
1

Threshold Implementations of GIFT: A Trade-off
Analysis
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Abstract

Threshold Implementation (TI) is one of the most widely used countermeasure for side channel attacks. Over the years
several TI techniques have been proposed for randomizing cipher execution using different variations of secret-sharing and
implementation techniques. For instance, Direct Sharing (4-shares) is the most straightforward implementation of the threshold
countermeasure. But, its usage is limited due to its high area requirements. On the other hand, sharing using decomposition
(3-shares) countermeasure for cubic non-linear functions significantly reduces area and complexity in comparison to 4-shares.

Nowadays, security of ciphers using a side channel countermeasure is of utmost importance. This is due to the wide range of
security critical applications from smart cards, battery operated IoT devices, to accelerated crypto-processors. Such applications
have different requirements (higher speed, energy efficiency, low latency, small area etc.) and hence need different implementation
techniques. Although, many TI strategies and implementation techniques are known for different ciphers, there is no single study
comparing these on a single cipher. Such a study would allow a fair comparison of the various methodologies. In this work, we
present an in-depth analysis of the various ways in which TI can be implemented for a lightweight cipher. We chose GIFT for
our analysis as it is currently one of the most energy-efficient lightweight ciphers. The experimental results show that different
implementation techniques have distinct applications. For example, the 4-shares technique is good for applications demanding
high throughput whereas 3-shares is suitable for constrained environments with less area and moderate throughput requirements.
The techniques presented in the paper are also applicable to other blockciphers. For security evaluation, we performed leakage
assessment on 3-shares (as it has good area versus speed trade-off) and combined 3-shares (as it uses a new implementation
strategy). Experiments using 10 million traces show that the designs are protected against first-order attacks.
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I. INTRODUCTION

Implementing secure embedded systems has been a cat-and-mouse game since last few decades due to the constant
development of side-channel attack techniques followed by new countermeasures. The security of even the smallest of embedded
devices is of a major concern; as many of these devices have become an important part of our daily lives. The seminal work
by Kocher et al. [1], [2] in the late 90’s showed that unprotected cryptographic algorithms are vulnerable against side-channel
attacks.

Over the years, many countermeasure techniques have been proposed to prevent such attacks, for instance introducing noise
in the signal [3], to randomize intermediate values during computations i.e. masking [3], to balance the power consumption in
circuit’s design [4], etc. Despite these countermeasures, the devices are still vulnerable to some form of the side-channel attacks
or the other; for example, masking still leaks some form of information in the presence of glitches [5], [6]. In 2006, Nikova et
al. proposed a new countermeasure known as Threshold Implementation (TI) [7]. TI is based on secret-sharing and is secure
even in the presence of glitches. TI soon became one of the most widely used countermeasures. As a result, there has been
a lot of work in the past years towards developing new methodologies for secret-sharing and efficient implementation of TI.
For example, in [8], the authors showed how to apply TI on the PRESENT cipher. Later, in 2013 Kutzner et al. [9] presented
the one S-box for all technique to efficiently implement 3-shares. Furthermore, [10] describes how to speed-up search for the
decomposed S-box and also derive the results for TI on all 3 × 3 and 4 × 4 S-boxes. Efficient TI implementation of AES is
presented in [11]. However, the design exploration using all these TI methodologies and implementation techniques have not
yet been performed for a single cipher on a common platform. In this work, we focus on performing such a detailed design
analysis of TI using GIFT [12], which was introduced by Banik et. al. in CHES 2017.

Our contributions. First, we present a Correlation Power Analysis (CPA) [13] attack for an unprotected FPGA implementation
of the GIFT cipher in § IV-A. Since a single round of GIFT uses 64-bit keys at a time and each S-box operation uses only
2-bits of the key, we implement the attack using 4 S-boxes at a time. In our experiments using Xilinx Kintex-7 FPGA, we are
able to recover the secret key in less than 10,000 traces. Second, we implement multiple efficient TI countermeasures for GIFT.
The implementations are protected against first-order power attacks. We support this claim by performing Test Vector Leakage
Assessment methodology (TVLA) [14] using 10 Million real power traces on two of the protected implementations. These
experiments are described in § IV-B. Third, we implemented nine different profiles using known TI techniques and provide
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a trade-off analysis in terms of area, frequency, latency, power and energy. In particular, we focus on three TI techniques –
3-shares, combined 3-shares and 4-shares using various options. This analysis is presented in § III-B.

There are two common types of implementations for iterated block ciphers, namely the serialized and the round-based.
The serialized implementations typically require significantly smaller area and have much reduced throughput; whereas the
round-based implementations are much larger and have very high throughputs. In this work, we focused on high throughput
implementations, so, we selected only the round-based implementations for our analysis.

The Boolean equations of any non-linear function (in our case S-box) are typically represented using Algebraic Normal Form
(ANF). The implementation can directly be done using ANF, or it can be further minimized using a Boolean minimization
tool like Espresso [15], [16], BOOM [17], ABC [18] etc. In our analysis, we found that logic minimization using Espresso
and ABC leads to similar results in terms of overall area for GIFT. Whereas, a major difference was found between an
implementation using ANF compared to the Boolean minimization tools. As a result, we present detailed analysis contrasting
these two implementation methods. Further, many implementations skip the key-update masking, but it is possible that the
hamming weight of certain parts of the key is leaked even for very simple key-schedules. Therefore, we considered the
key-update masking in our analysis.

