
Scalable Multi-party Computation for zk-SNARK
Parameters in the Random Beacon Model

Sean Bowe
sean@z.cash

Ariel Gabizon
ariel@z.cash

Ian Miers
imiers@cs.jhu.edu

October 26, 2017

Abstract

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs)
have emerged as a valuable tool for verifiable computation and privacy preserv-
ing protocols. Currently practical schemes require a common reference string
(CRS) to be constructed in a one-time setup for each statement. Ben-Sasson,
Chiesa, Green, Tromer and Virza [5] devised a multi-party protocol to securely
compute such a CRS, and an adaptation of this protocol was used to construct
the CRS for the Zcash cryptocurrency [7]. The scalability of these protocols is
obstructed by the need for a “precommitment round” which forces participants
to be defined in advance and requires them to secure their secret randomness
throughout the duration of the protocol.

Our primary contribution is a more scalable multi-party computation (MPC)
protocol, secure in the random beacon model, which omits the precommitment
round. We show that security holds even if an adversary has limited influence
on the beacon. Next, we apply our main result to obtain a two-round protocol
for computing an extended version of the CRS of Groth’s SNARK [11]. We
show that knowledge soundness is maintained in the generic group model when
using this CRS.

We also contribute a more secure pairing-friendly elliptic curve construction
and implementation, tuned for use in zk-SNARKs, in light of recent optimiza-
tions [13] to the Number Field Sieve algorithm which reduced the security
estimates of existing pairing-friendly curves used in zk-SNARK applications.

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs)[12,
15] have seen increased usage both in the literature and the real world, ranging from
publicly verifiable computation, to deployed usage for anonymous payment systems
such as Zcash [18] and smart contract systems such as Ethereum.1

1As of the Byzantium hard fork in mid October 2017, Ethereum now supports zkSNARK veri-
fication [17]

1

Despite the power of zk-SNARKs, numerous challenges stand in the way of their
widespread use. Software implementations are immature and slow and the concrete
security of deployed schemes is lower than originally intended. Most importantly,
these schemes are secure in the common reference string (CRS) model, which as-
sumes a trusted setup of parameters used for constructing and verifying proofs. The
generation of this CRS is a major challenge, given that corruption or subversion
of the parameters can degrade the security guarantees of the system. For exam-
ple, in Zcash, compromising the CRS generation process allows an attacker to forge
transactions and counterfeit millions of dollars. Consequently CRS generation is a
major challenge for real world usage of zkSNARKs and similar proof systems: with
potentially billions of dollars at stake, “trust me” is not a viable approach.

The current approach for production systems is for the CRS to be generated
via a multi-party computation [5, 7]. These protocols guarantee soundness when at
least one participant is honest, and guarantee zero-knowledge even if none of the
participants are honest.[9] However, these protocols cannot scale beyond a hand-
ful of participants, and can even be too expensive to perform for just one or two
participants. This is not an engineering and optimization issue, fundamentally it
is a cryptographic problem: because of restrictions required to deal with adaptive
attackers, participants must commit to their share of the parameters up front and
maintain availability and security throughout the entire duration of the protocol
even after the majority of their individual computation is completed.

These restrictions mean that participants must be selected in advance, and that
they must remain online throughout the entire duration of the ceremony. This
not only increases the surface area of attacks, but also raises practical problems
as participants are required to maintain custody of the hardware during the entire
ceremony. Participants also cannot abort,2 and so attackers can trivially disrupt the
ceremony. The net result of these cryptographic limitations is that the participants
must be carefully preselected in advance and very limited in number. This moves
the setting for SNARKs from "trust me", to "trust us" for a very small group.
Particularly for “trustless” blockchains, this is a major limitation.

1.1 Our results

In this paper, we aim to make zk-SNARKs suitable for wide-scale usage by providing
a new zk-SNARK scheme and MPC system for CRS generation suitable for real world
usage. We offer three contributions:

2More precisely, the security analysis in [5, 7] assumes no aborts. It seems plausible it could
be extended to deal with at most t aborts where

(
N
t

)
< 2λ where λ is the “security parameter”

and N the total number of players, by a simulator that guesses who will abort; however it does
not seem straightforward to write such a proof as the adversary may be adaptive in their choice
of the aborting subset, according to the message of a simulator emulating the preceding honest
player. Moreover, it is of practical interest to allow more than λ participants and arbitrary aborts.
Concretely, λ ∼ 256 in our implementation and we would like to have more than 256 participants.

2

Player-exchangeable MPC Our primary contribution is a new kind of multi-
party computation protocol, a player-exchangeable MPC (px-MPC) and an efficient
and implemented px-MPC protocol for CRS generation.

A px-MPC is described by a sequence of messages players are supposed to send;
however, importantly, there is no restriction on the identity of the sender of each
message. In particular, although we will discuss multi-round protocols, there is no
need to assume the same players participate in different rounds. Since there is no
private state between messages, players may be swapped out or removed after every
message.

Player exchangeability avoids the issues of pre-selection of participants, the need
to select reliable participants who do not abort, and the need for participants to
maintain custody of sensitive hardware for extended periods of time. The only
requirement is that at least one of the participants in each round honestly follows
the protocol and does not collude with other players. As a result, the protocol can
scale to a practically unbounded3 number of participants and do so dynamically
during protocol execution.

The key to this new approach is the use of random beacons to support a proof
of security which places fewer restrictions on the protocol. We prove security even
if an adversary has limited influence on this beacon.

zk-SNARKs with an efficient and amortized px-MPC CRS generation
process As a second contribution, we offer a concrete SNARK to use with this
approach. To realize this scheme in practice, we must pick a specific SNARK and
provide a protocol for generating its CRS. Groth’s SNARK [11] is the current state
of the art protocol . We prove the security of Groth’s SNARK with an extended CRS
which allows for a two round px-MPC protocol. More significantly, the first round
is agnostic to the statement4, and so can be performed once for all statements up to
some large (but bounded) size. In our implementation, for a circuit size up to 221

multiplication gates, participants in the first round must receive a 1.2GB file, perform
a computation that lasts about 13 minutes on a desktop machine, and produce a
600MB file. The second round is statement-specific, but significantly cheaper. This
allows the bulk of the cost of setup to amortized over many circuits.

A new efficient curve for zk-SNARKS. In order to implement this protocol
we must pick an elliptic curve to use. Existing SNARK implementations, such as
those used in Zcash and Ethereum, use a pairing-friendly elliptic curve designed to be
efficient for zk-SNARKs [6] which originally targeted the 128-bit security level. How-
ever, recent optimizations to the Number Field Sieve algorithm [13] have degraded

3Formally, as seen in Theorem 4.1, the number of participants can be any polynomial in the
security parameter λ, when assuming efficient attacks on our curve have success probability negl(λ).

4Up to statement size.

