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Abstract. Distinguishers play an important role in Side Channel Anal-
ysis (SCA), where real world leakage information is compared against
hypothetical predictions in order to guess at the underlying secret key.
However, the direct relationship between leakages and predictions can be
disrupted by the mathematical combining of d random values with each
sensitive intermediate value of the cryptographic algorithm (a so-called
“d-th order masking scheme”). In the case of software implementations,
as long as the masking has been correctly applied, the guessable inter-
mediates will be independent of any one point in the trace, or indeed of
any tuple of fewer than d + 1 points. However, certain d + 1-tuples of
time points may jointly depend on the guessable intermediates. A typical
approach to exploiting this data dependency is to pre-process the trace
– computing carefully chosen univariate functions of all possible d + 1-
tuples – before applying the usual univariate distinguishers. This has
a computational complexity which is exponential in the order d of the
masking scheme. In this paper, we propose a new distinguisher based on
Kernel Discriminant Analysis (KDA) which directly exploits properties
of the mask implementation without the need to exhaustively pre-process
the traces, thereby distinguishing the correct key with lower complexity.
Experimental results for 2nd and 3rd order attacks (i.e. against 1st and
2nd order masking) verify that the KDA is an effective distinguisher in
protected settings.

Keywords: Kernel Discriminant Analysis, Higher-order Side Channel
Analysis, Side Channel Distinguisher

1 Introduction

Protecting sensitive information from attacks exploiting the physically observ-
able characteristics of cryptographic devices in operation has been a key aim for
? This work was done while the author was in the Department of Computer Science,
University of Bristol.
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vendors and evaluation labs ever since the devastating effectiveness and simplic-
ity of such attacks began to become apparent with the work of Kocher et al. in
the late 1990s [11]. Software countermeasures such as masking [8] successfully
disrupt the relationship between sensitive intermediate values and single points
of observed leakage – precisely the trace feature that Differential Power Analy-
sis (DPA) in particular targets4. However, tuples of points of size greater than
the number of masks d can still jointly depend on the sensitive intermediates.
This gives rise to so-called ‘higher order’ DPA [14], which typically proceeds by
combining multiple points via some (non-linear) pre-processing function before
applying a standard DPA distinguisher – essentially treating the pre-processed
traces in a univariate manner, albeit with an exponential (in d) increase in the
impact of noise relative to a ‘first order’ attack [22].

Aside from the greater data complexity implied by the inflated noise, higher-
order attacks are also hampered by the increasing difficulty of locating the leak-
ing tuples. The computational complexity of an ‘exhaustive search’ approach –
in which all possible point combinations are computed and analysed – grows
exponentially with d. Heuristics exist to reduce the search problem by placing
informed restrictions on the regions of the trace to be iteratively explored [9] but,
precisely because of their heuristic nature, these do not guarantee to find the
best (or indeed any) exploitable combinations. A recent proposal (presented at
Cardis 2016 [6]) aims to bypass the need for explicit enumeration of the (d+1)-
tuples without recourse to heuristics, using Kernel Discriminant Analysis (KDA)
[15].

KDA is a generalisation of Linear Discriminant Analysis (LDA), a statisti-
cal method to find linear combinations of features (i.e. variables in a dataset,
or points in a trace) that characterise class separations. In particular, it out-
puts projection directions that maximise the ratio of between-group to within-
group scatter, so that ‘interesting’ variation may be concentrated into a reduced-
dimension space for further analysis. LDA has been promoted as one of a number
of methods to extract sensitive data dependent features from side-channel traces
for some years (beginning with [24], to the best of our knowledge). However,
because it only finds linear combinations, it is unable to locate the types of joint
data dependencies exhibited by traces which have been protected by software
masking. By contrast, the ‘kernel trick’ employed by KDA allows to implicitly
map the data into a higher dimensional feature space within which to perform
the discriminant analysis, thereby extracting non-linear combinations of the sort
that (in the case of DPA) do yield sensitive information on further analysis. Be-
cause the mapping of the tuple candidates need not be computed explicitly
(by contrast with the preprocessing required by established higher order DPA
methodologies), its complexity is polynomial, rather than exponential, in d.

