
Strain: A Secure Auction for Blockchains

Erik-Oliver Blass1 and Florian Kerschbaum2

1 Airbus, Munich, Germany
erik-oliver.blass@airbus.com

2 University of Waterloo, Waterloo, Canada
florian.kerschbaum@uwaterloo.ca

Abstract. We present Strain, a new auction protocol running on top of block-
chains and guaranteeing bid confidentiality against fully-malicious parties. As our
goal is efficiency and low blockchain latency, we abstain from using traditional,
highly interactive MPC primitives such as garbled circuits. Instead for Strain,
we design a new maliciously-secure two-party comparison mechanism executed
between any pair of bids in parallel. Using zero-knowledge proofs, Strain broad-
casts the outcome of comparisons on the blockchain in a way such that all par-
ties can verify each outcome. While Strain leaks the order of bids, similar to
OPE, its core technique of determining the auction’s winner is very efficient and
asymptotically optimal, requiring only 2 blockchain blocks latency. Strain also
provides typical auction security requirements like non-retractable bids against
fully-malicious adversaries. Finally, it protects against adversaries aborting the
auction by reversible commitments.

1 Introduction

Today’s blockchains offer transparency and integrity features which make them ideal
for hosting auctions. Once a bid has been submitted to a smart contract managing the
auction on the blockchain, the bid cannot be retracted anymore. After a deadline has
passed, everybody can verify the winning bid. Due to its attractive features, block-
chain auctions are already considered in the real-world. As a prominent example to
fight nepotism and corruption, Ukraine will host blockchain auctions to sell previously
seized goods [22].

However, today’s blockchain transparency features disqualify them in scenarios
where input data must remain confidential. For example, in a procurement auction, an-
other prime application example for blockchains [1], an auctioneer requests offers for
some good (“Need 1M grade V2X steel screws”) as part of a smart contract. A set of
suppliers submits bids for the good, and the lowest bid wins the procurement auction.
Realizing a decentralized auction as a smart contract has the above transparency fea-
tures, mitigates corruption, and avoids a possibly corrupt, centralized auctioneer. Yet,
bids are confidential. Suppliers have mutual distrust, and leaking the value of a bid to
a competitor must be avoided. In some situations, one supplier should not even learn
whether or not another supplier is participating in an auction. To make matters worse,
multiple suppliers might collude, be fully-malicious, behave randomly (not rationally),
and abort participation in the auction to disturb its outcome. Still, the auction should
run as expected.

2

Kosba et al. [18] already mention that one could revert to implementing the auction
with Secure Multi-Party Computation on the blockchain. While there has been a flurry
of research on MPC, and generic frameworks are readily available [25], a main MPC
drawback is its high interactivity. Yet, interactivity is expensive on a blockchain in terms
of latency. Successfully broadcasting a message, changing the state of a smart contract
(code execution), and any kind of party interactivity requires a valid transaction. As
transactions are attached to blocks, each interactivity requires (at least) one block in-
terval for delivery. Block interval times are large, e.g., roughly 15 s for Ethereum [12].
Thus, high interactivity would automatically rule out short-term, short living auctions.

This paper. We present Strain (“Secure aucTions foR blockchAINs”), a new proto-
col for secure auctions on blockchains. Targeting low latency on blockchains, we avoid
MPC and instead design a tailored solution. At the heart, we extend Fischlin [14]’s semi-
honest two-party comparison by several key aspects. First, we design a variant that is
secure against malicious adversaries. We require existence of a semi-honest judge party
which must not collude with either of the comparing parties. In the context of auctions,
the judge can be implemented by, e.g., the auctioneer. Using zero-knowledge proofs,
the judge verifies (and publishes on the blockchain) whether both parties use previously
committed values as input to the comparison. Again using a zero-knowledge proof, one
comparing party then publishes the outcome of the comparison. Together, the two zero-
knowledge proofs allow everybody to verify correctness of the comparison’s result.

As commitments, we extend Goldwasser-Micali encryption by verifiable sharing of
each supplier’s private key. Suppliers initially commit to their bids by encrypting them
with their public key. A honest majority of suppliers can then open a commitment in
case a supplier aborts the protocol.

Strain optionally supports anonymous auctions by using a combination of Dining
Cryptographer networks and blind signatures. Suppliers can be anonymized, such that
no supplier knows which other suppliers are participating in an auction. Note that we
specifically avoid payment channels [24], and all communication will run through the
blockchain. The advantage is no or only little data stored at parties, crucial information
stored at the central ledger, and no direct network connectivity required between parties.

In summary, the technical highlights of this paper are:

– A new blockchain auction protocol, Strain, protecting confidentiality of bids. Strain
is provably secure against fully-malicious suppliers and semi-honest auctioneers. In
contrast to MPC, it is efficient and completes an auction in a constant number of
blocks (rounds). Its round complexity is independent from the bit length η of the
bids (multiplicative depth of a comparison circuit) and the number s of suppliers.

– After bidding, no supplier can retract or modify a bid. However, in case of dispute,
commitments can be opened by an honest majority. Strain will complete, even if
malicious parties fail to respond and abort the auction without any supplier being
able to change their bid. Computation of the winning bid is performed solely by the
suppliers and entirely on the blockchain. The contribution of the auctioneer to the
auction is only to verify correctness of computations in zero-knowledge.

We stress that the lack of smart contract data confidentiality is independent from
privacy-preserving coin transactions, see, e.g., ZeroCash [2] for an overview. To reach

3

consensus, blockchain miners require access to all input data. This holds for permission-
less and even permissioned blockchains such as Hyperledger where computation of
consensus is restricted to only those parties participating in a smart contract.

2 Background

Let S={S1,...,Ss} be the set of s suppliers in the system with public-private key pairs
(pki,ski). The procurement auction is run by auctioneer A having public-private key
pair (pkA,skA). Assume that all suppliers and A know each other’s public keys, so A
can run an auction accepting bids from valid suppliers only.

2.1 Preliminaries

Let λ be the security parameter. For an integer n, let QRn be the set of quadratic
residues of group Zn, and QNRn is the set of quadratic non-residues of Zn. Function
Jn(x) computes the Jacobi symbol

(
x
n

)
, and we define set Jn = {x∈Zn|Jn(x) = 1}.

Finally, QNR1
n={x∈QNRn|Jn(x)=1} (set of “pseudo-squares”).

Quadratic Residues modulo Blum Integers. If n is a Blum integer, testing whether
some x ∈ Zn with Jn(x) = 1 is in QRn can be implemented by checking whether
x

(p−1)·(q−1)
4 = 1 mod n [17]. Moreover, observe that the DDH assumption holds in

group (Jn,·). For r $←Z∗n, g=−r2 mod n is a generator of group (Jn,·), see Section
A.1 of Couteau et al. [9]. In particular z=−1=−(12) mod n is a generator of Jn.

