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Abstract

Dziembowski, Pietrzak, and Wichs (ICS–2010) introduced the notion of non-malleable codes as a
relaxation of the error-correcting codes. Intuitively, a non-malleable code ensures that the tampered
codeword encodes the original message or a message that is entirely independent of the original message.

One of the fundamental research directions in the field of non-malleable code construction considers
encoding the message into k separates states, where k > 2, such that each state can be tampered
separately by an arbitrary function. The goal of this research effort is to reduce the number of states
k, while achieving high encoding rate, i.e., the ratio of the message length to the cumulative size of all
the k encoded states. The current state-of-the-art provides non-malleable code constructions for 2-states
at 1/ log ` rate (Li, STOC–2017), where ` is the length of the encoded message, and, very recently, for
4-states at ≈ 1/3 rate (Kanukurthi, Obbattu, and Sekar, TCC–2017). However, there are no known
non-malleable code constructions for k = 2 or k = 3 with a constant rate. This work contributes to this
research endeavor by providing a rate ≈ 1/3 non-malleable code for k = 3.

Reducing the number of states k in a non-malleable code is notoriously hard. However, our work
succeeds in reducing the number of states required by the construction of Kanukurthi et al. by leveraging
a unique characteristic of the non-malleable code for 2-states provided by Aggarwal, Dodis, and Lovett
(STOC, 2014).

∗Microsoft Research, Bangalore, India. t-digu@microsoft.com
†Department of Computer Science, Purdue University. hmaji@purdue.edu.
‡The research effort is supported in part by a Purdue Research Foundation grant.
§Department of Computer Science, Purdue University. wang1929@purdue.edu.

mailto:t\protect \unhbox \voidb@x \hbox {-}digu@microsoft.com
mailto:hmaji@purdue.edu
mailto:wang1929@purdue.edu


Contents

1 Introduction 3
1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Prior Relevant Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6
2.1 Non-malleable codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Construction of 3-state Non-malleable code 7
3.1 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Proof of Non-malleability 9
4.1 Setting the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A Proof of Lemma 3 17

B Proof of Lemma 4 17

C Proof of Lemma 5 18

D Message authentication code 18



1 Introduction

In the seminal paper [DPW10], Dziembowski, Pietrzak, and Wichs introduced the notion of non-malleable
codes as a relaxation of error-correcting codes. Intuitively, error-correcting codes allow tampering of a small
fraction of the codeword. While, on the other hand, non-malleable codes are resilient to more sophisticated
tampering families where the tampering function may replace the entire codeword. Non-malleable codes
ensure that the tampered codeword either leaves the original message intact or encodes a message that is
entirely independent of the original message.

If we do not restrict the power of the tampering functions, then we cannot achieve non-malleability. In
particular, the tampering function can decode the codeword, retrieve the original codeword, and re-encode a
new message that is one more than the original message. However, limiting the power of the tampering func-
tion family enables the construction of non-malleable codes for that particular function family. For example,
tampering functions that perform bit-level perturbation and permutations [DPW10, CG14b, AGM+15], AC0

tampering functions [CL17], or functions that tamper disjoint parts of the codeword independently [ADL14,
CZ14, ADKO15, Li17] are a representative few.

In split-state tampering, we split the codeword into k > 2 states, and the tampering function tampers
each state independently. There has been a large body of work on the explicit construction of non-malleable
codes against split-state tampering, for k > 2. The priority in this line of research is to reduce k while,
simultaneously, achieving a high rate, the ratio of the length of the message to the cumulative length of the
codeword. For each k, the maximum possible rate is at most 1− 1

k [CG14a]. The ideal goal of this research
direction is to achieve rate close to this upper-bound for small values of k. In particular, the reduction of
the number of states k is notoriously difficult.
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Figure 1: A summary of the research progress.

The current state-of-the-art constructions for k = 2 achieve only rate 1/ log ` [Li17] and for k = 4,
only recently, there is a construction that achieves rate 1/3 [KOS17]. There is no known constant rate
non-malleable code construction for k = 2 and k = 3. Our work contributes to this research endeavor by
constructing the first non-malleable codes for k = 3 with rate 1/3. Note that the rate of our construction is
only a multiplicative factor of 2 less than the upper-bound of the maximum achievable rate.

1.1 Our Contribution
In this work, we give the first construction of three-state non-malleable codes that achieves constant rate
(≈ 1

3 ). Intuitively, we prove the following theorem.

Theorem 1 (Informal). There exists a three-state non-malleable code with rate arbitrarily close to 1/3.
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For the exact statement of our result, refer to Theorem 2. Our construction leverages a unique property
of the 2-split-state non-malleable code construction proposed by [ADL14]. This property, namely, augmented
non-malleability, allows us to simulate the joint distribution of the left-state of the non-malleable encoding
along with the tampered message. Now, using the property mentioned above, we merge two suitable states
among the four states of the recent construction of [KOS17], while preserving the rate of their construction.
Section 1.3 presents the central intuition underlying our construction.

