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Abstract

In this work, we abstract some key ingredients in previous key exchange protocols based
on LWE and its variants, by introducing and formalizing the building tool, referred to as key
consensus (KC) and its asymmetric variant AKC. KC and AKC allow two communicating
parties to reach consensus from close values obtained by some secure information exchange.
We then discover upper bounds on parameters for any KC and AKC. KC and AKC are
fundamental to lattice based cryptography, in the sense that a list of cryptographic primitives
based on LWE and its variants (including key exchange, public-key encryption, and more)
can be modularly constructed from them. As a conceptual contribution, this much simplifies
the design and analysis of these cryptosystems in the future.

We then design and analyze both general and highly practical KC and AKC schemes, which
are referred to as OKCN and AKCN respectively for presentation simplicity. Based on KC
and AKC, we present generic constructions of key exchange (KE) from LWR, LWE, RLWE
and MLWE. The generic construction allows versatile instantiations with our OKCN and
AKCN schemes, for which we elaborate on evaluating and choosing the concrete parameters in
order to achieve a well-balanced performance among security, computational cost, bandwidth
efficiency, error rate, and operation simplicity.

∗Preliminary version appears at arXiv: https://arxiv.org/abs/1611.06150.
†School of Computer Sciences, Johns Hopkins University, USA. Work mainly done while at Fudan University,

Shanghai, China. zzjin13@fudan.edu.cn.
‡School of Computer Science, Fudan University, Shanghai, China. ylzhao@fudan.edu.cn

1

https://arxiv.org/abs/1611.06150


Contents

1 Introduction 4
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Applications to AKE and KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Advantages and Disadvantages of OKCN vs. AKCN . . . . . . . . . . . . . . . . . 7
1.4 On Novelty of AKCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Concurrent and Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 The LWE, LWR, and RLWE problems . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Key Consensus with Noise 11
3.1 Efficiency Upper Bound of KC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Construction and Analysis of OKCN . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Special Parameters, and Performance Speeding-Up . . . . . . . . . . . . . . 15

4 Asymmetric Key Consensus with Noise 16
4.1 Construction and Analysis of AKCN . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Simplified Variants of AKCN for Special Parameters . . . . . . . . . . . . . 18

5 LWR-Based Key Exchange from KC and AKC 20
5.1 Security Proof of LWR-Based Key Exchange . . . . . . . . . . . . . . . . . . . . . 20
5.2 Analysis of Correctness and Error Rate . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Parameter Selection and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Proposed Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Security Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 LWE-Based Key Exchange from KC and AKC 28
6.1 Noise Distributions and Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1.1 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Instantiations, and Comparisons with Frodo . . . . . . . . . . . . . . . . . . . . . . 31

6.2.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Hybrid Construction of Key Exchange from LWE and LWR 33
7.1 Security and Error Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 RLWE-Based Key Exchange from KC and AKC 35
8.1 Combining AKCN with Lattice Code in D̃4 . . . . . . . . . . . . . . . . . . . . . . 36
8.2 On the Independence of Errors in Different Positions . . . . . . . . . . . . . . . . . 37
8.3 Reducing Error Rate with Single-Error Correction Code . . . . . . . . . . . . . . . 41

8.3.1 Single-Error Correction Code . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3.2 AKC and KC with SEC code . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.4 Reducing Error Rate with Lattice Code in E8 . . . . . . . . . . . . . . . . . . . . . 43
8.4.1 Combining AKCN with Lattice Code in E8 . . . . . . . . . . . . . . . . . . 43

8.5 On the Desirability of OKCN/AKCN-SEC and OKCN/AKCN-E8 . . . . . . . . . 47

2



9 MLWE-Based Key Exchange from KC and AKC 47
9.1 Generic Construction of MLWE-Based KE . . . . . . . . . . . . . . . . . . . . . . . 48
9.2 Error Rate Analysis and Parameter Selection . . . . . . . . . . . . . . . . . . . . . 49

A Consensus Mechanism of Frodo 53

B Consensus Mechanism of NewHope 53

C Proof of Corollary 3.2 53

D On KC/AKC vs. Fuzzy Extractor 53

E Overview of the Primal and Dual Attacks 55

F Security Estimation of the Parameters of Frodo 56

G Security Analysis of LWE-Based Key Exchange 56

H Construction and Analysis of AKCN-4:1 59
H.1 Overview of NewHope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
H.2 Construction and Analysis of AKCN-4:1 . . . . . . . . . . . . . . . . . . . . . . . . 60

I Implementing HxT in SEC with Simple Bit Operations 61

3



1 Introduction

Most public-key cryptosystems currently in use, based on the hardness of solving (elliptic curve)
discrete logarithm or factoring large integers, will be broken, if large-scale quantum computers are
ever built. The arrival of such quantum computers is now believed by many scientists to be merely
a significant engineering challenge, and is estimated by engineers at IBM to be within the next
two decades or so. Historically, it has taken almost two decades to deploy the modern public key
cryptography infrastructure. Therefore, regardless of whether we can estimate the exact time of
the arrival of the quantum computing era, we must begin now to prepare our information security
systems to be able to resist quantum computing. In addition, for the content we want to protect
over a period of 15 years or longer, it becomes necessary to switch to post-quantum cryptography
today. This has been recognized not only by the cryptography research community, but also by
standardization bodies and leading information companies. As noted in [ADPS16,AJS16], in the
majority of contexts the most critical asymmetric primitive to upgrade to post-quantum security
is ephemeral key exchange (KE).

Lattice-based cryptography is among the major mathematical approaches to achieving se-
curity resistant to quantum attacks. For cryptographic usage, compared with the classic hard
lattice problems such as SVP and CVP, the learning with errors (LWE) problem is proven to
be much more versatile [Reg09]. Nevertheless, LWE-based cryptosystems are usually less effi-
cient, which was then resolved by the introduction of the ring-LWE (RLWE) problem [LPR13a].
In recent years, large numbers of impressive works are developed from LWE and RLWE, with
(ephemeral) key exchange and public-key encryption being the study focus of this work [JD12,
Pei14, BCNS15, ADPS16, BCD+16, Reg09, GPV08, LP10, LPR13a, LPR13b, PG13]. For an excel-
lent survey of lattice-based cryptography, the reader is referred to [Pei16].

Some celebrating progresses on achieving practical LWE- and RLWE-based ephemeral key
exchange are made in recent years. The performance of RLWE-based key exchange is significantly
improved with NewHope [ADPS16], which achieves 256-bit shared-key with error rate about 2−61.
The negligible error rate of NewHope is achieved by decoding the four-dimensional lattice D̃4.
Compared to LWE, the additional ring structure of RLWE helps to improve the efficiency of
cryptosystems, but the concrete hardness of RLWE remains less clear. The work [BCD+16]
proposes a key exchange protocol Frodo only based on LWE, and demonstrates that LWE-based
key exchange can be practical as well. Nevertheless, bandwidth of Frodo is relatively large, as
Frodo uses about 22kB bandwidth for its recommended parameter set. In addition, Frodo has
relatively large error rates, and cannot be directly used for PKE. Whether further improvements
on LWE- and RLWE-based key exchange can be achieved remains an interesting question of
practical significance.

One of the main technical contributions in the works [ADPS16,BCD+16,PG13], among others,
is the improvement and generalization of the key reconciliation mechanisms [Pei14, JD12].1 But
the key reconciliation mechanisms were only previously used and analyzed, for both KE and
PKE, in a non-black-box way. This means, for new key reconciliation mechanisms developed in
the future to be used for constructing lattice-based cryptosystems, we need to analyze the security
from scratch. Also, for the various parameters involved in key reconciliation, the bounds on what
could or couldn’t be achieved are unclear.

1To our knowledge, the key reconciliation mechanism in [Pei14] is the first that fits our KC definition (the
mechanism in [JD12] requires the distance be of special types). The Lindner-Peikert mechanism implicitly presented
for PKE [LP10] is the first that fits our AKC definition. The reader is referred to [ADPS16b] for a detailed survey
on key exchange from LWE and RLWE.
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1.1 Our Contributions

In this work, we abstract some key ingredients in previous LWE- and RLWE-based key exchange
protocols, by introducing and formalizing the building tool, referred to as key consensus (KC)
and its asymmetric variant AKC. KC and AKC allow two communicating parties to reach con-
sensus from close values obtained by some secure information exchange, such as exchanging their
LWE/RLWE samples. We then discover upper bounds on parameters for any KC and AKC, and
make comparisons between KC/AKC and fuzzy extractor [DORS08]. KC and AKC are funda-
mental to lattice based cryptography, in the sense that, as shown in [Pei14], a list of cryptographic
primitives based on LWE or RLWE (including authenticated key exchange, public-key encryp-
tion, and more) can be modularly constructed from them. Specifically, KC is more suitable for
achieving key exchange protocols, which can be transformed into authenticated key exchange via
the SIGMA mechanism [Kra03]; AKC is more suitable for constructing public-key encryption
and key transport schemes, which can be transformed into CCA-secure ones in the random oracle
(RO) model via the FO-transformation and its variants [FO13,AGKS05,Pei14]. As a conceptual
contribution, this much simplifies the design and analysis of these cryptosystems in the future.
We then design and analyze both general and highly practical KC and AKC schemes, which are
referred to as OKCN and AKCN respectively for presentation simplicity.

Based on KC and AKC, we present generic constructions of key exchange from LWR, LWE,
RLWE and MLWE with delicate analysis of error rates. Then, for the instantiations of these
generic constructions with our OKCN and AKCN schemes, we elaborate on evaluating and choos-
ing the concrete parameters in order to achieve a well-balanced performance among security,
computational efficiency, bandwidth efficiency, error rate, and operation simplicity.

• We propose the first construction of key exchange merely based on the LWR problem
with concrete analysis and evaluation, to the best of our knowledge.2 In particular, we
provide a delicate approach to calculating its error rate. A salient feature of LWR-based
key exchange protocols is their bandwidth efficiency, for instance, about 16.19kB at the
level of at least 128-bit quantum security (in the sense of resistance against the best known
quantum attacks).

• When applied to LWE-based cryptosystems, OKCN can directly result in more practical or
well-balanced schemes of key exchange. To further save bandwidth, we make a thorough
analysis of the variant where some least significant bits of LWE samples are chopped off,
which results in, for instance, 18.58kB bandwidth at the level of at least 128-bit quantum
security. Chopping off some least bits of LWE samples can only improve the actual security
guarantee in reality, but complicates the analysis of error rates.

• When applied to RLWE-based cryptosystems, to the best of our knowledge, AKCN can
lead to the most efficient KE protocols with shared-key of size of at least 512 bits (which is
necessary for ensuring 256-bit post-quantum security in reality). We first use the technique
of NewHope to further lower the error rate, by decoding the four-dimensional lattice D̃4,
but at the price of achieving only 256-bit shared key. We then develop new approaches
to lower the error rate of RLWE-based KE for achieving shared key of size at least 512
bits. Firstly, we make a key observation on RLWE-based key exchange, by proving that
the errors in different positions in the shared-key are almost independent. Then, based

2We note that the concurrent (subsequent) work [CKLS16] implies a key exchange based on both a variant of
LWE and a variant of LWR, which also uses our AKCN protocol proposed in this work. However, the analysis
in [CKLS16] does not applied to the case of KE based merely on LWR.
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|K| bw.(kB) err. pq-sec

OKCN-LWR 256 16.19 2−30 130
OKCN-LWE 256 18.58 2−39 134

Frodo 256 22.57 2−38.9 130

Table 1: Brief comparison between OKCN-LWE/LWR and Frodo. |K| refers to the size in bits
of the shared key; “bw.(kB)” refers to bandwidth in kilo bytes; “err.” refers to the error rate, and
“pq-sec” refers to the best known quantum attack against the underlying lattice problem.

upon this observation, we present a super simple and fast code, referred to as single-error
correction (SEC) code, to correct at least one bit error. By equipping OKCN/AKCN with
the SEC code, we achieve the simplest (up to now) RLWE-based key exchange, from both
OKCN and AKCN, with negligible error rate for much longer shared-key size; for instance,
OKCN-based implementation for 765-bit shared-key with bandwidth of 3136 bytes at error
rate 2−68.4 and about 250-bit post-quantum security, and AKCN-based implementation for
765-bit shared-key with bandwidth of 3392 bytes at error rate 2−54.4 and about 258-bit
post-quantum security. To further improve the bandwidth, error rate and post-quantum
security simultaneously, we develop new lattice code in E8, based on which we achieve
AKCN-based KE for 512-bit shared-key with bandwidth of 3360 bytes at error rate 2−63.3

and about 262-bit post-quantum security.

• Finally, when applying OKCN/AKCN to MLWE-based KE, they result in the (up-to-date)
most efficient lattice-based key exchange protocols for 256-bit shared-key. Moreover, as
noted in [BDK+17], MLWE-based implementations are very flexible and versatile, for in-
stance, the recommended (resp., light) implementation of KE has bandwidth 1856 (resp.,
1312) bytes at error rate 250.1 (resp., 2−36.2) and 183-bit (resp., 116) post-quantum security.

|K| bw.(B) err. pq-sec

OKCN-RLWE-SEC-1 765 3136 2−68.4 250
OKCN-RLWE-SEC-2 765 3392 2−61 258

NewHope 256 3872 2−61 255

AKCN-RLWE-SEC-1 765 3264 2−68.4 250
AKCN-RLWE-SEC-2 765 3520 2−61 258

AKCN-RLWE-E8 512 3360 2−63.3 262
NewHope-Simple 256 4000 2−61 255

Table 2: Brief comparison between OKCN/AKCN-RLWE and NewHope.

|K| bw.(B) err. pq-sec

OKCN-MLWE-KE 256 1856 2−50.1 183
OKCN-MLWE-PKE-1 256 1952 2−80.3 183
OKCN-MLWE-PKE-2 256 2048 2−166.4 171

AKCN-MLWE-PKE (Kyber) 256 2272 2−142.7 171

Table 3: Brief comparison between OKCN/AKCN-MLWE and Kyber.
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All the main protocols developed in this work are implemented. The code and scripts, together
with those for evaluating concrete security and error rates, are available from Github http:

//github.com/OKCN. Besides theoretical analysis, much efforts in this work were also put on
implementation and concrete evaluation.

1.2 Applications to AKE and KEM

KC-based KE protocol can be viewed as the equivalent of traditional Diffie-Hellman. It means
that, as discussed in [Pei14], it can be transformed into an authenticated key exchange (AKE)
protocol via the SIGMA mechanism [Kra03], and is well suitable to be integrated into more ad-
vanced protocols like IKE and TLS. As discussed in [Pei14], KC-based KE protocol can in turn be
transformed into a CCA-secure key-encapsulation mechanism (KEM) via the FO-transformation
and its variants [FO13,AGKS05,Pei14].

AKC-based KE protocol is actually a key transport protocol, which directly yields CPA-
secure KEM (and CCA-secure KEM via the FO-transformation). A concrete MLWE-based CCA-
secure KEM from our AKCN is presented in [BDK+17], by using a specific variant of the FO-
transformation proposed in [HHK17]. Following the generic paradigm for achieving AKE from
public-key encryption, a concrete AKE protocol based on KEM is also proposed in [HHK17].

For all the OKCN/AKCN-based KE protocols developed in this work, when they are used for
KEM or PKE, the first-round message from the initiator corresponds to the public key.

1.3 Advantages and Disadvantages of OKCN vs. AKCN

Above all, with OKCN and AKCN, we provide a general framework for achieving key exchange
and public-key encryption from lattice (specifically, LWE and its variants: LWR, RLWE, MLWE),
in a systemized and modular way. Secondly, we provide a set of practical yet powerful tools for
dealing with noise: OKCN, AKCN, single-error correction code and lattice code in E8, which we
suggest may play a basic role in the future design and analysis of cryptographic schemes from
LWE and its variants. Also, to the best of our knowledge, AKC-based key exchange (actually,
key transport) was firstly formalized in this work.

But cryptosystems based upon OKCN and AKCN have different performances and features
in different settings.

• OKCN-based KE can be viewed as the equivalent of Diffie-Hellman in the lattice world,
while AKCN-based KE is not. Specifically, with AKCN, the responder can predetermine
and set the shared-key at its wish. But AKCN can be directly used for CPA-secure KEM.

• It is well recognized that monoculture is bad for security, and that AKE protocol via
the SIGMA mechanism takes advantages over PKE-based AKE (e.g., symmetry, post-ID,
privacy, modular and diversified deployments, etc). For instance, the first generation of
IKE is a PKE-based AKE, but the second generation moves to SIGMA-based AKE.

• OKCN-based KE is more versatile, and is more appropriate for incorporating into the
existing standards like IKE and TLS that are based on Diffie-Hellman via the SIGMA
mechanism. In view that OKCN is better suitable for incorporating into IKE and TLS, it
should be more desirable to employ the same OKCN mechanism for public-key encryption,
for the sake of system simplicity and easy deployment.
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• On the same parameters (q,m, g) as specified in Section 3 and 4 (which implies the same
bandwidth), OKCN-based KE has lower error rate than AKCN-based KE. Or, on the same
parameters (q,m, d) (which implies the same error rate), OKCN-based KE has smaller
bandwidth than AKCN-based KE. This comparison is enabled by the upper-bounds on
these parameters developed in Section 3 and 4.

• Similarly, on the same parameters (q,m, g) (which implies the same bandwidth), OKCN-
based KEM has lower error rate than AKCN-based KEM. On the same parameters (q,m, d)
(which implies the same error rate), the bandwidth of OKCN-based KEM is at least as good
as that of AKCN-based KEM.3

• For KE of 256-bit shared-key, OKCN/AKCN-MLWE is the most efficient. But for KE with
shared-key of size 512 bits or more (which is necessary for ensuring 256-bit post-quantum
security in reality), OKCN/AKCN-RLWE is the most efficient.

• Compared to RLWE and MLWE, the LWE and LWR problems have fewer algebraic struc-
tures that can be exploited by attacks. As noise sampling is relatively cumbersome for
lattice-based cryptography, LWR-based KE may be more desirable in this sense.

1.4 On Novelty of AKCN

AKCN is clearly a generalization of the basic Lindner-Peikert reconcilation mechanism, and its
design was also inspired by the design of our OKCN and the work [PG13].4 To the best of our
knowledge, the exact formula of AKCN was first explicitly expressed in our work, which is also
the most general AKC scheme up to now. The formulation of AKC, its necessary properties
for CPA-secure KEM, and its upper-bound on the various parameters are also first (explicitly)
presented in this work.

1.5 Concurrent and Subsequent Work

We note that the CPA-secure PKE scheme, Lizard, proposed in [CKLS16] is actually instantiated
from our AKCN scheme presented in Algorithm 4, where the two close values are derived from
generating and exchanging spLWE and spLWR samples in an asymmetric way. Specifically, the
public key is generated with spLWE samples, while ciphertext is generated with spLWR samples.
However, the underlying AKC mechanism in the spLWE/spLWR based PKE scheme analyzed
in [CKLS16] is actually an instantiation of our AKCN scheme for the special case of m|g|q, where
g (resp., m) in AKCN corresponds to p (resp., t) in [CKLS16].

OKCN, AKCN, AKCN4:1, and LWE-based key exchange from OKCN/AKCN were originally
posted at arXiv on 18 November 2016 (https://arxiv.org/abs/1611.06150). Shortly, this
work was introduced at the second Asian PQC Forum (APQC 2016) on November 28, 2016, in
Seoul, Korea. The original version of Lizard was also presented at APQC 2016. But we note that,
according to the video presentation available from http://www.pqcforum.org/, the underlying
key consensus mechanism of Lizard presented at APQC 2016 was based on the Lindner-Peikert
mechanism [LP10], but was changed to our AKCN scheme in its later ePrint report [CKLS16].

3Specifically, as shown in this work, for KEM with 256-bit shared-key, the bandwidth of OKCN-based KEM is
at least as good as that of AKCN-based KEM. But if the shared-key is of size 512 bits or more (e.g., to ensure 256-
bit post-quantum security targeting the underlying shared-key in reality), OKCN-based KEM can have a smaller
bandwidth.

4But AKCN and the underlying reconcilation mechanism of [PG13] could be viewed as incomparable in general.
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Specifically, for Lizard, the public key is generated with spLWE samples, while ciphertext is
generated with spLWR samples. However, the underlying AKC mechanism in the spLWE/spLWR
based PKE scheme analyzed in [CKLS16] is actually an instantiation of our AKCN scheme for
the special case of m|g|q, where g (resp., m) in AKCN corresponds to p (resp., t) in [CKLS16].
Also, we do not know how to apply the analysis of Lizard to KE protocols merely based on LWR,
as analyzed in Section 6 where both public key and ciphertexts are generated merely from LWR
samples. To the best of our knowledge, OKCN/AKCN-LWR is firstly presented in this work,
with a delicate analysis of error rate.