We implemented all the TI schemes and analyzed the synthesis results using the same library (TSMC 65nm Low Power).
As discussed in § III-C, the 3-shares technique is 44.9% smaller but requires twice the number of clock cycles compared
to the 4-shares technique. It is noteworthy to observe that both the designs have very similar overall energy requirements.
Further, the combined 3-shares technique consumes the least amount of power, but the design requires a large number of
clock cycles leading to a significantly low energy efficiency.

II. PRELIMINARIES

A. GIFT Specifications

GIFT is an SPN (substitution-permutation network) based cipher. Its design is strongly influenced by the cipher PRESENT [19].
It has two versions GIFT-64-128: 28 rounds with a block size of 64-bits and GIFT-128-128: 40 rounds with 128-bit
blocks. Both the versions have 128-bit keys. For this work, we focus only on GIFT-128-128.

Initialization. The cipher state S is first initialized from the 128-bit plaintext represented as 32 nibbles of 4-bit represented
as w31, . . . w1, w0. The 128-bit key is divided into 16-bit words k7, k6, . . . , k0 and is used to initialize the key register K.

The Round Function. Each round of the cipher comprises of a Substitution Layer (S-layer) followed by a Permutation
Layer (P-layer) and a XOR with the round-key and predefined constants (AddRoundKey).

TABLE I
GIFT S-BOX

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x)1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

S-layer (S): Apply the same S-box to each of the 4-bit nibbles of the state S. The truth-table for the S-box is shown in
Table I.

P-layer (P): This operation permutes the bits of the cipher state S from position i to P(i). The permutation table is
available in the design document [12] and we do not reproduce it here.

AddRoundKey: A 64-bit round key RK and a 7-bit round constant Rcon is XORed to a part of the cipher state S in this
operation. The round key is extracted from the 128-bit key register K as RK = U ||V where U ← k5||k4 and V ← k1||k0.
The round key U ||V can be represented as = u31, . . . , u1, u0||v31, . . . , v1, v0. The two halves of RK, namely, U and V are
XORed to the cipher state as follows: b4i+2 ← b4i+2 ⊕ ui and b4i+1 ← b4i+1 ⊕ vi ∀i ∈ {0, . . . , 31}. The round constant
(c5c4c3c2c1c0) and a single-bit ‘1’ is XORed to the cipher state as defined below:
bn−1 ← bn−1 ⊕ 1, b23 ← b23 ⊕ c5, b19 ← b19 ⊕ c4, b15 ← b15 ⊕ c3, b11 ← b11 ⊕ c2, b7 ← b7 ⊕ c1 and b3 ← b3 ⊕ c0, where
n− 1, 23, 19, 15, 11, 7 and 3 denote bit positions in the cipher state respectively.

Key Expansion and Constants Generation: After AddRoundKey, the key register is updated as follows: k7||k6|| . . . ||k1||k0 ←
k1 ≫ 2||k0 ≫ 12|| . . . ||k3||k2. The 6-bit round constant is initialized to zero and is updated before each round as
(c5, c4, c3, c2, c1, c0)← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1).

GIFT Encryption. As shown in Fig. 1, a single block is processed by the application of a series of round functions. At each
round, S-layer, P-layer and AddRoundKey operations are performed on the previous cipher state. After 40 such rounds, the
current state is provided as the ciphertext.
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Fig. 1. GIFT Encryption

B. Threshold Implementation: Requirements

As mentioned in § I, (TI) is based on secret-sharing and multi-party computations. Over the years, TI has received
widespread adoption as the technique works even in the presence of glitches whereas certain other countermeasure techniques
fail [8], [20], [11], [10], [9]. Initially, TI was proposed to prevent first-order attacks only. But recently, TI has been successfully
applied to prevent Higher Order DPA attacks as well [21]. TI needs the following three properties to be satisfied:

1) Correctness: The cumulative output of all the shares should be same as the output of the function without sharing.
2) Non-completeness: Every function should be independent of at-least d shares in order to prevent the dth order attack.

This is the most important property of TI. It is due to this property that TI works even with glitches.
3) Uniformity: At every point of execution, the shares should be uniformly distributed. This property ensures that the mean

leakages when the cipher is executing are independent of the state.

III. IMPLEMENTATIONS AND DESIGN ARCHITECTURE

A. Different variants of TI

In this section, we discuss the three known variants for Threshold Implementations in detail:
1) Sharing using Decomposition of S-box with cubic algebraic degree (3-shares)
2) Sharing using Decomposition with one S-box for all (combined 3-shares)
3) Direct Sharing (4-shares)

Sharing using Decomposition (3-shares). In 2011, Poschmann et. al. [8] proposed a technique to decompose a cubic S-box
function into two quadratic functions G and F represented as S(X) = F (G(X)) where S,G, F : GF (2)4 → GF (2)4. Fig.
2 shows this method graphically. As the GIFT S-box is cubic, we use this technique for decomposition. We also use the
LIGHTER tool [22] for estimating GE 1 (gate equivalents) and use the result as a metric to select the final decomposition. A
good GE estimate allows for an efficiently implementable hardware circuit.

