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Abstract. Data confidentiality and availability are of primary concern
in data storage. Dispersal storage schemes achieve these two security
properties by transforming the data into multiple codewords and dis-
persing them across multiple storage servers. Existing schemes achieve
confidentiality and availability by various cryptographic and coding algo-
rithms, but only under the assumption that an adversary cannot obtain
more than a certain number of codewords. Meanwhile existing schemes
are designed for storing archives. In this paper, we propose a novel dis-
persal storage scheme based on the learning with errors problem, known
as storage with errors (SWE). SWE can resist even more powerful adver-
saries. Besides, SWE favorably supports dynamic data operations that
are both efficient and secure, which is more practical for cloud stor-
age. Furthermore, SWE achieves security at relatively low computational
overhead, but the same storage cost compared with the state of the art.
We also develop a prototype to validate and evaluate SWE. Analysis and
experiments show that with proper configurations, SWE outperforms ex-
isting schemes in encoding/decoding speed.

Key words: dispersal storage, data confidentiality, data availability, dy-
namic data operations, the learning with errors problem

1 Introduction

Data is wealth for both individuals and companies. Guaranteeing data confiden-
tiality and availability are of primary concern in data storage [1, 2, 3]. Because of
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vulnerabilities in storage software, unreliability of disk drives and so on, storing
data in users’ personal computers cannot absolutely guarantee data confidential-
ity and availability [4]. Thus more and more users resort to cloud storage. Howev-
er, cloud storage still cannot absolutely guarantee confidentiality and availability
[5]. Amazon S3 suffered seven-hour downtime in 2008 [6]. Facebook leaked users’
contact information in 2013 [7]. iCloud leaked users’ private information in 2014
[8]. All similar incidents lead users to focus on designing storage systems which
can provide data confidentiality and availability [3]. Dispersal storage schemes
are techniques to guarantee these two security properties.

Existing dispersal storage schemes are (k, n) threshold schemes, where k is the
threshold [3]. In these schemes, data is transformed into n related codewords.
Then the codewords are stored in separate storage servers, which belong to
different administrative and physical domains. Meanwhile, storage servers can
belong to either the same service provider or (more favorably) different providers,
respectively. Even if (n− k) out of the n codewords are corrupted or completely
unavailable, the data can still be recovered. With fewer than k out of the n
codewords, no information of the data can be obtained.

In POTSHARDS [9], Shamir’s secret sharing algorithm [10] is used as the
dispersal scheme. Shamir’s algorithm [10] achieves information-theoretical secu-
rity. However, the storage overhead of Shamir’s algorithm is n times of the data,
and the encoding time linearly grows with n × k [3]. Compared with Shamir’s
algorithm, Rabin’s IDA [11] improves encoding/decoding speed, and saves stor-
age overhead. However, data confidentiality of Rabin’s IDA is far less. SSMS [12]
provides a computationally secure dispersal scheme. As far as we know, AONT-
RS [3] is the best scheme that achieves balance between confidentiality and data
processing performance. Meanwhile, data integrity of AONT-RS is protected.

Existing schemes [10, 11, 12, 3] achieves a different level of data confidentiality
with different performance and storage overhead. However, existing schemes still
suffer several problems. First, existing schemes achieve data confidentiality under
the assumption that an adversary cannot obtain more than (k − 1) out of the
n codewords. However, this assumption is unsuitable for some dispersal storage
scenarios, such as a user setting one login password for all storage servers, public
cloud storage, etc. In those scenarios, an adversary can easily obtain k out of the
n codewords and then recover users’ data. Second, existing schemes [10, 12, 3]
are designed for storing archives or static data. In these schemes, while executing
dynamic operations, users are required to download and decode corresponding
codewords, which is inefficient. However, data is frequently updated by users,
especially in cloud storage [13, 14]. Thus, existing schemes may be unsuitable
for many storage scenarios.

In this paper, we propose a novel computationally secure dispersal storage
scheme based on the learning with errors (LWE) problem [15], called storage with
errors (SWE). To the best of our knowledge, SWE is the first work that applies
LWE into dispersal storage schemes. The key idea of SWE is reforming LWE to
meet the requirements of dispersal storage. Then we set the secret information
in LWE to be the stored data. After the data is processed, we can utilize k
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out of the n codewords to recover the data, which guarantees data availability.
The hardness of LWE guarantees data confidentiality. Meanwhile, the number
theoretic transform is applied to optimize arithmetic operations in SWE.

The merits of SWE are three-fold: (i) Analysis shows that under our as-
sumptions, SWE with the same storage as the state of the art, achieves higher
confidentiality than existing schemes. In SWE, even though an adversary obtains
all the codewords, it still cannot recover the data. (ii) As SWE has the additive
homomorphic property and each column of the codeword is independent of oth-
ers, SWE favorably supports efficient and secure dynamic data operations (i.e.,
modifying, deleting, and appending). (iii) With proper configurations, SWE
outperforms the state of the art in encoding/decoding speed.

The rest of this paper is organized as follows. Technical background is in-
troduced in Section 2. We then present preliminaries in Section 3. We detail
design and analysis of SWE in Sections 4 and 5, respectively. Experiments and
evaluations are shown in Section 6. Section 7 presents the conclusion.

2 Technical Background

2.1 Dispersal Algorithms
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Fig. 1. The key part of dispersal schemes.
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Fig. 2. An example of generating data
matrix from original data.