1.2 Prior Relevant Works
Constructions of non-malleable codes are known against a large number of interesting and sophisticated
families of tampering functions. If the size of the tampering function class is upper-bounded, then Monte
Carlo constructions of rate-1 non-malleable codes are known, cf., [FMVW14] and [CG14a]. However, explicit
constructions are known only for a few tampering families.

Among these families of tampering functions, a widely studied family is the k split-state model. In
this model, we encode the message into k > 2 states, and the tampering function tampers the two states
independently. It is evident that the goal of reducing k increases the complexity of designing such non-
malleable codes, which remains the primary bottleneck of this research direction. The case of k = 2 has been
well explored [DKO13, ADL14, ADKO15, Li17] and, currently, the most efficient encoding schemes achieve
rate 1/ log n. For higher values of k, Chattopadhyay and Zuckerman [CZ14] construct a (minuscule) constant-
rate encoding for k = 10, and, recently, Kanukurthi et al. [KOS17] construct a rate-1/3 non-malleable code
for k = 4.

The search of constant-rate non-malleable codes for k = 2 and k = 3 remains open. In this work, we
settle this problem for k = 3 and achieve rate 1/3.

1.3 Technical Overview

Enc(m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .

2. r = Ext(w, s), c = m⊕ r.

3. t1 = Tagk1(c), t2 = Tag′k2(w).

4. (L,R) ∼ Enc∗(k1, k2, t1, t2, s).

5. Output
(
c, (w,L), R

)
.

Dec(c1, c2, c3):

1. c̃ := c1, (w̃, L̃) := c2, R̃ := c3.

2. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec∗(L̃, R̃).

3. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥.

4. If
(

Verify
k̃1

(c̃, t̃1) and Verify′
k̃2

(w̃, t̃2)
)

= 0,
output ⊥.

5. Else output c̃⊕ Ext(w̃, s̃).

Figure 2: Compiling an augmented 2-state non-malleable code (Enc∗,Dec∗) into a 3-state non-malleable
code.

At a high-level, we design a compiler that compiles a bad rate two-state non-malleable code into a constant
rate three-state non-malleable code. Compared to the original two-state non-malleable code, our complier
significantly increases the rate by introducing one additional state.

Our design is similar to the construction of [KOS17]. We use a one-time pad to mask the original message
m, i.e., we compute the cipher-text c = m⊕r. The randomness r itself is extracted from a larger source w and
a seed s using an (average) min-entropy extractor Ext, i.e., we have r = Ext(w, s). Furthermore, we sample a
short key k and generate a short tag t using an (information-theoretic) message authentication code for both
the source w and cipher-text c. Finally, we encode the keys and tags together with the seed by a two-state
non-malleable code (Enc∗,Dec∗), i.e., (L,R) = Enc∗(key, tag, seed). Our key observation is that instead of
storing the cipher-text c, the source w and the two-states L,R of the encoding into 4 separate states, we can
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store the source w along with one of the states, say, L in one state. Using the augmented non-malleability
of the split state encoding, we prove the non-malleability of our compiler using hybrid-arguments. So, our
construction uses only three states, namely, c, (w,L) and R.

To help better understand the coding scheme, we draw Figure 3. In this outline, the length of blue nodes
are long (linear in message length) and the length of red nodes are short (sub-linear in message length).
Hence, we use bad rate augmented 2-state non-malleable code to encode all the information in the red
nodes, and store w and c directly.

w

m

c

r

s

k2

t2

k1

t1Tag′

Ext

⊕

Tag

Figure 3: A pictorial summary of our non-malleable code construction.

To argue the non-malleability of our construction, we need to show that for all tampering functions
f, g, h, such that c̃ = f(c), (w̃, L̃) = g(w,L), R̃ = g(R), the decoding of c̃, w̃, L̃, R̃ can be simulated without
m. The primary bottleneck we face is the combining of w and L into one state, because the tampering on
w and L will be correlated with each other (i.e., the tampered source w̃ depends on both w and L, and so
does the tampered left-state of the 2-state encoding L̃). To solve this, we decompose the function f into two
functions fw and fL, which are functions defined to be f with the first (resp. second) input restricted to be
w (resp. L). First, note that w is independent of m and, hence, we can simulate fw independent of m, which
will give us a pair of tampering functions onto the two-state encoding. Moreover, by the non-malleability of
(Enc∗,Dec∗), we can replace this step with its simulator Sim∗.

However, the left state of the 2-state non-malleable code L is still correlated with m and we cannot
simulate it without some additional guarantees. We recall a augmented property of the two-state construction
in [ADL14] that is observed and introduced in [AAG+16]. This augmented property of two-state non-
malleable codes ensures that not only could we simulate the decoding Ans of the tampered codeword, we can
even simulate the joint distribution of the left state and decoding of the tampered codeword, i.e., the joint
distribution (L,Ans). Note that the two-state non-malleable code requires that Ans can be simulated without
the message, which actually implies that L can be simulated without the message as well. However, their joint
distribution is not guaranteed by the definition of two-state non-malleable codes to be simulatable. Now,
using this augmented property, we can simulate the output (L,Ans) with only the knowledge of tampering
functions (gw, h) and therefore, we could further use the output L to simulate the tampering fL onto w.1

