
Round-Optimal Secure Multi-Party Computation

Shai Halevi ∗ Carmit Hazay† Antigoni Polychroniadou‡

Muthuramakrishnan Venkitasubramaniam§

Abstract

Secure multi-party computation (MPC) is a central cryptographic task that allows a set of mutually
distrustful parties to jointly compute some function of their private inputs where security should hold
in the presence of a malicious adversary that can corrupt any number of parties. Despite extensive
research, the precise round complexity of this “standard-bearer” cryptographic primitive is unknown.
Recently, Garg, Mukherjee, Pandey and Polychroniadou, in EUROCRYPT 2016 demonstrated that the
round complexity of any MPC protocol relying on black-box proofs of security in the plain model must
be at least four. Following this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017 and
Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress towards solving this question and
constructed four-round protocols based on non-polynomial time assumptions. More recently, Ciampi,
Ostrovsky, Siniscalchi and Visconti in TCC 2017 closed the gap for two-party protocols by constructing a
four-round protocol from polynomial-time assumptions. In another work, Ciampi, Ostrovsky, Siniscalchi
and Visconti TCC 2017 showed how to design a four-round multi-party protocol for the specific case of
multi-party coin-tossing.

In this work, we resolve this question by designing a four-round actively secure multi-party (two or
more parties) protocol for general functionalities under standard polynomial-time hardness assumptions
with a black-box proof of security.

Keywords: Secure Multi-Party Computation, Garbled Circuits, Round Complexity, Additive Errors

∗IBM T.J. Watson. Email: shaih@alum.mit.edu. Research supported by the Defense Advanced Research Projects
Agency (DARPA) and Army Research Office(ARO) under Contract No. W911NF-15-C-0236
†Bar-Ilan University. Email: carmit.hazay@cs.biu.ac.il. Research supported the BIU Center for Research in Ap-

plied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.
‡Cornell Tech University of Rochester. Email: antigoni@cornell.edu. Supported by the National Science Foundation

under Grant No. 1617676, IBM under Agreement 4915013672 and the Packard Foundation under Grant 2015-63124. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the sponsors.
§University of Rochester. Email: muthuv@cs.rochester.edu. Research supported by Google Faculty Research Grant

and NSF Award CNS-1526377.

Contents

1 Introduction 2
1.1 Our Results . 2
1.2 Our Techniques . 3

1.2.1 A Sketch of the Final Protocol . 5
1.2.2 Other Technical Issues . 6

1.3 Related and Concurrent Work . 8

2 Additional Preliminaries 8
2.1 Additive Secret-Sharing . 9
2.2 Pseudorandom Functions . 9
2.3 Affine Homomorphic PKE . 10

2.3.1 An Instantiation Based on LWE . 10
2.3.2 An Instantiation Based on DDH . 11
2.3.3 An Instantiation Based on QR . 12
2.3.4 An Instantiation Based on DCR . 12

2.4 Tag Based Mon-Malleable Commitments . 13
2.5 Additive Attacks and AMD Circuits . 14
2.6 The [BMR90] Garbling . 15

3 Warmup MPC: The Case of Defensible Adversaries 16
3.1 Step 1: 3-Bit Multiplication with Additive Errors . 16
3.2 Step 2: Arbitrary Degree-3 Polynomials . 24
3.3 Step 3: Arbitrary Functionalities . 24

4 MPC in Four Rounds 34
4.1 Proof Overview and Highlights . 35
4.2 Four-Round Actively Secure MPC Protocol . 38
4.3 Security Proof . 39

A Secure Multi-Party Computation 49
A.1 The Honest-but-Curious Setting . 49
A.2 The Malicious Setting . 50

B Non-Malleable Commitments for Premature Rewinding 51

1

1 Introduction

Secure multi-party computation. A central cryptographic task, secure multi-party computation (MPC),
considers a set of parties with private inputs that wish to jointly compute some function of their inputs while
preserving privacy and correctness to a maximal extent [Yao86, CCD87, GMW87, BGW88].

In this work, we consider MPC protocols that may involve two or more parties for which security should
hold in the presence of active adversaries that may corrupt any number of parties (i.e. dishonest majority).
More concretely, we are interested in identifying the precise round complexity of MPC protocols for securely
computing arbitrary functions.

In [GMPP16], Garg, et al., proved a lower bound of four rounds for MPC protocols that relies on
black-box simulation. Following this work, in independent works, Ananth, Choudhuri and Jain [ACJ17]
and Brakerski, Halevi and Polychroniadou, [BHP17] showed a matching upper bound by constructing four-
round protocols based on the Decisional Diffie-Hellman (DDH) and Learning With Error (LWE) assump-
tions, respectively, albeit with super-polynomial hardness. More recently, Ciampi, Ostrovsky, Siniscalchi
and Visconti in [COSV17b] closed the gap for two-party protocols by constructing a four-round protocol
from standard polynomial-time assumptions. The same authors in another work [COSV17a] showed how to
design a four-round multi-party protocol for the specific case of multi-party coin-tossing.

The state-of-affairs leaves the following fundamental question regarding round complexity of crypto-
graphic primitives open:

Does there exist four-round secure multi-party computation protocols for general functionalities
based on standard polynomial-time hardness assumptions and black-box simulation?

We remark that tight answers have been obtained in prior works where one or more of the requirements
in the motivating question are relaxed. In the two-party setting, the recent work of Ciampi et al. [COSV17b]
showed how to obtain a four-round protocol based on trapdoor permutations. Assuming trusted setup,
namely, a common reference string, two-round constructions can be obtained [GGHR14, MW16] or three-
round assuming tamper-proof hardware tokens [HPV16].1 In the case of passive adversaries, (or even the
slightly stronger setting of semi-malicious2 adversaries) three round protocols based on the Learning With
Errors assumption have been constructed by Brakerski et al. [BHP17]. Ananth et al. gave a five-round
protocol based on DDH [ACJ17]. Under subexponential hardness assumptions, four-round constructions
were demonstrated in [BHP17,ACJ17]. Under some relaxations of superpolynomial simulation, the work of
Badrinarayanan et al. [BGJ+17b] shows how to obtain three-round MPC assuming subexponentially secure
LWE and DDH. For specific multi-party functionalities four-round constructions have been obtained, e.g.,
coin-tossing by Ciampi et al. [COSV17b]. Finally, if we assume an honest majority, the work of Damgard
and Ishai [DI05] provided a three-round MPC protocol.

1.1 Our Results

The main result we establish is a four-round multi-party computation protocol for general functionalities
in the plain model based on standard polynomial-time hardness assumptions. Slightly more formally, we
establish the following theorem.

1Where in this model the lower bound is two rounds.
2A semi-malicious adversary is allowed to invoke a corrupted party with arbitrary chosen input and random tape, but otherwise

follows the protocol specification honestly as a passive adversary.

2

P2(x2, r2, s2) P3(x3)P1(x1, s1)

OTα
[
P1(x1), P2(−r2,x2−r2)

]
u = x1x2 − r2 v = r2x3 − s2

OTβ

[
P3(x3), P2(−s2,r2−s2)

]
OTγ
[
P3(x3), P1(−s1,u−s1)

]
w = ux3 − s1

s2s1 s3 = v + w

Figure 1: The three-bit multiplication protocol from [ACJ17], using two-round oblivious transfer. The OT
sub-protocols are denoted by OT[Receiver(b),Sender(m0,m1)], and u, v, w are the receivers’ outputs in
the three OT protocols. The outputs of P1, P2, P3 are s1, s2, s3, respectively. The first message in OTγ can
be sent in the second round, together with the sender messages in OTα and OTβ . The sum of s1, s2, s3

results into the output x1x2x3.

Theorem 1.1 (Informal) Assuming the existence of injective one-way functions, ZAPs and a certain affine
homomorphic encryption scheme, there exists a four-round multi-party protocol that securely realizes arbi-
trary functionalities in the presence of active adversaries corrupting any number of parties.

This theorem addresses our motivating question and resolves the round complexity of multiparty computa-
tion protocols. The encryption scheme that we need admits a homomorphic affine transformation

c = Enc(m) 7→ c′ = Enc(a ·m+ b) for plaintext a, b,

as well as some equivocation property. Roughly, given the secret key and encryption randomness, it should
be possible to “explain” the result c′ as coming from c′ = Enc(a′ · m + b′), for any a′, b′ satisfying
am + b = a′m + b′. We show how to instantiate such an encryption scheme by relying on standard addi-
tively homomorphic encryption schemes (or slight variants thereof). More precisely, we instantiate such an
encryption scheme using LWE, DDH, Quadratic Residuosity (QR) and Decisional Composite Residuosity
(DCR) hardness assumptions. ZAPs on the other hand can be instantiated using the QR assumption or any
(doubly) enhanced trapdoor permutation such as RSA or bilinear maps. Injective one-way functions are re-
quired to instantiate the non-malleable commitment scheme from [GRRV14] and can be instantiated using
the QR. In summary, all our primitives can be instantiated by the single QR assumptions and therefore we
have the following corollary

Corollary 1.2 Assuming QR, there exists a four-round multi-party protocol that securely realizes arbitrary
functionalities in the presence of active adversaries corrupting any number of parties.

1.2 Our Techniques

Starting point: the [ACJ17] protocol. We begin from the beautiful work of Ananth, Choudhuri and
Jain [ACJ17], where they used randomized encoding [AIK06a] to reduce the task of securely computing an
arbitrary functionality to securely computing the sum of many three-bit multiplications. To implement the
required three-bit multiplications, Ananth et al. used an elegant three-round protocol, consisting of three
instances of a two-round oblivious-transfer subprotocol, as illustrated in Figure 1.

3

Using this three-round multiplication subprotocol, Ananth et al. constructed a four-round protocol for
the semi-honest model, then enforced correctness in the third and fourth rounds using zero-knowledge proofs
to get security against a malicious adversary. In particular, the proof of correct behavior in the third round
required a special three-round non-malleable zero-knowledge proof, for which they had to rely on super-
polynomial hardness assumptions. (A four-round proof to enforce correctness in the last round can be done
based on standard assumptions.) To eliminate the need for super-polynomial assumptions, our very high
level approach is to weaken the correctness guarantees needed in the third round, so that we can use simpler
proofs. Specifically we would like to be able to use two-round (resettable) witness indistinguishable proofs
(aka ZAPs [DN07]).

WI using the Naor-Yung approach. To replace zero-knowledge proofs by ZAPs, we must be able to use
the honest prover strategy (since ZAPs have no simulator), even as we slowly remove the honest parties’
input from the game. We achieve this using the Naor-Yung approach: We modify the three-bit multiplication
protocol by repeating each OT instance twice, with the receiver using the same choice bit in both copies and
the sender secret-sharing its input bits between the two. (Thus we have a total of six OT instances in the
modified protocol.) Crucially, while we require that the sender proves correct behavior relative to its inputs
in both instances, we only ask the receiver to prove that it behaves correctly in at least one of the two.

In the security proof, this change allows us to switch in two steps from the real world where honest
parties use their real inputs as the choice bit, to a simulated world where they are simulated using random
inputs. In each step we change the choice bit in just one of the two OT instances, and use the other bit that
we did not switch to generate the ZAP proofs on behalf of the honest parties.3

We note that intuitively, this change does not add much power to a real-world adversary: Although an
adversarial receiver can use different bits in the two OT instances, this will only result in the receiver getting
random bits from the protocol, since the sender secret-shares its input bits between the two instances.

Extraction via rewinding. While the adversary cannot gain much by using different bits in different OT
instances, we crucially rely on the challenger in our hybrid games to use that option. Hence we must
compensate somehow for the fact that the received bits in those OT protocols are meaningless. To that
end, the challenger (as well as the simulator in the ideal model) will use rewinding to extract the necessary
information from the adversary.

But rewinding takes rounds, so the challenger/simulator can only extract this information at the end of
the third round.4 Thus we must rearrange the simulater so that it does not need the extracted information —
in particular the bits received in the OT protocols — until after the third round. Looking at the protocol in
Figure 1, there is only one place where a value received in one of the OTs is used before the end of the third
round. To wit, the value u received in the second round by P1 in OTα is used in the third round when P1

plays the sender in OTγ .
This causes a real problem in the security proof: Consider the case where P2 is an adversarial sender

and P1 an honest receiver. In some hybrid we would want to switch the choice bit of P1 from its real input
to a random bit, and argue that these hybrids are close by reduction to the OT receiver privacy. Inside the
reduction, we will have no access to the values received in the OT, so we cannot ensure that it is consistent
with the value that P1 uses as the sender in OTγ (with P3 as the receiver). We would like to extract the value
of u from the adversary, but we are at a bind: we must send to the adversary the last message of OTγ before
we can extract u, but we cannot compute that message without knowing u.

Relaxing the correctness guarantees. To overcome the difficulty from above, we relax the correctness
3We do not need to apply a similar trick to the sender role in the OT subprotocols, since the sender bits are always random.
4To get it by then, the ZAPs are performed in parallel to the second and third rounds of the three-bit multiplication protocol.

4

guarantees of the three-bit multiplication protocol, allowing the value that P1 sends in OTγ (which we
denote by u′) to differ from the value that it received in OTα (denoted u). The honest parties will still use
u′ = u, but the protocol no longer includes a proof for that fact (so the adversary can use u′ 6= u, and so can
the challenger). This modification lets us introduce into the proof an earlier hybrid in which the challenger
uses u′ 6= u, even on behalf of an honest P1. (That hybrid is justified by the sender privacy of OTγ .) Then,
we can switch the choice bit of P1 in OTα from real to random, and the reduction to the OT receiver privacy
in OTα will not need to use the value u, see Claim 3.3 and the hybrids that precede it.5

Dealing with additive errors. Since the modified protocol no longer requires proofs that u′ = u, an
adversarial P1 is free to use u′ 6= u, thereby introducing an error into the three-bit multiplication protocol.
Namely, instead of computing the product x1x2x3, an adversarial P1 can cause the result of the protocol to
be (x1x2 + (u′ − u))x3. Importantly, the error term e = u′ − u cannot depend on the input of the honest
parties. (The reason is that the value u received by P1 in OTα is masked by r2 and hence independent of
P2’s input x2, so any change made by P1 must also be independent of x2.), see Claim 3.5.

To deal with this adversarial error, we want to use a randomized encoding scheme which is resilient
to such additive attacks. Indeed, Genkin et al. presented transformations that do exactly this in [GIP+14,
GIP15, GIW16]. Namely, they described a compiler that transforms an arbitrary circuit C to another circuit
C′ that is resilient to additive attacks. Unfortunately, using these transformations does not work out of the
box, since they do not preserve the degree of the circuit. So even if after using randomized encoding we get
a degree-three function, making it resilient to additive attacks will blow up the degree, and we will not be
able to use the three-bit multiplication protocol as before.

What we would like, instead, is to first transform the original function f that we want to compute into a
resilient form f̂ , then apply randomized encoding to f̂ to get a degree-three encoding g that we can use in
our protocol. But this too does not work out of the box: The adversary can introduce additive errors in the
circuit of g, but we only know that f̂ is resilient to additive attacks, not its randomized encoding g.

BMR to the rescue. To tackle this last problem, we forgo “generic” randomized encoding, relying instead
on the specific multiparty garbling due to Beaver, Micali and Rogaway [BMR90] (referred to as “BMR
encoding”). For this specific encoding, we carefully align the roles in the BMR protocol to those in the
three-bit multiplication protocol, and show that the errors in the three-bit multiplication instances with a
corrupted P1 can be effectively translated to an additive attack against the underlying computation of f̂ , see
Lemma 3.6. Our final protocol, therefore, precompiles the original function f to f̂ using the transformations
of Genkin et al., then applies the BMR encoding to get f̂ ′ which is of degree-three and still resilient to the
additive errors by a corrupted P1. We remark here that another advantage of relying on BMR encoding as
opposed to the randomized encoding from [AIK06b] is that it can be instantiated based on any one-way
function. In contrast the randomized encoding of [AIK06b] requires the assumption of PRGs in NC1.

1.2.1 A Sketch of the Final Protocol

Combining all these ideas, our (almost) final protocol proceeds as follows: Let C be a circuit that we
want to evaluate securely, we first apply to it the transformation of Genkin et al. to get resilience against
additive attacks, then apply BMR encoding to the result. This gives us a randomized encoding for our
original circuit C. We use the fact that the BMR encoding has the form CBMR(x; (λ, ρ)) = (x⊕ λ, g(λ, ρ))
where each output bit of g has degree three (or less) in the (λ, ρ). Given the inputs x = (x1, . . . , xn), the
parties choose their respective pieces of the BMR randomness λi, ρi, and engage in our modified three-bit

5The reduction will still need to use u in the fourth round of the simulation, but by then we have already extracted the information
that we need from the adversary.

5

multiplication protocol Π′ (with a pair of OT’s for each one in Figure 1), to compute the outputs of g(λ, ρ).
In addition to the third round message of Π′, each party Pi also broadcasts its masked input xi ⊕ λi, see
more details regarding the BMR encoding in Section 2.6.

Let witi be a witness of “correct behavior” of party Pi in Π′ (where the witness of an OT-receiver
includes the randomness for only one of the two instances in an OT pair). In parallel with the execution
of Π′, each party Pi also engages in three-round non-malleable commitment protocols for witi, and two-
round ZAP proofs that witi is indeed a valid witness for “correct behavior” (in parallel to rounds 2,3).
Once all the proofs are verified, the parties broadcast their final messages si in the protocol Π′, allowing
them to complete the computation of the encoding output g(λ, ρ). They now all have the BMR encoding
CBMR(x; (λ, ρ)), so they can locally apply the corresponding BMR decoding procedure to compute C(x).

1.2.2 Other Technical Issues

Non-malleable commitments. Recall that we need a mechanism to extract information from the adversary
before the fourth round, while simultaneously providing proofs of correct behavior for honest parties via
ZAPs. In fact, we need the stronger property of non-malleability, namely the extracted information must
not change when the witness in the ZAP proofs changes.

Ideally, we would want to use standard non-malleable commitments and recent work of Khurana [Khu17]
shows how to construct such commitments in three rounds. However, our proof approach demands addi-
tional properties of the underlying non-malleable commitment, but we do not know how to construct such
commitments in three rounds. Hence we relax the conditions of standard non-malleable commitments.
Specifically, we allow for the non-malleable commitment scheme to admit invalid commitments. (Such
weaker commitments are often used as the main tool in constructing full-fledged non-malleable commit-
ments, see [GRRV14, Khu17] for few examples.)

A consequence of this relaxation is the problem of “over-extraction” where an extractor extracts the
wrong message from an invalid commitment. We resolve this in our setting by making each party provide
two independent commitments to its witness, and modify the ZAP proofs to show that at least one of these
two commitments is a valid commitment to a valid witness.

This still falls short of yeilding full-fledged non-malleable commitments, but it ensures that the witness
extracted in at least one of the two commitments is valid. Since the witness in our case includes the input
and randomness of the OT subprotocols, the challenger in our hybrids can compare the extracted witness
against the transcript of the relevant OT instances and discard invalid witnesses.

Another obstacle is that in some intermediate hybrids, some of the information that the challenger should
commit to is only known in later rounds of the protocol, hence we need the commitments to be input-
delayed. For this we rely on a technique of Ciampi et al. [COSV16] for making non-malleable commitments
into input-delayed ones. Finally, we observe that we can instantiate the “weak simulation extractable non-
malleable commitments” that we need from the three-round non-malleable commitment scheme implicit in
the work of Goyal et al. [GRRV14].

Equivocable oblivious transfer. In some hybrids in the security proof, we need to switch the sender bits in
the OT subprotocols. For example in one step we switch the P2 sender inputs in OTα from (−r2, x2 − r2)
to (−r2, x̃2 − r2) where x2 is the real input of P2 and x̃2 is a random bit. (We also have a similarly step for
P1’s input in OTγ .)

For every instance of OT, the challenger needs to commit to the OT randomness on behalf of the honest
party and prove via ZAP that it behaved correctly in the protocol. Since ZAPs are not simulatable, the
challenger can only provide these proofs by following the honest prover strategy, so it needs to actually

6

have the sender randomness for these OT protocols. Recalling that we commit twice to the randomness, our
security proof goes through some hybrids where in one commitment we have the OT sender randomness for
one set of values and in the other we have the randomness for another set. (This is used to switch the ZAP
proof from one witness to another, see Claim 4.7.

But how can there be two sets of randomness values that explain the same OT transcript? To this end,
we use an equivocable oblivious transfer protocol. Namely, given the receiver’s randomness, it is possible
to explain the OT transcript after the fact, in such a way that the “other sender bit” (the one that the receiver
does not get) can be opened both ways. In all these hybrids, the OT receiver gets a random output bit. So the
challenger first runs the protocol according to the values in one hybrid, then rewinds the adversary to extract
the randomness of the receiver, where it can then explain (and hence prove) the sender’s actions in any way
that it needs, while keeping the OT transcript fixed.