3

this security, and so we adopt a new pairing-friendly elliptic curve called BLS12-
381 which targets 128-bit security with minimal performance impact. We provide a
stable implementation of this new elliptic curve, written in Rust, with competitive
performance, well-defined serialization, and cross-platform support. [16].

1.2 Overview of the proof

We briefly sketch the main idea of Theorem 4.1 and how it differs from [5, 7]. Let’s
assume for simplicity our CRS consists only of the element s · g1, where g1 is a
generator of some additively written group G1; and s a uniform element in F∗p.
Suppose we wish to generate such an element by a two party protocol where the first
party Alice is honest, and the second, Bob, is malicious. A natural protocol would
proceed as follows: Alice chooses a uniform s1 ∈ F∗p, and sends M = s1 · g1 to Bob.
Now, Bob is requested to multiply M by a uniform s2 ∈ F∗p. The protocol output is
defined as s2 ·M = s1s2g1.

The problem is that as Bob is malicious he can adaptively choose a value s2 ∈ F∗p,
to manipulate the final output value s1s2 · g1. For this reason, in [5, 7] a precom-
mitment round is added, where both Alice and Bob commit to their values s1, s2.
In the round after, Alice and Bob will run the natural protocol, but add a proof
that they are using the values s1, s2 they committed to (the proofs will not expose
the values s1, s2). This prevents Bob from choosing s2 adaptively. However, the
precommitment round has the following drawbacks.

1. Most obviously, it adds a round to the protocol.

2. The participating players need to be defined in advance.

3. The players need to choose their secret elements in advance and protect them
for a while (at least until broadcasting their messages in all subsequent rounds).

The main observation in this paper, is that assuming a public source of randomness
that no player has control over, i.e. a random beacon, we can omit the precommitment
round.

With the random beacon, a simplified version of our protocol, when again, the
first party is honest, and second malicious, will proceed as follows.

1. Alice chooses random s1 ∈ F∗p and broadcasts M = s1 · g1.

2. Bob chooses (somehow) a value s2 ∈ F∗p and broadcasts M ′ = s1s2 · g1.

3. The random beacon is invoked to obtain a uniform s3 ∈ F∗p, and the protocol
output is defined as s3 ·M ′ = s1s2s3 · g1.

Note that the protocol output is s ·g1 for uniform s ∈ F∗p regardless of Bob’s choice of
s2. You may ask, why not skip both players and just output s · g1 with s ∈ F∗p being
the beacon’s output? The point is that it is important no player, or more generally,

4

no group of colluding players that precludes at least one player, will know s. This
means we cannot use the public random beacon to select s, only to randomize the
choice of s.

We stress that in the proof it is enough to assume the random beacon has low
co-entropy; thus the protocol works in the case where the adversary has limited
influence on the beacon.

We refer to Theorem 4.1 for precise details.

2 Preliminaries

We will be working over bilinear groups G1, G2, and GT each of prime order p,
together with respective generators g1, g2 and gT . These groups are equipped with
a non-degenerate bilinear pairing e : G1 × G2 → GT , with e(g1, g2) = gT . We
write G1 and G2 additively, and GT multiplicatively. For a ∈ Fp, we denote [a]1 :=
a · g1, [a]2 := a · g2. We use the notation G := G1 ×G2 and g := (g1, g2). Given an
element h ∈ G, we denote by h1(h2) the G1(G2) element of h. We denote by G∗1,G∗2
the non-zero elements of G1,G2 and denote G∗ := G∗1 ×G∗2.

We assume that we have a generator G that takes a parameter λ and returns the
three groups above having prime order p at least super polynomial in λ, together
with uniformly chosen generators g1 ∈ G∗1, g2 ∈ G∗2. We assume group operations
in G1 and G2, and the map e can be computed in time poly(λ). When we say an
event has probability γ, when mean it has probability γ over the randomness of G, in
addition to any other randomness explicitly present in the description of the event.

When we say a party A is efficient, we mean it is a non-uniform sequence of
circuits, indexed by λ, of size poly(λ). When we say A is an efficient oracle circuit
we mean it is efficient in the above sense, and during its execution may make poly(λ)
queries to an oracle R, taking as input strings of arbitrary length and outputting
elements of G∗2.

We assume such parties A all have access to the same oracle R during the pro-
tocol, whose outputs are uniform independent elements of G∗2.

For a ∈ Fp and C ∈ G, we denote by a ·C the coordinate-wise scalar multiplica-
tion of C by a; that is, a · C := (a · C1, a · C2) ∈ G. We also allow coordinate-wise
operations of vectors of the same length. For example, for a ∈ Ftp and x ∈ Gt

1,
a · x := (a1 · x1, . . . , at · xt).

We think of acc and rej as true and false. Hence when we say “check that f(x)”
for a function f and input x, we mean check that f(x) = acc.

We use the acronym e.w.p. to mean “except with probability”; i.e., e.w.p. γ
means “with probability at least 1− γ”.

We assume a synchronous setting where we have positive integer “slots” of time;
we assert that in slot J , parties know what messages were sent (and by whom) in
slots 1, . . . , J − 1.

5

2.1 Random beacons

We assume we have at our disposal a “random beacon” RB that outputs elements in
F∗p. We think of RB as a function receiving a time slot J , and positive integer k; and
outputting k elements a1, . . . , ak ∈ F∗p. It will be convenient to assume RB is defined
only for a subset of values J as its first input. We say RB is resistant to A, if for
any positive integers J and k for which RB is defined: for any random variable X
generated by A before time J - i.e. using calls to RB(J ′, k′) for J ‘ < J , and calls to
the oracle R in case A is an oracle circuit and messages H of honest players following
a protocol A is designed to participate in; the distribution of RB(J, k) is uniform in
(F∗p)k and independent of (randA, X), where randA is A’s randomness.

We now generalize this definition to model adversaries that have limited influence
on the value of the beacon. We say RB is u-co-resistant to A, if for any positive
integers J and k: for any random variable X generated by A before time J as
described above, the distribution of RB(J, k) conditioned on any fixing of (randA, X)
has co-min-entropy at most u (i.e. min-entropy at least k · log |F∗p| − u).

Our protocols are always of a round-robin nature, where player Pi sends a single
message in each round following player Pi−1, and RB is invoked at the end of each
round at the time slot after PN ’s message. Thus, we implicitly assume the protocol
defines that the time slot for Pi to send his round ` message is J = (`−1)·(N+1)+i.
In this context, it will be convenient to assume RB(J, k) is defined if and only if J
is a multiple of N + 1.

2.2 Input domains

We assume implicitly in all method descriptions that if an input is not in the pre-
scribed range the method outputs rej. This means that in an implementation of
the protocol a method expecting input in G∗2 (for example) checks that the received
input is indeed in this range and output rej otherwise.