However, another recent development in the literature has been to demon-
strate the direct applicability of LDA as a side-channel distingisher, not just
a pre-processing method. In this capacity, it shares the advantages of other

4 Hardware masking schemes also exist, which process shares in parallel but shift the
exploitable leakage into higher moments of the (univariate) trace distributions[18].
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‘partition-based’ [25] (aka ‘nominal power model’ based [30]) distinguishers –
namely that it operates needing only a clustering of the intermediates into simi-
larly leaking classes, rather than (e.g.) a proportional approximation of the leak-
age as would be necessary for a correlation DPA attack. It is therefore natural
to suppose that KDA can similarly be extended for use as a distinguisher, with
the same flexibility advantages over higher-order correlation DPA that LDA has
over first-order correlation, as well as the reduction in complexity with respect to
d. Indeed, in the following, we confirm that this is the case – KDA can be used,
not just to locate the interesting leakage prior to an attack, but as a side-channel
distinguisher in its own right. We show how to achieve this, provide experimental
validation of the effectiveness of our methodology, and reason about its potential
as well as its drawbacks.

1.1 Outline

The rest of the paper proceeds as follows. Section 2 covers the preliminaries
of (higher-order) SCA, LDA and KDA. In Section 3 we describe the natural
connection between KDA and the higher-order SCA problem, and present a
methodology to extract sensitive information using KDA, before going on to
experimentally verify its effectiveness. Section 4 discusses the efficiency and ad-
vantages (and drawbacks) of our proposed approach, and Section 5 concludes
the paper.

2 Preliminaries

2.1 Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [13], and briefly ex-
plain the underlying idea as well as introduce the necessary terminology here. We
assume that the power consumption P = {P1, ..., PT } of a cryptographic device
(as measured at time points {1, ..., T}) depends, for at least some τ ⊂ {1, ..., T},
on some internal value (or state) Fk∗(X) which we call the target : a function

Fk∗ : X → Z of some part of the known plaintext—a random variable X
R
∈ X—

which is dependent on some part of the secret key k∗ ∈ K. Consequently, we
have that Pt = Lt ◦ Fk∗(X) + εt, t ∈ τ , where Lt : Z → R describes the data-
dependent leakage function at time t and εt comprises the remaining power
consumption which can be modeled as independent random noise (this simplify-
ing assumption is common in the literature—see, again, [13]). The attacker has
N power measurements corresponding to encryptions of N known plaintexts
xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can
accurately compute the internal values as they would be under each key hypothe-
sis {Fk(xi)}Ni=1, k ∈ K and uses whatever information he possesses about the true
leakage functions Lt to construct a prediction model (or models) Mt : Z →Mt.

A distinguisherD is some function which can be applied to the measurements
and the hypothesis-dependent predictions in order to quantify the correspon-
dence between them, the intuition being that the predictions under a correct key
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guess should give more information about the true trace measurements than an
incorrect guess. For a given such comparison statistic,D, the theoretic attack vec-
tor is D = {D(L◦Fk∗(X)+ε,M ◦Fk(X))}k∈K, and the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L◦Fk∗(x)+e,M ◦Fk(x))}k∈K
(where x = {xi}Ni=1 are the known inputs and e = {ei}Ni=1 is the observed noise).
Then the attack is o-th order theoretically successful if #{k ∈ K : D[k∗] ≤
D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k∗] ≤ D̂N [k]} ≤ o.

2.2 Masking

Since the scale of the threat of (first-order) DPA began to emerge [11], many
countermeasure schemes have been proposed. The principle behind masking is to
split the sensitive intermediate values s = Fk∗(x) into d+1 shares (r0, ..., rd ∈ Z)
satisfying the relation5

s = r0 ⊗ r1 ⊗ ...⊗ rd

where the ⊗ operation is the bitwise addition (or XOR) in the common
case of Boolean masking. One of the shares, e.g. r0, is sometimes referred to
as the ‘masked variable’, with the other shares, (r1, ..., rd) then viewed as the
‘masks’. For a masking scheme to be sound, it is usually required that the masks
are uniformly and independently generated from Z. In the case of software im-
plementations, which we focus on here, the shares are processed in sequence so
that side-channel leakages are distributed across multiple points in the measured
traces.