GM Encryption. A Goldwasser-Micali (GM) [15] key pair comprises private key skGM

and public key pkGM. For private key skGM = (p−1)·(q−1)
4 , we require p and q to be

distinct, strong random primes of length λ. As p, q are strong primes, they are safe
primes with p = 2 · p′+1,q = 2 · q′+1, and p′,q′ are safe primes, too. Consequently,
p= q= 3 mod 4, i.e., n= p ·q is a Blum integer. We set z = n−1 =−1 mod n. The
public key is pkGM=(n,z). With n being a Blum integer, z∈QNR1

n.
Goldwasser-Micali encryption of bit string M ∈{0,1}η is

C=EncGM
pkGM(M1...Mη)=(r21 ·zM1 mod n,...,r2η ·zMη mod n)

with randomly chosen ri
$← Z∗n. All parties automatically dismiss a ciphertext C if

C 6∈Jn.
Decryption of ciphertext C simply checks whether each component of C=(c1,...,

cη) is in QRn. As n is a Blum integer, raising ci to secret key skGM is sufficient, i.e.,
you compute

M=DecGM
skGM(c1,...,cη)=(1−csk

GM

1 mod n,...,1−csk
GM

η mod n).

Recall Goldwasser-Micali’s homomorphic properties for encryptions of two bits b1,
b2 (when obvious, we omit public-/private keys in this paper for better readability):

– DecGM(EncGM(b1)·EncGM(b2))=b1⊕b2 (plaintext XOR)
– DecGM(EncGM(b1)·z)=1−b1 (flip plaintext bit b1)
– For a GM ciphertext c, re-encryption is ReEncGM(c)←c·EncGM(0).

4

AND-Homomorphic GM Encryption. Goldwasser-Micali encryption can be modified
to support AND-homomorphism [14, 23]. Specifically, let λ′ be the soundness param-
eter of the Sander et al. [23] technique that works as follows.

A single bit b=1 is encrypted to λ′-many random quadratic residues mod n, i.e., λ′

separate GM encryptions of 0. A bit b=0 is encrypted to a sequence of random elements
xwith Jn(x)=1, i.e., λ′ encryptions of randomly chosen bits a1,...,aλ′ . More formally,

EncAND(1)=(EncGM(0),...,EncGM(0)) and

EncAND(0)=(EncGM(a1),...,EncGM(aλ′)).

Decryption of a sequence of a λ′-element ciphertext checks whether all elements are in
QRn,

DecAND(c1,...,cλ′)=

{
1 if ∀ci :ci∈QRn
0 otherwise.

As an AND-encryption of 0 can result in λ′ elements of QRn, decryption is correct
with probability 1−2−λ′ .

EncAND is homomorphic with respect to Boolean AND. For two ciphertexts EncAND(b)=
(c1, ... , cλ′) and EncAND(b′) = (c′1, ... , c

′
λ′), DecAND(c1 · c′1, ... , cλ′ · c′λ′) = b ∧ b′. If

the ci and c′i are all in QRn, so is their product. If one is in QRn and the other in
QNR1

n, their product is in QNR1
n. Yet, if both ci and c′i are in QNR1

n, their product
is in QRn. For example, if all ci and c′i are in QNR1

n, b = b′ = 0, but DecAND after
their homomorphic combincation will output 1. So, DecAND is correct with probability
1− 2−λ

′
. Re-encryption for AND-encryption is simply defined as ReEncAND(c1, ... ,

cλ′)←(ReEncGM(c1),...,ReEncGM(cλ′)).
Finally, we can embed an existing GM ciphertext γ = EncGM(b) of bit b into an a

ciphertext EncAND(b)=(c1,...,cλ′) without decryption. First, we choose λ′ random bits
a1,...,aλ′ . Now, if ai = 1, then set ci = EncGM(0). Otherwise, set ci = EncGM(0) ·γ ·
z mod n. In the first case, ci is a quadratic residue independently of b (ci=EncGM(0)).
In the second case, we flip bit b by multiplying with z (and re-encrypt the result). So, a
quadratic residue ci becomes a non-residue and the other way around. If b=1, all λ′ ele-
ments ci will be quadratic residues. If b=0, all λ′ elements ci will be quadratic residues
only with probability 2−λ

′
, such that the embedding is correct with probability 1−2−λ′ .

2.2 Blockchain

There exist several detailed introductions to blockchain and smart contract technology
such as Ethereum [11]. Here, we only briefly and informally summarize properties rel-
evant for Strain.

A blockchain is a distributed network implementing a ledger functionality. Parties
can append transactions to the ledger, if the network validates transactions in a dis-
tributed fashion. Surprisingly, such a distributed ledger is sufficient to realize distributed
execution of programs that are called smart contracts. Using transactions, one party up-
loads code and state into the blockchain, and other parties modify state by stipulating
code. For a procurement auction, auctioneer A would upload a new smart contract and
allow other parties to bid. That is, the smart contract could just implement a simple,

5

1 forall Si do
2 if Pseudonymity then Si→TTP : FPseu(vi);
3 else Si→TTP : FAuth(vi);
4 end
5 for i=1 to s do
6 forall j 6= i do
7 TTP : Let cmpi,j=1, if vi>vj and cmpi,j=0 otherwise.;
8 end
9 end

10 TTP→{A,S1,...,Ss}: FBC({cmpi,j |∀i,j∈{1,...,s}});
11 TTP→A: {vw|vw=min(v1,...,vs)};

Algorithm 1: Ideal Functionality FBid of the bidding algorithm

initially empty mailbox as state, and suppliers could only append data (bids and any-
thing else) to that mailbox by transactions. Such a simple mailbox smart contract has
the following properties that we will need.

First, the blockchain guarantees reliable broadcast. Each transaction appending to
the mailbox is public. Based on the blockchain’s consensus, everybody in the network
eventually observes the same message appended (if valid). Being the blockchain’s core
feature, reliable broadcast takes one block latency. Along the same lines, we can intro-
duce personal messages between parties over the blockchain. Broadcasting a message
to supplier Si encrypted with their public key realizes a secure, reliable channel to
Si. Finally, a blockchain automatically allows for deadlines. Parties participating in the
blockchain receive new blocks and therefore have (weakly) synchronized clocks. Based
on the current block, an auction smart contract can specify a deadline as a function of
the number of future blocks.

Note that in practice with, e.g., Ethereum, there is essentially no limit for the num-
ber of transactions per block. Miners have an incentive to include as many transactions
as possible in their block to receive transaction fees. Thus, large messages can there-
fore be split into multiple transactions and still sent as “one message”. Consequently in
this paper, we silently assume that the blockchain accepts any number of messages of
arbitrary length per block.

3 Security Definition

We define security in the ideal vs. real world paradigm, following a standard simulation-
based approach [19]. First, we specify an ideal functionality FBid of our bidding proto-
col, see Algorithm 1.

3.1 Ideal Functionality

Our protocol emulates a trusted third party TTP that, first, receives all bids from all
suppliers. If supplier pseudonymity is required, all participating suppliers Si send their
bids vi via a pseudonymous channel, or else they send it via an authenticated channel.

6

The trusted third party then computes result cmpi,j of the comparsion between each
bid. Finally, the trusted third party announces (broadcasts) the results of all compar-
isons to auctioneer A, each Supplier Si, and all other participants of the blockchain.
Similar to order preserving encryption, this reveals the total order of bids and hence the
winner of the auction, but does not reveal the bids themselves.