2.3 Player-exchangeable protocols and adaptive adversaries

We assume there are N players P1, . . . , PN in each round of the protocol. Though
we use this notation for each round, we do not assume it is the same player Pi in
each round, nor that the identity of the player, or equivalently, their behavior in the
protocol, was determined before the time slot where they send their message. In
particular, it is possible Pi simply aborts adding nothing to the transcript.

When we discuss an adversary A controlling K players in the protocol, for 1 ≤
K ≤ N , we mean that A can adaptively choose a different subset of K players to
control in each round. That is, in time slot (` − 1) · (N + 1) + i they can choose
whether to control Pi in round ` if they have not chosen K players so far in round `.

We denote by transcript`,i the transcript of the protocol up to the point where
player i sent his message in round `.

6

2.4 Preliminary claims

The following claim is not hard to show.

Claim 2.1. Let A,B be two random variables such that for any fixing a of A, B|A =
a has co-min-entropy at most u. Let P be a predicate with range {acc, rej}. Let B′

be a random variable independent of A that is uniform on the range of B. Then

Pr(P (A,B′) = acc) ≥ 2−u · Pr(P (A,B) = acc).

2.5 Auxiliary methods

We define some methods to check whether certain ratios between elements hold,
using the pairing function e. The following definition and claim are from [7].

Algorithm 1 Determine if x ∈ F∗p exists such that B = A · x, and D = C · x.
Require: A,B ∈ G1 and C,D ∈ G2 and none of A,B,C,D are the identity.
1: function SameRatio((A,B), (C,D))
2: if e(A,D) = e(B,C) then
3: return acc
4: else
5: return rej
6: end if
7: end function

Claim 2.2. Given A,B ∈ G∗1 and C,D ∈ G∗2, SameRatio((A,B), (C,D)) = acc if
and only if there exists s ∈ F∗p such that B = s ·A and D = s · C.

Algorithm 2 Check whether the ratio between A and B is the s ∈ F∗p that is
encoded in C
Require: A,B ∈ G2

1 or A,B ∈ G2. C ∈ G∗2 or C ∈ (G∗2)2.
1: function Consistent(A,B,C)
2: if C ∈ (G∗2)2 then
3: r ← SameRatio((A1, B1), (C1, C2))
4: else
5: r ← SameRatio((A1, B1), (g2, C))
6: end if
7: if A,B ∈ G1 then
8: return r
9: else

10: return r AND SameRatio((A1, B1), (A2, B2))
11: end if
12: end function

7

We later use the suggestive notation consistent(A−B;C) for the above function
with inputs A,B,C.

2.6 Proofs of Knowledge

We will use a discrete log proof of knowledge scheme based on the Knowledge of
Exponent assumption.

Definition 2.3 (Knowledge of Exponent Assumption (KEA)). For any efficient
A there exists an efficient deterministic χ such that the following holds. Consider
the following experiment. A is given an arbitrary “auxiliary information string” z,
together with a uniformly chosen r ∈ G∗2, that is independent of z. He then generates
x ∈ G∗1 and y ∈ G∗2. χ, given the same inputs r and z and the internal randomness
of A, outputs α ∈ F∗p. The probability that both

1. A “succeeded”, i.e., SameRatio((g1, x), (r, y)),

2. χ “failed”, i.e., x 6= [α]1,

is negl(λ).

Remark 2.4. Let’s see that the assumption is the standard KEA assumption, besides
the partition of the elements to G1 and G2: Suppose that r = [γ]2 and x = [α]1.
Then SameRatio((g1, x), (r, y)) implies y = [α · γ]2. Thus (x, y) is a pair of ‘ratio’
γ, generated from the given pair (g1, r) also of ratio γ; and the KEA states to create
such a pair we must know the ratio with the original pair, namely α.

Note that KEA is usually phrased for groups written in multiplicative notation,
thus a better name here might have been “Knowledge of Coefficient Assumption”.

Algorithm 3 Construct a proof of knowledge of α
Require: α ∈ F∗p
1: function POK(α, string v)
2: r ← R([α]1 , v) ∈ G∗2
3: return ([α]1 , α · r)
4: end function

Algorithm 4 Verify a proof of knowledge of α
Require: a ∈ G∗1, b ∈ G∗2
1: function CheckPOK(a, string v,b)
2: r ← R(a, v) ∈ G∗2
3: return SameRatio((g1, a), (r, b))
4: end function

8

Claim 2.5. Under the KEA assumption, for any efficient oracle circuit A, there
exists an efficient χ such that the following holds. Fix any string z that was generated
without queries to R. Given z and random oracle replies r1, . . . , r`, A produces
a ∈ G1, y ∈ G2 and a string v; and χ, given the same inputs together with the
internal randomess used by A, produces α ∈ F∗p. The probability that both

1. A “succeeds”, i.e., CheckPOK(a, v, y) = acc,

2. χ “failed”, i.e., a 6= [α]1,

is negl(λ).

Proof. Fix A and z such that given z and oracle access to R, A produces a pair
a ∈ G1, y ∈ G2 and string v. Let ` = poly(λ) be the number of oracle calls A makes
to R. We can think of A as a deterministic function of z, the sequence r = r1, . . . , r`
of replies from R, and its internal randomness randA. For i ∈ [`], we construct Ai,
that given z and r ∈ G2 does the following. It invokes A on (z, r, randA), where
rj is chosen uniformly for j 6= i, and ri = r; and randA is chosen uniformly. Let
(a, v, y) := A(z, r, randA) and let q1, . . . , q` be its sequence of queries to R. Let
Di be the set of (r, randA) such that qi = (a, v) and i is the first such index. If
(r, randA) /∈ Di, Ai aborts. Otherwise, Ai outputs (a, y). By the KEA, there exists
an efficient χi such that the probability over uniform r, randA that both

1. SameRatio((g1, a), (r, y)),

2. χi given z, r, randA didn’t output α such that a = [α]1,

is negl(λ). We can think of Ai as a deterministic function Ai(z, r, randA), that takes
ri as its input r and r1, . . . , ri−1, ri+1, . . . , r` as its randomness for answering the
calls to R for j 6= i. We can think of χi as a function χi(z, r, randA) in the same
way.

Now we construct an efficient χ as follows. χ determines the sequence q1, . . . , q`
of queries to R made by A(z, r, randA) and its output (a, v, y). Suppose that
(r, randA) ∈ Di for some i ∈ [`], then χ returns α := χi(z, r, randA); otherwise
χ aborts. Now suppose that (r, randA) ∈ Di and “A beats χ”. That is,

1. CheckPOK(a, v, y) = acc.

2. χ(z, v, r, randA) = α where a 6= [α]1.

We have R(a, z) = ri, and χi(z, r, randA) = χ(z, r, randA). Hence,

1. SameRatio((g1, ri), (a, y)).

2. χi(z, r, randA) = α where a 6= [α]1.