In (k, n) threshold dispersal storage schemes, n−k
n represents the fault-

tolerance ability (i.e., even though any (n − k) out of the n codewords are cor-
rupted or completely unavailable, the data can still be recovered). The key part
of dispersal schemes shown in Fig. 1 is also called the dispersal algorithm (DA).
Here, G is the dispersal or generator matrix, which is an n × k integer matrix.
G is public. d is the data vector with k elements. c is the codeword vector with
n elements, and c = G×d. Elements of d or c are integers. Each element of c is
stored in a different storage server. Thus even if (n− k) storage servers are out
of service, d can still be reconstructed. Because of the distributed property of
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storage servers, dispersal storage schemes can survive from non-security-related
events (e.g., power failure, water damage).

The dispersal matrix G should satisfy that any k rows of G can constitute
an invertible matrix. Thus we can reconstruct d from any k intact codewords.
When reconstructing d, if the i-th codeword is chosen, the i-th row of G should
be chosen. Let c′ be the vector which has k codewords, G′ be the corresponding
k × k sub-matrix of G. Then the invertible matrix of G′ multiplies c′ yield d.

2.2 The Learning with Errors (LWE) Problem

The learning with errors (LWE) problem is a generalization of the famous “learn-
ing parity with noise” problem to larger modulus. The most attractive feature
of LWE is the connection of worst-to-average-case [15, 16, 17, 18]. LWE has two
forms [15]: search-LWE and decision-LWE. We apply search-LWE in SWE.

Definition 1. (search-LWE [15].) Let n, k ≥ 1 be integers, q be an integer
and q = q(k) ≥ 2, χ be a distribution which can be Gaussian-like distribution or
uniform distribution on Zq, and x ∈ Zk

q be the secret information. We donate by

Lk
x,χ the probability distribution on Zn×k

q ×Zn
q obtained by choosing A ∈ Zn×k

q

uniformly at random, choosing the “noise” or errors vector e ∈ Zn
q according

to χn, and returning (A,Ax + e) = (A, c) ∈ Zn×k
q × Zn

q . search-LWE is the

problem of recovering x from (A, c) ∈ Zn×k
q ×Zn

q sampled according to Lk
x,χ.

Döttling et al. [16] give the first work that applies uniform error-distribution
(i.e., error-distribution is U [−r, r]) to LWE. This work proves that instances of
LWE with uniform errors are as hard as lattice problems. Furthermore, the result
of [16] shows that the matrix-version of LWE (i.e., A ∈ Zn×k

q , X ∈ Zk×l
q , and

E ∈ U [−r, r]n×l) is also hard.

2.3 Related Work

Next, we introduce some dispersal storage schemes that are most related to our
work, which are summarized in Table 1.

Shamir’s algorithm [10] can guarantee information-theoretic security of data.
However, the storage overhead of Shamir’s algorithm is n times of the data.
Besides, encoding/decoding speed of Shamir’s algorithm is slow. Compared with
Shamir’s algorithm, SWE improves data processing performance, and reduces
storage overhead.

In Rabin’s IDA [11], the non-systematic erasure code (e.g., the dispersal
matrix is the Vandermonde matrix [19]) is applied to disperse data to achieve
availability. Rabin’s IDA saves time and reduces storage overhead to n/k times
of the data. However, data confidentiality of Rabin’s IDA is far less and would be
unacceptable in many storage scenarios [3]. Compared with Rabin’s IDA, SWE
achieves higher confidentiality.

In SSMS [12], a symmetric cryptographic algorithm is applied to encrypt
data. Then the ciphertext is dispersed using a erasure code. The key used in the
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cryptographic algorithm is dispersed using Shamir’s algorithm. Bessani et al. [20]
apply the idea of SSMS to propose the first cloud-of-clouds storage application.

AONT-RS [3] is the backbone dispersal algorithm of a well-known stor-
age company, Cleversafe. In AONT-RS, a variant of All-Or-Nothing Transform
(AONT) is applied to achieve confidentiality. Meanwhile, the systematic Reed-
Solomon code (RS) [19] (i.e., the first k rows of the dispersal matrix compose a
k × k identity matrix) is applied to achieve availability. Besides, an extra word,
“canary”, which has a known and fixed value, is applied to check integrity of
the data when it is decoded. SSMS, Rabin’s IDA, and AONT-RS have approxi-
mate the same storage overhead. Compared with AONT-RS, SWE with proper
configurations is faster than AONT-RS in encoding/decoding speed.

Furthermore existing schemes [10, 11, 12, 3] guarantee data confidentiality
under the assumption that an adversary cannot obtain more than (k− 1) out of
n codewords. However, SWE can guarantee data confidentiality even though an
adversary obtains all the codewords. Besides, SWE favorably supports efficient
and secure dynamic data operations, which is more practical in cloud storage.

Table 1. Comparison with existing schemes. “IS” represents information-theoretical
security. “CS” represents computational security. “b” represents data size.

Schemes Security Techniques Storage

Shamir’s algorithm [10] IS Shamir’s secret sharing nb

Rabin’s IDA [11] IS non-systematic erasure code nb
k

SSMS [12] CS
encryption algorithms

& non-systematic erasure codes
nb
k

AONT-RS [3] CS
AONT

& systematic Reed-Solomon code
nb
k

SWE CS LWE nb
k

3 Preliminaries

3.1 Notation

– Zq: The mathematic structure of group. q is a prime.
– x ← Y: x is independently, randomly, and uniformly chosen from the distri-

bution or set Y.
– A: The dispersal matrix of SWE which is an n×k integer matrix. Ai,j ← Zq.
– D: The data matrix which represents the data to be stored. D is a k× l integer

matrix. D ∈ Zk×l
q .