3.2 Adversary Model

We consider two adversaries A1 and A2. These adversaries have different capabilities,
are non-colluding, and control different parties in the system. The following Theorem 1
summarizes our main contribution, and we will come back to it later in Section 6.

Theorem 1. If adversary A1 is a static, active adversary which may control up to a
threshold3 τ of suppliers Si, and if Adversary A2 is a passive adversary which may
control auctioneer A, and if A1 and A2 do not collude, then protocol Strain imple-
ments functionality FBid.

4 Comparisons Secure Against Malicious Adversaries

The first ingredient to our main contribution of secure auctions is a generic comparison
construction. It allows two parties Si and Sj (the suppliers in our application) with in-
puts vi and vj to obliviously evaluate whether or not vi>vj without disclosing anything
else to the other party. In contrast to related work, the novelty of our construction is its
efficiency in the face of fully malicious adversaries. We do not rely on general MPC
primitives and have asymptotically optimal complexity (2 rounds and O(η) computa-
tion and communication cost per comparison). This allows us to easily integrate our
comparison into the auction framework of Section 5 and, e.g., tolerate parties aborting
the auction without restarting comparisons.

To realize maliciously-secure comparisons, we rely on the existence of a judge A
(the auctioneer in our application). Si and Sj can be fully malicious, but A must be
semi-honest and moreover not collude with Si,Sj , see Section 3.2. As long as A does
not collude with Si,Sj , neither A nor a malicious supplier learn bids of honest sup-
pliers. An important property of our solution is that knowledge of Si’s, Sj’s, and A’s
public keys is sufficient to verify whether vi>vj , again without learning anything else
about vi and vj .

4.1 Comparisons Secure Against Semi-Honest Adversaries

We begin by presenting Fischlin [14]’s technique for comparisons, secure against semi-
honest adversaries. Subsequently, we extend comparisons to be secure against fully
malicious adversaries.

Given bit representations vi=vi,1...vi,η and vj=vj,1...vj,η , we can compute vi>vj
by evaluating Boolean circuit

3 Threshold τ will later be used to open commitments using Shamir’s secret sharing of the key,
cf. Section 5.1.

7

F =

η∨
`=1

(vi,`∧¬vj,`∧
η∧

u=`+1

(vi,u=vj,u)).

We have F = 1 iff vi > vj . Observe that the main
∨η
t=1 is actually an XOR: if

vi>vj , exactly one term will be 1, and all other terms are 0. If vi≤vj , all terms will be
0. Moreover, (vi,u=vj,u) equals ¬(vi,u⊕vj,u). That can be exploited to homomorphi-
cally evaluate F using Goldwasser-Micali encryption.

1. Si sends its GM public key pkGM
i =(zi,ni) and encrypted value Ci=EncGM

pkGM
i
(vi),

a sequence of GM ciphertexts, to Sj .
2. Sj encrypts its own value vj with Si’s public key, Ci,j = EncGM

pkGM
i
(vj). Sj then

homomorphically computes all ¬(vi,u⊕vj,u) and ¬vj,` from F .
3. Sj embeds Ci and its own sequence of ciphertexts Ci,j into AND-homomorphic

GM ciphertexts as described in Section 2.1. Using AND-homomorphism, Sj com-
putes a sequence ` = {1, ... ,η} of ciphertexts c` = (vi,` ∧¬vj,` ∧

∧η
u=`+1(vi,u =

vju)).
Finally, Sj randomly shuffles the order of ciphertexts c` and sends resulting permu-
tation resi,j=π(c1,...,cη) back to Si.

4. Si can decrypt the c` in resi,j and learns whether vi≤ vj , if all c` decrypt to 0, or
vi>vj , if exactly one ciphertext decrypts to 1 and all other to 0.

The purpose of Sj shuffling ciphertexts is to hide the position of the potential 1 decryp-
tion, thereby not leaking the position of the lowest bit differing between vi and vj .

Steps 2 and 3 implement a functionality which we call Eval(Ci,vj) from now on.

4.2 Secure Comparisons Between Two Malicious Adversaries

Fischlin’s protocol is only secure against semi-honest adversaries. However, at least one
party, e.g., Sj may have behaved maliciously during comparison. Both suppliers Si and
Sj may submit different bids to distinct comparisons and supplier Sj could just encrypt
any result of their choice using Si’s public key. That is, Fischlin’s protocol does not
ensure that resi,j has been computed according to the protocol specification and the
fixed inputs of the suppliers.

We tackle this problem by, first, requiring both Si and Sj to commit to their own
input, simply by publishing GM encryptions Ci,Cj of vi,vj with their public key in-
cluding a proof of knowledge of the plaintext. During comparison, Sj will prove to a
judgeA in zero-knowledge that Sj used the same value vj inCi,j as in commitmentCj ,
and that Sj has performed homomorphic computation of resi,j according to Fischlin’s
algorithm. Therewith, Si is sure that resi,j contains the result of comparing inputs be-
hind ciphertexts Ci and Cj .

In the following description, we allow parties to either publish data or to send data
from one to another. In reality, one could use the blockchain’s broadcast feature to ef-
ficiently and reliably publish data to all parties or to just send a private message, see
Section 2.2.

8

Details. First, Si commits to vi by publishing {pkGM
i ,Ci=EncGM

pkGM
i
(vi)}, and Sj com-

mits to vj by publishing {pkGM
j ,Cj =EncGM

pkGM
j
(vj)}. Then, parties Si and Sj compare

their vi,vj following Fischlin [14]’s homomorphic circuit evaluation above. After Sj has
computed resi,j , Sj additionally computes a zero-knowledge proof P eval

i,j as follows.

1. Sj adds Ci,j and random coins for the shuffle of resi,j to initially empty proof
P eval
i,j .

Let vj,` be the `th bit of vj . Let (Cj)` be the `th ciphertext of GM commitment
Cj , i.e., the encryption of vj,` (the `th bit of vj). Similarly, let (Ci,j)` be the `th

ciphertext of Ci,j .
2. Let λ′′ be the soundness parameter of our zero-knowledge proof. Sj flips η · λ′′

coins δ`,m,1≤`≤η,1≤m≤λ′′.
3. Sj computes η ·λ′′ encryptions γ`,m← EncGM

pkGM
j
(δ`,m) and γ′`,m← EncGM

pkGM
i
(δ`,m)

and appends them to proof P eval
i,j .

4. Sj also computes η ·λ′′ encryptions Γ`,m=(Cj)` ·γ`,m=EncGM
pkGM
j
(δ`,m⊕vj,`) mod

nj and Γ ′`,m = (Ci,j)` ·γ′`,m = EncGM
pkGM
i
(δ`,m⊕vj,`) mod ni and appends them to

proof P eval
i,j .