But this can only happen for a negl(λ) fraction of (r, randA). Also, if (r, randA) /∈
Di for any i ∈ [`], the value of R(a, v) is yet unknown and uniformly distributed and
thus the probability that CheckPOK(a, v, y) is negl(λ).

A union bound over i ∈ [`] now gives the claim.

9

3 Multi-party Computation

3.1 The circuit structure

We assume we have an artithmetic circuit C over Fp with the following structure,
which may seem a bit adhocish; however it is satisfied for a circuit computing the
extended CRS of [11] described in Section 5 and allows us to simplify the protocol
design of [5].

The circuit consists of alternate multiply/divide layers C1, . . . , Cd, and linear
combination layers L1, . . . , Ld. We call d the depth of the circuit.5 (A layer can have
depth larger than one in the regular sense.) The circuit inputs x are partitioned into
disjoint sets x1, . . . ,xd corresponding to the layers. Specifically, we think of x` as
the inputs of the multiply/divide layer C`, and at times use the notation x ∈ C` to
mean x ∈ x`. A multiply/divide layer C satisfies the following:

1. All gate outputs in C are outputs of the circuit.

2. C = C` has an input gate for each of its inputs x ∈ x`. When another gate
wishes to use one of these inputs, it uses a wire from the corresponding input
gate (i.e. there are no “direct” input wires). In particular, every input is part
of the circuit output.

3. All gates in C, besides the input gates, are division and mutiplication gates of
fan-in two. The left input is a gate from C or previous layers; and the right
input is an input gate belonging to C.6 In case of a division gate, the right
input is always the denominator.

A linear combination layer L consists of linear combination gates of unbounded
fan in, whose inputs are gates from L or previous layers.

3.2 The protocol coordinator

In addition to messages of the players, the protocol description includes messages
that are to be sent by the protocol coordinator. These messages are a deterministic
function of the protocol description and the transcript up to that point. In practice,
it can be helpful to have a computationally strong party fill this role. However,
there is no need to trust this party, and anyone can later verify that the protocol
coordinator’s messages in the protocol transcript are correct. In particular, the role
of the protocol verifier will include, in addition to the steps explicitly described,
to compute the protocol coordinator’s messages independently and check they are
correct.

5This notion is similar to S-depth in [5], though we have not determined the precise relation.
6In fact, we can allow the right input to be any gate that is ‘purely’ from C; meaning that the

directed tree of gates leading to the right input only contains gates from C. But for the Groth
circuit [11] which is our main usecase, we can assume the right input is an actual input from the
same layer.

10

3.3 The MPC

The goal of the protocol is to compute C(x) ·g for uniformly chosen x ∈ (F∗p)t, where
t is the number of C’s inputs. More specifically, we will have x = x1 · · ·xN ·x′ (recall
this product is defined coordinate-wise), where xi ∈ (F∗p)t is the input of Pi, and x’
is a random beacon output.

Denote the layers of C by C1, L1, . . . , Cd, Ld. The protocol consists of d rounds
corresponding to the layers.

3.4 The round structure

We fix a layer ` ∈ [1..d] and denote C = C`, L = L`. We assume that for all gates
g in previous layers - C1, L1, . . . , C`−1, L`−1, we have already computed an output
value [g] ∈ G.

Note that the output of every gate g ∈ C, is a Laurent monomial (i.e. ratio of
two monomials) in C’s inputs, possibly multiplied by an output of some gate g’ from
a previous layer. Denote this monomial Mg, and the output from the previous layer
by gsrc; if no such output exists let gsrc := g.

1. For j ∈ [N], Player j does the following.

(a) For each input x used in C, output [xj]1, and yx,j := POK(xj , v), where
v = transcript`,j−1 is the protcol transcript before the current player.

(b) For each gate g ∈ C:

• If j = 1, output [g]1 :=Mg(x
`
1) · gsrc.

• Otherwise, when j > 1, output [g]j :=Mg(x
`
j) · [g]

j−1.

2. Let J − 1 be the time slot on which PN was supposed to broadcast in this
round. The protocol coordinator computes and outputs x′` := RB(J, t`), and
[g] :=Mg(x

′`) · [g]N for each g ∈ C.

3. Finally, the protocol coordinator computes and outputs, in the same time slot,
the values [g] for all gates g in the linear combination layer L = L`.

Verification:
For each j ∈ N , the protocol verifier does the following.

1. For each input x ∈ C, let rx,j = R([xj]1 , transcript`,j−1) check that
CheckPOK([xj]1 , transcript`,j−1, yx,j); and consistent([x]j−1 − [x]j; (rx,j , yx,j)).

2. Let gL and gR be the inputs of g.

3. If gL ∈ C then

11

• If g is a multiplication gate check that consistent([gL]j − [g]j; [gR]
j)

• If g is a division gate check that consistent([g]j − [gL]
j; [gR]

j)

4. If gL is from a previous layer, then

• If g is a multiplication gate check that consistent([gL]− [g]j; [gR]
j)

• If g is a division gate check that consistent([g]j − [gL] ; [gR]
j)

4 Security Proof

We denote by CS a random variable equal to the encoded output of the circuit C
with uniformly chosen input. That is, CS := [C(s)] for uniform s ∈ (F∗p)t.

Let A be an adversary that controls a subset of N − 1 players in each round
as described in Section 2.3. We denote by CA the circuit output generated by A
participating in the protocol together with an honest player in each round. We think
of A as outputting a string z after the end of the protocol. CA and z are random
variables that are a function of A’s randomness randA, the honest player’s inputs
- which consist of uniformly distributed independent elements of F∗p, the random
oracle R’s outputs - which are uniformly distributed elements of G2; and the random
beacon’s outputs randbeacon (which are elements of F∗p, over which A may have some
limited influence).

For a predicate P with range {acc, rej}, we define

advA,P := Pr(P (CA, z) = acc).

Note that advA,P depends on RB and the amount of influence A has on RB. We
think of RB as fixed and thus don’t use it as an extra parameter.

Theorem 4.1. Fix any efficient oracle circuit A and u > 0. Fix a number of players
N with N(λ) = poly(λ). There exists an efficent B such that if RB is u-co-resistant
to A, then for every predicate P

Pr(P (CS ,B(CS)) = acc) ≥ 2−ud · advA,P − negl(λ).

Suppose P is a predicate that runs a SNARK verifier with some fixed public
input, using its first input as the SNARK parameters, and the second as the proof;
take a constant d and u = O(log λ). The theorem implies that if A cannot con-
struct a correct proof with non-negligible probability for independently generated
parameters, it cannot do so for parameters generated in the protocol in which it
participated.

