
Non-Malleable Codes from Average-Case Hardness:
AC0, Decision Trees, and Streaming Space-Bounded Tampering

Marshall Ball1, Dana Dachman-Soled2, Mukul Kulkarni2, and Tal Malkin1

1 Columbia University
{marshall,tal}@cs.columbia.edu

2 University of Maryland
danadach@ece.umd.edu, mukul@umd.edu

Abstract. We show a general framework for constructing non-malleable codes against tampering
families with average-case hardness bounds. Our framework adapts ideas from the Naor-Yung double
encryption paradigm such that to protect against tampering in a class F , it suffices to have average-case
hard distributions for the class, and underlying primitives (encryption and non-interactive, simulatable
proof systems) satisfying certain properties with respect to the class.

We instantiate our scheme in a variety of contexts, yielding efficient, non-malleable codes (NMC) against
the following tampering classes:
– Computational NMC against AC0 tampering, in the CRS model, assuming a PKE scheme with

decryption in AC0 and NIZK.
– Computational NMC against bounded-depth decision trees (of depth tε, where t is the number of

input variables and constant 0 < ε < 1), in the CRS model and under the same computational
assumptions as above.

– Information theoretic NMC (with no CRS) against a streaming, space-bounded adversary, namely
an adversary modeled as a read-once branching program with bounded width.

Ours are the first constructions that achieve each of the above in an efficient way, under the standard
notion of non-malleability.

1 Introduction

Non-malleable codes, introduced in the seminal work of Dziembowski, Pietrzak and Wichs [DPW10], are an
extension of error-correcting codes. Whereas error-correcting codes provide the guarantee that (if not too
many errors occur) the receiver can recover the original message from a corrupted codeword, non-malleable
codes are essentially concerned with security. In other words, correct decoding of corrupted codewords is
not guaranteed (nor required), but it is instead guaranteed that adversarial corruptions cannot influence
the output of the decoding in a way that depends on the original message: the decoding is either correct or
independent of the original message

The main application of non-malleable codes is in the setting of tamper-resilient computation (although
non-malleable codes have also found connections in other areas of cryptography [CMTV15,CDTV16,GPR16]
and theoretical computer science [CZ16]). Indeed, as suggested in the initial work of Dziembowski et
al. [DPW10], non-malleable codes can be used to encode a secret state in the memory of a device such
that a tampering adversary interacting with the device does not learn anything more than the input-output
behavior. Unfortunately, it is impossible to construct non-malleable codes secure against arbitrary tampering,
since the adversary can always apply the tampering function that decodes the entire codeword to recover the
message m and then re-encodes a related message m′. Thus, non-malleable codes are typically constructed
against limited classes of tampering functions F . Indeed, given this perspective, error correcting codes can
be viewed as a special case of non-malleable codes, where the class of tampering functions, F , consists of
functions which can only modify some fraction of the input symbols. Since non-malleable codes have a weaker
guarantee than error correcting codes, there is potential to achieve non-malleable codes against much broader
classes of tampering functions F (including tampering that modifies every bit).

Exploring rich classes of tampering functions. Several works construct non-malleable codes (NMC) against
general tampering classes of bounded size, but with non-explicit, existential, or inefficient constructions
(cf. [DPW10,CG14a,FMVW14]). For efficient and explicit constructions, a large body of works construct
NMC against bit-wise tampering (cf. [DPW10,CKM11,CCFP11]), and more generally split-state tampering
(cf. [LL12,DKO13,ADL14,CG14a,CG14b,ADKO15a,AAG+16,CGL16,Li16,KOS17a,KOS17b]), where the
adversary can tamper each part of the codeword independently of other parts, as well as NMC against
permutations, flipping, and setting bits [AGM+15a].

A recent line of works is shifting towards considering the construction of NMC against tampering classes F
that correspond to well-studied complexity-theoretic classes, and may also better correspond to tampering
attacks in practice. Specifically, Ball et al. [BDKM16] construct NMC against local tampering functions
including NC0, and Chattopadhyay and Li [CL17] construct NMC against AC0 tampering, but inefficiently
(with super-poly size codewords). Additionally, NMC with weaker notions of security are constructed by
Faust et al. [FHMV17] against space-bounded tampering (in the random-oracle model), and by Chandran
et al. [CGM+16] for block-wise tampering (where the adversary receives the message in a streaming fashion,
block-by-block). We discuss these works in Section 1.3.