We show how to instantiate the equivocable OT that we need from (a slightly weak variant of) additive
homomorphic encryption, with an additional equivocation property. Such encryption schemes can in turn be
constructed under standard (polynomial) hardness assumptions such as LWE, DDH, Quadratic Residuosity
(QR) and Decisional Composite Residuosity (DCR).

Premature rewinding. One subtle issue with relying on equivocable OT is that equivocation requires
knowing the randomness of the OT receiver. To get this randomness, the challenger in our hybrids must
rewind the receiver, so we introduce in some of the hybrids another phase of rewinding, which we call
“premature rewinding.” This phase has nothing to do with the adversary’s input, and it has no effect on the
transcript used in the main thread. All it does is extract some keys and randomness, which are needed to
equivocate. For more details, see the discussion in Section 4.1.

No four-round proofs. A side benefit of using BMR garbling is that the authentication properties of BMR
let us do away completely with the four-round proofs from [ACJ17]. In our protocol, at the end of the third
round the parties hold a secret sharing of the garbled circuit, its input labels, and the translation table to
interpret the results of the garbled evaluation. Then in the last round they just broadcast their shares and
input labels, then reconstruct the circuit, evaluate the circuit, and recover the result.

Absent a proof in the fourth round, the adversary can report arbitrary values as its shares, even after
seeing the shares of the honest parties, but we argue that it still can not violate privacy or correctness. It
was observed in prior work [LPSY15] that faulty shares for the garbled circuit itself or the input labels can
at worst cause an honest party to abort, and such an event will be independent of the inputs of the honest
parties. Roughly speaking, this is because the so called “active path” in the evaluation is randomized by
masks from each party. Furthermore, if an honest party does not abort and completes evaluation, then the
result is correct. This was further strengthened in [HSS17], and was shown to hold even when the adversary
is rushing. One course of action still available to the adversary is to modify the translation tables, arbitrarily
making the honest party output the wrong answer. This can be fixed by a standard technique of precompiling
f to additionally receive a MAC key from each party and output the MACs of the output under all keys along
with the output. Each honest party can then verify the garbled-circuit result using its private MAC key.

A modular presentation with a “defensible” adversary. In order to make our presentation more modular,
we separate the issues of extraction and non-malleability from the overall structure of the protocol by in-
troducing the notion of a “defensible” adversary. Specifically, we first prove security in a simpler model in
which the adversary voluntarily provides the simulator with some extra information. In a few more details,
we consider an “explaining adversary” that at the end of the third round outputs a “defense” (or explanation)
for its actions so far.6

6The name “defensible adversaries” is adapted from the work of Haitner et al. [HIK+11].

7

This model is somewhat similar to the semi-malicious adversary model of Asharov et al. [AJL+12]
where the adversary outputs its internal randomness with every message. The main difference is that here we
(the protocol designers) get to decide what information the adversary needs to provide and when. We suspect
that our model is also somewhat related to the notion of robust semi-honest security defined in [ACJ17],
where, if a protocol is secure against defensible adversaries and a defense is required after the kth round of
the protocol, then it is plausible that the first k rounds admits robust semi-honest security.

Once we have a secure protocol in this weaker model, we add to it commitment and proofs that would let
us extract from the adversary the same information that was provided in the “defense”. As we hinted above,
this is done by having the adversary commit to that information using (a weaker variant of) simulation
extractable commitments, and also prove that the committed values are indeed a valid “defense” for its
actions. While in this work we introduce “defensible” adversaries merely as a convenience to make the
presentation more modular, we believe that it is a useful tool for obtaining round-efficient protocols.

1.3 Related and Concurrent Work

The earliest MPC protocol is due to Goldreich, Micali and Wigderson [GMW87]. The round complexity of
this approach is proportional to the circuit’s multiplication depth (namely, the largest number of multiplica-
tion gates in the circuit on any path from input to output) and can be non-constant for most functions.

A different approach was taken in [BMR90], extending the celebrated garbled circuits technique of
[Yao86] to the multi-party setting. This constant-round protocol, developed by Beaver, Micali and Rogaway,
achieved security in the presence of passive adversaries (and against active adversaries in the honest majority
setting). Katz, Ostrovsky and Smith [KOS03] provided a constant-round MPC protocol secure against
active adversaries in the dishonest majority setting while relying on non-black-box simulation [Bar01] and
superpolynomial assumptions. This was later improved by Pass [Pas04] to obtain the first constant-round
protocol based on standard polynomial hardness assumptions. The first constant-round MPC protocols that
relied on black-box simulation were obtained by Goyal [Goy11] and Lin and Pass [LP11].

In concurrent work, Badrinarayanan et al. [BGJ+17a] establish the main feasibility result presented in
this work, albeit with different techniques and slightly different assumptions. In particular, we can instanti-
ate our work with a single assumption, QR, while their work requires at least two different assumptions, eg,
LWE and DDH 7. While we have not investigated the differences carefully, we remark that the premature
rewinding technique employed in this work bears similarities to the promise zero-knowledge technique in
their work. In another concurrent work, simultaneously Benhamouda and Lin [BL17] and Garg and Srini-
vasan [GS17] construct a five-round MPC protocol based on minimal assumptions. While these protocols
rely on the minimal assumption of 4-round OT protocol, they require an additional round to construct their
MPC.

2 Additional Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N. We write � and � to denote operations over encrypted data including multiplication of a
ciphertext with a non encrypted bit.

7This does not reflect any update of [BGJ+17a] after the 08-Dec-2017 revision.

8

We specify next the definitions of computationally indistinguishable and statistical distance.

Definition 2.1 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

Definition 2.2 Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

2.1 Additive Secret-Sharing

In an additive secret-sharing scheme, N parties hold shares the sum of which yields the desired secret. By
setting all but a single share to be a random field element, we ensure that any subset of N− 1 parties cannot
recover the initial secret.

Definition 2.3 (Additive secret-sharing) Let F2 be a finite field and let N ∈ N. Consider the secret-sharing
scheme SN = (Share,Recover) defined below.

• The algorithm Share on input (s,N) performs the following:

1. Generate (s1, . . . , sN−1) uniformly at random from F2 and define sN = s−
∑N−1

i=1 si.

2. Output (s1, . . . , sN) where si is the share of the ith party.

• The recovery algorithm Recover on input (s1, · · · , sN), outputs
∑N

i=1 si.

It is easy to show that the distribution of any N − 1 of the shares is the uniform one on FN−1
2 and hence

independent of s.

Secret-sharing notation. In the sequel for a value s ∈ F2 we denote by [s] a random additive secret sharing
of s. That is, [s]← Share(s,N) where [s] = (s1, . . . , sN).

2.2 Pseudorandom Functions

Informally, a pseudorandom function (PRF) is an efficiently computable function that looks like a truly
random function to any PPT observer. The [BMR90] garbling technique from [LPSY15], which we adapt
in this paper, is proven secure based on a pseudorandom function (PRF) with multiple keys, defined below.

9

Definition 2.4 (Pseudorandom function with multiple keys) Let F : {0, 1}κ × {0, 1}n 7→ {0, 1}n be an
efficient, length preserving, keyed function. F is a pseudorandom function under multiple keys if for all
polynomial-time distinguishers D, there exists a negligible function negl such that:∣∣Pr[DFk̄(·)(1κ) = 1]− Pr[Df̄(·)(1κ) = 1]

∣∣ ≤ negl(κ).

where Fk̄ = Fk1 , . . . , Fkm(n) are the pseudorandom function F keyed with polynomial number of randomly
chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are m(n) random functions from {0, 1}n 7→ {0, 1}n. The
probability in both cases is taken over the randomness of D as well.

When the keys are independently chosen then security with multiple keys is implied by the standard security
PRF notion, by a simple hybrid argument.

2.3 Affine Homomorphic PKE

We rely on public-key encryption schemes that admit an affine homomorphism and an equivocation property.
As we demonstrate via our instantiations, most standard additively homomorphic encryption schemes satisfy
these properties. Specifically, we provide instantiations based on Learning With Errors (LWE), Decisional
Diffie-Hellman (DDH), Quadratic Residuosity (QR) and Decisional Composite Residuosity (DCR) hardness
assumptions.

Definition 2.5 (Affine homomorphic PKE) We say that a public key encryption scheme (M = {Mκ}κ,Gen,
Enc,Dec) is affine homomorphic if

• Affine transformation: There exists an algorithm AT such that for every (PK, SK) ← Gen(1κ),
m ∈ Mκ, rc ← Drand(1κ) and every a, b ∈ Mκ, DecSK(AT(PK, c, a, b)) = am + b holds with
probability 1, and c = EncPK(m; rc), where Drand(1κ) is the distribution of randomness used by
Enc.

• Equivocation: There exists an algorithm Explain such that for every (PK, SK) ← Gen(1κ), every
m, a0, b0, a1, b1 ∈ Mκ such that a0m+ b0 = a1m+ b1 and every rc ← Drand(1κ), it holds that the
following distributions are statistically close over κ ∈ N:

– {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r) : (m, rc, c
∗, r, aσ, bσ)}, and

– {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r);

t← Explain(SK, aσ, bσ, a1−σ, b1−σ,m, rc, r) : (m, rc, c
∗, t, a1−σ, b1−σ)},

where c = EncPK(m; rc).

In what follows, we demonstrate how to meet Definition 2.5 under a variety of hardness assumptions.

2.3.1 An Instantiation Based on LWE

Definition 2.6 (LWE [Reg09]) Let κ be the security parameter, let q = q(κ) be integers and let χ = χ(κ),
be error distributions over Z. The LWEκ,q,χ assumption says that for any polynomial m = m(κ),

(A, s ·A+ e) ≈c (A, z)

where A← Zκ×mq , s← Zκq , e← χm and z ← Zmq .

10

• Setup: Let κ be the security parameter,m = poly(κ), q > superpoly(κ) and error bound σ = poly(κ)
and σ′ = superpoly(κ).

• Key generation: Choose at random A ∈ Zκ×mq , s ← DZκ,σ, e ← DZm,σ. Set b = sA + e mod q

and PK =

(
A
b

)
∈ Z(κ+1)×m

q where SK = (s| − 1) ∈ Z(κ+1)
q .

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← DZm,σ and output

the ciphertext c = PK · rc +
⌊q

2

⌋
· (0 . . . 0 m)> ∈ Z(κ+1)

q .

• Decryption: Given the secret key SK and the ciphertext c, compute the inner-product d = 〈SK, c〉
mod q. Output 1 if |d| > q

4 and 0 if |d| < q
4 .

• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← DZm,σ′ and set c′ = PK · r +⌊q
2

⌋
· (0 . . . 0 b)> ∈ Z(κ+1)

q . Output ciphertext c∗ as follows:

c∗ =

c′, if a = 0

c′ + c mod q, a = 1, b = 0

c′ − c mod q a = 1, b = 1

• Equivocation: Note that c∗ = PK · r∗ +
⌊q

2

⌋
· (0 . . . 0 w)> where w = aσ · m ⊕ bσ, and r∗ =

r + aσ(1 − 2 · bσ) · rc. Given randomness rc, r and a1−σ, b1−σ output t such that t + a1−σ(1 − 2 ·
b1−σ) · rc = r + aσ(1− 2 · bσ) · rc.

2.3.2 An Instantiation Based on DDH

Definition 2.7 (The Decisional Diffie-Hellman (DDH) Problem) Let (G, ·) be a cyclic group of prime or-
der p and with generator g. Let α, β, γ be sampled uniformly at random from Zp (i.e., α, β, γ ← Zp). The
DDH problem asks to distinguish the distributions (g, gα, gβ, gαβ) and (g, gα, gβ, gγ).

We next describe the El-Gamal encryption scheme [Gam85] over characteristic-2 fields. Since this
encryption scheme is defined over larger fields, to compute the encryption of a⊕b, we compute a+b−2ab =
a⊕ b.

• Key generation: Choose a random generator g ∈ G and a random number SK ∈ Zp and compute
PK = gSK.

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← Zp and output the
ciphertext c = (c1, c2) = (grc , PKrcgm).

• Decryption: Given the secret key SK and the ciphertext c = (c1, c2), compute m = c2(cSK
1)−1.

• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← Zp and set c∗ = (c∗1, c
∗
2) =

(c
a(1−2·b)
1 gr, c

a(1−2·b)
2 PKrgb) = (grc·a(1−2·b)+r, PKrc·a(1−2·b)+rgb+m·a(1−2·b)).

• Equivocation: Note that the ciphertext c∗1 = grc·aσ(1−2·bσ)+r and c∗2 = PKrc·aσ(1−2·bσ)+rgbσ+m·aσ(1−2·bσ)

corresponds to an encryption of m · aσ + bσ mod 2. Given randomness rc, r and a1−σ, b1−σ output
t such that t+ rc · a1−σ(1− 2 · b1−σ) = r + rc · aσ(1− 2 · bσ) mod p.

11

2.3.3 An Instantiation Based on QR

In a group G, an element y ∈ G is a quadratic residue if there exists an x ∈ G with x2 = y. We denote the
set of quadratic residues modulo N (an RSA composite) by QRN and the set of quadratic non-residues by
QNRN . Finally, denote byQNR+1

N the set of quadratic non-residue modulo N with J (x) = +1 (namely,
the Jacobi symbol is +1).

Definition 2.8 (The Quadratic Residue (QR) Problem) Let N = pq be an RSA composite. Let qr be
sampled uniformly at random from QRN and let qnr be sampled uniformly at random from QNR+1

N . The
QR problem asks to distinguish the distributions (N, qr) and (N, qnr).

We next describe the Goldwasser-Micali encryption scheme [GM84] over characteristic-2 fields.

• Key generation: Choose an RSA composite (N, q, p) and a random z ← QNR+1
N . The public key

is PK = 〈N, z〉 and the private key is SK = 〈p, q〉

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← Z∗N and output the
ciphertext c = zm · r2

c mod N .

• Decryption: Given the secret key SK and the ciphertext c, determine whether c is a quadratic residue
modulo N using SK. If yes, output 0; otherwise, output 1.

• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← Zp and set c∗ = ca0 · zb0 · r2.
Note that the ciphertext c∗ = ca0 · zb0 · r2 corresponds to an encryption of a0m+ b0 mod 2.

• Equivocation: Given randomness r, rc and a1−σ, b1−σ output t = raσc · r/r
a1−σ
c .

2.3.4 An Instantiation Based on DCR

Definition 2.9 (The Decisional Composite Residuosity (DCR) Problem) Let N is a random κ-bit RSA
composite. Let r and y be sampled uniformly at random from ZN and Z∗N , respectively, (i.e., r ← ZN and
y ← Z∗N). The DCR problem asks to distinguish the distributions (N, rN mod N2) and (N, (N + 1)y · rN
mod N2).

We next describe a variant of the Paillier encryption scheme [Pai99] over characteristic-2 fields, as
defined in [DJ01]. As for the El-Gamal encryption scheme, we compute the encryption of a⊕b, we compute
a+ b− 2ab = a⊕ b.

• Key generation: Choose a random RSA composite PK = N that is a product of two random κ-bit
primes (p, q) and fix SK = (N,φ(N)).

• Encryption: Given the public key PK and a plaintext m ∈ {0, 1}, choose rc ← Z∗N and output the
ciphertext c = (1 +N)m · rNc mod N2.

• Decryption: Given the secret key SK and the ciphertext c, compute [cφ(N) mod N2]−1
N · φ(N)−1

mod N .

• Affine transformation: Given PK, c and a, b ∈ {0, 1}, choose r ← Z∗N and set c∗ = (ca(1−2·b)(1 +
N)b · rN .

12

• Equivocation: Note that the ciphertext c∗ = (1 +N)bσ+m·aσ(1−2·bσ) corresponds to an encryption of
m · aσ + bσ mod 2. Given randomness rc, r and a1−σ, b1−σ output t such that t · ra1−σ(1−2·b1−σ)

c =

r · raσ(1−2·bσ)
c mod N .

2.4 Tag Based Mon-Malleable Commitments

Let nmcom = 〈C,R〉 be a k-round commitment protocol where C and R represent (randomized) commit-
ter and receiver algorithms, respectively. Denote the messages exchanged by (nm1, . . . , nmk) where nmi

denotes the message in the i-th round.
For some string u ∈ {0, 1}κ, tag id ∈ {0, 1}t, non-uniform PPT algorithm M with “advice” string

z ∈ {0, 1}∗, and security parameter κ, consider the following experiment: M on input (1κ, z), interacts
with C who commits to u with tag id; simultaneously, M interacts with R(1κ, ĩd) attempting to commit to
a related value ũ, again using identity ĩd of its choice (M ’s interaction with C is called the left interaction,
and its interaction with R is called the right interaction); M controls the scheduling of messages; the output
of the experiment is denoted by a random variable nmcM〈C,R〉(u, z) that describes the view of M in both

interactions and the value ũ which M commits to R in the right execution unless ĩd = id in which case
ũ = ⊥, i.e., a commitment where the adversary copies the identity of the left interaction is considered
invalid.

Definition 2.10 (Tag based non-malleable commitments) A commitment scheme nmcom = 〈C,R〉 is said
to be non-malleable with respect to commitments if for every non-uniform PPT algorithm M (man-in-the-
middle), for every pair of strings (u0, u1) ∈ {0, 1}κ × {0, 1}κ, every tag-string id ∈ {0, 1}t, every κ ∈ N,
every (advice) string z ∈ {0, 1}∗, the following two distributions are computationally indistinguishable:

nmcM〈C,R〉(u
0, z)

c
≈ nmcM〈C,R〉(u

1, z)

Parallel non-malleable commitments. We consider a strengthening of nmcom in which M can receive
commitments to m strings on the “left”, say (u1, . . . , um), with tags (id1, . . . , idm) and makes m com-
mitments on the “right” with tags (ĩd1, . . . , ĩdm). We assume that m is a fixed, possibly a-priori bounded,
polynomial in the security parameter κ. In the following let i ∈ [m], b ∈ {0, 1}: We say that a nmcom is
an m-bounded parallel non-malleable commitment if for every pair of sequences {ubi} the random variables
nmcM〈C,R〉({u

0
i }, z) and nmcM〈C,R〉({u

1
i }, z) are computationally indistinguishable where nmcM〈C,R〉({u

b
i}, z)

describes the view of M and the values {ũbi} committed by M in the m sessions on the right with tags {ĩdi}
while receiving parallel commitments to {ubi} on left with tags {idi}.

We will rely on a benign form of non-malleable commitments that is secure against “synchronizing”
man-in-the middle adversaries. Where a man-in-the-middle adversary is said to be synchronous if its inter-
action in the non-malleable commitment on the left and right are executed in parallel (i.e. lock-step). We
produce the following definitions verbatim from [Khu17].

Definition 2.11 (One-Many weak non-malleable commitments with respect to synchronizing adver-
saries [Khu17]) A statistically binding commitment scheme 〈C,R〉 is said to be one-many weak non-
malleable with respect to synchronizing adversaries, if there exists a probabilistic over-extractor Enmcom

parameterized by ε, that given a PPT synchronizing MIM which participates in one left session and p =
poly(κ) right sessions, and given the transcript of a main-thread interaction τ , outputs a set of values
m1,m2, . . .mp in time poly(n, 1/ε). These values are such that:

13

• For all j ∈ [p], if the jth commitment in τ is a commitment to a valid message uj , then mj = uj over
the randomness of the extractor and the transcript, except with probability ε/p.

• For all j ∈ [p], if the jth commitment in τ is a commitment to some invalid message (which we will
denote by ⊥), then mj need not necessarily be ⊥.

Definition 2.12 (Resettable reusable WI argument) We say that a two-message delayed-input interactive
argument (P, V) for a language L is resettable reusable witness indistinguishable, if for every PPT verifier
V ∗, every z ∈ {0, 1}∗, P r[b = b′] ≤ 1/2 + µ(κ) in the following experiment, where we denote the first
round message function by m1 = wi1(r1) and the second round message function by wi2(x,w,m1, r2). The
challenger samples b← {0, 1}. V ∗ (with auxiliary input z) specifies (m1

1, x
1, w1

1, w
1
2) wherew1

1, w
1
2 are (not

necessarily distinct) witnesses for x1. V ∗ then obtains second round message wi2(x1, w1
b ,m

1
1, r) generated

with uniform randomness r. Next, the adversary specifies arbitrary (m2
1, x

2, w2
1, w

2
2), and obtains second

round message wi2(x2, w2
b ,m

2
1, r). This continues m(κ) = poly(κ) times for a-priori unbounded m, and

finally V ∗ outputs b.