Proof. Denote by H the set of inputs of the honest player in each round. Denote by
randbeacon the replies of the random beacon to the protocol coordinator at the end
of each round. Denote by randoracle the replies of the random oracle to the honest

12

player (when computing POK(x, z) for x ∈ H) and to A’s queries. The circuit output
CA and the string z A outputs after the protocol can be viewed as a function of
x = (randA, H, randoracle, randbeacon). Call this function F ; i.e. F (x) = (CA(x), z(x)).
Let X be the set of such x’s. We have d calls to RB- one at the end of each round
corresponding to the string randbeacon = randbeacon1, . . . , randbeacond. As RB is u-co-
resistant to A, we know that during the protocol randbeacon` has co-min-entropy at
most u conditioned on any fixing of randA, H, randoracle, randbeacon1, . . . , randbeacon`−1.
In particular,

advA,P = Pr(P (CA(A,B), z(A,B)) = acc).

for a uniformly distributed A on the possible values of (randA, H, randoracle), and a
random variable B having co-min-entropy at most ud conditioned on any fixing of
A, describing the value of randbeacon. It now follows from Claim 2.1 that

Prx←X (P (CA(x), z(x)) = acc) ≥ 2−ud · advA,P .

(where x← X refers to a uniform choice of x.)
Given A we construct B with the following property. B receives [C(s)] which

is an output value of the random variable CS . Given [C(s)] it produces an output
z(x), for x such that

1. x is uniform in X (over the randomness of s ∈ (F∗p)t and the randomness of B).

2. The values x for which B does not produce an output z(x) with CA(x) = [C(s)]
have density negl(λ).

It follows that

Pr(P (CS ,B(CS)) = acc) ≥ Prx←X (P (CA(x), z(x)) = acc)− negl(λ)

≥ 2−ud · advA,P − negl(λ).

We proceed to describe B and show that its output is as claimed.
We have [C(s)] = {[g(s)]}g∈MC

, where MC is the set of all gates in all multi-
ply/divide layers of C. B runs the protocol with A as follows. We think of B as
running an internal oracle circuit B∗ that makes queries to R. When B∗ makes a
new query to R, B answers uniformly in G∗2, and otherwise it answers consistently
with the previous answer. If B∗ aborts in the description below, B outputs z(x′) for
some fixed arbitrary string x′.

B∗ in turn runs A as follows.

1. B∗ intializes an empty table T of “exceptions” to responses of R.

2. Whenever A makes a query q to R, B∗ checks if the reply R(q) is present in T ;
if so it answers according to that, otherwise according to R. It answers queries
to RB as specified below.

13

3. For each ` ∈ [1..d], it emulates the `’th round as follows.

(a) Let j be the index of the honest player in round `.7 Let C := C`. Recall
that x` denotes the inputs belonging to C. B∗ begins by executing the
round up to player Pj−1 by invoking A on the transcript from previous
rounds.
For each 1 ≤ j′ < j such that P ′j aborted or wrote an invalid mes-
sage that the protocol verifier rejected, B sets x`j′ = (1, . . . , 1) ∈ (F∗p)t` .
Otherwise, for each x ∈ x`j′ , Pj′ has output [x]1 and y ∈ G2 with
CheckPOK([x]1 , transcript`,j′−1, y). Let χ be the extractor obtained from
Claim 2.5 when taking there A to be a variant of B∗ that uses the same
random string and runs identically to B∗ but stops when reaching this
point and outputs [x]1 , transcript`,j−1, y; and taking z = [C(s)]. B∗ com-
putes x∗ = χ(z, r, randB∗) where r is the sequence of replies to B∗ from R
up to the point of outputting [x]1 , y. If χ’s output x∗ is not equal to x,
B∗ aborts. (This can be checked by checking if [x∗]1 = [x]1.)

(b) If B∗ has not aborted it has obtained x`1, . . . ,x
`
j−1. B∗ now chooses uni-

form b ∈ (F∗p)t` , and defines

x`j :=
bs`

x`1 · · ·x`j−1
.

Note that as B∗ doesn’t know s it can’t compute x`j . However, it has
[
s`
]

as part of [C(s)], where s` is the restriction of s to the inputs x` of C.
Thus it can compute [

x`j

]
=

b ·
[
s`
]

x`1 · · ·x`j−1

Note that x`1 · · ·x`j = bs`. So, for each g ∈ C, B∗ can compute and
broadcast

[g]j =Mg(x
`
1 · · ·x`j) · gsrc =Mg(b)Mg(s

`) · gsrc =Mg(b) · [g(s)] .

([g(s)] is given as part of [C(s)].) Thus, B∗ can correctly play the role of
Pj with this value of x`j in Step 1b of Section 3.4 and produces a valid
message.

(c) What is left is generating POK([x]1 , transcript`,j−1) for x ∈ x`j as in
step 1 of Section 3.4. If R([x]1 , transcript`,j−1) has been queried by A
it aborts. Otherwise, B∗ chooses random r ∈ F∗p and adds the query

7Note that j may only be determined by A after the message of Pj−1, but the description of B∗
in this step doesn’t require knowing j before, and B∗ can just execute A until reaching a player j
that A doesn’t choose to control.

14

(([x] , transcript`,j−1), [r]2) to the exceptions table T . It outputs y :=
r · [x]2. Note that if we had R([x]1 , transcript`,j−1) = [r]2) then we would
have CheckPOK([x]1 , transcript`,j−1, y); so from A’s point of view this is
a correct message given H and randoracle.

(d) Now B∗ uses A to run the parts of Pj+1, . . . , PN in round `. Again, for
any j + 1 ≤ j′ ≤ N such that Pj′ did not output a valid message, x`j′ is
set to the vector (1, . . . , 1).

(e) Similary to before, for any j + 1 ≤ j′ ≤ N such that Pj′ did broadcast
a valid message, for each x ∈ x`j′ Pj′ has output [x]1 and y ∈ G2 with
CheckPOK([x]1 , transcript`,j′−1, y). Let χ be the extractor obtained from
Claim 2.5 when taking there A to be a variant of B∗ that runs up to
this point and outputs [x]1 , y; and taking z = [C(s)]. B∗ computes
x∗ = χ(z, r, randA) = x where r is the sequence of replies to B∗ from R
up to the point of outputting [x]1 , y. If χ’s output is not equal to x, B
aborts.

(f) If B∗ has not aborted it has obtained x`j+1, . . . ,x
`
N . It defines x′` :=

1
b·x`j+1···x`N

. and outputs x′` as the beacon output RB(J, t`). Note that if

we have reached this point without aborting we have x`1 · · ·x`N · x′` = s`.

4. Finally B∗ outputs A’s output z at the end of the protocol.

We proceed to prove the first property - we need to show that the elements (randA,H,randbeacon,randoracle)
used in the protocol are uniform and independent of each other.

• randA- B∗ runs A with a uniform choice of its random coins, so randA is
uniformly distributed.