To the best of our knowledge, AKC-based key exchange (actually, key transport) was firstly
formalized in this work. In particular, AKCN4:1 is the first AKC-based variant of NewHope.
Another AKC-based variant of NewHope, named NewHope-simple, was presented subsequently
in a short note posted on 17 December 2016 [ADPS16b]. In comparison, NewHope-simple is still
slightly inferior to AKCN4:1-RLWE in bandwidth expansion (specifically, 256 vs. 1024 bits).

Recently, a module lattice based CPA-secure KEM scheme, named Kyber, was introduced
[BDK+17]. Though different notations and presentation methods are used in [BDK+17], it is
easy to see that the underlying AKC mechanism of Kyber (specifically, Line 6 of Algorithm 2
in [BDK+17]) is just our AKCN scheme. Specifically, by letting σ1 = tT r+e2, m = 2 and g = 2dv ,
the resultant instantiation of AKCN is actually the underlying AKC mechanism implicitly used
in [BDK+17]. In particular, when setting dt = du = 13 and k = 1 (corresponding to t1 = t2 = 0
and l = 1 in our case), Kyber is actually AKCN-RLWE that is already explicitly specified in this
work.

As clarified, the Lindner-Peikert (LP) mechanism implicitly presented for PKE [LP10] is the
first that fits our AKC definition. Indeed, our AKCN can be viewed as the generalization and
optimization of the basic Lindner-Peikert AKC mechanism. The LP mechanism, as well as all the
AKC mechanisms used in [CKLS16,ADPS16b,BDK+17], can be directly instantiated as special
cases from AKCN. However, to our knowledge, how to directly instantiate the AKC mechanisms
used in [CKLS16, ADPS16b, BDK+17] from the LP mechanism is unclear prior to our generic
construction of AKCN.

2 Preliminaries

A string or value α means a binary one, and |α| is its binary length. For any real number x, bxc
denotes the largest integer that less than or equal to x, and bxe = bx + 1/2c. For any positive
integers a and b, denote by lcm(a, b) the least common multiple of them. For any i, j ∈ Z such
that i < j, denote by [i, j] the set of integers {i, i + 1, · · · , j − 1, j}. For any positive integer t,
we let Zt denote Z/tZ. The elements of Zt are represented, by default, as [0, t− 1]. Nevertheless,
sometimes, Zt is explicitly specified to be represented as [−b(t− 1)/2c, bt/2c].

If S is a finite set then |S| is its cardinality, and x← S is the operation of picking an element
uniformly at random from S. For two sets A,B ⊆ Zq, define A + B , {a + b|a ∈ A, b ∈ B}.
For an addictive group (G,+), an element x ∈ G and a subset S ⊆ G, denote by x + S the set
containing x+ s for all s ∈ S. For a set S, denote by U(S) the uniform distribution over S. For
any discrete random variable X over R, denote Supp(X) = {x ∈ R | Pr[X = x] > 0}.

We use standard notations and conventions below for writing probabilistic algorithms, exper-
iments and interactive protocols. If D denotes a probability distribution, x← D is the operation
of picking an element according to D. If α is neither an algorithm nor a set then x ← α is a
simple assignment statement. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result
of running A on inputs x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment
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of picking r at random and letting y be A(x1, x2, · · · ; r). By Pr[R1; · · · ;Rn : E] we denote the
probability of event E, after the ordered execution of random processes R1, · · · , Rn.

A function f(λ) is negligible, if for every c > 0 there exists an λc such that f(λ) < 1/λc for
all λ > λc. In in this work, for presentation simplicity, when dealing with concrete parameters
we also informally say that a quantity lower than 2−60 is negligible.

2.1 The LWE, LWR, and RLWE problems

Given positive continuous σ > 0, define the real Gaussian function ρσ(x) , exp(−x2/2σ2)/
√

2πσ2

for x ∈ R. Let DZ,σ denote the one-dimensional discrete Gaussian distribution over Z, which is
determined by its probability density function DZ,σ(x) , ρσ(x)/ρσ(Z), x ∈ Z. Finally, let DZn,σ
denote the n-dimensional spherical discrete Gaussian distribution over Zn, where each coordinate
is drawn independently from DZ,σ.

Given positive integers n and q that are both polynomials in the security parameter λ, an
integer vector s ∈ Znq , and a probability distribution χ on Zq, let Aq,s,χ be the distribution over
Znq × Zq obtained by choosing a ∈ Znq uniformly at random, and an error term e ← χ, and

outputting the pair (a, b = aT s + e) ∈ Znq × Zq. The error distribution χ is typically taken to
be the discrete Gaussian probability distribution DZ,σ defined previously; However, as suggested
in [BCD+16] and as we shall see in Section 6.1, other alternative distributions of χ can be
taken. Briefly speaking, the (decisional) learning with errors (LWE) assumption [Reg09] says
that, for sufficiently large security parameter λ, no probabilistic polynomial-time (PT) algorithm
can distinguish, with non-negligible probability, Aq,s,χ from the uniform distribution over Znq ×Zq.
This holds even if A sees polynomially many samples, and even if the secret vector s is drawn
randomly from χn [ACPS09].

The LWR problem [BPR12] is a “decarbonized” variant of the LWE problem. Let D be
some distribution over Znq , and s ← D. For integers q ≥ p ≥ 2 and any x ∈ Zq, denote
bxep = bpqxe. Then, for positive integers n and q ≥ p ≥ 2, the LWR distribution An,q,p(s) over

Znq × Zp is obtained by sampling a from Znq uniformly at random, and outputting
(
a,
⌊
aT s

⌉
p

)
∈

Znq × Zp. Briefly speaking, the (decisional) LWR assumption says that, for sufficiently large
security parameter, no PPT algorithm A can distinguish, with non-negligible probability, the
distribution An,q,p(s) from the distribution (a ← Znq , buep) where u ← Zq. This holds even if
A sees polynomially many samples. An efficient reduction from the LWE problem to the LWR
problem, for super-polynomial large q, is provided in [BPR12]. Let B denote the bound for any
component in the secret s. It is recently shown that, when q ≥ 2mBp (equivalently, m ≤ q/2Bp),
the LWE problem can be reduced to the (decisional) LWR assumption with m independently
random samples [BGM+16]. Moreover, the reduction from LWE to LWR is actually independent
of the distribution of the secret s.

For the positive integer m that is polynomial in the security parameter λ, let n , ϕ(m) denote
the toties of m, and K , Q(ζm) be the number field obtained by adjoining an abstract element
ζm satisfying Φm(ζm) = 0, where Φm(x) ∈ Z[x] is the m-TtH cyclotomies polynomial of degree
n. Moreover, let R , OK be the ring of integers in K. Finally, given a positive prime q = poly(λ)
such that q ≡ 1 (mod m), define the quotient ring Rq , R/qR.

We briefly review the RLWE problem, and its hardness result [LPR13a, LPR13b, DD12]. It
suffices in this work to consider a special case of the RLWE problem defined in [LPR13a]. Let
n ≥ 16 be a power-of-two and q = poly(λ) be a positive prime such that q ≡ 1 (mod 2n).
Given s ← Rq, a sample drawn from the RLWE distribution An,q,σ,s over Rq ×Rq is generated
by first choosing a ← Rq, e ← DZn,σ, and then outputting (a,a · s + e) ∈ Rq × Rq. Roughly
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speaking, the (decisional) RLWE assumption says that, for sufficiently large security parameter
λ, no PPT algorithm A can distinguish, with non-negligible probability, An,q,σ,s from the uniform
distribution over Rq ×Rq. This holds even if A sees polynomially many samples, and even if the
secret s is drawn randomly from the same distribution of the error polynomial e [DD12,ACPS09].
Moreover, as suggested in [ADPS16], alternative distributions for the error polynomials can be
taken for the sake of efficiency while without essentially reducing security.

3 Key Consensus with Noise

Alice
σ1 ∈ Zq

(k1, v)← Con(σ1, params)

Bob
σ2 ∈ Zq

k2 ← Rec(σ2, v, params)

v

≈

Figure 1: Brief depiction of KC, where k1, k2 ∈ Zm, v ∈ Zg and |σ1 − σ2|q ≤ d.

Before presenting the definition of key consensus (KC) scheme, we first introduce a new function
| · |t relative to arbitrary positive integer t ≥ 1: |x|t = min{x mod t, t−x mod t}, ∀x ∈ Z, where
the result of modular operation is represented in {0, ..., (t − 1)}. For instance, | − 1|t = min{−1
mod t, (t + 1) mod t} = min{t − 1, 1} = 1. In the following description, we use |σ1 − σ2|q to
measure the distance between two elements σ1, σ2 ∈ Zq.

Definition 3.1. A KC scheme KC = (params,Con,Rec), briefly depicted in Figure 1, is specified
as follows.

• params = (q,m, g, d, aux) denotes the system parameters, where q,m, g, d are positive in-
tegers satisfying 2 ≤ m, g ≤ q, 0 ≤ d ≤ b q2c, and aux denotes some auxiliary values that
are usually determined by (q,m, g, d) and could be set to be a special symbol ∅ indicating
“empty”.

• (k1, v)← Con(σ1, params): On input of (σ1 ∈ Zq, params), the probabilistic polynomial-time
conciliation algorithm Con outputs (k1, v), where k1 ∈ Zm is the shared-key, and v ∈ Zg is
a hint signal that will be publicly delivered to the communicating peer to help the two parties
reach consensus.

• k2 ← Rec(σ2, v, params): On input of (σ2 ∈ Zq, v, params), the deterministic polynomial-
time reconciliation algorithm Rec outputs k2 ∈ Zm.

Correctness: A KC scheme is correct, if it holds k1 = k2 for any σ1, σ2 ∈ Zq such that |σ1 −
σ2|q ≤ d.

Security: A KC scheme is secure, if k1 and v are independent, and k1 is uniformly distributed
over Zm, whenever σ1 ← Zq. The probability is taken over the sampling of σ1 and the
random coins used by Con.

11



3.1 Efficiency Upper Bound of KC

The following theorem reveals an upper bound on the parameters q (dominating security and
efficiency), m (parameterizing range of consensus key), g (parameterizing bandwidth), and d
(parameterizing error rate), which allows us to take balance on these parameters according to
different priorities.

Theorem 3.1. If KC = (params,Con,Rec) is a correct and secure key consensus scheme, and

params = (q,m, g, d, aux), then 2md ≤ q
(

1− 1
g

)
.

Before proceeding to prove Theorem 3.1, we first prove the following propositions.

Proposition 3.1. Given params = (q,m, g, d, aux) for a correct and secure KC scheme. For any
arbitrary fixed σ1 ∈ Zq, if Con(σ1, params) outputs (k1, v) with positive probability, then the value
k1 is fixed w.r.t. the (v, σ1). That is, for any random coins (r, r′), if Con(σ1, params, r) = (k1, v)
and Con(σ1, params, r′) = (k′1, v), then k1 = k′1.

Proof. Let σ2 = σ1, then |σ1 − σ2|q = 0 ≤ d. Then, according to the correctness of KC, we have
that k1 = k2 = Rec(σ2, v) = Rec(σ1, v). However, as Rec is a deterministic algorithm, k2 is fixed
w.r.t. (σ1, v). As a consequence, k1 is also fixed w.r.t. (σ1, v), no matter what randomness is
used by Con. �

Proposition 3.2. Given params = (q,m, g, d, aux) for a KC scheme, for any v ∈ Zg, let Sv be
the set containing all σ1 such that Con(σ1, params) outputs v with positive probability. Specifically,

Sv =
{
σ1 ∈ Zq | Pr

[
(k1, v

′)← Con(σ1, params) : v′ = v
]
> 0
}
.

Then, there exists v0 ∈ Zg such that |Sv0 | ≥ q/g.

Proof. For each σ1 ∈ Zq, we run Con(σ1, params) and get a pair (k1, v) ∈ Zm × Zg satisfying
σ1 ∈ Sv. Then, the proposition is clear by the pigeonhole principle. �

of Theorem 3.1. From Proposition 3.2, there exists a v0 ∈ Zg such that |Sv0 | ≥ q/g. Note that,
for any σ1 ∈ Sv0 , Con(σ1, params) outputs v0 with positive probability.

For each i ∈ Zm, let Ki denote the set containing all σ1 such that Con(σ1, params) outputs
(k1 = i, v = v0) with positive probability. From Proposition 3.1, Ki’s form a disjoint partition
of Sv0 . From the independence between k1 and v, and the uniform distribution of k1, (as we
assume the underlying KC is secure), we know Pr[k1 = i | v = v0] = Pr[k1 = i] > 0, and so Ki is
non-empty for each i ∈ Zm. Now, for each i ∈ Zm, denote by K ′i the set containing all σ2 ∈ Zq
such that Rec(σ2, v0, params) = i. As Rec is deterministic, K ′i’s are well-defined and are disjoint.

From the correctness of KC, for every σ1 ∈ Ki, |σ2 − σ1|q ≤ d, we have σ2 ∈ K ′i. That is,
Ki + [−d, d] ⊆ K ′i.

We shall prove that Ki + [−d, d] contains at least |Ki| + 2d elements. If Ki + [−d, d] = Zm,
then m = 1, which is a contradiction (we exclude the case of m = 1 in the definition of KC as it is
a trivial case). If there exists an x ∈ Zm such that x /∈ Ki + [−d, d], we can see Zm as a segment
starting from the point x by arranging its elements as x, (x+ 1) mod m, (x+ 2) mod m, . . . , (x+
m− 1) mod m. Let l be the left most element in Ki + [−d, d] on the segment, and r be the right
most such element. Then Ki + [−d, d] contains at least |Ki| elements between l and r inclusively
on the segment. Since l + [−d, 0] and r + [0, d] are subset of Ki + [−d, d], and are not overlap
(because x /∈ Ki + [−d, d]), the set Ki + [−d, d] contains at least |Ki|+ 2d elements.

Now we have |Ki|+ 2d ≤ |K ′i|. When we add up on both sides for all i ∈ Zm, then we derive
|Sv0 |+ 2md ≤ q. By noticing that |Sv0 | ≥ q/g, the theorem is established. �
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Algorithm 1 OKCN: Symmetric KC with Noise

1: params = (q,m, g, d, aux), aux = {q′ = lcm(q,m), α = q′/q, β = q′/m}
2: procedure Con((σ1, params)) . σ1 ∈ [0, q − 1]
3: e← [−b(α− 1)/2c, bα/2c]
4: σA = (ασ1 + e) mod q′

5: k1 = bσA/βc ∈ Zm
6: v′ = σA mod β
7: v = bv′g/βc . v ∈ Zg
8: return (k1, v)
9: end procedure

10: procedure Rec(σ2, v, params) . σ2 ∈ [0, q − 1]
11: k2 = bασ2/β − (v + 1/2)/ge mod m
12: return k2

13: end procedure

3.2 Construction and Analysis of OKCN

The key consensus scheme, named OKCN, is presented in Algorithm 1. An illustration diagram
is given in Figure 2. Some explanations for implementation details are given below.

Define σ′A = ασ1+e. Note that it always holds σ′A < q′. However, in some rare cases, σ′A could
be a negative value; for example, for the case that σ1 = 0 and e ∈ [−b(α− 1)/2c,−1]. Setting
σA = σ′A mod q′, in line 4, is to ensure that σA is always a non-negative value in Zq′ , which
can be simply implemented as follows: if σ′A < 0 then set σA = σ′A + q′, otherwise set σA = σ′A.
Considering potential timing attacks, conditional statement judging whether σ′A is negative or
not can be avoided by a bitwise operation extracting the sign bit of σ′A. In specific, suppose σ′A
is a 16-bit signed or unsigned integer, then one can code σA = σ′A + ((σ′A >> 15)&1) ∗ q′ in C
language. The same techniques can also be applied to the calculation in line 11.

In lines 5 and 6, (k1, v
′) can actually be calculated simultaneously by a single command div in

assembly language. In line 11, the floating point arithmetic can be replaced by integer arithmetic.
If m is small enough, such as 2 or 3, the slow complex integer division operation can be replaced
by relative faster conditional statements.

The value v + 1/2, in line 11, estimates the exact value of v′g/β. Such an estimation can
be more accurate, if one chooses to use the average value of all v′g/β’s such that bv′g/βc = v.
Though such accuracy can improve the bound on correctness slightly, the formula calculating k2

becomes more complicated.
The following fact is direct from the definition of | · |t.

Fact 3.1. For any x, y, t, l ∈ Z where t ≥ 1 and l ≥ 0, if |x− y|q ≤ l, then there exists θ ∈ Z and
δ ∈ [−l, l] such that x = y + θt+ δ.

Theorem 3.2. Suppose that the system parameters satisfy (2d+ 1)m < q
(

1− 1
g

)
where m ≥ 2

and g ≥ 2. Then, the OKCN scheme is correct.

Proof. Suppose |σ1 − σ2|q ≤ d. By Fact 3.1, there exist θ ∈ Z and δ ∈ [−d, d] such that
σ2 = σ1 + θq + δ. From line 4 and 6 in Algorithm 1, we know that there is a θ′ ∈ Z, such that
ασ1 + e + θ′q′ = σA = k1β + v′. And from the definition of α, β, we have α/β = m/q. Taking
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Figure 2: An illustration diagram of OKCN

these into the formula of k2 in Rec (line 11 in Algorithm 1), we have

k2 = bασ2/β − (v + 1/2)/ge mod m (1)

= bα(θq + σ1 + δ)/β − (v + 1/2)/ge mod m (2)

=

⌊
m(θ − θ′) +

1

β
(k1β + v′ − e) +

αδ

β
− 1

g
(v + 1/2)

⌉
mod m (3)

=

⌊
k1 +

(
v′

β
− v + 1/2

g

)
− e

β
+
αδ

β

⌉
mod m (4)

Notice that |v′/β − (v + 1/2)/g| = |v′g − β(v + 1/2)|/βg ≤ 1/2g. So
∣∣∣∣
(
v′

β
− v + 1/2

g

)
− e

β
+
αδ

β

∣∣∣∣ ≤
1

2g
+
α

β
(d+ 1/2).

From the assumed condition (2d + 1)m < q(1 − 1
g ), we get that the right-hand side is strictly

smaller than 1/2; Consequently, after the rounding, k2 = k1. �

Theorem 3.3. OKCN is secure. Specifically, when σ1 ← Zq, k1 and v are independent, and k1

is uniform over Zm, where the probability is taken over the sampling of σ1 and the random coins
used by Con.

Proof. Recall that q′ = lcm(q,m), α = q′/q, β = q′/m. We first demonstrate that σA is subject
to uniform distribution over Zq′ . Consider the map f : Zq×Zα → Zq′ ; f(σ, e) = (ασ+ e) mod q′,
where the elements in Zq and Zα are represented in the same way as specified in Algorithm 1. It
is easy to check that f is an one-to-one map. Since σ1 ← Zq and e← Zα are subject to uniform
distributions, and they are independent, σA = (ασ1 + e) mod q′ = f(σ1, e) is also subject to
uniform distribution over Zq′ .

In the similar way, defining f ′ : Zm × Zβ → Zq′ such that f ′(k1, v
′) = βk1 + v′, then f ′ is

obviously a one-to-one map. From line 6 of Algorithm 1, f ′(k1, v
′) = σA. As σA is distributed

uniformly over Zq′ , (k1, v
′) is uniformly distributed over Zm×Zβ, and so k1 and v′ are independent.

As v only depends on v′, k1 and v are independent. �
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Algorithm 2 OKCN power 2

1: params : q = 2q̄, g = 2ḡ,m = 2m̄, d, aux = {(β = q/m = 2q̄−m̄, γ = β/g = 2q̄−m̄−ḡ)}
2: procedure Con(σ1, params)
3: k1 = bσ1/βc
4: v = b(σ1 mod β)/γc
5: return (k1, v)
6: end procedure
7: procedure Rec(σ2, v, params)
8: k2 = bσ2/β − (v + 1/2)/ge mod m
9: return k2

10: end procedure

Algorithm 3 OKCN simple

1: params : q = 2q̄, g = 2ḡ,m = 2m̄, d, where ḡ + m̄ = q̄
2: procedure Con(σ1, params)

3: k1 =
⌊
σ1
g

⌋

4: v = σ1 mod g
5: return (k1, v)
6: end procedure
7: procedure Rec(σ2, v, params)

8: k2 =
⌊
σ2−v
g

⌉
mod m

9: return k2

10: end procedure

3.2.1 Special Parameters, and Performance Speeding-Up

The first and the second line of Con (line 3 and 4 in Algorithm 1) play the role in transforming a
uniform distribution over Zq to a uniform distribution over Zq′ . If one chooses q, g,m to be power
of 2, i.e., q = 2q̄, g = 2ḡ,m = 2m̄ where q̄, ḡ, m̄ ∈ Z, then such transformation is not necessary,
and the random noise e used in calculating σA in Algorithm 1 is avoided. In this case Con and
Rec can be simplified to Algorithm 2. The following corollary is straightforward.

Corollary 3.1. If q and m are power of 2, and d, g,m satisfy 2md < q
(

1− 1
g

)
, then the KC

scheme described in Algorithm 2 is both correct and secure.