ZAPs (and more generally, any two-message WI) can be modified to obtain resettable reusable WI, by
having the prover apply a PRF on the verifier’s message and the public statement in order to generate the
randomness for the proof. This allows to argue, via a hybrid argument, that fresh randomness can be used for
each proof, and therefore perform a hybrid argument so that each proof remains WI. In our construction, we
will use resettable reusable ZAPs. In general, any multitheorem NIZK protocol implies a resettable reusable
ZAP which inturn can be based on any (doubly) enhanced trapdoor permutation.

2.5 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from [GIP+14, GIW16]. We note that
in this work we work with binary fields F2.

Definition 2.13 (AMD code [CDF+08]) An (n, k, ε)-AMD code is a pair of circuits (Encode,Decode)
where Encode : Fn → Fk is randomized and Decode : Fk → Fn+1 is deterministic such that the fol-
lowing properties hold:

• Perfect completeness. For all x ∈ Fn,

Pr[Decode(Encode(x)) = (0,x)] = 1.

• Additive robustness. For any a ∈ Fk,a 6= 0, and for any x ∈ Fn it holds that

Pr[Decode(Encode(x) + a) /∈ ERROR] ≤ ε.

Definition 2.14 (Additive attack) An additive attack A on a circuit C is a fixed vector of field elements
which is independent from the inputs and internal values of C. A contains an entry for every wire of C, and
has the following effect on the evaluation of the circuit. For every wire ω connecting gates a and b in C,
the entry of A that corresponds to ω is added to the output of a, and the computation of the gate b uses the
derived value. Similarly, for every output gate o, the entry of A that corresponds to the wire in the output of
o is added to the value of this output.

14

Definition 2.15 (Additively corruptible version of a circuit) Let C : FI1 × . . .×FIn → FO1 × . . .×FOn
be an n-party circuit containing W wires. We define the additively corruptible version of C to be the n-
party functionality fA : FI1 × . . .× FIn × FW → FO1 × . . .× FOn that takes an additional input from the
adversary which indicates an additive error for every wire of C. For all (x,A), fA(x,A) outputs the result
of the additively corrupted C, denoted by CA, as specified by the additive attack A (A is the simulator’s
attack on C) when invoked on the inputs x.

Definition 2.16 (Additively secure implementation) Let ε > 0. We say that a randomized circuit Ĉ :
Fn → Ft × Fk is an ε-additively-secure implementation of a function f : Fn → Fk if the following holds.

• Completeness. For every x ∈ Fn, Pr[Ĉ(x) = f(x)] = 1.

• Additive attack security. For any additive attack A there exist aIn ∈ Fn, and a distribution AOut over
Fk, such that for every x ∈ Fn,

SD(CA(x), f(x + aIn) + AOut) ≤ ε

where SD denotes statistical distance between two distributions.

Theorem 2.17 ([GIW16], Theorem 2) For any boolean circuit C : {0, 1}n → {0, 1}m, and any security
parameter κ, there exists a 2−κ-additively-secure implementation Ĉ of C, where |Ĉ| = poly(|C|, n, κ).
Moreover, given any additive attack A and input x, it is possible to identify aIn such that ĈA(x) = f(x +
aIn).

Remark 2.1 Genkin et al. [GIW16] present a transformation that achieves tighter parameters, namely,
better overhead than what is reported in the preceding theorem. We state this theorem in weaker form as it
is sufficient for our work.

Remark 2.2 Genkin et al. [GIW16] do not claim the stronger version where the equivalent aIn is identifi-
able. However their transformation directly yields a procedure to identify aIn. Namely each bit of the input
to the function f needs to be preprocessed via an AMD code before feeding it to Ĉ. aIn can be computed as
Decode(xEncode +AIn)−x where xEncode is the encoded input x via the AMD code and AIn is the additive
attack A restricted to the input wires. In other words, either the equivalent input is x or the output of Ĉ will
be ERROR.

2.6 The [BMR90] Garbling

An extension of Yao garbled circuits approach [Yao86] for any number of parties n introduced by Beaver,
Micali and Rogaway in [BMR90] leading to the first constant-round protocol. This protocol has an offline
phase in which the garbled circuit is created, and an online phase in which the garbled circuit is evaluated.
The [BMR90] garbling technique involves garbling each gate separately using pseudorandom generators
(or pseudorandom functions) while ensuring consistency between the wires. This method was recently im-
proved by Lindell et al. in [LPSY15] which introduced an NC0 functionality for this task, while demonstrat-
ing that the PRF values submitted by each party need not be checked for consistency (or computed by the
functionality), as inconsistency would imply an abort by at least one honest party. Moreover, an abort event
is independent of the honest parties’ inputs due to the way each gate is garbled. In more details, the garbling
functionality used in [LPSY15] is a modification of the garbling functionality introduced in [BMR90], and
is applicable for any number of parties n. Namely, let C denote the circuit computed by the parties which

15

contains W wires and a set of G gates. Then for every wire w, party Pi inputs to the functionality two keys
kiw,0, k

i
w,1 and the PRF computations based on these keys (see equation 1 below). Moreover, the function-

ality does not ensure that these values are consistent (namely, that the PRF values are computed correctly).
The remaining computation is similar. Loosely speaking, the parties pick a masking bit for every wire in the
computed circuit and the functionality creates the garbling for each gate which includes four rows such that
each row is combined out of n ciphertexts. To be more concrete, for every wire w, each party Pi picks a wire
masking value share λiw so that the actual masking equals λw =

⊕n
i=1 λ

i
w. Next, for every input wire w that

is associated with party Pi’s input the functionality reveals the masking bit λw to party Pi. Looking ahead,
this phase is required so that in the online phase each party Pi can determine the public value associated
with its input wires. Namely, each party Pi broadcasts λw ⊕ ρw where ρw is the input bit for wire w. In
response, every party Pj broadcasts its key kjw,λw⊕ρw . Upon collecting the keys from all parties, the players
can start evaluating the garbled circuit.

We will now describe the technical details of the BMR garbling. Namely, for every NAND gate g ∈ G
with input wires 1 ≤ a, b ≤ W and output wire c, the garbled row r1, r2 ∈ {0, 1} in gate g is expressed as
the concatenation of Rg,r1,r2 = {Rjg,r1r2}nj=1, where

Rg,jr1r2 =
n⊕
i=1

(
Fkia,r1

(g, j, r1, r2)⊕ Fkib,r2
(g, j, r1, r2)

)
⊕ kjc,0 ⊕

(
χr1,r2 ∧ (kjc,1 ⊕ k

j
c,0)
)

(1)

where F is a PRF, kia,0, k
i
a,1 and kib,0, k

i
b,1 are the respective input keys of party Pi, whereas kic,0, k

i
c,1 are its

output keys. Furthermore, for every a, b and r1, r2 as above the selector variable χr1,r2 is defined by,

χr1,r2 = ((λa ⊕ r1) · (λb ⊕ r2)⊕ 1)⊕ λc

such that the AND computation χr1,r2 ∧(kjc,1⊕k
j
c,0) is defined between the bit χr1,r2 and the κ length string

(kjc,1 ⊕ k
j
c,0) bitwise (namely, the AND of χr1,r2 is computed with every bit in kjc,1 ⊕ k

j
c,0). In this work we

consider a functionality that captures an additive error that the adversary can embed into the garbling; see
more discussion in Section 3.3.

3 Warmup MPC: The Case of Defensible Adversaries

For the sake of gradual introduction of our technical ideas, we begin with a warm-up, we present a protocol
and prove security in an easier model, in which the adversary volunteers a “defense” of its actions, consisting
of some of its inputs and randomness. Specifically, instead of asking the adversary to prove an action, in
this model we just assume that the adversary reveals all its inputs and randomness for that action.

The goal of presenting a protocol in this easier model is to show that it is sufficient to prove correct
behavior in some but not all of the “OT subprotocols”. Later in Section 4 we will rely on our non-malleability
and zero-knowledge machinery to achieve similar results. Namely the adversary will be required to prove
correct behavior, and we will use rewinding to extract from it the “defense” that our final simulator will
need.

3.1 Step 1: 3-Bit Multiplication with Additive Errors

The functionality that we realize in this section, FA
MULT is an additively corruptible version of the 3-bit

multiplication functionality. In addition to the three bits x1, x2, x3, FA
MULT also takes as input an additive

16

Functionality FA
MULT

FA
MULT runs with parties P = {P1, P2, P3} and an adversary S who corrupts a subset I ⊂ [3] of parties.

1. For each i ∈ {1, 2, 3}, the functionality receives xi from party Pi, and P1 also sends another bit eIn.

2. Upon receiving the inputs from all parties, evaluate y = (x1x2 + eIn)x3 and sends it to S.

3. Upon receiving (deliver, eOut) from S, the functionality sends y + eOut to all parties.

Figure 2: Additively corruptible 3-bit multiplication functionality.

“error bit” eIn from P1, and eOut from the adversary, and computes the function (x1x2 + eIn)x3 + eOut. The
description of FA

MULT can be found in Figure 2.
Our protocol relies on an equivocable affine-homomorphic-encryption scheme (Gen,Enc,Dec,AT,Explain)

(over F2) as per Definition 2.5, and an additive secret sharing scheme (Share,Recover) for sharing 0 as per
Definition 2.3. The details of our protocol are as follows. We usually assume that randomness is implicit
in the encryption scheme, unless specified explicitly. See Figure 3 for a high level description of protocol
ΠDMULT.

Protocol 1 (3-bit Multiplication protocol ΠDMULT)

Input & Randomness: Parties P1, P2, P3 are given inputs (x1, eIn), x2, x3, respectively. P1 chooses a
random bit s1 and P2 chooses two random bits s2, r2 (in addition to the randomness needed for the sub-
protocols below).

ROUND 1:

– PartyP1 runs key generation twice, (PK1
a, SK1

a), (PK2
a, SK2

a)← Gen, encrypts C1
α[1] := EncPK1

a
(x1)

and C2
α[1] := EncPK2

a
(x1), and broadcasts ((PK1

a,C
1
α[1]), (PK2

a,C
2
α[1])) (to be used by P2).

– P3 runs key generation four times, (PK1
β, SK1

β), (PK2
β, SK2

β), (PK1
γ , SK1

γ), (PK2
γ , SK2

γ)← Gen(1κ).

Next it encrypts using the first two keys, C1
β[1] := EncPK1

β
(x3) and C2

β[1] := EncPK2
β
(x3),

and broadcasts
(
(PK1

β,C
1
β[1]), (PK2

β,C
2
β[1])

)
(to be used by P2), and (PK1

γ , PK2
γ) (to be used

in round 3 by P1).

– Each party Pj samples random secret shares of 0, (z1
j , z

2
j , z

3
j) ← Share(0, 3) and sends zij to

party Pi over a private channel.

ROUND 2:

– Party P2 samples x1
α, x

2
α such that x1

α + x2
α = x2 and r1

α, r
2
α such that r1

α + r2
α = r2. It use

affine homomorphism to compute C1
α[2] := (x1

α�C1
α[1])� r1

α and C2
α[2] := (x2

α�C2
α[1])� r2

α.

Party P2 also samples r1
β, r

2
β such that r1

β +r2
β = r2 and s1

β, s
2
β such that s1

β +s2
β = s2, and uses

affine homomorphism to compute C1
β[2] := (r1

β � C1
β[1]) � s1

β and C2
β[2] := (r2

β � C2
β[1]) � s2

β .

P2 broadcasts (C1
α[2],C2

α[2]) (to be used by P1) and (C1
β[2],C2

β[2]) (to be used by P3).

– Party P3 encrypt C1
γ [1] := EncPK1

γ
(x3) and C2

γ [1] := EncPK2
γ
(x3) and broadcast (C1

γ [1],C2
γ [1])

(to be used by P1).

17

ROUND 3:

– Party P1 computes u := DecSK1
a
(C1

α[2]) + DecSK2
a
(C2

α[2]) and u′ = u+ eIn.
Then P1 samples u1

γ , u
2
γ such that u1

γ +u2
γ = u′ and s1

γ , s
2
γ such that s1

γ + s2
γ = s1. It uses affine

homomorphism to compute C1
γ [2] := (u1

γ � C1
γ [1]) � s1

γ and C2
γ [2] := (u2

γ � C2
γ [1]) � s2

γ .

P1 broadcasts (C1
γ [2],C2

γ [2]) (to be used by P3).

DEFENSE: At this point, the adversary broadcasts its “defense:” It gives an input for the protocol,
namely x?. For every “OT protocol instance” where the adversary was the sender (the one sending
C??[2]), it gives all the inputs and randomness that it used to generate these messages (i.e., the val-
ues and randomness used in the affine-homomorphic computation). For instances where it was the
receiver, the adversary chooses one message of each pair (either C1

?[1] or C2
?[1]) and gives the inputs

and randomness for it (i.e., the plaintext, keys, and encryption randomness). Formally, let trans be a
transcript of the protocol up to and including the 3rd round

trans
def
=

(
PK1

a,C
1
α[1],C1

α[2], PK2
a,C

2
α[1],C2

α[2], PK1
β,C

1
β[1],C1

β[2], PK2
β,C

2
β[1],C2

β[2],

PK1
γ ,C

1
γ [1],C1

γ [2], PK2
γ ,C

2
γ [1],C2

γ [2]

)
transbP1

def
=
(

PKba,C
b
α[1], C1

γ [2],C2
γ [2]

)
trans0P2

= trans1P2

def
=
(
C1
α[2],C2

α[2], C1
β[2],C2

β[2]
)

transbP3

def
=
(

PKbβ,C
b
β[1], PKbγ ,C

b
γ [1]
)

we have three NP languages, one per party, with the defense for that party being the witness:

LP1 =

trans

∣∣∣∣∣∣∣∣
∃ (x1, eIn, ρα, SKa, σα, u

1
γ , u

2
γ , s

1
γ , s

2
γ)

s.t.

(
(PK1

a, SKa = Gen(ρα) ∧ C1
α[1] = EncPK1

a
(x1;σα))

∨ (PK2
a, SKa = Gen(ρα) ∧ C2

α[1] = EncPK2
a
(x1;σα))

)
∧ C1

γ [2] = u1
γ � C1

γ [1] � s1
γ ∧ C2

γ [2] = u2
γ � C2

γ [1] � s2
γ

 (2)

LP2 =

trans

∣∣∣∣∣∣
∃ (x1

α, x
2
α, s

1
β, s

2
β, r

1
α, r

2
α, r

1
γ , r

2
γ) s.t. r1

α + r2
α = r1

γ + r2
γ

∧ C1
α[2] = x1

α � C1
α[1] � r1

α ∧ C2
α[2] = x2

α � C2
α[1] � r2

α

∧ C1
β [2] = r1

β � C1
β [1] � s1

β ∧ C2
β [2] = r2

β � C2
β [1] � r2

β

 (3)

LP3 =

trans

∣∣∣∣∣∣∣∣∣∣∣

∃ (x3, ρβ, SKβ, σβ, ργ , SKγ , σγ)

s.t.

(
(PK1

β , SKβ = Gen(ρβ) ∧ C1
β [1] = EncPK1

β
(x3;σβ))

∨ (PK2
β , SKβ = Gen(ρβ) ∧ C2

β [1] = EncPK2
β

(x3;σβ))

)
∧
(

(PK1
γ , SKγ = Gen(ργ) ∧ C1

γ [1] = EncPK1
γ
(x3;σγ))

∨ (PK2
γ , SKγ = Gen(ργ) ∧ C2

γ [1] = EncPK2
γ
(x3;σγ))

)

(4)

ROUND 4:

– P3 computes v := DecSK1
β
(C1

β[2]) +DecSK2
β
(C2

β[2]), w := DecSK1
γ
(C1

γ [2]) +DecSK2
γ
(C2

γ [2]), and
s3 := v + w.

– Every party Pj adds the zero shares to sj , broadcasting Sj := sj +
∑3

i=1 z
j
i .

• OUTPUT: All parties set the final output to Z = S1 + S2 + S3.

18

P2(x2, s2, r2)
x1
α + x2

α = x2, r
1
α + r2

α = r2 = r1
β + r2

β , s
1
β + s2

β = s2s1
γ + s2

γ = s1

P3(x3)P1(x1, s1, eIn)

PK1
a,Enc

1
α(x1) PK2

a,Enc
2
α(x1) PK2

β,Enc
2
β(x3)PK1

β,Enc
1
β(x3)

PK1
γ PK2

γ ,

Enc1
α(x1

αx1 − r1
α) Enc2

α(x2
αx1 − r2

α) Enc2
β(r2

βx3 − s2
β)Enc1

β(r1
βx3 − s1

β)

u′ := eIn + Dec1
α(· · ·) + Dec2

α(· · ·)

u1
γ + u2

γ = u′ Enc1
γ(x3) Enc2

γ(x3)

Enc1
γ(u1

γx3 − s1
γ)Enc2

γ(u2
γx3 − s2

γ)

v := Dec1
β(· · ·) + Dec2

β(· · ·)

w := Dec1
γ(· · ·) + Dec2

γ(· · ·)
s3 := v + w

Figure 3: Round 1, 2 and 3 of ΠDMULT protocol. In the fourth round each party Pi adds the zero shares to sj and broadcasts the
result.

Lemma 3.1 Protocol ΠDMULT securely realizes the functionality FA
MULT (cf. Figure 2) in the presence of a

“defensible adversary” that always broadcasts valid defense at the end of the third round.

Proof: We first show that the protocol is correct with a benign adversary. Observe that u′ = eIn +x1(x1
α +

x2
α)− (r1

α + r2
α) = eIn + x1x2 − r2, and similarly v = x3r2 − s2 and w = x3u

′ − s1. Therefore,

S1 + S2 + S3 = s1 + s2 + s3 = s1 + s2 + (v + w)

= s1 + s2 + (x3r2 − s2) + (x3u
′ − s1)

= x3r2 + x3(x1x2 − r2 + eIn)

= (x1x2 + eIn)x3

as required. We continue with the security proof.
To argue security we need to describe a simulator and prove that the simulated view is indistinguishable

from the real one. Below fix inputs x1, eIn, x2, x3, and a defensible PPT adversary A controlling a fixed
subset of parties I ⊆ [3] (and also an auxiliary input z).

The simulator S chooses random inputs for each honest party (denote these values by x̂i), and then
follows the honest protocol execution using these random inputs until the end of the 3rd round. Upon
receiving a valid “defense” that includes the inputs and randomness that the adversary used to generate
(some of) the messages Ci

?[j], the simulator extracts from that defense the effective inputs of the adversary
to send to the functionality, and other values to help with the rest of the simulation. Specifically:

• If P3 is corrupted then its defense (for one of the Ci
β[1]’s and one of the Ci

γ [1]’s) includes a value
for x3, that we denote x∗3. (A defensible adversary is guaranteed to use the same value in the defense
for C?β[1] and in the defense for C

?

γ [1]’s.)

• If P2 is corrupted then the defense that it provides includes all of its inputs and randomness (since it
always plays the “OT sender”), hence the simulator learns a value for x2 that we denote x∗2, and also
some values r2, s2. (If P2 is honest then by r2, s2 we denote below the values that the simulator chose
for it.)

19

• If P1 is corrupted then its defense (for either of the Ci
α[1]’s) includes a value for x1 that we denote x∗1.

From the defense for both C1
γ [2],C2

γ [2] the simulator learns the uγi ’s and sγi ’s, and it sets u′ := u1
γ+u2

γ

and s1 := s1
γ + s2

γ .

The simulator sets u := x∗1x
∗
2 − r2 if P2 is corrupted and u := x∗1x̂2 − r2 if P2 is honest, and then

computes the effective value e∗In := u′ − u. (If P1 is honest then by s1, u, u
′ we denote below the

values that the simulator used for it.)

Let x∗i and e∗In be the values received by the functionality. (These are computed as above if the corresponding
party is corrupted, and are equal to xi, eIn if it is honest.) The simulator gets back from the functionality the
answer y = (x∗1x

∗
2 + e∗In)x∗3.

Having values for s1, s2 as described above, the simulator computes s3 := y − s1 − s2 if P3 is honest,
and if P3 is corrupted then the simulator sets v := r2x

∗
3 − s2, w := ux∗3 − s1 and s3 := v + w. It then

proceeds to compute the values Sj that the honest parties broadcast in the last round.
Let s be the sum of the si values for all the corrupted parties, and let z be the sum of the zero-shares that

the simulator sent to the adversary (on behalf of all the honest parties), and z′ be the sum of zero-shared that
the simulator received from the adversary. The values that the simulator broadcasts for the honest parties in
the fourth round are chosen at random, subject to them summing up to y − (s+ z − z′).

If the adversary sends its fourth round messages, an additive output error is computed as eOut :=
y −

∑
j S̃j where S̃j are the values that were broadcast in the fourth round. The simulator finally sends

(deliver, eOut) to the ideal functionality.
This concludes the description of the simulator, it remains to prove indistinguishability. Namely, we

need to show that for the simulator S above, the two distributions REALΠDMULT,A(z),I(κ, (x1, eIn), x2, x3)
and IDEALFA

MULT,S(z),I(κ, (x1, eIn), x2, x3) are indistinguishable. We proceed in several hybrid games,
beginning from H0 that has view identical to the real game, and ending at H8 whose view is distributed
identically to the simulation.