• randoracle- B choses the outputs of R uniformly and independent of any other
event. The other elements of randoracle are the elements [r]2 chosen in step 3c
which are uniform in G∗2 and independent of any other variable here.

• H- the honest input x`j of each layer C` is chosen as b·s`
a where a is the product

of inputs in the same layer by the players controlled by A participating before
the honest player. b and s` are both uniform in (F∗p)t` ; and independent from
each other, a and the same variables from other layers. Hence H is uniform
and independent from previous variables.

• randbeacon- the part of randbeacon from layer C = C` is of the form 1
a·b , where a

contains inputs of the player controlled by A following the honest player. The
only other place b appears in is in x`j . But even fixing x`j leaves b, and hence
the part of randbeacon from round `, uniform.

To prove the second property we note we note that the values x for which the protocol
output as described will not be [C(s)] are those that cause an abort in steps 3a,3e

15

or 3c. An abort in steps 3a,3e happens for a negl(λ) fraction of x ∈ X according to
Claim 2.5; aborting in step 3c happens only when A chose in advance to query R in
a later uniformly chosen input in a domain of size at least |G∗2|, and thus happens
only for a negl(λ) fraction of x ∈ X .

5 Reducing the Depth of Groth’s CRS

In this section we assume familiarity with Quadratic Artihmetic Programs [10] and
the work of Groth [11]. As in [11] we first describe the Non-Interactive Linear Proof
(NILP) from which the zk-SNARK is built.

The extended Groth CRS: Let {ui, vi, wi}i∈[0..m] be the polynomials of the QAP
of degree less than n, and let t be the target polynomial of degree n. Suppose that
1, . . . , ` < m are the indices of the public input.

For α, β, δ, x ∈ F∗p. Groth(α, β, δ, x) is defined as the set of elements:

β, δ,
{
xi
}
i∈[0..2n−2] ,

{
αxi
}
i∈[0..n−1] ,

{
βxi
}
i∈[1..n−1] ,

{
xi · t(x)/δ

}
i∈[0..n−2] ,{

βui(x) + αvi(x) + wi(x)

δ

}
i∈[`+1..m]

.

The additional elements, compared to [11] are
{
xi
}
i∈[n..2n−2],

{
αxi
}
i∈[1..2n−1],

{
βxi
}
i∈[1..2n−1].

On the other hand the elements{
βui(x) + αvi(x) + wi(x)

γ

}
i∈[0..`]

, γ

that appear in the CRS of [11] and have disappeared here; they were needed there
to enable the verifer to compute

∑̀
i=0

ai(βui(x) + αvi(x) + wi(x));

which can be computed as a linear combination of above CRS with our added ele-
ments.

We claim that Groth can be computed by a depth two circuit according to the
definition of depth in Section 3.1:

• C1: The layer inputs are x1 = (x, α, β). The layer computes α, β,
{
xi
}
i∈[0..2n−2],{

αxi
}
i∈[0..2n−1],

{
βxi
}
i∈[0..2n−1], which are all products of inputs in x1.

• L1: We compute
{
xi · t(x)

}
i∈[0..n−2] that are linear combinations of

{
xi
}
i∈[0..2n−2]

since t has degree n. We also compute {βui(x) + αvi(x) + wi(x)}i∈[0..m], which
are linear combinations of elements from the first layer.

16

• C2: The layer input x2 = δ. Compute δ,
{
βui(x)+αvi(x)+wi(x)

δ

}
i∈[`+1..m]

,{
xit(x)/δ

}
i∈[0..n−2].

Groth prover and verifier: Fix public input a1, . . . , a`. The prover chooses
random r, s ∈ Fp and computes from the CRS and her witness a`+1, . . . , am; the
elements

A = α+
m∑
i=0

aiui(x) + rδ,B = β +
m∑
i=0

bivi(x) + sδ

C =

∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+Br − rsδ.

The verifier, given A,B,C, checks that:

A ·B = α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + C · δ.

Proving knowledge soundness From [11] it is enough to prove that we can
extract a witness for the QAP given A,B,C that are linear combinations of the
CRS elements such that the verification equation holds as a polynomial identity.
That is, we assume we are given

A = Aα(x)α+Aβ(x)β +Aδδ +A(x)

+

m∑
i=`+1

Ai · (βui(x) + αvi(x) + wi(x))

δ
+Ah(x)

t(x)

δ

where Aα, Aβ are known polynomials of degree at most n− 1, A is a polynomial of
degree at most 2n − 2, Ah is of degree at most n − 2 and Ai, {Ai}i∈[`+1..m] , Aδ are
known field elements. B and C are defined similarly. And we assume for these given
polynomials and constants that

A ·B ≡ α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + C · δ

as rational functions in x, α, β, δ. Let us denote by C∗ the right hand of the equation
for a given C; i.e,

C∗ := α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x)) + C · δ

and denote the “part without C in C∗ by C0; i.e

C0 := α · β +
∑̀
i=0

ai(βui(x) + αvi(x) + wi(x))

17

When we discuss monomials from now on we mean the quotient of two monomials
in α, β, δ, x that have no common factors; e.g. α

δ . For a monomial M let us use the
notation M ∈ A to mean M has a non-zero coefficient in A; i.e., when writing A as
(the unique) linear combination of monomials in α, β, δ, x, M appears with non-zero
coefficient. Use the same notation for B,C,A ·B,C0, C

∗.
When we say a monomial is in the CRS, we mean it is present with non-zero

coefficient in one of the elements of the CRS groth(α, β, δ, x) when writing that
element as a combination of monomials.

Our focus is to show the new monomials we have added to the CRS -
{
xi
}
i∈[n..2n−2],{

αxi
}
i∈[1..n−1],

{
βxi
}
i∈[1..n−1] are not used in A,B,C; this will imply correctness

using [11], as there it is proven that given A,B,C that are linear combinations of
the original CRS elements for which verification holds, a witness can be extracted.

As αβ ∈ A · B we must have α ∈ A, β ∈ B - or β ∈ A,α ∈ B. Assume the
first option w.l.g. Now take the maximal i such that the monomial xi ∈ A. It
follows that βxi ∈ A ·B. So we must have βxi ∈ C∗; which means either βxi/δ ∈ C
-but such monomials are possibly in the CRS only for i ≤ n − 1 (in the terms
βui(x)+αvi(x)+wi(x)

δ); or either βxi ∈ C0, which again can only happen for i ≤ n−1. A
similar argument shows that xi /∈ B for i ≥ n. If xi ∈ C it implies xiδ ∈ A ·B, which
means xi ∈ A or xi ∈ B, and thus i < n. Therefore, the new terms

{
xi
}
i∈[n..2n−1]

are not used in the proof.
Now suppose αxi ∈ A for i > 0; then αβxi ∈ A · B - which means either

αβxi/δ ∈ C - but no such monomial exists in the CRS, or αβxi ∈ C0, but such
monomial exists in C0 only for i = 0. A symmetrical argument shows that the other
three options βxi ∈ A,αxi ∈ B, βxi ∈ B, can only hold for i = 0 - as otherwise we
would have a monomial Mxi/δ ∈ C or Mxi ∈ C0, for a monomial M of degree 2 in
α, β - and such exists only in C0 for i = 0.

