
Round-Optimal Secure Multi-Party Computation

Shai Halevi ∗ Carmit Hazay† Antigoni Polychroniadou‡

Muthuramakrishnan Venkitasubramaniam§

Abstract

Secure multi-party computation (MPC) is a central cryptographic task that allows a set of mutually
distrustful parties to jointly compute some function of their private inputs where security should hold
in the presence of a malicious adversary that can corrupt any number of parties. Despite extensive
research, the precise round complexity of this “standard-bearer” cryptographic primitive is unknown.
Recently, Garg, Mukherjee, Pandey and Polychroniadou, in Eurocrypt 2016 demonstrated that the round
complexity of any MPC protocol relying on black-box proofs of security in the plain model must be
at least four. Following this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017 and
Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress towards solving this question and
constructed four-round protocols based on non-polynomial time assumptions. More recently, Ciampi,
Ostrovsky, Siniscalchi and Visconti in TCC 2017 closed the gap for two-party protocols by constructing
a 4-round protocol from polynomial-time assumptions. In another work, Ciampi, Ostrovsky, Siniscalchi
and Visconti TCC 2017 showed how to design a 4-round multi-party protocol for the specific case of
multi-party coin-tossing.

In this work, we resolve this question by designing a 4-round actively secure multi-party (two or
more parties) protocol for general functionalities under standard polynomial-time hardness assumptions.

Keywords: Secure Multi-Party Computation, Garbled Circuits, Round Complexity, Additive Errors

∗IBM T.J. Watson. Email: shaih@alum.mit.edu. Research supported by the Defense Advanced Research Projects
Agency (DARPA) and Army Research Office(ARO) under Contract No. W911NF-15-C-0236
†Bar-Ilan University. Email: carmit.hazay@cs.biu.ac.il. Research supported the BIU Center for Research in Ap-

plied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
‡Cornell Tech University of Rochester. Email: antigoni@cornell.edu. Supported by the National Science Foundation

under Grant No. 1617676, IBM under Agreement 4915013672 and the Packard Foundation under Grant 2015-63124. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the sponsors.
§University of Rochester. Email: muthuv@cs.rochester.edu. Research supported by Google Faculty Research Grant

and NSF Award CNS-1526377.



Contents

1 Introduction 2
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 A Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 6
2.1 Additive Secret-Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Affine Homomorphic PKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 An Instantiation based on LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 An Instantiation based on DDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 An Instantiation based on QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Oblivious Transfer from Affine Homomorphic Encryption . . . . . . . . . . . . . . . . . . 10
2.5 Tag Based Mon-Malleable Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Additive Attacks and AMD Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 The [BMR90] Garbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Defensible Simulation 14

4 Warmup MPC: The Case of Defensible Simulation 15
4.1 Step 1: Defensibly Simulatable Protocol for FA

MULT
. . . . . . . . . . . . . . . . . . . . . . 15

4.2 Step 2: Defensibly Simulatable Protocol for FA
dpoly . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Step 3: Defensibly Simulatable Protocol for Arbitrary Functionalities . . . . . . . . . . . . 26

5 4-Round Actively Secure Multi-Party Computation 32
5.1 Modified 3-bit Multiplication Protocol ΠR3MUL . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 4-Round Actively Secure Protocol for Fppoly . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 4-Round Actively Secure Multi-Party Computation for Arbitrary Functionalities . . . . . . . 37

6 Proof of Theorem 5.1 39

A Secure Multi-Party Computation 48
A.1 The Honest-but-Curious Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 The Malicious Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1



1 Introduction

Secure multi-party computation. A central cryptographic task, secure multi-party computation (MPC),
considers a set of parties with private inputs that wish to jointly compute some function of their inputs while
preserving privacy and correctness to a maximal extent [Yao86, CCD87, GMW87, BGW88].

In this work, we consider MPC protocols that may involve two or more parties for which security should
hold in the presence of active adversaries that may corrupt any number of parties (i.e. dishonest majority).
More concretely, we are interested in identifying the precise round complexity of MPC protocols for securely
computing arbitrary functions.

In [GMPP16], Garg, et al., proved a lower bound of four rounds for MPC protocols that relies on black-
box simulation. Following this work, in independent works, Ananth, Choudhuri and Jain [ACJ17] and
Brakerski, Halevi and Polychroniadou, [BHP17] showed a matching upper bound by constructing 4-round
protocols based on the Decisional Diffie-Hellman (DDH) and Learning With Error (LWE) assumptions,
respectively, albeit with super-polynomial hardness. More recently, Ciampi, Ostrovsky, Siniscalchi and Vis-
conti in [COSVb] closed the gap for two-party protocols by constructing a 4-round protocol from standard
polynomial-time assumptions. The same authors in another work [COSVa] showed how to design a 4-round
multi-party protocol for the specific case of multi-party coin-tossing.

The state-of-affairs leaves the following fundamental question regarding round complexity of crypto-
graphic primitives open:

Does there exist 4-round secure multi-party computation protocols for general functionalities
based on standard polynomial-time hardness assumptions and black-box simulation?

We remark that many prior works made progress towards answering this question while relaxing one
or more requirements. In the two-party setting, the recent work of Ciampi et al. [COSVb] showed how
to obtain a 4-round protocol based on trapdoor permutations. Assuming trusted setup, namely, a common
reference string, 2-round constructions can be obtained [GGHR14, MW16] or 3-round assuming tamper-
proof hardware tokens [HPV16].1 In the case of passive adversaries, (or even the slightly stronger setting of
semi-malicious2 adversaries) three round protocols based on the Learning With Errors assumption have been
constructed by Brakerski et al. [BHP17]. Ananth et al. gave a 5-round protocol based on DDH [ACJ17].
Under subexponential hardness assumptions, 4-round constructions were demonstrated in [BHP17,ACJ17].
Under the relaxation of superpolynomial simulation, the work of Badrinarayanan et al. [BGJ+17] shows
how to obtain 3-round MPC assuming subexponentially secure LWE and DDH. For specific multi-party
functionalities 4-round constructions have been obtained, e.g., coin-tossing and zero-knowledge by Ciampi
et al. [COSVb, GRRV14]. Finally, if we assume an honest majority, the work of Damgard and Ishai [DI05]
provided a 3-round MPC protocol.

1.1 Our Results

The main result we establish is a 4-round multi-party computation protocol for general functionalities in the
plain model based on standard polynomial-time hardness assumptions. Slightly more formally, we establish
the following theorem.

1Where in this model the lower bound is 2 rounds.
2A semi-malicious adversary is allowed to invoke a corrupted party with arbitrary chosen input and random tape, but otherwise

follows the protocol specification honestly as a passive adversary.

2



Theorem 1.1 (Informal) Assuming enhanced trapdoor permutations and public-key encryptions schemes
that admit affine homomorphisms with equivocation (cf. Definition 2.5), there exists a 4-round multi-party
protocol that securely realizes arbitrary functionalities in the presence of active adversaries corrupting any
number of parties.

Informally, an affine homomorphic encryption scheme admits an affine transformation that takes as input
a ciphertext c = Enc(m) and two values a, b and outputs c′ that decrypts to a ·m+ b. Equivocation further
requires that given c′ computed via an affine transformation with inputs c, a, b there exists an “explain”
procedure that can generate randomness for any other a′, b′ such that a ·m+ b = a′ ·m+ b′ that explains c′

as obtained via the affine transformation on inputs c, a′, b′. We show how to instantiate such an encryption
scheme by relying on standard additively homomorphic encryption schemes (or slight variants thereof).
More precisely, we instantiate such an encryption scheme using LWE, DDH and Quadratic Residuosity (QR)
hardness assumptions. This theorem addresses our motivating question and resolves the round complexity
of multiparty computation protocols.

1.2 Our Techniques

The starting point of our techniques is the beautiful work of Ananth, Choudhuri and Jain [ACJ17] where
they observe that the task of securely computing an arbitrary functionality reduces to the task of securely
computing many 3-bit multiplications in parallel, using specialized randomized encodings. Relying on an
elegant 3-round protocol for realizing 3-bit multiplications (which in turn can be based on 2-round oblivi-
ous transfer), the authors first constructed a 4-round passively secure protocol. Making this protocol secure
against active parties required enforcing correctness of the players actions in the 3rd and 4th rounds. The
specific approach pursued in [ACJ17] for the proof in the 3rd round (oversimplified) involved designing
a special 3-round non-malleable zero-knowledge proofs, for which they had to rely on super-polynomial
assumptions. A 4-round proof to enforce correctness in the last round was shown based on standard as-
sumptions. Finally, the authors relied on the construction of Applebaum, Ishai and Kushilevitz [AIK06]
which relies on the existence of PRGs in NC1 to instantiate their specialized randomized encoding.

On a high-level, our approach is to (a) weaken the requirement of the proof in the 3rd round from non-
malleable zero-knowledge to non-malleable witness indistinguishability and (b) eliminate the proof required
in the 4th round. Step (a) is required to eliminate super-polynomial assumptions (recalling here that 3-
round zero-knowledge is impossible with black-box simulation [GK96]), and Step (b) eases the simulator
by requiring only a specific type of rewinding, namely, rewinding from the 3rd to the 2nd round.

Tackling problem (a) First, we modify the 3-bit multiplication protocol described in Figure 1 that is based
on three executions of oblivious transfers (OTs) as follows. We modify the three invocations of the OTs to be
carried out using six invocations of OTs. Namely, each OT in the original protocol will be replaced with two
parallel invocations of OTs where the receiver uses the same choice bit in both invocations and the sender
secret-shares its two strings between the two instances. Next, between every ordered pair of parties (Pi, Pj),
Pi commits to two messages in parallel using a 3-round non-malleable commitment. We will also run in
parallel a (resettable) ZAP proof starting in the second and completing in the third round where Pi proves
to Pj that one of the two messages in the non-malleable commitments is a “valid” witness to its actions in
the first three rounds. As it turns out, the only way we could make this approach work, is to weaken the
requirements of the “validity” predicate. More precisely, we modify the predicate as follows:

• For actions of a party playing the role of the receiver in a pair of OTs (that replaced a single OT in the
original protocol), the predicate will only check if the witness is consistent with only one of the two
OTs and,

3



P2(x2, r2, s2) P3(x3)P1(x1, s1)

OTα[P1(x1),P2(−r2,x2−r2)]

u = x1x2 − r2 v = r2x3 − s2

OTβ [P3(x3),P2(−s2,r2−s2)]

OTγ [P3(x3),P1(−s1,u−s1)]

w = ux3 − s1

s2s1 s3 = v + w

Figure 1: The 3-round 3-bit multiplication protocol from [ACJ17] via a 2-round oblivious transfer protocol denoted by
OT[Rec(b),Sen(m0,m1)] where b is the receiver’s input and (m0,m1) is sender’s input in the OT interaction. The values
u, v, w denote the output values of OTα,OTβ ,OTγ executions, respectively. At the end of the protocol, parties P1, P2, P3 output
s1, s2, s3, respectively. The receiver’s message in OTγ can be sent in the same round as the senders messages in OTα,OTβ .

• For actions of a party playing the role of the sender it will require consistency with both invocations.

• Furthermore, the validity will not guarantee that the inputs (u, s1) of P1 in the OT executed between
P1 and P3 are “correct”, where correct means u is the result of the OT computation executed between
P1 and P2 in the first two rounds.

With these modifications, we show by a careful selection of intermediate hybrids that we can switch the
inputs of the honest parties in the first three rounds from the honest input to a random input while extract-
ing the inputs of the corrupted parties. A crucial modification we consider is to rely on a non-malleable
commitment that admits invalid commitments. Such commitments are usually the backbone used to boot-
strap to full-fledged non-malleable commitments (see [GRRV14, Khu17] for few examples). A common
issue with such commitments is the problem of “over-extraction” where an invalid commitment can fool
an extractor to extract the wrong message. We will rely on the ZAP to enforce that at least one of the two
non-malleable commitments made between each pair of parties is “valid”, thereby, guaranteeing at least one
of the two extracted messages to be correct. Finally, we rely on the technique introduced in [COSV16] for
transforming any non-malleable commitment to an input-delayed non-malleable commitment and apply the
transformation to the 3-round non-malleable commitment scheme implicit in [GRRV14].

Moving back to our weaker validity predicate in the ZAP statement, a first downside is that a malicious
receiver can use two different inputs in a pair of OT invocations when it was supposed to have the same
choice bit. This is easy to address as such an attack only restricts the adversary to learning random values
that are independent of the sender’s real inputs. Another downside of such a weakening is that if P1 is
controlled by the adversary, it can choose u arbitrarily, in particular, independent of the result of the first
OT. The effect of such an attack in the 3-bit multiplication can be modelled as an error being introduced in
an intermediate part of the computation. Formally, we can show that, a malicious party controlling party
P1 can choose a value e that is independent of the inputs of the honest parties, and influence the result of
the computation to be (x1x2 + e) · x3 instead of x1x2x3. Suppose we had a degree-3 randomized encoding
that is “resilient” to such additive errors then we would have been done. In fact, transformations presented
in the works [GIP+14, GIP15, GIW16] provide precisely such a mechanism to transform any circuit C to
be resilient to (arbitrary) additive attacks on the intermediate computation of the function. However, all
the current transformations increase the degree of the circuit and since we start with a degree-3 randomized
encoding, we cannot pursue this approach. Our approach to tackle this problem is to rely on a special degree-
3 encoding of a function f to f ′. More precisely, for the specific encoding, by carefully assigning roles in
the 3-bit multiplication protocol to realize this encoding, we will be able to show that errors e introduced

4



in all the 3-bit multiplications with a corrupted P1 can be effectively translated to an additive attack to the
underlying computation of f . Now, if we precompile our function f to f̂ following the transformations
of [GIP+14, GIP15, GIW16] and then apply the special degree-3 randomized encoding f̂ ′ we will obtain
an encoding that is of degree-3 and resilent to the additive errors introduced by corrupted P1. In fact,
the specific randomized encoding that we will rely on is the multiparty garbling of Beaver, Micali and
Rogaway [BMR90].

Tackling problem (b) Towards eliminating the proof of the actions in the 4th round, we focus our discussion
on BMR garbling which is needed for tackling (a). In this approach, the messages shared in the final round
are reconstructed by the parties to compute the garbling circuit, input keys and output translation tables (i.e.
a table to interpret the results of the garbled circuit evaluation). First, we point out that a rushing adversary
can wait until it receives the 4th round message from all parties and then share its message. If no proof is
made in the 4th round, it can introduce errors in any part of its message. We leverage a property of the BMR
garbling identified in the works of [LPSY15, HSS17]: if the errors introduced by the adversary cause the
honest parties to abort during the computation, the probability of abort can be shown to be independent of
the actual values in the wires of the circuit. In slight more detail, an adversary can cause an honest party to
abort in the evaluation of a garbled gate g by introducing errors in a specific row among the four rows of
the garbled circuit. However whether or not the active path will pass through the bad row is randomized by
all parties and hence the abort event is independent of the wire values. Finally, the adversary can modify
the translation table arbitrarily making the honest party output the wrong answer. This can be fixed by a
standard technique of precompiling f to additionally receiving keys to a MAC from the parties and output a
MAC of the output under each key along with the output.

A modular presentation: the case of defensible simulation. In order to make our presentation more
modular, we introduce the notion of defensible simulation. Focussing on a 4-round protocol, we will first
consider a simpler scenario where we design a 4-round protocol that achieves full simulation against active
adversaries that provide a valid defense in a special output tape at the end of the third round. If the adversary
does not provide a defense then no guarantee is made. We call this defensible simulation and show a protocol
to realize arbitrary functionalities. The concrete steps we take are to first design a protocol that achieves
defensible simulation for 3-bit multiplication and then compile it to securely compute multiple instances of
degree-3 polynomials. Finally, we show that by securely computing the BMR garbling when instantiated
with degree-3 polynomials we can securely compute arbitrary functionalities up to defensible simulation.

Next, we design a protocol to securely realize degree-3 polynomials against active adversaries where
we show that for any active adversary there is a simulator that can generate an indistinguishable view while
outputting a valid defense at the end of third round. Then we can combine the simulation strategy against
defensible adversaries to obtain full simulation. We remark that the reason to split the proofs into two
segments is to separate the proofs involving the security reductions required for the garbling (with additive
errors on the wires) and the reductions for non-malleability.

We remark that the notion of defensible simulation is introduced merely as a conceptual step to make
the presentation modular. We leave it as future work to initiate a careful study of this notion as a tool for
obtaining round-efficient protocols.

1.3 Related Work

The earliest MPC protocol is due to Goldreich, Micali and Wigderson [GMW87]. The round complexity of
this approach is proportional to the circuit’s multiplication depth (namely, the largest number of multiplica-
tion gates in the circuit on any path from input to output) and can be non-constant for most functions.

5



A different approach was taken in [BMR90], extending the celebrated garbled circuits technique of
[Yao86] to the multi-party setting. This constant-round protocol, developed by Beaver, Micali and Rogaway,
achieved security in the presence of passive adversaries (and against active adversaries in the honest majority
setting). This was later improved by Katz, Ostrovsky and Smith [KOS03] to obtain the first constant-round
MPC protocol secure against active adversaries in the dishonest majority setting while relying on non-black-
box simulation [Bar01].

The first constant-round MPC protocols that relied on black-box simulation were obtained by Goyal
[Goy11] and Lin and Pass [LP11]. Namely, the work of Lin et al. [LPV08] reduced the task of de-
signing round-efficient MPC protocols to designing round-efficient non-malleable commitment schemes
whereas [Goy11, LP11] provided the first constant-round non-malleable commitment schemes. Following
these works, a long line of research has focussed on improving the precise round complexity of concurrent
non-malleable commitments [GLOV12,GRRV14,GPR16] leading up to the work of Ciampi et al. [COSV17]
who provided a 4-round non-malleable commitment scheme based on one-way functions and more recently
a non-malleable zero-knowledge argument based on one-way functions by Ciampi et al. [COSVa]. A lower
bound of 2 rounds was established by Pass regarding the round complexity of concurrent non-malleable
commitment schemes. Finally, Khurana in [Khu17] resolved the round-complexity question by providing a
3-round non-malleable commitments scheme based on one-way permutations.

1.4 A Roadmap

In Section 4.1 we provide our 4-round 3-bit multiplication protocol ΠDMULT with defensible simulation.
In Section 4.2 we provide a 4-round protocol Πdpoly that securely computes parallel multiple instances of
ΠDMULT. In Section 4.3 we compile the protocol Πdpoly to the defensible simulatable protocol Πf which
securely computes arbitrary functionalities (via the BMR garbling). Finally, in Sections 5 and 6 we compile
protocol Πf that is secure against defensible adversaries to a 4-round fully maliciously secure protocol.

2 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N.

We specify next the definitions of computationally indistinguishable and statistical distance.

Definition 2.1 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

Definition 2.2 Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

6



We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

2.1 Additive Secret-Sharing

In an additive secret-sharing scheme, N parties hold shares the sum of which yields the desired secret. By
setting all but a single share to be a random field element, we ensure that any subset of N− 1 parties cannot
recover the initial secret.