Now, we break the result of Ans into three categories based on whether it is invalid, the original message,
or some fixed messages. That is, we check whether Ans is ⊥, same* or (k∗1 , k

∗
2 , t
∗
1, t
∗
2, s
∗). If Ans = ⊥ then

this is an easy case, because we can just output ⊥, which is independent of the message m. However, for both
same* and (k∗1 , k

∗
2 , t
∗
1, t
∗
2, s
∗) cases, we still need to further check if the tags are valid, extract the one-time

pad r̃ = Ext(w̃, s̃), and decode the message m̃ = c̃⊕ r̃. These steps are correlated with the message m.
We first notice that by the property of message authentication code, in the Ans = same* case, we do not

need to actually check if the tag is correct and instead we can simply check if the message is still the same
or not. This step removes the dependence of the tampering experiment with the original “seed, keys, and
tags” (since they are also not used in fixed cases).

Next, we observe that we only require a small amount of information from w in our hybrid. In fact,
we only need a small amount of leakage L(w) of w to continue with our hybrid. And this leakage L(w)

1 The hybrid-argument is not clear when we decide to merge the cipher text c with the left-state L. So, it was crucial for us
to merge the source w with the left-state L.
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provides the following information. (1) the output Ans of the simulator Sim∗ that simulates the tampering
experiment of (Enc∗,Dec∗) tampered by (gw, h). (2) whether w remains the same after it is tampered by gL
when Ans = same*. (3) whether the tampered w could pass the check of message authentication code when
Ans is the fixed case. (4) the new mask r̃ = Ext(w̃, s∗) in fixed cases. By the property of our min-entropy
extractor, we argue that even conditioned on this leakage L(w), Ext(w, s) is close to uniform, i.e., the joint
distribution (L(w),Ext(w, s)) ≈ (L(w), U). So, we can replace the extraction step with independent uniform
bits. Finally, by the perfect secrecy of the one-time pad, this last step removes the dependence on m and
completes our hybrid argument from tampering experiment to our simulator.

In order for our last step the go through, we requires that w has length more than 2`, where ` is the
message length. Intuitively, this is because the dominant part of the leakage is r̃ = Ext(w̃, s̃), which is as
long as the message. To extract `-bit randomness for the one-time pad. Hence, we will need roughly 2`-bit
randomness.

2 Preliminaries

We use SD(X ,Y) to denote the statistical distance between X and Y. We write x ∼ X when x is draw
according to distribution X . For all n ∈ N, we use Un to denote the uniform distribution on {0, 1}n. For
function f : {0, 1}p×{0, 1}q −→ {0, 1}p×{0, 1}q and every x ∈ {0, 1}p, define function fx : {0, 1}q −→ {0, 1}q
to be fx(y) = ỹ if and only if f(x, y) = (x̃, ỹ). Similarly we define fy(x) = x̃.

Definition 1 ((n, k) coding scheme). A coding scheme with message length k and code length n consists
of two functions. A possibly probabilistic encryption function Enc : {0, 1}k −→ {0, 1}n and a deterministic
decryption function Dec : {0, 1}n −→ {0, 1}k ∪ {⊥} such that for all m ∈ {0, 1}k, Prr[Dec(Enc(m; r))] = 1,
where r is the private randomness of Enc.

Definition 2. A family of hash function
{
hk : {0, 1}α −→ {0, 1}β

}
k∈K is said to be µ-almost pairwise

independent hash function if for all m ∈ {0, 1}α, t ∈ {0, 1}β,

Pr
k∼UK

[hk(m) = t] = 2−β

and for all m,m′ ∈ {0, 1}α such that m 6= m′ and t, t′ ∈ {0, 1}β

Pr
k∼UK

[
hk(m) = t ∧ hk(m′) = t′

]
6 µ · 2−β

Definition 3. Function Ext : {0, 1}n × {0, 1}d −→ {0, 1}` is called (k, ε)-extractor if for all distribution X
such that H∞(X ) > k, we have Ext(X , Ud) ≈ε U`.

Definition 4 (Average conditional min-entropy). The average conditional min-entropy of a distribution X
condition on W is defined to be

H̃∞(X|W) = − log

(
Ew∼W

[
2−H∞(X|W=w)

])
We will need the following lemma on average conditional min-entropy.

Lemma 1. If the size of the support of W does not exceed 2λ, then H̃∞(X|W) > H∞(X )− λ.

2.1 Non-malleable codes
Let copy(x, y) to be the following function

copy(x, y) =

{
y, if x = same*;

x, otherwise.
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Definition 5 (Non-malleable code). A coding scheme (Enc,Dec) with message length k is said to be non-
malleable against tampering family F with error ε if for all function f ∈ F , there exists a distribution Simf

over {0, 1}k ∪ {⊥} ∪ {same*} such that for every m ∈ {0, 1}k,

Tampermf ≈ε copy (Simf ,m)

where Tampermf stands for the following tampering experiment

Tampermf :=

{
c ∼ Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.