Classical Higher-Order DPA In the case of a masked implementation, the
leakage of the shares corresponding to the sensitive value s is

l = (l0, l1, ..., ld)

where

l0 = L0 ◦ (s⊕ r1 ⊕ . . .⊕ rd) + ε0

li = Li ◦ (ri) + εi, for 1 ≤ i ≤ d.

It can be seen that no single component of the leakage l directly relies on s. The
first order distinguisher will be unable to learn anything about the secret key k∗
in this case.

During a higher-order DPA, an attacker extracts information about k∗ by
monitoring the leakage of the unknown shares. Generally speaking, the dth order
masking scheme can be attacked by a (d+1)th order attack. Since it is difficult for
the attacker to precisely determine the location of li, we assume that ` time point
candidates can be discovered for each share by some reverse engineering or a
5 This relation exists implicitly even when it doesn’t manifest directly in the crypto-
graphic algorithm.
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priori knowledge about the masked implementation. Thus, (d+1)-tuples of ` time
points are available for analysis. To analyse the (d+1)` time points by classical
higher-order DPA, a ‘combination function’ is required – although it has been
observed that such an approach inevitably incurs loss of information [17,27]. The
most popular combination function is probably the normalised product, shown
in [19] to be the optimal choice in the idealised setting of a correlation attack
against Hamming weight leakage with Gaussian noise; other proposals include
the absolute difference [14], and some more complex expressions involving sine
functions [17].

Note that the combination function operates as a pre-processing procedure
on all possible (d + 1)-tuples of time points. This implies `d+1 computations,
resulting in `d+1 points for analysis via a first order distinguisher D (typically
correlation [3]) paired with a power model (recall Section 2.1).

2.3 Kernel Discriminant Analysis

Linear Discriminant Analysis Linear Discriminant Analysis (LDA) is a
widely-used (supervised) dimensionality reduction method. It seeks the direc-
tions along which the projection of a dataset displays large between-cluster dis-
tances and small within-cluster distances. Suppose Pi is row vector of a matrix
P ∈ RN×U with labels m ∈ RN×1; then the LDA problem amounts to finding
ω to maximize J(ω) in (1):

J(ω) =
ωTSBω

ωTSWω
(1)

This procedure is equivalent to solving (2)

SBω = λSWω (2)

where SB and SW represent the between-cluster and within-cluster scatter ma-
trices given by (3) and (4) respectively

SB =
∑
m∈M

nm

(
1

nm

∑
mi=m

Pi −
1

N

N∑
i=1

Pi

)T (
1

nm

∑
mi=m

Pi −
1

N

N∑
i=1

Pi

)
(3)

SW =
∑
m∈M

∑
mi=m

(
Pi −

1

nm

∑
mi=m

Pi

)T (
Pi −

1

nm

∑
mi=m

Pi

)
(4)

where nm = #{i|mi = m}, i.e. the number of observations in the data set for
which the label ism (for details see [10]). Performing LDA amounts to calculating
the generalized eigenvalues λ1, . . . , λU (ordered from largest to smallest) and the
corresponding generalized eigenvectors ω1, . . . , ωU .

The applications of LDA to SCA are two-fold. On the one hand, it can be
used for dimensionality reduction, addressing the problem of ‘interesting point
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selection’ by (hopefully) projecting relevant leakage information along a small
number of directions prior to further analysis [24,5]. It has been shown to be
the optimal strategy for this purpose – at least in the case of unprotected imple-
mentations, where the leakage of sensitive intermediates resides in the marginal
distributions of single trace points [4]. The procedure is as follows: sort the to-
tal power consumption {Pi}Ni=1 into different clusters {{Pi} |M ◦ Fk(xi) = m}
under the correct key k∗ and power model M ; perform LDA on the labeled clus-
ters; extract the eigenvectors ω1, . . . , ωu (u ≤ U) corresponding with the first
u largest eigenvalues, i.e. the u ‘best’ projected directions. Projecting the data
along these u directions produces a dataset of lower dimension but with minimal
information loss.

On the other hand, it has also recently been proposed for use directly as a
DPA distinguisher [12]. To this end it operates as follows: sort the total power
consumption {Pi}Ni=1 into different clusters {{Pi} |M ◦ Fk(xi) = m} under the
key hypothesis k and power model M ; perform LDA on the labeled clusters;
extract the first (largest) generalized eigenvalue as the distinguisher score for the
key hypothesis. This strategy takes advantage of the fact that, for a correct key
guess, the arrangement produced by the power model should correspond with
the true cluster structure of the leakage measurements, so that the indicator
value stands out by comparison with the wrong key guesses.