High-level sketch of the proof. On a high-level, in the first two intermediate hybrids, we modify the fourth
message of the honest parties to be generated using the defense and the inputs chosen for the honest parties,
rather than the internal randomness and values obtained in the first three rounds of the protocol. Then in
hybrid H3 below we modify the messages Si that are broadcast in the last round. Next, in hybrid H4, we
modify P3 to use fake inputs instead of its real inputs where indistinguishability relies on the semantic
security of the underlying encryption scheme. In hybrid H5, the value u is set to random u′ rather than
the result of the computation using C2

α[1] and C2
α[2]. This is important because only then we carry out the

reduction for modifying P1’s input in H6. Indistinguishability from H4 to H5 follows from the equivocation
property of the encryption scheme, whereas, from H5 to H6 security relies on the semantic security. Then,
in hybrid H7, we modify the input of P2 from real to fake which again relies on the equivocation property.
Finally in H8 we modify the Si’s again to use the output from the functionality FA

MULT which is a statistical
argument.

We proceed in several hybrid games, beginning from H0 that has view identical to the real game, and
ending at H8 whose view is distributed identically to the simulation.

Roughly, in the hybrid H3 below we modify the messages Si that are broadcast in the last round, in the
hybrids H4, H6, H7, we modify P3, P1, P2, respectively, to use fake inputs instead of their real inputs, and
finally in H8 we modify the Si’s again to use the output from the functionality FA

MULT.

Hybrid H0. This experiment is the execution in the real world. As usual, we postulate a centralized “chal-
lenger” that plays the role of the honest parties in H0, namely it gets all their inputs and just follows the
protocol on their behalf (and ignores the “defense” provided by the adversary).

20

Hybrid H1. In the next few hybrids we make some changes to the internal computations of the challenger
without affecting what the adversary sees. In this hybrid, if P1 is honest then instead of choosing s1 at
random and then choosing random s1,2

γ that add up to s1, the challenger chooses both s1,2
γ uniformly at

random and sets s1 := s1
γ + s2

γ . Similarly, if P2 is honest then the challenger chooses at random s1,2
β , r1,2

α ,
and r1

β , and sets s2 := s1
β + s2

β , r2 := r1
α + r2

α, and r2
β := r2 − r1

β .
Also, the challenger in this hybrid no longer ignores the adversary’s defense, instead it uses it to compute

some local variables (which are then ignored). Specifically, regardless of which party is corrupted, the
challenger knows:

• A value for x1 (either since P1 is honest, or from the defense of one of the C1,2
α [1]’s).

• The u1,2
γ and s1,2

γ ’s (either since P1 is honest, or from the defense of both the C1,2
γ [2]’s).

• The x1,2
β , r1,2

β , r1,2
γ , and, s1,2

β ’s (either since P2 is honest, or from the defense of all the C1,2
α,β[2]’s).

• A value for x3 (either P3 is honest, or from the defense of one of each of the C1,2
β [1]’s and C1,2

γ [1]’s).

Below we denote s1 := s1
γ + s2

γ and u′ = u1
γ + u2

γ , whether or not P1 is honest. Similarly, we denote
r2 := r1

β + r2
β = r1

γ + r2
γ and s2 := s1

β + s2
β , whether or not P2 is honest.

The challenger in H1 also chooses random “fake input bits” x̂i for the parties (in addition to the real
inputs xi). These inputs are never used in H1, but will be used in some of the hybrids below.

Hybrid H2. In this hybrid, the challenger forgoes decrypting the ciphertexts C1,2
β,γ [2] even if P3 is honest.

Whether or not P3 is honest, at the end of the 3rd round the challenger uses the values above that it knows
to set v := r2x3 − s2, wi := uiγx3 − siγ (i = 1, 2), and w := w1 + w2.

When P3 is honest, C1,2
β,γ [1] are all valid ciphertexts. Therefore so are C1,2

β,γ [2], since they all have a valid

defense. Moreover the valid defense implies that r1,2
β , u1,2

γ and s1,2
β,γ are consistent with the plaintext values

inside these ciphertexts. Hence the computed values v, w are identical to what was computed in H1 (in the
case that P3 is honest).

Hybrid H3. This hybrid changes the computation of the si’s:

• If P1 is honest then the challenger changes the way it computes s1: Rather than s1 := s1
γ + s2

γ , the
challenger waits until after the 3rd round, then sets s1 := (x1x2 +eIn)x3−s2−v−w (and broadcasts
S1 = s1 +

∑
j z

1
j on behalf of P1). It is easy to check that s1 in this hybrid is the same as in H2: As

u′ = u1
γ + u2

γ = x1x2 + eIn − r2, then

(x1x2 + eIn)x3 − s2 − v − w = (x1x2 + eIn)x3 − s2 − (r2x3 − s2)−
(
u′x3 − (s1

γ + s2
γ)
)

= (x1x2 + eIn)x3 − r2x3 − (x1x2 + eIn − r2)x3 + s1
γ + s2

γ = s1
γ + s2

γ .

• If P1 is corrupted and P2 is honest, then the challenger changes the way it computes s2: Rather than
s2 := s1

β+s2
β , the challenger waits until after the 3rd round, then sets s2 := (x1x2+eIn)x3−s1−v−w

(and broadcasts S2 = s2 +
∑

j z
2
j on behalf of P2). The same argument as above implies that s2 in

this hybrid is the same as in H2.

• If P1 and P2 are corrupted and P3 is honest, the challenger changes the way it computes s3: Rather
than s3 := v+w, the challenger sets after the 3rd round s3 := (x1x2 +eIn)x3−s1−s2 and broadcasts
S3 = s3 +

∑
j z

3
j on behalf of P3. As in the other two cases, here too s3 is the same as in H2.

21

Hybrid H4. In this hybrid, if P3 is honest then the challenger encrypts the fake x̂3 rather than the real x3 in
all the ciphertexts C1,2

β,γ [1]. The rest of the execution remains unchanged (including using the real x3 in the
computation of v, w, s3 as above).

Recall that the challenger no longer decrypts any of the ciphertexts C1,2
β,γ [2] and hence no longer uses the

secret keys SK
1,2
β , SK

1,2
γ . We can therefore reduce indistinguishability between H3 and H4 to the semantic

security of the encryption. The reduction algorithm plays the challenger, but instead of generating the keys
itself and doing the encryption, it receives the public keys and ciphertexts from the CPA-security game,
where the C1,2

β,γ [1]’s encrypt either x3 or x̂3. Hence we have:

Claim 3.2 Assuming semantic security of Enc, the adversary’s view in H4 is indistinguishable from H3.

Hybrid H5. If P1 is honest, the challenger changes the way it chooses the u1,2
γ ’s: Instead of choosing them

at random subject to u1
γ + u2

γ = u′, they are chosen uniformly and independently.
We note that in this hybrid the challenger no longer needs to compute u and u′, and therefore it no longer

needs to decrypt the ciphertexts C1
α[2], C2

α[2].

Claim 3.3 If Enc satisfies the equivocation property from Definition 2.5, then the adversary’s view in hybrid
H5 is statistically close to the hybrid H4.

Proof: Below we prove Claim 3.3 for the case where C1
γ [1] is a valid ciphertext, encrypting the x3 that

the challenger knows. The proof for the case where C2
γ [1] is a valid encryption of x3 is symmetric, and we

know that at least one of these cases hold since the adversary is defensible.
Below we fix all the inputs and randomness of all the parties except the choices of u1

γ and s1
γ and

whatever randomness is involved in computing C1
γ [2] := (u1

γ � C1
γ [1]) � s1

γ . We show that when C1
γ [1] is a

valid encryption of x3, the adversary’s views in the two hybrids are statistically close, even conditioned on
all these fixed values.

We note that the fixed values include in particular u2
γ , and s2

γ , and conditioned on all those values the
adversary’s view is uniquely determined by C1

γ [2] and s1. It is therefore sufficient to show that the residual
distributions on (C1

γ [2], s1) are close between these hybrids. We next show that both s1 and C1
γ [2] depend

only on the single value w1 := u1
γ · x3 − s1

γ .
For s1, since everything except u1

γ and s1
γ is fixed, then in particular ∆ := (x1x2+eIn)x3−s2−v−w2 is

fixed, so s1 := ∆−w1 is uniquely determined by w1. For C1
γ [2], the equivocation property of the encryption

scheme implies in particular that for any valid C1
γ [1] = Enc(x3), the distribution of C1

γ [2] := u1
γ�C1

γ [1]�s1
γ

depends (up to negligible difference) on just the value encrypted in it, namely by w1 := u1
γ · x3 − s1

γ . 8

We conclude that it is sufficient to show that w1 has the same distribution in both hybrids. But this is
obvious, as in both hybrids it is set as w1 := u1

γ · x3 − s1
γ for a uniformly random s1

γ , and only the choice of
u1
γ differs between them.

Hybrid H6. If P1 is honest, the challenger encrypts the fake x̂1 rather than the real x1 in the ciphertexts
C1,2
α [1]. The rest of the execution remains unchanged (including using the real x1 in the computation of s1).

As the challenger no longer decrypts the ciphertexts C1,2
α [2] and hence no longer uses the secret keys SK

1,2
a ,

we can reduce indistinguishability between H5 and H6 to the semantic security of the encryption.

Claim 3.4 Assuming semantic security of Enc, the adversary’s view in H6 is indistinguishable from H5.
8This is where we use the assumption about the validity of C1

γ [1] = Enc(x3), for the same value x3 that the challenger use to
compute w1 := u1

γ · x3 + s1
γ .

22

Hybrid H7. If P2 is honest, the challenger uses the fake x̂2 rather than the real x2 in the homomorphic
computation of the Ci

α[2]’s. More specifically, instead of choosing x1,2
β subject to x1

β + x2
β = x2 the

challenger choose random and independent x1,2
β (and sets x̂2 := x1

β + x2
β).

As before, statistical closeness between H6 and H7 follows from the equivocation property of the en-
cryption scheme, the argument is similar to (but slightly more complicated than) Claim 3.3: We begin with
a sub-hybrid in which x1,2

β still add up to x2 but r2
β is chosen independently of the other r??’s (rather than

setting r2
β := r2 − r1

β). Statistical closeness of this sub-hybrid is almost identical to Claim 3.3. Then we
switch the x1,2

β , and repeat a similar argument.

Claim 3.5 If Enc satisfies the equivocation property from Definition 2.5, then the adversary’s view in hybrid
H7 is statistically close to the hybrid H6.

Hybrid H8. In this hybrid, the challenger is given access to the functionality FA
MULT, that gets the honest

parties’ inputs. The challenger extracts as before the inputs of the corrupted parties from the “defense” and
gives them to the functionality after the third round, getting back the output y = (x1x2 + eIn)x3.

The challenger computes the si values for the corrupted parties, let s be their sum, and also let z be the
sum of the zero-shares that it sent to the adversary (on behalf of all the honest parties) and z′ be the sum of
zero-shared that it received from the adversary. The challenger broadcasts on behalf of the honest parties
messages Si chosen at random, subject to them summing up to y − (s+ z − z′).

We argue that the distribution of the Si values for the honest parties is identical between to the previous
hybrid. To see this, we first note that as long as there are any honest parties, in both hybrids we have∑

i/∈I Si +
∑

i∈I si = y− z+ z′ (where I is the set of corrupted parties). In H8 the Si values for the honest
parties are chosen at random subject to that constraint, so it is enough to show that also in H7 these values
are random subject to that constraint.

This is clearly true when there is just one honest party (since in that case there is only one value for the
honest Si that satisfies the constraint). When there are more honest parties, then their Si’s are randomized
by the zero shares zij , rendering them random subject to their sum.

Epilogue. To complete the proof, we note that in H8 the challenger does not use at all the input of the honest
parties, and indeed the view of that hybrid is identical to the simulated game with the simulator S.

Between Defensible and Real Security. In Section 4 below we show how to augment the protocol above to
provide security against general adversaries, not just defensible ones, by adding proofs of correct behavior
and using rewinding for extraction.

There is, however, one difference between having a defensible adversary and having a general adversary
that proves correct behavior: Having a proof in the protocol cannot ensure correct behavior, it only ensures
that deviation from the protocol will be detected (since the adversary cannot complete the proof). So we still
must worry about the deviation causing information to be leaked to the adversary before it is caught.

Specifically for the protocol above, in Claims 3.3 and 3.5 we relied on at least one in each pair of
ciphertexts being valid. Indeed for an invalid ciphertext C, it could be the case that C ′ := (u � C) � s
reveals both u and s. If that was the case, then (for example) a corrupt P1 could send invalid ciphertexts
C1,2
α [1] to P2, then learn both x1,2

α (and hence x2) from P2’s reply.
One way of addressing this concern would be to rely on maliciously secure encryption (as defined

in [OPP14]), but this is a strong requirement, much harder to realize than our Definition 2.5. Instead, in
our BMR-based protocol we ensure that all the inputs to the multiplication gates are just random bits, and
have parties broadcast their real inputs masked by these random bits later in the protocol. We then use ZAP

23

proofs of correct ciphertexts before the parties broadcast their masked real inputs. Hence, an adversary that
sends two invalid ciphertexts can indeed learn the input of (say) P2 in the multiplication protocol, but this
is just a random bit, and P2 will abort before outputting anything related to its real input in the big protocol.
For that, we consider the following two NP languages:

L′P1 =

trans2

∣∣∣∣∣∣
∃ (x1, ρα, SKa, σα)

s.t.

(
(PK1

a, SKa = Gen(ρα) ∧ C1
α[1] = EncPK1

a
(x1;σα))

∨ (PK2
a, SKa = Gen(ρα) ∧ C2

α[1] = EncPK2
a
(x1;σα))

)
L′P3 =

trans2

∣∣∣∣∣∣∣∣∣
∃ (x3, ρβ, SKβ, σβ, ργ , SKγ)

s.t.

(
(PK1

β , SKβ = Gen(ρβ) ∧ C1
β [1] = EncPK1

β
(x3;σβ))

∨ (PK2
β , SKβ = Gen(ρβ) ∧ C2

β [1] = EncPK2
β

(x3;σβ))

)
∧
(

(PK1
γ , SKγ = Gen(ργ)))

)

where trans2 is a transcript of the protocol up to and including the 2rd round. Note that P2 does not generate
any public keys and thus need not prove anything.

3.2 Step 2: Arbitrary Degree-3 Polynomials

The protocol ΠDMULT from above can be directly used to securely compute any degree-3 polynomial for
any number of parties in this “defensible” model, roughly by just expressing the polynomial as a sum of
degree-3 monomials and running ΠDMULT to compute each one, with some added shares of zero so that only
the sum is revealed.

Namely, party Pi chooses an n-of-n additive sharing of zero zi = (z1
i , . . . , z

n
j) ← Share(0, n), and

sends zji to party j. Then the parties run one instance of the protocol ΠDMULT for each monomial, up to the
end of the third round. Let si,m be the value that Pi would have computed in the mth instance of ΠDMULT

(where si,m := 0 if Pi’s is not a party that participates in the protocol for computing the mth monomial).
Then Pi only broadcasts the single value

Si =
∑
m∈[M]

si,m +
∑
j∈[n]

zij .

whereM denotes the number of degree-3 monomials. To compute multiple degree-3 polynomials on the
same input bits, the parties just repeat the same protocol for each output bit (of course using an independent
sharing of zero for each output bit).

In terms of security, we add the requirement that a valid “defense” for the adversary is not only valid
for each instance of ΠDMULT separately, but all these “defenses” are consistent: If some input bit is a part of
multiple monomials (possibly in different polynomials), then we require that the same value for that bit is
used in all the corresponding instances of ΠDMULT. We denote this modified protocol by ΠDPOLY and note
that the proof of security is exactly the same as the proof in the previous section.

3.3 Step 3: Arbitrary Functionalities

We recall from the works of [BMR90, DI06, LPSY15] that securely realizing arbitrary functionalities f
can be reduced to securely realizing the “BMR-encoding” of the Boolean circuit C that computes f . Our
starting point is the observation that the BMR encoding of a Boolean circuit C can be reduced to computing
many degree-3 polynomials. However, our protocol for realizing degree-3 polynomials from above lets the

24

adversary introduce additive errors (cf. Functionality FA
MULT), so we rely on a pre-processing step to make

the BMR functionality resilient to such additive attacks. We will immunize the circuit to these attacks by
relying on the following primitives and tools:

Information theoretic MAC {MACα}: This will be required to protect the output translation tables from
being manipulated by a rushing adversary. Namely, each party contributes a MAC key and along with
the output of the function its authentication under each of the parties keys. The idea here is that an
adversary cannot simply change the output without forging the authenticated values.

AMD codes (Definition 2.13): This will be required to protect the inputs and outputs of the computation
from an additive attack by the adversary. Namely, each party encodes its input using an AMD code.
The original computed circuit is then modified so that it first decodes these encoded inputs, then runs
the original computation and finally, encodes the outcome.

Additive attack resilient circuits (i.e. AMD circuits, Section 2.5): This will be required to protect the com-
putation of the internal wire values from an additive attack by the adversary. Recall from Section 3.1
that the adversary may introduce additive errors to the computed polynomials whenever corrupting
party P1. To combat with such errors we only evaluate circuits that are resilient to additive attacks.

Family of pairwise independent hash functions: We will need this to mask the key values of the BMR
encoding. The parties broadcast all keys in a masked format, namely, h, h(T)⊕ k for a random string
T , key k and hash function h. Then, when decrypting a garbled row, only T is revealed. T and h can
be combined with the broadcast message to reveal k.

Next we explain how to embed these tools in the BMR garbling computation. Let f(x̂1, . . . , x̂n) be an
n-party function that the parties want to compute securely. At the onset of the protocol, the parties locally
apply the following transformation to the function f and their inputs:

1. Define
f1

(
(x̂1, α1), . . . , (x̂n, αn)

)
=
(
f(x),MACα1(f(x)), . . . ,MACαn(f(x))

)
where x = (x̂1, . . . , x̂n) are the parties’ inputs.

The MAC verification is meant to detect adversarial modifications to output wires (since our basic
model allows arbitrary manipulation to the output wires).

2. Let (Encode,Decode) be the encoding and decoding functions for an AMD code, and define

Encode′(x̂1, . . . , x̂n) = (Encode(x̂1), . . . ,Encode(x̂n))

and
Decode′(y1, . . . , yn) = (Decode(y1), . . . ,Decode(yn)).

Then define a modified function fucntion

f2(x) = Encode′(f1(Decode′(x))).

Let C be a Boolean circuit that computes f2.

3. Next we apply the transformations of Genkin et al. [GIP+14, GIW16] to circuit C to obtain Ĉ that is
resilient to additive attacks on its internal wire values.

25

4. We denote by BMR.EncodeĈ((x1, R1), ..., (xn, Rn)) our modified BMR randomized encoding of
circuit Ĉ with inputs xi and randomness Ri, as described below. We denote by BMR.Decode the
corresponding decoding function for the randomized encoding, where, for all i, we have

BMR.Decode(BMR.EncodeĈ((x1, R1), ..., (xn, Rn)), Ri) = Ĉ(x1, . . . , xn).

In the protocol for computing f , each honest party Pi with input x̂i begins by locally encoding its input
via an AMD code, xi := Encode(x̂i; $) (where $ is some fresh randomness). Pi then engages in a protocol
for evaluating the circuit Ĉ (as defined below), with local input xi and a randomly chosen MAC key αi.
Upon receiving an output yi from the protocol (which is supposed to be AMD encoded, as per the definition
of f2 above), Pi decodes and parses it to get y′i := Decode(yi) = (z, t1, . . . , tn). Finally Pi checks whether
ti = MACαi(z), outputting z if the verification succeeds, and ⊥ otherwise.

A modified BMR encoding. We describe the modified BMR encoding for a general circuit D with n inputs
x1, . . . , xn. Without loss of generality, we assume D is a Boolean circuit comprising only of fan-in two
NAND gates. Let W be the total number of wires and G the total number of gates in the circuit D. Let
F = {Fk : {0, 1}κ → {0, 1}4κ}k∈{0,1}∗,κ∈N be a family of PRFs.

The encoding procedure takes the inputs x1, . . . , xn and additional random inputs R1, . . . , Rn. Each
Rj comprises of PRF keys, key masks and hash functions from pairwise independent family for every wire.
More precisely, Rj (j ∈ [n]) can be expressed as {λjw, kjw,0, k

j
w,1, T

j
w,0, T

j
w,1, h

j
w,0, h

j
w,1}w∈[W] where λjw

are bits, kjw,b are κ bit PRF keys, T jw,b are 4κ bits key masks, and hjw,b are hash functions from a pairwise
independent family from 4κ to κ bits.