Consider the input and output of G(X) as 4-bit vectors X = (x, y, z, w) and G(X) = (g3(X), g2(X), g1(X), g0(X)). Each
gi, being a quadratic Boolean function, can be represented in ANF as shown below:

gi(x, y, z, w) = ai,0 + ai,1x+ ai,2y + ai,3z + ai,4w + ai,13xz

+ ai,14xw + ai,23yz + ai,24yw + ai,34zw

where, ai,j are the binary coefficients of the Boolean function. Similar Boolean functions and equations can be written for
F (X).
As discussed in [8], the following two facts were used to reduce the overall search space for the two decomposed functions
G and F :

1) Rewriting S(X) = F (G(X)) as S(G−1(X)) = F (X), one needs to search only for all possible quadratic functions for
G(X). This is then used to compute the other quadratic function F (X) as S(G−1(X)).

2) Assuming G(0) = 0, G′(x) = G(X)+G(0) and F ′(X) = F (X +G(0)), the decomposed equation S(X) = F (G(X))
can be re-written as S(X) = F ′(G′(X)). This step helps in considering only the variable coefficients in the ANF, thus
reducing the overall search space for the decomposition.

1GE: Total cell area divided by the cell area of a 2-input NAND gate.
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Following steps were implemented in order to compute the desired optimized quadratic Boolean functions for G and F :
1) For all possible combinations of the input to the functions gi, fi where i ∈ {0, 1, 2, 3}, compute its corresponding output

from the ANF equations and check if its vectorial Boolean function [23] is balanced or not. If the combination is
balanced, then add it to a set of possible coefficients for the ANF (say P ), otherwise discard it.

2) For each balanced coefficient in the set P , compute the corresponding G(X) iteratively.
3) Check whether this computed G(X) is a permutation or not. If yes, compute F (X) using S(G−1(X)), otherwise discard

this G(X).
4) Check whether the computed F (X) is a quadratic function or not. If yes, add both the G(X) and F (X) functions to a

set of possible decompositions, otherwise discard both of them. We obtained 80641 possible decompositions after this
step.

5) Now considering the 15 possibilities of the constant term in the ANF, we obtained 1290241 total possible decompositions
for GIFT S-box after filtering.

6) Keep only the G(X) and F (X) combinations which are permutations, discard the rest.
7) In order to choose the decomposition with minimum area, we applied the following two metrics:

• For each of the possible decomposition, calculate the total ANF weight of G(X) and F (X) using the formula
provided in [8]. Sort this set based on the total weight in ascending order.

• After the first metric, use the LIGHTER tool to generate a good estimate in GE.
Finally, we choose the decomposition with a trade-off between minimum total ANF weight and minimum total GE.

The finally chosen G(X) and F (X) satisfying all the three TI requirements - Correctness, Non-Completeness and Uniformity
are shown in Table II. The chosen G(X) belongs to Q293 quadratic class and F (X) belongs to Q294 class [24]. The ANFs

TABLE II
GIFT S-BOX DECOMPOSITION

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
G(x)4 d f 7 1 a 2 8 5 c e 6 0 b 3 9
F(x)5 6 3 8 1 2 7 c 9 e f 0 d a b 4

for both the quadratic functions are as below:

G(d, c, b, a) = (g3, g2, g1, g0)

g0 = a+ b+ ba+ c+ d

g1 = b+ ca

g2 = 1 + c

g3 = a+ b+ cb

F (d, c, b, a) = (f3, f2, f1, f0)

f0 = 1 + a

f1 = a+ b

f2 = 1 + b+ c+ d+ da

f3 = ba+ d

The corresponding ANFs for eight output shares are provided in Appendix A.
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Sharing using Decomposition (combined 3-shares). In [9], Kutzner et al. proposed a new methodology to implement
the threshold countermeasure presented in [8]. The technique is based on optimizing the area requirements for the protected
implementation of a non-linear operation using multiplexers. Referring to ANF equations for the chosen G(X) and F (X) in
Appendix A, one can clearly see that G1, G2 and G3 comprise of similar polynomials and only the indices are different.
Similarly, F1, F2 and F3 share a similar template. The constant terms are handled in the respective G(X) and F (X) function.
So, instead of using six different (8×4) Boolean functions, we use only two functions – one for G(X) and another for F (X).