Definition 2.3 (Additive secret-sharing) Let F2 be a finite field and let N ∈ N. Consider the secret-sharing
scheme SN = (Share,Recover) defined below.

• The algorithm Share on input (s,N) performs the following:

1. Generate (s1, . . . , sN−1) uniformly at random from F2 and define sN = s−
∑N−1

i=1 si.

2. Output (s1, . . . , sN) where si is the share of the ith party.

• The recovery algorithm Recover on input (s1, · · · , sN), outputs
∑N

i=1 si.

It is easy to show that the distribution of any N − 1 of the shares is the uniform one on FN−1
2 and hence

independent of s.

Secret-sharing notation. In the sequel for a value s ∈ F2 we denote by [s] a random additive secret sharing
of s. That is, [s]← Share(s,N) where [s] = (s1, . . . , sN).

2.2 Pseudorandom Functions

Informally speaking, a pseudorandom function (PRF) is an efficiently computable function that looks like a
truly random function to any PPT observer. The [BMR90] garbling technique from [LPSY15], which we
adapt in this paper, is proven secure based on a pseudorandom function (PRF) with multiple keys, defined
below.

Definition 2.4 (Pseudorandom function with multiple keys) Let F : {0, 1}κ × {0, 1}n 7→ {0, 1}n be an
efficient, length preserving, keyed function. F is a pseudorandom function under multiple keys if for all
polynomial-time distinguishers D, there exists a negligible function negl such that:∣∣Pr[DFk̄(·)(1κ) = 1]− Pr[Df̄(·)(1κ) = 1]

∣∣ ≤ negl(κ).

where Fk̄ = Fk1 , . . . , Fkm(n) are the pseudorandom function F keyed with polynomial number of randomly
chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are m(n) random functions from {0, 1}n 7→ {0, 1}n. The
probability in both cases is taken over the randomness of D as well.

When the keys are independently chosen then security with multiple keys is implied by the standard security
PRF notion, by a simple hybrid argument.

7



2.3 Affine Homomorphic PKE

We rely on public-key encryption schemes that admit an affine homomorphism and an equivocation property.
As we demonstrate via our instantiations, most standard additively homomorphic encryption schemes satisfy
these properties. Specifically, we provide instantiations based on Quadratic Residuosity (QR), Decisional
Diffie-Hellman (DDH), and Learning With Errors (LWE) assumptions.

Definition 2.5 (Affine homomorphic PKE) We say that a public key encryption scheme (M = {Mκ}κ,Gen,
Enc,Dec) is affine homomorphic if

• Affine Transformation: There exists an algorithm AT such that for every (PK, SK) ← Gen(1κ),
m ∈ Mκ, rc ← Drand(1κ) and every a, b ∈ Mκ, DecSK(AT(PK, c, a, b)) = am + b holds with
probability 1, where c = EncPK(m; rc), where Drand(1κ) is the distribution of randomness used by
Enc.

• Equivocation: There exists an algorithm Explain such that for every (PK, SK) ← Gen(1κ), every
m, a0, b0, a1, b1 ∈ Mκ such that a0m+ b0 = a1m+ b1 and every rc ← Drand(1κ), it holds that the
following distributions are statistically close over κ ∈ N:

– {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r) : (m, rc, c
∗, r, aσ, bσ)}, and

– {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r);

t← Explain(SK, aσ, bσ, a1−σ, b1−σ,m, rc, r) : (m, rc, c
∗, t, a1−σ, b1−σ)},

where c = EncPK(m; rc).

In what follows, we demonstrate how to meet Definition 2.5 under a variety of hardness assumptions.

2.3.1 An Instantiation based on LWE

Definition 2.6 (LWE [Reg09]) Let κ be the security parameter, let q = q(κ) be integers and let χ = χ(κ),
be error distributions over Z. The LWEκ,q,χ assumption says that for any polynomial m = m(κ),

(A, s ·A+ e) ≈c (A, z)

where A← Zκ×mq , s← Zκq , e← χm and z ← Zmq .

• Setup: Let κ be the security parameter,m = poly(κ), q > superpoly(κ) and error bound σ = poly(κ)
and σ′ = superpoly(κ).

• Key-Generation: Choose at random A ∈ Zκ×mq , s ← DZκ,σ, e ← DZm,σ. Set b = sA + e mod q

and PK =

(
A
b

)
∈ Z(κ+1)×m

q where SK = (s| − 1) ∈ Z(κ+1)
q .

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← DZm,σ and output

the ciphertext c = PK · rc +
⌊q

2

⌋
· (0 . . . 0 m)> ∈ Z(κ+1)

q .

• Decryption: Given the secret key SK and the ciphertext c, compute the inner-product d = 〈SK, c〉
mod q. Output 1 if |d| > q

4 and 0 if |d| < q
4 .

8



• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← DZm,σ′ and set c′ = PK · r +⌊q
2

⌋
· (0 . . . 0 b)> ∈ Z(κ+1)

q . Output ciphertext c∗ as follows:

c∗ =


c′, if a = 0

c′ + c mod q, a = 1, b = 0

c′ − c mod q a = 1, b = 1

• Equivocation: Note that c∗ = PK · r∗ +
⌊q

2

⌋
· (0 . . . 0 w)> where w = aσ · m ⊕ bσ, and r∗ =

r + aσ(1 − 2 · bσ) · rc. Given randomness rc, r and a1−σ, b1−σ output t such that t + a1−σ(1 − 2 ·
b1−σ) · rc = r + aσ(1− 2 · bσ) · rc.

2.3.2 An Instantiation based on DDH

Definition 2.7 (The Decisional Diffie-Hellman (DDH) Problem) Let (G, ·) be a cyclic group of prime or-
der p and with generator g. Let α, β, γ be sampled uniformly at random from Zp (i.e., α, β, γ ← Zp). The
DDH problem asks to distinguish the distributions (g, gα, gβ, gαβ) and (g, gα, gβ, gγ).

We next describe the El-Gamal encryption scheme [Gam85] over characteristic-2 fields. Since this
encryption scheme is defined over larger fields, to compute the encryption of a⊕b, we compute a+b−2ab =
a⊕ b.

• Key-Generation: Choose a random generator g ∈ G and a random number SK ∈ Zp and compute
PK = gSK.

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← Zp and output the
ciphertext c = (c1, c2) = (grc , PKrcgm).

• Decryption: Given the secret key SK and the ciphertext c = (c1, c2), compute m = c2(cSK
1 )−1.

• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← Zp and set c∗ = (c∗1, c
∗
2) =

(c
a(1−2·b)
1 gr, c

a(1−2·b)
2 PKrgb) = (grc·a(1−2·b)+r, PKrc·a(1−2·b)+rgb+m·a(1−2·b)).

• Equivocation: Note that the ciphertext c∗1 = grc·aσ(1−2·bσ)+r and c∗2 = PKrc·aσ(1−2·bσ)+rgbσ+m·aσ(1−2·bσ)

corresponds to an encryption of m · aσ + bσ mod 2. Given randomness rc, r and a1−σ, b1−σ output
t such that t+ rc · a1−σ(1− 2 · b1−σ) = r + rc · aσ(1− 2 · bσ) mod p.

2.3.3 An Instantiation based on QR

In a group G, an element y ∈ G is a quadratic residue if there exists an x ∈ G with x2 = y. We denote the
set of quadratic residues modulo N (an RSA composite) by QRN and the set of quadratic non-residues by
QNRN . Finally, denote byQNR+1

N the set of quadratic non-residue modulo N with J (x) = +1 (namely,
the Jacobi symbol is +1).

Definition 2.8 (The Quadratic Residue (QR) Problem) Let N = pq be an RSA composite. Let qr be
sampled uniformly at random from QRN and let qnr be sampled uniformly at random from QNR+1

N . The
QR problem asks to distinguish the distributions (N, qr) and (N, qnr).

9



We next describe the Goldwasser-Micali encryption scheme [GM84] over characteristic-2 fields.

• Key-Generation: Choose an RSA composite (N, q, p) and a random z ← QNR+1
N . The public key

is PK = 〈N, z〉 and the private key is SK = 〈p, q〉

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← Z∗N and output the
ciphertext c = zm · r2

c mod N .

• Decryption: Given the secret key SK and the ciphertext c, determine whether c is a quadratic residue
modulo N using SK. If yes, output 0; otherwise, output 1.

• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← Zp and set c∗ = ca0 · zb0 · r2.
Note that the ciphertext c∗ = ca0 · zb0 · r2 corresponds to an encryption of a0m+ b0 mod 2.

• Equivocation: Given randomness r, rc and a1−σ, b1−σ output t = raσc · r/r
a1−σ
c .

2.4 Oblivious Transfer from Affine Homomorphic Encryption

1-out-of-2 oblivious transfer (OT) is a functionality that is engaged between a sender Sen with a pair of
inputs (s0, s1) and a receiver Rec with an input bit b to securely compute sb delivered to the receiver. An
Oblivious Linear-function Evaluation (OLE) over a field F takes a field element x ∈ F from the receiver and
a pair (a, b) ∈ F2 from the sender and delivers ax+ b to the receiver. Note that in the case of binary fields,
OLE can be realized via a single call to standard (bit-)OT.

For ease of exposition, we rely on the more intuitive notation a · OT[1] + EncPK(b) instead of using
AT(PK,OT[1], a, b). A 2-round OLE with semi-honest security can be constructed from an affine homo-
morphic encryption scheme with plaintext space F, where the affine transformation of plaintexts corresponds
to an affine operation in the field, as follows:

Protocol 1 (Oblivious Transfer from Affine Homomorphic Encryption)

Input: The sender has inputs (a, b) ∈ F and the receiver has inputs x.

Rec → Sen : The receiver generates keys (PK, SK) ← Gen(1κ) and sends OT[1] = EncPK(x) to
Sen.

Sen→ Rec : The sender responds with a · OT[1] + EncPK(b).

We define the defense of the receiver and sender as the input and randomness used in the protocol.

An oblivious-transfer protocol on bits can be obtained by considering F = F2 and requiring the sender
to encode it inputs (s0, s1) by sampling random bits a, b ∈ {0, 1} such that a⊕ b = s1 and b = s0.

Note that the security of the above OT protocol against a corrupted sender is computational and is derived
from the privacy of the underlying public-key encryption scheme, whereas the security against a corrupted
receiver is statistical due to the affine homomorphism. In this work we are interested in the stronger defen-
sible privacy notion and formalize the privacy guarantees for this OT protocol below. Specifically, we show
that this protocol satisfies the two properties stated in the following propositions.

Proposition 2.1 (Privacy against defensible senders) For every malicious PPT adversarial sender Sen∗,
the following two distributions are indistinguishable:

• {Γ(ViewSen∗(〈Sen∗(s0, s1),Rec(0)〉(1κ))}κ∈N,s0,s1∈{0,1}

10



• {Γ(ViewSen∗(〈Sen∗(s0, s1),Rec(1)〉(1κ))}κ∈N,s0,s1∈{0,1}

where Γ(v) = v only if Sen∗ outputs a valid defense for the interaction, and is otherwise ⊥.

The proof of this proposition follows directly from the semantic security of the underlying encryption
scheme.

Proposition 2.2 (Privacy against defensible receivers) For every malicious PPT adversarial sender Rec∗,
the following two distributions are indistinguishable for b ∈ {0, 1}:

• {s1−b ← {0, 1}; s̃1−b ← {0, 1}; v ← ViewRec∗(〈Sen(s0, s1),Rec∗(b)〉(1κ) : Γ(v, s1−b)}κ∈N,sb∈{0,1}

• {s1−b ← {0, 1}; s̃1−b ← {0, 1}; v ← ViewRec∗(〈Sen(s0, s1),Rec∗(b)〉(1κ) : Γ(v, s̃1−b)}κ∈N,sb∈{0,1}

where Γ((v, x)) = (v, x) only if Rec∗ outputs a valid defense for the interaction on input b, and is otherwise
⊥.

The proof of this proposition follows directly from equivocation protocol of the affine homomorphic en-
cryption scheme.

In our final protocol, we use a simple extension of the basic OT protocol that will admit a simulation
that can equivocate its defense in addition to the two properties listed above. We describe this protocol next.

Protocol 2 (Double Oblivious Transfer)

Input: The sender has inputs (s0, s1) ∈ {0, 1} and the receiver has an input x ∈ {0, 1}.

Rec → Sen : The receiver generates keys (PK, SK) ← Gen(1κ; rGen), (P̃K, S̃K) ← Gen(1κ; r̃Gen)

and sends OT[1] = EncPK(x; rEnc), ÕT[1] = EncP̃K(x; r̃Enc) to Sen.

Sen→ Rec : The sender responds with OT[2] = a ·OT[1]+EncPK(b), ÕT[2] = ã ·ÕT[1]+EncP̃K(b̃)

where a, ã, b, b̃ are sampled randomly subject to b+ b̃ = s0 and a+ ã = s0⊕s1. The receiver outputs
DecSK(OT[2])⊕ DecS̃K(ÕT[2])

We define the defense of the sender as the input and randomness used in the protocol. The defense of the
receiver only requires providing the input and randomness for one of the two parallel executions, namely,
either PK, SK, rGen, x, rEnc or P̃K, S̃K, r̃Gen, x, r̃Enc

We remark that the proof of privacy against defensible senders holds even though the defense provides
the receiver’s input for only one of the two parallel executions because the sender’s inputs are additively
secret shared.

2.5 Tag Based Mon-Malleable Commitments

Let nmcom = 〈C,R〉 be a k-round commitment protocol where C and R represent (randomized) commit-
ter and receiver algorithms, respectively. Denote the messages exchanged by (nm1, . . . , nmk) where nmi

denotes the message in the i-th round.
For some string u ∈ {0, 1}κ, tag id ∈ {0, 1}t, non-uniform PPT algorithm M with “advice” string

z ∈ {0, 1}∗, and security parameter κ, consider the following experiment: M on input (1κ, z), interacts
with C who commits to u with tag id; simultaneously, M interacts with R(1κ, ĩd) attempting to commit to
a related value ũ, again using identity ĩd of its choice (M ’s interaction with C is called the left interaction,

11



and its interaction with R is called the right interaction); M controls the scheduling of messages; the output
of the experiment is denoted by a random variable nmcM〈C,R〉(u, z) that describes the view of M in both

interactions and the value ũ which M commits to R in the right execution unless ĩd = id in which case
ũ = ⊥, i.e., a commitment where the adversary copies the identity of the left interaction is considered
invalid.

Definition 2.9 (Tag based non-malleable commitments) A commitment scheme nmcom = 〈C,R〉 is said
to be non-malleable with respect to commitments if for every non-uniform PPT algorithm M (man-in-the-
middle), for every pair of strings (u0, u1) ∈ {0, 1}κ × {0, 1}κ, every tag-string id ∈ {0, 1}t, every κ ∈ N,
every (advice) string z ∈ {0, 1}∗, the following two distributions are computationally indistinguishable:

nmcM〈C,R〉(u
0, z)

c
≈ nmcM〈C,R〉(u

1, z)

Parallel non-malleable commitments. We consider a strengthening of nmcom in which M can receive
commitments to m strings on the “left”, say (u1, . . . , um), with tags (id1, . . . , idm) and makes m com-
mitments on the “right” with tags (ĩd1, . . . , ĩdm). We assume that m is a fixed, possibly a-priori bounded,
polynomial in the security parameter κ. In the following let i ∈ [m], b ∈ {0, 1}: We say that a nmcom is
an m-bounded parallel non-malleable commitment if for every pair of sequences {ubi} the random variables
nmcM〈C,R〉({u

0
i }, z) and nmcM〈C,R〉({u

1
i }, z) are computationally indistinguishable where nmcM〈C,R〉({u

b
i}, z)

describes the view of M and the values {ũbi} committed by M in the m sessions on the right with tags {ĩdi}
while receiving parallel commitments to {ubi} on left with tags {idi}.

We will rely on a benign form of non-malleable commitments that is secure against “synchronizing”
man-in-the middle adversaries. Where a man-in-the-middle adversary is said to be synchronous if its inter-
action in the non-malleable commitment on the left and right are executed in parallel (i.e. lock-step). We
produce the following definitions verbatim from [Khu17].

Definition 2.10 (One-Many weak non-malleable commitments with respect to synchronizing adver-
saries [Khu17]) A statistically binding commitment scheme 〈C,R〉 is said to be one-many weak non-
malleable with respect to synchronizing adversaries, if there exists a probabilistic over-extractor Enm param-
eterized by ε, that given a PPT synchronizing MIM which participates in one left session and p = poly(κ)
right sessions, and given the transcript of a main-thread interaction τ , outputs a set of valuesm1,m2, . . .mp

in time poly(n, 1/ε). These values are such that:

• For all j ∈ [p], if the jth commitment in τ is a commitment to a valid message uj , then mj = uj over
the randomness of the extractor and the transcript, except with probability ε/p.

• For all j ∈ [p], if the jth commitment in τ is a commitment to some invalid message (which we will
denote by ⊥), then mj need not necessarily be ⊥.

Definition 2.11 (Resettable reusable WI argument) We say that a two-message delayed-input interactive
argument (P, V ) for a language L is resettable reusable witness indistinguishable, if for every PPT verifier
V ∗, every z ∈ {0, 1}∗, P r[b = b′] ≤ 1/2 + µ(κ) in the following experiment, where we denote the first
round message function by m1 = wi1(r1) and the second round message function by wi2(x,w,m1, r2). The
challenger samples b← {0, 1}. V ∗ (with auxiliary input z) specifies (m1

1, x
1, w1

1, w
1
2) wherew1

1, w
1
2 are (not

necessarily distinct) witnesses for x1. V ∗ then obtains second round message wi2(x1, w1
b ,m

1
1, r) generated

with uniform randomness r. Next, the adversary specifies arbitrary (m2
1, x

2, w2
1, w

2
2), and obtains second

round message wi2(x2, w2
b ,m

2
1, r). This continues m(κ) = poly(κ) times for a-priori unbounded m, and

finally V ∗ outputs b.

12



ZAPs (and more generally, any two-message WI) can be modified to obtain resettable reusable WI, by
having the prover apply a PRF on the verifier’s message and the public statement in order to generate the
randomness for the proof. This allows to argue, via a hybrid argument, that fresh randomness can be used
for each proof, and therefore perform a hybrid argument so that each proof remains WI. In our construction,
we will use resettable reusable ZAPs.

2.6 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from [GIP+14, GIW16]. We note that
in this work we work with binary fields F2.

Definition 2.12 (Additive attack) An additive attack A on a circuit C is a fixed vector of field elements
which is independent from the inputs and internal values of C. A contains an entry for every wire of C, and
has the following effect on the evaluation of the circuit. For every wire ω connecting gates a and b in C,
the entry of A that corresponds to ω is added to the output of a, and the computation of the gate b uses the
derived value. Similarly, for every output gate o, the entry of A that corresponds to the wire in the output of
o is added to the value of this output.

Definition 2.13 (Additively corruptible version of a circuit) Let C : FI1 × . . .×FIn → FO1 × . . .×FOn
be an n-party circuit containing W wires. We define the additively corruptible version of C to be the n-
party functionality fA : FI1 × . . .× FIn × FW → FO1 × . . .× FOn that takes an additional input from the
adversary which indicates an additive error for every wire of C. For all (x,A), fA(x,A) outputs the result
of the additively corrupted C, denoted by CA, as specified by the additive attack A (A is the simulator’s
attack on C) when invoked on the inputs x.