– f(s, r):The pseudorandom function whose inputs are s and r. Each outputs
of f(s, r) is independently, randomly, and uniformly chosen from the uniform
distribution U [−r, r].

– E: The error matrix of SWE. which is just like the matrix E in LWE. E is
generated by using f(s, r) and thus Ei,j ← U [−r, r].

– C: The codewords matrix which is the result of (A×D+E) mod q.
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– qx: The prime which is the smallest prime bigger than 2x. For examples,
q2048 = 22048 + 981, q1024 = 21024 + 643, q768 = 2768 + 183, and so on.

3.2 System Model and Design Goals

User
Local

server

Storage

servers

Fig. 3. The system model of SWE.

Fig. 3 shows the system model of SWE. There are three entities in SWE:
user, local server, and storage server.

– User: An entity that applies SWE to store data. A user can be a person, a
proxy, a storage gateway and so on.

– Local server: Each user has its own local server and stores s, r, q, n, k, l, A,
and so on in it. Among these, only s should be securely stored. Users calculate
C, recover D, execute dynamic operations and so on on local servers.

– Storage server: An entity which provides storage and computing service. All
codewords C are stored in storage servers. Different storage servers belong to
different administrative and physical domains. Storage servers can belong to
either the same service provider or different providers, respectively.

We assume that storage servers are honest but curious. Thus, storage servers
should honestly execute the operations which are authorized by users. However,
storage servers may pry into users’ data. Meanwhile, an adversary can obtain
all the codewords, but it cannot obtain s which is kept secret by users.

Existing schemes guarantee data confidentiality under the assumptions that
an adversary cannot obtain more than (k−1) out of the n codewords, and storage
servers will not pry into users’ data. However, in practical storage scenarios, data
may be stored in public clouds. A user may set one login password for all storage
servers. Moreover, storage vendors may collude to pry into users’ data. In those
scenarios, obtaining more than (k − 1) out of the n codewords is feasible for
an adversary. As long as an adversary obtains k out of the n codewords, it can
recover users’ data. Hence, our assumptions are more practical than those of
existing schemes.

Based on the above assumptions, we design SWE with the following goals.

– Data confidentiality: SWE can guarantee that even if an adversary obtains all
the codewords, it still cannot recover users’ data.

– Data availability: SWE can guarantee that even if any (n − k) out of the n
codewords are corrupted or unavailable, the data can still be reconstructed.
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– Efficient and secure dynamic data operations: While executing dynamic da-
ta operations, users are not required to download or decode codewords. An
adversary cannot recover users’ data from dynamic operations.

– Efficient data processing: With proper configurations, SWE outperforms the
state of the art in encoding/decoding speed.

4 A New Dispersal Scheme: SWE

Existing schemes [10, 11, 12, 3] achieve confidentiality under the assumption
that an adversary cannot obtain more than (k − 1) out of the n codeword-
s. Some schemes achieve high confidentiality but require too many storage and
computational costs. Although some schemes reduce storage and improve encod-
ing/decoding speed, these schemes achieve relatively weak confidentiality. Mean-
while, existing schemes are designed for archives storage, which is inefficient in
dynamic operations. Meanwhile, trival applying those schemes in dynamic da-
ta operations also leak users’ data information. To deal with these limitations,
we propose a novel dispersal storage scheme, SWE. SWE can achieve higher
confidentiality, availability, and fast encoding/decoding speed. Meanwhile, SWE
favorably supports efficient and secure dynamic data operations.

4.1 The Basic Scheme

Technical highlights: In order to build a secure and efficient dispersal stor-
age scheme, we reform LWE and make it meet the requirements of dispersal
storage. We use the matrix-version of LWE (i.e., A ∈ Zn×k

q , X ∈ Zk×l
q , and

E ∈ U [−r, r]n×l)[16] to construct SWE. We consider X in LWE to be the data
matrix D, A to be the dispersal matrix, and the result of (A ×D + E) mod q
to be the codewords C. Because of the hardness of LWE, it is difficult for an
adversary to recover D by obtaining A, C, r, and q. As A is an n × k matrix
and n > k, we can use any k rows of C to recover D and thus SWE achieves
availability. We also use uniform errors (i.e., Ei,j ← U [−r, r]), small dimension
A, exponential r and q, and the number theoretic transform and its inverse to
build the secure and efficient scheme.

We do not simply use erasure codes and a stream cypher to generate E to
build a computationally secure dispersal scheme. Because such trivial method
requires that Ei,j is no shorter than (A×D)i,j . Obviously, the bit size log r of
Ei,j in LWE is shorter than the bit size log q of (A×D)i,j , which saves the time
of generating E.

SWE consists of three phases: (i) setup, (ii) computing the codewords, called
encoding, and (iii) recovering the data, called decoding.

4.1.1 Setup

During setup, proper parameters of SWE should be chosen. Then, the dispersal
matrix A, the data matrix D, and the error matrix E are generated.
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Table 2. Examples of parameters in LWE and SWE.

Schemes k q r

LWE 200 235 215

SWE 10 q768 ⌈√q768⌉

Choose parameters: As A ∈ Zn×k
q and E ∈ U [−r, r]n×l is generated

by using f(s, r), parameters n, k, q, r, and s should be chosen. Arbitrarily
setting parameters of SWE will lead to an insecure dispersal scheme. Directly
applying common parameters of LWE into SWE may not be able to achieve data
availability or efficient encoding/decoding. Thus, when users choose parameters
of SWE, both security and performance should be taken into consideration.

n−k
n represents the fault-tolerance ability. Larger n−k

n means higher availabil-
ity and more storage overhead. For SWE, the storage overhead of C is n

k times
of that of D. However, higher fault-tolerance also means that an adversary needs
to compromise fewer storage servers to recover users’ data, which leads to rela-
tively weaker security. Therefore users should set n−k

n according to the demand
of availability and security.