As shown in Fig. 3, two multiplexers are used to choose the input for the G(X) Boolean function depending on which part
of the secret it is operating on. After that, a de-multiplexer is used to store the result of the G(X) operation to the requisite
register. F (X) is implemented in a similar manner and the result is stored in the respective output registers OS1, OS2 and
OS3. One must note that the intermediate registers g1, g2, f1, and f2 are required to avoid attacks using glitches.
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Fig. 3. Sharing using Decomposition (combined 3-shares)

Direct Sharing (4-shares). For TI implementation using 4-shares, one uses the minimum required number of shares to
share the secret variables. The minimum number of shares s required to protect a Boolean function from first-order DPA attack
is given by s ≥ 1+ d, where d is the algebraic degree of the function [25]. For example, the function F (X,Y, Z) = XY +Z
has an algebraic degree of two. Hence, it requires at least three shares. The ANF equations for the function F are as stated
below:

F1 = Z2 +X2Y2 +X2Y3 +X3Y2

F2 = Z3 +X1Y3 +X3Y1 +X3Y3

F3 = Z1 +X1Y1 +X1Y2 +X2Y1

In the case of GIFT, the only non-linear operation is its S-box. The S-box is a 4 × 4 Boolean function (represented as
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S(d, c, b, a) → (w, z, y, x)) and has a cubic degree. Hence, we need a minimum of four shares. Fig. 4 shows the approach
graphically. The truth table for GIFT S-box is as shown in Table I and its corresponding ANFs are given as:

S(d, c, b, a) = (s3, s2, s1, s0)

s0 = 1 + a+ b+ ba+ c+ d

s1 = a+ ba+ c+ ca+ d

s2 = b+ c+ da+ db+ dcb

s3 = a+ db+ dca

The output shares (OS1, OS2, OS3, OS4) can be calculated from the above equations. The ANF for the four shares are
listed in Appendix B.
An advantage of this technique is that there is no need for additional registers in the S-layer. As this approach does not attempt
to reduce the degree of the Boolean function before implementation, it results in implementations with significantly large area
compared to other techniques.

B. Implementation Profiles and Their Architecture

Next we present nine different profiles for threshold implementation of GIFT and discuss about various trade-offs. The
profiles are a combination of an approach (described in section III-A) with an option. The different options which can be
combined with an approach are described as below:

Option 1: Sharing of the data-path
Option 2: Sharing of the key-register
Option 3: S-box implemented using ANF
Option 4: S-box equations optimized using ABC

Since all the profiles are protected, the data-path is shared for all. As shown in Fig. 5, Profile 1 uses the 3-shares approach
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Fig. 5. Different Profiles for Threshold countermeasure

with data sharing and the S-box implemented using ANF representation. Profile 2 is same as Profile 1 with an extra shared
key register. In Profile 3, ABC is used to optimize the S-box. It uses the 3-shares approach with data sharing. Compared
to Profile 3, Profile 4 adds sharing of the key register. Profile 6. . . 9 use same set of options as in Profile 1. . . 2, but uses the
4-shares approach. Profile 5 uses the combined 3-shares approach using multiplexers to switch between the input and output
of G(X) and F (X). The data-path is shared in Profile 5 with ANF representation being used for the S-box implementation.
Fig. 6 presents an overall architecture for all the variants of threshold countermeasures we implemented. The solid lines depict
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the unprotected GIFT implementation. The unprotected implementation comprises of a state-register (stReg1), a key-register
(kReg1), a bit-permutation layer and the S-box layer. stReg1 is used to keep the current state. A multiplexer is used to select
between the updated state and the input. The same holds for the kReg1 key register. The state is updated after applying
the S-box, bit-permutation, key and round constant (Rcon) addition steps. For a parallelized implementation, one round of
unprotected GIFT takes one clock-cycle to update the state-register. So it takes 40 clock cycles to process one block of data.

Additional hardware required for Profile 1. . . 5 are marked by dashed-dotted regions in Fig. 6. Profile 1. . . 4 requires
two random-mask values (DM1 and DM2 128-bit each), two additional state registers (stReg2 and stReg3), two additional
multiplexers, and some XORs. Furthermore, if the key is also shared as in the case for Profile 2 and 4, two random-masks
(KM1 and KM2 128-bit each) for the key, two key registers (kReg2 and kReg3), and two multiplexers are also required.
Implementation of the S-box layer for these profiles depends on whether it is using ANF or ABC, but the overall architecture
presented in Fig. 2 remains the same. These profiles also require three additional registers to store the intermediate state in the
S-box, hence they take 2 clock-cycles per round of the cipher. As a result, these profiles need 80 clock-cycles in all to process
a block. In case of Profile 5, the hardware overhead compared to Profile 1. . . 4 is only in the architecture of the S-box. The
S-box in this case is implemented using multiplexers and de-multiplexers as shown in Fig. 3. Profile 5 requires eight times
more clock-cycles compared to the unprotected implementation.

Profile 6. . . 9 use the 4-shares technique for TI. In this case, in addition to the hardware overheads for 3-shares technique,
a random-mask (DM3), a state-register (stReg4) and a multiplexer is required if only the data-path is shared as in the case
of Profile 6 and 8. Profile 7 and 9 share both the data-path and the key-register, thus they need an additional random-mask
(KM3), a key-register (kReg4), and a multiplexer. The details of the corresponding S-box is shown in Fig. 4. In all of the
profiles, the unmasking step is performed by XORing all the respective shares.