Definition 2.14 (Additively-secure implementation) Let ε > 0. We say that a randomized circuit Ĉ :
Fn → Ft × Fk is an ε-additively-secure implementation of a function f : Fn → Fk if the following holds.

• Completeness. For every x ∈ Fn, Pr[C(x) = f(x)] = 1.

• Additive-attack security. For any additive attack A there exist aIn ∈ Fn, and a distribution AOut over
Fk, such that for every x ∈ Fn, SD(CA(x), f(x + aIn) + AOut) ≤ ε.

Theorem 2.15 ( [GIW16], Theorem 2) For any boolean circuit C : {0, 1}n → {0, 1}m, and any security
parameter κ, there exists a 2−κ-additively-secure implementation Ĉ of C, where |Ĉ| = poly(|C|, n, κ).

We remark that the actual theorem achieves tighter parameters, namely, better overhead than what is
reported in the theorem. We state this theorem in weaker form as it is sufficient for our work.

2.7 The [BMR90] Garbling

An extension of Yao garbled circuits approach [Yao86] for any number of parties n introduced by Beaver,
Micali and Rogaway in [BMR90] leading to the first constant-round protocol. This protocol has an offline
phase in which the garbled circuit is created, and an online phase in which the garbled circuit is evaluated.
The [BMR90] garbling technique involves garbling each gate separately using pseudorandom generators
(or pseudorandom functions) while ensuring consistency between the wires. This method was recently
improved by Lindell et al. in [LPSY15] which introduced an NC0 functionality for this task, while demon-
strating that the PRF values submitted by each party need not be checked for consistency (or computed by

13



the functionality), as inconsistency would imply an abort by at least one honest party. Moreover, an abort
event is independent of the honest parties’ inputs due to the way each gate is garbled. In more details,
the garbling functionality FGC used in [LPSY15] is a modification of the garbling functionality introduced
in [BMR90], and is applicable for any number of parties n. Namely, let C denote the circuit computed
by the parties which contains W wires and a set of G gates. Then for every wire w party Pi inputs to the
functionality two keys kiw,0, k

i
w,1 and the PRF computations based on these keys (see equation 1 below).

Moreover, the functionality does not ensure that these values are consistent (namely, that the PRF values are
computed correctly). The remaining computation is similar. Loosely speaking, the parties pick a masking
bit for every wire in the computed circuit and the functionality creates the garbling for each gate which
includes four rows such that each row is combined out of n ciphertexts. To be more concrete, for every wire
w, each party Pi picks a wire masking value share λiw so that the actual masking equals λw =

⊕n
i=1 λ

i
w.

Next, for every wire w that is associated with party Pi the functionality reveals the masking bit λw to party
Pi. Looking ahead, this phase is required so that in the online phase each party Pi can determine the public
value associated with its input wires. Namely, each party Pi broadcasts λw ⊕ ρw where ρw is the input bit
for wire w. In response, every party Pj broadcasts its key kjw,λw⊕ρw . Upon collecting the keys from all
parties, the players can start evaluating the garbled circuit. We conclude the description of the functionality
with the phase where the functionality reveals λw for every output wire w, which constitutes the translation
table and allows the parties to reconstruct the circuit’s output.

We will now describe the technical details of the BMR garbling. Namely, for every NAND gate g ∈ G
with input wires 1 ≤ a, b ≤ W and output wire c, the garbled row r1, r2 ∈ {0, 1} in gate g is expressed as
the concatenation of Rg,r1,r2 = {Rjg,r1r2}nj=1, where

Rg,jr1r2 =
n⊕
i=1

(
Fkia,r1

(g, j, r1, r2)⊕ Fkib,r2
(g, j, r1, r2)

)
⊕ kjc,0 ⊕

(
χr1,r2 ∧ (kjc,1 ⊕ k

j
c,0)
)

(1)

where F is a PRF, kia,0, k
i
a,1 and kib,0, k

i
b,1 are the respective input keys of party Pi, whereas kic,0, k

i
c,1 are its

output keys. Furthermore, for every a, b and r1, r2 as above the selector variable χr1,r2 is defined by,

χr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2)⊕ 1)⊕ λc

such that the AND computation χr1,r2 ∧ (kjc,1 ⊕ kjc,0) is defined between the bit χr1,r2 and the κ length
string (kjc,1 ⊕ kjc,0) bitwise (namely, the AND of χr1,r2 is computed with every bit in kjc,1 ⊕ kjc,0). The
slightly modified offline functionality BMROffline is formally described in Figure 4. We note that the main
difference is regarding an additive error that the adversary can embed into the garbling that is captured by
our functionality; see more discussion in Section 4.3.

3 Defensible Simulation

In this section we introduce a new notion that can be seen as a generalization of the notion of defensible
privacy introduced by Haitner et al. [HIK+11]. A defense for a corrupted party is input and random tape
provided by the adversary after the protocol execution concludes. A defense is considered good or valid if it
explains the actions of the corrupted party in the protocol execution. Namely, a valid defense demonstrates
that the messages generated by the corrupted party in the execution can be re-enacted by an honest party
using the input and random tape provided in the defense. In other words, a valid defense is supposed to be
a “proof” of honest behavior. Given this notion of a defense, a protocol is said to achieve privacy against

14



defensible adversaries or defensible privacy, if it assures that no adversary can learn anything more than the
prescribed output whenever it provides a valid defense. If an invalid defense is presented, the protocol is not
required to provide any guarantee.

We introduce a related yet incomparable notion of defensible simulation which “generalizes” defensible
privacy in two ways. First, we do not require a “canonical” defense, namely the entire input and random tape
as part of the defense. We will only require a “validity” predicate that will assure that whenever the defense
output by the adversary satisfies the “validity” predicate privacy is assured. A second generalization is that
we will provide simulation security as opposed to only privacy. In other words, given any polynomial-time
adversary that corrupts a subset of the parties, there exists a polynomial-time simulator that can simulate
the adversary’s view in an ideal world whenever the adversary outputs a valid defense. In comparison
to defensible privacy, we will relax the requirement that the adversary provides the defense at the end of
computation. In our definition (and in the protocols we construct) we will achieve simulation only when the
adversary outputs a valid defense before a specific round during protocol execution. This could be before
the last round and therefore makes our definition incomparable to defensible privacy.3

We consider the standard definitions of real and ideal model for executions. See Appendix A.2 for a
formal description. We now provide a formal definition of defensible privacy.

Definition 3.1 An r-round protocol π with validity predicate valid is said to securely compute f with abort
in the presence of defensible adversaries if there exists a round r′ ≤ r such that for every non-uniform
probabilistic polynomial-time adversary A for the real model, there exists a non-uniform probabilistic
polynomial-time adversary S for the ideal model, such that for every I ⊂ [n], the following distributions
are indistinguishable

•
{

IDEALf,S(z),I(κ, x1, . . . , xn)
}
κ∈N,xi,z∈{0,1}∗

•
{

R̃EALπ,A(z),I(κ, x1, . . . , xn)
}
κ∈N,xi,z∈{0,1}∗

where κ is the security parameter and the random variable R̃EAL is set to REAL only if the adversary
outputs a valid defense def at the end of the (r′)th-round and R̃EAL = ⊥ otherwise. A defense def is valid
if valid(Pi, τ, defi) = 1 for all i ∈ I where A controls the parties I ⊆ [n], def = {defi}i∈I and τ is the
transcript of the interaction until the end of the (r′)th-round.

We remark that we will additionally extend the definition to functionalities to receive an “additive” error
from the adversary in the style of [GIP+14,GIW16]. Recall from Definition 2.13 that, given any function f ,
we can consider an additively corruptible version fA that takes additional input from the adversary which
indicates an additive corruption for every wire of C. For all (x,A), fA(x,A) outputs the result of the
additively corrupted C as specified by the additive attack A (where A is the simulator’s attack on C) when
invoked on the inputs x. For some of our protocols, we will achieve defensible simulation of the additively
corruptible version of the function f ; see the formalization in Section 2.6.

4 Warmup MPC: The Case of Defensible Simulation

4.1 Step 1: Defensibly Simulatable Protocol for FA
MULT

In this section, we realize the three-bit product functionality with additive errors FA
MULT. Informally, FA

MULT

is an additively corruptible version of FMULT that additional takes as input additive attack A from the ad-
3Looking ahead, in our 4-round protocol we need to check the validity of the defense in the 3rd round.

15



Functionality FA
MULT

FA
MULT runs with parties P = {P1, P2, P3} and an adversary S who corrupts a subset I ⊂ [n] of parties.

1. For each i ∈ {1, 2, 3}, the functionality receives xi from party Pi. If P1 is corrupted, then it
additionally receives eIn from S.

2. Upon receiving the inputs from all parties, evaluate y = (x1x2 + eIn)x3 and sends it to S.

3. Upon receiving (deliver, eOut) from S, the functionality sends y + eOut to all parties.

Figure 2: Additively corruptible 3-bit multiplication functionality.

versary. We will realise a restricted version of FA
MULT that will accept additive errors eIn if P1 is corrupted

and eOut (for any corruption scenario) and compute the function (x1x2 + eIn)x3 + eOut. We remark here that
such a restricted class of errors will be sufficient for our final protocol. The formal description of FA

MULT is
presented in Figure 2. Our protocol relies on the following building blocks:

1. AFFINE HOMOMORPHIC ENCRYPTION: (Gen,Enc,Dec) is an affine homomorphic public-key en-
cryption scheme over F2 with homomorphic addition operation + (cf. Section 2.3). In fact, we rely
on the two-round semi-honest oblivious transfer (cf. Section 2.4) which is based on the affine homo-
morphic public-key encryption scheme over F2.

2. ADDITIVE SECRET SHARING: (Share,Recover) (cf. Section 2.1) for sharing 0.

The details of our protocol are as follows.

Protocol 3 ( 3-bit Multiplication protocol ΠDMULT)

Input: Parties P1, P2, P3 are given inputs (x1, s1), (x2, s2, r2) and x3, respectively.

ROUND 1:

– Party P1 samples (PKa, SKa)← Gen and broadcasts PKa,OTα[1] = Enc(PKa, x1) for P2.

– Party P3 samples (PKβ , SKβ)← Gen and broadcasts PKβ ,OTβ [1] = Enc(PKβ , x3) for P2.

– Party P3 samples (PKγ , SKγ)← Gen and broadcasts PKγ for P1.

– Each party Pj samples random secret shares of 0, (z1
j , z

2
j , z

3
j )← Share(0, 3) and sends zij to party Pi.

ROUND 2:

– PartyP2 responds with OTα[2] = x2·OTα[1]−Enc(PKa, r2) forP1. P1 computes u = Dec(SKa,OTα[2]).

– PartyP2 responds with OTβ [2] = r2·OTβ [1]−Enc(PKβ , s2) forP3. P3 computes v = Dec(SKβ ,OTβ [2]).

– Party P3 broadcasts OTγ [1] = Enc(PKγ , x3) to P1.

ROUND 3:

– Party P1 broadcasts OTγ [2] = u · OTγ [1]− Enc(PKγ , s1) for P3. P3 computes w = Dec(SKγ ,OTγ [2])
and computes s3 = v + w.

ROUND 4:

– Party Pj broadcasts Sj = sj +
∑3
i=1 z

j
i .

16



• OUTPUT: All parties set the final output to Z = S1 + S2 + S3.

Theorem 4.1 Protocol ΠDMULT securely computes FA
MULT (cf. Figure 2) in the presence of a defensible

adversary.

Proof: We first argue that the protocol is correct assuming no errors. Recall here that u = x1x2 − r2,
v = x3r2 − s2 and w = x3u− s1. Therefore,

S1 + S2 + S3 = s1 + s2 + s3 = s1 + s2 + (v + w) = s1 + s2 + (x3r2 − s2) + (x3u− s1)

= x3r2 + x3(x1x2 − r2)

= x1x2x3

as required. We continue with the security proof.
We first define the validity condition for the OT subprotocol used in the computation. Then, the validity

of the entire protocol is defined to be the conjunction of the validity predicates for the different OT protocols
that the party participates in. A defense is valid for an OT sub-protocol if it contains an input, random tape
and errors that demonstrates that the actions of the adversary in the interaction were consistent with the
honest strategy on that input and randomness upto additive errors. Now, we show that our protocol achieves
defensible simulation up to additive errors for each corruption scenario.

We will show that we can simulate any adversary up to additive errors if a defense is presented by the
adversary at the end of the third round. Additive errors can be introduced in the computation, depending
on which of the parties are corrupted. In more detail, if the adversary controls party P1, it can introduce an
additive error eIn in the computation of u = x1 · x2 − r2 that will result in the computation of the function
(x1 · x2 + eIn) · x3. In addition, an adversary will always be able to introduce an additive error to the output
of the computation by transmitting Sj + eOut in the final round if it controls party Pj (for any j ∈ {1, 2, 3}).
We will demonstrate how the simulator, using the defense provided by the adversary, can simulate both the
errors eIn and eOut.

On a high-level, a random input will be chosen for each honest party and the actions of the honest party
in the first three rounds will be simulated using that input. Upon receiving a valid defense for the corrupted
parties at the end of the third round, the simulator extracts (from the defense) the adversary’s input and
additive attack eIn (in case P1 is corrupted), which are sent to the ideal functionality. Upon receiving the
output from the ideal functionality, the simulator generates random shares for the honest party that add up
to the result and feeds them to the adversary in the fourth round. If the adversary sends its fourth round
message, an additive error eOut is extracted and sent to the ideal functionality with an instruction to forward
the result (incorporating the error) to all parties.

We formally describe our simulation for each corruption scenario and argue correctness of simulation by
showing that for every PPT adversary A controlling a subset of the parties I , there exists a PPT simulator
S such that the two distributions R̃EALΠDMULT,A(z),I(κ, x1, x2, x3) and IDEALFA

MULT,S(z),I(κ, x1, x2, x3)

are indistinguishable, where R̃EAL = REAL only if A outputs a valid defense at the end of the third
round and defined to be ⊥ otherwise. The formal arguments of correctness for each corruption scenario are
presented for completeness.

We argue correctness of simulation in the different corruption scenarios below.

Simulation when P1 is corrupted. In this case, the simulator generates messages from P2 and P3 by pro-
viding random inputs. Next, it extracts an input x1 and an error eIn that will be fed to the ideal functionality.
We recall first that at the end of the third round, the simulator receives a defense from the adversary that

17



includes the adversary’s input x1 (used by P1 as the receiver in the OT beginning in Round 1), and other
values u, s1 (used by P1 as the sender for the OT executed in Round 2). If the defense is invalid then the
simulator aborts. Otherwise, it proceeds.

The simulator feeds x1, eIn to the ideal functionality where the intermediate error eIn = u − u′ and u′

is the actual output received by P1 in the first OT. Namely, u′ = x1x̃2 − r2, where x̃2, r2 were used in the
simulation of P2’s message. Upon receiving the output y from the ideal functionality, the simulator samples
S̃2 and S̃3 subject to S1 + S̃2 + S̃3 = y where S1 = s1 + z1

2 + z1
3 − z2

1 − z3
1 . Then it feeds them to the

adversary as the fourth round messages received from P2 and P3.
Finally, if the adversary provides its fourth round message S′1, the simulator computes eOut = S′1 − S1

and sends eOut to the ideal functionality as the additive error for the output, and instructs it to deliver the
result to P2 and P3.

We will prove indistinguishability of simulation via a standard hybrid argument via the following inter-
mediate experiments:

Hybrid H0: This experiment is the execution in the real world. The output of the experiments is defined to
be R̃EALΠDMULT,A(z),{P1}(κ, x1, x2, x3) namely the view of the adversary A concatenated with the
output of parties P2 and P3.

Hybrid H1: In this experiment, whenever the defense provided for P1 by the adversary (x1, u, s1) is valid,
P3 computes s3 differently. Namely, P3 sets s3 = (x1x2+(u−u′))x3−s1−s2 where u′ = x1x2−r2.
The output of the experiment is defined to be the view of the adversary A in the experiment and the
output of the honest parties. The output of the honest parties in this hybrid are set to ⊥ unless the
adversary on behalf of P1 sends the final message S′1, in which case the output of the honest parties
are set to the sum of the fourth round messages from all parties.

Indistinguishability of hybrids follows from the fact that in the H0,

s3 = r2x3 − s2 + ux3 − s1 = (x1x2 − u′)x3 + ux3 − s1 − s2 = (x1x2 + (u− u′))x3 − s1 − s2

which is the computation performed in H1 for s3. Since the view of the adversary is indistinguishable
and the output of the honest parties is the sum of the messages exchanged in the final round (that is
part of the view of the adversary), the output of the experiments H1 and H0 are indistinguishable.

Hybrid H1
2 : In this experiment, we switch the input of P3 in the first of the two OTs, namely OTβ ,to a

random input. Observe that from the previous hybrid P3 does not use v, the result of the first OT, in
computing s3. Indistinguishability of the hybrids follows from the privacy of the OT protocol against
defensible senders (cf. Proposition 2.1) which in turn relies on the semantic security of the underlying
encryption scheme.

Hybrid H2
2 : In this experiment, we switch the input of P3 in the second of the two OTs,namely OTγ , to

a random input. Observe that from the previous hybrid P3 does not use w, the result of the second
OT, in computing s3. Indistinguishability of the hybrids follows from the privacy of the OT protocol
against defensible senders (cf. Proposition 2.1).

Hybrid H3: In this experiment, we switch the input of P2 from the real value x2 to a random value x̃2. The
rest of the protocol follows identically as in the previous hybrid incorporating the modification made
to P2’s message. More precisely, P3’s final message is set to (x1x2 + (u − u′))x3 − s1 − s2 where
u′ = x1x̃2 − r2.

18



Towards arguing indistinguishability of hybrids, first we observe that s2 is distributed identically in
the two hybrids. Next, we observe that u′ computed as x1x2− r2 in the previous hybrid is distributed
identically to u′ computed as x1x̃2 − r2 in this hybrid over a random choice of r2. Then, using the
privacy of the OT protocol against defensible receivers (cf. Proposition 2.2) which in turn relies on
the equivocation property of the underlying affine homomorphic encryption scheme, the distribution
of the ciphertext OTα[2] computed as c = x2 ·OTα[1]− Enc(PKa, r2) in H2

2 and c′ = x̃2 ·OTα[1]−
Enc(PKa, r2) as computed in H3 over a random choice for r2 are statistically close.

Finally, we can conclude that the distribution of s3 is statistically close as its computation only depends
on the distribution of (x1, x2, x3, s1, s2, u, u

′) whose distribution is statistically close.

Hybrid H4: This experiment is the execution in the ideal world. The output of the experiment is set as
IDEALFA

MULT,S(z),P1
(κ, x1, x2, x3). We observe that the difference between this experiment and H3

is in the generation of P2 and P3’s final round messages and the output of honest parties.

