algorithm. This gives slightly better asymptotic complexity, and
more importantly it yields much more cache-friendly code. Matrix inversion is implemented
by a reduction to matrix multiplication.

We were able to compare both single-threaded and multi-threaded performance of NTL’s and
FFLAS’s multiplication routines. FLINT’s multiplication does not exploit multiple threads. Nei-
ther FFLAS’s nor FLINT’s inversion routine exploit multiple threads.

We can see that NTL’s multiplication is a bit slower than FFLAS’s, while NTL’s inversion is a
bit faster. Both NTL and FFLAS are several times faster than FLINT.

We also mention here that for matrix inversion, both FFLAS and FLINT require that the mod-
ulus t be a prime number. However, in our application, the modulus is a prime power. NTL’s
inverse routine directly supports prime-power moduli, with no extra computational cost. In con-
trast, using FFLAS or FLINT directly would require some type of Hensel lifting to go from prime
to prime-power, which would significantly increase the cost of the inverse operation.

Table 4 gives some timing data for matrix multiplication and inversion over Zt for different
sized moduli t. Data for 20-bit and 60-bit t is presented. We compared NTL and FLINT, along
with an old version of NTL. The old version of NTL uses only scalar integer operations, and is
very naive and very cache-unfriendly; also, its performance is not sensitive to the size of t, so we
only collected data for 60-bit t. For 20-bit t, the current version of NTL is about 35× faster than
the old version for matrix multiplication, and about 70× faster for inversion. Looking at NTL vs
FLINT, we see that for 60-bit t, the times are pretty close; as we already saw, for 20-bit t, NTL’s
floating point strategy gives it a huge advantage over FLINT.

A.2 Asymptotics of Obfuscation

For a given branching-program length L and security parameter λ, our choice of parameters from
before ensures that ` = log(q) and the lattice dimensionm satisfy ` ≥ Ω(L logm+λ) andm ≥ Ω(`λ).
It is easy to see that these constraints imply ` ≥ Ω(λ + L log(λL)) and m ≥ Ω(λ2 + λL log(λL)).
This means that each encoding matrix C ∈ Zm×mq takes space `m2 = Ω(λ5 + λ2L3 log3(λL)) to

write down, and multiplying or inverting such matrices takes time `m3 = Ω(λ7 + λ3L4 log4(λL)).
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n = 4096 n = 8192

# bits 20 60 20 60

NTL 3.7 27.7 26.4 194.5
FLINT 15.6 30.6 111.8 214.8
NTL (old) 125.2 1000.9

(a) Multiplication

n = 4096 n = 8192

# bits 20 60 20 60

NTL 4.8 45.0 37.9 354.5
FLINT 32.6 57.7 219.9 402.5
NTL (old) 333.2 2776.3

(b) Inversion

Table 4: Time (in seconds) for multiplication and inversion of n×n matrices modulo 20- and 60-bit
primes

For a length-L branching program over an alphabet of size σ, the obfuscated program consists
of 2σ(L− 1) matrices, so:

• the total space that it consumes is Ω(σλ5L+ σλ2L4 log3(λL))), and

• the time to compute it is Ω(σλ7L+ σλ3L5 log4(λL)).

In words, the obfuscation running time is linear in σ, sextic in λ, and quasi-quintic in L, and the
hard-disk size needed is linear in σ, quintic in the security parameter, and quasi-quartic in L.

We note, however, that our implementation is parallelized across the different CRT components,
whose number is proportional to ` = log q, so we expect one factor of ` from the running-time to
be eaten up by this parallelism. We thus expect the wall-clock time of the obfuscation to be “only”
quasi-quartic in the program length Ω̃(L4), and sextic in the security parameter Ω(λ6).

For the RAM requirements, our implementation keeps only two matrices in RAM at the same
time so it uses Ω(λ5 + λ2L3 log3(λL)) memory, but this could be reduced further (by only keeping
a small number of CRT components in memory, or only keeping a small number of slices of each
matrix in memory).

A.3 Concrete Results

To save time, we did almost all of our experiments with binary alphabet |Σ| = 2, but for our
parameter L = 15 we also ran it where the input is expressed in nibbles |Σ| = 16, to verify that
it works also for that setting. As expected, initialization and evaluation were not affected by the
alphabet size, and RAM usage during obfuscation was only marginally higher, while running-time
and disk usage in obfuscation were exactly 8 times larger for |Σ| = 16 than for |Σ| = 2. The timing
results for various settings can be found in Table 2, and memory and disk-space usage are described
in Figure 7, Figure 8 and Figure 9.

We also ran tests to examine the effectiveness of our parallelization strategies, comparing the
running times for the same parameters (L = 8, binary alphabet, and 12 CRT factors) across
different number of threads. As expected given our choice of parallelism across CRT component,
increasing the number of threads upto the number of CRT factors reduces the running time, but
adding more threads after that has no effect. The detailed results are described in Figure 6. 9

9Our code always allocates 1-2 threads for pipelined I/O, and only increases the number of worker threads after
that, hence the decrease in running-time only begins at 2-3 threads. Also the running time plateaus at 15 threads,
even though there are only 12 CRT factors.
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# of threads Initialization Obfuscation Evaluation

1 3840.2 15809.2 90.4

2 3833.6 15837.1 91.2

3 2032.0 15844.3 89.5

4 1451.8 8605.9 87.2

6 1120.0 4917.8 89.7

12 803.0 3298.5 88.7

16 560.1 2375.8 91.8

32 568.9 2168.1 98.5

Figure 6: Running time (seconds) as a function of the number of threads.
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L m RAM
(Obfuscation)

5 3352 5.5

6 3932 8.7

8 5621 25

10 6730 43

12 8339 81

14 9923 137

16 10925 184

17 11928 241

20 14145 401

Figure 7: RAM usage (Gigabytes) as a function of the BP-length. (L = input size, m = large
dimension)
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L m Initialization (GB) Obfuscation (GB)

5 3352 3.7 2.3

6 3932 7.3 5.0

8 5621 28 13

10 6730 61 50

12 8339 141 120

14 9923 280 244

16 10925 432 383

17 11928 602 538

20 14145 1236 1124

Figure 8: Hard disk usage as a function of the input length. (L = input size, m = large dimension)

# of threads Initialization (GB) Obfuscation (GB) Evaluation (GB)

1 10 33 8.2

2 10 33 8.2

3 12 33 8.2

4 14 33 8.2

6 18 33 8.2

12 28 39 8.3

16 29 41 8.3

32 29 45 7.9

Figure 9: Memory usage for different number of threads, length L = 8.
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