The encoding procedure BMR.EncodeĈ on input ((x1, R1), ..., (xn, Rn)) outputs
(Rg,j00 , R

g,j
01 , R

g,j
10 , R

g,j
11)g∈[G],j∈[n],r1,r2∈{0,1} // Garbled Tables

(hjw,b,Γ
j
w,b)w∈[W],j∈[n],b∈{0,1}, // masked key values

(Λw, k
1
w,Λw

, . . . , knw,Λw)w∈Inp, // keys and masks for input wires
(λw)w∈Out // Output translation table

where

Rg,jr1,r2 =
(n⊕
i=1

Fkia,r1
(g, j, r1, r2)

)
⊕
(n⊕
i=1

Fkib,r2
(g, j, r1, r2)

)
⊕ Sg,jr1,r2

Sg,jr1,r2 = T jc,0 ⊕ χr1,r2 · (T
j
c,1 ⊕ T

j
c,0)

χr1,r2 = NAND
(
λa ⊕ r1, λb ⊕ r2

)
⊕ λc = [(λa ⊕ r1) · (λb ⊕ r2)⊕ 1]⊕ λc

Γjw,b = hjw,b(T
j
w,b)⊕ k

j
w,b

λw =

{
λjww if w ∈ Inp // input wire
λ1
w ⊕ · · · ⊕ λnw if w ∈ [W]/Inp // internal wire

Λw = λw ⊕ xw for all w ∈ Inp // masked input bit

and wires a, b and c ∈ [W] denote the input and output wires respectively for gate g ∈ [G]. Inp ⊆ [W]
denotes the set of input wires to the circuit, jw ∈ [n] denotes the party whose input flows the wire w and xw
the corresponding input. Out ⊆ [W] denotes the set of output wires.

We remark that the main difference with standard BMR encoding is that when decrypting a garbled row,
a value T ??,? is revealed and the key is obtained by unmasking the corresponding h??,?, h

?
?,?(T

?
?,?)⊕k??,? value

26

that is part of the encoding. This additional level of indirection of receiving the mask T and then unmasking
the key is required to tackle errors to individual bits of the plaintext encrypted in each garbled row.

The decoding procedure basically corresponds to the evaluation of the garbled circuit. More formally,
the decoding procedure BMR.Decode is defined iteratively gate by gate according to some standard (arbi-
trary) topological ordering of the gates. In particular, given an encoding information kjw,Λw for every input
wire w and j ∈ [n], of some input x, then for each gate g with input wires a and b and output wire c compute

T jc = Rg,jr1,r2 ⊕
n⊕
i=1

(
Fkia,Λa

(g, j,Λa,Λb)⊕ Fkib,Λb
(g, j,Λa,Λb)

)
Let Λc denote the bit for which T jc = T jc,Λc and define kjc = Γjc,Λc ⊕ h

j
c,Λc

(T jc). Finally given Λw for every

output wire w, compute the output carried in wire w as Λw ⊕
(⊕n

j=1 λ
j
w

)
.

Securely computing BMR.Encode using ΠDPOLY. We decompose the computation of BMR.Encode into
an offline and online phase. The offline part of the computation will only involve computing the “plaintexts”
in each garbled row, i.e. S?,??,? values and visible mask Λw values for input wires. More precisely, the parties
compute

{(Sg,j00 , S
g,j
01 , S

g,j
10 , S

g,j
11)g∈[G],j∈[n],r1,r2∈{0,1}, (Λw)w∈Inp}.

Observe that the S?,??,? values are all degree-3 computations over the randomness R1, . . . , Rn and therefore
can be computed using ΠDPOLY. Since the Λw values for the input wires depend only on the inputs and
internal randomness of party Pjw , the Λw value can be broadcast by that party Pjw . The offline phase
comprises of executing all instances of ΠDPOLY in parallel in the first three rounds. Additionally, the Λw
values are broadcast in the third round. At the end of the offline phase, in addition to the Λw values for the
input wires, the parties obtain XOR shares of the S?,??,? values.

In the online phase which is carried out in rounds 3 and 4, each party Pj broadcasts the following values:

• R̃?,j?,? values that correspond to the shares of the S?,j?,? values masked with Pj’s local PRF computations.

• hj?,?,Γj?,? = hj?,?(T
j
?,?)⊕ kj?,? that are the masked key values.

• λjw for each output wire w that are shares of the output translation table.

Handling errors. Recall that our ΠDPOLY protocol will allow an adversary to introduce errors into the com-
putation, namely, for any degree-3 monomial x1x2x3, if the party playing the role of P1 in the multiplication
sub-protocol is corrupted, it can introduce an error eIn and the product is modified to (x1x2 + eIn)x3. The
adversary can also introduce an error eOut that is simply added to the result of the computation, namely
the S?,??,? values. Finally, the adversary can reveal arbitrary values for λjw, which in turn means the output
translation table can arbitrarily assign the keys to output values.

Our approach to tackle the “eIn” errors is to show that these errors can be translated to additive errors on
the wires of Ĉ and then rely on the additive resilience property of Ĉ. Importantly, to apply this property, we
need to demonstrate the errors are independent of the actual wire value. We show this in two logical steps.
First, by carefully assigning the roles of the parties in the multiplication subprotocols, we can show that the
shares obtained by the parties combine to yield Sg,jr1,r2 +eg,jr1,r2 ·(T

j
c,0⊕T

j
c,1) where eg,jr1,r2 is a 4κ bit string (and

‘·’ is applied bitwise). In other words, by introducing an error, the adversary causes the decoding procedure
of the randomized encoding to result in a string where each bit comes from either T jc,b or T jc,1−b. Since an
adversary can incorporate different errors in each bit of S?,??,? , it could get partial information from both the

27

T values. We use a pairwise independent hash function family to mask the actual key, and by the left-over
hash lemma, we can restrict the adversary from learning at most one key. As a result, if the majority of the
bits in eg,jr1,r2 are 1 then the “value” on the wire flips, and otherwise it is “correct”.9 The second logical step
is to rely on the fact that there is at least one mask bit λjw chosen by an honest party to demonstrate that the
flip event on any wire will be independent of the actual wire value.

To address the “eOut” errors, following [LPSY15, HSS17], we show that the BMR encoding is already
resilient to such adaptive attacks (where the adversary may add errors to the garbled circuit even after seeing
the complete garbling and then deciding on the error).

Finally, to tackle a rushing adversary that can modify the output of the translation table arbitrarily, we
rely on the MACs to ensure that the output value revealed can be matched with the MACs revealed along
with the output under each party’s private MAC key.

Role assignment in the multiplication subprotocols. As described above, we carefully assign roles to
parties to restrict the errors introduced in the multiplication protocol. Observe that χr1,r2 is a degree-2
computation, which in turn means the expressions T jc,0 ⊕ χr1,r2(T jc,1 ⊕ T jc,0) over all garbled rows is a
collection of polynomials of degree at most 3. In particular, for every j ∈ [n], every gate g ∈ G with input
wires a, b and an output wire c, Sg,jr1,r2 involves the computation of one or more of the following monomials:

- λj1a λj2b (T jc,1 ⊕ T
j
c,0) for j, j1, j2 ∈ [n].

- λj1c (T jc,1 ⊕ T
j
c,0) for j, j1 ∈ [n].

- T jc,0.

We first describe some convention regarding how each multiplication triple is computed, namely assign
parties with roles P1, P2 and P3 in ΠDMULT (Section 3.1), and what products are computed. Letting ∆j

c =
(T jc,1⊕T

j
c,0), we observe that every product always involves ∆j

c as one of its operands. Moreover, every term
can be expressed as a product of three operands, where the product λj1c ∆j

c will be (canonically) expressed
as (λj1c)2∆j

c and singleton monomials (e.g., the bits of the keys and PRF values) will be raised to degree
3. Then, for every polynomial involving the variables λj1a , λ

j2
b and ∆j

c, party Pj will be assigned with the
role of P3 in ΠDMULT whereas the other parties Pj1 and Pj2 can be assigned arbitrarily as P1 and P2. In
particular, the roles are chosen so as to restrict the errors introduced by a corrupted P1 in the computation
to only additive errors of the form eInδ where δ is some bit in ∆j

c, where it follows from our simulation that
eIn will be independent of δ for honest Pj .

We now proceed to a formal description of our protocol.

Protocol 2 (Protocol ΠDMPC secure against defensible adversaries)

INPUT: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively, and a circuit Ĉ as specified above.

LOCAL PRE-PROCESSING: Each party Pi chooses a random MAC key αi and sets xi = Encode(x̂i, αi). Let κ be the
length of the resulting xi’s, and we fix the notation [xi]j as the jth bit of xi. Next Pi chooses all the randomness that
is needed for the BMR encoding of the circuit Ĉ. Namely, for each wire w, Pi chooses the masking bit λiw ∈ {0, 1},
random wire PRF keys kiw,0, k

i
w,1 ∈ {0, 1}κ, random functions from a universal hash family hiw,0, h

i
w,1 : {0, 1}4κ →

{0, 1}κ and random hash inputs T iw,0, T
i
w,1 ∈ {0, 1}4κ.

9Even if a particular gate computation is correctly evaluated, it does not necessarily mean this is the correct wire value as the
input wire values to the gate could themselves be incorrect due to additive errors that occur earlier in the circuit.

28

Then, for every non-output wire w and every gate g for which w is one of the inputs, Pi compute all the PRF values
Θi,w,g
j,r1,r2

= Fkiw,r1
(g, j, r1, r2) for j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The values λiw, T iw,r, and Θi,w,g

j,r1,r2
, will play the

role of Pi’s inputs to the protocol that realizes the BMR encoding BMR.EncodeĈ.)

The parties identity the set of 3-monomials that should be computed by the BMR encoding BMR.EncodeĈ and index
them by 1, 2, . . . ,M . Each party Pi identifies the set of monomials, denoted by Seti, that depends on any of its inputs
(λiw, T iw,r, or Θi,w,g

j,r1,r2
). As described above, each Pi also determines the role, denoted by Role(t, i) ∈ {P1, P2, P3},

that it plays in the computation of the t-th monomial (which is set to ⊥ if Pi does not participate in the computation of
the t-th monomial).

• ROUNDS 1,2,3: For each i ∈ [M], parties P1, . . . , Pn execute ΠDPOLY for the monomial pi up until the 3rd

round of the protocol with random inputs for the BMR encoding BMR.EncodeĈ. Along with the message
transmitted in the 3rd round of ΠDPOLY, party Pj broadcasts the following:

– For every input wire w ∈ W that carries some input bit [xj]k from Pj’s input, Pj broadcasts Λw =
λw ⊕ [xj]k.

For every j ∈ [n], let {S`,j}`∈M be the output of party Pj for the M degree-3 monomials. It reassembles the
output shares to obtain Sg,jr1,r2 for every garbled row r1, r2 and gate g.

• DEFENSE: At this point, the adversary broadcasts its “defense:” The defense for this protocol is a collection of
defenses for every monomial that assembles the BMR encoding. The defense for every monomial is as defined
in protocol ΠDMULT from Section 3. Namely, for each party Pi there is an NP language

L∗Pi =

(trans1, . . . transM)

∣∣∣∣∣∣
transj ∈ Lp1

,Lp2
,Lp3

if Pi is assigned the role P1, P2, P3,
respectively, in the jth instance of ΠDMULT

∧ all the transj’s are consistent with the same value of xi

• ROUND 4: Finally for every gate g ∈ G and r1, r2 ∈ {0, 1}, Pj (j ∈ [n]) broadcasts the following:

– R̃g,ir1,r2 = Fkja,r1
(g, j, r1, r2)⊕ Fkjb,r2

(g, i, r1, r2)⊕ Sg,ir1,r2 for every i ∈ [n].

– kjw,Λw for every input wire w.

– λjw for every output wire w.

– (Γjw,0,Γ
j
w,1) = (h(T jw,0)⊕ kjw,0, h(T jw,1)⊕ kjw,1) for every wire w.

• OUTPUT: Upon collecting {R̃g,jr1,r2}j∈[n],g∈[G],r1,r2∈{0,1}, the parties compute each garbled row by Rg,jr1,r2 =⊕n
j=1 R̃

g,j
r1,r2 and run the decoding procedure BMR.Decode on some standard (arbitrary) topological ordering

of the gates. Concretely, let g be a gate in this order with input wires a, b and output wire c. If a party does
not have masks Λa,Λb or keys (ka, kb) corresponding to the input wires when processing gate g it aborts.
Otherwise, it will compute

T jc = Rg,jr1,r2 ⊕
n⊕
i=1

(
Fkia,Λa

(g, j,Λa,Λb)⊕ Fkib,Λb
(g, j,Λa,Λb)

)
.

Party Pj identifies Λc such that T jc = T jc,Λc . If no such Λc exists the party aborts. Otherwise, each party defines
kic = Γic,Λc ⊕ h(T jc). The evaluation is completed when all the gates in the topological order are processed.

Finally given Λw for every output wire w, the parties compute for every output wire w, Λw ⊕
(⊕n

j=1 λ
j
w

)
and

decode the outcome using Dec.

This concludes the description of our protocol. We next prove the following Lemma.

29

Lemma 3.6 (MPC secure against defensible adversaries) Protocol ΠDMPC securely realizes any n-input
function f in the presence of a “defensible adversary” that always broadcasts valid defense at the end of
the third round.

Proof: Let A be a PPT defensible adversary corrupting a subset of parties I ⊂ [n], then we prove that
there exists a PPT simulator S with access to an ideal functionality F that implements f , and simulates the
adversary’s view whenever it outputs a valid defense at the end of the third round. We use the terminology
of active keys to denote the keys of the BMR garbling that are revealed during the evaluation. Inactive keys
are the hidden keys. Denoting the set of honest parties by I , our simulator S is defined below.

Description of the simulator.

• Simulating rounds 1-3. Recall that the parties engage in an instance of ΠDPOLY to realize the BMR
encoding BMR.EncodeĈ in the first three rounds. The simulator samples random inputs for the honest
parties and generates their messages using these random inputs. For every input wire that is associated
with an honest party’s input, the simulator chooses a random Λw and sends these bits to the adver-
sary as part of the 3rd message. At this point, a defensible adversary outputs a valid defense. Next
the simulator executes the following procedure to compute the fourth round messages of the honest
parties.

SimGarble(defense):

1. The simulator extracts from the defense λjw and T jw,0, T
j
w,0 ⊕ T

j
w,1 for every corrupted party Pj

and internal wire w. Finally, it obtains the vector of errors eg,jr1,r2 for every gate g, r1, r2 ∈ {0, 1}
and j ∈ I , introduced by the adversary for row (r1, r2) in the garbling of gate g.10

2. The simulator defines the inputs of the corrupted parties by using the Λw values revealed in
round 3 corresponding to the wires w carrying inputs of the corrupted parties. Namely, for each
such input wire w ∈ W , the simulator computes ρw = Λw ⊕ λw and the errors in the input
wires and fixes the adversary’s input {xI} to be the concatenation of these bits incorporating the
errors. S sends Decode(xI) to the trusted party computing f , receiving the output ỹ. S fixes
y = Encode(ỹ) (recall that Encode in the encoding of an AMD code). Let y = (y1, . . . , ym).

3. Next, the simulator defines the S?,??,? values, i.e the plaintexts in the garbled rows. Recall that the
shares of the S?,??,? values are computed using the ΠDPOLY subprotocol. Then the simulator for
the main protocol, uses the S?,??,? values that are defined by the simulation of ΠDPOLY. Next, S
chooses a random Λw ← {0, 1} for every internal wire w ∈ W . Finally, it samples a single key
kjw for every honest party j ∈ I and wire w ∈W . We recall that in the standard BMR garbling,
the simulator sets the garbled row so that for every gate g with input wires a, b and output wire
c, only the row Λa,Λb is decryptable and decrypting this row gives the single key chosen for
wire c (denoted by an active key). In our modified BMR garbling, we will essentially ensure the
same, except that we also need to simulate the errors introduced in the computation.
More formally, the simulator considers an arbitrary topological ordering on the gates. Fix some
gate g in this sequence with a, b as input wires and c as the output wire. Then, for every honest
party Pj and random values T jc,0 and T jc,1 that were involved in the computation of the S?,??,?
values for this gate within the above simulation of ΠDPOLY, the simulator defines the bits of

10The errors are bits and are extracted for each monomial where the corrupted party plays the role of P1. For simplicity of
notation we lump them all in a single vector.

30

Sg,jΛa,Λb
to be (eg,jΛa,Λb

· T jc,Λc) ⊕ (ēg,jΛa,Λb
· T j

c,Λ̄c
) if the majority of the bits in eg,jΛa,Λb

is 1 and

(ēg,jΛa,Λb
· T jc,Λc)⊕ (eg,jΛa,Λb

· T j
c,Λ̄c

) otherwise. Here ēg,jΛa,Λb
refers to the complement of the vector

eg,jΛa,Λb
and “·” is bitwise multiplication.

4. Next, it generates the fourth message on behalf of the honest parties. Namely, for every gate g
and an active row Λa,Λb, the shares of the honest parties are computed assuming the output of
the polynomials defined in the BMR encoding are Sg,jΛa,Λb

for every j masked with the PRF under

the keys kja, k
j
b as defined by R̃g,jΛa,Λb

. For the remaining three rows the simulator sends random
strings. On behalf of every honest party Pj , in addition to the shares, the fourth round message is
appended with a broadcast of the message (r, h(T jw,Λw)⊕kjw) if Λw = 1 and (h(T jw,Λw)⊕kjw, r)
if Λw = 0 where r is sampled randomly. Intuitively, upon decrypting Sg,jΛa,Λb

for any gate g, the

adversary learns the majority of the bits of T jc,Λc with which it can learn only kjc .

• The simulator sends the messages as indicated by the procedure above on behalf of the honest parties.
If the adversary provides its fourth message {R̃g,jr1,r2}j∈[n],g∈[G],r1,r2∈{0,1}, the simulator executes the
following procedure that takes as input all the messages exchanged in the fourth round, the Λw values
broadcast in the third round and the target output y. It determines whether the final output needs to be
delivered to the honest parties in the ideal world.

ReconGarble(4th round messages, Λw for every input wire w,y):

– The procedure reconstructs the garbling GCA using the shares and the keys provided. First, the
simulator checks that the output key of every key obtained during the evaluation is the active key
kjc,Λc encrypted by the simulator. In addition, the simulator checks that the outcome of GCA is
y. If both events hold, the the procedure outputs the OK message, otherwise it outputs ⊥.

• Finally, if the procedure outputs OK the simulator instructs the trusted party to deliver ỹ to the honest
parties.

Claim 3.7 REALΠDMPC,A(z),I(κ, x̂1, . . . , x̂n)
c
≈ IDEALF ,S(z),I(κ, x̂1, . . . , x̂n).

Proof: Assume for contradiction, there exists an adversary A, distinguisher D and polynomial p(·) such
that the probability with which D distinguishers the two distributions IDEALF ,S(z),I(κ, x̂1, . . . , x̂n) and
REALΠ,A(z),I(κ, x̂1, . . . , x̂n) for infinitely many κ is 1

p(κ) . Fix κ and a set of inputs for the parties for
which this happens. We design a sequence of intermediate hybrid experiments starting from the real world
leading to the ideal world and argue indistinguishability via standard hybrid arguments. More precisely, we
design q(n) hybrids below and there must be a mapping i(κ) such that D distinguishes the outputs of ith

and (i+ 1)st intermediate experiments with probability at least 1
p(κ)q(κ) .

Hybrid H0. This experiment proceeds identically to the real execution. More precisely, in H0 we consider
a simulator S0 that has all the honest parties real inputs {x̂j}j∈Ī and starts an execution with A providing it
fresh randomness and inputs {x̂j}j∈I and emulating the actions of the honest parties using the real inputs.
The output of the experiment is REALΠDMPC,A(z),I(κ, x̂1, . . . , x̂n) which consists of A’s view and the
output of honest parties. Note that the Λw values are computed correctly in the third round using the real
inputs {x̂j}j∈Ī of the honest parties.

Hybrid H1. In this hybrid, we follow the simulation strategy of ΠDPOLY. Namely, we define a simulator S1

that calls SDPOLY. We recall that SDPOLY chooses random inputs for each honest party and then follows the

31

honest protocol execution using these random inputs until the end of the 3rd round. At this point, SDPOLY is
expected to receive a valid defense which is identical to the defence in ΠDMPC. Then, upon receiving a valid
“defense” that includes the inputs and randomness that the adversary used to generate its messages, SDPOLY

extracts from that defense the effective inputs of the adversary to ΠDPOLY, and other values to help with the
rest of the simulation and forward this information to S1. Upon creating the S?,??,? values of the honest parties
that denote the garbled circuits shares, S1 completes the simulation of the third and fourth messages using
these values and the honest parties’ real inputs (recall that these inputs are needed to compute the Λw values
for every input wire that is associated with the honest parties’ inputs). Then the following claim holds,

Claim 3.8 Assuming affine homomorphic PKE with equivocation, the adversary’s view in H1 is indistin-
guishable from its view in H0.