In this work, we continue this line of research and consider constructing non-malleable codes against
various complexity classes, including: (1) AC0 tampering, where the tampering function is represented
by a polynomial size constant-depth, unbounded fan-in/fan-out circuit, (2) tampering with bounded-depth
decision trees, where the tampering function is represented by a decision tree with n variables and depth
nε for ε < 1, (3) streaming tampering with quadratic space, where the tampering function is represented

by a read-once, bounded-width (2o(n
2)) branching program, (4) small threshold circuits: depth d circuits of

majority gates with a quasilinear number of wires, (5) fixed polynomial time tampering: randomized turing
machines running in time O(nk) for any fixed k. Constructing non-malleable codes against a wide array of
complexity classes is desirable since in practice, the capabilities of a tampering adversary are uniquely tied
to the computational setting under consideration and/or the physical device being used. For example, our
motivation for studying AC0 stems from a setting wherein an attacker has limited time to tamper, since
the tampering function must complete before race conditions take effect (e.g. before the end of a clock-cycle
in a synchronous circuit). AC0 circuits, which are constant-depth circuits, model such attackers since the
propagation delay of a circuit is proportional to the length of the longest path from input to output.

1.1 Our Results

We present general frameworks for constructing non-malleable codes for encoding one and multi-bits
against various tampering classes F for which average case hardness results are known. Our frameworks
(one for single-bit and one for multi-bit) include both a generic construction, which requires that certain
underlying primitives are instantiated in a suitable way, as well as a proof “template.” Our frameworks are
inspired by the well-known double-encryption paradigm for constructing CCA2-secure public key encryption
schemes [NY90,Sah99,Lin03]. And although we rely on techniques that are typically used in the cryptographic
setting, we instantiate our framework for particular tampering classes F in both the computational setting
and in the information theoretic one. For the computational setting, our results rely on computational
assumptions, and require a common-reference string (CRS), which the adversary can see before selecting
the tampering function (as typical in other NMC works using CRS or random oracles). For the information
theoretic setting, our results do not require CRS nor any computational assumption (as the primitives in our
framework can be instantiated information theoretically). Our general theorem statements provide sufficient
conditions for achieving NMC against a class F . Somewhat informally, the main such condition, especially
for the one-bit framework, is that there are sufficiently strong average-case hardness results known for the
class F . In particular, we obtain the following results, where all the constructions are efficient and, for the
multi-bit NMC, the achieved rate is 1/ poly(m) where m is the length of the message being encoded.

– Constructions for AC0 tampering: We obtain computational NMC in the CRS model against AC0

tampering. Our constructions require public key encryption schemes with decryption in AC0, which

2

can be constructed e.g. from exponential hardness of learning parity with noise [BL16], as well as non-
interactive zero knowledge (NIZK), which can be constructed in the CRS model from enhanced trapdoor
permutations.
Previous results by Chattopadhyay and Li [CL17] achieve NMC for AC0 with information theoretic
security (with no CRS), but are inefficient, with super-polynomial rate.

– Constructions for bounded-depth decision trees: We obtain computational NMC in the CRS model
against tampering with bounded-depth decision trees. Our construction requires the same computational
assumptions as the AC0 construction above. The depth of the decision tree we can handle is mε, where
m is the number of bits being encoded, and ε is any constant.
No results for this class were previously known.

– Constructions for streaming, space-bounded tampering: We obtain unconditional non-malleable
codes against streaming, space-bounded tampering, where the tampering function is represented by a
read-once, bounded-width branching program. Our construction does not require CRS or computational
assumptions.
No NMC results for this standard complexity theoretic class were previously known. However, this
tampering class can be viewed as a subset (or the intersection) of the space bounded class considered by
Faust et al. [FHMV17] (who don’t limit the adversary to be streaming), and the block-wise tampering
class considered by Chandran et al. [CGM+16] (who don’t bound the adversary’s space, but don’t give
security in the event that decoding fails). In both cases there cannot be NMC with the standard notion
of security, and so those previous works must relax the security requirement (and [FHMV17] also relies
on a random oracle). In contrast, we achieve standard (in fact, even stronger) notion of NMC, without
random oracle (nor CRS, nor any computational assumption) for our class.

– Additional Constructions: We also briefly note two additional applications of our paradigm as
proof of concept. Both complexity classes can be represented circuits of size O(nc) for some fixed c,
a class which [FMVW14] provide non-malleable codes for in the CRS model, without computational
assumptions. We include these results here, merely to show the applicability of our framework to general
correlation bounds; for example strong correlation bounds against ACC0[p] or TC0 are likely immediately
lead to non-malleable codes against the same classes using our framework.
1. Under the same assumptions invoked in the constructions against AC0 and bounded-depth decision

trees we obtain computational NMC in the CRS model against tampering with small threshold
circuits: threshold circuits with depth d and n1+ε wires.