5. Sj sends P eval
i,j to judge A.

6. Our zero-knowledge proof can either be interactive or non-interactive. In the inter-
active version of our proof, A sends back the challenge h, a sequence of η ·λ′′ bits
b`,m, to Sj .
The non-interactive version of our proof is based on Fiat-Shamir’s heuristic [13].
So, let h=H((γ1,1,γ

′
1,1,Γ1,1Γ

′
1,1),...,(γη,λ′′ ,γ

′
η,λ′′ ,Γη,λ′′ ,Γ

′
η,λ′′),Ci,Cj ,Ci,j) for

random oracle H : {0,1}∗→{0,1}η·λ′′ . Party Sj parses h as a series of η ·λ′′ bits
b`,m. In practice, we implement H by a cryptographic hash function.

7. If b`,m=0, Sj appends plaintext and random coins of γ`,m and γ′`,m to proof P eval
i,j .

If b`,m=1, Sj appends plaintext and random coins of Γ`,m and Γ ′`,m to proof P eval
i,j .

Sj sends P eval
i,j and Ci,j to judge A who has to verify it. Note that the proof reveals

ciphertext Ci,j of Sj’s input vj under Si’s public key. The proof is zero-knowledge for
judge A and very efficient, but must not be shared with party Si. A’s verification steps
are as follows:

8. Judge A verifies that homomorphic computations for resi,j have been computed
correctly, according to Ci,j ,Cj , and random coins of resi,j’s shuffle, simply by
re-performing the computation.

9. For `= {1,...,η} and m= {1,...,}, A verifies that homomorphic relations between
(Ci)`,γ`,m,Γ`,m as well as for (Ci,j)`,γ′`,m,Γ

′
`,m hold.

10. For each triple of plaintext, random coins, and ciphertexts of either γ`,m and γ′`,m
or Γ`,m and Γ ′`,m, A checks that ciphertext results from the plaintext and random
coins and that the plaintexts are the same.

11. If all checks pass, the judge A outputs >, else ⊥.

If A outputs >, Si decrypts resi,j and learns the outcome of the comparison, i.e.,
whether vi>vj .

9

Steps 1 to 7 implement a functionality that we call ProofEval(Ci,Cj ,Ci,j ,resi,j ,vj)
from now on. ProofEval is executed by Sj and uses commitments Ci and Cj and Sj’s
input vj and outputs {Ci,j ,resi,j} of Eval(Ci,vj). Similarly, steps 8 to 11 realize func-
tionality VerifyEval(P eval

i,j ,resi,j ,Ci,Cj). Executed by judgeA, it outputs either> or⊥.

Lemma 1. The above scheme of computing and verifying proof P eval
i,j with ProofEval

and VerifyEval is a zero-knowledge proof of knowledge of vj , such thatCj=EncGM
PKj (vj),

{Ci,j ,resi,j}=Eval(Ci,vj), and if it is performed in λ′′ rounds, the probability that Sj
has cheated, but A outputs >, is 2−λ

′′
.

Proof. We prove soundness, extractability, and zero-knowledge.
(1) Soundness. Since A has verified homomorphic operations, they know that, for

each bit ` in round m, (Cj)` ·EncGM
pkGM
j
(δ`,m)=EncGM

pkGM
j
(δ`m⊕vj,`) (and analogous for

(Ci,j)`). Hence, also plaintext equation vj,`=δ`,m⊕(δ`,m⊕vj,`) holds. Consequently,
commitment Cj and ciphertext Ci,j encode the same input vj , if the same δ`,m and the
same (δ`,m⊕vj,`) have been used in the ciphertexts.

Judge A receives plaintexts and random coins of either γ`,m and γ′`,m or Γ`,m and
Γ ′`,m with probability 1

2 each and verifies the correctness of the ciphertext. Thus, judge
A checks that both ciphertexts encrypt the same plaintext, either δ`,m or (δ`,m⊕vj,`).

If party Sj has cheated, but is not detected by A, cheating must have occurred in
the unopened ciphertext of the equation, or otherwise it would contradict the correct-
ness of the homomorphic computation. The success probability for Sj is 1

2 . After λ′′

repetitions, the success probability for Sj is 2−λ
′′

.
(2) Extractability. JudgeA can extract vj from Sj with rewinding access. Let tr1(Ci,j ,

resi,j ,γ`,m,γ
′
`,m,Γ`,m,Γ

′
`,m,b`,m,...) be the trace of the first execution of P eval

i,j . Then
the judge rewinds Sj to Step 5 and continues the protocol. Let tr2(Ci,j ,resi,j ,γ`,m,
γ′`,m,Γ`,m,Γ

′
`,m,b`,m,...) be the trace of the second execution of P eval

i,j . If tr1(b`,m)=0
and tr2(b`,m)=1, then the judge learns tr1(δ`,m) and tr2(δ`,m⊕vj,`). From this, they
compute vj,`.

(3) Zero-Knowledge. Intuitively, the auctioneer learns nothing from the opening of
either γ`,m and γ′`,m or Γ`,m and Γ ′`,m, since the plaintext value is always chosen uni-
formly random due to the uniform distribution of δ`,m.

More formally, in the interactive case, we can construct a simulator Sim
A({Ci,Cj})
P eval
i,j

(resi,j)

with rewinding access to judgeA({Ci,Cj}) following a standard simulation paradigm [19].
This ensures that we can construct a simulation of the zero-knowledge proof in the mali-
cious model of secure computation even if bid vj does not correspond to ciphertext Ci,j
and commitments Ci,Cj , since the simulator generates an accepting, indistinguishable
output even if vj is unknown. In the non-interactive case with Fiat-Shamir’s heuristic,
our zero-knowledge proof is secure in the random oracle model.

Note: Our proof here shows something stronger than actually required by the general
auction protocol. We show our zero-knowledge proof to be secure even against mali-
cious verifiers. However, auctioneer A, serving as the judge in the main protocol, is
supposed to be semi-honest.

10

5 Blockchain Auction Protocol

After having presented our core technique for secure comparisons, we now turn to our
main auction protocol Strain. Imagine that, at some point, A announces a new auction
and uploads a smart contract to the blockchain. The smart contract is very simple and
allows parties to comfortably exchange messages as mentioned before. The contract is
signed by skA, so everybody understands that this is a valid procurement auction.

Overview. With the smart contract posted, the actual auction starts. In Strain, each
supplier must first publicly commit to their bid. For this, we use a new verifiable com-
mitment scheme which allows a majority of honest suppliers to open other suppliers’
commitments. Therewith, we can at any time open commitments of malicious suppliers
blocking or aborting the auction’s progress.

After suppliers have committed to their bids (or after a deadline has passed), the
protocol to determine the winning bid starts. Strain uses the new comparison technique
from Section 4.2 to compare bids of any two parties. Auctioneer A serves as the judge.
However, using our new comparison in the auctions turns out to be a challenge. Recall
that, when Si and Sj compare their bids, only Si knows the outcome of the compari-
son, but nobody else. We therefore augment our comparison such that Si can publish
the outcome of the comparison, together with a (zero knowledge) proof of correctness.

To improve readability, we present Strain without the optional pseudonymity and
postpone pseudonymity to Section 5.3. For now, assume that a subset S ′ ⊂ S, |S ′| =
s′ ≤ s participates in the auction. Either a pseudonymous subset or all suppliers in S
participate.