Now assume αxi ∈ C - then αxiδ ∈ A ·B which means αxi is in A or B; and we
have seen this is possible only for i = 0. Same holds when βxi ∈ C. In summary,
we have shown the new terms

{
αxi, βxi

}
i∈[1..n−1] do not appear in the proof.

6 Multi-party Computation for Groth’s SNARK

We know instantiate the protocol of Section 3 to get a protocol for computing the
CRS of the zk-SNARK corresponding to that of the NILP described in Section 5.

The output will have the form{[
xi
]}
i∈[0..n−1] ,

{[
xi
]
1

}
i∈[n..2n−2] ,

{[
αxi
]
1

}
i∈[0..n−1] , [β] ,

{[
βxi
]
1

}
i∈[1..n−1] ,{[

xi · t(x)/δ
]
1

}
i∈[0..n−2] ,

{[
βui(x) + αvi(x) + wi(x)

δ

]
1

}
i∈[`+1..m]

Notice that some outputs are given only in G1, whereas the protocol description
in Section 3 gave all outputs in both groups. It’s straightforward to see that if this

18

is the case only for outputs later used as inputs only for other outputs given only in
G1 as well, the security proof goes through the same way.

In the protocol below , ifM is an output in G1,G2 orG that we want to compute,
and j ∈ [N], we will denote by [M]j, the “partial M ” after players P1, . . . , Pj have
contributed their shares. [M]0 will be set to some initial value as part of the protocol
description. We assume g is publicly known.

6.1 Round 1: ‘Powers of τ ’

We need to compute

M1 =
{{[

xi
]}
i∈[0..n−1] ,

{[
xi
]
1

}
i∈[n..2n−2] ,

{[
αxi
]
1

}
i∈[0..n−1] , [β] ,

{[
βxi
]
1

}
i∈[1..n−1]

}
.

Initialization: We initialize the values

1. [xi]
0
:= g, i ∈ [1..n− 1].

2. [xi]
0
:= g1, i ∈ [n..2n− 2].

3. [αxi]
0
:= g1, i ∈ [0..n− 1].

4. [β]0 := g.

5. [βxi]
0
:= g1, i ∈ [1..n− 1].

Computation: For j ∈ [N], Pj outputs:

1. [αj]1,[βj]1,[xj]1

2. yα,j := POK(αj , transcript1,j−1)

3. yβ,j := POK(βj , transcript1,j−1)

4. yx,j := POK(xj , transcript1,j−1)

5. For each i ∈ [1..2n− 2], [xi]j := xij · [xi]
j−1

6. For each i ∈ [0..n− 1], [αxi]j := αjx
i
j · [xi]

j−1

7. For each i ∈ [0..n− 1], [βxi]j := βjx
i
j · [xi]

j−1

Let J−1 be the time-slot where PN sends their message. Let (x′, α′, β′) := RB(J, 3).
We define

1.
[
xi
]
:= x′i · [xi]N, i ∈ [1..2n− 2].

2.
[
αxi
]
:= α′x′i · [αxi]N, i ∈ [0..n− 1].

3.
[
βxi
]
:= β′x′i · [βxi]N, i ∈ [0..n− 1].

19

Verification: The protocol verifier computes for each j ∈ [N]

rα,j := R([αj]1 , transcript1,j−1), rβ,j := R([βj]1 , transcript1,j−1), rx,j := R([xj]1 , transcript1,j−1),

and checks for each j ∈ [N] that

1. CheckPOK([αj]1 , transcript1,j−1, yα,j)

2. CheckPOK([βj]1 , transcript1,j−1, yβ,j)

3. CheckPOK([xj]1 , transcript1,j−1, yx,j)

4. consistent([α]j−1 − [α]j; (rα,j , yα,j)),

5. consistent([β]j−1 − [β]j; (rβ,j , yβ,j)),

6. consistent([x]j−1 − [x]j; (rx,j , yx,j)),

7. For each i ∈ [1..2n− 2], consistent([xi−1]j − [xi]
j
; [x]j).

8. For each i ∈ [1..n− 1], consistent([xi]j1 − [αxi]
j
; [α]j).

9. For each i ∈ [1..n− 1], consistent([xi]j1 − [βxi]
j
; [β]j).

6.2 Linear combinations between rounds

For i ∈ [0..n−2], we compute as linear combinations of
{[
xi
]
1

}
i∈[0..2n−2] the element

H ′i :=
[
t(x)xi

]
1
.

Let ω ∈ Fp be a primitive root of unity of order n = 2t, in code n is typically the
first power of two larger or equal to the circuit size.

For i ∈ [1..n], we define Li to be the i’th Lagrange polynomial over the points{
ωi
}
i∈[n]. That is, Li is the unique polynomial of degree smaller than n, such that

Li(ω
i) = 1 and Li(ωj) = 0, for j ∈ [n] \ {i}. For x ∈ F∗p, we denote by LAGx ∈ Gn

the vector
LAGx := ([Li(x)])i∈[n].

LAGx can be computed in an FFT using O(n log n) group operations from{[
xi
]}
i∈[0..n−1], as decribed in Section 3.3 of [7]. Similarly, since the FFT is lin-

ear, using exactly the same operations, but only on the G1 coordinate and starting
from

{[
αxi
]
1

}
i∈[0..n−1] and

{[
βxi
]
1

}
i∈[0..n−1], we obtain (α·LAGx)1 and (β ·LAGx)1.

Now, as the QAP polynomials {ui, vi, wi}i∈[0..m] are typically
8 each a linear com-

bination of at most three different Li, we can now compute using O(m) group oper-
ations the elements {[βui(x)]1}i∈[0..m], {[αvi(x)]1}i∈[0..m] and {[wi(x)]}i∈[0..m].

8This is the case in the reduction of arithmetic circuits to QAPs; in general the cost of this
step is O(a) operations where a is the total number of non-zero coefficients in one of the QAP
polynomials.

20

Finally, we compute as linear combinations, for i ∈ [`+ 1..m], the element

K ′i := [βui(x) + αvi(x) + wi(x)]1 .

We also output, as linear combinations of LAGx the elements {[ui(x)]1}i∈[0..m]

and {[vi(x)]2}i∈[0..m] (To allow faster prover computation).

6.3 Round two

For i ∈ [`+ 1..m], denote

Ki :=
βui(x) + αvi(x) + wi(x)

δ
.

For i ∈ [0..n− 2], denote

Hi :=
t(x)xi

δ
.