2. Assuming any public key encryption scheme and zk-SNARKs, we obtain computational NMC in the
CRS model against tampering by Turing Machines running in time O(nk), where k is a constant.
However, we should note that these codes have weak tampering guarantees: tampering experiments
with respect to different messages are only polynomially close to one another.

1.2 Technical Overview

We begin by describing our computational NMC construction (in the CRS model) for one-bit messages secure
against tampering in AC0, which will give the starting point intuition for our results. We then show how the
AC0 construction can be modified to derive a general template for constructing NMC for one-bit messages
secure against a wider range of tampering classes F , and discuss various classes F for which the template can
be instantiated. We then discuss how the template can be extended to achieve NMC for multi-bit messages
secure against a wide range of tampering classes F . Finally, we discuss some particular instantiations of
our multi-bit template, including our constructions of computational NMC (in the CRS model) against
tampering in AC0 and against bounded-depth decision trees, as well as our unconditional NMC (with no
CRS) against streaming tampering adversaries with bounded memory.

The starting point: Computational NMC against AC0 for one-bit messages. The idea is to use a very
similar paradigm to the Naor and Yung paradigm for CCA1 encryption [NY90] (later extended to achieve
CCA2 [Sah99,Lin03]), using double encryption with simulation-sound NIZK. The main observation is that

3

using the tableaua method, we can convert any NIZK proof system with polynomial verification into a NIZK
proof system with a verifier in AC0.

We also need a PKE scheme with perfect correctness and decryption in AC0(this can be constructed using
the transformation of Dwork et al. [DNR04] on top of the scheme of Bogdanov and Lee [BL16]).

We now sketch (a slightly simplified version of) the NM encoding scheme:

The CRS will contain a public key pk for an encryption scheme E = (Gen,Encrypt,Decrypt) as above,
and a CRS for a NIZK. For b ∈ {0, 1}, Let Db denote the distribution over x1, . . . , xn ∈ {0, 1}n such that
x1, . . . , xn are uniform random, conditioned on the parity of the bits being equal to b.

To encode a bit b:

1. Randomly choose bits x1, . . . , xn from Db
2. Compute c1 ← Encryptpk(x1), . . . , cn ← Encryptpk(xn) and c← Encryptpk(b).
3. Compute n NIZK proofs π1, . . . , πn that c1, . . . , cn are encryptions of bits x1, . . . , xn.
4. Compute a NIZK proof π that there exists a bit b′ such that the plaintexts underlying c1, . . . , cn are in

the support of Db′ and b′ is the plaintext underlying c.
5. Compute tableaus T1, . . . , Tn of the computation of the NIZK verifier on π1, . . . , πn.
6. Compute a tableau T of the computation of the NIZK verifier on proof π.
7. Output (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)).

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. Check the tableaus T1, . . . , Tn, T .
2. If they all accept, output the parity of x1, . . . , xn.

In the proof we will switch from an honest encoding of b to a simulated encoding and from an honest
decoding algorithm to a simulated decoding algorithm. At each point we will show that the decodings of
tampered encodings stay the same. Moreover, if, in the final hybrid, decodings of tampered encodings depend
on b, we will use this fact to build a circuit in AC0, whose output is correlated with the parity of its input,
reaching a contradiction. In more detail, in the first hybrid we switch to simulated proofs. Then we switch
c1, . . . , cn, c, in the ”challenge” encoding to encryptions of garbage c′1, . . . , c

′
n, c
′, and next we switch to an

alternative decoding algorithm in AC0 , which requires the trapdoor sk (corresponding to the public key pk
which is contained in the CRS).

Alternative Decoding Algorithm:

To decode (c1, . . . , cn, c, T, (x1, T1), . . . , (xn, Tn)):

1. check the tableaus T1, . . . , Tn, T
2. If it accepts, output the decryption of c using trapdoor sk.

In the final hybrid, the simulator will not know the parity of x1, . . . , xn in the challenge encoding and
will have received precomputed T 0

1 , T
1
1 , . . . , T

0
n , T

1
n , T as non-uniform advice, where T is a simulated proof of

the statement “the plaintexts underlying c′1, . . . , c
′
n and the plaintext underlying c′ have the same parity”

and for i ∈ [n], β ∈ {0, 1}, T βi is a simulated proof of the statement “c′i is an encryption of the bit β”.