}

Definition 6 (Split-state Tampering family). The tampering family Fp1,p2,...,pq such that p1 + p2 + · · · +
pq = n is a q-state tampering family on {0, 1}n that consists of all functions f = (f1, f2, . . . , fq) where
fi : {0, 1}pi −→ {0, 1}pi and tampering on codeword c = (c1, c2, . . . , cq) is done by

f(c) =
(
f1(c1), f2(c2), . . . , fq(cq)

)
When there are just two states, we usually write (c1, c2) as (L,R).

3 Construction of 3-state Non-malleable code

In this section, we will present our construction for 3-state non-malleable code and prove the following
theorem.

Theorem 2. For everiy constant α > 0, there exists a constant c and a 3-state non-malleable coding scheme
with rate 1

3+α and error 2−n
c

.

Before we jump into construction, we will need the following building blocks and results.

3.1 Building blocks

Augmented 2-state non-malleable code

In our construction, we need a stronger version of 2-state non-malleable code, namely augmented 2-state
non-malleable code. This notion is introduced by [AAG+16].

Definition 7. Suppose (Enc,Dec) is a coding scheme with message length k and code length n = p+ q. We
say it is an augmented 2-state non-malleable code against Fp,q with error ε, if for all (f, g) ∈ Fp,q, there
exists a distribution Sim∗f,g over {0, 1}p ×

(
{0, 1}k ∪ {same*,⊥}

)
such that for all m ∈ {0, 1}k,

TamperPlusmf,g ≈ε copy(Sim∗f,g,m)

where TamperPlus is defined to be

TamperPlusmf,g :=

(L,R) ∼ Enc(m), L̃ = f(L), R̃ = g(R)

Output
(
L,Dec(L̃, R̃)

) 
Notice that we abuse function copy(·, ·) here. Sim∗f,g = (x1, x2) has two entries and copy(Sim∗f,g,m) will

output (x1,m) if x2 = same* and (x1, x2) if x2 6= same*.
It is proven in [AAG+16] that there exists an augmented 2-state non-malleable code with 1/poly rate

and negligible error.

Theorem 3 (Theorem 1 in [AAG+16]). There exists a fixed polynomial p such that for all k, there exists a
(n, k) coding scheme that is augmented 2-state non-malleable code with error 2−λ and n 6 p(k, λ).

7



Average min-entropy extractor

Definition 8. We say Ext : {0, 1}n × {0, 1}d −→ {0, 1}` is a (k, ε)-average min-entropy extractor if for
every joint distribution (X ,Y) such that H̃∞(X|Y) > k, we have that (Ext(X , Ud),Y) ≈ε (U`,Y).

It is proved in [Vad12] that any extractor is also a average min-entropy extractor with only a loss of
constant factor on error.

Lemma 2 (Problem 6.8 in [Vad12]). If Ext : {0, 1}n × {0, 1}d −→ {0, 1}` is a (k, ε) extractor, it is also a
(k, 3ε)-average min-entropy extractor.

Combined this results with the following known construction for extractors, we have that there exists
average min-entropy extractor that require seed length O(log n + log(1/ε)) and extracts randomness with
length arbitrary close to conditional min-entropy.

Theorem 4 ([GUV07]). For all constant α > 0 and all integers n > k, there exists an efficient (k, ε)-
extractor Ext : {0, 1}n × {0, 1}d −→ {0, 1}` with d = O(log n+ log(1/ε)) and ` = (1− α)k.

Message authentication code

Definition 9. A µ-secure message authentication code (MAC) is a family of pairs of function{
Tagk :{0, 1}α −→ {0, 1}β

Verifyk :{0, 1}α × {0, 1}β −→ {0, 1}

}
k∈K

such that
(1) For all m, k, Verifyk(m,Tagk(m)) = 1.
(2) For all m 6= m′ and t, t′, Prk∼UK [Tagk(m) = t | Tagk(m′) = t′] 6 µ.

Message authentication code could be constructed from µ-almost pairwise hash function family with the
key length only as long as 2 log(1/µ). For the completeness of our proof, we give a construction in the
Appendix D.

3.2 Construction
Now we are ready to construct a constant rate 3-state non-malleability code. We need the following tools
for our construction.

◦ (Tag,Verify) is a µ-secure message authentication code with message length `, Tag length β and key
length γ.

◦ (Tag′,Verify′) is a µ′-secure message authentication code with message length n, Tag length β′ and
key length γ′.

◦ Ext is a (k, ε1) average min-entropy extractor with source length n, seed length d and output length `.

◦ (Enc∗,Dec∗) is a ε2-secure augmented 2-state non-malleable code. This coding scheme has message
length `∗ = (β + β′ + γ + γ′ + d) and code length p1 + p2. We denote its code word by (L,R) and its
augmented simulator by Sim∗, which given tampering functions will output (L,Ans).