In the simulation, S̃2 and S̃3 are sampled randomly subject to S1 + S̃2 + S̃3 = y where S1 =
s1 + z1

2 + z1
3 − z2

1 − z3
1 , y = (x1x2 + (u− u′))x3 and the output of honest parties are y+ (S′1 − S1).

In H3, S2 = s2 + z2
1 + z2

2 + z2
3 and S3 = s3 + z3

1 + z3
2 + z3

3 , where s2 is chosen at random and s3 is
set as (x1x2 + (u− u′))x3 − s1 − s2. The output of honest parties is S′1 + S2 + S3.

We observe that y = S1 + S2 + S3 = S1 + S̃2 + S̃3. To conclude that H3 and the ideal world
are identically distributed, we observe that conditioned on the view of the adversary, S2 and S3 are
uniformly distributed at random subject to S2 + S3 = y − S1.

Simulation wihen P2 is corrupted. In this case, the simulator generates P1 and P3’s messages using
random inputs until the end of the third round and aborts if no valid defense is output. If a valid defense is
produced, the simulator collects P2’s defense x2, r2 and s2 and sends x2 to the ideal functionality. Upon
receiving y from the ideal functionality, it feeds randomly sampled S̃1 and S̃3 subject to S̃1 + S2 + S̃3 = y
as P1 and P3’s fourth round messages, respectively where S2 = s2 + z2

1 + z2
3 − z1

2 − z3
2 .

Finally, if the adversary provides its fourth round message S′2, the simulator computes eOut = S′2 − S2

and sends eOut to the ideal functionality as the additive error for the output, and instructs it to deliver the
result to all parties.

We rely on the following intermediate experiments to prove indistinguishability of simulation:

Hybrid H0: This experiment is the execution in the real world where the output of the experiment is
R̃EALΠDMULT,A(z),{P2}(κ, x1, x2, x3).

Hybrid H1: In this experiment, given the defense provided for P2 by the adversary (x2, r2, s2), the sim-
ulator generates s3 for P3 as x1x2x3 − s1 − s2.The output of the experiment is defined to be the
view of the adversary A in the experiment concatenated with the output of the honest parties. The
output of the honest parties in this hybrid are set to ⊥ unless the adversary on behalf of P1 sends the
final message S′2, in which case the output of the honest parties are set to the sum of the fourth round
messages from all parties.

Indistinguishability of hybrids follows from the fact that in the real world P3 outputs

s3 = v + w = r2x3 − s2 + ux3 − s1 = r2x3 + (x1x2 − r2)x3 − s1 − s2 = x1x2x3 − s1 − s2

19



Hybrid H1
2 : In this experiment, we switch the input of P3 in the first of the two OTs, namely OTβ , to a

random input. Indistinguishability of the hybrids follows from the privacy of OT against defensible
senders.

Hybrid H2
2 : In this experiment, we switch the input of P3 in the second of the two OTs, namely OTγ , to a

random input. Indistinguishability again follows from the defensible privacy of OT against defensible
senders.

Hybrid H1
3 : In this experiment, we modify u used by P1 in OTγ [2]to a random value. Indistinguishability

follows from the defensible privacy of OT against defensible receivers.

Hybrid H2
3 : In this experiment, we switch the input of P1 in the first OT, namely OTα to a random input.

Indistinguishability again follows from the defensible privacy of OT against defensible senders.

Hybrid H4: This experiment is the execution in the ideal world. Indistinguishability follows analogous to
the previous corruption scenario.

Simulation when P3 is corrupted. Here P1 and P2 are simulated using random inputs. If a valid defense
x3 is obtained, the simulator feeds x3 to the ideal functionality and learns y. It chooses S̃1 and S̃2 randomly
subject to S̃1 + S̃2 + S3 = y as P1 and P2’s fourth round message respectively, where S3 = s3 + z3

1 + z3
2 −

z1
3 − z1

3 , s3 = v + w and v and w are the outputs received by P3 in the OTs.
Finally, if the adversary provides its fourth round message S′3, the simulator computes eOut = S′3 − S3

and sends eOut as the additive error for the output to the ideal functionality and instructs it to deliver the
result to all parties.

We will prove indistinguishability of simulation with the following intermediate experiments:

Hybrid H0: This experiment is the execution in the real world where the output of the experiment is
R̃EALΠDMULT,A(z),{P3}(κ, x1, x2, x3).

Hybrid H1: In this experiment, given P3’s defense x3, P1’s final message is set to x1x2x3− s2− s3 where
s3 = v +w, v = r2x3 − s2 and w = ux3 − s1 are the outputs received by P3 in the OTs. The output
of the experiment is defined to be the view of the adversary A in the experiment concatenated with
the output of the honest parties. If no fourth messages is output by the adversary, the honest parties
outputs are set to⊥ and otherwise it is the sum of the fourth round messages exchanged by all parties.

The experiments H0 and H1 are identical as the final message generated for P1 in H1 is

x1x2x3 − s2 − s3 = x1x2x3 − s2 − (v + w)

= x1x2x3 − s2 − (r2x3 − s2)− (ux3 − s1)

= x1x2x3 − r2x3 − (x1x2 − r2)x3 + s1

= s1

which is the final message sent by P1 in H0.

Hybrid H1
2 : In this experiment, we switch u used by P1 in the OTγ [2] with P3 to a random value ũ and set

P1’s output as x1x2x3 − s2 − s3 where s3 = v + w and w = ũx3 − s1.

Towards arguing indistinguishability, we observe that s2 is distributed identically in the two hybrids.
We also observe that the distribution of ux3 − s1 in the previous hybrid and ũx3 − s1 in the current

20



hybrid are identically distributed over a random choice of s1. This in turn means that s3 used in
the computation of s1 is identically distributed. Finally, from the privacy of the OT protocol against
defensible receivers which in turn follows from the equivocation property of the underlying encryption
scheme, the distribution of the ciphertext OTγ [2] computed in H1 and H1

2 over a random choice for
s1 are statistically close.

Hybrid H2
2 : In this experiment, we switch the input of P1 from x1 in OTαto a random value x̃1. Indistin-

guishability follows from privacy against defensible receivers for the OT protocol.

Hybrid H3: In this experiment we switch the input ofP2 from x2 to a random value x̃2 in the OTα[2]interaction
with P1. This modification does not affect any of P1’s messages and the remaining computation.
Therefore, indistinguishability follows from privacy against defensible senders of the OT protocol.

Hybrid H4: This experiment is the execution in the ideal world. Indistinguishability follows by arguing
that the final messages, which are the only difference between the hybrids, are identically distributed.

Simution when P1 and P2 are corrupted. In this case only P3’s messages are simulated using random
inputs until the third round. Given the defenses of P1 and P2, namely (x1, u, s1) for P1 and (x2, r2, s2) for
P2, it sends x1, x2 as P1 and P2’s inputs respectively, eIn = u − u′, where u′ is the actual output received
by P1 from OTα[2](we remark that the transcript of interaction between all parties is broadcasted except for
the shares of zero distributed in the first round) as the intermediate error to the ideal functionality. It receives
y from the functionality and computes S̃3 = y + z3

1 + z3
2 − z1

3 − z2
3 and feeds that to the adversary as P3’s

final message.
Finally, if the adversary provides fourth round messages S′1 and S′2, the simulator computes eOut =

S′1 + S′2 − S1 − S2 and sends eOut as the additive error for the output to the ideal functionality and instructs
it to deliver the result to all parties.

We will prove indistinguishability of simulation via a standard hybrid argument with the following
intermediate experiments:

Hybrid H0: This experiment is the execution in the real world. The output of the experiment is defined to
be R̃EALΠDMULT,A(z),{P1,P2}(κ, x1, x2, x3).

Hybrid H1: In this experiment, given the defenses (x1, u, s1) of P1 and (x2, r2, s2) for P2 the simulator
computes s3 for P3 as (x1x2 + (u − u′))x3 − s1 − s2 where u′ = x1x2 − r2. The output of the
experiment is defined to be the view of the adversary A in the experiment and the outputs of the
honest parties are set to ⊥ unless the adversary on behalf of P1 and P2 sends the final messages
S′1, S

′
2, in which case the outputs of the honest parties are set to the sum of the fourth round messages

from all parties.

Indistinguishability of hybrids follows from the fact that in the real world P3 outputs

s3 = r2x3 − s2 + ux3 − s1 = (x1x2 − u′)x3 + ux3 − s1 − s2 = (x1x2 + (u− u′))x3 − s1 − s2

Hybrid H1
2 : In this experiment, we switch the input of P3 in the first of the two OTs, namely OTβ , to a

random input. Indistinguishability of the hybrids follows from the privacy of OT against defensible
senders.

Hybrid H2
2 : In this experiment, we switch the input of P3 in the second of the two OTs, namely OTγ , to a

random input. Indistinguishability again follows from the defensible privacy of OT against defensible
senders.

21



Hybrid H3: This experiment is the execution in the ideal world. The output of the experiment is set as
IDEALFA

MULT,S(z),{P1,P2}(κ, x1, x2, x3). Indistinguishability follows as the final message is identi-
cally distributed.

P1 and P3 are corrupted. Here, P2’s messages are simulated using random inputs. Upon receiving defenses
(x1, u, s1) for P1 and x3 for P3 from the adversary, it sends x1, x3 as P1 and P3’s inputs respectively and
eIn = u′ − u where u′ = x1x2 − r2 as the intermediate error to the ideal functionality. Upon receiving
y from the ideal functionality, it generates P2’s final message as S̃2 = y − S1 − S3 where S1 + S3 =
s1 + (r2x3 − s2) + (ux3 − s1) + z2

1 + z3
1 − z1

2 − z3
2 and feeds it to the adversary as P2’s fourth message.

Finally, if the adversary provides fourth round messages S′1 and S′3, the simulator computes eOut =
(S′1 − S1) + (S′3 − S3) and sends eOut as the additive error for the output to the ideal functionality and
instructs it to deliver the result to all parties.

We will prove indistinguishability of simulation via a standard hybrid argument with the following
intermediate experiments:

Hybrid H0: This experiment is the execution in the real world. The output of the experiment is defined to
be R̃EALΠDMULT,A(z),{P1,P3}(κ, x1, x2, x3).

Hybrid H1: In this experiment, we switch s2 to (x1x2 + (u − u′))x3 − s1 − s3 where s3 = v + w, v
and w are the outputs received by P3 in the OTs, namely (OTβ,OTγ), (which can be computed from
the P2’s inputs and P1 and P3’s defenses) and u′ is P1’s output in its first OTα. The output of the
experiment is defined to be the view of the adversaryA in the experiment and the output of the honest
parties. If the fourth messages S′1, S

′
3 are not sent on behalf of corrupted parties, the output of the

honest party is set to ⊥. Otherwise, the output of P2 is set to the sum of the fourth round messages
from all parties.

The experiments H0 and H1 are identical as

(x1x2 + (u− u′))x3 − s1 − s3 = x1x2x3 + (u− u′)x3 − s1 − (v + w)

= x1x2x3 + (u− u′)x3 − s1 − (r2x3 − s2)− (ux3 − s1)

= x1x2x3 − u′x3 − r2x3 + s2

= x1x2x3 − (x1x2 − r2)x3 − r2x3 + s2

= s2

Hybrid H2: In this experiment, we switch P2’s input x2 in OTβto P3 to a random input x̃2. Indistinguisha-
bility follows from the privacy against defensible receivers and that u′ and v received by P1 and P3 are
uniformly distributed over random choices of r2 and s2 independent of x2 and x̃2 in both experiments.

Hybrid H3: This experiment is the execution in the ideal world. Indistinguishability can be argued analo-
gously to previous scenarios.

P2 and P3 are corrupted. Here, P1’s messages are simulated using random values for x1, u and s1. Upon
receiving defenses (x2, r2, s2) for P2 and x3 for P3 from the adversary, it sends x2, x3 as P2 and P3’s
inputs respectively, to the ideal functionality and receives y as the output. It generates P1’s final message as
S̃1 = y − S2,3 where S2,3 = s2 + (r2x3 − s2) + (ux3 − s1) + z2

1 + z3
1 − z1

2 − z1
3 .

Finally, if the adversary provides fourth round messages S′2 and S′3, the simulator computes eOut =
(S′2 − S2) + (S′3 − S3) and sends eOut as the additive error for the output to the ideal functionality and
instructs it to deliver the result to all parties.

22



We will prove indistinguishability of simulation via a standard hybrid argument with the following
intermediate experiments:

Hybrid H0: This experiment is the execution in the real world. The output of the experiment is defined to
be R̃EALΠDMULT,A(z),{P2,P3}(κ, x1, x2, x3).

Hybrid H1: In this experiment, given the defenses x2, r2, s2 and x3 for P2 and P3 we switch s1 for P1

to x1x2x3 − s2 − s3 where s3 = v + w, v and w are the outputs received by P3 in OTβ and OTγ
executions, respectively. The output of the experiment is defined to be the view of the adversary A in
the experiment and the output of the honest parties. This is set to ⊥ if the adversary fails to provide
fourth round messages for P2 and P3 and if they are transmitted the output is the sum of all fourth
round messages.

The experiments H0 and H1 are identical as

x1x2x3 − s2 − s3 = x1x2x3 − s2 − (v + w)

= x1x2x3 − s2 − (r2x3 − s2)− (ux3 − s1)

= x1x2x3 − r2x3 − (x1x2 − r2)x3 + s1

= s1

Hybrid H2: In this experiment, we switch the randomness u used by P1 in the OTγ with P3 to a random
value ũ, and P1’s output to x1x2x3−s2−s3 where s3 = v+w andw = ũx3−s1. Indistinguishability
of the experiments follows from the privacy of OT against defensible receivers and s1 being uniformly
distributed.

Hybrid H3: This experiment is the execution in the ideal world. Indistinguishability can be proved analo-
gously as in previous corruptions.

4.2 Step 2: Defensibly Simulatable Protocol for FA
dpoly

In this section, we construct a protocol Πdpoly for realizing parallel evaluation of degree-3 polynomials using
the protocol developed in the previous section. We will achieve simulation of defensible adversaries up to
additive errors. Just as in the previous section, the adversary will only be able to introduce errors in specific
intermediate values in the computation. The high-level idea is that since we rely on an additive secret-
sharing scheme, any degree-3 polynomial can be computed by first computing shares for the evaluation of
each monomial (of degree-3) of the polynomial and then revealing the sum of the shares received for each
monomial. We will additionally require each party to share a “0” with all parties and blind their answers
with the share. This is required just as in the previous protocol to guarantee privacy. The main issue however
is that the local inputs used by the adversary for the individual computations of each monomial should be
consistent with a global input. However, this can be easily incorporated into the validity condition of the
defense. In other words, a defense for Πdpoly will include a global input and local defenses where for each
instance of the ΠDMULT the local input induced by the global input according to the specifications of Fdpoly

are valid for ΠDMULT.
Before we describe our protocol we introduce some notation.

23



Functionality FA
dpoly

FA
dpoly runs with parties P = {P 1, . . . , Pn} and an adversary S who corrupts a subset I ⊂ [n] of parties.

The parties have common input degree-3 polynomials p1, . . . , pM that describe the functionality to be
evaluated.
Let Eval(t, eIn)[x1, . . . ,xn] = (xt,1 · xt,2 + eIn) · xt,3.

Inputs: P i has input vector xi.

Computation:

1. For each i ∈ [n], party P i sends xi to the functionality. Additionally, for every monomial Mt, if the
party controlling P1 is corrupt, the adversary provides an error etIn.

2. Upon receiving the inputs from all parties, evaluate p1, . . . , pM as

y` =
∑

t∈Terms`

Eval(t, etIn)[x1, . . . ,xn], ∀` ∈ [M ]

and send the results y1, . . . , yM to S.

3. Upon receiving (Deliver, (e1
Out, . . . , e

M
Out)) from S, send (y1 + e1

Out, . . . , yM + eMOut) to all parties.

Figure 3: Additively corruptible parallel degree-3 polynomial evaluation functionality.

Notations and conventions. We refer to the parties participating in the protocol Πdpoly by P 1, . . . , Pn,
however when a subset of the parties participate in an instance of ΠDMULT we refer to the roles in this instance
by P1, P2, P3 according to ΠDMULT. Let [xj ]i denote the ith field element in xj . DefineM = {M1, . . . ,Mq}
the multi-set that contains all monomials for each polynomial pi, where each monomial is a product of
three variables and let M denote the number of all polynomials. We assume an implicit mapping for each
monomial Mt = (xt,1, xt,2, xt,3) that maps t to [xi]α, [xj ]β, [xk]γ for some i, j, k ∈ [n] and α, β, γ ∈ [t].
Given the monomial (xt,1, xt,2, xt,3) we assume that parties P1,P2 and P3 hold xt,1, xt,2 or xt,3 respectively.
Let the indices corresponding to the monomials within polynomial p` denoted by the set Terms`. Finally,
let Role(t, i) ∈ {1, 2, 3} denote the role P i plays in the computation of Mt and is set to ⊥ if it does not
participate in the computation of Mt.

We continue with the protocol description.

Protocol 4 ( Parallel polynomial protocol Πdpoly)

INPUT: Parties P 1, . . . , Pn are given input vectors x1, . . . ,xn.

• ROUND 1: Each party P j samples M random secret shares of 0, {(z1
j,`, . . . , z

n
j,`)}`∈[M ] using Share(0, n) and

sends (zij,1, . . . , z
i
j,M ) to party P i.

• ROUNDS 1,2,3: For each monomial Mt = (xt,1, xt,2, xt,3), let parties P i, P j , P k execute ΠDMULT until the end
of the 3rd round. Let st,i, st,j , st,k be the messages parties P i, P j , P k are respectively set to broadcast in the
4th-round as part of protocol ΠDMULT.

• ROUND 4: In the 4th round, for every ` ∈ [M ], P j broadcasts S`,j =
∑
t∈Terms`

st,j +
∑n
i=1 z

j
i,`.

• OUTPUT: All parties output Z1, . . . , ZM where Z` =
∑
j∈[n] S`,j .

24



Validity condition for defense. A defense for Πdpoly provides an input vector x and defenses (def1, . . . , defq).
A defense for party P i is valid, if for every monomial Mt where P j participates, it holds that for every i
such that Role(t, i) = j, deft is a valid defense for party Pi with input [x]α where α is according to the
implicit mapping from t to inputs of the parties.

Theorem 4.2 Protocol Πdpoly securely computes FA
dpoly in the presence of a defensible adversary corrupt-

ing any number of parties.

Correctness follows directly from the correctness of protocol ΠDMULT. We continue with the security
argument.

We show that any adversary can be simulated up to additive errors if it presents a defense at the end of
the third round. Let A be a PPT adversary corrupting a subset of parties I ⊂ [n], then we prove that there
exists a PPT simulator S with access to an ideal functionality FA

dpoly.
More formally, the simulator S proceeds as follows:

• For every honest party Pj ∈ Ī , S chooses a random input x̃j and simulates the first three rounds by
following the honest strategy for party Pj .

• After the third round, if the adversary fails to provide a valid defense, the simulator halts outputting⊥.
Otherwise, given the defenses of parties controlled by the adversary, it obtains {(xj , defj1, . . . , def

j
q)}j∈I .