C. Synthesis Results

The HDL designs for all of the implementation profiles were written in VHDL2. Functional testing was done using the Xilinx
Vivado Simulator version 2016.3. After functional testing, we used Synopsys Design Compiler version J-2014.09 for synthesis
of the designs. Synopsys IC Compiler version L-2016.03-SP5-1 was used for placement and routing. We used TSMC 65nm
Low Power Standard Cell Library (TCBN65LP) for all the ASIC implementations. We used compile ultra during synthesis
to get an optimized design. We also used flags to prevent optimization between hierarchal boundaries. Synopsys PrimeTime
version J-2014.12-SP3-1 was then used on the post-layout design in conjunction with activity factors from simulations done
using Vivado in order to get accurate power consumption estimates. For this analysis, we focused on getting a balanced design
with good area vs. throughput trade-off and hence avoided any specific optimization. This is because aggressive optimization
towards area leads to poor timing results and vice versa. It is also important to note that power estimates assume the design
running at the highest possible frequency. Running the designs at lower frequency leads to significantly reduced dynamic power
consumptions; under such conditions leakage power can be the primary contributor to overall power consumption. The area
and power overheads for the random source has not been considered and we assume that the randomness is provided externally.

2The HDL files will be available on github after the review process.
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TABLE III
POST-LAYOUT RESULTS FOR DIFFERENT PROFILES OF THRESHOLD COUNTERMEASURE

Metric Unprotected Protected Profiles

GIFT 1 2 3 4 5 6 7 8 9

3SH 3SH-K 3SH 3SH-K C3SH 4SH 4SH-K 4SH 4SH-K

ANF ANF ABC ABC ANF ANF ANF ABC ABC

S-Box Area (GE) 632 7286 7286 7661 7657 2760 18129 18110 84103 84198

State Register Area (GE) 800 3358 3358 3360 3360 8955 3200 3206 3258 3314

Key Register Area (GE) 801 1125 3359 1125 3360 807 801 3200 801 3202

Total Area (GE) 2478 13349 16595 13728 16964 16170 24233 27340 90426 93597

Ratio 1.000 5.387 6.697 5.540 6.846 6.525 9.779 11.033 36.492 37.771

Time (ns) 2.31 2.68 2.71 2.74 2.68 3.9 3.52 3.56 5.56 5.93

Frequency (MHz) 432 373 369 364 373 256 284 280 179 168

# Clock-cycles 40 80 80 80 80 320 40 40 40 40

Throughput (Mbps) 1286 562 556 548 562 97 845 833 532 500

S-Box Power (mW) 0.51 3.01 2.95 3.1 3.13 0.65 5.61 5.52 19.6 18.7

State Register Power (mW) 0.7 2 2.01 2.05 2.13 4.99 3.04 3.1 2.54 2.36

Key Register Power (mW) 0.64 0.72 1.82 0.72 1.81 0.06 0.52 1.62 0.32 1

Total Power (mW) 2.396 7.578 9.217 7.75 9.687 5.8 10.3 11.9 23.8 23.6

Energy (pJ/bit) 1.777 12.859 15.809 13.487 16.438 57.024 11.625 13.624 42.664 45.013

Random bits 0 256 512 256 512 256 384 768 384 768

Fig. 7 shows the placed and routed physical design for the unprotected, and one of the protected designs. All the protected

(a) Unprotected GIFT, width = 100 µm (b) Protected GIFT (3SH-ANF), width = 200 µm

Fig. 7. Two of the placed and routed designs using Synopsys IC Compiler. Colors: S-reg (blue), Slayer (green), Key-reg (red), Glue Logic (magenta)

profiles were compiled using the same script (with different clock constraints). The script was written to accommodate some
moderate variations in design complexity.

Table III shows the implementation results for all the profiles. As expected, the protected implementations require more
resources than the unprotected one. The smallest protected implementation 3SH is 5.38 times larger. One can see that most
of the area is taken up by the S-Box. As direct-sharing leads to very large Boolean equations, the overall area becomes
quite large. Depending on the number of shares, key-sharing can triple or quadruple the size of the key-register size. C3SH
uses a sequential design as the decomposed S-Box share a similar template. Multiplexers and de-multiplexers are then used
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to update the state for all the 3 shares. This leads to a large number of clock cycles and extra intermediate state registers. As
the maximum attainable frequency is not too high and the number of parallel operations are reduced (compared to the other
designs), the power consumption is the lowest.

It is also interesting to contrast ABC based implementation results with ANF ones. For 3SH the difference is small, whereas
for 4SH the difference is quite significant (4.6 times). We believe the reason for this difference is the very large size of
expressions in case of direct-sharing. The 12 × 4 mapping in this case leads to about 1100 nodes for one decomposed S-
box. Contrasting this with the 8 × 4 mapping used in 3SH which has about 35-55 nodes depending on the specific G() or
F (), ABC performs significantly better for the latter. As ABC offers many commands and scripts for Boolean-minimization,
even with significant effort, reduction in size for very large networks (above 1000 nodes) was about 10 to 30 percent. From
these experiments, it is clear that any additional Boolean-minimization is not required as the synthesis tool Synopsys Design
Compiler was able to perform efficient minimization as it had access to a large library of logic primitives. Fig. 8 shows area
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Fig. 8. Area vs. Throughput for all the selected profiles.

vs. throughput for all the profiles. It is evident that 3SH approach leads to smaller area, but as it requires an intermediate
register, it ends up taking twice the number of clock cycles. This leads to lower throughput compared to 4SH. As can be
seen from Fig. 9, 4SH using ANF consumes less energy even though it has a significantly larger area than 3SH; this can be
attributed to its higher throughput. As a result both the designs can be used depending on application requirements. One can
also note that the performance and efficiency of C3SH is not good compared to the other designs, so even though it has the
lowest power consumption, using such a design is not recommended.
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Fig. 9. Area vs. Energy for all the selected profiles.