We will argue by contradiction that if the decoding of the tampered encoding is correlated with the
parity of x1, . . . , xn then we can create a circuit whose output is correlated with the parity of its input
in AC0 . Specifically, the AC0 circuit will have the crs, sk, precomputed c′1, . . . , c

′
n, c
′, T, T 0

1 , T
1
1 , . . . , T

0
n , T

1
n

and adversarial tampering function f hardwired in it. It will take x1, . . . , xn as input. It will compute the
simulated encoding in AC0 by selecting the correct tableaus: T x1

1 , . . . , T xnn according to the corresponding
input bit. It will then apply the adversarial tampering function (in AC0), perform the simulated decoding
(in AC0) and output a guess for the parity of x1, ..xn based on the result of the decoding. Clearly, if the
decoding in the final hybrid is correlated with parity, then we have constructed a distribution over AC0

circuits such that w.h.p. over choice of circuit from the distribution, the output of the circuit is correlated
with the parity of its input. This contradicts known results on the hardness of computing parity in AC0 .

4

A general template for one-bit NMC. The above argument can be used to derive a template for the
construction/security proof of NMC against more general classes F . The idea is to derive a high-level
sequence of hybrid distributions and corresponding minimal requirements for proving the indistinguishability
of consecutive hybrids. We can now instantiate the tampering class F , “hard distributions” (D0,D1),
encryption scheme and NIZK proof in any way that satisfies these minimal requirements. Note that each
hybrid distribution is a distribution over the output of the tampering experiment. Therefore, public key
encryption and NIZK against arbitrary PPT adversaries may be too strong of a requirement. Indeed, it
is by analyzing the exact security requirements needed to go from one hybrid to the other that (looking
ahead) we are able to remove the CRS and all computational assumptions from our construction of NMC
against streaming adversaries with bounded memory. In addition, we can also use our template to obtain
constructions (in the CRS model and under computational assumptions) against other tampering classes F .

Extending the template to multi-bit NMC. The construction for AC0 given above and the general template
do not immediately extend to multi-bit messages. In particular, encoding m bits by applying the parity-
based construction bit-by-bit fails, even if we use the final proof T to “wrap together” the encodings of
multiple individual bits. The problem is that the proof strategy is to entirely decode the tampered codeword
and decide, based on the results, whether to output 0 or 1 as the guess for the parity of some x1, . . . , xn.
But if we encode many bits, b1, . . . , bm, then the adversary could maul in such a way that the tampered
codeword decodes to b′1, . . . , b

′
m where each of b′i is individually independent of the parity of the corresponding

xi1, . . . , x
i
n, but taken as a whole, the entire output may be correlated. As a simple example, the attacker

might maul the codeword so that it decodes to b′1, . . . , b
′
m that are uniform subject to satisfying b′1⊕· · ·⊕b′m =

b1 ⊕ · · · ⊕ bm. Clearly, there is a correlation here between the input and output, but we cannot detect this
correlation in AC0, since detecting the correlation itself seems to require computing parity!

In the case of parity (and the class AC0), the above issue can be solved by setting m sufficiently small (but
still polynomial) compared to n. We discuss more details about the special case of parity below. However, we
would first like to explain how the general template must be modified for the multi-bit case, given the above
counterexample. Specifically, note that the difficulty above comes into play only in the final hybrid. Thus, we
only need to modify the final hybrid slightly and require that for any Boolean function F over m variables,
it must be the case that the composition of F with the simulated decoding algorithm is in a computational
class that still cannot distinguish between draws x1, . . . , xn from D0 or D1. While the above seems like a
strong requirement, we show that by setting m much smaller than n, we can still obtain meaningful results
for classes such as AC0 and bounded-depth decision trees.

Multi-bit NMC against AC0. If we want to encode m bits, for each of the underlying encodings i ∈ [m], we
will use n :≈ m3 bits: xi = xi1, . . . , x

i
n. To see why this works, we set up a Hybrid argument, where in each

step we will fix all the underlying encodings except for a single one: x = x1, . . . , xn, which we will switch
from having parity 0 to having parity 1. Therefore, we can view C—the function computing the output of
the tampering experiment in this hybrid—to be a function of variables x = x1, . . . , xn only (everything else
is constant and “hardwired”). For i ∈ [m], let Ci denote the i-th output bit of C. We use PAR(x) to denote
the parity of x.