Next, for every t ∈ [q], following the simulation strategy of ΠDMULT, it obtains the alleged share st,j ,
which Pj (controlled by the adversary) is supposed to output in the 4th round, and the error etIn if P1

is corrupted. The simulator sends {xj}j∈I and the errors etIn to the ideal functionality.

• Upon receiving y1, . . . , yM , the simulator generates the 4th message for the honest parties as follows.
First, it computes the alleged 4-th round messages that the parties controlled by the adversary are
supposed to send by computing for every ` ∈ [M ], S`,j =

∑
t∈Terms`

st,j +
∑n

i=1 z
j
i,` where st,j was

extracted from the defenses in the previous step and zji,` are zero shares shared in the first round. Next,
it computes S`,j for honest parties Pj ∈ Ī at random subject to y` =

∑
j∈[n] S`,j .

The security proof follows a sequence of intermediate hybrids where the honest parties’ messages in
the first three rounds are switched from being generated using the real input xj to a random input x̃j for
each instance of ΠDMULT. The intermediate hybrids to switch the inputs in an instance of ΠDMULT follow
identically as in the proof of security of the ΠDMULT as presented in the previous section and according to
the specific corruption scenario. For these set of hybrids, one needs the actual inputs and outputs of each
ΠDMULT instance which is provided to the simulator in these hybrids (while noting that our final simulation
will not require this information). Finally, we rely on the zero blinding shares and the correctness of the
computation to prove indistinguishability of the last of these intermediate hybrids and the final simulation.
More precisely, the only difference between the hybrids are how the fourth round messages are generated
and the zero blinding shares can be used to argue that they will be identically distributed.

Instantiating the solution for GF2. The preceding two sections present protocols for products evaluation
and degree-3 polynomials over any finite field. For our general functionalities, we will be relying on ran-
domizing polynomials that will be over GF2 and will restrict our discussion to only GF2. In the preceding
discussion it was assumed that each monomial is of degree-3. This is without loss of generality in the case
of computing over GF2 because one can transform any degree-2 and degree-1 term to a degree-3 term as
follows: xy → x2y and x→ x3.

25



4.3 Step 3: Defensibly Simulatable Protocol for Arbitrary Functionalities

We recall that from the works of [DI06, LPSY15] that securely realizing arbitrary functionalities f can be
reduced to securely realizing the “BMR”-encoding of the boolean circuit C that computes f . Our starting
point is the observation that the BMR encoding of a boolean circuit C is an instance of Πdpoly. However,
in order to tolerate the errors that are introduced from our realization of Πdpoly, we will have to rely on
pre-processing that will make the BMR functionality resilient to such additive attacks following the trans-
formation of [GIW16]. More precisely, we take the following steps:

1. Let MACk be a family of MAC functions. We modify the function f to f ′(x, k1, . . . , kn) defined as
(f(x),MACk1(f(x)), . . . ,MACkn(f(x))) where the additional inputs are such that party Pj provides
kj . In our protocol the adversary will be able adaptively add an additive error to the output of the func-
tion computed. The MAC keys will prevent any adversary from being able to do it in an undetectable
way. Let C be the boolean circuit that computes f ′.

2. Let Enc,Dec be the encoding and decoding procedures of an AMD code [CDF+08] of length m. We
modify C to obtain C′ that takes as input x and computes Enc(C(Dec(x))).

3. We next compile C′ to Ĉ′ via the transformation presented in [GIW16] that will be resilient to additive
attacks. Roughly, the guarantee of [GIW16] is that any additive attack on the circuit’s wires can be
translated into an additive attack on the input and output to the circuit (cf. Theorem 2.15).4

4. We describe the general BMR offline functionality BMROffline in Figure 4 for an arbitrary polynomial
sized circuit D that we are going to instantiate with D = Ĉ′. Our functionality, similar to FA

dpoly will
allow for errors to be introduced by the adversary into the computation. The adversary submits two
types of errors: (1) errors that can flip the keys encrypted in the garbled rows and (2) errors that will
be added to the output of the function, i.e., the garbled circuit. As we show the first kind of error will
be handled using the transformation of Genkin et al [GIW16] and the second kind of error will be
handled using the approach of [HSS17]. 5

5. We will consider the following encoding for the kjw,0, k
j
w,1. Each party Pj picks two functions from

a pairwise independent hash function family hjw,0, h
j
w,1 : {0, 1}4κ 7→ {0, 1}κ and encodes the output

keys of each gate as hjw,β(T jw,β)⊕ kjw,β where {T jw,β}β∈{0,1} are chosen uniformly at random.6 This
change is required in order to tolerate adversaries that introduce different errors on different bits of the
keys. Relying on hash functions ensures that either one key is fully recovered or no key is recovered
at all.7

4Given the additive attack on the wires of Ĉ′, extracting the equivalent attack on the input and outputs of C′ is not proven to be
an efficient procedure (explicitly) in [GIP+14, GIW16]. Nevertheless the constructions in these works can be shown to satisfy this
property. Roughly speaking, the first step in the circuit is to decode the input that is encoded via an AMD code, whereas the final
step encodes the output using an AMD code. Therefore, the equivalent input and output errors can be identified by looking only
at the input and output wires. We thank the authors of [GIW16] for clarifying this. We note that in this work we only require to
extract the equivalent error on the input.

5The offline BMR functionality from [HSS17] allows the adversary to submit an error, chosen adaptively by the adversary after
seeing the garbled circuit, which is added to the garbled circuit by the functionality.

6This approach is analogous to realizing string OTs via bit OTs.
7We remark that it is possible to view the BMR polynomials as a degree-3 computation over a large field. In this case, the error

cannot affect the individual parts of the key as we can use the key as a single element in the multiplication. For simplicity and for
our final protocol, we restrict ourselves to binary fields.

26



Functionality BMROffline

Let F = {Fk : {0, 1}κ → {0, 1}4κ}k∈{0,1}∗,κ∈N be a pseudorandom function ensemble. The functionality
runs with parties P1, . . . , Pn and an adversaryA corrupting a set of parties I ⊂ [n]. The parties joint input
is a boolean circuit D, expressed by a set of wires W and a set of NAND gates G.

Inputs: Party Pj inputs the following for every wire w ∈W :

• A pair of strings (T jw,0, T
j
w,1) each of length of 4κ.

• Purported PRF values from Pi, Fkia,r1 (g, j, r1, r2),Fkib,r2
(g, j, r1, r2) for every gate g ∈ G with

input wires a, b ∈W , every r1, r2 ∈ {0, 1} and every i ∈ [n].

• A random bit λjw if w is not an input wire.

• An additive error eg,jr1,r2 bit for every g ∈ G, r1, r2 ∈ {0, 1} and j ∈ I .

Computation:

• For every wire w ∈W that is an output wire the functionality sets λw = ⊕ni=1λ
i
w.

• For every NAND gate g ∈ G with input wires 1 ≤ a, b ≤ W and output wire c, define the selector
variables

χgr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2)⊕ 1)⊕ λc.

• Set Rg
r1,r2 = Rg,1r1,r2 || · · · ||R

g,n
r1,r2 for all 1 ≤ j ≤ n and r1, r2 ∈ {0, 1} as follows:

Rg,jr1,r2 =
( n⊕
i=1

Fkia,r1
(g, j, r1, r2)

)
⊕
( n⊕
i=1

Fkib,r2
(g, j, r1, r2)

)
⊕ T jc,0 ⊕

(
(χgr1,r2 ⊕ e

g,j
r1,r2) ∧ (T jc,1 ⊕ T

j
c,0)
)
.

Open Garbling:

• On receiving Open Garbling from all parties the functionality transmits to the adversary A the
garbling {Rgr1,r2}g∈G,r1,r2∈{0,1} as well as λw for all input wires w ∈ W which are attached to a
corrupted party Pi, and all output wires.

• If A aborts, then the functionality halts.

• If A responds with (OK, eOut = {egr1,r2}r1,r2∈{0,1},g∈G), the functionality sends to all parties
Rgr1,r2 ⊕ e

g
r1,r2 for all g ∈ G and r1, r2 ∈ {0, 1}.

Figure 4: The BMR garbling functionality.

Recall from Section 2.7 that every garbled row (r1, r2) for any gate g in the computation of BMROffline

can be expressed as the concatenation of {Rg,jr1r2}nj=1, where (without including errors)

Rg,jr1r2 =
( n⊕
i=1

Fkia,r1
(g, j, r1, r2)

)
⊕
( n⊕
i=1

Fkib,r2
(g, j, r1, r2)

)
⊕ T jc,0 ⊕ χr1,r2(T jc,1 ⊕ T

j
c,0)

and
χr1,r2 = [(λ1

a ⊕ · · · ⊕ λna ⊕ r1) · (λ1
b ⊕ · · · ⊕ λnb ⊕ r2)⊕ 1]⊕ (λ1

c ⊕ · · · ⊕ λnc ).

27



where Fk is a PRF-family and λiw are the masks (for the color bit) sampled by party Pi for wire w, r1, r2 ∈
{0, 1}

Observe that χr1,r2 is a degree-2 computation, which in turn means the expressions T jc,0⊕χr1,r2(T jc,1⊕
T jc,0) over all garbled rows is a collection of polynomials of degree at most 3. In particular, for every j ∈ [n],
every every gate g ∈ G with input wires a, b and an output wire c, Rg,jr1r2 involves the computation of one or
more of the following monomials:

• λj1a λj2b (T jc,1 ⊕ T
j
c,0) for j, j1, j2 ∈ [n].

• λj1c (T jc,1 ⊕ T
j
c,0) for j, j1 ∈ [n].

• T jc,0.

• PRF values.

Convention of roles in the multiplication protocol. We first describe some convention regarding how each
multiplication triple is computed, namely assign parties with roles P1, P2 and P3 in ΠDMULT (Section 4.1),
and what products are computed. Letting ∆j

c = (T jc,1⊕T
j
c,0), we observe that every product always involves

∆j
c as one of its operands. Moreover, every term can be expressed as a product of three operands, where the

product λj1c ∆j
c will be (canonically) expressed as (λj1c )2∆j

c and singleton monomials (e.g., the bits of the
keys and PRF values) will be raised to degree 3. Then, for every polynomial involving the variables λj1a , λ

j2
b

and ∆j
c, party Pj will be assigned with the role of P3 in ΠDMULT whereas the other parties Pj1 and Pj2 can

be assigned arbitrarily as P1 and P2. In particular, the roles are chosen so as to restrict the errors introduced
by a corrupted P1 in the computation to only additive errors of the form eInδ where δ is some bit in ∆j

c,
where it follows from our simulation that eIn will be independent of δ for honest Pj .

Given these conventions, the output of the BMR garbled circuit can be expressed as a sequence of N
degree-3 polynomials p1, . . . , pN . We can thus use Πdpoly to compute the BMR garbling by adding the PRF
values before broadcasting it in the fourth round. More formally,

Protocol 5 ( Defensibly-simulatable protocol Πf )

INPUT: Parties P1, . . . , Pn are given input x1, . . . , xn each of length κ, respectively, and a circuit Ĉ′ as specified
above. We fix the notation [xi]j as the jth bit of string xi.

• ROUNDS 1,2,3: For each i ∈ [M ], parties P1, . . . , Pn execute Πdpoly for the polynomial pi up until the 3rd

round of the protocol with random inputs for the Fdpoly = BMROffline. Along with the message transmitted in
the 3rd round of Πdpoly, party Pj broadcasts the following:

– For every input wire w ∈ W that carries some input bit [xj ]k from Pj’s input, Pj broadcasts Λw =
λw ⊕ [xj ]k.

For every j ∈ [n], let {S`,j}`∈M be the output of party Pj for the M polynomials. It reassembles the output
shares to obtain S̃g,jr1,r2 for every garbled row.

• ROUND 4: Finally for every gate g ∈ G and r1, r2 ∈ {0, 1}, Pj (j ∈ [n]) broadcasts the following:

– R̃g,ir1,r2 = Fkja,r1
(g, j, r1, r2)⊕ Fkjb,r2

(g, i, r1, r2)⊕ S̃g,ir1,r2 for every i ∈ [n].

– kjw,Λw for every input wire w.

– λjw for every output wire w.

28



– (Γjw,0,Γ
j
w,1) = (h(T jw,0)⊕ kjw,0, h(T jw,1)⊕ kjw,1) for every wire w.

• OUTPUT: Upon collecting {R̃g,jr1r2}j∈[n],g∈[G],r1,r2∈{0,1}, the parties compute each garbled row by Rg,jr1,r2 =⊕n
j=1 R̃

g,j
r1,r2 . Then using the keys corresponding to the input wires w, they evaluate the circuit to obtain Λw

for every output wire as follows:

Consider a standard (arbitrary) topological ordering of the gates. The parties will evaluate the circuit accord-
ing to the topological order. Let g be a gate in this order with input wires a, b and output wire c. If a party
does not have masks Λa,Λb or keys (ka, kb) corresponding to the input wires when processing gate g it aborts.
Otherwise, it will compute

T jc = Rg,jr1,r2 ⊕
n⊕
i=1

(
Fkia,Λa

(g, j,Λa,Λb)⊕ Fkib,Λb
(g, j,Λa,Λb)

)
where ka = (k1

a, . . . , k
n
a ) and kb = (k1

b , . . . , k
n
b ). Party Pj identifies Λc such that T jc = T jc,Λc . If no such

Λc exists the party aborts. Otherwise, each party defines kic = Γic,Λc ⊕ h(T jc ). Let kc = (k1
c , . . . , k

n
c ). The

evaluation is completed when all gates in the topological order are processed. Finally given Λw for every
output wire, the parties compute the output carried in wire w as Λw ⊕

(⊕n
j=1 λ

j
w

)
and decode the outcome

using Dec.

This concludes the description of our protocol. We next prove the following theorem,

Theorem 4.3 (Defensible simulation) Let C be an n-party circuit that computes f and assume the exis-
tence of a 2-round OT ΠOT (as specified in Section 2.4). Then Protocol Πf securely computes f in the
presence of a defensible adversary that corrupts at most n− 1 parties.

Proof overview: Informally, our proof will proceed following a standard set of hybrid experiments that
change the garbled circuit obtained from the BMR garbling from a real garbling to a simulated garbling.
The main difference is that in our protocol the adversary has the capability of introducing errors in the
computation of some of the garbled rows. Recall that, using [GIW16], we first encode the computation to be
resilient to such attacks where any error introduced by the adversary will have the effect of introducing an
additive error independent of the inputs in the BMR garbling. Another source of error is due to the ability of
the (rushing) adversary to choose its shares based on the garbled circuit. A generic way to handle this would
be to rely on delayed-input non-malleable zero-knowledge proofs [COSVb]. We will instead rely on the fact
that the garbled circuit itself is resilient to such additive attacks (this was proved formally in [HSS17]). In the
previous section we defined Πdpoly and prove how to defensibly simulate parallel invocations of ΠDMULT.
On a high-level, we will use the simulation of Πdpoly to enforce a particular (fake) garbling outcome and
prove indistinguishability relying on the pseudorandomness of the PRF values.

We continue with the complete proof.

Proof: Let A be a PPT adversary corrupting a subset of parties I ⊂ [n], then we prove that there exists a
PPT simulator S with access to an ideal functionality F that implements f , and simulates the adversary’s
view whenever it outputs a valid defense at the end of the third round. We use the terminology of active keys
to denote the keys of the BMR garbling that are revealed during the evaluation. Inactive keys are the hidden
keys. Denoting the set of honest parties by Ī , our simulator S is defined below.

The description of the simulation.

29



• Recall that the parties engage in an instance of Πdpoly to realized the BMROffline functionality in the
first three rounds. The simulator samples random inputs for honest parties and generates the messages
of the honest parties honestly using the random inputs. For every input wire that is associated with an
honest party’s input, the simulator chooses a random Λw and sends these bits to the adversary as part
of the 3rd message. At this point if the adversary outputs a valid defense it proceeds, and otherwise
aborts. From this defense, the simulator obtains λjw and kjw,0, k

j
w,0 ⊕ k

j
w,1 for every corrupted party

Pj and wire w that is an output of some NAND gate, as well as the PRF values. Finally, it obtains the
error eg,jr1,r2 for every gate g, r1, r2 ∈ {0, 1} and j ∈ I , where eg,jr1,r2 is a vector of errors introduced by
the adversary for the plaintext encrypted in row (r1, r2) in the garbling of gate g.8

• Next, the simulator chooses a random Λw ← {0, 1} for every internal wire w ∈W that is an output of
some NAND gate. It further samples a single key kjw for every honest party Pj ∈ Ī and wire w ∈W .

• Upon receiving the adversary’s public values for its input bits, the simulator extracts the adversary’s
input. Namely, for each input wire w ∈ W that is associated with a corrupted party’s input, the
simulator computes ρw = Λw ⊕ λw and the errors in the input wires and fixes the adversary’s input
{xI} to be the concatenation of these bits incorporating the errors. S sends Dec(xI) to the trusted
party computing f , receiving the output ỹ. S fixes y = Enc(ỹ) where recall Enc,Dec are the encoding
and decoding functions corresponding to an AMD code. Let y = (y1, . . . , ym).

• For every gate g, given Λa,Λb, we define Λ̃c, where a, b are the input wires and c is the output wire
of g. Pick a random honest party Pj . If majority of the bits of eg,jr1,r2 = 1 then we set Λ̃c = 1 ⊕ Λc,
and otherwise set Λ̃c = Λc . To simulate the output of the garbled row given the errors, we sample
T jc,Λc at random and construct T jc such that it is equal to the bits of T jc,Λc where eg,jr1,r2 = 0 and at

random if eg,jr1,r2 = 1. For every gate g, and honest party Pj , S constructs Y g,j
Λa,Λb

= (eg,jΛa,Λb
⊕ T jc ).

For corrupted parties Pj , S sets Y g,j
Λa,Λb

= (eg,jΛa,Λb
⊕ T j

c,Λ̃c
). For the tth output wire w, S defines

(
⊕n

i=1 λ
i
w) = Λw ⊕ yt.

Denote the simulated garbled circuit by GCS . On behalf of every honest party Pj , S broadcasts
(r, h(T jw,Λw)⊕ kjw) if Λw = 1 and (h(T jw,Λw)⊕ kjw, r) if Λw = 0 where r is sampled randomly.

• Next, the simulator provides the fourth message on behalf of the honest parties to the adversary.
Namely, for every active row, i.e. for every gate g, the row Λa,Λb, the shares of the honest parties
are computed assuming the output of the polynomials defined in BMROffline are Y g,i

Λa,Λb
for every i

masked with the PRF under the keys kja, k
j
b as R̃g,jΛa,Λb

. For the remaining three rows the simulator
sends random strings.

• If the adversary provides its fourth message {R̃g,jr1r2}j∈[n],g∈[G],r1,r2∈{0,1}, the simulator reconstructs
the garbling GCA and evaluates it on behalf of the honest parties. If one of the following events does
not occur then the simulator sends⊥ to the trusted party computing f . First, the simulator checks that
the output key of every key obtained during the evaluation is the active key kjc,Λc encrypted by the
simulator. In addition, the simulator checks that the outcome of GCA is y. Otherwise, the simulator
sends an OK message to the trusted party to deliver ỹ to the honest parties.