If we take ḡ + m̄ = q̄, Algorithm 2 can be further simplified into the variant depicted in
Algorithm 3, with the constraint on parameters is further relaxed.

Corollary 3.2. If m, g are power of 2, q = m · g, and 2md < q, then the KC scheme described in
Algorithm 3 is correct and secure. Notice that the constraint on parameters is further simplified
to 2md < q in this case.

The proof of Corollary 3.2 is given in Appendix C.
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4 Asymmetric Key Consensus with Noise

Alice
σ1

k1 ∈ Zm

v ← Con(σ1, k1, params)

Bob
σ2

k2 ← Rec(σ2, v, params)

v

≈

Figure 3: Brief depiction of AKC

As we shall see, for OKCN-based key exchange both the initiator and the responder play a
symmetric role in outputting the shared-key, in the sense that no one can pre-determine the
session-key before the KE protocol run. Though OKCN is well desirable for (authenticated) key
exchange, it is, however, not well suitable for directly achieving key transport and public-key
encryption. This motivates us to introduce asymmetric key consensus (AKC), as specified below.

Definition 4.1. An asymmetric key consensus scheme AKC = (params,Con,Rec) is specified as
follows:

• params = (q,m, g, d, aux) denotes the system parameters, where q, 2 ≤ m, g ≤ q, 1 ≤ d ≤
b q2c are positive integers, and aux denotes some auxiliary values that are usually determined
by (q,m, g, d) and could be set to be empty.

• v ← Con(σ1, k1, params): On input of (σ1 ∈ Zq, k1 ∈ Zm, params), the probabilistic polynomial-
time conciliation algorithm Con outputs the public hint signal v ∈ Zg.

• k2 ← Rec(σ2, v, params): On input of (σ2, v, params), the deterministic polynomial-time
algorithm Rec outputs k2 ∈ Zm.

Correctness: An AKC scheme is correct, if it holds k1 = k2 for any σ1, σ2 ∈ Zq such that
|σ1 − σ2|q ≤ d.

Security: An AKC scheme is secure, if v is independent of k1 whenever σ1 is uniformly dis-
tributed over Zq. Specifically, for arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that

Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′1], where the probability is taken over σ1 ← Zq and the
random coins used by Con.

When AKC is used as a building tool for key transport, k1 is taken uniformly at random from
Zm. However, when AKC is used for public-key encryption, k1 can be arbitrary value from the
space of plaintext messages. In any case, k1 can be generated offline, and can be input to the
party Alice.

Theorem 4.1. Let AKC be an asymmetric key consensus scheme with params = (q,m, d, g, aux).

If AKC is correct and secure, then 2md ≤ q
(

1− m
g

)
.

Comparing the formula 2md ≤ q(1−m/g) in Theorem 4.1 with the formula 2md ≤ q(1−1/g)
in Theorem 3.1, we see that the only difference is a factor m in g. This indicates that, on the
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same values of (q,m, d), an AKC scheme has to use a bigger bandwidth parameter g compared
to KC.

Before proving Theorem 4.1, we first adjust Proposition 3.2 to the AKC setting, as following.

Proposition 4.1. Given params = (q,m, g, d, aux) for an correct and secure AKC scheme, then
there exists v0 ∈ Zg such that |Sv0 | ≥ mq/g.

Proof. If k1 is taken uniformly at random from Zm, AKC can be considered as a special KC scheme
by treating k1 ← Zm; v ← Con(σ1, k1, params) as (k1, v)← Con(σ1, params). Consequently, Propo-

sition 3.1 holds for this case. Denote S′v
4
= {(σ1, k1) ∈ Zq × Zm | Pr [v′ ← Con(σ1, k1, params) : v′ = v] > 0}.

Then, Sv defined in Proposition 3.2 equals to the set containing all the values of σ1 appeared
in (σ1, ·) ∈ S′v. We run Con(σ1, k1, params) for each pair of (σ1, k1) ∈ Zq × Zm. By the pi-
geonhole principle, there must exist a v0 ∈ Zg such that |S′v0 | ≥ qm/g. For any two pairs
(σ1, k1) and (σ′1, k

′
1) in S′v0 , if σ1 = σ′1, from Proposition 3.1 we derive that k1 = k′1, and

then (σ1, k1) = (σ′1, k
′
1). Hence, if (σ1, k1) and (σ′1, k

′
1) are different, then σ1 6= σ′1, and so

|Sv0 | = |S′v0 | ≥ mq/g. �

Proof of Theorem 4.1. By viewing AKC, with k1 ← Zq, as a special KC scheme, all the reasoning
in the proof of Theorem 3.1 holds true now. At the end of the proof of Theorem 3.1, we derive
|Sv0 | + 2md ≤ q. By taking |Sv0 | ≥ mq/g according to Proposition 4.1, the proof is finished.
�

4.1 Construction and Analysis of AKCN

Algorithm 4 AKCN: Asymmetric KC with Noise

1: params = (q,m, g, d, aux), where aux = ∅.
2: procedure Con(σ1, k1, params) . σ1 ∈ [0, q − 1]
3: v = bg (σ1 + bk1q/me) /qe mod g
4: return v
5: end procedure
6: procedure Rec(σ2, v, params) . σ2 ∈ [0, q − 1]
7: k2 = bm(v/g − σ2/q)e mod m
8: return k2

9: end procedure

The AKCN scheme, referred to as asymmetric key consensus with noise, is depicted in Algo-
rithm 4. We note that, in some sense, AKCN could be viewed as the generalization and optimiza-
tion of the consensus mechanism proposed in [LPR13a] for CPA-secure public-key encryption.
For AKCN, we can opaline compute and store k1 and gbk1q/me in order to accelerate online
performance.

Theorem 4.2. Suppose the parameters of AKCN satisfy (2d + 1)m < q
(

1− m
g

)
. Then, the

AKCN scheme described in Algorithm 4 is correct.

Proof. From the formula generating v, we know that there exist ε1, ε2 ∈ R and θ ∈ Z, where
|ε1| ≤ 1/2 and |ε2| ≤ 1/2, such that

v =
g

q

(
σ1 +

(
k1q

m
+ ε1

))
+ ε2 + θg
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Taking this into the formula computing k2 in Rec, we have

k2 = bm(v/g − σ2/q)e mod m

=

⌊
m

(
1

q
(σ1 + k1q/m+ ε1) +

ε2

g
+ θ − σ2

q

)⌉
mod m

=

⌊
k1 +

m

q
(σ1 − σ2) +

m

q
ε1 +

m

g
ε2

⌉
mod m

By Fact 3.1 (page 13), there exist θ′ ∈ Z and δ ∈ [−d, d] such that σ1 = σ2 + θ′q + δ. Hence,

k2 =

⌊
k1 +

m

q
δ +

m

q
ε1 +

m

g
ε2

⌉
mod m

Since |mδ/q +mε1/q +mε2/g| ≤ md/q +m/2q +m/2g < 1/2, k1 = k2. �

Theorem 4.3. The AKCN scheme is secure. Specifically, v is independent of k1 when σ1 ← Zq.

Proof. For arbitrary ṽ ∈ Zg and arbitrary k̃1, k̃
′
1 ∈ Zm, we prove that Pr[v = ṽ|k1 = k̃1] = Pr[v =

ṽ|k1 = k̃′1] when σ1 ← Zq.
For any (k̃, ṽ) in Zm × Zg, the event (v = ṽ | k1 = k̃) is equivalent to the event that

there exists σ1 ∈ Zq such that ṽ = bg(σ1 + bk̃q/me)/qe mod g. Note that σ1 ∈ Zq satisfies
ṽ = bg(σ1 + bk̃q/me)/qe mod g, if and only if there exist ε ∈ (−1/2, 1/2] and θ ∈ Z such that
ṽ = g(σ1+bk̃q/me)/q+ε−θg. That is, σ1 = (q(ṽ−ε)/g−bk̃q/me) mod q, for some ε ∈ (−1/2, 1/2].
Let Σ(ṽ, k̃) = {σ1 ∈ Zq | ∃ε ∈ (−1/2, 1/2] s.t. σ1 = (q(ṽ − ε)/g − bk̃q/me) mod q}. Defining the

map φ : Σ(ṽ, 0) → Σ(ṽ, k̃), by setting φ(x) =
(
x− bk̃q/me

)
mod q. Then φ is obviously a one-

to-one map. Hence, the cardinality of Σ(ṽ, k̃) is irrelevant to k̃. Specifically, for arbitrary ṽ ∈ Zg
and arbitrary k̃1, k̃

′
1 ∈ Zm, it holds that

∣∣∣Σ(ṽ, k̃1)
∣∣∣ =

∣∣∣Σ(ṽ, k̃′1)
∣∣∣ = |Σ(ṽ, 0)|

Now, for arbitrary ṽ ∈ Zg and arbitrary k̃ ∈ Zm, when σ1 ← Zq we have that Pr[v = ṽ | k1 =

k̃] = Pr
[
σ1 ∈ Σ(ṽ, k̃) | k1 = k̃

]
= |Σ(ṽ, k̃)|/q = |Σ(ṽ, 0)|/q. The right-hand side only depends on

ṽ, and so v is independent of k1. �

4.1.1 Simplified Variants of AKCN for Special Parameters

We consider the parameters q = g = 2q̄,m = 2m̄ for positive integers q̄, m̄. Then the two rounding
operations in line 3 of Con (in Algorithm 4) can be directly eliminated, since only integers are
involved in the computation. We have the following variant described in Algorithm 5. Note
that, in Algorithm 5, the modular and multiplication/division operations can be implemented by
simple bitwise operations.

For the protocol variant presented in Algorithm 5, its correctness and security can be proved
with a relaxed constraint on the parameters of (q, d,m), as shown in the following corollary.

Corollary 4.1. If q and m are power of 2, and d, m and q satisfy 2md < q, then the AKCN
scheme described in Algorithm 5 is correct and secure.

Proof. For correctness, suppose |σ1 − σ2|q ≤ d, then there exit δ ∈ [−d, d] and θ ∈ Z such that
σ2 = σ1+θq+δ. From the formula calculating v, there exists θ′ ∈ Z such that v = σ1+k12q̄−m̄+θ′q.
Taking these into the formula computing k2, line 7 of Rec in Algorithm 5, we have

k2 = b(v − σ1 − δ − θq) /2q̄−m̄e mod m
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Algorithm 5 AKCN power 2

1: params : q = g = 2q̄,m = 2m̄, aux = {G = q/m}
2: procedure Con(σ1, k1, params)
3: v = (σ1 + k1 ·G) mod q, where k1 ·G can be opaline computed
4: return v
5: end procedure
6: procedure Rec(σ2, v, params)
7: k2 = b(v − σ2)/Ge mod m
8: return k2

9: end procedure

Algorithm 6 AKCN simple

1: params = (q,m, g, d, aux), where q = 2q̄, g = 2ḡ, m = 2m̄, and q = gm (i.e., ḡ + m̄ = q̄)
2: procedure Con(σ1, k1, params) . σ1 ∈ [0, q − 1]
3: v = b(k1g + σ1) /me mod g . k1g/m can be offline computed
4: return v
5: end procedure
6: procedure Rec(σ2, v, params) . σ2 ∈ [0, q − 1]
7: k2 = b(mv − σ2)/ge mod m
8: return k2

9: end procedure

= b(k12q̄−m̄ − δ)/2q̄−m̄e mod m

=
(
k1 − bδ/2q̄−m̄e

)
mod m

If 2md < q, then |δ/2q̄−m̄| < 1/2, so that k1 = k2.
For security, as a special case of the generic AKCN scheme in Algorithm 4, the security of the

AKCN scheme in Algorithm 5 directly follows from that of Algorithm 4. �

Corollary 4.2. If q, m and g all are power of 2 satisfying q = mg, and d, m and g satisfy
m+ 2d < g, then the AKCN-simple described in Algorithm 6 is correct and secure.

Proof. For correctness, suppose |σ1 − σ2|q ≤ d, then there exit δ ∈ [−d, d] and θ ∈ Z such that
σ2 = σ1 + θq + δ. From the formula calculating v, there exist θ′ ∈ Z and ε ∈ (−1/2, 1/2] such
that v = σ12−m̄ + k12ḡ−m̄ + ε + θ′g. Taking these into the formula computing k2, line 7 of Rec
in Algorithm 5, we have

k2 = bk1 + (mε− δ)/ge mod m

If m+ 2d < g, then |k1 + (mε− δ)/g| < 1/2, so that k1 = k2.
As a special case of the AKCN scheme, the security of the AKCN-simple scheme in Algorithm 6

directly follows from that of Algorithm 4. �
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×n
q

X1 ← χn×lA

Y1 = ⌊AX1⌉p

Responder

A = Gen(seed)
X2 ← χn×lB

Y2 = ⌊ATX2⌉p
ϵ← [−q/2p, q/2p− 1]n×lA

Σ2 = YT
1 X2 + ⌊ϵTX2⌉p

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 Y2

K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lA
p

Y2 ∈ Zn×lB
p ,V ∈ ZlA×lB

g

Figure 4: LWR-based key exchange from KC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| = lAlB|m|.

5 LWR-Based Key Exchange from KC and AKC

In this section, we present the applications of OKCN and AKCN to key exchange protocols based
on LWR.5 The LWR-based key exchange (KE) is depicted in Figure 4. Denote by (n, lA, lB, q, p,KC, χ)
the system parameters, where p|q, and p and q are chosen to be power of 2. Let KC = (params =
(p,m, g, d, aux),Con,Rec) be a correct and secure key consensus scheme, χ be a small noise dis-
tribution over Zq, and Gen be a pseudo-random generator (PRG) generating the matrix A from
a small seed. For presentation simplicity, we assume A ∈ Zn×nq to be square matrix. The length
of the random seed, i.e., κ, is typically set to be 256.

The actual session-key is derived from K1 and K2 via some key derivation function KDF .
For presentation simplicity, the functions Con and Rec are applied to matrices, meaning that they
are applied to each of the coordinates respectively.

For presentation simplicity, we describe the LWR-based key exchange protocol from a KC
scheme in Figure 4. But it can be trivially adapted to work on any correct and secure AKC
scheme, which is also described in Figure 5. In this case, the responder user Bob simply chooses
K2 ∈ ZlA×lBm for PKE where K2 corresponds to the arbitrary plaintext message (or K2 ← ZlA×lBm

for KEM), and the output of Con(Σ2,K2, params) is simply defined to be V. For presentation
simplicity, in the following security definition and analysis we also simply assume that the output
of the PRG Gen is truly random (which is simply assumed to be a random oracle in [ADPS16]).

5.1 Security Proof of LWR-Based Key Exchange

Definition 5.1. A KC or AKC based key exchange protocol from LWR is secure, if for any
sufficiently large security parameter λ and any PT adversary A,

∣∣Pr[b′ = b]− 1
2

∣∣ is negligible, as
defined w.r.t. game G0 specified in Algorithm 22.6

5Note that AKCN-based KE is actually key transport. But for presentation simplicity, we do not make distinc-
tion between them in this work.

6For presentation simplicity, we simply assume K0
2 ← ZlA×lBm when the key exchange protocol is implemented

with AKC. However, when the AKC-based protocol is interpreted as a public-key encryption scheme, K0
2 and K1

2
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1 ← χn×lA

Y1 = bAX1ep

Responder

K2 ∈ ZlA×lB
m

A = Gen(seed)
X2 ← χn×lB

Y2 = bATX2ep
ε← [−q/2p, q/2p− 1]n×lA

Σ2 = YT
1 X2 + bεTX2ep

V← Con(Σ2,K2, params)

Σ1 = XT
1 Y2

K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAp

Y2 ∈ Zn×lBp ,V ∈ ZlA×lB
g

Figure 5: LWR-based key exchange from AKC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| =
lAlB|m|.

Algorithm 7 Game G0

1: A← Zn×nq

2: X1 ← χn×lA

3: Y1 = bAX1ep
4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep . Σ2 = YT

1 X2 + bεTX2ep = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Before starting to prove the security, we first recall some basic properties of the LWR as-
sumption. The following lemma is derived by a hybrid argument, similar to that of LWE
[PVW08,BCD+16].

Lemma 5.1 (LWR problem in the matrix form). For positive integer parameters (λ, n, q ≥ 2, l, t),
where n, q, l, t all are polynomial in λ satisfying p|q, and a distribution χ over Zq, denote by

L
(l,t)
χ the distribution over Zt×nq × Zt×lp generated by taking A ← Zt×nq ,S ← χn×l and outputting

(A, bASep). Then, under the assumption on indistinguishability between Aq,s,χ (with s ← χn)
and U(Znq × Zp) within t samples, no PT distinguisher D can distinguish, with non-negligible

probability, between the distribution L
(l,t)
χ and U(Zt×nq × Zt×lp ) for sufficiently large λ.

correspond to the plaintexts, which are taken independently at random from the same (arbitrary) distribution over
ZlA×lBm .
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Algorithm 8 Game G0

1: A← Zn×nq

2: X1 ← χn×lA

3: Y1 = bAX1ep
4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Algorithm 9 Game G1

1: A← Zn×nq

2: X1 ← χn×lA

3: Y1 ← Zn×lAp

4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Algorithm 10 Distinguisher D
1: procedure D(A,B) . A ∈ Zn×nq ,B ∈ Zn×lAp

2: Y1 = B
3: X2 ← χn×lB

4: ε← {−q/2p . . . q/2p− 1}n×lA
5: Y2 = bATX2ep
6: Σ2 = b( qpY1 + ε)TX2ep
7:

(
K0

2,V
)
← Con(Σ2, params)

8: K1
2 ← ZlA×lBm

9: b← {0, 1}
10: b′ ← A(A,Y1,Y2,K

b
2,V)

11: if b′ = b then
12: return 1
13: else
14: return 0
15: end if
16: end procedure

Theorem 5.1. If (params,Con,Rec) is a correct and secure KC or AKC scheme, the key exchange
protocol described in Figure 4 is secure under the (matrix form of) LWR assumption.

Proof. The proof is analogous to that in [Pei14,BCD+16]. The general idea is that we construct
a sequence of games: G0, G1 and G2, where G0 is the original game for defining security. In every
move from game Gi to Gi+1, 0 ≤ i ≤ 1, we change a little. All games Gi’s share the same PT
adversary A, whose goal is to distinguish between the matrices chosen uniformly at random and
the matrices generated in the actual key exchange protocol. Denote by Ti, 0 ≤ i ≤ 2, the event
that b = b′ in Game Gi. Our goal is to prove that Pr[T0] < 1/2 + negl, where negl is a negligible
function in λ. For ease of readability, we re-produce game G0 below. For presentation simplicity,
in the subsequent analysis, we always assume the underlying KC or AKC is correct. The proof
can be trivially extended to the case that correctness holds with overwhelming probability (i.e.,
failure occurs with negligible probability).

Lemma 5.2. |Pr[T0]−Pr[T1]| < negl, under the indistinguishability between L
(lA,n)
χ and U(Zn×nq ×

Zn×lAp ).
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Proof. Construct a distinguisherD, in Algorithm 10, who tries to distinguish L
(lA,n)
χ from U(Zn×nq ×

Zn×lAp ).

If (A,B) is subjected to L
(lA,n)
χ , then D perfectly simulates G0. Hence, Pr

[
D
(
L

(lA,n)
χ

)
= 1
]

=

Pr[T0]. On the other hand, if (A,B) is chosen uniformly at random from Zn×nq × Zn×lAp , which

is denoted as (AU ,BU ), then D perfectly simulates G1. So Pr[D(AU ,BU ) = 1] = Pr[T1]. Hence,

|Pr[T0]− Pr[T1]| =
∣∣∣Pr[D(L

(lA,n)
χ ) = 1]− Pr[D(AU ,BU ) = 1]

∣∣∣ < negl. �

Algorithm 11 Game G1

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 = bATX2ep
7: Σ2 = b( qpY1 + ε)TX2ep
8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Algorithm 12 Game G2

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2 ← χn×lB

5: ε← {−q/2p . . . q/2p− 1}n×lA
6: Y2 ← Zn×lBp

7: Σ2 ← ZlA×lBp

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1,Y2,K

b
2,V)

Lemma 5.3. |Pr[T1] − Pr[T2]| < negl, under the indistinguishability between L
(lB ,n+lA)
χ and

U(Z(n+lA)×n
q × Z(n+lA)×lB

p ).

Proof. As Y1 and ε are subjected to uniform distribution in G1, pqY1 +ε is subjected to uniform

distribution over Zn×lAq . Based on this observation, we construct the following distinguisher D′
presented in Algorithm 13.