5.1 Verifiable Key Distribution for Commitments

To be able to commit to their bids, suppliers in Strain initially distribute their key-
ing material. Specifically, supplier Si publishes a GM public key and verifiably secret
shares the corresponding secret key, such that a majority of honest suppliers can de-
crypt ciphertexts encrypted with Si’s public key. To then later commit to a value vi, Si
encrypts vi with their public key.

Key Distribution. Each supplier Si generates a Goldwasser-Micali key pair (pkGM
i =

(ni=pi ·qi,zi=ni−1),skGM
i = (pi−1)·(qi−1)

4).
To allow other suppliers Sj to open commitments from supplier Si, Si first com-

putes a non-interactive Zero-Knowledge proof PBlum
i that ni is a Blum integer, see

Blum [3] for details. Moreover, Si computes secret shares of (pi−1)·(qi−1)
4 for all sup-

pliers as follows [17]: Si computes s′−1 random shares ri,1,...,ri,s′−1
$←{0,(pi−1) ·

(qi−1)} such that
∑s′−1
j=1 ri,j=

(pi−1)·(qi−1)
4 mod (pi−1)·(qi−1). This can easily be

converted into a threshold scheme using Shamir’s secret shares where τ is the threshold
for reconstructing a secret. Supplier Si computes signature sigski(ri,j) and encrypts
share ri,j and signature sigski(ri,j) for supplier Sj using Sj’s public key pkj . Finally,
Si broadcasts resulting s′−1 ciphertexts of share and signature pairs as well as pkGM

i

and PBlum
i on the blockchain.

All suppliers can send their broadcasts in parallel, requiring only one block latency.

11

Key Verification. All s′ participating suppliers start a sub-protocol to verify all s′ pub-
lic keys pkGM

i . For each pkGM
i :

1. All suppliers check proof PBlum
i . If supplier Sj fails to verify the proof, Sj pub-

lishes (i,⊥) on the blockchain.

2. Each supplier Sj selects a random ρi,j
$← Z∗ni and employs a traditional com-

mitment scheme commit to commit to ρi,j . That is, each supplier Sj publishes
commit(ρi,j) on the blockchain.

3. After a deadline has passed, all suppliers open their commitments, by publishing
ρi,j and the random nonce used for the commitment.
All suppliers compute xi=

∑
j 6=iρi,j mod ni and yi=x2i .

4. Each supplier Sj raises yi to their share ri,j of (pi−1)·(qi−1)
4 and publishes γi,j =

y
ri,j
i on the blockchain. Sj also raises zi to their ri,j , i.e., ζi,j = z

ri,j
i . Sj then

prepares a non-interactive zero-knowledge proof PDLOG
i,j of statement logyi γi,j =

logziζi,j , see Section A for details.
Supplier Sj publishes {γi,j ,ζi,j ,PDLOG

i,j } on the blockchain.
5. Finally, all s′−1 suppliers verify soundness of pkGM

i . Each supplier Sj computes

bi=
∏
j 6=iγi,j=y

∑s′−1
j=1 ri,j

i =y
(pi−1)·(qi−1)

4
i mod ni and b′i=

∏
j 6=iζi=z

∑s′−1
j=1 ri,j

i =

z
(pi−1)·(qi−1)

4
i mod ni. If Sj detects that bi 6= 1 or b′i 6= −1 mod ni, Sj publishes
(i,⊥) on the blockchain. Supplier Sj also checks s′−1 proofs PDLOG

i,k . If one of the
κ rounds outputs ⊥ during verification, Sj publishes (k,⊥) on the blockchain.

Lemma 2. Let ni be a Blum integer and α the sum of shares distributed by Si. If no
honest supplier publishes (i,⊥), then Pr[α 6= (pi−1)·(qi−1)

4]∈O(2−λ).

Proof. Let yi have no roots in Zni that divide (pi−1)(qi−1)
4 . For an uniformly chosen yi

this happens with overwhelming probability ∈O(1−2−λ).
As yi∈QRni , it has order (pi−1)(qi−1)

4 . So, bi=1 implies that (I)α mod (pi−1)(qi−1)
4 =

0. Further, since zi =−1 mod ni, we have z
(pi−1)(qi−1)

4
i ∈ {−1,1}, and therefore (II)

z
(pi−1)(qi−1)

2
i =1. Hence b′i=−1 means that α mod (pi−1)(qi−1)

2 6=0. From (I) and (II)
we conclude (α mod (pi−1)(qi−1)

4) mod 2=1.
However, all those values will serve as private keys in Goldwasser-Micali encryp-

tion.

In conclusion, supplier Si can verify whether their shares for supplier Sj’s secret
key skGM

j matches public key pkGM
j . Therewith, an honest majority of suppliers will

later be able to open commitments of malicious suppliers trying to block the smart
contract or cheat.

Excluding malicious suppliers. Strain’s key verification easily allows detection and
exclusion of malicious suppliers. First, as all suppliers can verify proofs PBlum

i and
PDLOG
i,j of a supplier Si, honest suppliers can exclude Si or Sj from further participat-

ing in the protocol in case of a bad proof.

12

Moreover, following our assumption of up to τ malicious suppliers, Strain allows
to systematically detect and exclude malicious suppliers. Supplier Sj will reconstruct
bi = 1 and b′i = −1 from the set of secret shares (γi,j ,ζi,j). If no subset reconstructs
the correct plaintexts, Sj deduces that distributor Si is malicious and excludes Si. Oth-
erwise, Sj checks that each supplier Sk’s share reconstructs the correct plaintext. If
any does not, Sj asks Sk publicly on the blockchain to reveal their exponent ri,k and
signature sigski(ri,k). If at least τ +1 suppliers ask Sk to reveal, Sk will reveal, and
honest suppliers can detect whether Sk should be excluded (signature does not verify or
exponent does not match secret shares) or Si (signature verifies and exponent matches
secret shares).

5.2 Determining the Winning Bid

Strain’s main protocol ΠStrain to determine the winning bid is depicted in Algorithm 2.
Within Algorithm 2, we use three zero-knowledge proofs as sub-protocols.

– ProofEnc(Ci,vi) proves in zero-knowledge the knowledge of vi, such that Ci =
EncGM

PKi(vi). For an exemplary implementation we refer to Katz [16].
– ProofEval(Cj ,Ci,Ci,j ,resi,j ,vj) has been introduced in Section 4.2.
– ProofShuffle(shufflei,j ,resi,j) proves in zero-knowledge the knowledge of a per-

mutation Shuffle, such that shufflei,j =Shuffle(resi,j). There exist a large num-
ber of implementations of shuffle proofs. For one that is straightforward to adapt to
Goldwasser-Micali encryption, see Ogata et al. [20]. Using this technique, one can
even create shuffles with a restricted structure [21], i.e., the shuffle is chosen only
from a pre-defined subset of all possible shuffles. In our case this is necessary, since
we do not randomly shuffle all GM ciphertexts, but only the AND-homomorphic
blocks of GM ciphertexts.