Discriminant Analysis with Kernels LDA can be used to find optimal lin-
ear mappings of high dimensional data but is not applicable when the relevant
information is known to be contained in non-linear combinations of points, as
is the case (e.g.) for side-channel leakages of masked implementations. To ex-
tend LDA to the non-linear case, we consider the problem in a feature space F
induced by some mapping function (this mapping process is implicit as will be
seen in the following subsection), Φ : Rn → F . KDA [15] is used to find non-
linear directions by first mapping the data non-linearly by Φ into some feature
space F within which to compute linear discriminants, thus implicitly yielding a
non-linear discriminant in the input space. To find such a discriminant, the goal
(1) is replaced with:

J(ω′) =
ω′TSΦBω

′

ω′TSΦWω
′ (5)

where ω′ ∈ F and SΦB and SΦW are the corresponding matrices in F .

SΦB =
∑
m∈M

nm(
1

nm

∑
mi=m

PΦ
i −

1

N

N∑
i=1

PΦ
i )
T (

1

nm

∑
mi=m

PΦ
i −

1

N

N∑
i=1

PΦ
i ) (6)

SΦW =
∑
m∈M

∑
mi=m

(PΦ
i −

1

nm

∑
mi=m

PΦ
i )
T (PΦ

i −
1

nm

∑
mi=m

PΦ
i ) (7)

where PΦ
i is Φ(Pi) projection of Pi on F by Φ. For a properly chosen Φ, an inner

product < ·, · > can be defined on F , which makes for a so-called ‘reproducing
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kernel Hilbert space’,
K(x,y) =< Φ(x), Φ(y) >

where K is known as the kernel function. Widely-used kernel functions include
the Gaussian kernel K(x,y) = exp(−||x− y||2/c) (|| · || is the 2-norm), and the
polynomial kernel K(x,y) = (x · y)d′ , for positive constants c and d′ satisfying
Mercer’s condition [20], as defined in [21].

Procedure of KDA Generally, given a labelled data set {Pi}i∈[1,N ], the corre-
sponding labels mi (for simplicity, we use the notation Pmi

i to denote the label
of ith data sample is mi), and the kernel function K(x,y), the KDA procedure
can be briefly summarised as follows (for more details about the derivation, see
[15]):

1. Calculate the between-class scatter matrix M ∈ RN×N

M =
∑
m∈M

nm(Mm −M∗)(Mm −M∗)
T

where Mm and M∗ are N × 1 size column vectors given by

(Mm)j =
1

nm

∑
mi=m

K(Pj ,P
mi
i )

(M∗)j =
1

N

N∑
i=1

K(Pj ,Pi).

2. Then calculate the within-class scatter matrix N ∈ RN×N given by

N =
∑
m∈M

Km(Inm
− 1nm

)KT
m

where Km is an N × nm matrix with (Km)ij = K(Pi,P
mj=m
j ) (this is the

kernel matrix for class m), Inm
is the nm×nm size identity matrix, and 1nm

is the nm × nm matrix with all entries 1/nm.
3. The eigenvalues λ

′

1, . . . , λ
′

N ′ (N
′ ≤ N) and the eigenvectors α1, . . . , αN ′ can

be extracted by solving
N−1Mαi = λ

′

iαi. (8)

4. Since the matrix N may be singular, it needs regularizing prior to Step 3,
which is done by setting

N = N + µI

for some positive µ.
5. Then the projection of P onto ω′i is given by

< ω′i, Φ(P) >=

N∑
j=1

αi(j)K(Pj ,P). (9)
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Generally, KDA is used to transform U -dimensional data into C-dimensional
data by taking the C eigenvectors α1, . . . , αC with the C largest eigenvalues and
using Equation (9) for the projection step.

KDA has been introduced to SCA as a tool for information extraction6 in the
presence of masking [6]. The authors sort the training data set into different clus-
ters according to the sensitive intermediate value under a known power model,
the plaintext and the known key. Then KDA is performed on these clusters to
calculate the eigenvectors and corresponding eigenvalues. The two eigenvectors
with the two largest eigenvalues are chosen as the projection directions (i.e. C
is set to be 2) and used to transform profiling and attack acquisitions prior to
performing a template attack.