First observe that Y′1 = ( qpY1 + ε) ∈ Zn×lAq follows the uniform distribution U(Zn×lAq ), where

Y1 ← Zn×lAq and ε← [−q/2p, q/2p− 1]n×lA . If (A′,B) is subject to L
(lB ,n+lA)
χ , A′ ← Z(n+lA)×n

q

corresponds to A ← Zn×nq and Y′1 = q
pY1 + ε in G1; And S ← χn×lB in generating (A′,B)

corresponds to X2 ← χn×lB in G1. In this case, we re-write

B = bA′Sep =

⌊(
AT

Y′T1

)
X2

⌉

p

=

(
bATX2ep
bY′T1 X2ep

)
=

(
Y2

Σ2

)

Hence Pr
[
D′
(
L

(lB ,n+lA)
χ

)
= 1
]

= Pr[T1].

On the other hand, if (A′,B) is subject to uniform distribution U(Z(n+lA)×n
q × Z(n+lA)×lB

p ),
then A,Y′1,Y2,Σ2 all are also uniformly random; So, the view of D′ in this case is the same
as that in game G2. Hence, Pr [D′ (A′,B) = 1] = Pr[T2] in this case. Then, |Pr[T1] − Pr[T2]| =

|Pr[D′(L(lB ,n+lA)
χ ) = 1]− Pr[D′(U(Z(n+lA)×n

q × Z(n+lA)×lB
p )) = 1]| < negl. �

Lemma 5.4. If the underlying KC or AKC is secure, Pr[T2] = 1
2 .
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Proof. Note that, in Game G2, for any 1 ≤ i ≤ lA and 1 ≤ j ≤ lB,
(
K0

2[i, j],V[i, j]
)

only depends
on Σ2[i, j], and Σ2 is subject to uniform distribution. By the security of KC, we have that, for
each pair (i, j), K0

2[i, j] and V[i, j] are independent, and K0
2[i, j] is uniform distributed. Hence,

K0
2 and V are independent, and K0

2 is uniformly distributed, which implies that Pr[T2] = 1/2.
�

This finishes the proof of Theorem 5.1. �

Algorithm 13 Distinguisher D′

1: procedure D′(A′,B) where A′ ∈ Z(n+lA)×n
q ,B ∈ Z(n+lA)×lB

p

2: Denote A′ =

(
AT

Y′T1

)
. A ∈ Zn×nq ,Y′T1 = ( qpY1 + ε)T ∈ ZlA×nq

3: Denote B =

(
Y2

Σ2

)
. Y2 ∈ Zn×lBp ,Σ2 ∈ ZlA×lBp

4:
(
K0

2,V
)
← Con(Σ2, params)

5: K1
2 ← ZlA×lBm

6: b← {0, 1}
7: b′ ← A(A, bY′1ep,Y2,K

b
2,V)

8: if b′ = b then
9: return 1

10: else
11: return 0
12: end if
13: end procedure

5.2 Analysis of Correctness and Error Rate

For any integer x, let {x}p denote x − q
pbxep, where bxep = bpqxe. Then, for any integer x,

{x}p ∈ [−q/2p, q/2p − 1], hence {x}p can be naturally regarded as an element in Zq/p. In fact,
{x}p is equal to x mod q/p, where the result is represented in [−q/2p, q/2p−1]. When the notation
{·}p is applied to a matrix, it means {·}p applies to every element of the matrix respectively.

We have Σ2 = YT
1 X2 + bεTX2ep = bAX1eTp X2 + bεTX2ep = p

q (AX1 − {AX1}p)TX2 +

bεTX2ep. And Σ1 = XT
1 Y2 = XT

1 bATX2ep = p
q (XT

1 ATX2 −XT
1 {ATX2}p). Hence,

Σ2 −Σ1 =
p

q
(XT

1 {ATX2}p − {AX1}Tp X2) + bεTX2ep mod p

=

⌊
p

q
(XT

1 {ATX2}p − {AX1}Tp X2 + εTX2)

⌉
mod p

The general idea is that X1,X2, ε, {ATX2}p and {AX1}p are small enough, so that Σ1 and
Σ2 are close. If |Σ1 −Σ2|p ≤ d, the correctness of the underlying KC guarantees K1 = K2. For
given concrete parameters, we numerically derive the probability of |Σ2−Σ1|p > d by numerically
calculating the distribution of XT

1 {ATX2}p − ({AX1}Tp X2 − εTX2) for the case of lA = lB = 1,
then applying the union bound. The independency between variables indicated by the following
Theorem 5.2 can greatly simplify the calculation.

Let Inv(X1,X2) denote the event that there exist invertible elements of ring Zq/p in both
vectors X1 and X2. Inv(X1,X2) happens with overwhelming probability in our application.
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Lemma 5.5. Consider the case of lA = lB = 1. For any a ∈ Zq/p,x ∈ Znq/p, denote Sx,a =

{y ∈ Znq/p | xTy mod (q/p) = a}. For any fixed a ∈ Zq/p, conditioned on Inv(X1,X2) and

XT
1 ATX2 mod (q/p) = a, the random vectors {ATX2}p and {AX1}p are independent, and are

subjected to uniform distribution over SX1,a, SX2,a respectively.

Proof. Under the condition of Inv(X1,X2), for any fixed X1 and X2, define the map φX1,X2 :
Zn×nq → Znq/p × Znq/p, such that A 7→ ({AX1}p, {ATX2}p).

We shall prove that the image of φX1,X2 is S = {(y1,y2) ∈ Znq/p × Znq/p | XT
2 y1 = XT

1 y2

mod (q/p)}. Denote X1 = (x1,X
′T
1 )T and y2 = (y2,y

′T
2 )T . Without loss of generality, we

assume x1 is invertible in the ring Zq/p. For any (y1,y2) ∈ S, we need to find an A such that
φX1,X2(A) = (y1,y2).

From the condition Inv(X1,X2), we know that there exists an A′ ∈ Z(n−1)×n such that
{A′X2}p = y′2. Then, we let a1 = x−1

1 (y1 − A′TX′1) mod (q/p), and A = (a1,A
′T ). Now we

check that φX1,X2(A) = (y1,y2).

{AX1}p =

{(
a1 A′T

)(x1

x′1

)}

p

= {x1a1 + A′TX′1}p = y1

{ATX2}p =

{(
aT1
A′

)
X2

}

p

=

{(
aT1 X2

A′X2

)}

p

=

{(
x−1

1 (yT1 −X′T1 A)X2

A′X2

)}

p

=

{(
x−1

1 (XT
1 y2 −X′T1 y′2)

y′2

)}

p

=

{(
y2

y′2

)}

p

= y2

Hence, if we treat Zn×nq and S as Z-modules, then φX1,X2 : Zn×nq → S is a surjective homo-

morphism. Then, for any fixed (X1,X2), ({AX1}p, {ATX2}p) is uniformly distributed over S.
This completes the proof. �

Theorem 5.2. Under the condition Inv(X1,X2), the following two distributions are identical:

• (a,X1,X2, {AX1}p, {ATX2}p), where A← Zn×nq , X1 ← χn, X2 ← χn, and a = XT
1 ATX2 mod

(q/p).

• (a,X1,X2,y1,y2), where a← Zq/p,X1 ← χn, X2 ← χn, y1 ← SX2,a, and y2 ← SX1,a.

Proof. For any ã ∈ Zq/p, X̃1, X̃2 ∈ Supp(χn), ỹ1, ỹ2 ∈ Znq/p, we have

Pr[a = ã,X1 = X̃1,X2 = X̃2, {AX1}p = ỹ1, {ATX2}p = ỹ2 | Inv(X1,X2)]

= Pr[{AX1}p = ỹ1, {ATX2}p = ỹ2 | a = ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)]

Pr[a = ã,X1 = X̃1,X2 = X̃2 | Inv(X1,X2)]

From Lemma 5.5, the first term equals to Pr[y1 ← SX̃2,ã
; y2 ← SX̃1,ã

: y1 = ỹ1,y2 = ỹ2 | a =

ã,X1 = X̃1,X2 = X̃2, Inv(X1,X2)].
For the second term, we shall prove that a is independent of (X1,X2), and is uniformly

distributed over Zq/p. Under the condition of Inv(X1,X2), the map Zn×nq → Zq/p, such that

A 7→ XT
1 ATX2 mod (q/p), is a surjective homomorphism between the two Z-modules. Then,

Pr[a = ã | X1 = X̃1,X2 = X̃2, Inv(X1,X2)] = p/q. Hence, under the condition of Inv(X1,X2), a
is independent of (X1,X2), and is distributed uniformly at random. So the two ways of sampling
result in the same distribution. �
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We design and implement the following algorithm to numerically calculate the distribution
of Σ2 −Σ1 efficiently. For any c1, c2 ∈ Zq, a ∈ Zq/p, we numerically calculate Pr[XT

1 {ATX2}p =

c1] and Pr[{AX1}Tp X2 − εTX2 = c2,X
T
1 ATX2 mod (q/p) = a], then derive the distribution of

Σ2 −Σ1.
As Inv(X1,X2) occurs with overwhelming probability, for any event E, we have |Pr[E] −

Pr[E|Inv(X1,X2)]| < negl. For simplicity, we ignore the effect of Inv(X1,X2) in the following
calculations. By Theorem 5.2, Pr[XT

1 {ATX2}p = c1] = Pr[X1 ← χn,y2 ← Znq/p; X
T
1 y2 =

c1]. This probability can be numerically calculated by computer programs. The probability
Pr[{AX1}Tp X2− εTX2 = c2,X

T
1 ATX2 mod (q/p) = a] can also be calculated by the similar way.

Then, for arbitrary c ∈ Zq,

Pr[Σ1 −Σ2 = c] = Pr[XT
1 {ATX2}p − {AX1}Tp X2 + εTX2 = c]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {ATX2}p=c1,{AX1}TpX2−εTX2=c2|XT

1 ATX2 mod (q/p)=a]·
Pr[XT

1 ATX2 mod (q/p)=a]

=
∑

c1−c2=c
a∈Zq/p

Pr[XT
1 {ATX2}p=c1|XT

1 ATX2 mod (q/p)=a]·
Pr[{AX1}TpX2−εTX2=c2|XT

1 ATX2 mod (q/p)=a] Pr[XT
1 ATX2 mod (q/p)=a]

=
∑

a∈Zq/p
c1−c2=c

Pr[XT
1 {ATX2}p = c1, c1 mod (q/p) = a] Pr[{AX1}TpX2 − εTX2 = c2,XT

1 ATX2 mod (q/p) = a]

Pr[XT
1 ATX2 mod (q/p) = a]

=
∑

a∈Zq/p

c1−c2=c
c1 mod (q/p)=a

Pr[XT
1 {ATX2}p = c1] Pr[{AX1}Tp X2 − εTX2 = c2,X

T
1 ATX2 mod (q/p) = a]

Pr[XT
1 ATX2 mod (q/p) = a]

By Theorem 5.2, conditioned on Inv(X1,X2) and XT
1 ATX2 mod (q/p) = a, XT

1 {ATX2}p is
independent of {AX1}Tp X2 − εTX2, which implies the second equality. Our code and scripts are
available from Github http://github.com/OKCN.

5.3 Parameter Selection and Evaluation

It is suggested in [ADPS16, BCD+16] that rounded Gaussian distribution can be replaced by
discrete distribution that is very close to rounded Gaussian in the sense of Rényi divergence
[BLL+15].

Definition 5.2 ( [BLL+15]). For two discrete distributions P,Q satisfying Supp(P )

⊆ Supp(Q), their a-order Rényi divergence is Ra(P ||Q) =
(∑

x∈Supp(P )
P (x)a

Q(x)a−1

) 1
a−1

.

Lemma 5.6 ( [BLL+15]). Letting a > 1, P and Q are two discrete distributions satisfying
Supp(P ) ⊆ Supp(Q), then we have

Multiplicativity: Let P and Q be two distributions of random variable (Y1, Y2). For i ∈ {1, 2},
let Pi and Qi be the margin distribution of Yi over P and Q respectively. If Y1 and Y2,
under P and Q respectively, are independent, then Ra(P ||Q) = Ra(P1||Q1) ·Ra(P2||Q2).

Probability Preservation: Let A ⊆ Supp(Q) be an event, then

Q(A) ≥ P (A)
a
a−1 /Ra(P ||Q).
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Note that, when the underlying key derivation function KDF is modelled as a random or-
acle (as in [BCD+16, ADPS16]), an attacker is considered to be successful only if it can re-
cover the entire consensus bits. Denote by E the event that a PT attacker can successfully
and entirely recover the bits of K1 = K2. By Lemma 5.6, we have that Prrounded Gaussian[E] >

Prdiscrete[E]a/(a−1)/R
n·(lA+lB)+lA·lB
a (χ||φ̄), where φ̄ is the rounded Gaussian distribution, and χ is

the discrete distribution.

5.3.1 Proposed Parameters

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5 ±6

DR 16 2.00 18110 14249 6938 2090 389 44 3 500.0 1.0000270
DP 16 1.40 21456 15326 5580 1033 97 4 0 500.0 1.0000277

Table 4: Discrete distributions of every component in the LWR secret. We choose the standard
variances large enough to prevent potential combinational attacks.

n q p l m g distr. bw. err. |K|
Recommended 672 215 212 8 24 28 DR 16.19 2−30 256

Paranoid 832 215 212 8 24 28 DP 20.03 2−34 256

Table 5: Parameters for LWR-Based key exchange. “bw.” refers to the bandwidth in kilo-bytes.
“err.” refers to the overall error rate that is calculated by the algorithm developed in Section 5.2.
“|K|” refers to the length of consensus bits.

5.3.2 Security Estimation

Similar to [ADPS16, BCD+16, CKLS16], we only consider the primal and dual attacks [CN11,
SE94] adapted to the LWR problem, which are briefly reviewed in Appendix E. Recently, Al-
brecht showed new variants against LWE with small secret [A17]. But as noted in [A17], it does
not violate the concrete security estimation of Frodo [BCD+16] and NewHope [ADPS16] as the
security evaluation in these works are very conservative.

We aim at providing parameter sets for long term security, and estimate the concrete security
in a more conservative way than [APS15] from the defender’s point of view. We first consider
the attacks of LWE whose secret and noise have different variances. Then, we treat the LWR
problem as a special LWE problem whose noise is uniformly distributed over [−q/2p, q/2p−1]. In
our security estimation, we simply ignore the difference between the discrete distribution and the
rounded Gaussian, on the following grounds: the dual attack and the primal attack only concern
about the standard deviation, and the Rényi divergence between the two distributions is very
small.
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Scheme Attack m′ b C Q P

Recommended
Primal 665 459 143 131 104
Dual 633 456 142 130 103

Paranoid
Primal 768 584 180 164 130
Dual 746 580 179 163 129

Table 6: Security estimation of the parameters described in Table 5. “C, Q, P” stand for “Clas-
sical, Quantum, Plausible” respectively. Numbers under these columns are the binary logarithm
of running time of the corresponding attacks. Numbers under “m′, b” are the best parameters for
the attacks.

6 LWE-Based Key Exchange from KC and AKC

In this section, following the protocol structure in [Pei14,ADPS16,BCD+16], we present the appli-
cations of OKCN and AKCN to key exchange protocols based on LWE. Denote by (λ, n, q, χ,KC, lA, lB, t)
the underlying parameters, where λ is the security parameter, q ≥ 2, n, lA and lB are positive
integers that are polynomial in λ (for protocol symmetry, lA and lB are usually set to be equal
and are actually small constant). To save bandwidth, we chop off t least significant bits of Y2

before sending it to Alice. Of course, we can chop off some least significant bits from both Y1

and Y2. We mainly consider chopping off least significant bits from Y2, as we want to optimize
the ciphertext size when LWE-based KE is used for public-key encryption.

Let KC = (params,Con,Rec) be a correct and secure KC scheme, where params is set to be
(q, g,m, d). The KC-based key exchange protocol from LWE is depicted in Figure 6, and the
actual session-key is derived from K1 and K2 via some key derivation function KDF . There,
for presentation simplicity, the Con and Rec functions are applied to matrices, meaning they are
applied to each of the coordinates separately. Note that 2tY′2 + 2t−11 is an approximation of Y2,
so we have Σ1 ≈ XT

1 Y2 = XT
1 ATX2 + XT

1 E2, Σ2 = YT
1 X2 + Eσ = XT

1 ATX2 + ET
1 X2 + Eσ.7

As we choose X1,X2,E1,E2,Eσ according to a small noise distribution χ, the main part of Σ1

and that of Σ2 are the same XT
1 ATX2. Hence, the corresponding coordinates of Σ1 and Σ2 are

close in the sense of | · |q, from which some key consensus can be reached. The failure probability
depends upon the number of bits we cut off t, the underlying distribution χ and the distance
parameter d, which will be analyzed in detail in subsequent sections. In the following security
definition and analysis, we simply assume that the output of the PRG Gen is truly random.
For presentation simplicity, we have described the LWE-based key exchange protocol from a KC
scheme. But it can be straightforwardly adapted to work on any correct and secure AKC scheme,
which is also explicitly specified in Figure 7.

By a straightforward adaption (actually simplification) of the security proof of LWR-based key
exchange protocol in Section 5.1, we have the following theorem. The detailed proof of Theorem
6.1 is presented in Appendix G.

Theorem 6.1. If (params,Con,Rec) is a correct and secure KC or AKC scheme, the key exchange
protocol described in Figure 6 is secure under the (matrix form of) LWE assumption [PVW08,
BCD+16].

7An alternative (equivalent) method is to set Y′2 = bY2/2te, and in this case Σ1 = XT
1 2tY′2.
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1,E1 ← χn×lA

Y1 = AX1 + E1

Responder

A = Gen(seed)
X2,E2 ← χn×lB

Y2 = ATX2 + E2

Eσ ← χlA×lB

Σ2 = YT
1 X2 + Eσ

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 (2

tY′2 + 2t−11)
K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAq

Y′2 = bY2/2
tc ∈ Zn×lBdq/2te,V ∈ ZlA×lBg

Figure 6: LWE-based key exchange from KC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| = lAlB|m|.
1 refers to the matrix which every elements are 1.

6.1 Noise Distributions and Correctness

For a correct KC with parameter d, if the distance of corresponding elements of Σ1 and Σ2

is less than d in the sense of | · |q, then the scheme depicted in Figure 6 is correct. Denote
ε(Y2) = 2tbY2/2

tc+ 2t−11−Y2. Then

Σ1 −Σ2 = XT
1 (2tY′2 + 2t−11)−YT

1 X2 −Eσ

= XT
1 (Y2 + ε(Y2))−YT

1 X2 −Eσ

= XT
1 (ATX2 + E2 + ε(Y2))− (AX1 + E1)TX2 −Eσ

= XT
1 (E2 + ε(Y2))−ET

1 X2 −Eσ

We consider each pair of elements in matrix Σ1,Σ2 separately, then derive the overall error
rate by union bound. Now, we only need to consider the case lA = lB = 1. In this case,
Xi,Ei,Yi, (i = 1, 2) are column vectors in Znq , and Eσ ∈ Zq.

If Y2 is independent of (X2,E2), then we can directly calculate the distribution of σ1 − σ2.
But now Y2 depends on (X2,E2). To overcome this difficulty, we show that Y2 is independent
of (X2,E2) under a condition of X2 that happens with very high probability.

Theorem 6.2. For any positive integer q, n, and a column vector s ∈ Znq , let φs denote the map

Znq → Zq : φs(x) = xT s. If there exits a coordinate of s which is not zero divisor in ring Zq, then
map φs is surjective.

Proof. Let us assume one coordinate of s, say s, has no zero divisor in ring Zq. Then the Zq → Zq
map between the two Zq-modules deduced by s: x 7→ sx, is injective, and thus surjective. Hence,
φs is surjective. �

For a column vector s composed by random variables, denote by F (s) the event that φs is
surjective. The following theorem gives a lower bound of probability of F (s), where s ← χn. In
our application, this lower bound is very close to 1.
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Zn×nq

X1,E1 ← χn×lA

Y1 = b(AX1 + E1)/2
t1e

Responder

K2 ← ZlA×lBm

A = Gen(seed)
X2,E2 ← χn×lB

Y2 = b(ATX2 + E2)/2
t2e

Eσ ← χlA×lB

Σ2 = 2t1YT
1 X2 + Eσ

V← Con(Σ2,K2, params)

Σ1 = XT
1 (2

t2Y2)
K1 ← Rec(Σ1,V, params)

seed,Y1 ∈ Zn×lAdq/2t1e

Y2 ∈ Zn×lBdq/2t2e,V ∈ ZlA×lBg

Figure 7: LWE-based key exchange from AKC, where K1,K2 ∈ ZlA×lBm and |K1| = |K2| =
lAlB|m|. 1 refers to the matrix which every elements are 1.

Theorem 6.3. Let p0 be the probability that e is a zero divisor in ring Zq, where e is subject to
χ. Then Pr[s← χn : F (s)] ≥ 1− pn0
Proof. From Theorem 6.2, if φs is not surjective, then all coordinates of s are zero divisors. Then
Pr[s← χn : ¬F (s)] ≤ pn0 , and the proof is finished. �

Theorem 6.4. If s, e ← χn,A ← Zn×nq ,y = As + e ∈ Znq , then under the condition F (s), y is
independent of (s, e), and is uniformly distributed over Znq .