Note that indistinguishability of H1 from H0 follows essentially from the simulation strategy for ΠDPOLY.
This in turn relies on executing the hybrids for the ΠDMULT subprotocols.

In the next set of hybrids we change the simulation of the fourth round messages for the honest parties
from using BMR.EncodeĈ to SimGarble. Next, we consider an arbitrary topological ordering on the gates
g ∈ G of the computed circuit and will inductively consider a sequence of hybrids in this ordering. We will
maintain as an invariant that while at gate g, the simulation does not require the knowledge of any inactive
key denoted by kj

w,Λ̄w
for every honest party Pj , where w is an output of a previously considered gate in this

ordering.
Fix gate g with input wires a and b and output wire c. Then, define the following two hybrids.

Hybrid Hg2. Consider an arbitrary gate g in the topological order with input wires a, b and output wire c and
fix an honest party Pj . By the topological order, kj

a,Λ̄a
and kj

b,Λ̄b
are not used in the garbling of the gates

from the set [g − 1]. Therefore, we can replace the three inactive rows that involve a PRF value under these
keys with a random string where indistinguishability follows from the pseudorandomness of the PRF. More
formally,

Claim 3.9 Assuming pseudorandomness of F, the adversary’s view in Hg2 is indistinguishable from its view
in Hg−1

2 . Where g − 1 is the gate that precedes gate g in the fixed topological ordering.

Proof: We consider two cases.

g is an input gate: In this case we note that the inactive keys kj
a,Λ̄a

and kj
b,Λ̄b

are not involved in the
construction of the garbled circuit other than in the garbled gates for which wires a or b are inputs to these
gates. This means that we can replace the three inactive rows in gate g and reduce the security to the
pseudorandomness of F. Specifically, assume by contradiction that the two views are distinguishable by an
adversaryA. We construct an adversaryAF that distinguishes the computation based on kj

a,Λ̄a
, kj
b,Λ̄b

and the
computation based on truly random functions f1, f2 in the sense of Definition 2.4.

Specifically, AF behaves like the simulator in Hg2 with the exception that it does not choose the inactive
keys kj

a,Λ̄a
and kj

b,Λ̄b
. In order to simulate the garbling of any gate g′ that precedes g (by the topological

ordering, such gates can only be input gates), AF honestly computes the active row of this gate and chooses
the remaining three rows at random. To simulate the garbling of any gate g′ that comes after g in the
topological ordering, AF generates the garbling of g′ as in Hg−1

2 . Namely, it fixes the garbing shares as
would have been generated by Pj in the real execution.

32

g is not an input gate: By the assumption that the inactive keys kj
a,Λ̄a

and kj
b,Λ̄b

are not in use, then the
reduction follows as in the previous case.

Hybrid Hg3. In this hybrid we replace the inactive T jc,β values within Γjc,β and Sg,jr1,r2 for every honest party
Pj and inactive row in the garbled circuit. More concretely, consider an honest party Pj . We recall that the
PRF keys are encrypted by hjc,β(T jc,β)⊕kjc,β using a pairwise independent hash function and a public random

string T jc,β of length 4κ. Furthermore, depending on which bits of eg,jr1,r2 are 0 and 1 bits, the adversary learns

the bits from the respective positions in either T jc,0 or T jc,1, when decrypting the garbled row (Λa,Λb) of g.
If the adversary learns less than 2κ bits of some string T jc,β , it is ensured by the leftover hash lemma that

except with probability 2−κ, the key kjc,β is hidden. If a majority of the bits in eg,jr1,r2 is 0 then we set Λc = Λ̃c

and otherwise we set Λc = 1⊕ Λ̃c where

Λ̃c = NAND(ρa, ρb)⊕ (
n⊕
i=1

λic) where

ρa = Λa ⊕ (
n⊕
i=1

λia), ρb = Λb ⊕ (
n⊕
i=1

λib).

To simulate the output of the garbled row given the errors, we sample T jc,Λc at random and set the bits of

T j
c,Λ̄c

where eg,jr1,r2 6= βj randomly. We further replace the value hj
c,Λ̄c

(Tc,Λ̄c) ⊕ kc,Λ̄c with a random string
from {0, 1}κ. We can conclude that,

Claim 3.10 Based on the pairwise independent property of hj
c,Λ̄c

. The adversary’s view in Hg3 is statistically

indistinguishable from its view in Hg−1
3 .

Note that at this point, the adversary’s view is independent of the honest parties’ inputs. This is because
the inactive keys are not part of the view and it is impossible to determine the values of which the active
keys are associated with.

Hybrid H4. In this hybrid, we modify the λjw shares of the honest parties Pj for every j ∈ Ī for the output
wires. Recall that these values are revealed in the fourth round and influence the “translation table” (namely,
the output is identified by Λw⊕ (⊕nj=1λ

j
w)). In the previous hybrid these values were honestly revealed as in

the real world. In this hybrid we first extract the input of the adversary and its additive errors on the circuit
wires and evaluate Ĉ′ under this input while incorporating the errors on the wires, and finally fix the output
to be the result of this computation.

In more detail, in order to extract the adversary’s input for each input wirew ∈W that is associated with
a corrupted party’s input, the simulator computes ρw = Λw ⊕ λw and fixes the adversary’s input {xI} to be
the concatenation of these bits incorporating the errors. Next, to extract the errors on the intermediate wires
of the computation under Ĉ′, the simulator computes ew = Λ̃w ⊕Λw where Λ̃w corresponds to the “correct
value” as defined above. Finally, to fix the output of the computation, let y = (y1, . . . , ym) be the result of
the computation. Then, for the tth output wire w, S samples shares λjw for the honest parties Pj ∈ Ī subject
to (
⊕n

i=1 λ
i
w) = Λw ⊕ yt.

The output of H4 is identically distributed to the output of H3 as by construction, the actual computation
performed while evaluating the garbled circuit matches the computation under Ĉ′ with errors A = {ew}w.

33

Hybrid H5. In this hybrid we follow the simulation strategy. Namely, the simulator extracts the adversary’s
input, sends Decode(xI) to the trusted party computing f and receives the output ỹ. S fixes y = Encode(ỹ).
Let y = (y1, . . . , ym). Moreover, S defines (

⊕n
i=1 λ

i
w) = Λw ⊕ yt for the tth output wire w. Statistical

indistinguishability of this experiment from the previous experiment follows directly from the additive se-
curity of Ĉ′ as established in [GIW16]]. Furthermore, this hybrid produces a distribution according to
IDEALF ,S(z),I(κ, x̂1, . . . , x̂n). �

4 MPC in Four Rounds

Our maliciously secure protocol is built on the four-round defensible multiplication protocol for the BMR
encoding function BMR.EncodeĈ from Section 3.3, ΠDMPC. To enforce correct behavior we also rely on: (1)
A specific instantiation of the three-round weak one-many non-malleable commitment scheme against syn-
chronizing adversaries (cf. Definition 2.11), with messages nmcom = (nmcom[1], nmcom[2], nmcom[3]).
We rely on the three-round protocol implicit in [GRRV14] described in Appendix B. (2) A two-round reset-
table reusable witness indistinguishable proof (cf. Definition 2.12, built from ZAPs), where we denote the
messages by ZAP = (ZAP[1],ZAP[2]).

At a high level, the parties use non-malleable commitments to commit to their inputs, their randomness
for the BMR encoding, and (most of) their randomness in ΠDMPC. They run a ZAP proof for “proving
correct behavior” in ΠDMPC, where correct behavior is defined the same way as the defense in the previous
section (cf. the languageL∗Pi in the DEFENSE step in Protocol 2). This is meant to narrow down the potential
attacks that the adversary can mount to essentially just what a defensible adversary can do (and those we
know how to handle as per the previous section). The structure of our protocol is as follows:

Base protocol ΠDMPC: The core of our protocol involves executing the ΠDMPC protocol in the 4 rounds.

Non-malleable commitments: Every partyPi runs two executions of non-malleable commitments nmcom0
i,j ,

nmcom1
i,j with every other party Pj in the first three rounds.

Let witi be a witness for Pi’s actions in ΠDMPC, as needed for the defense in this protocol. Pi chooses
two random strings w0

i,j , w
1
i,j , and uses the GRRV protocol to commit to them separately, in two

commitment protocols. In the third round, together with the last messages of nmcom0
i,j , nmcom1

i,j , Pi
also sends w̃0

i,j := witi ⊕ w0
i,j and w̃1

i,j := witi ⊕ w1
i,j , respectively.11

ZAPs from Round 1 to Round 2 (ZAPENC): Every party Pi proves to every other party Pj in the first two
rounds that it generated correctly all the public keys and ciphertexts in the first round of ΠDMPC.

ZAPs from Round 2 to Round 3 (ZAPCOM): Every party Pi proves to every other party Pj from Round 2
to Round 3 that at least one of nmcom0

i,j , nmcom1
i,j is a valid commitment to a valid witness. Namely

for some b ∈ {0, 1}, nmcomb
i,j is a valid commitment to a value wbi,j such that w0

i,j ⊕ w̃0
i,j is a valid

witness for the language L∗Pi from Protocol 2 in the previous section.12

11This is essentially the technique of Ciampi et al. [COSV16], adjusting these commitment schemes to handle delayed inputs.
12 It is important to include a proof that nmcomb

i,j is a valid commitment in the ZAP, since the GRRV subprotocol does not
ensure this.

34

4.1 Proof Overview and Highlights

On a high-level, we will follow the proof structure of ΠDMPC protocol. First we recall the simulator for
ΠDMPC. The honest party’smessages for the ΠDPOLY subprotocol are simulated by choosing random inputs
and then the fourth round is simulated only using the defense provided by the adversary. Importantly, the
random inputs chosen for ΠDPOLY are independent of the fourth round message generated for the honest
parties. The simulator for our protocol in this section is an extension of the simulator for ΠDMPC that addi-
tionally generates the non-malleable commitments and ZAPs (using random inputs for the honest parties),
and uses rewinding to extract the “defense.”

Proving indistinguishability of our simulation involves the set of hybrid experiments considered for
ΠDMPC, interspersed with additional hybrid experiments to deal with rewinding and non-malleability.

First we recall the hybrid experiments for the ΠDMPC protocol at a high-level. Let INPBMR denote the
inputs used by the honest parties in the real world for the ΠDPOLY subprotocol and let RND be the inputs
chosen by the simulator. The proof consists of three main steps:

1. The first step consists of hybrids where the challenger generates the fourth round messages for honest
parties using INPBMR and the “defense” of the adversary, but does not use any of the intermediate
values obtained in the execution of ΠDPOLY. Recall that in any instance of the ΠDMULT subprotocol of
ΠDPOLY, party P3 relies on its intermediate values to determine its output shares used in generating the
fourth message. For P1 and P2, the outputs s1 and s2 can also be generated using the inputs chosen
for the honest parties and the defense provided by the adversary. (These are hybrids H2 and H4 in the
proof of ΠDMULT in Section 3.1.

2. In the second step, the inputs for the honest parties in the ΠDPOLY subprotocol are switched from
INPBMR to RND. We remark here that the fourth round message is still computed using INPBMR

in these set of hybrids. This involves running through the hybrids in the proof of Lemma 3.1 for
each ΠDMULT instance in the ΠDPOLY subprotocol. (These are hybrids H4 through H7 in the proof of
ΠDMULT in Section 3.1.)

3. In the last step, we switch the fourth round message from the real to the simulated garbling cir-
cuit. The real garbled circuit is constructed according to BMR.EncodeĈ, while the simulated gar-
bled circuit follows the procedure SimGarble from the proof of Lemma 3.6. (These are hybrids
{Hg2}g∈[G],H3,H4,H5 from the proof of ΠDMPC in Section 3.3.)

The hybrids for the protocol in this section will follow the same three steps. In fact, the first and third
steps remain the same. The main technical challenge is executing the hybrids for the second step. This
involves decoupling the inputs used in the ΠDPOLY from the fourth round message. The main issue is that
this is affected by the non-malleable commitments and ZAPs that depend on the inputs and randomness used
in the ΠDPOLY subprotocol. Crucially, since we do not rely on zero-knowledge, the challenger must possess
a valid witness whenever it needs to generate the ZAP proofs on behalf of the honest parties.

We now discuss this second step in more detail, referring to the hybrids from the proof of ΠDMULT in
Section 3.1. We describe this for each of the three parties P1, P2 and P3 as they involve slightly different set
of intermediate hybrid experiments.

Switching P1’s input from x1 to x′1: Recall that P1 uses its input x1 in the first message of the protocol
and we switch this in two steps. First, we switch the u value to a random u′ used to generate C1

γ [1]
and C2

γ [1] in Hybrid H5 and then switch x1 to x′1 in H6. This is needed since we cannot carry out a
reduction to the semantic security of the underlying encryption scheme while producing the correct u.

35

Switching P2’s input from x2 to x′2: If P1 and P3 generate their first messages correctly (meaning the key
generation was correct), then x2 is statistically hidden because of the randomization due to r2.

Switching P3’s input from x3 to x′3: This involves switching the ciphertexts generated by P3 one by one
from an encryption of x3 to an encryption of x′3.

In the following we focus on the first three rounds where we highlight how to perform the reductions
specified above in our final protocol. We begin with the three-round non-malleable commitment scheme
that we employ.

GRRV Non-malleable commitment [GRRV14]. We will rely on a three-round non-malleable commitment
scheme implicit in the work of GRRV. This protocol has the form (Commit, Challenge, Response). Given
a man-in-the-middle synchronized adversary, engaging in one left commitment as the receiver and many
right commitments as the committer, the non-malleability guarantee of the GRRV subprotocol guarantees
that when the commitment “on the left” (received by a MIM adversary) is valid, the value “on the right”
(committed by the MIM adversary) can be extracted and is independent of the left commitment. Additionally
we will rely on the fact that the third round, namely the response message is “simulatable”. See Appendix
B for the details of this commitment scheme and a formalism of the “simulatable” property.

Real execution. In the real execution the values Λw in the third round of ΠDMPC are computed using the
inputs INPBMR for the BMR encoding, and the real input INPx.

Ideal execution. In the ideal execution, the simulator honestly generates the messages on behalf of the
honest parties. In the BMR part, the simulation is carried out by sampling random inputs RND for the
BMR encoding, honestly committing to a defense using nmcom and completing the ZAP proofs using the
committed valid defense. The only difference in the simulation is that the Λw values are generated at random,
independently of INPBMR and INPx. Consequently, the simulator can simulate the first three rounds just by
following the honest strategy with input RND, including all the ZAPs.

Our protocol employ two instances of the nmcom where in the real world, the honest parties commit to
their defenses according to INPBMR whereas in the ideal world, the simulator commits to defenses according
to RND. We consider a sequence of intermediate hybrid experiments where we switch from INPBMR to RND
both in the nmcom as well as in the actions of the honest parties in ΠDPOLY subprotocol.

Premature rewinding. Towards this, in our intermediate hybrid experiments, we will introduce an addi-
tional rewinding phase, referred to as the premature rewinding phase. In this phase, the “challenger” extracts
a “trapdoor,” which is used in the main execution. The trapdoor is essentially the secret decryption keys of
the adversary. More precisely, the challenger first simulates the first round of the protocol, then rewinds
the second and third rounds until it extracts the trapdoor from the adversary. Once it has the trapdoor, it
rewinds to the end of the first message, and then completes the main execution to determine the view of the
adversary (depending on the hybrid). Note that, executing premature rewinding requires that the challenger
knows some witness for the ZAP proofs in rounds 2-3. This does not pose an issue for the challenger, since
it knows the “real” INPBMR and can use it during premature rewinding. It is only the simulator, who does
not do premature rewinding, that lacks knowledge of INPBMR.

As stated above, we employ two instances of nmcom, each committing to either INPBMR or RND,
where in some of the hybrids we have two additional instances due to the premature rewinding phase (again,
each using either INPBMR or RND). We thus can describe each hybrid by a tuple that specify the input
used in each of these instances. For example (−,−; INPBMR, INPBMR) denotes the real execution without
premature rewinding, whereas (INPBMR, INPBMR;RND,RND) denotes a hybrid in which the challenger
uses (INPBMR, INPBMR) in the premature rewinding phase and (RND,RND) in the main execution, etc. We

36

also sometimes use GRB to denote a “garbage value” that the challenger does not know and does not need
to use.

Importantly, the challenger cannot use RND (or GRB) in the premature rewinding phase, since it can
only produce a ZAP for it after running premature rewinding and extracting a witness. Similarly, the chal-
lenger can use RND in the main execution only if it was able to extract a witness in the premature rewind-
ing phase. However, it is “legitimate” to extract a trapdoor using, e.g., (GRB, INPBMR) in the premature
rewinding phase, and then use the extracted trapdoor to generate a transcript for (RND,RND) in the main
execution.

Our goal is to show that (−,−; INPBMR, INPBMR) generated in a real execution is indistinguishable
from (−,−;RND,RND) generated in the simulation. We continue with several observations:

1. For anyW,X, Y, Z ∈ {INPBMR,RND,GRB}, the only difference between the view in the two hybrids
(−,−;Y,Z) and (W,X;Y,Z) (i.e., with or without premature rewinding) is that in the later, the
challenger may fail to extract a trapdoor in the premature rewinding phase and hence aborts rather than
continue to the main phase. We therefore need to set the failure probability low enough (by setting the
number of rewinding attempts high enough), relative to the distinguishing advantage between these
hybrids.

Namely, if we want to show that the distinguishing advantage between these hybrids is bounded below
some ε (which we assumed toward contradiction is non-negligible), and we are dealing with an ad-
versary that completes the proof with probability δ (also non-negligible), then the challenger needs to
rewind n times such that (1−δ)n � ε. This will ensure that we have SD((−,−;Y,Z), (W,X;Y,Z)) ≤
ε as needed.13

2. For any Y, Z ∈ {INPBMR,RND} and any hybrid (INPBMR, INPBMR;Y,Z), we can always replace
one of the INPBMR by GRB, and get an indistinguishable view by a reduction to the hiding property of
the non-interactive commitment in the first round of GRRV. This game is formalized in Appendix B.
Namely

(GRB, INPBMR;Y,Z)
c
≈ (INPBMR, INPBMR;Y,Z)

c
≈ (INPBMR,GRB;Y, Z).

3. For any X,Y, Z ∈ {INPBMR,RND}, it holds that

(INPBMR,GRB;X,Y)
c
≈ (INPBMR,GRB, X, Z)

by a reduction to the weak non-malleability of GRRV. Namely, as long as the challenger does not need
to use any information about the internals of the GRB commitment, we can setup a reduction where
this commitment comes “from the outside”, and the reduction needs to tell if it commits to Y or to Z.
In the reduction, we receive the first message for Y or Z and treat it as GRB, then we carry out the
premature rewinding locally, without sending the second round message, and only when we manage
to extract the trapdoor we complete the reduction sending the second and third messages.

A similar argument shows that (GRB, INPBMR;Y,X)
c
≈ (GRB, INPBMR;Z,X).

Using these observations, we can show a chain of indistinguishable hybrids between a real execution
(−,−; INPBMR, INPBMR) and an ideal execution (−,−;RND,RND) as follows:

13In our proof of security we assume that the challenger knows ε. This allows us to prematurely rewind only a fixed (but
sufficiently more than 1/ε) number of times.

37

(− ,− ; INPBMR, INPBMR)
c
≈ (1) (INPBMR, INPBMR; INPBMR, INPBMR)
c
≈ (2) (INPBMR, GRB; INPBMR, INPBMR)
c
≈ (3) (INPBMR, GRB; INPBMR, RND)
c
≈ (2) (INPBMR, INPBMR; INPBMR, RND)
c
≈ (2) (GRB, INPBMR; INPBMR, RND)
c
≈ (3) (GRB, INPBMR; RND, RND)
c
≈ (1) (−, −; RND, RND)

As a final remark, we note that the preceding discussion is a simplified view of the hybrids that high-
lights the main ideas behind premature rewinding and non-malleability. Additional intermediate hybrids are
required to switch the ZAP witness. For instance, in the sequence above, the ZAP witness will be switched
from depending on the first non-malleable commitment to the second between (INPBMR, INPBMR; INPBMR,RND)
and (GRB, INPBMR; INPBMR,RND) hybrids.

4.2 Four-Round Actively Secure MPC Protocol

In this section we formally describe our protocol.