8The errors are bits and are extracted for each monomial where the corrupted party plays the role of P1. For simplicity, we can
collect all the errors for the polynomial representing each bit in the garbled row and then express it as a vector corresponding to
each key.

30



Claim 4.1 R̃EALπ,A(z),I(κ, x1, . . . , xn) ≈ IDEALF ,S(z),I(κ, x1, . . . , xn).

Proof: We consider a sequence of intermediate experiments and prove indistinguishability of simulation
against defensible adversaries via standard hybrid arguments.

Hybrid H0: This is the real experiment. Let R̃EALπ,A(z),I(κ, x1, . . . , xn) denote the output of this exper-
iment.

Hybrid H1: In this hybrid, we follow the simulation strategy of Πdpoly, namely, sampling a random global
inputs for the honest parties, and using the honest strategy with the sampled inputs. To sample the
fourth round we continue to use the simulation strategy of Πdpoly to first generate the shares St,j that
each honest party outputs for each term t and then use it to generate the fourth message according to
honest strategy. Recall that the simulation strategy of Πdpoly requires the outputs of each individual
polynomial and the defenses of the corrupted parties. The defense for this protocol is defined iden-
tically as for Πdpoly and to generate the outputs of the polynomials the simulator emulates Fdpoly.
The inputs of the corrupted parties in this emulation is provided by the simulator of Πdpoly using the
defense supplied by the adversary and the uncorrupted parties, the simulator uses the original global
inputs sampled for them. Using the simulated shares St,j , the simulator continues the honest strategy
using St,j to generated the fourth message. Indistinguishability of H1 from H0 follows essentially
from the simulation strategy for Πdpoly. Concretely, we need to consider all intermediate hybrids
used in the proof of security of Πdpoly.

Next, we consider an arbitrary topological ordering on the gates g ∈ G of the circuit. We will inductively
consider a sequence of hybrids Hg

2 in this ordering. We will maintain as invariant that while at gate g, the
simulation does not require the knowledge of an inactive key denoted by kj

w,Λ̄w
for every honest party Pj ,

where w is an output of a previously considered gate in this ordering. It follows from the construction that
this holds for all gates in the input layer of the circuit (i.e. carrying the real inputs of the parties).

Hybrid Hg
2 : Consider an arbitrary gate g in the topological order with input wires a, b and output wire c.

By the topological order, kj
a,Λ̄a

and kj
b,Λ̄b

are not used in the garbling of the gates from the set [g− 1].
Therefore, we can replace the three inactive rows that involve a PRF value under these keys with a
random string where indistinguishability follows from the pseudorandomness of the PRF.

Hybrid H̃g
2 : Consider an honest party Pj . We recall that the keys are encrypted by hjc,β(T jc,β)⊕ kjc,β using

a pairwise independent hash function and a public random string T jc,β of length 4κ. We note here that

depending on which bits of eg,jr1,r2 are 0 and 1 bits, the adversary learns the bits from the respective
positions in T jc,0 and T jc,1 respectively when decrypting the garbled row (Λa,Λb) of g. If the adversary
learns less than 2κ bits of some string T jc,β , it is ensured by the leftover hash lemma that except with

probability 2−κ, the key kjc,β is hidden. If a majority of the bits in eg,jr1,r2 are 0 then we set Λc = Λ̃c

and otherwise we set Λc = 1⊕ Λ̃c where

Λ̃c = NAND(ρa, ρb)⊕ (
n⊕
i=1

λic) where

ρa = Λa ⊕ (

n⊕
i=1

λia), ρb = Λb ⊕ (

n⊕
i=1

λib).

31



To simulate the output of the garbled row given the errors, we sample T jc,Λc at random and set the

bits of T j
c,Λ̄c

where eg,jr1,r2 6= βj randomly. We further replace the value hj
c,Λ̄c

(Tc,Λ̄c) ⊕ kc,Λ̄c with a

random string from {0, 1}κ. From the pairwise independence we can conclude that H̃g
3 and Hg

3 are
statistically close.

Hybrid H3: In this hybrid, we modify the λjw shares of the honest parties Pj ∈ Ī for the output wires.
Recall that these values are revealed in the fourth round and influence the “translation table” (namely,
the output is identified by Λw⊕(⊕nj=1λ

j
w)). In the previous hybrid these values were honestly revealed

as in the real world. In this hybrid we first extract the input of the adversary and its additive errors
on the circuit wires and evaluate Ĉ′ under this input while incorporating the errors on the wires, and
finally fix the output to be the result of this computation.

In more detail, in order to extract the adversary’s input for each input wire w ∈ W that is associated
with a corrupted party’s input, the simulator computes ρw = Λw ⊕ λw and fixes the adversary’s input
{xI} to be the concatenation of these bits incorporating the errors. Next, to extract the errors on the
intermediate wires of the computation under Ĉ′, the simulator computes ew = Λ̃w ⊕ Λw where Λ̃w
corresponds to the “correct value” as defined below. Finally, to fix the output of the computation, let
y = (y1, . . . , ym) be the result of the computation. Then, for the tth output wire w, S samples shares
λjw for the honest parties Pj ∈ Ī subject to (

⊕n
i=1 λ

i
w) = Λw ⊕ yt.

The outputs of this hybrid are identically distributed to the outputs in the previous hybrid due to the
following correctness argument.

By construction the actual computation performed while evaluating the garbled circuit matches the
computation under Ĉ′ with errors A = {ew}w.

Hybrid H5: In this hybrid we follow the simulation strategy. Namely, the simulator extracts the adversary’s
input, sends Dec(xI) to the trusted party computing f and receives the output ỹ. S fixes y = Enc(ỹ).
Let y = (y1, . . . , ym). Moreover, S defines (

⊕n
i=1 λ

i
w) = Λw⊕yt for the tth output wirew. Statistical

indistinguishability of this experiment from the previous experiment follows directly from the additive
security of Ĉ′ as established in [GIW16]]. Furthermore, this hybrid produces a distribution according
to IDEALF ,S(z),I(κ, x1, . . . , xn).

�
This concludes the proof.

5 4-Round Actively Secure Multi-Party Computation

In this section we prove our main theorem. Towards that, we take the following steps:

1. First, we consider protocol ΠDMULT where the oblivious-transfer protocol is instantiated differently.
More precisely, each OT performed in ΠDMULT relying on the affine homomorphic encryption scheme
is replaced with one where the parties engage in two executions of the OT protocol in parallel. The
receiver uses its original input in both instance whereas the sender secret shares its input across the
two instances. We describe this modified protocol ΠR3MUL in Section 5.1 and define validity for
defenses in Figure 5.

32



2. Next, we design a new protocol to realize Fdpoly. In the previous section, we designed a protocol
that achieved security against defensible adversaries. The protocol in this section will additionally
be proven secure against (fully) active adversaries. Moreover, we will produce a simulator that can
additionally output a defense at the end of the third round of the protocol.

3. Finally, we modify the protocol in Section 4.3 where we replace Πdpoly with Πppoly from Step 2 and
conclude our main theorem. We remark that the simulation of our final protocol is not achieved my
modularly composing the protocol presented in this section with simulation provided against defen-
sible adversaries in Section 4.3. Instead, we will directly rely on the simulation strategy used in that
section combined with the simulator for Πppoly in this section (that additionally provides a defense)
to achieve simulation of the complete protocol.

Following these steps, we obtain the following theorem.

Theorem 5.1 (Main) Assuming the existence of affine homomorphic encryption (cf. Definition 2.5), there
exists a 4-round multi-party protocol that securely realizes arbitrary functionalities in the presence of static,
active adversaries corrupting any number of parties.

The complete proof is found in Section 6 and proof overview in Section 5.2.

5.1 Modified 3-bit Multiplication Protocol ΠR3MUL

Below we describe our modified 3-bit multiplication protocol.

Protocol 6 ( Double 3-bit Multiplication protocol ΠR3MUL)
For simplicity of exposition, in the sequel, we will assume that random coins are an implicit input to the commit-

ment and encryption functions, unless specified explicitly.

Input: Parties P1, P2, P3 are given input (x1, s1), (x2, s2) and (x3), respectively.

ROUND 1:

– Party P1 runs the key generation algorithm Gen twice and samples (PKa, SKa) and (PKã, SKã). Next it
computes ciphertexts OTα[1] = EncPKa(x1) and OTα̃[1] = EncPKã(x1) and sends ((PKa,OTα[1]),
(PKã,OTα̃[1])) to P2.

– Party P3 runs the key generation algorithm Gen twice and samples (PKβ , SKβ) and (PKβ̃ , SKβ̃). Next it
computes ciphertexts OTβ [1] = EncPKβ (x3) and OTβ̃ [1] = EncPK

β̃
(x3) and sends ((PKβ ,OTβ [1]),

(PKβ̃ ,OTβ̃ [1])) to P2.

– Party P3 runs the key generation algorithm Gen twice and samples (PKγ , SKγ) and (PKγ̃ , SKγ̃). Next it
broadcasts PKγ and PKγ̃ .

ROUND 2:

– Party P2 samples xα, xα̃ such that xα + xα̃ = x2 and sα, sα̃ such that sα + sα̃ = s2. It computes
OTα[2] = xα · OTα[1] + EncPKa(sα) and OTα̃[2] = xα̃ · OTα̃[1] + EncPKã(sα̃) then responds with
(OTα[2],OTα̃[2]). P1 computes u = DecSKa(OTα[2]) + DecSKã(OTα̃[2]).

– Party P2 samples rβ , rβ̃ such that rβ + rβ̃ = r and sβ , sβ̃ such that sβ + sβ̃ = s2. It computes
OTβ [2] = rβ · OTβ [1] + EncPKβ (sβ) and OTβ̃ [2] = rβ̃ · OTβ̃ [1] + EncPK

β̃
(sβ̃) then responds with

(OTβ [2],OTβ̃ [2]). P3 computes v = DecSKβ (OTβ [2]) + DecSK
β̃
(OTβ̃ [2])

33



Validity Conditions for Defenses

• Defense for OT: The receiver must provide randomness for one of the two parallel OTs, while the
sender must provide randomness for both parallel executions

valid(OTRecv, (trans, t̃rans), def) :=(
((PK, SK) = Gen(1κ; rGen)) ∧ (OT[1] = EncPK(x; rEnc))

)
∨
(

(Gen(r̃Gen) = (P̃K, S̃K)) ∧ (ÕT[1] = EncP̃K(x; r̃Enc))
)

where def = (x, SK, rGen, rEnc, S̃K, r̃Enc, r̃Gen) and trans = ((PK,OT[1]),OT[2]), t̃rans =

((P̃K, ÕT[1]), ÕT[2]).

valid(OTSen, (trans, t̃rans), def) :=(
(ct = EncPK(s, rEnc)) ∧ (OT[2] = r · OT[1] + ct)

)
∧
(
(c̃t = EncP̃K(s̃, r̃Enc)) ∧ (ÕT[2] = r̃ · ÕT[1] + c̃t)

)
where def = (r, s, ct, rEnc, r̃, s̃, c̃t, r̃Enc) and trans = ((PK,OT[1]),OT[2]), t̃rans =

((P̃K,OT[1]),OT[2]).

• Defense for 3MUL = (P1, P2, P3): Every party participates in two executions of OT and need to
provide defenses corresponding to their role in the protocol for the two instances.

valid(3MUL1, τ, w) :=(
valid(OTRecv, trans1, def1) ∨ valid(OTRecv, t̃rans1, def1)

)
∧ valid(OTSen, (trans2, t̃rans2), def2)

valid(3MUL2, τ, w) := valid(OTSen, (trans1, t̃rans1), def1)

∧ valid(OTSen, (trans2, t̃rans2), def2)

valid(3MUL3, τ, w) :=(
valid(OTRecv, trans1, def1) ∨ valid(OTRecv, t̃rans1, def1))

∧ (valid(OTRecv, trans2, def2) ∨ valid(OTRecv, t̃rans2, def2)
)

where w = (def1, def2) and τ = ((trans1, t̃rans1), (trans2, t̃rans2)).

Figure 5: Defining the validity condition for defenses.

– PartyP3 computes ciphertexts OTγ [1] = EncPKγ (x3) and OTγ̃ [1] = EncPKγ̃ (x3) and sends (OTγ [1],OTγ̃ [1])
to P1.

ROUND 3:

– Party P1 samples uγ , uγ̃ such that uγ + uγ̃ = u and sγ , sγ̃ such that sγ + sγ̃ = s1. It computes
OTγ [2] = uγ · OTγ [1] + EncPKγ (sγ) and OTγ̃ [2] = uγ̃ · OTγ̃ [1] + EncPKγ̃ (sγ̃) then responds with
(OTγ [2],OTγ̃ [2]). P3 computes w = DecSKγ (OTγ [2]) + DecSKγ̃ (OTγ̃ [2])

34



P2 P3P1

PKa,OTα[1] PKã,OTα̃[1] PK
β̃
,OT

β̃
[1]PKβ,OTβ[1]

PKγ PKγ̃ ,

OTα[2] OTα̃[2] OT
β̃
[2]OTβ[2]

OTγ [1] OTγ̃ [1]

OTγ [2]OTγ̃ [2]

Figure 6: ΠR3MUL protocol. Note that in this protocol each OT protocol is executed twice i.e., OTα, OTα̃ etc.

5.2 4-Round Actively Secure Protocol for Fppoly

In this protocol, besides the affine homomorphic encryption scheme (cf. Definition 2.5), we will require the
following primitives. (1) A three-round weak one-many non-malleable commitment scheme against syn-
chronizing adversaries (cf. Definition 2.10) where we denote the messages by nm = (nm[1], nm[2], nm[3]).
(2) A two-round resettable reusable witness indistinguishable proof (cf. Definition 2.11) for which we rely
on ZAPs. We follow the same conventions as we did in Section 4.2 for Πdpoly. In addition, we will recall
the notation Execj to be the set of indices t corresponding to the terms Mt that Pj participates in. We are
now ready to describe our complete protocol.

Protocol 7 ( Parallel Polynomial Protocol Πppoly)

Input: Parties P 1, . . . , Pn are given input x1, . . . , xn each of length κ, respectively.

• ROUND 1: Each party P j samples M random secret shares of 0, {(z1
j,`, . . . , z

n
j,`)}`∈[M ] using Share(0, n) and

sends (zij,1, . . . , z
i
j,M ) to party Pi.

• ROUNDS 1,2,3: For each monomial Mt = (xt,i, xt,j , xt,k), t ∈ [q], parties P i, P j , P k execute ΠR3MUL until
the end of the 3rd round. Let st,i, st,j , st,k be the messages parties P i, P j , P k respectively are set to broadcast
in the 4th-round as part of the ΠR3MUL protocol.

• ROUNDS 1,2,3: For every (ordered) pair (i, j), i, j ∈ [n], P i and P j engage in two non-malleable commit-
ments where P i chooses two random strings w1, w2 of appropriate length and commits to them. Denote the
transcript of the two interactions by nm0

i,j , nm
1
i,j . In Round 3, P i additionally sends w̃0 and w̃1 such that

w0 + w̃0 = w1 + w̃1 = (xi, yi), where a valid defense defnm for one of the two non-malleable commitments
and for every t ∈ Execi, a valid defense deft for ΠR3MUL can be obtained from (xi, yi) that will serve as the
defense for party Pi in the tth ΠR3MUL instance.

• ROUNDS 2,3: For every (ordered) pair (i, j), i, j ∈ [n], P i and Pj engage in a ZAP where P i proves to P j ,
the NP relation,

∃ w ∈ {0, 1}∗, b ∈ {0, 1} such that valid(nmcom, nmb
i,j , (w, defnm)) = 1 and (xi, yi) = w + w̃b

and ∀t ∈ Execi, valid(3MULRole(t,i), τt, deft) = 1

35



P jP i

nm0
i,j [1], nm1

i,j [1] Π
ti,tj
R3MUL[1]

nm0
i,j [3], nm1

i,j [2] Π
ti,tj
R3MUL[2] ZAPi,j [1]

nm0
i,j [3], nm1

i,j [3] w̃0, w̃1Π
ti,tj
R3MUL[3] ZAPi,j [2]

{Sti,i}

Figure 7: Communication flow from party P i to P j in protocol Πppoly for ti ∈ Execi, tj ∈ Execj .

where (w̃0, w̃1) is part of Round 3 interaction between P i and P j , τ = (τ1, . . . , τt) is the transcript of the
interaction between all parties, τt is the interaction for the tth ΠR3MUL instance and defnm, deft can be obtained
from (xi, yi)

• ROUND 4: In the 4th round, for every ` ∈ Execj , P j broadcasts S`,j =
∑
t∈Terms` st,j +

∑n
i=1 z

j
i .

• OUTPUT: All parties output Z1, . . . , ZM where Z` =
∑
j∈[n] S`,j .

Proof overview: We briefly describe our simulation and the proof approach. S samples random inputs
{x′i}i∈Ī for the honest parties and completes the first three rounds of the interactions following the honest
strategy. If the adversary aborts before completing the third round, the simulator halts outputting the adver-
sary’s view. Otherwise it rewinds to extract a valid defense from the adversary. Upon extracting the defense,
S follows the simulator Sdpoly strategy of Πdpoly from Section 4.2 and extracts the adversary’s input and the
errors introduced in the computation from the defense and sends it to Fppoly. Upon receiving the response
from the functionality, it continues the strategy of Sdpoly and generates the shares that the honest parties
need to send in the fourth round which it feeds to the adversary. If the adversary sends its fourth round
message, S follows the strategy Sdpoly to first extract the errors introduced in the output and then sends it to
the ideal functionality and instructs it to deliver the outputs to the honest parties.

The main sequence of hybrids modifies the inputs of honest parties in the different ΠR3MUL instances
so that they can equivocated to an arbitrary input. In these hybrids, first, we consider a hybrid where we
decouple the fourth round message generated by an honest party from its actions in the first three rounds.
The goal is that at the end of the hybrids the fourth round message is generated using the original inputs
{xi}P i∈Ī chosen for the honest parties, but the actions of the honest parties in the first three rounds will be
according to randomly chosen inputs {x′i}P i∈Ī which are randomly chosen. On a high-level the strategy is
as follows:

• First, we consider a sequence of hybrids where in each ΠR3MUL instance where P1 is controlled by
an honest party, we will modify its action in OTγ [2] and OTγ̃ [2] so that instead of using u as the
input (that it received as output from OTα[2],OTα̃[2], we will switch to using a random u′. This will
additionally involve switching the ZAP witness to use u′ instead of u.

• Next, we consider a sequence of hybrids where in each ΠR3MUL instance where we switch P1’s input
in OTα̃[1] from x1 to its value according to x′1 that we denote by x′1.

• Following, this we consider a sequence of hybrids we do an anologous change to P3’s input in OT
β̃
[1]

and OTγ̃ [1] when controlled by an honest party from x3 to x′3.

36



• Finally, we generateP2’s messages when controlled by an honest party in such a way that the simulator
will possess both witnesses for demonstrating its actions according to x2 and x′2.

• Now, we will be in a position to switch the ZAP witness generated using the inputs {xi}Pi∈Ī to being
generated according to {x′i}Pi∈Ī .