Common instances of LWE such as LWE shown in Table 2 cannot satisfy
that any k rows of A can constitute an invertible matrix. Therefore, we cannot
use any k out of the n codewords to reconstruct the data and thus SWE cannot
guarantee data availability. However, if q is a large integer, randomly generating
A can meet the demand of the dispersal matrix. Besides, in order to compute
multiplicative inverse numbers in decoding, users should set q to be a prime too.
Thus, q should be a large prime in SWE.

Meanwhile, r and s also affect the security of SWE. If r and s are too small,
an adversary can easily recover E by brute force attacks, and then recover the
data. Hence the probability of successful guessing r and s should be negligible.
In SWE, r = ⌈√q⌉. s is a random string, whose length is longer than 256 bits.

Directly increasing q and r of common instances of LWE can develop secure
dispersal schemes, but these schemes are inefficient and thus impractical. Such
inefficient schemes cannot be applied to performance-sensitive large data storage
scenarios. For the sake of security and high-performance, we should set n and k
to be small integers such as the example shown in Table 2.

After proper parameters are chosen, A, D, and E are generated as follows.
Generate A: Ai,j ← Zq. In SWE, as the smallest q is q768, any k rows of

A can constitute an invertible matrix.

Theorem 1. If q is a large prime, A ∈ Zn×k
q and n > k, then any k rows of A

constitute an invertible matrix.

Proof. We calculate the invertibility probability of a k × k sub-matrix of A ∈
Zn×k

q . Specifically, the first vector of A can be any nonzero vector, of which there

are qk − 1 (i.e., qk − q0) choices. The second vector can be chosen from qk − q1,
etc. Hence, the number of ways to choose vectors of A is
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(qk − q0)(qk − q1)...(qk − qn−1) =
n∏

i=1

(qk − qi−1).

So, the probability that any k × k sub-matrix of A is invertible is∏n
i=1(q

k − qi−1)

qnk
=

n∏
i=1

(1− qi−1−k) < 1− 1

q
.

As q is a large prime, the invertibility probability is extremely close to 1. There-
fore, we always suppose that any k rows of A constitute an invertible matrix.
⊓⊔
Generate D: D ∈ Zk×l

q is generated from the original data. Because of
q = qx, each element of D is transformed from corresponding x bits of the data.
For example, if q = q1024, Di,j is transformed from corresponding 1024 bits of
the original data. Users generate the first column of D, then the second column
and so on. Fig. 2 illustrates an example of generating D. If the last column of
D has fewer than k elements, the remaining elements can be filled with 0. For
the sake of confidentiality, if the entropy of Di,j is too low, users can add some
random bits in Di,j .

Generate E: In order to build an efficient scheme, we apply uniform errors
rather than Gaussian errors in SWE. E is generated by using f(s, r) and thus
Ei,j ← U [−r, r]. For the sake of confidentiality, when encoding different data
matrices, users should apply f(·) to generate new errors matrices. The same
inputs of f(·) can generate the same E.

In practical,A, n, k, q, and r can be public. E should be kept secret. However,
users do not need to securely store E in their local servers. As E is generated
by using f(s, r), only s should be kept secret. In practical, if a user does not
want to securely store s, the user can assign a unique identifier to each of its
data files, called file-id. Then the user chooses a strong password. Subsequently
the user combines the password and the file-id of corresponding D as inputs of
a pseudorandom function. The output of the pseudorandom function is s. Thus
even if the user stores many files, the user only needs to remember the password.

In many storage scenarios (e.g., cloud storage), securing storage of encryption
keys (e.g., s in SWE) is not a notoriously difficult problem. In these scenarios, we
do not want to keep secret of data for a very long lifetimes or periods of decades
(actually, we intend to design a storage system for dynamic data). Thus, an
adversary cannot recover users’ data by waiting for cryptanalysis techniques to
catch up the encryption algorithm. Meanwhile, storing s or encryption keys in
a user’s local server also saves the storage overhead compared with AONT-RS
and SSMS.

4.1.2 Encoding

After A, D, and E are generated, encoding is calculating (A×D+E) mod q to
get the codewords C. Fig. 4 shows an example of encoding, where n = 5, k = 3.
Specifically, Ci,j = (

∑k−1
x=0 Ai,x ×Dx,j +Ei,j) mod q.
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Fig. 4. An example of encoding in SWE.
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Fig. 5. An example of decoding in SWE.

As Ai,j and Di,j are all large integers, the complexity of conventional multi-
plication is O(m2), where m = max{|Ai,j |, |Di,j |}/w (| · | represents the length
of · and w is the data bus width). The number theoretic transform can reduce
the complexity to O(m logm). So, when implementing SWE, we use the number
theoretic transform and its inverse to optimize encoding/decoding speed.

After generating C, users should store C in distributed storage servers based
on their storage strategies. For example, if n = 4, k = 3, and l = 5, a user stores
the four rows of C in Amazon S3, Windows Azure, Cleversafe, and Oceanstore,
respectively. Even if one of the cloud storage is out of service, the user can
recover D using the remaining codewords. SWE can also be used to protect data
avoiding suffering vendor lock-in [21]. Furthermore, users can take full advantage
of physically distributed storage servers to achieve better service (e.g., achieving
codewords from nearer storage servers reduces downloading time).