IV. POWER ANALYSIS

In order to evaluate the security of our design, we implemented the design using HDL and tested it on a SAKURA-X board
with a Xilinx Kintex-7 XC7K160T FPGA. The power consumption was measured by probing the voltage drop across the
50 milliohms resistor on the 1V0 FPGA core power line. For CPA on the unprotected implementation we used a Tektronix
MSO4034 at 2.5 Gs/s and for all TVLA experiments, we used a Teledyne LeCroy HDO6104A at 2.5 Gs/s @ 12 bits/sample.
All TVLA experiments were performed using 10 Million traces (5 million traces per set). As the SAKURA-X board is lacking
an on-board amplifier we had to use an external preamplifier (Langer 3 Ghz, 30 dB). Considering the small size of GIFT,
having a very small leakage signature, it was important to use a pre-amplifier, without it the leakage was below the noise floor
and the signal was hardly discernible. In all the experiments, we were running the cipher cores at 48 MHz. The random bits
for the masks were generated using AES-128 in counter mode (the operation was interleaved with GIFT).



10

A. CPA on the unprotected GIFT cipher

As mentioned earlier, in this paper we only consider round based hardware implementations (FPGA / ASIC), i.e., for every
clock-cycle the implementation executes one round or a portion of a round, but, all the plaintext bits and the requisite key bits
are processed together. In such implementations, a register is used to store the state and is updated at specific clock events.
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Fig. 10. A portion of the GIFT-128 round function. S is the GIFT S-box and RKi is the ith round-key. The state registers store the value corresponding
to the position represented by the green horizontal lines.

Fig. 10 shows the round function of GIFT-128. Assuming an unprotected implementation, the value of the state register
is overwritten (updated) at every clock cycle. As a result, the complete cipher execution needs 40 clock cycles (one or two
extra clock cycles may be needed for reading in and out the data, depending on implementation). In such implementations,
the leakage follows the Hamming Distance (HD) model as the old data in the state register is overwritten by new data which
is calculated by combinatorial circuits.

In Fig. 10, value of the register reg (prev) is over-written by reg (next). Given the bitwise nature of the permutation layer,
for leakage modeling we have to consider one S-box at a time and track which bits are permuted to what locations. Unlike
PRESENT, GIFT uses only 64 bits of the round key every round, as a result, for every S-box we can only guess 2 bits; this
reduces effectiveness of the CPA attack. Fig. 11 shows two power traces for the reference unprotected implementation of
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Fig. 11. Power Trace: Last 8 rounds of the unprotected GIFT implementation.
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Fig. 12. Correlation values vs. Trace Point: For Key Byte 0. A large peak is visible only for the correct key 0x08.

GIFT. For this attack we try to focus on the last round and try to recover the key used in the last round. We also assume
that the cipher-text is known to the attacker; and all the traces use random plain-texts. Considering the first S-box with input
bits 0, 1, 2 and 3, according to the permutation, the output bits go to positions 0, 33, 66, and 99 respectively, and then they
are XORed with the corresponding round key bits (33 and 66). Bits 0 and 99 pass through unchanged and are known as we
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Fig. 13. Correlation values for the two bytes of the key (see text). Peaks at positions 8 and 40 correspond to the correct keys.

know the ciphertext. Now, if we guess two bits of the key (bit 33 and 66 in this case) we can compute the input of the S-box
by computing the inverse S-box operation. As reg (prev) is updated by reg (next), we can now have a valid four bit HD
estimate based on a guess of two key bits. This can be used as a hypothetical power model. For the ease of implementation
we decided to guess 8 bits of the round-key at a time, as a result we had to process 4 S-boxes at a time. In the rest of the
paper, guessing a byte of the key refers to guessing 8 bits which can be in different positions at the last XOR, but arise from
a set of 4 S-boxes. Fig. 12 shows the correlation values for three guessed key bytes vs trace points. Considering CPA for a
successful attack, the correct key has the highest correlation value across the trace points. The peak in the figure for key 0x08
corresponds to the time instant at which maximum correlation with leaked key was found. This is the same location of the
last round execution as per Fig. 11.

In order to extract the complete round key, we repeated the the above steps for the other 8 bytes and recovered 64 bits. Fig.
13 shows correlation values for all guesses for the first 2 bytes of the last round key. In order to recover the complete key, we
have to use the fact that we know the last round-key and go one step back and recover rest of the words of the key. This is
possible as the key-schedule uses only rotates and no other function.

B. TVLA on the protected GIFT cipher
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Fig. 14. Power Trace for 3SH: Last 10 rounds of the protected GIFT implementation sampled at 5Gs/s. The alternating big and small spikes correspond
to the state update and the intra S-box register update respectively.
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Fig. 15. Power Trace for C3SH: Last 2 rounds of the protected GIFT implementation sampled at 2.5Gs/s.
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We performed Test Vector Leakage Analysis (TVLA [14]) to evaluate our implementation. More specifically, we used the
specific t-test leakage detection methodology. For all the experiments, we targeted the last round input-output XOR differences.