• Then we go through the hybrids in reverse where we switch the other witness to correspond to x′i.
Now, the actions of all honest parties in the first three rounds are consistent with the honest strategy
on input {x′i}Pi∈Ī .

5.3 4-Round Actively Secure Multi-Party Computation for Arbitrary Functionalities

Our final protocol to realize arbitrary functionalities will on a high-level rely on the protocol from Section 4.3
where instead of relying on Πdpoly to realize BMROffline we will rely on Πppoly described in the previous
section.

We recall first that we rely on the same preprocessing steps using MACk, AMD codes and the [GIW16]
transformation as in Section 4.3. We repeat it here for completeness:

1. We modify the function f to f ′(x, k1, . . . , kn) defined as (f(x),MACk1(f(x)), . . . ,MACkn(f(x))).
Let C be the boolean circuit that computes f ′.

2. We modify C to obtain C′ that takes as input x and computes Enc(C(Dec(x))) where Enc,Dec are
the encoding and decoding functions for an AMD code.

3. Let Ĉ′ be the result of applying the transformtion of [GIW16] on C′.

Description of Protocol. We first formally describe our protocol. We remark that the protocol is identical
to protocol 8 with the only exception that we rely on Πppoly instead of Πdpoly as the sub-protocol to realize
BMROffline.

Protocol 8 (Protocol Πf )

INPUT: Parties P1, . . . , Pn are given input x1, . . . , xn each of length κ, respectively, and a circuit Ĉ′ as specified
above. We fix the notation [xi]j as the jth bit of string xi.

• ROUNDS 1,2,3: For each i ∈ [M ], parties P1, . . . , Pn execute Πppoly for the polynomial pi up until the 3rd

round of the protocol with random inputs for the Fppoly = BMROffline. Along with the message transmitted in
the 3rd round of Πppoly, party Pj broadcasts the following:

– For every input wire w ∈ W that carries some input bit [xj ]k from Pj’s input, Pj broadcasts Λw =
λw ⊕ [xj ]k.

For every j ∈ [n], let {S`,j}`∈M be the output of party Pj for the M polynomials. It reassembles the output
shares to obtain S̃g,jr1,r2 for every garbled row.

• ROUND 4: Finally for every gate g ∈ G and r1, r2 ∈ {0, 1}, Pj (j ∈ [n]) broadcasts the following:

– R̃g,ir1,r2 = Fkja,r1
(g, j, r1, r2)⊕ Fkjb,r2

(g, i, r1, r2)⊕ S̃g,ir1,r2 for every i ∈ [n].

– kjw,Λw for every input wire w.

– λjw for every output wire w.

– (Γjw,0,Γ
j
w,1) = (h(T jw,0)⊕ kjw,0, h(T jw,1)⊕ kjw,1) for every wire w.

37



• OUTPUT: Upon collecting {R̃g,jr1r2}j∈[n],g∈[G],r1,r2∈{0,1}, the parties compute each garbled row by Rg,jr1,r2 =⊕n
j=1 R̃

g,j
r1,r2 . Then using the keys corresponding to the input wires w, they evaluate the circuit to obtain Λw

for every output wire as follows:
Consider a standard (arbitrary) topological ordering of the gates. The parties will evaluate the circuit accord-
ing to the topological order. Let g be a gate in this order with input wires a, b and output wire c. If a party
does not have masks Λa,Λb or keys (ka, kb) corresponding to the input wires when processing gate g it aborts.
Otherwise, it will compute

T jc = Rg,jr1,r2 ⊕
n⊕
i=1

(
Fkia,Λa

(g, j,Λa,Λb)⊕ Fkib,Λb
(g, j,Λa,Λb)

)
where ka = (k1

a, . . . , k
n
a ) and kb = (k1

b , . . . , k
n
b ). Party Pj identifies Λc such that T jc = T jc,Λc . If no such

Λc exists the party aborts. Otherwise, each party defines kic = Γic,Λc ⊕ h(T jc ). Let kc = (k1
c , . . . , k

n
c ). The

evaluation is completed when all gates in the topological order are processed. Finally given Λw for every
output wire, the parties compute the output carried in wire w as Λw ⊕

(⊕n
j=1 λ

j
w

)
and decode the outcome

using Dec.

This concludes the description of our protocol. Now, we have the following theorem:

Theorem 5.2 Let C be an n-party circuit that computes f and assume the existence of a 2-round OT ΠOT

(as specified in Section 2.4). Then Protocol Πf securely computes f in the presence of an active adversary
that corrupts at most n− 1 parties.

Proof Sketch: Correctness follows from the description of the protocol and essentially the same as in
Section 4.3. We describe the simulation next. We remark that the simulation on a high-level follows the
simulation presented in Section 4.3 with the exception where the simulator in Section 4.3 relies on a de-
fense provided by the adversary, the simulator here will obtain a defense by rewinding the non-malleable
commitments provided by the corrupted parties. Now, we proceed to formal description of the simulator.

Let A be a PPT adversary corrupting a subset of parties I ⊂ [n], then our simulator S is defined below.

• Recall that the parties engage in an instance of Πppoly to realized the BMROffline functionality in the
first three rounds. The simulator samples random inputs for honest parties and generates the messages
of the honest parties honestly using the random inputs. For every input wire that is associated with an
honest party’s input, the simulator chooses a random Λw and sends these bits to the adversary as part
of the 3rd message.

• At this point, in our simulation in Section 4.3 we relied on the defense provided by the adversary.
The simulator for the current protocol will obtain the defense by extracting the messages from the
non-malleable commitment provided by the corrupted parties. More precisely, if the adversary fails
to complete the third round for all parties by providing valid proofs using the ZAPs the simulator
halts outputting ⊥. Otherwise, it will rewind the parties from third to the second round repeatedly
until it obtains a valid defense. If it fails to obtain a valid defense, the simulator halts outputting ⊥.
Otherwise, from this defense, the simulator obtains λjw and kjw,0, k

j
w,0⊕k

j
w,1 for every corrupted party

Pj and wire w that is an output of some NAND gate, as well as the PRF values. Finally, it obtains the
error eg,jr1,r2 for every gate g, r1, r2 ∈ {0, 1} and j ∈ I , where eg,jr1,r2 is a vector of errors introduced by
the adversary for the plaintext encrypted in row (r1, r2) in the garbling of gate g.9

9The errors are bits and are extracted for each monomial where the corrupted party plays the role of P1. For simplicity, we can
collect all the errors for the polynomial representing each bit in the garbled row and then express it as a vector corresponding to
each key.

38



• Next, the simulator chooses a random Λw ← {0, 1} for every internal wire w ∈ W that is an output
of some NAND gate. It further samples a single key kjw every honest party Pj ∈ Ī and wire w ∈W .

• Upon receiving the adversary’s public values for its input bits, the simulator extracts the adversary’s
input. Namely, for each input wire w ∈ W that is associated with a corrupted party’s input, the
simulator computes ρw = Λw ⊕ λw and the errors in the input wires and fixes the adversary’s input
{xI} to be the concatenation of these bits incorporating the errors. S sends Dec(xI) to the trusted
party computing f , receiving the output ỹ. S fixes y = Enc(ỹ) where recall Enc,Dec are the encoding
and decoding functions corresponding to an AMD code. Let y = (y1, . . . , ym).

• For every gate g, given Λa,Λb, we define Λ̃c, where a, b are the input wires and c is the output wire
of g. Pick a random honest party Pj . If majority of the bits of eg,jr1,r2 = 1 then we set Λ̃c = 1 ⊕ Λc,
and otherwise set Λ̃c = Λc . To simulate the output of the garbled row given the errors, we sample
T jc,Λc at random and construct T jc such that it is equal to the bits of T jc,Λc where eg,jr1,r2 = 0 and at

random if eg,jr1,r2 = 1. For every gate g, and honest party Pj , S constructs Y g,j
Λa,Λb

= (eg,jΛa,Λb
⊕ T jc ).

For corrupted parties Pj , S sets Y g,j
Λa,Λb

= (eg,jΛa,Λb
⊕ T j

c,Λ̃c
). For the tth output wire w, S defines

(
⊕n

i=1 λ
i
w) = Λw ⊕ yt.

Denote the simulated garbled circuit by GCS . On behalf of every honest party Pj , S broadcasts
(r, h(T jw,Λw)⊕ kjw) if Λw = 1 and (h(T jw,Λw)⊕ kjw, r) if Λw = 0 where r is sampled randomly.

• Next, the simulator provides the fourth message on behalf of the honest parties to the adversary.
Namely, for every active row, i.e. for every gate g, the row Λa,Λb, the shares of the honest parties
are computed assuming the output of the polynomials defined in BMROffline are Y g,i

Λa,Λb
for every i

masked with the PRF under the keys kja, k
j
b as R̃g,jΛa,Λb

. For the remaining three rows the simulator
sends random strings.

• If the adversary provides its fourth message {R̃g,jr1r2}j∈[n],g∈[G],r1,r2∈{0,1}, the simulator reconstructs
the garbling GCA and evaluates it on behalf of the honest parties. If one of the following events does
not occur then the simulator sends⊥ to the trusted party computing f . First, the simulator checks that
the output key of every key obtained during the evaluation is the active key kjc,Λc encrypted by the
simulator. In addition, the simulator checks that the outcome of GCA is y. Otherwise, the simulator
sends an OK message to the trusted party to deliver ỹ to the honest parties.

Arguing indistinguishability of simulation follows a sequence of intermediate hybrids where first we rely
on the same hybrids as in the previous section (formally specified in Section 6) where we change the inputs
supplied by the honest parties for Πppoly to randomly sampled inputs. Then we rely on the intermediate
hybrids identically as in Section 4.3 where we change the garbled circuit computed from the real garbling
to the fake garbling computed only using the output provided by the functionality.

6 Proof of Theorem 5.1

Let A be a PPT adversary corrupting a subset of parties I ⊂ [n], then we prove that there exists PPT
simulator S with access to an ideal functionality F that implements f , that simulates the adversary’s view,
namely:

{IDEALF ,S(κ, ·)}κ
c
≈ {REALΠ,A(κ, ·)}κ

39



Denoting the set of honest parties by Ī , our simulator S is defined below.

The description of the simulation.

• S internally incorporates A and proceeds as follows. It samples random inputs for the honest parties
and completes the first three rounds of the interactions following the honest strategy. If the adver-
sary aborts before completing the third round, the simulator halts outputting the adversary’s view.
Otherwise it proceeds.

• Then it stalls the main thread and proceeds to extract the defense from the adversary by rewinding the
adversary from the third to the second round. In particular, it uses the extractor for the non-malleable
commitment scheme and tries to extract the value committed to by every corrupted to party P i to
some honest party P j . If the extraction fails it halts outputting ⊥ and otherwise proceeds.

• Upon extracting the defense, the simulation S follows the simulator Sppoly strategy of Πppoly from
the Section 4.2 and extracts the adversary’s input and the errors introduced in the computation from
the defense and sends it to Fppoly. Upon receiving the response from the functionality, it continues
the strategy of Sppoly and generates the shares that the honest parties need to send in the fourth round
which it feeds to the adversary.

• If the adversary A sends its fourth round message, it again follows the strategy Sppoly to first extract
the errors introduced in the output and then sends it to the ideal functionality and instructs it to deliver
the outputs to the honest parties.

We now proceed to proving formally.

Lemma 6.1 The following distributions are indistinguishable:

•
{

IDEALF ,S(z),I(κ, x1, . . . , xn)
}
κ∈N,z,x1,...,xn∈{0,1}∗

, and

•
{

REALΠ,A(z),I(κ, x1, . . . , xn)
}
κ∈N,z,x1,...,xn∈{0,1}∗

.

Proof: Let P = {P 1, . . . , Pn} be the set of parties, let A be a malicious, static adversary in the plain
model, and let I ⊆ P be the set of parties corrupted by A. We construct a simulator S (the ideal world
adversary) with access to the ideal functionality Fdpoly, such that the ideal world experiment with S and F
is indistinguishable from a real execution of Πppoly with A.

Assume for contradiction, there exists an adversaryA, distinguisherD and polynomial p(·) such that the
probability with which D distinguishers IDEALF ,S(z),I(κ, x1, . . . , xn) and REALΠ,A(z),I(κ, x1, . . . , xn)

for infinitely many κ is 1
p(κ) . Fix an n and inputs for parties for which this happens.

We design a sequence of intermediate hybrid experiments starting from the real world leading to the
ideal world and argue correctness via a standard hybrid argument. More precisely, we design q(n) hybrids
below and there must be a mapping i(κ) such that D distinguishes the outputs of ith and (i+ 1)st interme-
diate experiments with probability at least 1

p(κ)q(κ) . In experiment Hi below, we denote the output of the
experiment by Hybridi(κ, z, x1, . . . , xn).

Hybrid H0: This experiment proceeds identically to the real execution. More precisely, in H0 consider a
simulator S0 that has all the honest parties real inputs and starts an execution withA providing it fresh
randomness and input {x∗j}P j∈I and emulating the actions of the honest parties using the real inputs.
The output of the experiment is REALΠ,A(z),I(κ, x1, . . . , xn) which consists of A’s view and output
of honest parties.

40



Hybrid H1: This experiment proceeds identically to H0 with the following exception: the simulator will
try to extract the adversary’s defenses {x∗i , y∗i }i∈[I] by rewinding the non-malleable commitment. In
more detail, the simulator S1 proceeds as follows:

• It completes the first three rounds exactly as in H0. If A aborts before delivering the third
message for some corrupted party, then the simulator halts. Otherwise it proceeds to extraction.

• The simulator will extract the inputs and defenses from corrupted parties by rewinding the
non-malleable commitment made by corrupted parties (to honest parties). Recall that the non-
malleable commitment is executed from the first round and completes in the third round.
In more detail, S1 constructs a committer for nmcom, C∗ that internally incorporates A and
simulates all messages for A, except those corresponding to (each execution of) nmcom where
the adversary controls the committer, which it forwards to an external party. Treating each com-
mitment made by the corrupted party as an honest commitment, using the weak one-many non-
malleability property, the simulator rewinds from third to second round to extract the message in
the commitment. We are able to apply the weak one-many non-malleability property since the
protocal demands a ZAP proof from the committer ensuring that one of the two commitments
is well-formed. Recall that between every pair of parties P i and P j , two non-malleable com-
mitments are made by P i to P j . For every corrupted party P i, the simulator chooses an honest
party P j and tries to extract one of the two commitments made by P i to P j in parallel until one
of them succeeds (If it runs too long, say 2κ/2 time steps, it aborts). If extraction succeeds, let
nmb be the well-formed commitment, upon receiving the third round message {w̃b,i}i∈[I] and
leveraging the extracted values {wb,i}i∈[I] S1 defines {x∗i , y∗i }i∈I as follows:

(x∗i , y
∗
i ) = wb + w̃b

If two valid commitments were obtained, the simulator tries to obtain a defense from both mes-
sages and chooses the valid one (if one exists and at random if both are valid). Using the (x∗i , y∗i )
extracted from the valid message, S1 obtains defnm, deff .

• H1 now completes the final round as in H0.

It follows from the proceeding argument that the outputs ofH0 andH1 are identically distributed con-
ditioned on the extraction procedure not failing. From the soundness of the ZAP, we know that except
with negligible probability, at least one of the two non-malleable commitments will be well-formed
and therefore the extractor will succeed in expected polynomial time. Furthermore, the soundness of
ZAP will also ensure that the extracted defense is valid. This implies that S1 aborts only with negli-
gible probability which in turn means that the outputs of H0 and H1 are statistically close. Therefore,
we have the following claim:

Claim 6.2 The following distributions are statistically close:

• {Hybrid0(κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ ,

• {Hybrid1(κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ .

It suffices to argue that S1 runs in expected polynomial time. Let p be the probability with which A
completes in the third round. The number of rewinding executions is bounded by p · 1p and the number

41



of times before another non-aborting rewinding happens is 1/p. That said, the expected number
of rewinding executions till another non-aborting rewinding happens is constant. The extractor for
nmcom takes expected time poly(κ)/p and succeeds with probability 1− µ(κ).

Hybrid H2: This experiment proceeds identically to the previous experiment with the exception of how the
fourth round messages of the honest parties are generated. In H1, the fourth round messages were
computed following the honest strategy. In H2 we will rely on the defense extracted from the adver-
sary and the real inputs for the honest parties. In more detail, the simulation will follow the simulator
strategy Sdpoly of Πdpoly from the Section 4.2 and extracts the adversary’s input, output shares and
the errors introduced in the computation from the defense. Using the defense of the adversary and the
inputs and randomness of the honest parties for Πppoly, S will generate the fourth round messages of
the honest parties. The output of the honest parties in this hybrid and previous hybrid will be statisti-
aclly close and this follows analogously as in Section 4.2. This hybrid is introduced so that the fourth
round messages from all honest parties are generated using only the inputs and randomnss chosen
for the honest parties and the adversary’s defense. In particular, the intermediate outputs part of the
protocol will not be used. We will generate the fourth round message this way in all the remaining
hybrids until the last one. Therefore, we have the following claim.

Claim 6.3 The following distributions are statistically close.

• {Hybrid1(κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ ,

• {Hybrid2(κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ .

In the next sequence of hybrids, we will modify the inputs of honest parties in the different ΠR3MUL
instances. In these hybrids, we continue to generate the fourth round message using the original inputs
{xi}P i∈Ī chosen for the honest parties. At the end of the next set of hybrids, the simulator will have
modified the inputs to {x′i}P i∈Ī which are randomly chosen. On a high-level the strategy is as follows:

• First, we consider a sequence of hybrids where in each ΠR3MUL instance where P1 is controlled by
an honest party, we will modify its action in OTγ [2] and OTγ̃ [2] so that instead of using u as the
input (that it received as output from OTα[2],OTα̃[2], we will switch to using a random u′. This will
additionally involve switching the ZAP witness to use u′ instead of u.

• Next, we consider a sequence of hybrids where in each ΠR3MUL instance where we switch P1’s input
in OTα̃[1] from x1 to its value according to x′1 that we denote by x′1.

• Following, this we consider a sequence of hybrids we do an anologous change to P3’s input in OT
β̃
[1]

and OTγ̃ [1] when controlled by an honest party from x3 to x′3.

• Finally, we generateP2’s messages when controlled by an honest party in such a way that the simulator
will possess both witnesses for demonstrating its actions according to x2 and x′2.

• Now, we will be in a position to switch the ZAP witness generated using the inputs {xi}P i∈Ī to being
generated according to {x′i}P i∈Ī .

• Then we go through the hybrids in reverse where we switch the other witness to correspond to x′i.
Now, the actions of all honest parties in the first three rounds are consistent with the honest strategy
on input {x′i}Pi∈Ī .

42



For every ΠR3MUL instance where the party controlling P1 is honest, we consider the following sequence
of intermediate experiments where we replace the inputs of the honest parties from the chosen one to a
random input. We continue to generate the fourth round message using the original inputs chosen for the
honest parties, namely {xi}P i∈Ī . We will do this in sequence, where we first replace all the inputs for party
P1 in the individual ΠR3MUL instances, when an uncorrupted party controls P1. Then we move to P2 and
P3.