Protocol 3 (Actively secure protocol ΠMPC)

INPUT: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively, and a circuit Ĉ.

• LOCAL PRE-PROCESSING: Each party Pi chooses a random MAC key αi and sets xi = Encode(x̂i, αi). Let
κ be the length of the resulting xi’s, and we fix the notation [xi]j as the jth bit of xi. Next Pi chooses all
the randomness that is needed for the BMR encoding of the circuit Ĉ. Namely, for each wire w, Pi chooses
the masking bit λiw ∈ {0, 1}, random wire PRF keys kiw,0, k

i
w,1 ∈ {0, 1}κ, random functions from a pairwise

independent hash family hiw,0, h
i
w,1 : {0, 1}4κ → {0, 1}κ and random hash inputs T iw,0, T

i
w,1 ∈ {0, 1}4κ.

Then, for every non-output wire w and every gate g for which w is one of the inputs, Pi computes all the PRF
values Θi,w,g

j,r1,r2
= Fkiw,r1

(g, j, r1, r2) for j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The values λiw, T iw,r, and Θi,w,g
j,r1,r2

,

will play the role of Pi’s inputs to the protocol that realizes the BMR encoding BMR.EncodeĈ.)

The parties identify the set of 3-monomials that should be computed by the BMR encoding BMR.EncodeĈ and
enumerate them by integers from [M]. Moreover, each party Pi identifies the set of monomials, denoted by Seti,
that depends on any of its inputs (λiw, T iw,r, or Θi,w,g

j,r1,r2
). As described in Section 3.3, each Pi also determines

the role, denoted by Role(t, i) ∈ {P1, P2, P3}, that it plays in the computation of the t-th monomial(which is
set to ⊥ if Pi does not participate in the computation of the t-th monomial).

• ROUND 1: For i ∈ [n] each party Pi proceeds as follows:

– Engages in an instance of the three-round non-malleable commitment protocol nmcom with every other
party Pj , committing to arbitrarily chosen values w0,i, w1,i. Denote the messages sent within the first
round of this protocol by nmcom0

i,j [1],nmcom1
i,j [1], respectively.

– Broadcasts the message Πi,j
DMPC[1] to every other party Pj .

– Engages in a ZAP protocol with every party other Pj for the NP language L′Role(t,i) defined in Section
3.1, for every monomial in case Role(t, i) ∈ {P1, P3}. Note that the first message, denoted by ZAPENC

i,j [1]
is sent by Pj (so Pi sends the first message to all the Pj’s for their respective ZAPs).

38

• ROUND 2: For i ∈ [n] each party Pi proceeds as follows:

– Sends the messages nmcom0
i,j [2] and nmcom1

i,j [2] for the second round of the respective non-malleable
commitment.

– Engages in a ZAP protocol with every other party Pj for the NP language LRole(t,i) defined in Section 3.1
for every monomial Mt. As above, the first message, denoted by ZAPCOM

i,j [1] is sent by Pj (so Pi sends
the first message to all the Pj’s for their respective ZAPs).

– Sends the message Πi,j
DMPC[2] to every other party Pj .

– Sends the second message ZAPENC

i,j [2] of the ZAP proof for the language L′Role(t,i).

• ROUND 3: For i ∈ [n] each party Pi proceeds as follows:

– Sends the messages nmcom0
i,j [3], nmcom1

i,j [3] for the third round of the respective non-malleable com-
mitment. For b ∈ {0, 1} define the NP language:

Lnmcom =
{
nmcom∗i,j [1], nmcom∗i,j [2], nmcom∗i,j [3]|

∃ b ∈ {0, 1} and (wi, ρi) s.t. nmcomb
i,j = nmcom(wi; ρi)

}
.

– Chooses w̃0,i and w̃1,i such that ∀t ∈ [Seti], w0,i+w̃0,i = w1,i+w̃1,i = witi where witi is the witness of
transcript (trans0Role(1,i)|| . . . ||trans

0
Role(|Seti|,i)||trans

0
nmcom) and Role(t, i) ∈ {P1, P2, P3}, where transb?

is as defined in Section 3.1.

– Generates the message ZAPCOM

i,j [2] for the second round of the ZAP protocol relative to the NP language

LRole(1,i) ∧ . . . ∧ LRole(|Seti|,i) ∧ Lnmcom ∧
(
wb,i + w̃b,i = witi

)
where LRole(·,i) is defined in protocol 1.

– Broadcasts the message Πi,j
DMPC[3] to every other party Pj .

For every j ∈ [n], let {S`,j}`∈M be the output of party Pj for the M degree-3 polynomials. It reassembles the
output shares to obtain Sg,jr1,r2 for every garbled row r1, r2 and gate g.

• ROUND 4: Finally, broadcasts the message Πi,j
DMPC[4] to every other party Pj .

• OUTPUT: As defined in ΠDMPC.

This concludes the description of our protocol. We next prove the following theorem.

Theorem 4.1 (Main) Assuming the existence of affine homomorphic encryption (cf. Definition 2.5) and
enhanced trapdoor permutations, Protocol ΠMPC securely realizes any n-input function f in the presence of
static, active adversaries corrupting any number of parties.

4.3 Security Proof

Proof: Let A be a PPT adversary corrupting a subset of parties I ⊂ [n], then we prove that there exists a
PPT simulator S with access to an ideal functionality F that implements f , and simulates the adversary’s
view. Denoting the set of honest parties by I , our simulator S is defined below.

The description of the simulator.

39

• S samples random inputs {x′i}i∈Ī for the honest parties and completes the first three rounds following
the honest strategy using these inputs. We denote by RND the random inputs chosen for ΠDPOLY

subprotocol in the first three rounds. It further plays the role of an honest committer and prover
for the non-malleable commitments and ZAP proofs. Finally, the simulator sends the Λw values for
every input wire of an honest party, computed based on the random inputs {x′i}i∈Ī and RND. If the
adversary aborts before completing the third round or the verification of the ZAP proofs fails, the
simulator halts outputting the adversary’s view.

• Otherwise the simulator rewinds the adversary to extract a valid defense within the non-malleable
commitments. Namely, it executes the extractor provided by the non-malleable commitment that
rewinds the execution to the end of the first round and plays the second round with new challenges.
The honest party’s messages are played according to the inputs chosen for them. The extractor repeat-
edly rewinds until it extracts the committed values (namely, the defences). If it runs longer than 2κ/2

steps, the simulator aborts outputting fail.

• Upon extracting the defense for every monomial and corrupted party that participated in this compu-
tation, the simulator extracts from the defense the adversary’s input and the errors introduced in the
computation as in the simulation for ΠDMPC, and sends this input to F . Upon receiving the response
from the functionality, the simulator uses the procedure SimGarble defined for SDMPC to generate the
fourth round messages of the honest parties, which it feeds to the adversary. If the adversary sends
its fourth round message, S runs the ReconGarble procedure defined for SDMPC to determine whether
the honest parties receive the output.

Claim 4.1 REALΠMPC,A(z),I(κ, x̂1, . . . , x̂n)
c
≈ IDEALF ,S(z),I(κ, x̂1, . . . , x̂n).

Proof: Assume for contradiction, there exists an adversary A, distinguisher D and polynomial p(·) such
that the probability with which D distinguishers the two distributions IDEALF ,S(z),I(κ, x̂1, . . . , x̂n) and
REALΠMPC,A(z),I(κ, x̂1, . . . , x̂n) for infinitely many κ is 1

p(κ) . Fix κ and a set of inputs for the parties for
which this happens. We design a sequence of intermediate hybrid experiments starting from the real world
leading to the ideal world and argue indistinguishability via standard hybrid arguments. More precisely, we
design q(n) hybrids below and there must be a mapping i(κ) such that D distinguishes the outputs of ith

and (i+ 1)st intermediate experiments with probability at least 1
p(κ)q(κ) .

Hybrid H0. This experiment proceeds identically to the real execution. More precisely, in H0 we consider
a simulator S0 that has all the honest parties real inputs {xj}j∈Ī and starts an execution with A providing it
fresh randomness and inputs {xj}j∈I and emulating the actions of the honest parties using the real inputs.
We denote by INPBMR the inputs used in the underlying ΠDPOLY protocol on behalf of the honest parties.
The output of the experiment is REALΠMPC,A(z),I(κ, x̂1, . . . , x̂n) which consists ofA’s view and the output
of honest parties. Note that the Λw values are computed correctly using INPBMR and {xj}j∈Ī .

Hybrid H1. This experiment proceeds identically to H0 with the following exception: the simulator will try
to extract the adversary’s defenses {wit∗i }i∈[I] by rewinding the non-malleable commitment. In more detail,
the simulator S1 proceeds as follows:

• It completes the first three rounds exactly as in H0. IfA aborts before delivering the third message for
some corrupted party, then the simulator halts. Otherwise it proceeds to extraction.

40

• The simulator will extract the inputs and defenses from the corrupted parties by rewinding the non-
malleable commitment made by the corrupted parties (to honest parties). Recall that the non-malleable
commitment is executed from the first round and completes in the third round.

In more detail, S1 constructs a committer C∗ for nmcom that internally incorporates A and simulates
all messages for A, except those corresponding to (each execution of) nmcom where the adversary
controls the committer, which it forwards to an external party. Treating each commitment made by the
corrupted party as an honest commitment, using the weak one-many non-malleability property, the
simulator rewinds from third to second round to extract the message in the commitment. We are able
to apply the weak one-many non-malleability property since the protocol demands a ZAP proof from
the committer ensuring that one of the two commitments is well-formed. Recall that between every
pair of parties Pi and Pj , two non-malleable commitments are made by Pi to Pj . For every corrupted
party Pi, the simulator chooses an honest party Pj and tries to extract one of the two commitments
made by Pi to Pj in parallel until one of them succeeds (If it runs too long, say 2κ/2 time steps,
it aborts). If extraction succeeds, let nmcomb be the well-formed commitment, upon receiving the
third round message {w̃b,i}i∈[I] and leveraging the extracted values {wb,i}i∈[I] S1 defines {wit∗i }i∈I
as follows:

wit∗i = wb + w̃b

If two valid commitments were obtained, the simulator tries to obtain a defense from both messages
and chooses the valid one (if one exists and at random if both are valid).

• S1 completes the final round as in H0.

It follows from the proceeding argument that the outputs of H0 and H1 are identically distributed con-
ditioned on the extraction procedure not failing. From the soundness of the ZAP, we know that except with
negligible probability, at least one of the two non-malleable commitments will be well-formed and therefore
the extractor will succeed in expected polynomial time. Furthermore, by the soundness argument of the
ZAP it is also ensured that the extracted defense is valid. This implies that S1 aborts only with negligible
probability which, in turn, means that the outputs of H0 and H1 are statistically close. Therefore, we have
the following claim:

Claim 4.2 The adversary’s view in H1 is statistically indistinguishable from its view in H0.

Proof: It suffices to argue that S1 runs in expected polynomial time. Let p0 and p1 be the probability with
which A completes the third round and submits a commitment of a valid defense in nmcom0 and nmcom1

respectively. Then the expected number of rewinding executions is bounded byO(p0· 1
p0

+p1· 1
p1

). Therefore,
the expected number of rewinding executions till another non-aborting rewinding happens is constant. Thus
the extractor for nmcom runs in expected time poly(κ)/pwhich means that the probability that the simulator
takes longer than 2κ/2 steps is negligible. Therefore, we can conclude that the simulator succeeds except
with negligible probability.

Hybrid H2. This experiment proceeds identically to the previous experiment until the third round after a
defense has been extracted. Then, in the fourth round, the messages of the honest parties are generated
differently. In H1 the fourth round messages were computed by following the honest strategy. In H2 we
will rely on the defense extracted from the adversary and the real inputs for the honest parties. Specifically,
the simulator obtains λjw and T jw,0, T

j
w,0 ⊕ T

j
w,1 for every corrupted party Pj and wire w that is an output of

some NAND gate. Finally, it obtains the error eg,jr1,r2 for every gate g, r1, r2 ∈ {0, 1} and j ∈ I , where eg,jr1,r2

41

is a vector of errors introduced by the adversary for the plaintext encrypted in row (r1, r2) in the garbling of
gate g. Using this defense and the inputs and randomness of the honest parties, S2 will generate the fourth
round message on behalf of the honest parties. More precisely, the simulator first determines the S?,??,? values
using the honest parties inputs and defense provided by the adversary. Then, following the same procedure
as in hybrid H3 in Section 3.1 it generates the shares in the fourth round for the honest parties.

Following the claim made in hybrid H3 in Section 3.1, we can conclude here that the shares of the honest
parties in these two hybrids are identically distributed, conditioned on successfully extracting a valid defense
from the adversary. Therefore, we have the following claim.

Claim 4.3 The adversary’s view in H2 is statistically indistinguishable from its view in H1.

In the next sequence of hybrids, we will modify the inputs of the honest parties in the different instances
of the subprotocol ΠDPOLY employed in ΠDMPC. In these hybrids, we will switch from generating the honest
parties’ messages in the first three rounds using INPBMR to RND where recall that INPBMR are the original
inputs chosen for the honest party (and consistent with how the fourth message is generated) while RND are
the fake inputs chosen by the simulator for the ΠDPOLY subprotocol. However, we will continue to generate
the fourth round messages using the original inputs INPBMR chosen for the honest parties. At the end of
the next set of hybrids, we would have decoupled the fourth round message from the inputs used in the
ΠDMULT instances in the first three rounds. Following this we will replace the garbled circuit from being
constructed honestly to a simulated garbled circuit following the hybrids in the proof of Lemma 3.6. For
ease of comparison with the hybrids in Section 3.1, we will denote P1, P2 and P3’s input in the multiplication
protocol by x1, x2, x3 for inputs chosen according to INPBMR and x′1, x

′
2, x
′
3 for inputs chosen according to

RND.14

• First, we consider a sequence of hybrids where in each ΠDMULT instance where P1 is controlled by an
honest party, we will modify its action in C1

γ [2] and C2
γ [2] so that instead of using u as the input (which

was computed from C1
α[2],C2

α[2]), we will use a random u′. This will additionally involve switching
the ZAP witness to use u′ instead of u.

• Next, we consider a sequence of hybrids where in each ΠDMULT instance where we switch P1’s input
in C2

α[1] from x1 to x′1.

• Following, this we consider a sequence of hybrids, where we perform an analogous change to P3’s
input in C2

β[1] and C2
γ [1] when controlled by an honest party from x3 to x′3.

• Finally, we generateP2’s messages when controlled by an honest party in such a way that the simulator
will possess both witnesses for demonstrating its actions according to x2 and x′2.

• Now, we will be in a position to switch the ZAP witness generated using the inputs INPBMR to being
generated according to RND.

• Then we go through the hybrids in a reverse order where we switch the other witness to correspond
to RND. Now, the actions of all honest parties in the first three rounds are consistent with the honest
strategy on input RND.

14In particular, this should not be confused with the inputs of the parties to the bigger ΠMPC protocol.

42

Interlude. The simulation in the next sequence of hybrids will involve a premature rewinding phase. In
more detail, the simulator stalls the simulation in the main thread after the first round messages are ex-
changed and proceeds to rewinding in the premature rewinding phase. The purpose of the rewinding is
to obtain some trapdoor information before simulating the second and third messages in the main thread.
The trapdoor can be extracted from the messages in the non-malleable commitments just as in the previous
hybrids. Premature rewinding is problematic, in general, as we do not know the number of times we need
to rewind. In the previous hybrids (and in the actual simulation) we rewinded the adversary until we suc-
cessfully extracted the defences. However, such a rewinding was employed only if in the main execution
the adversary completes the first three messages of the protocol. Conditioning on this event, namely, not
aborting in the third round, allows us to argue that the expected number of rewindings will be polynomial.
In premature rewinding however we rewind without such conditioning.

Nevertheless, since we employ premature rewinding only in the intermediate hybrids (and specifically
not in the final simulation), as we demonstrate next, it will suffice to rewind only a fixed polynomial number
of times. This is because we can allow a distinguisher dependent simulation in intermediate hybrids. In
more detail, by way of contradiction, there is a distinguisher that distinguishes the real and simulated worlds
with probability 1

p(κ) . This means that the distinguishing probability cannot be smaller than 1
q(κ)p(κ) for

all two intermediate hybrids, where q(κ) is the total number of intermediate hybrids. If we now consider
a simulation in the intermediate hybrids which cuts off the rewinding phase after some fixed polynomial
number of rewinding attempts, then we can argue that the simulation fails only with some small probability.
This means that we still have a distinguisher that can distinguish the hybrids with non-negligible probability
even conditioned on the simulation failing.

In slight more detail, we will cut off the rewinding phase after 8q(κ)p(κ) steps and argue that the
simulation error is bounded by 1

4q(κ)p(κ) . Suppose that the adversary does not abort before the third round
with probability ε. Then we have two cases depending on whether ε is bigger than 1

4q(κ)p(κ) or not. If
ε < 1

4q(κ)p(κ) , then simply outputting aborting transcripts simulates the hybrid with the required probability.
If ε > 1

4q(κ)p(κ) , then the probability that the simulator fails to extract in 8q(κ)p(κ) attempts is negligible.
Now we proceed to these intermediate hybrid experiments.

Intermediate hybrids with premature rewinding. We consider a sequence of hybrids where we first
replace the inputs entered by an honest P1 in the individual ΠDMULT instances. Then we proceed to replace
the inputs of honest P2 and P3. Throughout these hybrids, we employ premature rewinding and generate
the fourth round message using the real inputs of the honest parties, namely {xi}i∈Ī .

More formally, for every honest party Pi such that i ∈ Ī and every t-th monomial such that Role(t, i) =
1, consider the following intermediate experiments.

Hybrid H1,j
3 (INPBMR,GRB; INPBMR, INPBMR). This experiment proceeds identically to H2 with the ex-

ception that the non-malleable commitment nmcom1
i,j is simulated differently. Specifically, the value com-

mitted within nmcom1
i,j by the honest party P1 in ΠDMULT, played by Pi and sent to some (corrupted) party

Pj , is switched from w1 to a random value R. In particular the messages w̃1 sent in the third round will
not satisfy the condition for which R + w̃1 is a valid defense. Next, the simulator performs a premature
rewinding to obtain a valid defense. We remark that this defense will be used to compute a second witness
for the honest party but not used to generate the fourth round message.

In more detail, consider a simulator S1,j
3 that proceeds as follows. Upon sending the first message in

the main thread, the simulator stalls the main thread and proceeds to rewinding in the premature rewinding
phase. As mentioned above, in the premature rewinding the simulator invokes the extractor and guarantees
correct extraction with probability at least 1− 1

4q(κ)p(κ) . In the rewinding, the simulator generates the third

43

message of nmcom1
i,j internally by assuming that the value committed in the first message is according to

w1. We remark that the success probability of the rewinding will not be affected (with more than negligible
probability) whether the first message was generated according to w1 or R because otherwise the hiding
of the commitment in the first round would be violated. When completing the premature extraction, the
simulator proceeds to the main thread and completes the execution until the third round. Then we can use
the non-malleability reduction to extract the message committed to by the adversary which, in turn, is used
to extract another defense and complete the fourth message as in the previous hybrid.

Claim 4.4 The adversary’s view in H1,j
3 is indistinguishable from its view in H2.

Proof: The indistinguishability of these experiments follows by a relying on the weak one-many non-
malleability against synchronizing adversaries property of the underlying non-malleable commitment scheme.
In more detail, we employ the simulation described above with the exception that the non-malleable com-
mitment nmcom1

i,j will be received from an external committer in the weak one-many non-malleability
game. On the right, the simulator forwards all the non-malleable commitments made by the adversary.
For the premature rewinding phase, the simulator forwards the first message from this non-malleable com-
mitment internally to generate the first round. Then it performs the premature rewinding. Recall that the
input and randomness for nmcom1

i,j is not used internally in the premature rewinding. After the premature
rewinding phase, the simulator continues with the main thread where the second and third messages for
the non-malleable commitment nmcom1

i,j are exchanged with the external challenger and all non-malleable
commitments made by the adversary forwarded on the right. Now we employ the extractor provided by the
non-malleable commitment to extract the values committed by the adversary from which a valid defense can
be extracted. This is used to generate the fourth message. Suppose that the distinguisher distinguishes H1,j

3

from H2 with probability 1
p(κ)q(κ) , then it distinguishes the simulated experiments with probability at least

1
p(κ)q(κ) − 2 · 1

4p(κ)q(κ) = 1
2p(κ)q(κ) . This will contradict the one-many non-malleability property. �

Hybrid H2,j
3 (INPBMR,GRB; INPBMR,RND). This experiment proceeds identically to H1,j

3 with the excep-
tion that w̃1 is generated in the third round of the main thread will be such that w1 (that is in the simulator’s
head) and w̃1 add up to a second defense for the messages C1

γ [2] and C2
γ [2] involving u and s1 of ΠDMULT

protocol. Recall from the proof of Claim 3.3 in Protocol 1 that if we compute C1
γ [2] and C2

γ [2] using a ran-
dom bit u′ instead of the actual bit u, the view of the adversary remains statistically indistinguishable using
the equivocation property of the encryption and the randomization by s1. A second defense can therefore be
obtained for a random u′ by using the equivocation property if the trapdoors are known (which are obtained
via premature rewinding).