4.1.3 Decoding

As any k rows of A can constitute an invertible matrix, we can recover the data
D using any k intact out of the n codewords. Decoding is recovering D using
k intact out of the n codewords of C, the corresponding sub-matrix of A, and
the corresponding sub-matrix of E. Fig. 5 shows an example of decoding, where
n = 5 and k = 3. A user downloads C0,0, C1,0, and C4,0 from storage servers.
The user generates E0,0, E1,0, and E4,0 by using f(s, r). Then, the user solves
the following liner congruential equations with single modulus q to recover D.

(A0,0D0,0 +A0,1D1,0 +A0,2D2,0 +E0,0) mod q = C0,0

(A1,0D0,0 +A1,1D1,0 +A1,2D2,0 +E1,0) mod q = C1,0

(A4,0D0,0 +A4,1D1,0 +A4,2D2,0 +E4,0) mod q = C4,0

.

If the user applies the Gaussian elimination to solve the above equations, it
can recover D, but this method is inefficient. In SWE, we store the invertible
sub-matrix of A corresponding to commonly used codewords in local servers,
Â. Let C̃ be the codewords, Ẽ be the corresponding sub-matrix of E. Thus,
decoding is calculating Di,j = (

∑k−1
x=0 Âi,x × (C̃x,j − Ẽi,j)) mod q.

Integrity checking: In AONT-RS, an extra word of data, “canary” , which
has a fixed value, allows users check the integrity of the data when it is decoded.
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In SWE, users do not need to add such a fixed value word. In SWE, users
only need to retrieve (k+1) codewords and execute two times of decoding using
different k codewords. If the two decoding results are the same, the data is intact
and thus we check the integrity of the data.

4.2 Support for Dynamic Operations

Table 3. The procedure of modifying data in SWE.

User Storage Servers
1. Generate d′

j.

2. Generate e′
j using f(·).

3. Compute c′
j =

(Ad′
j + (e′

j − ej)) mod q.

c′j−−−−−−−−→
modify dj

4. Compute c̃j =
(c′

j + cj) mod q.

So far, we assume that users’ data is static. However, data is frequently
updated by users especially in cloud storage scenarios [13, 14]. Therefore, the
investigations on dynamic data operations are also of paramount importance.

When a user changes a file, we suppose the user changes the file-id to a new
one. Then the user combines the new file-id and its password as s′. Then the user
utilizes f(s′, r) generating e′. If the entropy of the data in dynamic operations
is low, for the sake of confidentiality, the user can add some random bits in it.
Then the user execute corresponding dynamic operations.

Modifying: Suppose that a user wants to modify Di,j to Di,j + m. The
user only needs to modify the (j + 1)-th column of C. Let dj be the (j + 1)-th
column of D, cj be the (j + 1)-th column of C, and ej be the (j + 1)-th column
of E. Table 3 illustrates the operations. Specifically, (i) The user generates the
new vector d′

j in which the (i + 1)-th element is m and other elements are 0.
(ii) The user utilizes f(s′, r) to generate the error vector e′j. (iii) The user
calculates c′j = (A×d′

j+(e′j−ej)) mod q. (iv) The user stores elements of c′j to
corresponding storage servers and authorizes storage vendors to do the addition
operation. (v) Storage vendors compute c̃j = (c′j + cj) mod q.

As an adversary cannot reconstruct e′j − ej, it cannot recover D or d′
j from

c′j and c̃j. When decoding, the user can recover Di,j + m with A, e′j, and c̃j.
Subtraction and multiplication can use the same way mentioned above.

Deleting: This operation can be divided into two groups: (i) Deleting a
whole column of D. As each column of the codewords C is independent of others,
users only need to delete the column of C corresponding to the column of the
deleted data. (ii) Deleting some elements of D in a column. Users apply the
modifying operation by setting deleted numbers to corresponding positions.

Appending: When users want to append data to D, they do not need to
change the codewords of D. They should generate the new data matrix D′
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which is transformed from the appending data. Then they generate the new
error matrix E′ using f(·), and then they encode D′ to get the corresponding
codewords C′. At last, users store C′ to corresponding storage servers.

In a word, SWE favorably supports efficient and secure dynamic data oper-
ations. The reasons are as follows. (i) As SWE has the additive homomorphic
property, the addition of C equals the addition of D. Therefore, users are not
required to download or decode C while executing dynamic data operations. (ii)
Each column of C is independent of others. Therefore, users only need to change
the columns of C corresponding to the changed columns of D. (iii) If C′ is the
codeword generated in dynamic operations and C is the original codewords, an
adversary cannot recover users’ data from C′ or C due to the hardness of LWE.

5 Scheme Analysis

In this section, we analyze SWE and comparable schemes form confidentiali-
ty, availability, and performance. As SSMS [12] does not specify a dispersal or
encryption algorithm, we do not include it for the comparison.

5.1 Confidentiality

In SWE, we assume that different storage servers belong to different administra-
tive and physical domains. Storage servers are honest but curious. An adversary
can obtain all n codewords, except for s. We consider the attacking scenario
that an adversary possesses some codewords and wants to verify whether the
data that it encodes matches some predetermined value. Furthermore, if an ad-
versary can verify that one element of D matches, then the adversary can be
assured that the rest matches. Although this scenario is generous, many realistic
attacking scenarios can be reduced to this one [3].

Shamir’s algorithm [10]: If an adversary obtains k codewords, it can re-
cover the data by solving the k liner equations. If an adversary obtains fewer
than k codewords, it cannot discover any information of the data. Suppose that
d is the data whose length is w bits. Each codewords is no shorter than w bits. If
an adversary obtains (k−1) codewords, it has to enumerate 2w times to generate
the k-th codewords. Every possible value of d is equal. Thus, Shamir’s algorithm
achieves information theoretic security.