Construction Overview: Our construction will first draw at random the source w and seed s. Next, we
will use the extracted randomness r = Ext(w, s) as a one-time pad to mask the message c = m ⊕ r. Then
draw at random two keys k1, k2 and compute the Tag for the source and cipher text, t1 = Tagk1(c) and
t2 = Tag′k2(w). Finally we will encode (k1, k2, t1, t2, s) using Enc∗, i.e. (L,R) ∼ Enc∗(k1, k2, t1, t2, s). Our
three state will be c, (w,L) and R respectively. A formal description of our coding scheme is showed in
Figure 2.
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4 Proof of Non-malleability

The perfect correctness of our coding scheme is trivial. We shall prove its non-malleability in this section.
To prove the non-malleability of our coding scheme, we shall first define our simulator in Figure 4. In our
simulator, we define a leakage function L(w) that captures all the leakage we need of w to proceed with our
hybrid. It consists of four parts, Ans,flag1,flag2 and mask. Ans is the output we sample from the simulator
of (Enc∗,Dec∗) which depends on w because the tampering function gw depends on w. (Recall that gw is the
function g(w,L) = (w̃, L̃) with the first input restricted as w and only output the second part) Next when
Ans = same*, we need a one-bit leakage flag1 that tells us whether w̃ = w. And when Ans = (k̃1, k̃2, t̃1, t̃2, s̃),
we need another one-bit leakage flag2 that tells us whether w̃ can pass the MAC verification check and when
it does, we further need leakage mask, which is the tampered one-time pad for the decoding of message.

1. w ∼ Un.
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1 × {0, 1} ×
{0, 1} × {0, 1}` as the following function:

(a) (L,Ans) ∼ Sim∗gw,h, w̃ = gL(w).
(b) If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`.
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0.

flag2 = 0, mask = 0`.
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0.

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0.
Let mask = Ext(w̃, s̃).

(c) L(w) := (Ans,flag1,flag2,mask).
3. r ∼ U`, c = 0` ⊕ r, c̃ = f(c).
4. If Ans =

Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and flag2

)
= 0, output ⊥.

Else output c̃⊕mask.

Figure 4: Simulator Simf,g,h

We will use a series of statistically close hybrids to show that
(
c, (w,L),R

)
∼ Enc(m).

c̃ = f(c), (w̃, L̃) = g(w,L), R̃ = h(R).

Output: m̃ = Dec
(
c̃, (w̃, L̃), R̃

)
.

 = Tampermf,g,h ≈ copy
(

Simf,g,h,m
)

Our first hybrid is exactly the same as Tampermf,g,h. We just open up the definition of Enc and Dec.
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H0(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w).
3. (L,R) ∼ Enc∗(k1, k2, t1, t2, s).
4. c̃ = f(c), (w̃, L̃) = g(w,L), R̃ = h(R).
5. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec∗(L̃, R̃).
6. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥.
7. Else if

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

8. Else output c̃⊕ Ext(w̃, s̃).

Now, we want to rewrite (w̃, L̃) = g(w,L) as w̃ = gL(w) and L̃ = gw(L), so that we could create a
tampering experiment onto our 2-state non-malleable code. This gives hybrid H1(f, g, h,m). Since we do
not change anything essentially, this hybrid the same as H0(f, g, h,m).

H1(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w).
3. c̃ = f(c).
4. (L,R) ∼ Enc∗(k1, k2, t1, t2, s).
5. L̃ = gw(L), R̃ = h(R).
6. (k̃1, k̃2, t̃1, t̃2, s̃) = Dec∗(L̃, R̃).
7. w̃ = gL(w).
8. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥.
9. Else if

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

10. Else output c̃⊕ Ext(w̃, s̃).

Notice that step 4,5,6 in H1(f, g, h,m) is exactly TamperPlus
(k1,k2,t1,t2,s)
gw,h

, replace this with simulator Sim∗gw,h
gives us H2(f, g, h,m) and we have the following lemma.

Lemma 3. If (Enc∗,Dec∗) is a ε2-secure augmented 2-state non-malleable codes, H1(f, g, h,m) ≈ε2 H2(f, g, h,m).

H2(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w).
3. c̃ = f(c).
4. (L,Ans) ∼ Sim∗gw,h.

5. (k̃1, k̃2, t̃1, t̃2, s̃) = copy
(

Ans, (k1, k2, t1, t2, s)
)
.

6. w̃ = gL(w).
7. If (k̃1, k̃2, t̃1, t̃2, s̃) = ⊥, output ⊥.
8. Else if

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

9. Else output c̃⊕ Ext(w̃, s̃).

Now in hybrid H3(f, g, h,m), instead of doing copy(), we specifically write down what the hybrid would do
for each case of Ans. Since we do not change anything, the two hybrid are exactly the same H2(f, g, h,m) =
H3(f, g, h,m).
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H3(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w).
3. c̃ = f(c).
4. (L,Ans) ∼ Sim∗gw,h.
5. w̃ = gL(w).
6. If Ans =
Case ⊥: Output ⊥.
Case same*: If

(
Verifyk1(c̃, t1) and Verify′k2(w̃, t2)

)
= 0, output ⊥.

Else output c̃⊕ Ext(w̃, s).
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

Else output c̃⊕ Ext(w̃, s̃).

Consider the case when Ans = same*. In this case, the key and tag remain the same and we want to use the
property of message authentication code to say that the probability that f and gL could successfully forge
a different message that has the same tag under the same key is small. Hence, instead of using Verify, we
would just check if the ciphertext c and source w are the same. This gives us H4(f, g, h,m) and we have the
following lemma.