We remark that the simulation in the next sequence of hybrids will be slightly different. The simulation
after generating the first message of the protocol will stall the main thread and proceed to rewinding. In other
words, the simulator proceeds to rewinding whether or not it aborts in the main thread. It might worrisome
that this could affect the output distribution as we need to simulate the abort probability correctly. However,
we will use the fact that towards arriving at a contradiction, we can restrict ourselves to distinguishers that
distinguish H2,j

3 from H1,j
3 with probability at least 1

q(κ)p(κ) . Therefore, it suffices for us to simulate the
hybrids except with probability 1

4q(κ)p(κ) . Then we can conclude using an union bound over the failure
of extraction that the distinguisher can still distinguish with probability at least 1

2q(κ)p(κ) between every
two successive hybrids. We call this strategy premature rewinding. In slight more detail, suppose that the
adversary does not abort with probability p. Then we have two cases depending on whether p is bigger
than 1

4q(κ)p(κ) or not. If p < 1
4q(κ)p(κ) , then simply outputting aborting transcripts simulates the hybrid

with the required probability. If p > 1
4q(κ)p(κ) , then we will make sure that the extractor will succeed with

high probability. In other words, our simulator will rewind a fixed polynomial number of times namely
some polyonmial in 4q(κ)p(κ) to guarantee high success probability whenever p > 1

4q(κ)p(κ) . Then if the
simulator fails, it proceeds to the main thread and completes the execution until either the adversary aborts
or it reaches the third round at which point the simulator halts outputting ⊥. Now we proceed to these
intermediate hybrid experiments.

For each honest party P i in Ī and every monomial Mt such that Role(t, i) = 1, consider the following
intermediate experiments.

Hybrid H1,j
3 : This experiment proceeds identically to H2 with the exception that the non-malleable com-

mitment nm1
i,j is simulated differently. First the value committed by the honest party playing P1, say

P i to any (corrupted) party P j , in nm1
i,j is switched from w1 to a random value R. (in particular the

message sent in the third round w̃1 will not satisfy that R+ w̃1 is a valid defense). We will perform a
premature rewinding to obtain a valid defense. We remark that this defense will be used to compute
a second witness for the honest party but not used to generate the fourth round message. In more
detail, consider a simulator S1,j

3 that proceeds as follows. After the first message is generated in the
main thread, the simulator stalls the main thread and proceeds to rewinding. As mentioned above in
the premature rewinding we will invoke the extractor to rewind and guarantee correct simulation with
probabilty at least 1 − 1

4q(κ)p(κ) . In the rewinding, we will generate the third message of nm1
i,j inter-

nally by assuming that the value committed in the first message is according to w1. We remark that
the success probability of the rewinding will not be affected (with more than negligible probability)
whether the first message was generated according to w1 or R because otherwise the hiding of the
commitment in the first round would be violated.

After the premature extraction, we proceed to the main thread and complete the execution until the
third round. Now, we can use the non-malleability reduction to extract the message committed to by
the adversary, which in turn, is used to extract another defense and complete the fourth message as in
the previous hybrid.

Let the output of the experiment be denoted as Hybrid1,j
3 (κ, z, x1, . . . , xn). The indistinguishability

43



of the experiments H1,j
3 and H2 follows directly from the weak one-many non-malleability against

synchronizing adversaries of the underlying non-malleable commitment scheme. The premature ex-
traction strategy can cause the simulation to fail with probability at most 1/4p(κ)q(κ). Applying a
union bound, we still have a distinguishing probability of 1/2p(κ)q(κ).

Claim 6.4 The following distributions are indistinguishable.

• {Hybrid2(κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ ,

• {Hybrid1,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ .

Hybrid H2,j
3 : This experiment proceeds identically to H1,j

3 with the exception that the w̃1 generated in the
third round of the main thread will be such that w1 (that is in the simulator’s head) and w̃1 add up
to a second defense for the oblivious transfer messages OTγ [2] and OTγ̃ [2] involving u and s1 (see
Protocol 6). First, we remark that a second defense cannot be obtained without rewinding. Since
we are performing premature rewinding we will be able to extract a defense that will be sufficient to
obtain the second defense.

Given the extracted defense, first a second witness corresponding to u, s1 is obtained. Given that u, s1

are the inputs used by P1 in the main execution, sample random u′ and compute s′1 = (u−u′)x3 +s1.
Now, given any second message, we can generate OTγ [2] and OTγ̃ [2] using the defense provided for
P3 (namely the public and secret keys for the encryption schemes) such that valid defense with both
u, s1 and u′, s′1 can be established (i.e. obtain randomness that shown both OTγ [2] and OTγ̃ [2] could
have been obtained from either pair of inputs). This is possible using the equivocation property of the
underlying encryption scheme.

After the premature extraction and obtaining the second defense, the simulator S3 will resume the
main thread and complete the execution by setting w̃1 such that w1 + w̃1 has the second defense.
Indistinguishability follows from the fact that since w1 has been decoupled from the commitment
made in nm1

i,j (that is made to a random R), the two distributions will be identically distributed
(conditioned on extraction). We will rely again on the non-malleability reduction for obtaining the
defense in the main thread. Indistinguishability of the main thread follows again using weak one-one
non-malleability. Therefore, we have the following claim.

Claim 6.5 The following distributions are statistically close.

• {Hybrid1,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ ,

• {Hybrid2,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ .

Hybrid H3,j
3 : In this experiment the simulator proceeds identically as in the previous hybrid, with the

exception that it reverts the change made in H1,j
3 , namely, S3,j

3 will follow the honest strategy by
committing to the value w1 (instead of random R). Indistinguishability follows from the weak non-
malleability property of the commitment scheme. Recall that premature rewinding will provide the
second witness. In the main thread, the adversary will receives a commitment to R in the previous
hybrid and w1 in the current hybrid.

We arrive at a contradiction by relying on the weak non-malleability property of the underlying non-
malleability commitment scheme. Therefore, we have the following claim.

44



Claim 6.6 The following distributions are computationally indistinguishable:

• {Hybrid2,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ ,

• {Hybrid3,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ .

Hybrid H4,j
3 : This experiment proceeds identically to H3,j

3 with the exception that the witness used in the
ZAP proof is changed from the witness with u to the witness with u′. Indistinguishability will follow
directly from the resettable reusable witness indistinguishabilty of the ZAP. Just as in the previous
two hybrids, we will rely on premature rewinding to extract the second defense. Therefore, we have
the following claim:

Claim 6.7 The following distributions are computationally indistinguishable:

• {Hybrid3,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ ,

• {Hybrid4,j
3 (κ, z, x1, . . . , xn)}κ∈N,z,x1,...,xn∈{0,1}∗ .

We are now at a hybrid where the witness used in the ZAP contains a defense for u′ which is a random
value, rather than the actual value u obtained from OTα[2],OTα̃[2].

Hybrid H5,j
3 −H7,j

3 : We consider a set of experiments analogous to H1,j
3 -H3,j

3 , where we will switch the
first non-malleable commitment nm0

i,j and w̃0 such that w0 + w̃0 is equal to the second witness.

At this point we have that both w0 + w̃0 = w1 + w̃1 provide a defense for P1’s actions in OTγ [2] and
OTγ̃ [2] according to the randomly chosen value u′.

HybridH8,j
3 : This experiment is identical toH7,j

3 with the exception that the witness used in the ZAP proof
is changed from using nm1

i,j to nm0
i,j . Indistinguishability will follow directly from the resettable

reusable witness indistinguishabilty of the ZAP as in H4,j
3 .

In the next set of H4 hybrids we remove the input of honest party P i from the oblivious transfer. In
particular:

Hybrid H1,j
4 : This experiment is identical to hybrid H8,j

3 with the exception that the non-malleable com-
mitment nm1

i,j is simulated differently. First the value committed by the honest party in nm1
i,j is

switched from w1 to a random value R. We will perform premature rewinding where internally we
use the value w1 to simulate the third message of nm1

i,j . We run the extractor for the non-malleable
commitment to obtain a valid defense from the adversary to simulate the fourth round. Indistinguisha-
bility follows directly from the weak non-malleability property of the commitment scheme.

Hybrid H2,j
4 : Identical to H1,j

4 except that we remove the inputs on behalf of the honest party P i (acting
as P1) from the first duplicate oblivious transfer message OTα̃[1] from x1 to a x′1. Indistdinghuisabil-
ity follows due to privacy against defensible receivers. Note that the sequence of H3 hybrids were
needed to address the “u” problem. Namely, the effect of the current hybrid will lead to an incorrect
(unknown) value for u, and by changing the correct u to a random u′ in the previous hybrids we
avoided this problem.

45



Hybrid H3,j
4 : This experiment proceeds identically toH2,j

4 with the exception that w̃1 generated in the third
round will be such that w1 + w̃1 (where w1 is in the simulator’s head) equal to the second defense for
the oblivious transfer messages OTα[1] and OTα̃[1], namely x′1 used in OTα̃[1]. Indistinguishability
follows essentially as in hybrid H2,j

3 .

Hybrid H4,j
4 : This experiment is identical to hybridH3,j

4 with the exception that it reverts the change made
in H1,j

4 , namely, S4,j
4 will follow the honest strategy by committing to the value w1 in nm1

i,j (instead
of R). Indistinguishability follows as in hybrid H1,j

4 .

At this point for every multiplication instance where P1 is controlled by an honest party, the input is
switched from x1, the original chosen input, to a random input x′1 as in the simulation.

Next, we consider the scenario where P2 is controlled by an honest party. The sequence of hybrids
involved in replacing its input from x2 to x′2 will be analogous to the sequence H1,j

3 to H3,j
3 where we set

up nm1
i,j and w̃1 such that w1 + w̃1 contains a defense for x′2.

Next, we consider the scenario where P3 is controlled by an honest party. The sequence hybrids involved
in replacing its input from x3 to x′3 will be analogous to the sequence H1,j

4 to H4,j
4 .

At this point, we have that w1 + w̃1 is a defense according to {x′i}P i∈Ī and w0 + w̃0 is a defense
according to {xi}P i∈Ī . Now we consider a hybrid where we switch the witness in the ZAP statement from
a defense according to {xi}P i∈Ī to a defense according to {x′i}P i∈Ī . Indistinguishability will rely on the
reusable resetting WI property of the ZAP.

Next, we consider a sequence of hybrids in reverse order so that w0 + w̃0 is also a defense for {x′i}P i∈Ī
followed by switching the ZAP witness using w0, w̃0. This completes our hybrids as we have switched the
inputs and actions of the honest party in the first three rounds from according to {xi}P i∈Ī to {x′i}P i∈Ī and
this is our simulation strategy. Therefore, this completes our proof. �

References
[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to round-optimal secure

multiparty computation. In CRYPTO, pages 468–499, 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing polynomials
and their applications. Computational Complexity, 15(2):115–162, 2006.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages 106–115. IEEE
Computer Society Press, October 2001.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit Sahai. Round
optimal concurrent MPC via strong simulation. To Appear TCC, 2017.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation without
setup. To Appear TCC, 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In STOC, pages 503–513, 1990.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (ab-
stract). In CRYPTO, page 462, 1987.

46



[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extractors. In EUROCRYPT, pages
471–488, 2008.

[COSVa] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input non-malleable
zero knowledge and multi-party coin tossing in four rounds. In TCC 2017.

[COSVb] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal secure two-party
computation from trapdoor permutations. In TCC 2017.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-malleable com-
mitments (and more) in 3 rounds. In CRYPTO, pages 270–299, 2016.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round concurrent non-
malleable commitments from one-way functions. In CRYPTO, pages 127–157, 2017.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In CRYPTO, pages 378–394, 2005.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520,
2006.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indistin-
guishability obfuscation. In TCC, pages 74–94, 2014.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In STOC, pages 495–504, 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party computation: From
passive to active security via secure SIMD circuits. In CRYPTO, pages 721–741, 2015.

[GIW16] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary amd circuits from secure multiparty computation. In
TCC, pages 336–366, 2016.

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM J.
Comput., 25(1):169–192, 1996.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-malleable commit-
ments: A black-box approach. In FOCS, pages 51–60, 2012.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact round com-
plexity of secure computation. In EUROCRYPT, pages 448–476, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 695–704. ACM Press, June 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments. In STOC,
pages 1128–1141, 2016.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach to non-malleability.
In FOCS, pages 41–50, 2014.

47



[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions
of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubramaniam. Composable
security in the tamper-proof hardware model under minimal complexity. In TCC, pages 367–399, 2016.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining BMR
and oblivious transfer. To Appear ASIACRYPT, 2017.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial hardness. To Appear
TCC, 2017.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party computation with
a dishonest majority. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 578–595.
Springer, Heidelberg, May 2003.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-way function. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 705–714. ACM Press, June 2011.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent non-malleable com-
mitments from any one-way function. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
571–588. Springer, Heidelberg, March 2008.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In EURO-
CRYPT, pages 735–763, 2016.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

A Secure Multi-Party Computation

We briefly present the standard definition for secure multi-party computation and refer to [Gol04, Chapter
7] for more details and motivating discussions. A multi-party protocol problem is cast by specifying a
random process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a
process as a functionality and denote it f : {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗ × · · · × {0, 1}∗, where
f = (f1, . . . , fn). That is, for every tuple of inputs (x1, . . . , xn), the output-vector is a random variable
(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) ranging over tuples of strings where Pi receives fi(x1, . . . , xn). We
use the notation (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) to describe a functionality.

We prove the security of our protocols in the settings of honest-but-curious and malicious computation-
ally bounded adversaries. Security is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario. In the ideal scenario, the computation involves an incorrupt-
ible trusted third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Informally, the protocol is secure if any adversary
interacting in the real protocol (i.e., where no trusted third party exists) can do no more harm than what it
could do in the ideal scenario.

48



A.1 The Honest-but-Curious Setting

In this model the adversary controls one of the parties and follows the protocol specification. However, it
may try to learn more information than allowed by looking at the transcript of messages that it received and
its internal state. Let f = (f1, . . . , fn) be a multi-party functionality and let π be a multi-party protocol for
computing f . The view of the ith party in an execution of π on inputs (x1, . . . , xn) is

Viewπ,i(x1, . . . , xn) = (xi, ri,m
i
1, . . . ,m

i
t),

where ri is the content of the first party’s internal random tape, and mi
j represents the jth message that it

received. The output of the ith party in an execution of π on (x1, . . . , xn) is denoted Outputπ,i(x1, . . . , xn)
and can be computed from Viewπ,i(x1, . . . , xn). We denote the set of corrupted parties by I ⊂ [n] and the
set of honest parties by Ī . We extend the above view notation to capture any subset of parties, denoting by
Viewπ,T (κ, x1, . . . , xn) the joint views of all parties in T on (κ, x1, . . . , xn).

Definition A.1 Let f and π be as above. Protocol π is said to securely compute f in the presence of honest-
but-curious adversaries if for every I ⊂ [n] there exists a probabilistic polynomial-time algorithm S such
that

(S({xi, fi(κ, x1, . . . , xn)}i∈I), {fi(κ, x1, . . . , xn)}i/∈I)κ∈N,xi∈{0,1}∗
c
≈ {(Viewπ,I(κ, x1, . . . , xn),Outputπ,Ī(κ, x1, . . . , xn))}κ∈N,xi∈{0,1}∗

where κ is the security parameter.

A.2 The Malicious Setting

Execution in the ideal model. In an ideal execution, the parties submit inputs to a trusted party, that
computes the output. An honest party receives its input for the computation and just directs it to the trusted
party, whereas a corrupted party can replace its input with any other value of the same length. Since we
do not consider fairness, the trusted party first sends the outputs of the corrupted parties to the adversary,
and the adversary then decides whether the honest parties would receive their outputs from the trusted party
or an abort symbol ⊥. Let f be a multi-party functionality where f = (f1, . . . , fn), let A be a non-
uniform probabilistic polynomial-time machine, and let I ⊂ [n] be the set of corrupted parties. Then, the
ideal execution of f on inputs (κ, x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
IDEALf,A(z),I(κ, x1, . . . , xn), is defined as the output pair of the honest party and the adversary A from
the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
polynomial-time strategy. The honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a multi-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the
real execution of π on inputs (κ, x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
REALπ,A(z),I(κ, x1, . . . , xn), is defined as the output vector of the honest parties and the adversaryA from
the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure protocol (in

49



the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying that
adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition A.2 Let f and π be as above. Protocol π is said to securely compute f with abort in the presence
of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model, such that
for every I ⊂ [n],{

IDEALf,S(z),I(κ, x1, . . . , xn)
}
κ∈N,xi,z∈{0,1}∗

c
≈
{

REALπ,A(z),I(κ, x, y)
}
κ∈N,xi,z∈{0,1}∗

where κ is the security parameter.

The F-hybrid model. In order to construct some of our protocols, we will use secure multi-party protocols
as subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact
with each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when
constructing a protocol π that uses a subprotocol for securely computing some functionality F , we consider
the case that the parties run π and use “ideal calls” to a trusted party for computing F . Upon receiving the
inputs from the parties, the trusted party computes F and sends all parties their output. Then, after receiving
these outputs back from the trusted party the protocol π continues.

Let F be a functionality and let π be a multi-party protocol that uses ideal calls to a trusted party
computing F . Furthermore, let A be a non-uniform probabilistic polynomial-time machine. Then, the
F-hybrid execution of π on inputs (x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
HπF ,A(z)(κ, x1, . . . , xn), is defined as the output vector of the honest parties and the adversary A from
the hybrid execution of π with a trusted party computing F . By the composition theorem of [Can00] any
protocol that securely implements F can replace the ideal calls to F .

50


	Introduction
	Our Results
	Our Techniques
	Related Work
	A Roadmap

	Preliminaries
	Additive Secret-Sharing
	Pseudorandom Functions
	Affine Homomorphic PKE
	An Instantiation based on LWE
	An Instantiation based on DDH
	An Instantiation based on QR

	Oblivious Transfer from Affine Homomorphic Encryption
	Tag Based Mon-Malleable Commitments
	Additive Attacks and AMD Circuits
	The BeaverMR90 Garbling

	Defensible Simulation
	Warmup MPC: The Case of Defensible Simulation
	Step 1: Defensibly Simulatable Protocol for bold0mu mumu FMULTAFMULTAFMULTAFMULTAFMULTAFMULTA
	Step 2: Defensibly Simulatable Protocol for bold0mu mumu FdpolyAFdpolyAFdpolyAFdpolyAFdpolyAFdpolyA
	Step 3: Defensibly Simulatable Protocol for Arbitrary Functionalities

	bold0mu mumu 444444-Round Actively Secure Multi-Party Computation
	Modified bold0mu mumu 333333-bit Multiplication Protocol R3MUL
	bold0mu mumu 444444-Round Actively Secure Protocol for bold0mu mumu FppolyFppolyFppolyFppolyFppolyFppoly
	bold0mu mumu 444444-Round Actively Secure Multi-Party Computation for Arbitrary Functionalities

	Proof of Theorem 5.1
	Secure Multi-Party Computation
	The Honest-but-Curious Setting
	The Malicious Setting