Rabin’s IDA [11]: In this dispersal scheme, the data is dispersed by the
non-systematic Reed-Solomon code. Specifically, c = G×d, where G is the Van-
dermonde matrix and is public. Hence, there is no randomness in the codewords.
Even if an adversary obtains one element of c, it can find some information of
d by verifying that a codeword has a predetermined value.

AONT-RS [3]: The variant of AONT (i.e., the AONT utilizes AES-256 as
“generator” and SHA-256 as “hash function”) is applied in AONT-RS to guar-
antee data confidentiality. If an adversary obtains k codewords, it can compute
the hash of encrypted data, h. Since the last element of the AONT package is
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key⊕h, the adversary can recover the encryption key by computing key⊕h⊕h.
Then the data can be recovered. If an adversary obtains fewer than k codewords,
in order to find some information of the data, it has to enumerate 2256 times.

SWE: We analyze the confidentiality of SWE by using the brute force attack
and the Arora-Ge algorithm[22].

(i) Scenario 1: An adversary knows f(·) (i.e., the function of generating
errors e). We utilize the brute force attack to analyze the confidentiality of
SWE. If an adversary obtains k codewords, it has to figure out s to recover
the data d. Let z be the length of s. Hence, the adversary has to enumerate 2z

times to recover d. In SWE, s is longer than 256 bits. If an adversary obtains
fewer than k codewords, it cannot find any information of d. For example, an
adversary obtains (k − 1) codewords. In order to recover d, it has to enumerate
at least 2z+q768 times.

(ii) Scenario 2: An adversary does not know f(·).As different users can utilize
different pseudorandom generators to implement f(·) as long as ei,j ← U [−r, r],
f(·) can be kept secret. Therefore, this storage scenario is common in practical. In
this scenario, we utilize both the brute force attack and the Arora-Ge algorithm
[22] to analyze the confidentiality of SWE.

(ii-A) The brute force attack: We consider this attack in two cases. The
first case is to enumerate e to recover d for an adversary obtaining k codewords.
In SWE, an adversary has to enumerate (2r+1)n times. If an adversary obtains
fewer than k codewords, it cannot discover any information of d. There is another
exhaustive search method [23] for solving d, however, the method needs more
than 2k codewords to transform the LWE instances to norm form of LWE. In the
second case, the entropy of errors e is determined by s and the total complexity
of brute force attack is 2z times, where z is the length of s. Compared with the
above two cases, we set the r is enough large to make that the complexity of
brute force attack is at least 2z. In our scheme, the smallest r is ⌈√q768⌉, which
satisfies the requirement.

(ii-B) The Arora-Ge algorithm: The idea of Arora-Ge [22] is generating
a non-linear errors-free system of equations from LWE samples. We adapt the
results of Arora-Ge from LWE with Gaussian errors to LWE with uniform errors.
If an adversary has the computational power as the Arora-Ge algorithm, the time
of recovering the data is kO(r). However this method needs O(k2r+1) codewords.

Theorem 2. Assume that r > 0, (A,Ad + e) = (A, c) ∈ Zn×k
q × Zn

q , and
the uniform distribution of errors is U [−r, r], then the time complexity of the
Arora-Ge algorithm is kO(r).

Proof. The polynomial generated in the Arora-Ge can be P (x) = X
∏r

i=1(X−i).
Assume that q > (2r + 1)n and 1 ≤ n ≤

(
k+1
2

)
, and generate f1, ..., fn, where

fl = P (cl −
∑k

j=1 xjAj,l). f
H
1 , ..., fH

n are linearly independent with probability

larger than 1 − (2r+1)n
q according to Schwartz-Zippel-Demillo-Lipton Lemma

[22]. P (·) is monomials polynomial and has degree DAG ≤ 2r+1. Then the time
complexity of Arora-Ge algorithm is kO(DAG) = kO(r).



14 L. Yang et al.

⊓⊔
There are other algorithms which can assess concrete hardness of LWE such

as BKW and other algorithms developed from BKW [23]. However, these algo-
rithms are designed for standard instances of LWE with large k and relatively
small q such as the example shown in Table 2. Contrary to LWE, SWE has
relatively small k and large q. Meanwhile, BKW work in the assumption that an
adversary can query oracle polynomial times. However, in dispersal storage sce-
narios, an adversary can obtain at most n codewords. Thus BKW is unsuitable
for assessing the confidentiality of SWE.

From the above analysis, we can see that SWE achieves higher confidentiality
than existing schemes under our assumptions. Although SWE has small k and
exponential q, it still can guarantee data confidentiality. Furthermore, q and r
are important to the confidentiality of SWE. When selecting parameters of SWE,
we should set q to be large integers.

5.2 Availability

SWE and many existing schemes, such as Shamir’s algorithm [10], Rabin’s IDA
[11], AONT-RS [3], etc., can guarantee data availability even though (n−k) out
of the n codewords are corrupted or completely unavailable. Therefore, larger
n−k
n means higher availability. However, larger n−k

n also means more storage
overhead and relatively lower security (i.e., an adversary needs to compromise
fewer storage servers to reconstruct the data).

With the same data availability, the storage overhead of SWE is the same
as the state of the art. For example, the data is 10 MB, k = 3, and n = 5. For
Shamir’s algorithm, as each codewords has the same length as the original data,
the storage overhead is 5 × 10 = 50 MB. For SWE, Rabin’s IDA, and AONT-
RS, Ci,j has the same length as Di,j . Thus SWE, Rabin’s IDA, and AONT-RS
require approximately the same storage overhead, 5

3 × 10 ≈ 16.7 MB.