We need to compute

M2 =
{
[δ] , {[Ki]1}i∈[`+1..m] , {[Hi]1}i∈[0..n−2]

}
.

Initialization: We initialize

1. [Ki]
0 := K ′i, i ∈ [`+ 1..m],

2. [Hi]
0 := H ′i, i ∈ [`+ 1..m].

3. [δ]0 := g.

Computation: For j ∈ [N], Pj outputs

1. [δj]1.

2. yδ,j := POK(δj , transcript2,j−1)

3. [δ]j := [δ]j−1/δj .

4. For each i ∈ [`+ 1..m], [Ki]
j := ([Ki]

j−1)/δj .

5. For each i ∈ [0..n− 2], [Hi]
j := ([Hi]

j−1)/δj .

In the end, we define Let J − 1 be the time-slot where PN sends their message.
Let δ′ := RB(J, 1). We define

1. [δ] := [δ]N/δ′

2. [Ki]1 := [Ki]
N/δ′

3. [Hi]1 := [Hi]
N/δ′

21

Verification: The protocol verifier computes for each j ∈ [N]

rδ,j := R([δj]1 , transcript2,j−1),

and for each j ∈ [N] checks that

1. CheckPOK([δj]1 , transcript2,j−1, (rδ,j , yδ,j)).

2. For j ∈ [N], consistent([δ]j−1 − [δ]j; [δj]).

3. For each i ∈ [`+ 1..m], j ∈ [N], consistent([Ki]
j − [Ki]

j−1; [δj]).

4. For each i ∈ [0..n− 2], j ∈ [N], consistent([Hi]
j − [Hi]

j−1; [δj]).

7 BLS12-381

The most common pairing-friendly elliptic curve construction used in zk-SNARK
software is a Barreto-Naehrig [4] (BN) construction with a 254-bit base field and
group order, as designed in [6]. That construction equipts Fp with a large 2n root
of unity for efficient polynomial evaluation. Although the construction originally
targeted the 128-bit security level, recent optimizations to the Number Field Sieve
algorithm [13] have reduced its concrete security.

Subsequent analysis [14] recommended that BN curves and Barreto-Lynn-Scott
(BLS) curves [3] with embedding degree k = 12 have approximately 384-bit base
fields in order to target 128-bit security. BN curves are thus not ideal for our pur-
poses, as these larger base fields are accompanied by similarly larger group orders,
which substantially increases the cost of multi-exponentiation and fast-fourier trans-
forms and harms the usability of protocols that use Fp to encode keying material.
BLS12 curves with 384-bit base fields, in contrast, give rise to 256-bit group orders,
making them ideal for use with zk-SNARKs. In more conservative contexts, the
larger constructions proposed in [2] are recommended.

BLS curves with k = 12 are parameterized by an integer x. The existing BN
curve has 228|p − 1 to ensure a 228 root of unity is available. We target the same
by ensuring that 214|x. We target prime p of less than 2255 in order to accomodate
efficient approximation algorithms and reductions. We desire efficient extension field
towers and twisting isomorphisms, following recommendations from [1]. In addition,
we desire x of small Hamming weight for optimal pairing efficiency.

The largest construction with smallest Hamming weight that meets our require-
ments is x = −263−262−260−257−248−216, which we nameBLS12-381. This curve
exists within a subfamily of curves, as in [8], which have immediately determined
curve parameters. We provide an implementation of this curve in Rust. [16]

22

Acknowledgements

We think Paulo Barreto for helpful feedback about the BLS12-381 elliptic curve. We
thank Daira Hopwood for helpful comments.

References

[1] Diego F. Aranha, Laura Fuentes-Castaneda, Edward Knapp, Alfred Menezes,
and Francisco Rodriguez-Henriquez. Implementing Pairings at the 192-bit Se-
curity Level. Cryptology ePrint Archive, Report 2012/232. http://eprint.
iacr.org/2012/232. 2012.

[2] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for
pairings. Cryptology ePrint Archive, Report 2017/334. http://eprint.iacr.
org/2017/334. 2017.

[3] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing Elliptic
Curves with Prescribed Embedding Degrees. Cryptology ePrint Archive, Report
2002/088. http://eprint.iacr.org/2002/088. 2002.

[4] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic Curves
of Prime Order. Cryptology ePrint Archive, Report 2005/133. http://eprint.
iacr.org/2005/133. 2005.

[5] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. “Secure Sam-
pling of Public Parameters for Succinct Zero Knowledge Proofs”. In: 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-
21, 2015. 2015, pp. 287–304.

[6] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. SNARKs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. Cryptology ePrint Archive, Report 2013/507. http://eprint.
iacr.org/2013/507. 2013.

[7] S. Bowe, A. Gabizon, and M. D. Green. “A multi-party protocol for construct-
ing the public parameters of the Pinocchio zk-SNARK”. In: IACR Cryptology
ePrint Archive 2017 (2017), p. 602. url: http://eprint.iacr.org/2017/602.

[8] Craig Costello, Kristin Lauter, and Michael Naehrig. Attractive Subfamilies
of BLS Curves for Implementing High-Security Pairings. Cryptology ePrint
Archive, Report 2011/465. http://eprint.iacr.org/2011/465. 2011.

[9] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. Cryptology ePrint Archive,
Report 2017/587. http://eprint.iacr.org/2017/587. 2017.

23

[10] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Pro-
grams and Succinct NIZKs without PCPs”. In: Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings. 2013, pp. 626–645.

[11] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II. 2016, pp. 305–326.

[12] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Ex-
tended Abstract)”. In: Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada.
1992, pp. 723–732. doi: 10.1145/129712.129782. url: http://doi.acm.
org/10.1145/129712.129782.

[13] Taechan Kim and Razvan Barbulescu. Extended Tower Number Field Sieve:
A New Complexity for the Medium Prime Case. Cryptology ePrint Archive,
Report 2015/1027. http://eprint.iacr.org/2015/1027. 2015.

[14] Alfred Menezes, Palash Sarkar, and Shashank Singh. Challenges with Assessing
the Impact of NFS Advances on the Security of Pairing-based Cryptography.
Cryptology ePrint Archive, Report 2016/1102. http://eprint.iacr.org/
2016/1102. 2016.

[15] Silvio Micali. “Computationally Sound Proofs”. In: SIAM J. Comput. 30.4
(2000), pp. 1253–1298. doi: 10.1137/S0097539795284959. url: https://
doi.org/10.1137/S0097539795284959.

[16] pairing. url: https://github.com/ebfull/pairing (visited on 2017-10-14).

[17] Ethereum Team. Byzantium HF Announcement. https://blog.ethereum.
org/2017/10/12/byzantium-hf-announcement/. October 2017.

[18] Zcash. url: https://github.com/zcash/zips/blob/master/protocol/
protocol.pdf (visited on 2017-10-14).

24