The 3SH implementation as mentioned in the previous section uses two registers and 80 clock cycles for 40 rounds. Within
a round, the first clock-cycle is used to evaluate the G function and the second clock-cycle computes F , the permutation,
Rcon-update and key-update. This causes the two clock cycles to consume different amounts of power; this is quite clear in the
power trace shown in Fig. 14. The C3SH implementation takes 320 clock-cycles for 40 rounds as it uses many intermediate
register stages and multiplexers. The power trace for it is shown in Fig. 15.

It is evident from Figure 16 and 17, both the implementations are secure against first order power attacks as the maximum
t-test value for both the implementations do not reach the chosen threshold. The value of ±4.5 is selected based on [14] (which
corresponds to a 99.999% probability that the null hypothesis is false for large samples).
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Fig. 16. TVLA on protected implementations: TVLA on two of the protected implementations(3SH and C3SH) using 10 million traces. The data points
are the max of absolute value of the t-values for each of the 128-bits. The horizontal red line corresponds to the +4.5 threshold value.
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Fig. 17. TVLA on protected implementations: Specific t-test results for two of the 128-bits for 3SH and C3SH using 10 million traces. The horizontal
red lines corresponds to the ±4.5 threshold value.

V. CONCLUSION

In this work, we presented a Correlation Power Analysis attack on the cipher GIFT. We also performed TVLA on two
of the protected implementations and showed that they are secure against first-order power attacks. We support this claim by
analyzing 10 million traces collected from the respective protected FPGA implementations. Furthermore, we performed design
analysis over nine different strategies and give trade-off results for area vs throughput (Fig. 8) and area vs energy (Fig. 9). All
the required hardware implementation results are reported in Table III. It is interesting to note certain facts from the presented
results:

1) Even though 3-shares consumes less power (7.5mW) than 4-shares (10.3mW), the overall energy requirements for the
two is comparable as the latter requires only 40 clock-cycles, half compared to the former. So, in a way, a design which
consumes more power but finishes earlier can have a lower overall energy consumption.

2) Considering throughput vs. area; it is recommended to use 4-shares where higher throughput is required, whereas using
the 3-shares will be a good option in constrained environments with less area and moderate throughput.
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3) The combined 3-shares technique consumes the least amount of power compared to other approaches. But, its
throughput is the lowest as well as energy requirements are significantly higher. Hence, using such a design is not
recommended for round-based implementations as most of the expected reduction in area is nullified by the large
multiplexers and extra intermediate registers (this is not a problem in serialized implementations).

4) ANF based implementations takes less area, consumes less power and provides higher or similar throughput as compared
to the ones using any Boolean minimization tools, this is especially true when the network is quite large.

In this work we targeted high performance round based implementations, but most of the previous TI implementations focus
on serialized implementation to reduce the area. Analyzing such implementations can be a possible future extension.

APPENDIX A
ANF EQUATIONS FOR 3-SHARES

G1(a2, b2, c2, d2, a3, b3, c3, d3) = (g13, g12, g11, g10)

g10 = a2 + b2 + c2 + d2 + a2b2 + a2b3 + a3b2

g11 = b2 + a2c2 + a2c3 + a3c2

g12 = 1 + c2

g13 = a2 + b2 + b2c2 + b2c3 + b3c2

G2(a1, b1, c1, d1, a3, b3, c3, d3) = (g23, g22, g21, g20)

g20 = a3 + b3 + c3 + d3 + a1b3 + a3b1 + a3b3

g21 = b3 + a1c3 + a3c1 + a3c3

g22 = c3

g23 = a3 + b3 + b1c3 + b3c1 + b3c3

G3(a1, b1, c1, d1, a2, b2, c2, d2) = (g33, g32, g31, g30)

g30 = a1 + b1 + c1 + d1 + a1b1 + a1b2 + a2b1

g31 = b1 + a1c1 + a1c2 + a2c1

g32 = c1

g33 = a1 + b1 + b1c1 + b1c2 + b2c1

F1(a2, b2, c2, d2, a3, b3, c3, d3) = (f13, f12, f11, f10)

f1 = 1 + a2

f11 = a2 + b2

f12 = 1 + b2 + c2 + d2 + a2d2 + a2d3 + a3d2

f13 = d2 + a2b2 + a2b3 + a3b2

F2(a1, b1, c1, d1, a3, b3, c3, d3) = (f23, f22, f21, f20)

f20 = a3

f21 = a3 + b3

f22 = b3 + c3 + d3 + a1d3 + a3d1 + a3d3

f23 = d3 + a1b3 + a3b1 + a3b3

F3(a1, b1, c1, d1, a2, b2, c2, d2) = (f33, f32, f31, f30)

f30 = a1

f31 = a1 + b1

f32 = b1 + c1 + d1 + a1d1 + a1d2 + a2d1

f33 = d1 + a1b1 + a1b2 + a2b1
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APPENDIX B
ANF EQUATIONS FOR 4-SHARES