Zero-knowledge proofs ProofEnc and ProofShuffle are verified by all suppliers ac-
tive in the auction, and, hence, verification is not explicitly shown. Zero-knowledge
proof ProofEval, however, is verified only by the semi-honest judge and auctioneer A.

Let η � λ be a public system parameter determining the bit length of each bid.
That is, any bid vi = vi,1 ... vi,η can take values from {0, ... ,2η − 1}. ΠStrain starts
with each supplier Si committing to their bid vi by publishing GM-encryption Ci =
(EncGM

pkGM
i
(vi,1),...,EncGM

pkGM
i
(vi,η)) on the blockchain.

After a deadline has passed, suppliers determine index w of winning bid vw by run-
ning our maliciously-secure comparison mechanism of Section 4.2. Any pair (Si,Sj)
of suppliers computes the comparison and publishes the result on the blockchain.

Specifically, after judge/auctioneer A has published whether Sj’s computation of
Ci,j corresponds to Sj’s commitment Cj , supplier Si can decrypt resi,j and learn
whether vi > vj . To publish whether vi > vj , Si shuffles resi,j to shufflei,j , pub-
lishes a zero-knowledge proof of shuffle, and publicly decrypts shufflei,j . Therewith,
everybody can verify vi >vj . If A has output >, if the proof of shuffle is correct, and
if shufflei,j contains exactly a single 1, then vi > vj . If A has output >, the shuffle
proof is correct, and if shufflei,j contains only 0s, then vi>vj .

A supplier Si is the winner of the auction, if all their shuffles prove that their bid is
the lowest among all suppliers. Si can prove this by opening the plaintext and random

13

1 for i=1 to s′ do
2 Si : publish {Ci←EncGM

PKi(vi),P
enc
i ←ProofEnc(Ci,vi)} on blockchain;

3 forall j 6= i do
4 Sj :{Ci,j ,resi,j}←Eval(Cj ,vi);
5 Sj :P

eval
i,j ←ProofEval(Cj ,Ci,Ci,j ,resi,j ,vj);

6 Sj : publish {EncpkA(P
eval
i,j),resi,j} on blockchain;

7 A : publish VerifyEval(P eval
i,j ,resi,j ,Ci,Cj) on blockchain;

8 Si :bitseti,j=DecAND
pkGM
j
(resi,j);

9 Si :shufflei,j←Shuffle(resi,j);
10 Si :P

shuffle
i,j ←ProofShuffle(shufflei,j ,resi,j);

11 Si : let γ`,m←EncGM
PKi(β`,m)∈shufflei,j be the shuffled ciphertexts

12 with their random coins r`,m. Publish {P shuffle
i,j ,shufflei,j ,β`,m,r`,m};

13 end
14 end Algorithm 2: Blockchain auction protocol ΠStrain

coins of shufflei,j . If vi≤vj , at least one plaintext in each consecutive sequence of λ′

plaintexts is 0. If vi>vj , a consecutive sequence of λ′ plaintexts is 1. Strain concludes
with auction winner Sw revealing bid vw and a plaintext equality zero-knowledge proof
that commitment Cw is for vw to auctioneer A.

5.3 Optional: Preparation of Pseudonyms

To be able to pseudonymously place a bid in Strain, suppliers must decouple their
blockchain transactions from their regular key pair (pki,ski). Ideally for each auction,
supplier Si generates a fresh random key pair (rpki,rski) for bidding. In practice, e.g.,
with Ethereum, this turns out to be a challenge. To interact with a smart contract, Si
must send a transaction. Do mitigate DoS attacks in Ethereum, transactions cost money
of the blockchain’s virtual currency. If a fresh key pair wants to send a transaction,
someone must send funds to it. Si cannot send funds to their fresh key, as this would
automatically create a visible link between Si and (rpki,rski).

Our idea is that A will send funds to keys that have previously been registered. To
do so, Si will register their fresh key pair (rpki,rski) using a blind RSA signature.As
a result, Si has received a valid signature sig′i of (the hash of) its random key rpki.
Besides s, the adversary learns nothing about the rpkis.

Ideally, all suppliers send their blinded rpki in parallel, and A replies with blind
signatures in parallel, too. The communication latency is constant in the number s of
suppliers. Note that all suppliers must request a blind signature for a random rpki, re-
gardless of whether a supplier is interested in an auction or not. If a supplier does not re-
quest a blind signature, the adversary knows that they will not participate in the auction.

After each supplier has recovered their key pair (rpki, rski), they now need to
broadcast it to the blockchain. All suppliers run a Dining Cryptographer network in
parallel, see Appendix B. A supplier Si interested in participating in the auction will
broadcast (rpki,sig′i), and a supplier not interested will broadcast 0s.

14

As a result of running the DC network, everybody knows fresh, random public keys
of a list of suppliers participating in the auction. Due toA’s signature, everybody knows
that these suppliers are valid suppliers, but nobody can link a key rpki to supplier Si.
All public keys are signed by A running the current auction. Starting from now, only
suppliers really interested in the auction will continue by submitting a bid and deter-
mining the winning bid. Running a DC network is communication efficient. That is, all
suppliers submit their s powers of rpki in parallel in O(1) blocks.

Finally, A transfers money to each rpki, just enough such that suppliers can use
their (rpki,rski) keys to interact with the smart contract.

After the execution of the DC network, assume that s′ ≤ s keys (rpki,rski) have
been published, so s′ suppliers will participate in the current auction. Supplier Si will
use their new key pair (rpki, rski) to pseudonymously participate in the rest of the
protocol.

6 Security Proof

We need to prove Theorem 1 with respect to our protocol implementation. We prove
this using a simulation proof in the hybrid model [19]. In the hybrid model, simulator
S generates messages of honest parties interacting with the malicious parties and the
trusted third party. Since the simulator does not use inputs of honest parties (except for
sending it to the trusted third party which does not leak any information), it is ensured
that the protocol does not reveal any information except the result, i.e., the output of the
trusted third party. The messages generated by the simulator must be indistinguishable
from messages in the real execution of the protocol.

Proof. Let S be the set of all suppliers and S be the suppliers controlled by adversary
A1. We prove IDEALFBid,S,S(v1,...,vs)≡REALΠStrain,A,S(v1,...,vs).

We either establish pseudonymous (broadcast) channels over the blockchain using
the protocol of Section 5.3 or use regular authenticated channels. Then, in the first step
of the protocol, honest suppliers S \ S commit to random bids ri and publish corre-
sponding zero-knowledge proofs P enc

i on the blockchain.
The simulator reads P enc

i
of the malicious parties S from the blockchain. Using

the extractor for the zero-knowledge argument, the simulator extracts vi. The simulator
sends all vi (including those of the honest parties) to the trusted third party TTP . The
simulator receives from the trusted third party results cmpi,j of all comparisons and the
winning bid vw for auctioneer A.