Proof. For all ỹ, s̃, ẽ, Pr[y = ỹ | s = s̃, e = ẽ, F (s)] = Pr[As̃ = ỹ − ẽ | s = s̃, e = ẽ, F (s)]. Let
A = (a1,a2, . . . ,an)T , ỹ − ẽ = (c1, c2, . . . , cn)T , where ai ∈ Znq , and ci ∈ Zq, for every 1 ≤ i ≤ n.

Since φs is surjective, the number of possible choices of ai, satisfying aTi · s̃ = ci, is |Kerφs| = qn−1.

Hence, Pr[As̃ = ỹ − ẽ | s = s̃, e = ẽ, F (s)] = (qn−1)n/qn
2

= 1/qn. Since the right-hand side is
the constant 1/qn, the distribution of y is uniform over Znq , and is irrelevant of (s, e). �

We now begin to analyze the error rate of the scheme presented in Figure 6.
Denote by E the event |XT

1 (E2+ε(Y2))−ET
1 X2−Eσ|q > d. Then Pr[E] = Pr[E|F (S)] Pr[F (S)]+

Pr[E|¬F (S)] Pr[¬F (S)]. From Theorem 6.4, we replace Y2 = ATX2 + E2 in the event E|F (S)
with uniformly distributed Y2. Then,

Pr[E] = Pr[Y2 ← Znq : E|F (S)] Pr[F (S)] + Pr[E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Znq : E|F (S)] Pr[F (S)] + Pr[Y2 ← Znq : E|¬F (S)] Pr[¬F (S)]

+ Pr[E|¬F (S)] Pr[¬F (S)]− Pr[Y2 ← Znq : E|¬F (S)] Pr[¬F (S)]

= Pr[Y2 ← Znq : E] + ε

where |ε| ≤ Pr[¬F (S)]. In our application, p0 is far from 1, and n is very large, by Theorem 6.3,
ε is very small, so we simply ignore ε. If Y2 is uniformly distributed, then ε(Y2) is a centered
uniform distribution. Then, the distribution of XT

1 (E2 + ε(Y2)) − ET
1 X2 − Eσ can be directly

computed by programs.

30



6.1.1 Discrete Distributions

As noted in [ADPS16, BCD+16], sampling from rounded Gaussian distribution (i.e., sampling
from a discrete Gaussian distribution to a high precision) constitutes one of major efficiency
bottleneck. In this work, for LWE-based key exchange, we use the following two classes of
discrete distributions, which are specified in Table 7 and Table 8 respectively, where “bits” refers
to the number of bits required to sample the distribution and “var.” means the standard variation
of the Gaussian distribution approximated. We remark that the discrete distributions specified
in Table 8 are just those specified and used in [BCD+16] for the LWE-based Frodo scheme.

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5

D1 8 1.10 94 62 17 2 15.0 1.0015832
D2 12 0.90 1646 992 216 17 75.0 1.0003146
D3 12 1.66 1238 929 393 94 12 1 30.0 1.0002034
D4 16 1.66 19794 14865 6292 1499 200 15 500.0 1.0000274
D5 16 1.30 22218 15490 5242 858 67 2 500.0 1.0000337

Table 7: Discrete distributions proposed in this work, and their Rényi divergences.

dist. bits var.
probability of

order divergence
0 ±1 ±2 ±3 ±4 ±5 ±6

D̄1 8 1.25 88 61 20 3 25.0 1.0021674
D̄2 12 1.00 1570 990 248 24 1 40.0 1.0001925
D̄3 12 1.75 1206 919 406 104 15 1 100.0 1.0003011
D̄4 16 1.75 19304 14700 6490 1659 245 21 1 500.0 1.0000146

Table 8: Discrete distributions for Frodo [BCD+16], and their Rényi divergences

6.2 Instantiations, and Comparisons with Frodo

The comparisons, between the instantiations of our LWE-based KE protocol and Frodo, are sum-
marized in the following tables 9, 10 and 11. Note that, for presentation simplicity, we take
lA = lB = l for the sets of parameters under consideration. Also, for space limitation, we use
OKCN to denote OKCN-LWE in these tables. For “OKCN simple” proposed in Algorithm 3,
it achieves a tight parameter constraint, specifically, 2md < q. In comparison, the parameter
constraint achieved by Frodo is 4md < q. As we shall see, such a difference is one source that
allows us to achieve better trade-offs among error rate, security, (computational and bandwidth)
efficiency, and consensus range. In particular, it allows us to use q that is one bit shorter than
that used in Frodo. Beyond saving bandwidth, employing a one-bit shorter q also much improves
the computational efficiency (as the matrix A becomes shorter, and consequently the cost of gen-
erating A and the related matrix operations are more efficient), and can render stronger security
levels simultaneously. Here, we briefly highlight one performance comparison: OKCN-T2 (resp.,
Frodo-recommended) has 18.58kB (resp., 22.57kB) bandwidth, 887.15kB (resp., 1060.32kB) ma-
trix A, at least 134-bit (resp., 130-bit) quantum security, and error rate 2−39 (resp., 2−38.9).

The error rates for OKCN-LWE in these tables are derived by computing Pr
[
|Σ1[i, j]−Σ2[i, j]|q > d

]
,

for any 1 ≤ i ≤ lA and 1 ≤ j ≤ lB, and then applying the union bound. The concrete failure
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q n l m
g d

dist.
error rates

bw. (kB) |A| (kB) |K|
OKCN Frodo OKCN Frodo OKCN Frodo

Challenge 210 334 8 21 29 2 255 127 D1 2−47.9 2−14.9 6.75 139.45 64
Classical 211 554 8 22 29 2 255 127 D2 2−39.4 2−11.5 12.26 422.01 128

Recommended 214 718 8 24 210 2 511 255 D3 2−37.9 2−10.2 20.18 902.17 256
Paranoid 214 818 8 24 210 2 511 255 D4 2−32.6 2−8.6 22.98 1170.97 256

Paranoid-512 212 700 16 22 210 2 511 255 D̄4 2−33.6 2−8.3 33.92 735.00 512

Table 9: Parameters proposed for OKCN-LWE when t = 0 (i.e., without cutting off least signif-
icant bits). “distr.” refers to the discrete distributions proposed in Table 7 and Table 8. “bw.”
means bandwidth in kilo-bytes (kB). “|A|” refers to the size of the matrix. |K| = l2 logm denotes
the length of consensus bits.

q n l m
g d

dist.
error rates bw. (kB) |A| (kB) |K|

OKCN Frodo OKCN Frodo OKCN Frodo OKCN Frodo

Challenge 211 352 8 21 22 2 383 255 D̄1 2−80.1 2−41.8 7.76 7.75 170.37 64
Classical 212 592 8 22 22 2 383 255 D̄2 2−70.3 2−36.2 14.22 14.22 525.70 128

Recommended 215 752 8 24 23 2 895 511 D̄3 2−105.9 2−38.9 22.58 22.57 1060.32 256
Paranoid 215 864 8 24 23 2 895 511 D̄4 2−91.9 2−33.8 25.94 25.93 1399.68 256

Table 10: Parameters of Frodo, and comparison with OKCN-LWE when t = 0. Here, “distr.”
refers to the discrete distributions specified in Table 8. Note that, on the parameters of Frodo,
OKCN-LWE achieves significantly lower error rates.

q n l m g t d dist. err. bw. (kB) |A| (kB) |K|
OKCN-T2 214 712 8 24 28 2 509 D5 2−39.0 18.58 887.15 256
OKCN-T1 214 712 8 24 28 1 509 D5 2−52.3 19.29 887.15 256

Table 11: Parameters proposed for OKCN-LWE with t least significant bits chopped off.

probabilities are gotten by running the code slightly adjusted, actually simplified, from the open
source code of Frodo. The simplified code are available from Github http://github.com/OKCN.

The concrete security levels are calculated by running the same code of Frodo. For comparison,
the security levels of Frodo are presented in Appendix F.

6.2.1 Benchmark

The work [SM16] introduces the Open Quantum Safe Project. liboqs is one part of this project.
liboqs provides the interface for adding new key exchange schemes, benchmark, and an easy way
to integrate to OpenSSL.

We fork the liboqs on Github and add our OKCN-LWR-Recommended and OKCN-LWE-
Recommended. Most of the source codes are modified from Frodo-Recommended provided in
liboqs.

We run benchmark of liboqs on Ubuntu Linux 16.04, GCC 5.4.0, Intel Core i7-4712MQ
2.30GHz, with hyperthreading and TurboBoost disabled, and the CPU frequency fixed to 2.30GHz
(by following the instructions on http://bench.cr.yp.to/supercop.html). The benchmark
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Scheme Attack
Rounded Gaussian Post-reduction

m′ b C Q P C Q P

Classical
Primal 477 444 138 126 100 132 120 95
Dual 502 439 137 125 99 131 119 94

Recommended
Primal 664 500 155 141 112 146 133 105
Dual 661 496 154 140 111 145 132 104

Paranoid
Primal 765 586 180 164 130 179 163 130
Dual 743 582 179 163 129 178 162 129

Paranoid-512
Primal 643 587 180 164 131 180 164 130
Dual 681 581 179 163 129 178 162 129

OKCN-T2
Primal 638 480 149 136 108 148 135 107
Dual 640 476 148 135 107 147 134 106

Table 12: Security estimation of the parameters described in Table 9 and Table 11. “Rounded
Gaussian” refers to the ideal case that noises and errors follow the rounded Gaussian distribution.
“Post-reduction” refers to the case of using discrete distributions as specified in Table 7.

result (Table 13) shows that OKCN-LWR-Recommended and OKCN-LWE-Recommended are
faster than Frodo, and use smaller bandwidth.

7 Hybrid Construction of Key Exchange from LWE and LWR

By composing a CPA-secure symmetric-key encryption scheme, the LWE-based key exchange
protocols presented Section 6 can be used to construct public-key encryption (PKE) schemes, by
treating (A,Y1) (resp., X1) as the static public key (resp., secret key). Moreover, AKC-based
key-exchange protocol can be directly used as a CPA-secure PKE scheme. To further improve
the efficiency of the resultant PKE scheme, the observation here is we can generate the ephemeral
Y2 in the ciphertext with LWR samples. This results in the following hybrid construction of key
exchange from LWE and LWR in the public-key setting. For applications to PKE, we focus on the
AKC-based protocol construction. Denote by (nA, nB, lA, lB, q, p,KC, χ) the system parameters,
where p|q, and we choose p and q to be power of 2. The AKC-based protocol from LWE and
LWR is presented in Figure 8. To further reduce the size of Y1 public key, some least significant
bits can also be cut off from Y1.

The hybrid construction of key exchange from LWE and LWR is similar to the underlying
protocol in Lizard [CKLS16]. The Lizard PKE scheme uses our AKCN as the underlying rec-
onciliation mechanism, while our protocol is a general structure that can be implemented with
either KC or AKC. In order to improve efficiency, Lizard [CKLS16] is based on the variants,
referred to as spLWE and spLWR, of LWE and LWR with sparse secret. We aim at providing
parameter sets for long term security, and estimate the concrete security in a more conservative
way than [CKLS16] from the defender’s point of view.

7.1 Security and Error Rate Analysis

The security proof is very similar to LWE-based and LWR-based key exchanges in previous
sections, and is omitted here.
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time(us) stdev cycle stdev bw. (B)

LWE Frodo recommended

Alice 0 1443.915 10.990 3313704 25236 11280
Bob 1940.616 12.809 4453734 29439 11288
Alice 1 170.109 3.655 390331 8317 -

LWR OKCN recommended

Alice 0 1161.154 11.839 2664789 27129 9968
Bob 1722.525 12.401 3953182 28400 8224
Alice 1 133.984 3.980 307404 9065 -

LWE OKCN recommended

Alice 0 1335.453 13.460 3064789 30871 9968
Bob 1753.240 14.293 4023632 32851 8608
Alice 1 146.162 3.528 335380 8035 -

Table 13: Benchmark of liboqs integrated with OKCN-LWE-Recommended. “time(us)” refers to
mean time that spent on each iteration. “cycle” refers to mean number of cpu cycles. “stdev”
refers to population standard deviation of time or cpu cycles. “bw. (B)” refers to bandwidth,
counted in bytes.

For the error probability, we have

Σ1 = XT
1 Y2 =

p

q
XT

1

(
ATX2 − {ATX2}p

)
=
p

q

(
XT

1 ATX2 −XT
1 {ATX2}p

)

Σ2 =
⌊
YT

1 X2

⌉
p

=
p

q

(
YT

1 X2 − {YT
1 X2}p

)
=
p

q
(XT

1 ATX2 + ET
1 X2 − {YT

1 X2}p)

Σ2 −Σ1 =
p

q

(
ET

1 X2 + XT
1 {ATX2}p − {ET

1 X2 + XT
1 ATX2}p

)
= bET

1 X2 + XT
1 {ATX2}pep

We can see that the distribution of Σ2 −Σ1 can be derived from the distribution of E1X2 +
XT

1 {ATX2}p. From Theorem 6.4, we know that for almost all (with overwhelm probability) given
X2, the distribution of {ATX2}p is the uniform distribution over [−q/2p, q/2p)nA . The concrete
error probability can then be derived numerically by computer programs. The codes and scripts
are available on Github http://github.com/OKCN.

7.2 Parameter Selection

For simplicity, we use the Gaussian distribution of the same variance (denote as σ2
s) for the noise

E1, secrets X1 and X2. We consider the weighted dual attack and weighted primal attack in
Section 5.3.

σ2
s nA nB q p l m g pk cipher err. |K|

Recommended 2.0 712 704 215 212 8 24 28 10.56 8.61 2−63 256

Paranoid 2.0 864 832 215 212 8 24 28 12.24 10.43 2−52 256

Table 14: Parameters for the hybrid construction of key exchange from LWE and LWR. “err.”
refers to the overall error probability. “|K|” refers to the length of consensus bits. “pk” refers to
the kilo-byte (kB) size of the public key pk = (A,Y1). “cipher” refers to the kB size of (Y2,V).
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Initiator
seed← {0, 1}κ
A← ZnB×nA

q

sk = X1 ← χnA×lA

E1 ← χnB×lA

Y1 = AX1 + E1 ∈ ZnB×lA
q

Responder

K2 ← ZlA×lB
m

A = Gen(seed)
X2 ← χnB×lB

Y2 = bATX2ep
Σ2 = bYT

1 X2ep
V← Con(Σ2,K2, params)

Σ2 = XT
1 Y2 mod p

K1 ← Rec(Σ1,V, params)

pk = (A,Y1)

Y2 ∈ ZnA×lB
p ,V ∈ ZlA×lB

g

Figure 8: AKC-based key exchange from LWE and LWR in the public-key setting, where pk =

(A,Y1) is fixed once and for all, K1,K2 ∈ ZlA×lBm and |K1| = |K2| = lAlB|m|.

Scheme Attack
LWE LWR

m′ b C Q P m′ b C Q P

Recommended
Primal 699 464 144 131 105 664 487 151 138 109
Dual 672 461 143 131 104 665 483 150 137 109

Paranoid
Primal 808 590 181 165 131 856 585 180 164 130
Dual 789 583 179 163 130 765 579 178 162 129

Table 15: Security estimation of the parameters described in Table 14.

8 RLWE-Based Key Exchange from KC and AKC

Denote by (λ, n, q, σ,KC) the system parameters, where λ is the security parameter, q ≥ 2 is
a positive prime number, σ parameterizes the discrete Gaussian distribution DZn,σ, n denotes
the degree of polynomials in Rq, and Gen a PRG generating a ∈ Rq from a small seed. Let
KC = (params,Con,Rec) be a correct and secure KC scheme, where params = (q, g,m, d). In this
section, we mainly consider m = 2. The KC-based key exchange protocol from RLWE is depicted
in Figure 9, where the actual session-key is derived from k1 and k2 via some key derivation
function KDF . As discussed in Section 5, a KC-based key exchange protocol can be trivially
extended to work on any correct and secure AKC scheme, which is also presented in Figure 10,
where k2 ← {0, 1}n for KEM (rep., k2 ∈ {0, 1}n corresponds to any plaintext for PKE). When
used for PKE, (seed,y1) corresponds to the public key, and x1 corresponds to the secret key. In
the protocol description, for presentation simplicity, the Con and Rec functions are applied to
polynomials, meaning they are applied to each of the coefficients respectively. Also, for simplicity
and symmetry, in the following analysis we assume the same number of tail bits are chopped off
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from both y1 and y2 by setting t = t1 = t2 ≥ 0. In general, if we want to optimize the size of
public key (resp., ciphertext), we can set t1 > t2 (resp., t1 < t2).

On parameters and implementations. The protocol described in Figure 9 works on any hard
instantiation of the RLWE problem. But if n is power of 2, and prime q satisfies q mod 2n = 1,
then number-theoretic transform (NTT) can be used to speed up polynomial multiplication. The
performance can be further improved by using the Montgomery arithmetic and AVX2 instruction
set [ADPS16], and by carefully optimizing performance-critical routines (in particular, NTT)
in ARM assembly [AJS16]. As in [ADPS16], the underlying noise distribution is the centered
binomial distribution Ψη (rather than rounded Gaussian distribution with the standard deviation
σ =

√
η/2), which is the sum of η independent centered binomial variables and can be rather

trivially sampled in hardware and software with much better protection against timing attacks.
We remark that the actual noise distribution is the composition of Ψη and the chopped bits
determined by t. When estimating the post-quantum security levels, we usually just assume
t = 0 (i.e., without considering the effect of t on the actual noise distribution); but sometimes we
also take this value into account by approximately treating the standard deviation of the noise as
σ′ =

√
(2σ2 + 2t−1)/2. This is based on the observation that no attacks known take advantage of

the information of different noise distributions. The concrete values of post-quantum security are
gotten by running the scripts provided by [ADPS16,BDK+17]. The parameters and performance
of OKCN-RLWE and AKCN-RLWE are summarized in Table 16 and 17.

On security analysis. The security definition and proof of the RLWE-based key exchange
protocol can be straightforwardly adapted from those for the KE protocol based on LWE or
LWR. Similar analysis is also given in [BDK+17]. NewHope achieves 255-bit post-quantum
security against the underlying lattice problem, but its 256-bit shared key only ensures about
128-bit post-quantum security (in view of the quadratic speedup by Grover’s search algorithm
and the possibility of more sophisticated quantum attacks against symmetric-key cryptography
[KM10,KLL15]). In this sense, the 255-bit post-quantum security of NewHope is actually overshot
in reality. For RLWE-based KE protocols, we aim for about 256-bit post-quantum security against
both the underlying lattice problem and the shared key. This means that the shared key should
be of at least 256 bits.

On error rate analysis. The error rate analysis is a special case of that for MLWE-based key
exchange presented in Section 9. Note that the correctness of OKCN (resp., AKCN) requires
that (2d + 1)m < q(1 − 1

g ) (resp., (2d + 1)m < q(1 − 1
g )); This means that on the same param-

eters (q,m, d), OKCN-RLWE with parameter g has the same error rate of AKCN-RLWE with
parameter g′ = mg. In this work, we set m = 2, and the concrete error rate values are gotten by
running the scripts provided in [ADPS16,BDK+17].

8.1 Combining AKCN with Lattice Code in D̃4

When implemented with the same parameters proposed in [ADPS16] for NewHope, as shown in
Table 16, OKCN-RLWE and AKCN-RLWE reach 1024 consensus bits, with a failure probability
around 2−40; Though it suffices, we suggest, for most applications of key exchange. In order for
reaching a negligible error rate, particularly for achieving a CCA-secure PKE scheme, we need
to further lower the error rate.

A straightforward approach to reducing the error rate is to use the technique of NewHope by
encoding and decoding the four-dimensional lattice D̃4.8 With such an approach, the error rate
can be lowered to about 2−61, but the shared-key size is reduced from 1024 to 256. AKCN-RLWE

8Decoding the 24-dimensional Leech lattice is also recently considered in [Pop16], but is more complicated.
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = b(a · x1 + e1)/2
t1e

Responder

a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
t2e

e′2 ← DZn,σ

σ2 = 2t1y1 · x2 + e′2 ∈ Rq
(k2,v)← Con(σ2, params)

σ1 = 2t2y2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Figure 9: RLWE-based key exchange from KC, where k1,k2 ∈ Rq. The protocol instantiated
with OKCN specified in Algorithm 1 is referred to as OKCN-RLWE.

equipped with this approach, referred to as AKCN-4:1, is presented and analyzed in Appendix H.
We note that, in comparison with NewHope-simple proposed in the subsequent work [ADPS16b],
AKCN-4:1 still has some performance advantage in bandwidth expansion; specifically expanding
256 bits by AKCN-4:1 vs. 1024 bits by NewHope-simple compared to that of NewHope.9

8.2 On the Independence of Errors in Different Positions

Another approach to reduce error rate is to employ error correction code (ECC). Unfortunately,
in general, the ECC-based approach can be more inefficient and overburdened than NewHope’s
approach. In this work, we make a key observation on RLWE-based key exchange, by proving that
the errors in different positions in the shared-key are independent when n is large. Based upon
this observation, we present a super simple and fast code, referred to as single-error correction
(SEC) code, to correct at least one bit error. By equipping OKCN/AKCN with the SEC code,
we present the (up-to-date) simplest RLWE-based key exchange from both OKCN and AKCN,
which can be used for CCA-secure public-key encryption (e.g., for achieving 765-bit shared-key
with bandwidth 3392 bytes and error rate 2−73.2 at about 250-bit post-quantum security).