S1(a2, b2, c2, d2, a3, b3, c3, d3, a4, b4, c4, d4) =
(s13, s12, s11, s10)

s10 = 1 + a2 + b2 + c2 + d2 + a2b2 + a2b3 + a2b4 + a4b3

s11 = a2 + c2 + d2 + a2b2 + a2b3 + a2b4 + a4b3 + a2c2

+ a2c3 + a2c4 + a4c3

s12 = b2 + c2 + a2d2 + a2d3 + a2d4 + b2d2 + b2d3 + b2d4

+ a4d3 + b4d3 + b2c2d2 + b2c3d2 + b2c4d2 + b3c4d2

+ b4c3d2 + b2c2d3 + b2c3d3 + b2c4d3 + b4c2d3

+ b4c3d3 + b4c4d3 + b2c2d4 + b2c3d4 + b2c4d4

+ b3c2d4 + b4c3d4

s13 = a2 + b2d2 + b2d3 + b2d4 + b4d3 + a2c2d2 + a2c3d2

+ a2c4d2 + a3c4d2 + a4c3d2 + a2c2d3 + a2c3d3

+ a2c4d3 + a4c2d3 + a4c3d3 + a4c4d3 + a2c2d4

+ a2c3d4 + a2c4d4 + a3c2d4 + a4c3d4

S2(a1, b1, c1, d1, a3, b3, c3, d3, d3, a4, b4, c4, d4) =
(s23, s22, s21, s20)

s20 = a3 + b3 + c3 + d3 + a3b3 + a3b4 + a3b1 + a1b4

s21 = a3 + c3 + d3 + a3b3 + a3b4 + a3b1 + a1b4 + a3c3

+ a3c4 + a3c1 + a1c4

s22 = b3 + c3 + a3d3 + a3d4 + a3d1 + b3d3 + b3d4 + b3d1

+ a1d4 + b1d4 + b3c3d3 + b3c4d3 + b3c1d3 + b4c1d3

+ b1c4d3 + b3c3d4 + b3c4d4 + b3c1d4 + b1c3d4

+ b1c4d4 + b1c1d4 + b3c3d1 + b3c4d1 + b3c1d1

+ b4c3d1 + b1c4d1

s23 = a3 + b3d3 + b3d4 + b3d1 + b1d4 + a3c3d3 + a3c4d3

+ a3c1d3 + a4c1d3 + a1c4d3 + a3c3d4 + a3c4d4

+ a3c1d4 + a1c3d4 + a1c4d4 + a1c1d4 + a3c3d1

+ a3c4d1 + a3c1d1 + a4c3d1 + a1c4d1

S3(a1, b1, c1, d1, a2, b2, c2, d2, a4, b4, c4, d4) =
(s33, s32, s31, s30)

s30 = a4 + b4 + c4 + d4 + a4b4 + a4b1 + a4b2 + a2b1

s31 = a4 + c4 + d4 + a4b4 + a4b1 + a4b2 + a2b1 + a4c4

+ a4c1 + a4c2 + a2c1

s32 = b4 + c4 + a4d4 + a4d1 + a4d2 + b4d4 + b4d1 + b4d2

+ a2d1 + b2d1 + b4c4d4 + b4c1d4 + b4c2d4 + b1c2d4

+ b2c1d4 + b4c4d1 + b4c1d1 + b4c2d1 + b2c4d1

+ b2c1d1 + b2c2d1 + b4c4d2 + b4c1d2 + b4c2d2

+ b1c4d2 + b2c1d2

s33 = a4 + b4d4 + b4d1 + b4d2 + b2d1 + a4c4d4 + a4c1d4

+ a4c2d4 + a1c2d4 + a2c1d4 + a4c4d1 + a4c1d1

+ a4c2d1 + a2c4d1 + a2c1d1 + a2c2d1 + a4c4d2

+ a4c1d2 + a4c2d2 + a1c4d2 + a2c1d2
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S4(a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3) =
(s43, s42, s41, s40)

s40 = a1 + b1 + c1 + d1 + a1b1 + a1b2 + a1b3 + a3b2

s41 = a1 + c1 + d1 + a1b1 + a1b2 + a1b3 + a3b2 + a1c1

+ a1c2 + a1c3 + a3c2

s42 = b1 + c1 + a1d1 + a1d2 + a1d3 + b1d1 + b1d2 + b1d3

+ a3d2 + b3d2 + b1c1d1 + b1c2d1 + b1c3d1 + b2c3d1

+ b3c2d1 + b1c1d2 + b1c2d2 + b1c3d2 + b3c1d2

+ b3c2d2 + b3c3d2 + b1c1d3 + b1c2d3 + b1c3d3

+ b2c1d3 + b3c2d3

s43 = a1 + b1d1 + b1d2 + b1d3 + b3d2 + a1c1d1 + a1c2d1

+ a1c3d1 + a2c3d1 + a3c2d1 + a1c1d2 + a1c2d2

+ a1c3d2 + a3c1d2 + a3c2d2 + a3c3d2 + a1c1d3

+ a1c2d3 + a1c3d3 + a2c1d3 + a3c2d3
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