For each honest party Si∈S\S, the simulator prepares a message of random AND-
homomorphic encryptions resj,i following Fischlin’s circuit output and the result of
the comparison cmpj,i. The simulator also invokes the simulator Sim

A({Ci,Cj})
P eval
j,i

(resj,i)

which is guaranteed to exist. Then, the simulator sends the messages to the blockchain.
For each malicious party Si ∈ S that is still active, the simulator reads P eval

j,i
and

resj,i from the blockchain. If judge A determines that VerifyEval(P eval
j,i

,resj,i,Cj ,Ci)

does not check, it publishes ⊥ on the blockchain, and supplier Si is dropped from the
auction. Section 6 describes how we deal with suppliers aborting the protocol.

15

For each honest party Si∈S\S, the simulator prepares a message of random AND-
homomorphic encryptions shufflei,j following Fischlin’s circuit output and the result
of the comparison cmpi,j . The simulator also invokes simulator SimP shuffle(shufflei,j)
for the shuffle zero-knowledge proof. It also opens the corresponding ciphertexts γ`,m∈
shufflei,j . Then the simulator sends the messages to the blockchain.

For each malicious party Si∈S, the simulator reads P shuffle
i,j

, shufflei,j , β`,m and

r`,m from the blockchain. If VerifyShuffle(P shuffle
i,j

,shufflei,j ,resi,j) does not check,
the supplier Si is dropped from the auction. If encrypting plaintexts β`,m and random
coins r`,m do not result in shufflei,j , supplier Si is dropped from the auction.

If the winner Sw of the auction is honest, i.e., Sw ∈ S \S, then the simulator in-
vokes the simulator for the zero-knowledge proof and sends it and vw (received from
the trusted third party) to the auctioneer A. If the zero-knowledge proof does not check,
Sw is removed from the auction.

If the winner Sw of the auction is malicious, i.e., Sw∈S, then the simulator receives
the winning bid value vw and the zero-knowledge proof that it corresponds to commit-
ment Cw. If the zero-knowledge proof does not check, Sw is removed from the auction.

It remains to show that there exists is a simulator for the view ofA2 (the semi-honest
auctioneer/judge A).

In the first step of the protocol, A2 receives IND-CPA secure ciphertexts and zero-
knowledge proofs P enc. In the second step A2 receives further IND-CPA secure ci-
phertexts and zero-knowledge proofs P eval. We have shown in Section 4.2 that P eval is
zero-knowledge for the auctioneer. In the third step A2 receives IND-CPA secure ci-
phertexts, zero-knowledge proofs P shuffle and the opened plaintext and randomness of
some ciphertexts. The plaintexts are either all 1 or all 0 depending on cmpi,j , and the
randomness can be chosen consistently for each ciphertext. Finally,A2 receives vw and
the zero-knowledge proof of plaintext equality to Cw. Hence the view of A2 is simu-
latable from the output of the trusted third party, i.e., the set of results of comparisons
{cmpi,j} and the winning bid vw.

Dealing with Early Aborts. Strain is particularly suitable for the blockchain, because
it can handle any early abort after the bids have been committed. Assume supplier Si has
aborted the protocol or has been caught cheating, then all others suppliers Si can recover
its bid vi using the shares of its private key skGM

i
from commitment Ci=EncGM

PKi
(vi).

We emphasize that our bid opening is secure against malicious suppliers due to zero-
knowledge proof PDLOG. Suppliers will publish vi on the blockchain. After the bid-
ding protocol, winning supplier Sw will reveal its bid vw to semi-honest auctioneer A
(proving plaintext equality to commitment Cw in zero-knowledge). The auctioneer will
compare vw to all opened bids vi and, in case, choose a different winner w′. Hence,
after commitments have been sent to the blockchain, no supplier can abort the auction.
Even worse, aborting the auction will reveal one’s bid to all other suppliers.

7 Related Work

There exists a large number of specialized secure auctions protocols; for a survey see
Brandt [6]. Among them, the one that compares closely to Strain is Brandt’s very own

16

auction protocol [5]. In that protocol, only the suppliers compute the winner of the auc-
tion – as with Strain – and the protocol requires a constant number of rounds – as does
Strain. However, Brandt encodes bids in unary notation making the protocol imprac-
tical for all but the simplest auctions. Instead, we encode bids in binary notation, thus
enabling efficient auctions for realistic bid value. Note that Brandt implements a notion
of full privacy (security against dishonest majority), which we do not. However, Brandt
cannot guarantee output delivery which Strain does and which we consider crucially
important in practice. Brandt claims full privacy in the malicious model, but formal
verification has shown that this does not necessarily holds, cf. Dreier et al. [10].

8 Conclusion

In this paper, we have introduced Strain, a protocol for secure auctions on blockchains.
Strain allows, for the first time, to execute a sealed bid auction secure against mali-
cious bidders, with optional bidder anonymity and guaranteed output delivery over a
blockchain. Strain is efficient, and its main auction part runs in a constant number of
blocks. Such low latency is crucial for practical adoption and provides the basis for a
new implementation of sealed-bid auctions over blockchains where the auction result
can be observed by all blockchain participants.

Bibliography

[1] Accenture. How blockchain can bring greater value to procure-to-pay processes,
2017. https://www.accenture.com/t20170103T200504Z__w__/us-
en/_acnmedia/PDF-37/Accenture-How-Blockchain-Can-Bring-
Greater-Value-Procure-to-Pay.pdf.

[2] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin.
In Symposium on Security and Privacy, Berkeley, CA, USA, May 18-21, 2014, pages
459–474, 2014.

[3] Manuel Blum. Coin Flipping by Telephone. In Advances in Cryptology: A Report on
CRYPTO 81, Santa Barbara, California, USA, August 24-26, pages 11–15, 1981.

[4] Jurjen Bos and Bert den Boer. Detection of Disrupters in the DC Protocol. In Proceedings
of the Workshop on the Theory and Application of Cryptographic Techniques on Advances
in Cryptology, EUROCRYPT ’89, pages 320–327, 1990.

[5] Felix Brandt. Fully Private Auctions in a Constant Number of Rounds. In Proceedings of the
7th International Conference on Financial Cryptography, FC 2003, pages 223–238, 2003.

[6] Felix Brandt. Auctions. In Burton Rosenberg, editor, Handbook of Financial Cryptography
and Security., pages 49–58. Chapman and Hall/CRC, 2010.

[7] David Chaum. The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[8] David Chaum and Torben P. Pedersen. Wallet Databases with Observers. In Advances
in Cryptology - CRYPTO ’92, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings, pages 89–105, 1992.

[9] Geoffroy Couteau, Thomas Peters, and David Pointcheval. Encryption Switch-
ing Protocols. Cryptology ePrint Archive, Report 2015/990, 2015. http:
//eprint.iacr.org/2015/990.

[10] Jannik Dreier, Jean-Guillaume Dumas, and Pascal Lafourcade. Brandt’s fully private
auction protocol revisited. Journal of Computer Security, 23(5):587–610, 2015.

17

[11] Ethereum. White Paper, 2017. https://github.com/ethereum/wiki/wiki/
White-Paper.

[12] Etherscan. Ethereum BlockTime History, 2017. https://etherscan.io/chart/
blocktime.

[13] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, pages 186–194, 1986.