3 Methodology

In this section, we introduce our proposed distinguisher to the setting of masked
implementations, and analyse the method theoretically and empirically.

Due to the successful removal of sensitive intermediate values by masking,
classical higher-order side-channel attacks typically proceed by first transferring
the original trace points into a new space using a non-linear combination function
(CF )7. Then, ‘first order’ distinguisher scores are computed in the new space. In
fact, the KDA method combines these two processes (summarised in Fig. 1 and
Fig. 2) without performing the non-linear mapping explicitly (the kernel trick
embeds it implicitly).

1d

R
*
k

DC F( 1)d
R

Fig. 1. Classical higher-order SCA.

F
C
R

LDA

KDA

U
R

Fig. 2. Process of KDA.

6 Information extraction is typically understood to refer collectively to the similar but
non-identical tasks of dimensionality reduction and interesting point selection.

7 The combination functions mentioned in Subsection 2.2 all are non-linear.
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The calculations of between-class scatter matrix M and the within-class ma-
trix N are based on the category (see procedure of KDA). And the maximum
eigenvalue in Equation (8) can be regarded as an indicator of dispersion degree
of between-class and within-class (as can be seen in Equation (1,2,5)). Thus,
based on different (correct or wrong) categories, the dispersion degrees will dif-
fer. Therefore, the largest KDA eigenvalue functions as an effective distinguisher
for attacks against masked intermediates.

3.1 General Approach

Let {xi}Ni=1 be the known plaintexts (or ciphertexts) associated with a set of
trace measurements {P1,P2, ...,PN} each containing d` time points as a dth-
order masked implementation encrypts (or decrypts) the xi. The power model
mapping isM : Z →M and the kernel function is chosen as8 K(x,y) = (x · y)d′

(in this paper we set the degree d′ of the polynomial kernel function equal to
the number of shares d+1 into which each sensitive intermediate is divided). D
denote the KDA distinguisher.

1. For each key hypothesis k ∈ K, do the following:
(a) Calculate the intermediate value zi = Fk(xi) for each plaintext.
(b) Map zi to a power model prediction mi, given by M(zi).
(c) Compute the between-class scatter matrix M and the within-class scat-

ter matrix N, and regularize N by N = N + µI.
(d) Eigen-decompose the matrix N−1M. Return the largest eigenvalue as

the distinguisher score Dk for k.
2. Rank the pairs (k,Dk) according to Dk.
3. Output the key hypothesis k with the largest Dk as the best guess on the

true subkey.

3.2 Theoretical Rationale

In this subsection, we reason about the ‘soundness’ of the KDA distinguisher.
We consider a distinguisher to be ‘sound’ if, given a sufficient sample of leakages
and a ‘meaningful’ power model9, it reduces the entropy on the unknown secret
key. From an empirical perspective, soundness can be confirmed by observing a
reduction in the mean key rank as the number of traces increases.

The essence of KDA is to transfer the raw data into a new, higher-dimensional
space via an implicit non-linear projection, then compute the linear discriminant
in the new space. This parallels the process of higher-order attacks in SCA. Thus,
the soundness of KDA derives from 1) the effectiveness of the implicit projection,
and 2) the effectiveness of LDA as a distinguisher in the first-order scenario.

8 We only test this one example kernel function in our analysis; others, such as Gaus-
sian kernel, are also available and may be effective.

9 I.e. one that approximates some true aspect of the leakages; see, e.g. [30].
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The effectiveness of the projection has been recently demonstrated by the
successful use of KDA to extract exploitable side-channel information [6]. Mean-
while, Mahmudlu et al. [12] have shown that the largest eigenvalue, which mea-
sures the (optimised) between- to within-scatter matrix ratio under a particular
key guess, is typically higher for a correct guess (which produces a meaning-
ful labelling on the traces) than an incorrect one (which produces a random
labelling), thereby functioning as an effective distinguishing score.

It therefore seems reasonable to expect our proposed KDA distinguisher to
be sound; the following experiments are designed to verify this.

3.3 Experimental Validation

We here present the outcomes of several experiments on simulated leakages and
(in the case of second-order attacks only) on traces from real implementations
to verify the soundness of KDA distinguisher.