Lemma 4. If (Tag,Verify) and (Tag′,Verify′) are µ and µ′-secure message authentication code, then H3(f, g, h,m) ≈µ+µ′
H4(f, g, h,m).

H4(f, g, h,m):

copy

(

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w).
3. c̃ = f(c).
4. (L,Ans) ∼ Sim∗gw,h.
5. w̃ = gL(w).
6. If Ans =
Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

Else output c̃⊕ Ext(w̃, s̃).

,m

)

Now notice that the blue part k1, k2, t1, t2, s are no longer used in the hybrid, we could remove those steps
and clean up the hybrid to get H5(f, g, h,m). Obviously, H4(f, g, h,m) = H5(f, g, h,m).

H5(f, g, h,m):

copy

(
1. w ∼ Un, s ∼ Ud, r = Ext(w, s), c = m⊕ r.
2. (L,Ans) ∼ Sim∗gw,h.
3. c̃ = f(c), w̃ = gL(w).
4. If Ans =
Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and w̃ = w

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

Else output c̃⊕ Ext(w̃, s̃).

,m

)

11



Now, we wish to use the property of average min-entropy extractor to remove the dependence between c
and w. Before we do the trick, we shall first rearrange the steps in H5(f, g, h,m) to get H6(f, g, h,m). We
process all the leakage we need at the first part of our hybrid and use only the leakage of w in the remaining.
Intuitively, when Ans = same*, flag1 is the flag that whether w̃ = w and when Ans = (k̃1, k̃2, t̃1, t̃2, s̃), flag2

is the flag whether w̃ can pass the MAC verification and mask is the one-time pad we need for the decoding.
Again H5(f, g, h,m) = H6(f, g, h,m).

H6(f, g, h,m):

copy

(

1. w ∼ Un.
2. (L,Ans) ∼ Sim∗gw,h, w̃ = gL(w).
3. If Ans =
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify′

k̃2
(w̃, t̃2)

)
= 1, flag2 = 1; Else flag2 = 0.

Let mask = Ext(w̃, s̃).
4. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = f(c).
5. If Ans =

Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and flag2

)
= 0, output ⊥.

Else output c̃⊕mask.

,m

)

In the next hybrid, we formalize the red part in H6(f, g, h,m) as a leakage function onto w.

H7(f, g, h,m):

copy

(

1. w ∼ Un.
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1×{0, 1}×{0, 1}×{0, 1}`
as the following function:

(a) (L,Ans) ∼ Sim∗gw,h, w̃ = gL(w).
(b) If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`.
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0.

flag2 = 0, mask = 0`.
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0.

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0.
Let mask = Ext(w̃, s̃).

(c) L(w) := (Ans,flag1,flag2,mask).
3. s ∼ Ud, r = Ext(w, s), c = m⊕ r, c̃ = f(c).
4. If Ans =

Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and flag2

)
= 0, output ⊥.

Else output c̃⊕mask.

,m

)

Notice that L(w) is all the leakage on the source w we need to carry on with our hybrid. By the property
of min-entropy extractor, as long as the conditional min-entropy is large enough, the extracted string is
uniformly random even condition on the leakage. This gives us hybrid H8(f, g, h,m) and the following
lemma.

12



Lemma 5. If Ext is a (k, ε1) min-entropy extractor, H7(f, g, h,m) ≈ε1 H8(f, g, h,m).

H8(f, g, h,m):

copy

(

1. w ∼ Un.
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1×{0, 1}×{0, 1}×{0, 1}`
as the following function:

(a) (L,Ans) ∼ Sim∗gw,h, w̃ = gL(w).
(b) If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`.
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0.

flag2 = 0, mask = 0`.
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0.

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0.
Let mask = Ext(w̃, s̃).

(c) L(w) := (Ans,flag1,flag2,mask).
3. r ∼ U`, c = m⊕ r, c̃ = f(c).
4. If Ans =

Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and flag2

)
= 0, output ⊥.

Else output c̃⊕mask.

,m

)

Finally, notice that the distribution of c is independent of m and we can fix m to be 0 message. This gives
us our simulator. Clearly H8(f, g, h,m) = H9(f, g, h,m). Notice that H9(f, g, h,m) = copy

(
Simf,g,h,m

)
.

H9(f, g, h,m):

copy

(

1. w ∼ Un.
2. Define leakage function L(w) : {0, 1}n −→ {0, 1}β+β′+γ+γ′+d+1×{0, 1}×{0, 1}×{0, 1}`
as the following function:

(a) (L,Ans) ∼ Sim∗gw,h, w̃ = gL(w).
(b) If Ans =

Case ⊥: flag1 = 0, flag2 = 0, mask = 0`.
Case same*: If (w̃ = w), flag1 = 1; Else flag1 = 0.

flag2 = 0, mask = 0`.
Case (k̃1, k̃2, t̃1, t̃2, s̃): flag1 = 0.

If
(

Verify′
k̃2

(w̃, t̃2)
)

= 1, flag2 = 1; Else flag2 = 0.
Let mask = Ext(w̃, s̃).