5.3 Performance

We suppose that the data D is 4 KB, k = 6, and n = 12. As multiplication is
the most time consuming operation, we use the number of multiplications as the
metric for comparing various algorithms.

Shamir’s algorithm: To apply Shamir’s algorithm, we divide D into 4096
bytes, d0, ..., d4095. Each of the 12 slices, S0, ..., S11, is composed of 4096 bytes,
si,0, ..., si,4095. si,j is a function of dj and rj,x. Specifically,

si,j = dj ⊗
5∑

x=1

(i+ 1)x × rj,x,

where rj,x is a random byte. The arithmetic is over Galois Field, GF (28). The
number of multiplications is 12× 5× 4096 = 245760.
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Rabin’s IDA:With Rabin’s IDA, we append 2 bytes toD, and divide it into
6× 683 bytes, d0,0, ..., d5,682. Subsequently, we calculate the 12× 683 codewords
using the non-systematic Reed-Solomon coding. Specifically,

ci,j =
5∑

x=0

(i+ 1)x × dx,j .

The arithmetic is over GF (28). Therefore, the number of multiplications is 12×
6× 683 = 49176.

AONT-RS: With AONT-RS, we utilize AES-256 as “generator” and SHA-
256 as “hash function” in its AONT phase. We use the systematic (6, 12)
Reed-Solomon code over GF (28) in its RS phase. We divide D into 256 128-
bit elements, d0, ..., d255. Then we add 128-bit “canary”, d256. We choose key
to be 256 random bits and compute ci = di ⊕ E(key, i+ 1). Next, we calculate
h = H(c0, ..., c256). Subsequently, we set c257 = h⊕ key. As with the RS phase,
we add 2 bytes and then divide the 4146 bytes into 6 × 691 bytes slices, which
are also the first 6× 691 codewords. Subsequently we calculate the last 6× 691
codewords over GF (28). AES-256 calls 14 times of the rounds function. Each
rounds function of AES-256 equals six times of exclusive-or. We consider each
rounds function of AES-256 to be six times of multiplication. The rounds func-
tion of SHA-256 has 64 iterations, and each input calls one time of the rounds
function [24]. We consider each iteration in the rounds function of SHA-256 to
be one time of multiplication. Thus the number of multiplications in AONT
phase is 14× 257× 6 + 64× 257 = 38036. The number of multiplications in RS
phase is 6 × 6 × 691 = 24876. The number of multiplications in AONT-RS is
38036 + 24876 = 62913.

SWE: With SWE, when k = 6 and n = 12, the corresponding q = q1024.
Thus the arithmetic is over GF (q1024). We append 4096 bits to D, and divide it
into 6× 6 1024-bit elements, d0,0, ..., d5,5. Next, we calculate 12× 6 codewords

ci,j =
5∑

x=0

ai,x × dx,j + ei,j ,

where ai,j ← Zq. Suppose that SWE is implemented on a 64-bit machine. We
use the number theoretic transform (NTT) and its inverse (INTT) to optimize
the multiplication. Specifically,

ai,x × dx,j = INTT(NTT(âi,x)⊙NTT(d̂x,j)),

where ⊙ donates point-wise multiplication, âi,x is the polynomial corresponding

to ai,x, and d̂i,x is the polynomial corresponding to di,x. The length of NTT or
INTT is m = 1025 ÷ 64 ≈ 17. We consider NTT and INTT to be m log10 m
times of multiplication. Thus the number of multiplications is 12× 6× 6× (3×
17 log10 17 + 17) ≈ 34454.

From the above analysis, we can see that with those parameters, SWE out-
performs Rabin’s IDA, AONT-RS, and Shamir’s algorithm. Shamir’s algorithm
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is the slowest scheme among the four schemes. Although AONT-RS employs
the systematic Reed-Solomon code [3] to eliminate the need to encode the first
6× 691 codewords, the AONT phase is time consuming. The experiment results
in the following section also demonstrate the above analysis.

6 Experiments and Evaluations

In order to validate SWE and obtain optimal parameters for SWE, we build
the prototype of SWE. The experiments are conducted on a 64-bit machine
with an Intel (R) Core (TM) i7-4790 processor (4 cores) at 3.6 GHZ with 4 GB
RAM. We use Ubuntu 14.04 LTS as the operating system. We use NTL-9.3.0
and GMP-5.1.3 [25] as the tools for the number theory. We build the prototype
of AONT-RS using OpenSSL-1.0.2f and Jerasure-1.2 [26]. SWE, AONT-RS, and
Shamir’s algorithm are implemented using C language and a single thread. The
following experiment results are averaged from 50 experiments.

6.1 Performance Tuning
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Fig. 6. Encoding speed of SWE varying
with k and qx.
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Fig. 7. Comparison data processing per-
formance of SWE before and after opti-
mizing parameters, where k/n = 3/5.

If we implement SWE with parameters only satisfying the hardness of LWE,
data confidentiality can be guaranteed, but encoding/decoding speed may be
slow. Therefore, in order to validate SWE and choose optimal parameters for
SWE, we build the prototype of SWE and do the following experiments.

In this experiment, A ∈ Zk×k
q , q = qx, q changes from q512 to q4096, and

r = ⌈√q⌉. Fig. 6 illustrates encoding speed of SWE varying with k and qx. The
results show that: (i) When 3 ≤ k ≤ 6, the optimal q is q1024 (i.e., achieves
fastest speed). (ii) When 6 < k ≤ 30, the optimal q is q768.