We simulate multivariate leakages pertaining to shared intermediates in the
presence of Gaussian noise. The basic principle is to add multivariate Gaussian
noise ε to the hypothetical data-dependent consumption of the intermediate z,

l =M(z) + εG (10)

where M is the leakage model (chosen to be the Hamming weight for the follow-
ing), and z is the intermediate value. The Gaussian noise εG has zero mean and
a covariance Σ given by,

Σ = Q ∗ ρ ∗Q (11)

where Q is a diagonal matrix whose diagonal elements are the noise standard
deviation σ and ρ is a co-correlation matrix estimated from real power traces.

For a dth order masked implementation, we simulate a trace of d+ 1-tuples
of ` points with the secret key k∗ as follows:

1. Generate d+ 1 random numbers (x, r1, r2, ..., rd) (the first random number,
x, is the plaintext; the rest are masks).

2. For the first ` points in the trace, the intermediate values are the output of
the XOR between the sensitive intermediate values s = Sbox(x ⊕ k∗) and
the masks.

3. For the ith (2 ≤ i ≤ d + 1) sub-part of the trace, the intermediate value is
ri−1.

The Hamming weights of these intermediates are computed and additively com-
bined with simulated noise samples of the specified Gaussian structure.

The real power traces are taken from the DPA Contest v4 [1]. The target is
an 8-bit AVR microcontroller Atmega163 embedded in a smartcard. It contains
16Kb of in-system programmable flash, 512 bytes of EEPROM, 1Kb of internal
SRAM and 32 general purpose working registers. The smartcard is read using a
simple reader interface mounted on SASEBO-W board and controlled by Xilinx
Spartan-VI FPGA. The traces are acquired using a LeCroy WaveRunner 6100A
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oscilloscope using an EM probe. The acquisition bandwidth is 200 MHz and the
sampling rate FS = 500 MS/s.

In the following experiments, the kernel function is K(x,y) = (x · y)d+1.

Second-order attacks First, we perform second-order attacks on the simulated
leakage. To keep the running time reasonable, we simulate 200,000 traces, and
set ` to 5 so that the traces are 10 time points long. The noise deviation σ of the
trace is set equal to 1, and µ for the KDA regularisation is set to be 100,00010.
We use the second-order KDA distinguisher with the Hamming weight power
model to attack the traces, the results of all key candidate distinguisher scores
are shown in Fig.3. The red line indicates the correct key. We can clearly see
that, from 800 traces on, the distinguisher score associated with the correct key
gradually separates from the scores for the alternative candidates, standing out
first from 1500 traces onwards.

200 400 600 800 1000 1200 1400 1600 1800 2000
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Fig. 3. Second-order attack with KDA on the simulated masked implementation leak-
age, with σ = 1.

Fig. 3 just shows the example result of a single trial; it cannot be interpreted
as a stable indicator of the typical behaviour of the KDA distinguisher. To evalu-
ate the performance of KDA we repeat the experiment multiple times (randomly
selecting from the pool of 200,000 traces in each repetition). Our chosen eval-
uation metric is the Guessing Entropy [26], estimated from the average rank
of the correct subkey. The result can be seen in Fig. 4. The red line indicates
the second-order KDA distinguisher using a Hamming weight power model. The
mean rank of the correct key decreases as the number of attack samples increases,
converging to 1 after about 1900 traces.

Additionally, to further extend the experiments on KDA, we drop the Ham-
ming weight assumption and investigate the performance of KDA when the at-
10 µ = 100, 000 might not be the optimal one; we leave the optimisation µ as further

work.
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Fig. 4. Guessing entropy of second-order attack with KDA on the simulated masked
implementation leakage, with σ = 1. (reps: 100)

tack samples are simply partitioned according to the least significant bit of the
intermediate value11.Thus, the traces are separated into two clusters, labelled 0
and 1. The results are represented by the blue line in Fig. 4: the mean rank of
the correct key decreases as the number of traces increases, implying that the
KDA distinguisher remains sound under this simpler power model.