Suppose f(x), g(x) are two polynomials of degree n, whose coefficients are drawn indepen-
dently from Gaussian. Let h(x) = f(x) · g(x) ∈ R[x]/(xn + 1). We show that for every two
different integers 0 ≤ c1, c2 < n, the joint distribution of (h[c1], h[c2]) will approach to the two-
dimensional Gaussian when n tends to infinity. Hence, for the basic construction of RLWE-based
key exchange from KC and AKC presented in Figure 9, it is reasonable to assume that the error
rates of any two different positions are independent when n is sufficiently large.

For representation simplicity, for any polynomial f , let f [i] denote the coefficient of xi.

Lemma 8.1. Suppose f(x), g(x) ∈ R[x]/(xn + 1) are two n-degree polynomials whose coefficients
are drawn independently from N (0, σ2). Let h(x) = f(x) · g(x) ∈ R[x]/(xn + 1), where h(x)
is represented as an n-degree polynomial. For any two different integers 0 ≤ c1, c2 < n, the

9The bandwidth expansion, for both AKCN-4:1 and NewHope-simple, can be further compressed but at the
price of losing operation simplicity.
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g d |K| bw.(B) per. nH err. pq-sec

OKCN-RLWE 24 2879 1024 4128 2−48 - 2−38 255
OKCN-RLWE 26 3023 1024 4384 2−52 - 2−42 255
AKCN-RLWE 24 2687 1024 4128 2−42 - 2−32 255
AKCN-RLWE 26 2975 1024 4384 2−51 - 2−41 255

OKCN-SEC 22 2303 765 3904 2−31 4 2−48.5 255
OKCN-SEC 23 2687 765 4032 2−42 4 2−70.5 255
OKCN-SEC 23 2687 837 4021 2−42 5 2−69.5 255
AKCN-SEC 24 2687 765 4128 2−42 4 2−70.5 255
AKCN-SEC 24 2687 837 4128 2−42 5 2−69.5 255

NewHope 22 - 256 3872 2−69 - 2−61 255
NewHope-Simple 22 - 256 4000 2−69 - 2−61 255
AKCN-4:1-RLWE 22 - 256 3904 2−69 - 2−61 255

Table 16: All schemes in this table use the same parameters proposed for NewHope [ADPS16]:

(q = 12289, n = 1024,m = 21, t = 0, σ =
√

8, κ = 256,Ψ16). |K| refers to the total binary length
of consensus bits. bw. (B) refers to the bandwidth in bytes. err. refers to failure probability.
“nH” refers to the dimension of SEC code used. “per” refers to the per bit error rate before
applying the SEC code. “err.” refers to overall error rate. “pq-sec” refers to the best known
post-quantum attacks targeting the underlying lattice problem.

g t σ (σ′) |K|(SEC) bw.(pk,cipher) err.(SEC) pq-sec (t-sec)

OKCN-RLWE 24 2
√

8 (
√

9) 1024(765) 3392 (1440,1952) 2−28.1 (2−61) 255 (258)

σ =
√

8 23 2
√

8 (
√

9) 1024(765) 3264 (1440,1824) 2−24.8 (2−54.4) 255 (258)

23 1
√

8 (
√

8.5) 1024(765) 3520 (1568,1952) 2−33.4 (2−71.6) 255 (257)

24 1
√

8 (
√

8.5) 1024(765) 3648 (1568,2080) 2−37.8 (2−80.4) 255 (257)

OKCN-RLWE 22 2
√

6 (
√

7) 1024(765) 3136(1440,1696) 2−31.8 (2−68.4) 246 (250)

σ =
√

6 23 2
√

6 (
√

7) 1024(765) 3264 (1440,1824) 2−43.2 (2−91.2) 246 (250)

24 2
√

6 (
√

7) 1024(765) 3392(1440,1952) 2−49 (2−102.8) 246 (250)

23 1
√

6 (
√

6.5) 1024(765) 3520 (1568,1952) 2−60.6 (2−126) 246 (248)

24 1
√

6 (
√

6.5) 1024(765) 3648 (1568,2080) 2−68.9 (2−142.6) 246 (248)

AKCN-RLWE 25 2
√

8 (
√

9) 1024(765) 3520 (1440,2080) 2−28.1 (2−61) 255 (258)

σ =
√

8 24 2
√

8 (
√

9) 1024(765) 3392 (1440,1952) 2−24.8 (2−54.4) 255 (258)

24 1
√

8 (
√

8.5) 1024(765) 3648 (1568,2080) 2−33.4 (2−71.6) 255 (257)

25 1
√

8 (
√

8.5) 1024(765) 3776 (1568,2208) 2−37.8 (2−80.4) 255 (257)

AKCN-RLWE 23 2
√

6 (
√

7) 1024(765) 3264(1440,1824) 2−31.8 (2−68.4) 246 (250)

σ =
√

6 24 2
√

6 (
√

7) 1024(765) 3392(1440,1952) 2−43.2 (2−91.2) 246 (250)

25 2
√

6 (
√

7) 1024(765) 3520(1440,2080) 2−49 (2−102.8) 246 (250)

24 1
√

6 (
√

6.5) 1024(765) 3648 (1568,2080) 2−60.6 (2−126) 246 (248)

25 1
√

6 (
√

6.5) 1024(765) 3776 (1568,2208) 2−68.9 (2−142.6) 246 (248)

Table 17: Parameters for κ = 256, q = 12289, n = 1024, m = 2, nH = 4. “|K| (SEC)” refers
to the key size (resp., key size with SEC); “bw.(pk,cipher)” refers to the bandwidth in bytes
(including the size of pk = (y1, seed) and cipher = (y2,v)); “err.(SEC)” refers to the error rate
(resp., the error rate with SEC); “pq-sec” (resp., “t-sec”) refers to the security against the best
known quantum attacks against the underlying lattice problem without considering the effect of
t (resp., by heuristically viewing the standard deviation of the noise as σ′ =

√
(2σ2 + 2t−1)/2).
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Initiator
seed← {0, 1}κ

a = Gen(seed) ∈ Rq
x1, e1 ← DZn,σ

y1 = b(a · x1 + e1)/2
t1e

Responder

k2 ∈ Znm
a = Gen(seed)
x2, e2 ← DZn,σ

y2 = b(a · x2 + e2)/2
t2e

e′2 ← DZn,σ

σ2 = 2t1y1 · x2 + e′2 ∈ Rq
v← Con(σ2,k2, params)

σ1 = 2t2y2 · x1 ∈ Rq
k1 ← Rec(σ1,v, params)

seed,y1 ∈ Rq

y2 ∈ Rq,v ∈ Rg

Figure 10: RLWE-based key exchange from AKC, where k1,k2 ∈ Rq. The protocol instantiated
with AKCN in Algorithm 4 is referred to as AKCN-RLWE.

characteristic function of the two-dimensional random vector (h[c1], h[c2]) ∈ R2 is

φc1,c2(t1, t2) = E
[
ei(t1h[c1]+t2h[c2])

]
= t1f

TAc1g + t2f
TAc2g (5)

=
n−1∏

k=0

(
1 + σ4

(
t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)))− 1
2

(6)

Proof. One can observe that t1h[c1] + t2h[c2] is equal to

t1


 ∑

i+j=c1

f [i]g[j]−
∑

i+j=c1+n

f [i]g[j]


+ t2


 ∑

i+j=c2

f [i]g[j]−
∑

i+j=c2+n

f [i]g[j]




= t1f
TAc1g + t2f

TAc2g. = fT (t1Ac1 + t2Ac2)g

Where f = (f [0], f [1], . . . , f [n − 1])T , g = (g[0], g[1], . . . , g[n − 1])T , and the notations Ac1 ,Ac2

are defined by

Ac =




1
...

1
−1

...

−1




The value 1 in the first row is in the c-TtH column.
As t1Ac1 + t2Ac2 is symmetric, it can be orthogonally diagonalize as PTΛP, where P is or-

thogonal, and Λ is diagonal. Hence, φc1,c2(t1, t2) = E[exp(i(Pf)TΛ(Pg))]. Since P is orthogonal,
it keeps the normal distribution unchanged. Hence, (Pf)TΛ(Pg) equals to the sum of n scaled
products of two independent one-dimensional Gaussian.
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Suppose λ1, λ2, . . . , λn are the eigenvalues of t1Ac1 +t2Ac2 , and φ is the characteristic function
of the product of two independent one-dimensional standard Gaussian. Then we have

φc1,c2(t1, t2) =
n−1∏

k=0

φ(σ2λk) (7)

From [Sim02], φ(t) = (1 + t2)−1/2. For λk, we further observe that

(t1Ac1 + t2Ac2)2 = (t21 + t22)I + t1t2(Ac1Ac2 + Ac2Ac1)

= (t21 + t22)I + t1t2(Gc2−c1 + Gc1−c2),

where

G =




1
1

. . .

1
−1




The characteristic polynomial of G is xn + 1. Hence, λk satisfies

λ2
k = t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)

By taking this into Equation 7, we derive the Equation 6. �

Theorem 8.1. For any fixed integers 0 ≤ c1, c2 < n, c1 6= c2, when n tends to infinity, the dis-

tribution of
(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
converges (in distribution) to the two-dimensional normal distribution

N (0, I2).

Proof. Let φ(t1, t2) denote the characteristic function of the random vector
(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
. Then,

for fixed t1, t2,

ln(φ(t1, t2)) = −1

2

n−1∑

k=0

ln

(
1 +

1

n

(
t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

)))
(8)

= −1

2

n−1∑

k=0

[
1

n

(
t21 + t22 + 2t1t2 cos

(
π(c1 − c2)

2k + 1

n

))
+ rk

]
(9)

= −1

2

(
t21 + t22

)
− 1

2

n−1∑

k=0

rk, (10)

where rk is the Lagrange remainders. So, |rk| ≤ λ4
k/2n

2. Since λ2
k ≤ (|t1| + |t2|)2, we have

|rk| ≤ (|t1|+ |t2|)4/2n2.
When n tends to infinity, φ(t1, t2) converges pointwise to exp(−(t21 + t22)/2), which is the char-

acteristic function of the two-dimensional normal distribution N (0, I2). From Lévy’s convergence

theorem, we derive that the random vector
(
h[c1]
σ2
√
n
, h[c2]
σ2
√
n

)
converges in distribution to the normal

distribution N (0, I2). �
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8.3 Reducing Error Rate with Single-Error Correction Code

Note that, for the basic protocol construction of RLWE-based key exchange from KC and AKC
presented in Figure 9, it has already achieved per-bit error rate of about 2−42. The observation
here is that, by Theorem 8.1 on the independence of error in different positions when n is large, if
we can correct one bit error the error rate will be greatly lowered. Towards this goal, we present
an variant of the Hamming code, referred to as single-error correction (SEC) code, which can
correct one-bit error in a very simple and fast way.

8.3.1 Single-Error Correction Code

All the arithmetic operations in this section are over Z2. For a positive integer nH , denote
NH = 2nH , and define the matrix H as following, where for any i, 1 ≤ i ≤ NH − 1, the i-TtH
column of H just corresponds to the binary presentation of i.

HnH×(NH−1) =




1 0 1 0 1 0 1 · · · 0 1 0 1
0 1 1 0 0 1 1 · · · 0 0 1 1
0 0 0 1 1 1 1 · · · 1 1 1 1

· · ·
0 0 0 0 0 0 0 · · · 1 1 1 1




For arbitrary x = (x1, . . . , xNH−1) ∈ ZNH−1
2 , let pT = HxT . It is easy to check that the

j-TtH element of p is the exclusive-or of all xi’s satisfying the j-TtH least significant bit of i is 1,
where 1 ≤ j ≤ nH and 1 ≤ i ≤ NH − 1. Specifically, the first element of p is the exclusive-or of
all xi that the least significant bit of i is 1, and the second element of p is the exclusive-or of all
xi that the second least significant bit of i is 1, and so on. Denote p = (p1, p2, . . . , pnH ). We can
combine the bits in p into a binary number p = 20p1 + 21p2 + . . . 2nH−1pnH . The construction of
H directly leads to the following proposition.

Proposition 8.1. If pT = HxT , and the Hamming weight of x is 1, then p is the subscript index
of the only 1 in x.

Algorithm 14 EncodeC(x = (x1, . . . , xNH−1))

1: x0 = ⊕NH−1
i=1 xi

2: pT = HxT

3: c = (x0,x,p)
4: return c

Algorithm 15 DecodeC(x0,x =
(x1, . . . , xNH−1),p)

1: p = ⊕NH−1
i=0 xi

2: if p = 1 then
3: i = HxT ⊕ p . bitwise exclusive-or
4: xi = xi ⊕ 1
5: end if
6: return x

The single-error correction code C is defined by

C =
{

(x0,x,p) ∈ Z2 × ZNH−1
2 × ZnH2 | x0 = ⊕NH−1

i=1 xi,p
T = HxT

}

The encoding algorithm is straightforward and depicted in Algorithm 14.
We now show that C can correct one bit error. Suppose x is encoded into c = (x0,x,p). For

some reasons, such as the noise in communication channel, the message c may be changed into
c′ = (x′0,x

′,p′). We only need to consider the case that at most one bit error occurs. If x′0 equals
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to the parity bit of x′, then no error occurs in x0 and x. Otherwise, there is one bit error in x′0
or x′, but p′ = p (as we assume there exists at most one bit error that has already occurred in
x′0 or x′). We calculate p′′ = Hx′T ⊕p′T . In fact, p′′ = Hx′T ⊕pT = H(x′T ⊕xT ). If the one-bit
error occurs in x′, by Proposition 8.1, p′′ is the subscript index of the error bit. If the one-bit
error occurs on x′0, then x′ = x, and p′′ = H0 = 0. Hence, p′′ always equals to the subscript
index of the error bit.

The decoding algorithm is depicted in Algorithm 15. Note that, according to the special form
of H, the matrix multiplication HxT in both encoding and decoding can be done with simple bit
operations like bit shifts and bitwise exclusive-or (such an implementation is given in Appendix
I). Moreover, for AKCN-SEC and OKCN-SEC, the calculations in Lines 2-4 in Algorithm 15 are
executed only with probability around 2−40, so the decoding is extremely fast.

8.3.2 AKC and KC with SEC code

We divide the n-bit string k1 into bn/(NH +nH)c blocks, then apply our SEC code in each block.
Note that this approach can also correct more than one bit errors, if at most one bit error occurs
in each block.

Alice
σ1 ∈ Zn

q

k1 = EncodeC(k′
1)

v← Con(σ1,k1, params)

Bob
σ2 ∈ Zn

q

k2 ← Rec(σ2,v, params)
k′
2 = DecodeC(k2)

v

≈

Figure 11: Depiction of AKC with SEC code, where k1,k2 ∈ ZNH+nH
2 , |k′1| = |k′2| = NH − 1. If

the Hamming distance between k1 and k2 is at most 1, then k′1 = k′2.

Figure 11 depicts the AKC scheme equipped with the SEC code. Note that EncodeC can be
calculated off-line. Suppose the per bit error rate of k1 and k2 is p, then under the assumption
that the errors in different positions are independent, we can estimate that the overall heuristic
error rate of k′1 and k′2 is no larger than b n

NH+nH
cC2

NH+nH
p2.

Alice
σ1 ∈ ZNH+nH

q

(k1,v)← Con(σ1, params)
Denote k1 as (x0,x = (x1, . . . , xNH−1),p)

v′ = EncodeC(x)⊕ k1

Bob
σ2 ∈ ZNH+nH

q

k2 ← Rec(σ2,v, params)
Denote k2 as (x′0,x

′ = (x′1, . . . , x
′
NH−1),p

′)
x′ = DecodeC(k2 ⊕ v′)

v,v′ ∈ V

≈

Figure 12: Depiction of application of SEC code to KC, where k1,k2 ∈ ZNH+nH
2 . If k1 and k2

have at most one different bit, then x = x′.
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For KC equipped with the SEC code, we propose the algorithm depicted in Figure 12. Note
that Alice only needs to send nH +1 bits of v′, as the second to NHth elements of v′ are all zeros.
Bob calculates x′ = DecodeC(k2 ⊕ v′). In fact, k2 ⊕ v′ = EncodeC(x) ⊕ (k1 ⊕ k2). Hence, if the
Hamming distance between k1 and k2 is 1, then x′ = x. To prove security of the algorithm in
Figure 12, we need the following theorem.

Theorem 8.2. Let V = Z2 × {0 ∈ ZNH−1
2 } × ZnH2 , then ZNH+nH

2 = C⊕V, where
⊕

denotes
direct sum.

Proof. For any k1 = (x0,x = (x1, . . . , xNH−1),p) ∈ ZNH+nH
2 , let c = EncodeC(x) and v′ = c⊕k1.

We have the decomposition k1 = c⊕ v′, where c ∈ C and v′ ∈ V.
Next, we prove V ∩ C = 0. If k = (x0,x,p) ∈ V ∩ C, then x = 0, which implies x0 = 0 and

pT = H0 = 0. Hence, k = 0. �

When k1 is subjected to uniform distribution, then by Theorem 8.2, after the decomposition
k1 = c ⊕ v′ where c ∈ C and v′ ∈ V, c and v′ are subjected to uniform distribution in C and V
respectively. And c and v′ are independent. As both ZNH−1

2 → C and x 7→ EncodeC(x) are one-
to-one correspondence, we derive that x and v′ are independent, and x is uniformly distributed.
The parameters and performances for s OKCN-SEC and AKCN-SEC are summarized in Table 16
and 17.

8.4 Reducing Error Rate with Lattice Code in E8

In this section, we further consider the approach to lower the error rate, and develop new lattice
code in E8. We divide the coefficients of the polynomial σ1 and σ2 into n̂ = n/8 groups, where
each group is composed of 8 coefficients. In specific, denote R = Z[x]/(x8 + 1), Rq = R/qR,K =
Q[x]/(x8 + 1) and KR = K ⊗ R ' R[x]/(x8 + 1). Then the polynomial σ1 can be represented as
σ1(x) = σ0(xn̂) + σ1(xn̂)x + · · · + σn̂−1(xn̂)xn̂−1, where σi(x) ∈ Rq for i = 0, 1, . . . n̂. σ2 can be
divided in the same way. Then we only need to construct the reconciliation mechanism for each
σi(x), and finally combine the keys together. To do this, we need to first introduce the lattice E8

and its encoding and decoding.

8.4.1 Combining AKCN with Lattice Code in E8

We construct lattice E8 from the Extended Hamming Code in dimension 8, which is denoted as
H8 for presentation simplicity. H8 refers to the 4-dimension linear subspace of 8-dimension linear
space Z8

2.
H8 = {c ∈ Z8

2 | c = zH mod 2, z ∈ Z4}
where

H =




1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1




The encoding algorithm is straightforward: given a 4-bit string k1, calculate k1H. This
operation can be done efficiently by bitwise operations. We combine this encoding with AKCN (for
the special case of m = 2), which is referred to as AKCN-E8-RLWE for presentation simplicity.
The complete algorithm is shown in Algorithm 16. In this work, we focus on the combination of
AKCN with encoding/decoding in E8, and the extension to OKCN is straightforward.
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Algorithm 16 AKCN-E8: Con with encoding in E8

1: procedure Con(σ1 ∈ Z8
q ,k1 ∈ Z4

2, params)

2: v =
⌊
g
q

(
σ1 + q−1

2 (k1H mod 2)
)⌉

mod g

3: return v
4: end procedure

The decoding algorithm finds the solution of the closest vector problem (CVP) for the lattice
E8. For any given x ∈ R8, CVP asks which lattice point in E8 is closest to x. Based on the struc-
ture of E8, we propose an efficient decoding algorithm. Let C = {(x1, x1, x2, x2, x3, x3, x4, x4) ∈
Z8

2 | x1 +x2 +x3 +x4 = 0 mod 2}. In fact, C is spanned by the up most three rows of H. Hence,
E8 = C ∪ (C+ c), where c = (0, 1, 0, 1, 0, 1, 0, 1) is the last row of H. For a given x ∈ R8, to solve
CVP of x in E8, we solve CVP of x and x − c in C, and then choose the one that has smaller
distance.