(c) L(w) := (Ans,flag1,flag2,mask).
4. r ∼ U`, c = 0` ⊕ r, c̃ = f(c).
5. If Ans =

Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and flag2

)
= 0, output ⊥.

Else output c̃⊕mask.

,m

)
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We prove our lemmata in the appendix. Now by the closeness of hybrids, we have

Tampermf,g,h = H0(f, g, h,m) = H1(f, g, h,m) ≈ε2 H2(f, g, h,m) = H3(f, g, h,m) ≈µ+µ′ H4(f, g, h,m)

= H5(f, g, h,m) = H6(f, g, h,m) = H7(f, g, h,m) ≈ε1 H8(f, g, h,m) = H9(f, g, h,m)

= copy
(

Simf,g,h,m
)

This shows that our coding scheme is a 3-state non-malleable code with error µ+ µ′ + ε1 + ε2.

4.1 Setting the parameters
We will use λ as our security parameter. By Corollary 5, we will let k1, k2 be of length 2λ, i.e. γ = γ′ = 2λ
and t1, t2 will have length λ, i.e. β = β′ = λ and both (Tag,Verify) and (Tag′,Verify′) will have error 2−λ.

Since we will need to extract ` bits as a one-time pad to mask the message, by Lemma 2 and Theorem 4,
we will set min-entropy k to be (1 + α′)` and let Ext be a ((1 + α′)`, 2−λ)-average min-entropy extractor
that extract `-bit randomness with seed length O(log n+ λ). By our analysis in Appendix C, it is suffice to
have n− 6λ− `−O(log n+ λ)− 3 > (1 + α′)`. Hence, we will set n = (2 + α)` for some α > α′.

Now the message length for our augmented 2-state non-malleable code will be 2λ+2λ+λ+λ+O(log n+
λ) = O(log n + λ). Now by Theorem 3, we will let c be the constant such that p(nc) = o(n) and set
λ = O(nc). Hence, the length of (L,R) will be o(n). Therefore, the total length of our coding scheme will
be `+ (2 + α)`+ o(n) and the rate is 1

3+α with error O(2−n
c

). This completes the proof for Theorem 2.
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A Proof of Lemma 3

Assume there exists f, g, h,m such that SD
(
H1(f, g, h,m), H2(f, g, h,m)

)
> ε2. Notice that

SD
(
H1(f, g, h,m), H2(f, g, h,m)

)
= Ew,s,k1,k2

[
SD
(
H1(f, g, h,m)

∣∣∣w, s, k1, k2 , H2(f, g, h,m)
∣∣∣w, s, k1, k2)]

Therefore, there exists a w∗, s∗, k∗1 , k∗2 such that

SD
(
H1(f, g, h,m)

∣∣∣w∗, s∗, k∗1 , k∗2 , H2(f, g, h,m)
∣∣∣w∗, s∗, k∗1 , k∗2) > ε2

And hence there exists a distinguisher A such that∣∣∣∣∣Pr

[
A
(
H1(f, g, h,m)

∣∣w∗, s∗, k∗1 , k∗2) = 1

]
− Pr

[
A
(
H2(f, g, h,m)

∣∣w∗, s∗, k∗1 , k∗2) = 1

]∣∣∣∣∣ > ε2

Let c∗ = m ⊕ Ext(w∗, s∗), t∗1 = Tagk∗1 (c∗), t∗2 = Tag′k∗2 (w∗). We shall use A to design A∗ to break the
augmented non-malleability of (Enc∗,Dec∗) for message u∗ = (k∗1 , k

∗
2 , t
∗
1, t
∗
2, s
∗) with tampering function

(g∗, h∗) = (gw∗ , h). Let A∗(L,Ans) do the following

A∗(L,Ans):

1. c̃ = f(c∗), w̃ = gL(w∗).
2. If Ans = ⊥, output A(⊥). Else assume Ans = (k̃1, k̃2, t̃1, t̃2, s̃).
3. If

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output A(⊥).

4. Else output A
(
c̃⊕ Ext(w̃, s̃)

)
.

It is easily seen thatA
(
H1(f, g, h,m)

∣∣w∗, s∗, k∗1 , k∗2) andA(H2(f, g, h,m)
∣∣w∗, s∗, k∗1 , k∗2) areA∗(TamperPlusu

∗

g∗,h∗

)
and A∗

(
copy

(
Sim∗g∗,h∗ , u

∗)) respectively. And thus∣∣∣∣∣Pr

[
A∗
(

TamperPlusu
∗

g∗,h∗

)
= 1

]
− Pr

[
A∗
(

copy
(

Sim∗g∗,h∗ , u
∗)) = 1

]∣∣∣∣∣ > ε2

This breaks the augmented non-malleability and completes the proof.

B Proof of Lemma 4

To prove this lemma, consider the following intermediate hybrid.

H ′(f, g, h,m):

1. w ∼ Un, s ∼ Ud, k1 ∼ Uγ , k2 ∼ Uγ′ .
2. r = Ext(w, s), c = m⊕ r, t1 = Tagk1(c), t2 = Tag′k2(w).
3. c̃ = f(c).
4. (L,Ans) = Sim∗gw,h.
5. w̃ = gL(w).
6. If Ans =
Case ⊥: Output ⊥.
Case same*: If

(
(c̃ = c) and Verify′k2(w̃, t2)

)
= 0, output ⊥.