Second, we test the performance of KDA against the real power traces from
the DPA contest v4. The mask scheme implemented is the Rotating S-boxes
Masking (RSM; for details, see [16]). The RSM scheme involves random masks
and random offsets. There already exist several methods to attack these traces,
as shown on the website [1]; we don’t promote our KDA distinguisher as the
optimal one, we simply make use of the data as a scenario in which to demon-
strate its effective performance. We focus only on the second-order attack. It is
a characteristic of the RSM scheme that the output of the masked S-box and
the masked value of next sub-plaintext have the same mask, so that their XOR
result can remove the mask. In detail, the first part isMSbox(xi⊕k⊕ri+offset),
and the second part is xi+1 ⊕ ri+1+offset where MSbox is the masked sbox, i
is the index of the sub-plaintext, offset is a random number, and r is a mask
table. According to the description of the RSM algorithm, the first part can be
expressed as

MSbox(xi ⊕ k ⊕ ri+offset) = Sbox(xi ⊕ k)⊕ ri+1+offset

Hence, the XOR result of the two parts is Sbox(xi ⊕ k)⊕ xi+1 which, although
slightly different to the intermediates targeted in the simulated leakage scenario,
can be computed for each given key guess.

We choose 10 time points for each part as guided by a preliminary investi-
gation of the traces. As for the previous experiment, we ran the second-order
KDA distinguisher 100 times with randomly selected sub-samples of the traces.
The guessing entropy results are presented in Fig. 5. We observe that, for a
11 Sometimes referred to as the ‘LSB model’.
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Fig. 5. Guessing entropy of second-order attack with KDA on DPA v4. (reps: 100)

sufficient number of power traces, KDA (with a Hamming weight power model)
can successfully recover the secret key.

Third-order attacks In the previous subsection, we verified that KDA can
indeed be used as an effective distinguisher for second-order attack. In this sub-
section, we attempt to extend the KDA into a higher-order attack.

We test the performance of third-order KDA in the simulated leakage sce-
nario. We once more simulate 200,000 traces, but this time with a standard
deviation of 0.01. We run third-order KDA to attack the traces 100 times; the
guessing entropy of the correct key is indicated in Fig. 6. It decreases as the
attack sample increases, as before, converging eventually to 1.
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Fig. 6. Guessing entropy of third-order attack with KDA on the simulated masked
implementation leakage, with σ = 0.01. (resp: 100)
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4 Discussion

4.1 Complexity Analysis

Let N be the number of power traces, ` be the length of the sub-part relevant
to the mask in the trace, and d the number of masks. Thus, for simplicity, the
length of the trace is (d+1)`. The analysis which follows includes computational
complexity and space complexity.

According to the general approach introduced in Section 3.1 and the KDA
procedure in Section 2.3, for a key guess, the KDA distinguisher needs to compute
two parts: the kernel between-class scatter matrix M and within-class scatter
matrix N, and the eigenvalue decomposition for N−1M ∈ RN×N . The kernel
scatter matrices need N2(d+1)` calculations, and the eigenvalue decomposition
ofN ×N matrix needsO(N3) computations (92N

3 to be more precise [7]). So the
total computational complexity of the KDA distinguisher is O(N2(N+(d+1)`)).
The memory usage in KDA is to store the two kernel scatter matrices, so the
space complexity is 2N2.

The classical higher-order DPA attack first requires preprocessing the original
data, incurring `d+1 (e.g. 108 in the case of a 3rd-order masking with 100 time
points for each tuple) calculations (subtraction or multiplication according to
the combination function) for each trace. So the whole computation for the pre-
processing is N`d+1. Then the computation (via some first-order distinguisher)
of ‘similarity’ between each column of the N × `d+1 matrix and the hypothetical
power consumption vector requires N×`d+1 calculations in total. Therefore, the
computational complexity of classical higher-order DPA is O(N`d+1). The main
memory usage in classical higher-order DPA is to store the preprocessed traces,
which implies a space complexity of N`d+1.

We can see that the computation complexity of the KDA distinguisher is
polynomial in N , d, and `. It can still be optimized by the method of using
regularized regression to avoid the eigenvalue decomposition in KDA, although
the speed up ratio is 27 times [7]. However, the computational complexity of
classical higher-order DPA is not only polynomial in N , but also exponential in
d. The space complexity of KDA, which depends polynomially on N , represents
another advantage over classical higher-order DPA, which requires additional
exponential in ` space. If the mask order d is high and the ` is large, the compu-
tation of classical higher order DPA would be extremely high. When only time is
considered, if N(N +(d+1)`) < `d+1 given N , `, d, then the KDA distinguisher
becomes a better choice for the higher-order attack.