In more detail, the simulator proceeds honestly using u and s1 to generate all messages honestly except
w̃1. Instead for w̃1, the simulator samples random u′, computes s′1 = (u−u′)x3+s1 and generates a defense
for C1

γ [2] and C2
γ [2] according to u′, s′1 from the equivocation trapdoors obtained from the defense provided

for P3. To recap, in this hybrid, after the premature extraction and obtaining the second defense, the sim-
ulator S3 will resume the main thread and complete the execution by setting w̃1 such that w1 + w̃1 is the
second defense for a random u′. The only difference between the H1,j

3 and H2,j
3 is in how the third message

is generated. Using the equivocation property of the underlying encryption scheme and statistical indepen-
dence of u from the first three messages as proved in Claim 3.3, we have that the simulator always succeeds
in obtaining the second witness except with negligible probability conditioned on the premature rewinding
succeeding. Furthermore, as we have replaced the non-malleable commitment nmcom1

i,j to commit to a
random string R, w1 (that is chosen uniformly at random) is independent of the view of the adversary which
in turn means w̃1 revealed in the third message is identically distributed in both the hybrids. Therefore, we
have the following the claim.

44

Claim 4.5 The adversary’s view in H1,j
3 is statistically indistinguishable from its view in H2,j

3 .

Hybrid H3,j
3 (INPBMR, INPBMR; INPBMR,RND). In this experiment the simulator proceeds identically as in

the previous hybrid, with the exception that it reverts the change made in H1,j
3 , namely, S3,j

3 will follow the
honest strategy by committing to the value w1 (instead of random R). Indistinguishability follows from the
weak non-malleability property of the commitment scheme. Recall that premature rewinding will provide
the second witness.

In the main thread, the adversary receives a commitment to R in the previous hybrid and to w1 in the
current hybrid. We thus arrive at a contradiction by relying on the weak non-malleability property of the
underlying non-malleability commitment scheme. Therefore, we have the following claim.

Claim 4.6 The adversary’s view in H3,j
3 is indistinguishable from its view in H2,j

3 .

Hybrid H4,j
3 . This experiment proceeds identically to H3,j

3 with the exception that the witness used in the
ZAP proof is changed from the witness with u to the witness with u′. Indistinguishability will follow directly
from the resettable reusable witness indistinguishability of the ZAP. Just as in the previous two hybrids, we
will rely on premature rewinding to extract the second defense. Therefore, we have the following claim:

Claim 4.7 The adversary’s view in H4,j
3 is indistinguishable from its view in H3,j

3 .

We are now at a hybrid where the witness used in the ZAP contains a defense for u′ which is a random
value, rather than the actual value u obtained from C1

α[2],C2
α[2].

Hybrid H5,j
3 −H

7,j
3 . Next, we consider a set of experiments analogous to H1,j

3 -H3,j
3 , where we will switch the

first non-malleable commitment nmcom0
i,j and w̃0 such that w0 + w̃0 equals to the second witness. Namely,

we consider (GRB, INPBMR; INPBMR,RND), (GRB, INPBMR;RND,RND) and (−,−;RND,RND) distri-
butions in these hybrids.

At this point we have that both w0 + w̃0 = w1 + w̃1 provide a defense for P1’s actions in C1
γ [2] and

C2
γ [2] according to the randomly chosen value u′.

Hybrid H8,j
3 . This experiment is identical to H7,j

3 with the exception that the witness used in the ZAP proof
is changed from using nmcom1

i,j to nmcom0
i,j . Indistinguishability follows directly from the resettable

reusable witness indistinguishability of the ZAP as in H4,j
3 .

Hybrid H1,j
4 . This experiment is identical to hybrid H8,j

3 with the exception that the non-malleable com-
mitment nmcom1

i,j is simulated differently. First the value committed by the honest party in nmcom1
i,j is

switched from w1 to a random value R. We will perform premature rewinding where internally we use the
value w1 to simulate the third message of nmcom1

i,j . We run the extractor for the non-malleable commit-
ment to obtain a valid defense from the adversary to simulate the fourth round. Indistinguishability follows
directly from the weak non-malleability property of the commitment scheme.

Hybrid H2,j
4 . Identical to H1,j

4 except that we remove the inputs on behalf of the honest party Pi (acting as
P1) from C1

α[1] from x1 to a x′1. Indistinguishability follows from the semantic security of the encryption
scheme as in Hybrid H6 in Section 3.1. Note that the sequence of H?,?3 hybrids were needed to address the
“u” problem. Namely, the effect of the current hybrid will lead to an incorrect (unknown) value for u, and
by changing the correct u to a random u′ in the previous hybrids we avoided this problem.

45

Hybrid H3,j
4 . This experiment proceeds identically to H2,j

4 with the exception that w̃1 generated in the third
round will be such that w1 + w̃1 (where w1 is in the simulator’s head) equal to the second defense for the
messages C1

α[1] and C2
α[1], namely x′1 used in C2

α[1]. Indistinguishability follows essentially as in hybrid
H2,j

3 .

Hybrid H4,j
4 . This experiment is identical to hybrid H3,j

4 with the exception that it reverts the change made
in H1,j

4 , namely, S4,j
4 will follow the honest strategy by committing to the value w1 in nmcom1

i,j (instead of
R). Indistinguishability follows as in hybrid H1,j

4 .
At the end of hybrid H4,j

4 , we have changed the inputs of P1 for every multiplication instance where P1

is controlled by an honest party from what was chosen in the real execution x1 to a random input x′1.
Next, we consider the scenario where P2 is controlled by an honest party. The sequence of hybrids

involved in replacing its input from x2 to x′2 will be analogous to the sequence H1,j
3 to H3,j

3 where we set
up nmcom1

i,j and w̃1 such that w1 + w̃1 contains a defense for x′2. This sequence is simpler as we do not
have to decouple any locally computed value such as u from the simulation before we change the input. We
will rely on the equivocation property of the encryption scheme, the same way as we did for P1 to obtain
the second defense.

Following this sequence, we consider the scenario where P3 is controlled by an honest party. The
sequence of hybrids involves replacing its input from x3 to x′3 will be analogous to the sequence H1,j

4 to
H4,j

4 .
Now, we have that w1 + w̃1 is a defense according to RND and w0 + w̃0 is a defense according to

INPBMR. Now we consider a hybrid where we switch the witness in the ZAP statement from a defense
according to INPBMR to a defense according to RND. We replace the ZAP witness for both the proofs that
conclude in the second step as well as the third step. Indistinguishability will rely on the reusable resettable
WI property of the ZAP.

Next, we consider a sequence of hybrids in a reverse order so that w0 + w̃0 is a valid defense for RND
followed by switching the ZAP witness using w0, w̃0.

Conclusion. This completes our hybrids that rely on the premature rewinding phase. Now, we have switched
the inputs and actions of the honest party in the first three rounds from using INPBMR to RND. The next
sequence of hybrids involves changing the simulation of the Λw values and the fourth messages. Thus far,
these message have been correctly according to the inputs INPBMR for the honest party, namely, the garbled
circuit and the input encoding are constructed according to BMR.EncodeĈ. The next set of hybrids will
involve switching these messages from the honest party using SimGarble and then relying on ReconGarble
to determine whether the outputs should be delivered to the honest parties in the ideal world. We simply
repeat the hybrids Hg2,H3,H4,H5 from the proof of protocol ΠDMPC and the proof of indistinguishability
follows identically. Once we execute these hybrids, our final hybrid models the real simulator and this
concludes the proof. �

Acknowledgements

Following Ananth et. al. [ACJ17], we would like to acknowledge Yuval Ishai’s contribution in the three-bit
three-round multiplication protocol employed in this work. We would also like to thank Daniel Genkin,
Yuval Ishai and Mor Weiss for several discussions on binary AMD resilient circuits.

46

References
[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to round-optimal secure

multiparty computation. In CRYPTO, pages 468–499, 2017.

[AIK06a] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing polynomials
and their applications. Computational Complexity, 15(2):115–162, 2006.

[AIK06b] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. SIAM J. Comput.,
36(4):845–888, 2006.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. In EUROCRYPT, pages 483–501, 2012.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115, 2001.

[BGJ+17a] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and
Amit Sahai. Promise zero knowledge and its applications to round optimal mpc. IACR Cryptology
ePrint Archive, 2017:1088, 2017.

[BGJ+17b] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit Sahai. Round
optimal concurrent MPC via strong simulation. To Appear TCC, 2017.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation without
setup. In TCC, pages 645–677, 2017.

[BL17] Fabrice Benhamouda and Huijia Lin. k-round mpc from k-round ot via garbled interactive circuits. IACR
Cryptology ePrint Archive, 2017:1125, 2017.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In STOC, pages 503–513, 1990.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (ab-
stract). In CRYPTO, page 462, 1987.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extractors. In EUROCRYPT, pages
471–488, 2008.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent non-malleable com-
mitments (and more) in 3 rounds. In CRYPTO, pages 270–299, 2016.

[COSV17a] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input non-malleable
zero knowledge and multi-party coin tossing in four rounds. In TCC 2017, 2017.

[COSV17b] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal secure two-party
computation from trapdoor permutations. In TCC, pages 678–710, 2017.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In CRYPTO, pages 378–394, 2005.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520,
2006.

47

[DJ01] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of paillier’s proba-
bilistic public-key system. In Public Key Cryptography, pages 119–136, 2001.

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput., 36(6):1513–1543, 2007.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indistin-
guishability obfuscation. In TCC, pages 74–94, 2014.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In STOC, pages 495–504, 2014.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party computation: From
passive to active security via secure SIMD circuits. In CRYPTO, pages 721–741, 2015.

[GIW16] Daniel Genkin, Yuval Ishai, and Mor Weiss. Binary amd circuits from secure multiparty computation.
In TCC, pages 336–366, 2016.

[GKP17] Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. On the exact round complexity of self-
composable two-party computation. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part II, pages 194–224, 2017.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact round
complexity of secure computation. In EUROCRYPT, pages 448–476, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University Press, 2004.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In STOC, pages 695–
704, 2011.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach to non-
malleability. In FOCS, pages 41–50, 2014.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation from minimal
assumptions. IACR Cryptology ePrint Archive, 2017:1156, 2017.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box constructions
of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubramaniam. Composable
security in the tamper-proof hardware model under minimal complexity. In TCC, pages 367–399, 2016.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining
BMR and oblivious transfer. To Appear ASIACRYPT, 2017.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial hardness. In TCC,
pages 139–171, 2017.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party computation with
a dishonest majority. In EUROCRYPT, pages 578–595, 2003.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-way function. In
STOC, pages 705–714, 2011.

48

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In EU-
ROCRYPT, pages 735–763, 2016.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously circuit-private
FHE. In CRYPTO (1), volume 8616 of Lecture Notes in Computer Science, pages 536–553. Springer,
2014.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In STOC,
pages 232–241, 2004.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

A Secure Multi-Party Computation

We briefly present the standard definition for secure multi-party computation and refer to [Gol04, Chapter
7] for more details and motivating discussions. A multi-party protocol problem is cast by specifying a
random process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a
process as a functionality and denote it f : {0, 1}∗ × · · · × {0, 1}∗ → {0, 1}∗ × · · · × {0, 1}∗, where
f = (f1, . . . , fn). That is, for every tuple of inputs (x1, . . . , xn), the output-vector is a random variable
(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) ranging over tuples of strings where Pi receives fi(x1, . . . , xn). We
use the notation (x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) to describe a functionality.

We prove the security of our protocols in the settings of honest-but-curious and malicious computation-
ally bounded adversaries. Security is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario. In the ideal scenario, the computation involves an incorrupt-
ible trusted third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Informally, the protocol is secure if any adversary
interacting in the real protocol (i.e., where no trusted third party exists) can do no more harm than what it
could do in the ideal scenario.

A.1 The Honest-but-Curious Setting

In this model the adversary controls one of the parties and follows the protocol specification. However, it
may try to learn more information than allowed by looking at the transcript of messages that it received and
its internal state. Let f = (f1, . . . , fn) be a multi-party functionality and let π be a multi-party protocol for
computing f . The view of the ith party in an execution of π on inputs (x1, . . . , xn) is

Viewπ,i(x1, . . . , xn) = (xi, ri,m
i
1, . . . ,m

i
t),

where ri is the content of the first party’s internal random tape, and mi
j represents the jth message that it

received. The output of the ith party in an execution of π on (x1, . . . , xn) is denoted Outputπ,i(x1, . . . , xn)
and can be computed from Viewπ,i(x1, . . . , xn). We denote the set of corrupted parties by I ⊂ [n] and the

49

set of honest parties by Ī . We extend the above view notation to capture any subset of parties, denoting by
Viewπ,T (κ, x1, . . . , xn) the joint views of all parties in T on (κ, x1, . . . , xn).

Definition A.1 Let f and π be as above. Protocol π is said to securely compute f in the presence of honest-
but-curious adversaries if for every I ⊂ [n] there exists a probabilistic polynomial-time algorithm S such
that

(S({xi, fi(κ, x1, . . . , xn)}i∈I), {fi(κ, x1, . . . , xn)}i/∈I)κ∈N,xi∈{0,1}∗
c
≈ {(Viewπ,I(κ, x1, . . . , xn),Outputπ,Ī(κ, x1, . . . , xn))}κ∈N,xi∈{0,1}∗

where κ is the security parameter.

A.2 The Malicious Setting

Execution in the ideal model. In an ideal execution, the parties submit inputs to a trusted party, that
computes the output. An honest party receives its input for the computation and just directs it to the trusted
party, whereas a corrupted party can replace its input with any other value of the same length. Since we
do not consider fairness, the trusted party first sends the outputs of the corrupted parties to the adversary,
and the adversary then decides whether the honest parties would receive their outputs from the trusted party
or an abort symbol ⊥. Let f be a multi-party functionality where f = (f1, . . . , fn), let A be a non-
uniform probabilistic polynomial-time machine, and let I ⊂ [n] be the set of corrupted parties. Then, the
ideal execution of f on inputs (κ, x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
IDEALf,A(z),I(κ, x1, . . . , xn), is defined as the output pair of the honest party and the adversary A from
the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
polynomial-time strategy. The honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a multi-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the
real execution of π on inputs (κ, x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
REALπ,A(z),I(κ, x1, . . . , xn), is defined as the output vector of the honest parties and the adversaryA from
the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure protocol (in
the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying that
adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition A.2 Let f and π be as above. Protocol π is said to securely compute f with abort in the presence
of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model, such that
for every I ⊂ [n],{

IDEALf,S(z),I(κ, x1, . . . , xn)
}
κ∈N,xi,z∈{0,1}∗

c
≈
{

REALπ,A(z),I(κ, x, y)
}
κ∈N,xi,z∈{0,1}∗

where κ is the security parameter.

50

The F-hybrid model. In order to construct some of our protocols, we will use secure multi-party protocols
as subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact
with each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when
constructing a protocol π that uses a subprotocol for securely computing some functionality F , we consider
the case that the parties run π and use “ideal calls” to a trusted party for computing F . Upon receiving the
inputs from the parties, the trusted party computes F and sends all parties their output. Then, after receiving
these outputs back from the trusted party the protocol π continues.

Let F be a functionality and let π be a multi-party protocol that uses ideal calls to a trusted party
computing F . Furthermore, let A be a non-uniform probabilistic polynomial-time machine. Then, the
F-hybrid execution of π on inputs (x1, . . . , xn), auxiliary input z to A and security parameter κ, denoted
HπF ,A(z)(κ, x1, . . . , xn), is defined as the output vector of the honest parties and the adversary A from
the hybrid execution of π with a trusted party computing F . By the composition theorem of [Can00] any
protocol that securely implements F can replace the ideal calls to F .

B Non-Malleable Commitments for Premature Rewinding

For completeness, we repeat the non-malleable commitment subprotocol of Goyal et al. [GRRV14]. Con-
sider the following protocol between a committer C with input message m and a receiver R and an identity
id. The protocol employs an instance of a non-interactive commitment protocol Com.

Round 1: C → R : Select ri ∈ Fq (i ∈ [n]) uniformly at random. Send commitments Com(m),Com(r1)
, . . . ,Com(rn).

Round 2: R → C : Select a random challenge αi ∈ [2ti] ⊂ Fq (i ∈ [n]) where t1, . . . , tn are deterministi-
cally chosen based on the identity id.

Round 3: C → R : Send ai = riαi +m (i ∈ [n]).

In this subprotocol, observe that there is no proof of validity in the nm itself, so the response in the
third message from an adversarial committer can be incorrect. The full protocol of [GRRV14] includes a
zero-knowledge proof at the end where the committer proves that the response was correctly computed. In
our work, the first three rounds will suffice. More precisely, as stated in Khurana [Khu17], this three round
sub-protocol satisfies the weak one-many non-malleability against synchronizing adversaries. We repeat
this definition below.

Definition B.1 (One-Many weak non-malleable commitments with respect to synchronizing adver-
saries [Khu17]) A statistically binding commitment scheme 〈C,R〉 is said to be one-many weak non-
malleable with respect to synchronizing adversaries, if there exists a probabilistic over-extractor Enmcom

parameterized by ε, that given a PPT synchronizing MIM which participates in one left session and p =
poly(κ) right sessions, and given the transcript of a main-thread interaction τ , outputs a set of values
m1,m2, . . .mp in time poly(n, 1/ε). These values are such that:

• For all j ∈ [p], if the jth commitment in τ is a commitment to a valid message uj , then mj = uj over
the randomness of the extractor and the transcript, except with probability ε/p.

• For all j ∈ [p], if the jth commitment in τ is a commitment to some invalid message (which we will
denote by ⊥), then mj need not necessarily be ⊥.

51

We present a high-level intuition of why the GRRV subprotocol satisfies this definition. We need an
extractor that can extract values from the (multiple) commitments made by the adversary A while receiving
(a valid) commitment on the left (made honestly). The extractor can be instantiated using the extractor E
provided in GRRV (cf. [GRRV14] eprint 2014/586, Figure 3, page 15). We apply this procedure to each
commitment made by A on the right. Theorem 2 from GRRV ensures that when the commitment on the
right is valid, the extractor succeeds in extracting the correct message (except with small probability). In our
protocol, between every party Pi and Pj , Pi commits using two instances of GRRV, and from the soundness
of the ZAP at least one of the two is a valid commitment, so the extractor from that copy will succeed.
Moreover, the extracted value in our case is a “defense”, i.e., an explanation of some other parts of the
protocol, and it is enough for the overall “challenger” to get a single explanation in order to continue the
protocol. Hence we don’t care if we get over-extraction for invalid commitments, as long as we can extract
a valid “defense” from at least one of the commitments.

Additionally, we require that our non-malleable commitment satisfy a simulatable property for the last
message which is satisfied by the GRRV sub-protocol. Roughly speaking, this property requires that the
following games are indistinguishable for b = 0 and b = 1, for any pair of messages m0 and m1:

Game(b): Sample r1, . . . , rn ∈ Fq. Challenger generates first message of GRRV subprotocol usingmb, r1, . . . , rn.
The adversary repeatedly sends challenge messages for the GRRV subprotocol and the challenger re-
sponds according to m0, r1, . . . , rn.

It is easy to see that the indistinguishability of the games follows directly from the hiding property of
the non-interactive commitment schemes used to generate the first message. We remark that this is similar
to the property described (and required) in the work of Garg et al. [GKP17].

52

	Introduction
	Our Results
	Our Techniques
	A Sketch of the Final Protocol
	Other Technical Issues

	Related and Concurrent Work

	Additional Preliminaries
	Additive Secret-Sharing
	Pseudorandom Functions
	Affine Homomorphic PKE
	An Instantiation Based on LWE
	An Instantiation Based on DDH
	An Instantiation Based on QR
	An Instantiation Based on DCR

	Tag Based Mon-Malleable Commitments
	Additive Attacks and AMD Circuits
	The BeaverMR90 Garbling

	Warmup MPC: The Case of Defensible Adversaries
	Step 1: 3-Bit Multiplication with Additive Errors
	Step 2: Arbitrary Degree-3 Polynomials
	Step 3: Arbitrary Functionalities

	MPC in Four Rounds
	Proof Overview and Highlights
	Four-Round Actively Secure MPC Protocol
	Security Proof

	Secure Multi-Party Computation
	The Honest-but-Curious Setting
	The Malicious Setting

	Non-Malleable Commitments for Premature Rewinding