After performance tuning, we do the experiment of comparison data process-
ing performance of SWE, where k/n = 3/5 and r = ⌈√q⌉. Before tuning SWE,
q = q2048. After tuning SWE, when 3 ≤ k ≤ 6, q = q1024, and when 6 < k ≤ 18,
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q = q768. Fig. 7 illustrates the results. The results show that: (i) k and n affect
performance heavily. In practical, we should use smaller k and n, while SWE
with such parameters should guarantee availability and confidentiality. (ii) q
also affects performance heavily. With proper k and corresponding q, we can
build a more efficient dispersal scheme. (iii) When encoding speed is high, the
corresponding decoding speed is relatively high.

In a word, when implementing SWE, we should tune parameters to achieve
better data processing performance. Meanwhile, SWE with such parameters
should satisfy data confidentiality and availability.

6.2 Comparison on Encoding and Decoding
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(c) k/n = 5/6
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Fig. 8. Comparison of encoding/decoding speed, where (a)-(c) are for encoding and
(d) is for decoding.

In this section, we evaluate performance of SWE and comparable schemes.
Rabin’s IDA [11] cannot guarantee data confidentiality. SSMS [12] does not
specify a dispersal or encryption algorithm. Therefore, we do not compare SWE
with Rabin’s IDA or SSMS. Shamir’s algorithm [10] achieves availability and
high confidentiality. As far as we know, AONT-RS [3] is the best scheme that
achieves balance between confidentiality and data processing performance. Thus,
we compare SWE with Shamir’s algorithm and AONT-RS in encoding/decoding
speed. In AONT-RS, AES-256 and SHA-256 are applied in its AONT phase.

Encoding: We measure the encoding speed of SWE, Shamir’s algorithm
and AONT-RS. For SWE, r = ⌈√q⌉, when 3 ≤ k ≤ 6, q = q1024, and when
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6 < k ≤ 30, q = q768. Figures 8 (a), (b), and (c) exhibit the encoding comparison
results, where k/n = 1/2, k/n = 2/3, and k/n = 5/6, respectively. The results
show that: (i) When 6 ≤ n ≤ 30 and k/n = 1/2, SWE outperforms AONT-RS
in encoding speed. (ii) When 6 ≤ n ≤ 18 and k/n = 2/3, the encoding speed of
SWE is faster than that of AONT-RS. (iii) When 6 ≤ n ≤ 12 and k/n = 5/6,
SWE performs better than AONT-RS in encoding speed. (iv) Among all the
experiments, SWE outperforms Shamir’s algorithm in encoding speed.

Decoding:We also measure the decoding speed of SWE, Shamir’s algorithm,
and AONT-RS. In this experiment, the parameters of SWE are the same as the
parameters used in the encoding speed comparison. As the decoding speed of
SWE or Shamir’s algorithm depends on k (i.e., solve k equations), we only
mention k in Fig. 8 (d). The results in Fig. 8 (d) show that: (i) As k and n grow,
the decoding speed of SWE reduces heavily. The smaller is k, the higher is the
decoding speed of SWE. (ii) When k ≤ 15, the decoding speed of SWE is faster
than that of AONT-RS. (iii) Among all the experiments, SWE outperforms
Shamir’s algorithm in decoding speed. (iv) As the systematic Reed-Solomon code
is applied to disperse data in AONT-RS, if the codewords are obtained from the
first k rows, decoding only involves the AONT phase. Thus, decoding speed of
AONT-RS mentioned in Fig. 8 (d) is the best result. For AONT-RS, if there are
some codewords which are not obtained from the first k rows, decoding involves
both the AONT and Reed-Solomon decoding operations. Hence decoding speed
of AONT-RS will be slower than the results mentioned in Fig. 8 (d), and as k
and n grow, decoding speed of AONT-RS will reduce heavily.

Resch and Plank [3] suggest that in practical storage scenarios, n should
always be smaller than 16. From the experiment results, we can see that with
common configuration (i.e., n ≤ 16), SWE outperforms AONT-RS and Shamir’s
algorithm in encoding/decoding speed.

Large k and n (e.g., k = 200, n = 240) lead to slow encoding/decoding
speed. However, SWE with such a configuration is resistant to attacks from a
quantum computer, which is capable of solving the generalized discrete Fourier
transform problems [27]. When k and n are large, we can also use many well-
established algorithms [28] to optimize matrices operations and thus improve
encoding/decoding speed of SWE. However, such algorithms [28] are not efficient
for AONT-RS, as the time consuming phase of AONT-RS is the AONT phase. In
a word, when setting configurations for SWE, we should make trade-offs between
data processing performance, confidentiality, and availability.

7 Conclusion

In this paper, we have proposed a secure and fast dispersal storage scheme,
known as SWE. By applying the reformed LWE to SWE, even if an adver-
sary obtains all the codewords, SWE can still guarantee data confidentiality.
Theoretical analysis shows that under our assumptions, SWE achieves higher
confidentiality than existing schemes, but still at the same storage cost with
the state of the art. Furthermore, SWE favorably supports secure and efficient
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dynamic data operations, where users are not required to download or decode
corresponding codewords, and no data information is leaked. Analysis and ex-
periment results also show that with proper configurations, SWE outperforms
the state of the art in encoding/decoding speed.

Based on our work, the hardness of LWE with small k, exponential q, and
uniform errors can be further investigated. We hope an efficient reduction from
the standard LWE to such variant of LWE can be given. Furthermore, efficient
and secure dynamic data integrity auditing can be investigated based on SWE.
These further investigations will allow us to build a securer and more efficient
dispersal storage scheme.
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