4.2 Flexible Power Model

Like other clustering-based distinguishers [2,12,23], the KDA distinguisher can
be performed using different power models. In the dimensionality reduction set-
ting, 256-class, 9-class (Hamming weight), and 3-class KDA have been investi-
gated [6]. In Section 3, we investigated the binary power model that was first
used in the seminal power analysis paper [11], as well as the 9-class Hamming
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weight model, for different masking orders; the attacks succeeded in all tested
cases.

An especially appealing feature of clustering-based distinguishers is that,
unlike classical higher-order DPA, they do not rely on the power model that
they use to be proportionally approximate to the true leakage; any meaningful
partition on the intermediate value will suffice. This property suggests KDA as an
ideal candidate for use in conjunction with the robust ‘semi-profiled’ modelling
proposed by Whitnall et al. at CHES 2015 [29]. The extension of their strategy to
higher-order attacks via the KDA distinguisher would be an interesting avenue
to explore in future work.

4.3 Limitations and Possibilities

As a baseline against which to compare the key recovery performance of KDA,
we also tested higher-order correlation DPA using the ‘normalised product’ com-
bining function (the best among tested alternatives in typical leakage scenarios
[19]) with a Hamming weight power model. In fact, these correlation attacks
substantially outperformed the KDA distinguisher in terms of the number of
traces required to converge to a guessing entropy of 1. At 2nd and 3rd orders,
they were also considerably faster to run.

While the relatively poor trace efficiency is disappointing, it is not surprising
given the idealised (Hamming weight or close to Hamming weight) nature of the
leakage scenarios tested so far. It is well known that correlation-based attacks
perform very efficiently when provided with good proportional approximations of
power data dependencies, while the advantages of ‘partition’-based [25] (a.k.a./
‘nominal power model’-based [30]) DPA distinguishers only emerge as the true
leakage increasingly diverges from standard model assumptions [28]. An inter-
esting avenue for future work will therefore be to deploy the KDA distinguisher
in scenarios where higher order correlation DPA is likely to struggle.

We should also stress that our experiments thus far have been proof of con-
cept, with no attempt (yet) to optimise for KDA parameters, which may make
a substantial difference to the performance of the distinguisher. In particular, it
was shown in the dimensionality reduction setting that the quality of the pro-
jected traces is influenced by the value of the regularisation parameter µ (Section
4.2 in [6]). This is something we plan to explore in future work, along with al-
ternatives to the polynomial kernel function (such as the Gaussian kernel).

The relatively slow computation time indicates that the overheads of the
eigenvalue decomposition dominate at 2nd and 3rd orders, so that the com-
plexity advantages of KDA may only begin to emerge as d increases beyond 3.
Establishing the threshold at which KDA becomes computationally preferable to
classical higher-order DPA is another interesting avenue for further investigation.

5 Conclusions and Future Perspectives

Following recent separate proposals to extend LDA to the task of directly re-
covering secret keys from unprotected implementations, and to use KDA for
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the extraction of points of (joint) interest from masked implementations, we
have taken the logical next step of extending KDA likewise for application as
a distinguisher. We have shown the natural common ground between higher-
order DPA and the operation of KDA, and reasoned about the soundness of
a KDA-based distinguisher from a theoretical perspective, before verifying its
effectiveness empirically. Complexity analysis reveals a substantial advantage of
KDA (polynomial in the number of traces and the order of the masking scheme)
over higher-order DPA (exponential in the order of the masking scheme).

Although the theoretic complexity advantages of KDA do not translate into
practical advantages in our proof-of-concept 2nd and 3rd order experiments,
there remains considerable scope for enhancing the methodology and for de-
ploying it in scenarios less vulnerable to classical higher-order DPA. The latter
include yet higher masking orders and alternative masking forms, as well as
data-dependencies which do not conform nicely to standard assumptions. These
represent worthwhile avenues for further investigation. We also anticipate that
fine-tuning the parameters (in particular, the regularization factor µ) and ex-
ploring alternative kernel functions will have a positive impact on performance.
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