Else output c̃⊕ Ext(w̃, s).
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and Verify′

k̃2
(w̃, t̃2)

)
= 0, output ⊥.

Else output c̃⊕ Ext(w̃, s̃).
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If SD(H3(f, g, h,m), H4(f, g, h,m)) > µ+ µ′, then one of the following will be true

SD
(
H3(f, g, h,m), H ′(f, g, h,m)

)
> µ or SD

(
H ′(f, g, h,m), H4(f, g, h,m)

)
> µ′

We are going to use the property of (Tag,Verify) to prove the first one is impossible. (the other case could
be proved similarly). Notice the only difference between H3(f, g, h,m) and H ′(f, g, h,m) is when c̃ 6= c but
Tagk1(c̃) = Tagk1(c). Therefore, we could write

SD
(
H3(f, g, h,m), H ′(f, g, h,m)

)
6Pr

[
c̃ 6= c ∧ Tagk1(c̃) = Tagk1(c)

]
=Ec̃6=c

[
Pr

k1∼Uγ

[
Tagk1(c̃) = Tagk1(c)

]]
6Ec̃6=c[µ] = µ

where the last inequality is because (Tag,Verify) is µ-secure message authentication code. This completes
the proof of Lemma 4.

C Proof of Lemma 5

Consider the following function F (L(w), r), where L(w) is interpreted as (Ans,flag1,flag2,mask).

F (L(w), r) :

1. c = m⊕ r, c̃ = f(c)

2. If Ans =
Case ⊥: Output ⊥.
Case same*: If

(
c̃ = c and flag1

)
= 1, output same*.

Else output ⊥.
Case (k̃1, k̃2, t̃1, t̃2, s̃): If

(
Verify

k̃1
(c̃, t̃1) and flag2

)
= 0, output ⊥.

Else output c̃⊕mask.

Notice that H7(f, g, h,m) and H8(f, g, h,m) are F (L(w),Ext(w,Ud)) and F (L(w), Ul) respectively. Since
L(w) is of length `+ β + β′ + γ + γ′ + d+ 3, we have

H̃∞

(
D(w)

∣∣∣L(w)
)
> n− (`+ β + β′ + γ + γ′ + d+ 3)

Here we use D(w) to denote the distribution of w. By the property of our average min-entropy extractor, if
n− (`+ β + β′ + γ + γ′ + d+ 3) > k, we have(

L(w),Ext
(
w,Ud

))
≈ε1

(
L(w), U`

)
Therefore, F (L(w),Ext(w,Ud)) ≈ε1 F (L(w), U`) and this is equivalent to H7(f, g, h,m) ≈ε1 H8(f, g, h,m).

D Message authentication code

Lemma 6. Suppose {hk : {0, 1}α −→ {0, 1}β} is a µ-almost pairwise independent hash family. Then the
following family of pair of functions is a µ-secure message authentication code.{

Tagk(x) = hk(x)

Verifyk(x, y) = 1 if and only if y = hk(x)

}
k∈K
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Proof. Obviously, for all m, k, Verify(m,hk(m)) = 1. Also, for all m 6= m′ and t, t′,

Pr
k∼UK

[
Tagk(m′) = t′

∣∣Tagk(m) = t
]

=
Prk∼UK [Tagk(m′) = t′ ∧ Tagk(m) = t]

Prk∼UK [Tagk(m) = t]
6
µ · 2−β

2−β
= µ �

Lemma 7. Suppose α = ` ·β and write m as (m1,m2, . . . ,m`) where mi ∈ {0, 1}β. Let K = {0, 1}β×{0, 1}β
and write k as (k1, k2). Define hk1,k2(m) = k1 + m1k2 + m2k

2
2 + · · · + mlk

`
2, which is seen as a polynomial

in GF[2β ]. Then {hk} is a α
β·2β -almost pairwise independent hash family.

Proof. For all m, t,

Pr
k∼U2β

[hk(m) = t] = Pr
k2∼Uβ

[
Pr

k1∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+mlk

`
2 = t

]]
= Pr
k2∼Uβ

[
2−β

]
= 2−β

For all m 6= m′ and t, t′,

Pr
k∼U2β

[hk(m) = t ∧ hk(m′) = t′]

= Pr
k1∼Uβ ,k2∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t∧ k1 +m′1k2 +m′2k

2
2 + · · ·+m′`k

`
2 = t′

]
= Pr
k2∼Uβ

[∑̀
i=1

(mi −m′i)ki2 = t− t′
]
· Pr
k1∼Uβ

[
k1 +m1k2 +m2k

2
2 + · · ·+m`k

`
2 = t

]
6

`

2β
· 2−β

where the last inequality is because a degree ` polynomial in a field can have at most ` many zeros. Since
` = α/β, this completes the proof. �

Corollary 5. For all message length α and Tag length β, there exists a α
2β
-secure message authentication

code scheme with key length 2β.
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