Algorithm 17 AKCN-E8: Rec with decoding in E8

1: procedure Rec(σ2 ∈ Z8
q ,v ∈ Z8

g, params)

2: k2 = DecodeE8

(⌊
q
gv
⌉
− σ2

)

3: return k2

4: end procedure

Then we consider how to solve CVP in C. For an x ∈ R8, we choose (x1, x2, x3, x4) ∈ Z4
2, such

that (x1, x1, x2, x2, x3, x3, x4, x4) is closest to x. However, x1 +x2 +x3 +x4 mod 2 may equal to 1.
In such cases, we choose the 4-bit string (x′1, x

′
2, x
′
3, x
′
4) such that (x′1, x

′
1, x
′
2, x
′
2, x
′
3, x
′
3, x
′
4, x
′
4) is

secondly closest to x. Note that (x′1, x
′
2, x
′
3, x
′
4) has at most one-bit difference from (x1, x2, x3, x4).

The detailed algorithm is depicted in Algorithm 18. Considering potential timing attack, all the
“if” conditional statements can be implemented by constant time bitwise operations. In practice,
Decode00

C and Decode01
C are implemented as two subroutines.

For algorithm 18, in DecodeE8 , we calculate costi,b, where i = 0, 1, . . . , 7, b ∈ {0, 1}, which
refer to the contribution to the total 2-norm when xi = b. Decode00

C solves the CVP in lattice C,
and Decode01

C solves the CVP in lattice C+ c. Then we choose the one that has smaller distance.
Decodeb0b1C calculates the ki, i = 0, 1, 2, 3 such that q−1

2 (k0⊕b0, k0⊕b1, k1⊕b0, k1⊕b1, k2⊕b0, k2⊕
b1, k3 ⊕ b0, k3 ⊕ b1) is closest to x. We use mind and mini to find the second closest vector.
Finally, we check the parity to decide which one should be returned.

The following theorem gives a condition of success of the encoding and decoding algorithm
in Algorithm 16 and Algorithm 17. For simplicity, for any σ = (x0, x1, . . . , x7) ∈ Z8

q , we define

‖σ‖2q,2 =
∑7

i=0 |xi|2q .

Theorem 8.3. If ‖σ1 −σ2‖q,2 ≤ (q− 1)/2−
√

2
(
q
g + 1

)
, then k1 and k2 calculated by Con and

Rec are equal.

Proof. The minimal Hamming distance of the Extended Hamming code H8 is 4. Hence, the

minimal distance in the lattice we used is 1
2

√(
q−1

2

)2
× 4 = (q − 1)/2.

44



Algorithm 18 Decoding in E8 and C

1: procedure DecodeE8(x ∈ Z8
q)

2: for i = 0 . . . 7 do
3: costi,0 = |xi|2q
4: costi,1 = |xi + q−1

2 |2q
5: end for
6: (k00,TotalCost00)← Decode00

C (costi∈0...7,b∈{0,1})

7: (k01,TotalCost01)← Decode01
C (costi∈0...7,b∈{0,1})

8: if TotalCost00 < TotalCost01 then
9: b = 0

10: else
11: b = 1
12: end if
13: (k0, k1, k2, k3)← k0b

14: k2 = (k0, k1 ⊕ k0, k3, b)
15: return k2

16: end procedure
17: procedure Decodeb0b1C (costi∈0...7,b∈{0,1} ∈ Z8×2)
18: mind = +∞
19: mini = 0
20: TotalCost = 0
21: for j = 0 . . . 3 do
22: c0 ← cost2j,b0 + cost2j+1,b1

23: c1 ← cost2j,1−b0 + cost2j+1,1−b1
24: if c0 < c1 then
25: ki ← 0
26: else
27: ki ← 1
28: end if
29: TotalCost← TotalCost + cki
30: if c1−ki − cki < mind then
31: mind ← c1−ki − cki
32: mini ← i
33: end if
34: end for
35: if k0 + k1 + k2 + k3 mod 2 = 1 then
36: kmini ← 1− kmini
37: TotalCost← TotalCost +mind
38: end if
39: k = (k0, k1, k2, k3)
40: return (k,TotalCost)
41: end procedure
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We can find ε, ε1 ∈ [−1/2, 1/2]8,θ ∈ Z8 such that

⌊
q

g
v

⌉
− σ2 =

q

g
v + ε− σ2 =

q

g

(
g

q

(
σ1 +

q − 1

2
k1H

)
+ ε+ θg

)
+ ε1 − σ2

= (σ1 − σ2) +
q − 1

2
k1H +

q

g
ε+ ε1 + θq

Hence, the bias from q−1
2 k1H is no larger than ‖σ1 − σ2‖q,2 + q

g‖ε‖ +
√

2 ≤ ‖σ1 − σ2‖q,2 +
√

2
(
q
g + 1

)
. If this value is less than the minimal distance (q−1)/2, the decoding will be correct,

which implies k1 = k2.

Parameters and implementation. The parameters and performance of AKCN-E8 are given
in Table 19. We provide a script to calculate the concrete error rate. For AKCN-E8-256, the
deviation in our parameter set (σ =

√
21) is quite large, which requires more many random bits to

sample. However, the generation of random bits costs a lot of time. Frodo uses a table to generate
a discrete distribution that is very close to the rounded Gaussian. However, in our parameter
set for AKCN-E8-256, the table will be too large to sample efficiently. Hence, we propose the
distribution Ba,b, where a and b are two integers.

Algorithm 19 Sample r from Ba,b

1: r ←∑a
i=1 getOneRandomBit() + 2 ∗∑b

i=1 getOneRandomBit()−
(
a
2 + b

)

The variation of r in Algorithm 19 is a
4 + b, and the expect value of r is 0. By the central

limit theorem, the distribution of r is close to a discrete Gaussian. In our implementation, we
choose a = 24, b = 15, and the summation of the random bits are calculated by fast bit counting.
Recall that the Renyi divergence increases as a increases. Hence, B24,15 and rounded Gaussian
of variance 21 are more close compared to Ψ16 and rounded Gaussian of variance 8. We use a
larger a than NewHope so that the potential security decline can be smaller, although no attacks
known make use of the information of different noise distributions.

|K| n q σ (σ′) g t pq-sec (t-sec) err pk (B) cipher (B) bw. (B)

AKCN-E8-256 256 512 12289
√

21 (
√

22) 26 2 128 (129) 2−34 800 1152 1952

AKCN-E8-512 512 1024 12289
√

8 (
√

10) 24 3 255 (262) 2−63.3 1440 1920 3360

σ =
√

8 512 1024 12289
√

8 (
√

9) 24 2 255 (258) 2−98 1568 2048 3616

512 1024 12289
√

8 (
√

10) 25 3 255 (262) 2−81.6 1440 2048 3488

512 1024 12289
√

8 (
√

9) 25 2 255 (258) 2−124.4 1568 2176 3744

512 1024 12289
√

8 (
√

9) 26 2 255 (258) 2−138.7 1568 2304 3872

AKCN-E8-512 512 1024 12289
√

6 (
√

10) 24 4 246 (262) 2−35.6 1312 1792 3104

(σ =
√

6) 512 1024 12289
√

6 (
√

8) 24 3 246 (255) 2−109.4 1440 1920 3360

512 1024 12289
√

6 (
√

10) 25 4 246 (262) 2−47.2 1312 1920 3232

512 1024 12289
√

6 (
√

8) 23 3 246 (255) 2−60.7 1440 1792 3232

512 1024 12289
√

6 (
√

8) 25 3 246 (255) 2−138.4 1440 2048 3488

Table 18: Parameters for AKCN-E8-RLWE. “pk(B)” refers to the size of (y1, seed) in bytes;

“cipher(B)” refers to the size of (y2,v). The underlying noise distribution is Ψη with σ =
√
η/2;

“pq-sec” (resp., “t-sec”) refers to the security against the best known quantum attacks against
the underlying lattice problem without considering the effect of t (resp., by heuristically viewing
the standard deviation of the noise as σ′ =

√
(2σ2 + 2t−1)/2).
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8.5 On the Desirability of OKCN/AKCN-SEC and OKCN/AKCN-E8

Compared to NewHope, OKCN/AKCN-SEC and OKCN/AKCN-E8 are more desirable, on the
following grounds:

• To our knowledge, OKCN/AKCN-SEC schemes are the simplest RLWE-based KE protocols
with error probability that can be viewed negligible in practice, which are better suitable for
hardware or software implementations than encoding and decoding the four-dimensional
lattice D̃4. Note that SEC can be implemented with simple bit operations. Moreover, with
probability about 1 − 2−40, the decoding only involves the XOR operations in Line-1 of
Algorithm 14, which is extremely simple and fast.

• AKCN-SEC can be directly transformed into a CPA-secure PKE scheme for encrypting
837-bit messages, while AKCN4:1-RLWE and NewHope-simple are for encrypting 256-bit
messages.

• It is more desirable to have KE protocols that directly share or transport keys of larger size.
On the one hand, it is commonly expected that, in the post-quantum era, symmetric-key
cryptographic primitives like AES need larger key sizes, in view of the quadratic speedup
by Grover’s search algorithm and the possibility of more sophisticated quantum attacks
[KM10, KLL15] against symmetric-key cryptography. Indeed, to our knowledge, the post-
quantum security of NewHope is evaluated as a stand-alone protocol, without considering
possible quantum attacks targeting the use of shared-key. In this sense, a key exchange
protocol of 256-bit shared key can only provide at most 128-bit post-quantum security;
On the other hand, in some more critical application areas than public commercial usage,
larger key size actually has already been mandated nowadays. Note that for NewHope,
AKCN4:1-RLWE, and NewHope-simple, if we want a 512-bit shared-key (which is necessary
for ensuring 256-bit post-quantum security) they have to use a polynomial of degree 2048
which can be significantly less efficient.

• As clarified, the SEC approach fails only when there are more than one bit errors in some
block, and is versatile in the sense: the smaller (resp., larger) is the block size nH , the lower
the error probability (resp., bandwidth expansion) will be.

• OKCN/AKCN-SEC and OKCN/AKCN-E8 are more versatile and flexible than NewHope,
allowing more useful trade-offs among the parameters and performance.

• OKCN/AKCN-SEC vs. OKCN/AKCN-E8. OKCN/AKCN-SEC has larger key size and is
simpler. In comparison, on the system parameters, OKCN/AKCN-E8 can have lower error
rate, smaller bandwidth and stronger security simultaneously, but at the price of more
complicated implementation. We may prefer OKCN/AKCN-SEC, from the viewpoint of
system simplicity and easy implementation.

9 MLWE-Based Key Exchange from KC and AKC

Recall that R = Z[X]/(Xn + 1), and Rq = R/qR. Let l be a positive integer parameter. Let Sη
denote a distribution on all elements w ∈ R such that ‖w‖∞ ≤ η.10 The Module-LWE (MLWE)

10A typical instantiation of Sη, as proposed in [BDK+17], is based on the following centered binomial distribution:
sample (a1, · · · , aη, b1, · · · , bη)← {0, 1}2η, and output

∑η
i=1(ai − bi).
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1,E1 ← Sl×1
η

Y1 = b(AX1 + E1)/2
t1e

Responder

A = Gen(seed)
X2,E2 ← Sl×1

η ,Eσ ← Sη
Y2 =

⌊
(ATX2 + E2)/2

t2
⌉

Σ2 = 2t1YT
1 X2 + Eσ

(K2,V)← Con(Σ2, params)

Σ1 = XT
1 (2

t2Y2)
K1 = Rec(Σ1,V, params)

seed,Y1

Y2,V

Figure 13: Generic construction of OKCN-MLWE

problem is introduced in [LS15], which is a generalization of the RLWE problem. We make use
of the definitions described in [BDK+17].

• MLWE distribution. The MLWE distribution is defined on Rlq × Rq induced by pairs

(ai,bi), where ai ← Rlq is uniform and b = aTi s + ei with s ← Slη common to all samples
and ei ← Sη fresh for every sample.

• MLWE assumption. The MLWE problem consists in recovering s from polynomially
many samples chosen from the MLWE distribution. More precisely, for an algorithm A, we
define

Advmlwe
h,l,η (A) = Pr

[
x = s :

A← Rh×lq ; (s, e)← Slη × Shη ;

b← As + e; x← A(A,b);

]
.

We say that the (t, ε) MLWEh,l,η hardness assumption holds if no algorithm A running in
time at most t has an advantage greater than ε.

9.1 Generic Construction of MLWE-Based KE

Let KC = (Con,Rec, params) be a correct and secure KC or AKC scheme with parameters
params = (q,m, g, d), where m = 2 in this section. When Con and Rec are applied to a poly-
nomial in Rq, they are applied to each coefficients of the polynomial respectively. The generic
construction of key exchange from MLWE is described in Figure 13 and Figure 14. We remark
that the underlying AKC (resp., KC) can be any one of AKCN, AKCN4:1, AKCN-SEC, AKCN-
E8 (resp., OKCN, OKCN-SEC, OKCN-E8). Here, for simplicity and symmetry, we assume the
same number of tail bits are chopped off from both Y1 and Y2 by setting t = t1 = t2 ≥ 0.

The construction of MLWE-based KE is a direct adaptation of the LWE-based KE from
KC/AKC presented in Figure 6 in Section 6. When m = 2 and g is power-of-two, the AKCN-
based implementation is actually the CPA-secure Kyber scheme proposed in [BDK+17]. The
parameters and performance of OKCN-MLWE and AKCN-MLWE are presented in Table 19. In
practice, we prefer to use the parameter set OKCN-MLWE-PKE-1, which is also the parameter
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Initiator
seed← {0, 1}κ

A = Gen(seed) ∈ Rl×lq

X1,E1 ← Sl×1
η

Y1 = b(AX1 + E1)/2
t1e

Responder

K2 ← Znm
A = Gen(seed)

X2,E2 ← Sl×1
η ,Eσ ← Sη

Y2 =
⌊
(ATX2 + E2)/2

t2
⌉

Σ2 = 2t1YT
1 X2 + Eσ

V← Con(Σ2,K2, params)

Σ1 = XT
1 (2

t2Y2)
K1 = Rec(Σ1,V, params)

seed,Y1

Y2,V

Figure 14: Generic construction of AKCN-MLWE, where m = 2 in this work

set used in our actual implementation. We note that, when η = 2, there may be potential
combinational attacks, but the much larger η′ voids such potential combinational attacks.

|K| n q η (η′) g t l pq-sec (t-sec) err pk (B) cipher (B) bw. (B)

OKCN-MLWE-KE-light 256 256 7681 5 (13) 23 4 2 102 (116) 2−36.2 608 704 1312
OKCN-MLWE-KE 256 256 7681 2 (10) 22 4 3 147 (183) 2−50.1 896 960 1856

OKCN-MLWE-PKE-light 256 256 7681 5 (9) 23 3 2 102 (111) 2−105.5 672 768 1440
OKCN-MLWE-PKE-1 256 256 7681 2 (10) 25 4 3 147 (183) 2−80.3 896 1056 1952
OKCN-MLWE-PKE-2 256 256 7681 2 (6) 22 3 3 147 (171) 2−166.4 992 1056 2048

AKCN-MLWE-PKE-light 256 256 7681 5 (9) 23 3 2 102 (111) 2−105.5 672 800 1472
AKCN-MLWE-PKE-1 256 256 7681 2 (10) 26 4 3 147 (183) 2−80.3 896 1088 1984
AKCN-MLWE-PKE-2 256 256 7681 2 (6) 23 3 3 147 (171) 2−166.4 992 1088 2080

OKCN-MLWE-Alt1 256 256 7681 4 22 2 3 161 (171) 2−142.7 1088 1152 2240
AKCN-MLWE-Alt1(Kyber) 256 256 7681 4 23 2 3 161 (171) 2−142.7 1088 1184 2272

OKCN-MLWE-Alt2 256 256 7681 4 22 3 3 161 2−71.9 992 1056 2048
OKCN-MLWE-Alt3 256 256 7681 4 24 3 3 161 2−109 992 1120 2112
OKCN-MLWE-Alt3 256 256 7681 4 24 4 3 161 2−34.5 896 1024 1920

Table 19: Parameters for OKCN/AKCN-MLWE. η′ = η+2t−1; “pq-sec (t-sec)” refers to the best
known quantum attack against the underlying lattice problem w.r.t. η (resp., η′).

9.2 Error Rate Analysis and Parameter Selection

Denote ε2 = ATX2 +E2−2tb(ATX2 +E2)/2te, and ε1 = AX1 +E1−2tb(AX1 +E1)/2te. Then
we have

Σ1 −Σ2 = XT
1 (2tY2)− (2tYT

1 X2 + Eσ) (11)

= 2tXT
1 b(ATX2 + E2)/2te − 2tb(AX1 + E1)/2teX2 + Eσ (12)

= XT
1 (ATX2 + E2 − ε2)− ((AX1 + E1 − ε1) +Eσ) (13)

= XT
1 (E2 − ε2) + (E1 − ε1)TX2 + E2 (14)
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From MLWE assumption, (A,ATX2 + E2) is indistinguishable with (A,U), where U is
subjected to the uniform distribution, εi(i = 1, 2) should be closed to U − 2tbU/2te. We can
roughly regard each coefficients of polynomials in U − 2tbU/2te as uniform distribution over
[−2t−1, 2t−1]n.

Then we can calculate the standard deviation of each coefficients of polynomials in Σ2 −Σ1,
denote it as s. We have

s2 = 2nlσ2

(
σ2 +

22t

12

)
+ σ2 (15)

For AKCN-E8-MLWE, by the Central Limit Theorem, each coefficient of the polynomials in
Σ2 −Σ1 is close to a Gaussian distribution. From Theorem 8.3, the AKCN-E8-MLWE scheme
is correct with probability

Pr

[
d′ ← χ2(8) :

√
d′ ≤

(
q − 1

2
−
√

2

(
q

g
+ 1

))
/s

]
(16)
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Algorithm 20 Key consensus scheme in Frodo

1: procedure Con(σ1, params) . σ1 ∈ [0, q)

2: v =
⌊
2−B̄+1σ1

⌋
mod 2

3: k1 =
⌊
2−B̄σ1

⌉
mod 2B

4: return (k1, v)
5: end procedure
6: procedure Rec(σ2, v, params) . σ2 ∈ [0, q)

7: find x ∈ Zq closest to σ2 s.t.
⌊
2−B̄+1x

⌋
mod 2 = v

8: k2 =
⌊
2−B̄x

⌉
mod 2B

9: return k2

10: end procedure

A Consensus Mechanism of Frodo

Let the modulo q be power of 2, which can be generalized to arbitrary modulo using the techniques
in [Pei14]. Let integer B be a power of 2. B < (log q)− 1, B̄ = (log q)−B (note that m = 2B in
our notations). The underlying KC mechanism implicitly in Frodo is presented in Figure 20.

Claim A.1 ( [BCD+16], Claim 3.2). If |σ1 − σ2|q < 2B̄−2, then Rec(σ2, v) = k1. i.e. the scheme
in Algorithm 20 is correct.

This claim is equivalence to require 4md < q.

B Consensus Mechanism of NewHope

Note that, for the consensus mechanism of NewHope, the rec procedure is run both in Con and
in Rec, and a random bit b is used in Con corresponding to the dbl trick in [Pei14].

C Proof of Corollary 3.2

Proof. For correctness, supposing |σ1 − σ2|q ≤ d, by Fact 3.1, there exist θ ∈ Z and δ ∈ [−d, d]
such that σ2 = σ1 + θq + δ. Taking this into line 8 of Algorithm 3, i.e., the formula computing
k2, we have

k2 = b(σ1 − v + θq + δ)/ge mod m

= (k1 + θm+ bδ/ge) mod m.

If 2md < q, then |δ/g| ≤ d/g < 1/2, so that k2 = k1 mod m = k1.
For security, as a special case of generic scheme described in Algorithm 1, the security of

Algorithm 3 follows directly from that of Algorithm 1. �

D On KC/AKC vs. Fuzzy Extractor

Our formulations of KC and AKC are abstractions of the core ingredients of previous constructions
of KE and PKE from LWE/RLWE. As we shall see in the subsequent sections, the design and
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Algorithm 21 NewHope Consensus Mechanism

1: procedure Decode(x ∈ R4/Z4) . Return a bit k such that kg is closest to x + Z4

2: v = x− bxe
3: return k = 0 if ‖v‖1 ≤ 1, and 1 otherwise
4: end procedure
5:

6: HelpRec(x, b) = CVPD̃4

(
2r

q (x + bg)
)

mod 2r . b corresponds to the dbl trick [Pei14]

7: rec
(
x ∈ Z4

q ,v ∈ Z4
2r
)

= Decode
(

1
qx− 1

2rBv
)

8:

9: procedure Con(σ1 ∈ Z4
q , params)

10: b← {0, 1}
11: v← HelpRec(σ1, b)
12: k1 ← rec(σ1,v)
13: return (k1,v)
14: end procedure
15:

16: procedure Rec(σ2 ∈ Z4
q ,v ∈ Z4

2r , params)
17: k2 ← rec(σ2,v)
18: end procedure
19:

analysis of KE and PKE from LWE, LWR and RLWE can be reduced to KC and AKC. We also
note that KC and AKC are similar to fuzzy extractor proposed in [DORS08], which extracts
shared-keys from biometrics and noisy data. In this section, we make some discussions on the
relationship between KC/AKC and fuzzy extractor.