[14] Marc Fischlin. A Cost-Effective Pay-Per-Multiplication Comparison Method for Million-
aires. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA Confer-
ence 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, pages 457–472, 2001.

[15] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA,
pages 365–377, 1982.

[16] Jonathan Katz. Efficient and non-malleable proofs of plaintext knowledge and applications.
In Advances in Cryptology - EUROCRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, pages 211–228, 2003.

[17] Jonathan Katz and Moti Yung. Threshold Cryptosystems Based on Factoring. Cryptology
ePrint Archive, Report 2001/093, 2001. http://eprint.iacr.org/2001/093.

[18] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,
pages 839–858, 2016.

[19] Yehuda Lindell. How To Simulate It – A Tutorial on the Simulation Proof Technique.
Cryptology ePrint Archive, Report 2016/046, 2016. http://eprint.iacr.org/
2016/046.

[20] Wakaha Ogata, Kaoru Kurosawa, Kazue Sako, and Kazunori Takatani. Fault tolerant
anonymous channel. In Proceedings of the 1st International Conference on Information
and Communication Security, ICICS’97, pages 440–444, 1997.

[21] Michael K. Reiter and XiaoFeng Wang. Fragile mixing. In Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, pages 227–235, 2004.

[22] Reuters. Ukrainian ministry carries out first blockchain transactions, 2017. https:
//www.reuters.com/article/us-ukraine-blockchain/ukrainian-
ministry-carries-out-first-blockchain-transactions-
idUSKCN1BH2ME.

[23] Tomas Sander, Adam L. Young, and Moti Yung. Non-Interactive CryptoComputing For
NC1. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA, pages 554–567, 1999.

[24] Stephen Tual. What are State Channels?, 2017. https://blog.stephantual.
com/what-are-state-channels-32a81f7accab.

[25] University of Bristol. Multiparty computation with SPDZ online phase and MASCOT
offline phase, 2017. https://github.com/bristolcrypto/SPDZ-2.

[26] Michael Waidner. Unconditional Sender and Recipient Untraceability in Spite of Active
Attacks. In Advances in Cryptology - EUROCRYPT ’89, Workshop on the Theory and
Application of of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989,
Proceedings, pages 302–319, 1989.

[27] Michael Waidner and Birgit Pfitzmann. The Dining Cryptographers in the Disco: Uncondi-
tional Sender and Recipient Untraceability with Computationally Secure Serviceability. In
Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques
on Advances in Cryptology, EUROCRYPT ’89, pages 690–, 1990.

18

A Proofs of DLOG Equivalence

As the DDH assumption holds in group (Jn, ·) for Blum integers n [9], we adopt
standard zero-knowledge proofs of DLOG equivalence to our setting.

Let y, z ∈ Jn and z a generator of group (Jn, ·). A prover knows an integer σ
such that yσ = γ mod n and zσ = ζ mod n. For public values {y,z,γ,ζ}, the prover
wants to compute the statement logy γ = logz ζ to a verifier in zero-knowledge, i.e.,
without revealing any additional information about σ. This boils down to Chaum and
Pedersen’s zero-knowledge proof that (y,z,Y = yσ,Z = zσ) is a DDH tuple [8]. The
protocol runs in κ rounds. In each round,

1. The prover computes r $←Jn and sends (t1=yr,t2=zr) to the verifier.

2. The verifier sends challenge c $←Jn to the prover.
3. The prover sends s=r+c·σ to the verifier.
4. The verifier checks ys ?

= t1 ·Y c∧zs
?
= t2 ·Zc. If the check fails, the verifier outputs

⊥.

We target non-interactive zero-knowledge proofs, so challenge c can be replaced
in round i≤ κ by a random oracle call c=H(y,z,Y,Z,t1,t2,i) [13]. Let PDLOG be an
initially empty proof. For each round, the prover would add t1,t2, and s to PDLOG, and
then send PDLOG to the verifier.

Note that, if z = −1 mod n, as in our main protocol, then z = −(12) is indeed a
generator of Jn.

This zero-knowledge proof is secure in the random oracle model.

B Dining Cryptographer Networks

A standard technique we use as an ingredient in Strain is a Dining Cryptographer (DC)
network [7]. In a scenario where out of a set of s parties (suppliers) {S1,...,Ss} exactly
one party Si wants to broadcast their message mi to all other parties, a DC network
guarantees delivery of mi to all other parties without revealing i, i.e., who has sent mi.

Assume that all parties have exchanged pairwise secret keys ki,j with each other. In
a single round of a DC network, parties communicate in a daisy chain where party Si
sends a sum sumi to party Si+1. Upon receipt, Si+1 superposes sumi with their own
data and sends sumi+1 to Si+2. Again, Si+2 superposes sumi+1 with their own data
and sends sumi+2 to S3 and so on. Superposing in our case is simple: each party Si
XORs all pairwise keys ki,j of all other parties Sj to whatever previous party Si−1 has
broadcast. Only the one party S∗ that wants to publish their message m∗ additionally
XORs m∗ to the previous sum. At the end, the last XOR of all data sent cancels out
keys ki,j , and message m∗ remains. In essence, a one round DC network allows one
party to disseminate a single message, protected by the DC network. Message m∗ is
public, and it is known that it comes from one party out of set S={S1,...,Ss}, but not
from whom. Therewith, one supplier can anonymously disseminate their new random
public key, and everybody knows that this is a new valid key from one of the suppliers.

19

Daisy chain communication can trivially be replaced by per party broadcasts, e.g.,
publishing to the blockchain. After all parties have published their sum, each party
can compute m∗. The advantage of using the blockchain is efficiency: all parties can
broadcast their sums at the same time, rendering this protocol efficient on a blockchain.

Supporting multiple messages. To disseminate multiple parties’ messages, several
different strategies exists to resolve collisions in DC networks [7]. While all of them
guarantee eventual dissemination of all messages in the presence of fully-malicious
parties, some require multiple rounds and are thus expensive on a blockchain.

Instead in Strain, we employ the approach by Bos and den Boer [4]. There, assume
that each party Si has exchanged s−1 different pairwise keys ki,j,u,1≤u≤ s−1 with
each other party Sj . The idea is that party Si broadcasts all s powers <m1

i ,...,m
n
i > of

their message mi protected by the DC network. Instead of XORing messages broadcast
with keys for protection, we now operate over a finite field GF (2q),q≥|m| and use the
following trick to finally cancel out keys: to protect the uth power mu

i of message mi,
Si adds all keys ki,j,u for j >i to Ki,u and subtracts keys ki,j,u for j <i from Ki,u. Si
then broadcasts mu

i +Ki,u.
Operating in a ring of polynomials, all parties can compute power sums pu(m1,...,

ms)=
∑s
i=1m

u
i ,1≤u≤ s. Each party then uses Newton identities to compute the mi

from power sums. Note that again all parties publish their output at the same time in
parallel which is very efficient on a blockchain.

For brevity, we do not discuss standard approaches realizing fully-malicious
security for DC networks in detail. These approaches require additional rounds where
parties set “traps” to identify and blame other parties, see, for example, [4, 26, 27] for
an overview.