The differences between the definitions of KC/AKC and that of fuzzy extractor lie mainly in
the following ways. Firstly, AKC was not considered within the definitional framework of fuzzy
extractor. Secondly, the metric | · |q we use in defining KC and AKC was not considered for fuzzy
extractor. Thirdly, in the definitions of KC and AKC, the algorithm Rec (corresponding Rep for
fuzzy extractor) is mandated to be deterministic, while in the formulation of fuzzy extractor it
is probabilistic. Fourthly, in the formulation of fuzzy extractor [DORS08], w, R and P (corre-
sponding σ1, k and v in KC/AKC) are binary strings; while in the definitions of KC/AKC, the
corresponding values σ1 ∈ Zq, k ∈ Zm and v ∈ Zg have more structured ranges, which are helpful
in deriving the exact upper bound. Finally, for the security of KC and AKC, we require that the
signal value v be independent of the shared-key k1 (that can be subject to arbitrary distribution
for AKC); roughly speaking, in the definition of fuzzy extractor [DORS08], it is required that the
joint distribution (R,P ) be statistically close to (Ul, P ) where R ∈ {0, 1}l and Ul is the uniform
distribution over {0, 1}l.

A generic upper bound on the length of key extracted by fuzzy extractor is proposed in
[DORS08, Appendix C]. In comparison, the upper bounds for KC and AKC proved in this work
are more versatile and precise w.r.t. the metric | · |q. For example, the effect of the length of
the signal v, i.e., the bandwidth parameter g, is not considered in the upper bound for fuzzy
extractor, but is taken into account in the upper bounds for KC and AKC.

A generic construction of fuzzy extractor from secure sketch, together with a generic con-
struction of secure sketch for transitive metric spaces, is proposed in [DORS08]. We note that
(Zq, | · |q) can be naturally seen as a transitive matric space. Compared to the secure sketch based
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generic constructions of fuzzy extractor, our constructions of KC and AKC are direct and more
efficient.

In spite of some similarities between KC/AKC and fuzzy extractors, we remark that before
our this work the relation between fuzzy extractor and KE from LWE and its variants is actually
opaque. Explicitly identifying and formalizing KC/AKC and reducing lattice-based cryptosys-
tems to KC/AKC in a black-box modular way, with inherent bounds on what could or couldn’t
be done, cut the complexity of future design and analysis of these cryptosystems.

E Overview of the Primal and Dual Attacks

This section is almost verbatim from [ADPS16]. The dual attack tries to distinguish the distribu-
tion of LWE samples and the uniform distribution. Suppose (A,b = As + e) ∈ Zm×nq × Zmq is a
LWE sample, where s and e are drawn from discrete Gaussian of variance σ2

s and σ2
e respectively.

Then we choose a positive real c ∈ R, 0 < c ≤ q, and construct Lc(A) = {(x,y/c) ∈ Zm×(Z/c)n |
xTA = yT mod q}, which is a lattice with dimension m+n and determinant (q/c)n. For a short
vector (x,y) ∈ Lc(A) found by the BKZ algorithm, we have xTb = xT (As + e) = c · yT s + xTe
mod q. If (A,b) is an LWE sample, the distribution of the right-hand side will be very close to a
Gaussian of standard deviation

√
c2‖y‖2σ2

s + ‖x‖2σ2
e , otherwise the distribution will be uniform.

‖(x,y)‖ is about δm+n
0 (q/c)

n
m+n , where δ0 is the root Hermite factor. We heuristically assume

that ‖x‖ =
√

m
m+n ‖(x,y)‖, and ‖y‖ =

√
n

m+n ‖(x,y)‖. Then we can choose c = σe/σs that

minimizes the standard deviation of xTb. The advantage of distinguishing xTb from uniform
distribution is ε = 4 exp(−2π2τ2), where τ =

√
c2‖y‖2σ2

s + ‖x‖2σ2
e/q. This attack must be

repeated R = max{1, 1/(20.2075bε2)} times to be successful.
The primal attack reduces the LWE problem to the unique-SVP problem. Let Λw(A) =

{(x,y, z) ∈ Zn × (Zm/w) × Z | Ax + wy = zb mod q}, and a vector v = (s, e/w, 1) ∈ Λw(A).
Λw(A) is a lattice of d = m+ n+ 1 dimensions, and its determinant is (q/w)m. From geometry
series assumption, we can derive ‖b∗i ‖ ≈ δd−2i−1

0 det(Λw(A))1/d. We heuristically assume that
the length of projection of v onto the vector space spanned by the last b Gram-Schmidt vectors

is about
√

b
d ‖(s, e/w, 1)‖ ≈

√
b
d (nσ2

s +mσ2
e/w

2 + 1). If this length is shorter than ‖b∗d−b‖,
this attack can be successful. Hence, the successful condition is

√
b
d (nσ2

s +mσ2
e/w

2 + 1) ≤
δ2b−d−1

0

( q
w

)m/d
. We know that the optimal w balancing the secret s and the noise e is about

σe/σs.

55



F Security Estimation of the Parameters of Frodo

Scheme Attack
Rounded Gaussian Post-reduction

m′ b C Q P C Q P

Classical
Primal 549 442 138 126 100 132 120 95
Dual 544 438 136 124 99 130 119 94

Recommended
Primal 716 489 151 138 110 145 132 104
Dual 737 485 150 137 109 144 130 103

Paranoid
Primal 793 581 179 163 129 178 162 129
Dual 833 576 177 161 128 177 161 128

Table 20: Security estimation of the parameters proposed for Frodo in [BCD+16], as specified in
Table 10.

G Security Analysis of LWE-Based Key Exchange

Definition G.1. A KC or AKC based key exchange protocol from LWE is secure, if for any
sufficiently large security parameter λ and any PT adversary A,

∣∣Pr[b′ = b]− 1
2

∣∣ is negligible, as
defined w.r.t. game G0 specified in Algorithm 22.

Algorithm 22 Game G0

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 = AX1 + E1

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Before starting to prove the security, we first recall some basic properties of the LWE assump-
tion. The following lemma is derived by a direct hybrid argument [PVW08,BCD+16].

Lemma G.1 (LWE in the matrix form). For positive integer parameters (λ, n, q ≥ 2, l, t), where

n, q, l, t all are polynomial in λ, and a distribution χ over Zq, denote by L
(l,t)
χ the distribution over

Zt×nq × Zt×lq generated by taking A ← Zt×nq ,S ← χn×l,E ← χt×l and outputting (A,AS + E).
Then, under the standard LWE assumption on indistinguishability between Aq,s,χ (with s ← χn)
and U(Znq × Zq), no PT distinguisher D can distinguish, with non-negligible probability, between

the distribution L
(l,t)
χ and U(Zt×nq × Zt×lq ) for sufficiently large λ.

Theorem G.1. If (params,Con,Rec) is a correct and secure KC or AKC scheme, the key ex-
change protocol described in Figure 6 is secure under the (matrix form of) LWE assumption.
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Proof. The proof is similar to, but actually simpler than, that in [Pei14, BCD+16]. The general
idea is that we construct a sequence of games: G0, G1 and G2, where G0 is the original game for
defining security. In every move from game Gi to Gi+1, 0 ≤ i ≤ 1, we change a little. All games
Gi’s share the same PT adversary A, whose goal is to distinguish between the matrices chosen
uniformly at random and the matrices generated in the actual key exchange protocol. Denote by
Ti, 0 ≤ i ≤ 2, the event that b = b′ in Game Gi. Our goal is to prove that Pr[T0] < 1/2 + negl,
where negl is a negligible function in λ. For ease of readability, we re-produce game G0 below.
For presentation simplicity, in the subsequent analysis, we always assume the underlying KC or
AKC is correct. The proof can be trivially extended to the case that correctness holds with
overwhelming probability (i.e., failure occurs with negligible probability).

Algorithm 23 Game G0

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 = AX1 + E1

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Algorithm 24 Game G1

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Lemma G.2. |Pr[T0]−Pr[T1]| < negl, under the indistinguishability between L
(lA,n)
χ and U(Zn×nq ×

Zn×lAq ).

Proof. Construct a distinguisherD, in Algorithm 25, who tries to distinguish L
(lA,n)
χ from U(Zn×nq ×

Zn×lAq ).

Algorithm 25 Distinguisher D
1: procedure D(A,B) . A ∈ Zn×nq ,B ∈ Zn×lAq

2: Y1 = B
3: X2,E2 ← χn×lB

4: Y2 = ATX2 + E2

5: Eσ ← χlA×lB

6: Σ2 = YT
1 X2 + Eσ

7:
(
K0

2,V
)
← Con(Σ2, params)

8: K1
2 ← ZlA×lBm

9: b← {0, 1}
10: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

11: if b′ = b then
12: return 1
13: else
14: return 0
15: end if
16: end procedure
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If (A,B) is subject to L
(lA,n)
χ , then D perfectly simulates G0. Hence, Pr

[
D
(
L

(lA,n)
χ

)
= 1
]

=

Pr[T0]. On the other hand, if (A,B) is chosen uniformly at random from Zn×nq ×Zn×lAq , which are

denoted as (AU ,BU ), then D perfectly simulates G1. So, Pr[D(AU ,BU ) = 1] = Pr[T1]. Hence,

|Pr[T0]− Pr[T1]| =
∣∣∣Pr[D(L

(lA,n)
χ ) = 1]− Pr[D(AU ,BU ) = 1]

∣∣∣ < negl. �

Algorithm 26 Game G1

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2,E2 ← χn×lB

5: Y2 = ATX2 + E2

6: Eσ ← χlA×lB

7: Σ2 = YT
1 X2 + Eσ

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Algorithm 27 Game G2

1: A← Zn×nq

2: X1,E1 ← χn×lA

3: Y1 ← Zn×lAq

4: X2,E2 ← χn×lB

5: Y2 ← Zn×lBq

6: Eσ ← χlA×lB

7: Σ2 ← ZlA×lBq

8:
(
K0

2,V
)
← Con(Σ2, params)

9: K1
2 ← ZlA×lBm

10: b← {0, 1}
11: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

Lemma G.3. |Pr[T1] − Pr[T2]| < negl, under the indistinguishability between L
(lB ,n+lA)
χ and

U(Z(n+lA)×n
q × Z(n+lA)×lB

q ).

Proof. As Y1 is subject to uniform distribution in G1, (YT
1 ,Σ2) can be regarded as an L

(lB ,lA)
χ

sample of secret X2 and noise Eσ. Based on this observation, we construct the following distin-
guisher D′.

Algorithm 28 Distinguisher D′

1: procedure D′(A′,B) where A′ ∈ Z(n+lA)×n
q ,B ∈ Z(n+lA)×lB

q

2: Denote A′ =

(
AT

YT
1

)
. A ∈ Zn×nq ,YT

1 ∈ ZlA×nq

3: Denote B =

(
Y2

Σ2

)
. Y2 ∈ Zn×lBq ,Σ2 ∈ ZlA×lBq

4:
(
K0

2,V
)
← Con(Σ2, params)

5: K1
2 ← ZlA×lBm

6: b← {0, 1}
7: b′ ← A(A,Y1, bY2/2

tc,Kb
2,V)

8: if b′ = b then
9: return 1

10: else
11: return 0
12: end if
13: end procedure

If (A′,B) is subject to L
(lB ,n+lA)
χ , A′ ← Z(n+lA)×n

q corresponds to A← Zn×nq and Y1 ← Zn×lAq

in G1; and S← χn×lB (resp., E← χ(n+lA)×lB ) in generating (A′,B) corresponds to X2 ← χn×lB
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(resp., E2 ← χn×lB and Eσ ← χlA×lB ) in G1. In this case, we have

B = A′S + E =

(
AT

YT
1

)
X2 +

(
E2

Eσ

)

=

(
ATX2 + E2

YT
1 X2 + Eσ

)
=

(
Y2

Σ2

)

Hence Pr
[
D′
(
L

(lB ,n+lA)
χ

)
= 1
]

= Pr[T1].

On the other hand, if (A′,B) is subject to uniform distribution U(Z(n+lA)×n
q × Z(n+lA)×lB

q ),
then A,Y1,Y2,Σ2 all are also uniformly random; So, the view of D′ in this case is the same
as that in game G2. Hence, Pr [D′ (A′,B) = 1] = Pr[T2] in this case. Then |Pr[T1] − Pr[T2]| =

|Pr[D′(L(lB ,n+lA)
χ ) = 1]− Pr[D′(U(Z(n+lA)×n

q × Z(n+lA)×lB
q )) = 1]| < negl. �

Lemma G.4. If the underlying KC or AKC is secure, Pr[T2] = 1
2 .

Proof. Note that, in Game G2, for any 1 ≤ i ≤ lA and 1 ≤ j ≤ lB,
(
K0

2[i, j],V[i, j]
)

only depends
on Σ2[i, j], and Σ2 is subject to uniform distribution. By the security of KC, we have that, for
each pair (i, j), K0

2[i, j] and V[i, j] are independent, and K0
2[i, j] is uniform distributed. Hence,

K0
2 and V are independent, and K0

2 is uniformly distributed, which implies that Pr[T2] = 1/2.
�

This finishes the proof of Theorem G.1. �

H Construction and Analysis of AKCN-4:1

H.1 Overview of NewHope

By extending the technique of [PG13], in NewHope the coefficients of σ1 (i.e., the polynomial of
degree n) are divided into n/4 groups, where each group contains four coordinates. On the input
of four coordinates, only one bit (rather than four bits) consensus is reached, which reduces the
error rate to about 2−61 which is viewed to be negligible in practice.

Specifically, suppose Alice and Bob have σ1 and σ2 in Z4
q respectively, and they are close

to each other. One can regard the two vectors as elements in R4/Z4, by treating them as 1
qσ1

and 1
qσ2. Consider the matrix B = (u0,u1,u2,g) ∈ R4×4, where ui, 0 ≤ i ≤ 2, is the canonical

unit vector whose i-TtH coordinate is 1, and g = (1/2, 1/2, 1/2, 1/2)T . Denote by D̃4 the lattice
generated by B. Note that Z4 ⊂ D̃4 ⊂ R4. Denote by V the close Voronoi cell of the origin in
D̃4. In fact, V is the intersection of the unit ball in norm 1 and the unit ball in infinity norm
(the reader is referred to NewHope [ADPS16, Appendix C] for details). The following procedure
CVPD̃4

(x) returns the vector v such that Bv is closest to x, i.e., x ∈ Bv +V, where the distance
is measured in the Euclidean norm.
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Algorithm 29 CVPD̃4
in NewHope [ADPS16]

1: procedure CVPD̃4
(x ∈ R4)

2: v0 = bxe
3: v1 = bx− ge
4: k = 0 if ‖x− v0‖1 < 1 and 1 otherwise
5: (v0, v1, v2, v3)T = vk
6: return v = (v0, v1, v2, k)T + v3 · (−1,−1,−1, 2)T

7: end procedure

If σ1 is in the Voronoi cell of g, then the consensus bit is set to be 1, and 0 otherwise.
Hence, Alice finds the closest lattice vector of σ1 by running the CVPD̃4

procedure described in
Algorithm 29, and calculates their difference which is set to be the hint signal v. Upon receiving
v, Bob subtracts the difference from σ2. Since σ1 and σ2 are very close, the subtraction moves
1
qσ2 towards a lattice point in D̃4. Then Bob checks whether or not the point after the move
is in the Voronoi cell of g, and so the consensus is reached. Furthermore, to save bandwidth,
NewHope chooses an integer r, and discretizes the Voronoi cell of g to 24r blocks, so that only
4r bits are needed to transfer the hint information. To make the distribution of consensus bit
uniform, NewHope adds a small noise to σ1, similar to the dbl trick used in [Pei14]. The Con
and Rec procedures, distilled from NewHope, are presented in Algorithm 21 in Appendix B.

H.2 Construction and Analysis of AKCN-4:1

For any integer q and vector x = (x0, x1, x2, x3)T ∈ Z4
q , denote by ‖x‖q,1 the sum |x0|q + |x1|q +

|x2|q+|x3|q. For two vectors a = (a0, a1, a2, a3)T ,b = (b0, b1, b2, b3)T ∈ Z4, let a mod b denote the
vector (a0 mod b0, a1 mod b1, a2 mod b2, a3 mod b3)T ∈ Z4. The scheme of AKCN-4:1 is presented
in Algorithm 30.

Compared with the consensus mechanism of NewHope presented in Appendix B, AKCN-4:1
can be simpler and computationally more efficient. In specific, the uniformly random bit b used in
NewHope (corresponding the dbl trick in [Pei14]) is eliminated with AKCN-4:1, which saves 256
(resp., 1024) random bits in total when reaching 256 (resp., 1024) consensus bits. In addition, as
k1, as well as k1(q+ 1)g, can be opaline computed and used (e.g., for encryption, in parallel with
the protocol run), AKCN-4:1 enjoys online/offline speeding-up and parallel computing.

Theorem H.1. If ‖σ1 − σ2‖q,1 < q
(

1− 1
g

)
− 2, then the AKCN-4:1 scheme depicted in Algo-

rithm 30 is correct.

Proof. Suppose v′ = CVPD̃4
(g(σ1 + k1(q + 1)g)/q). Then, v = v′ mod (g, g, g, 2g), and so

there exits θ = (θ0, θ1, θ2, θ3) ∈ Z4 such that v = v′ + g(θ0, θ1, θ2, 2θ3)T . From the formula
calculating v′, we know there exits ε ∈ V, such that g(σ1 + k1(q + 1)g)/q = ε + Bv′. Hence,
Bv′ = g(σ1 + k1(q + 1)g)/q − ε.

From the formula computing x in Rec, we have x = Bv/g − σ2/q = Bv′/g − σ2/q +
B(θ0, θ1, θ2, 2θ3)T = k1g + k1g/q − ε/g + (σ1 − σ2)/q + B(θ0, θ1, θ2, 2θ3)T . Note that the last
term B(θ0, θ1, θ2, 2θ3)T ∈ Z4, and in line 7 of Algorithm 30 we subtract bxe ∈ Z4 from x, so the
difference between x− bxe and k1g in norm 1 is no more than 2/q + 1/g + ‖σ1 − σ2‖q,1/q < 1.
Hence, k2 = k1. �
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Algorithm 30 AKCN-4:1

1: procedure Con(σ1 ∈ Z4
q , k1 ∈ {0, 1}, params)

2: v = CVPD̃4
(g(σ1 + k1(q + 1)g)/q) mod (g, g, g, 2g)T

3: return v
4: end procedure
5: procedure Rec(σ2 ∈ Z4

q ,v ∈ Z3
g × Z2g, params)

6: x = Bv/g − σ2/q
7: return k2 = 0 if ‖x− bxe‖1 < 1, 1 otherwise.
8: end procedure

Theorem H.2. AKCN-4:1 depicted in Algorithm 30 is secure. Specifically, if σ1 is subject to
uniform distribution over Z4

q, then v and k1 are independent.

Proof. Let y = (σ1 + k1(q + 1)g) mod q ∈ Z4
q . First we prove that y is independent of k1, when

σ1 ← Z4
q . Specifically, for arbitrary ỹ ∈ Z4

q and arbitrary k̃1 ∈ {0, 1}, we want to prove that

Pr[y = ỹ | k1 = k̃1] = Pr[σ1 = (ỹ − k1(q + 1)g) mod q | k1 = k̃1] = 1/q4. Hence, y and k1 are
independent.

For simplicity, denote by G the vector (g, g, g, 2g). Map φ : Z4 → Z3
g × Z2g is defined

by φ(w) = CVPD̃4
(gw/q) mod G. We shall prove that, for any θ ∈ Z4, φ(w + qθ) = φ(w). By

definition of φ, φ(w+qθ) = CVPD̃4
(gw/q+gθ) mod G. Taking x = gw/q+gθ into Algorithm 29,

we have CVPD̃4
(gw/q + gθ) = CVPD̃4

(gw/q) + B−1(gθ). It is easy to check that the last term

B−1(gθ) always satisfies B−1(gθ) mod G = 0.
From the above property of φ, we have φ(y) = φ((σ1 + k1(q + 1)g) mod q) = φ(σ1 + k1(q +

1)g) = v. As k1 is independent of y, and v only depends on y, k1 and v are independent. �

I Implementing HxT in SEC with Simple Bit Operations

uint16_t getCode(uint16_t x)

{

uint16_t c, p;

c = (x >> 4) ^ x;

c = (c >> 2) ^ c;

p = ((c >> 1) ^ c) & 1;

x = (x >> 8) ^ x;

c = (x >> 2) ^ x;

p = (((c >> 1) ^ c) & 1) | (p << 1);

x = (x >> 4) ^ x;

p = (((x >> 1) ^ x) & 1) | (p << 1);

x = (x >> 2) ^ x;

p = (x & 1) | (p << 1);

return p;

}

Listing 1: An implementation of HxT with C language
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