Now, for any Boolean function F over m variables, consider F (C1(x), C2(x), . . . , Cm(x)), where we
are simply taking an arbitrary Boolean function F of the decodings of the individual bits. Our goal
is to show that F (C1(x), C2(x), . . . , Cm(x)) is not correlated with parity of x. Consider the Fourier
representation of F (y1, . . . , ym). This is a linear combination of parities of the input variables y1, . . . , ym,
denoted χS(y1, . . . , ym), for all subsets S ∈ {0, 1}m. (See here [DW08]).

On the other hand, F (C1(x), C2(x), . . . , Cm(x)) is a Boolean function over n ≈ m3 variables (i.e. a
linear combination over parities of the input variables x1, . . . , xn, denoted χS′(x1, . . . , xn), for all subsets
S′ ∈ {0, 1}n). A representation of F (C1(x), C2(x), . . . , Cm(x)) can be obtained by taking each term
F̂ (S)χS(y1, . . . , ym) in the Fourier representation of F and composing with C1, . . . , Cm to obtain the term
F̂ (S)χS(C1(x), C2(x), . . . , Cm(x)). Since, by well-known properties of the Fourier transform, |F̂ (S)| ≤ 1,
we can get an upper bound on the correlation of F (C1(x), C2(x), . . . , Cm(x)) and PAR(x), by summing

5

the correlations of each function χS(C1(x), C2(x), . . . , Cm(x)) and PAR(x). Recall that the correlation of a
Boolean function g with PAR(x) is by definition, exactly the Fourier coefficient of g corresponding to parity
function χ[n]. Thus, to prove that the correlation of χS(C1(x), C2(x), . . . , Cm(x)) and PAR(x) is low, we
use the fact that χS(C1(x), C2(x), . . . , Cm(x)) can be computed by a (relatively) low depth circuit. To see
this, note that each Ci is in AC0 and so has low depth, moreover, since S has size at most m, we only
need to compute parity over m variables, which can be done in relatively low depth when m � n. We now
combine the above with Fourier concentration bounds for low-depth circuits [Tal17]. Ultimately, we prove
that for each S, the correlation of χS(C1(x), C2(x), . . . , Cm(x)) and PAR(x), is less than 1/2m(1+δ), where
δ is a constant between 0 and 1. This means that we can afford to sum over all 2m terms in the Fourier
representation of F and still obtain negligible correlation.

Multi-bit NMC against bounded-depth decision trees. Our result above extends to bounded-depth decision
trees by noting that (1) If we apply a random restriction (with appropriate parameters) to input x1, . . . , xn
then, w.h.p. the AC0 circuit used to compute the output of the tampering experiment collapses to a bounded-
depth decision tree of depthmε−1; (2) on the other hand, again choosing parameters of the random restriction
appropriately, PAR(x1, . . . , xn) collapses to parity over at least m1+ε variables; (3) any Boolean function over
m variables can be computed by a decision tree of depth m; (4) the composition of a depth-mε − 1 decision
tree and depth-m decision tree yields a decision tree of depth at most (mε − 1)(m) < m1+ε. Finally, we
obtain our result by noting that decision trees of depth less than m1+ε are uncorrelated with parity over
m1+ε variables.

Unconditional NMC (with no CRS) against bounded, streaming tampering. Recently, Raz [Raz16] proved that
learning parity is hard for bounded, streaming adversaries. In particular, this gives rise to hard distributions
Db, b ∈ {0, 1} such that no bounded, streaming adversary can distinguish between the two. Db corresponds
to choosing a random parity χS , outputting random examples (x, χS(x)) and then outputting x∗ such that
χS(x∗) is equal to b. The above also yields an unconditional, “parity-based” encryption scheme against
bounded, streaming adversaries. Note, however, that in order to decrypt (without knowledge of the secret
key), we require space beyond the allowed bound of the adversary. Given the above, we use Db, b ∈ {0, 1}
as the hard distributions in our construction and use the parity-based encryption scheme as the “public key
encryption scheme” in our construction. Thus, we get rid of the public key in the CRS (and the computational
assumptions associated with the public key encryption scheme).

To see why this works, note that in the hybrid where we require semantic security of the encryption
scheme, the decryption algorithm is not needed for decoding (at this point the honest decoding algorithm is
still used). So essentially we can set the parameters for the encryption scheme such that the output of the
Tampering experiment in that hybrid (which outputs the decoded value based on whether x1, .., xn is in the
support of D0 or D1) can be computed in a complexity class that is too weak to run the decryption algorithm.
On the other hand, we must also consider the later hybrid where we show that the output of the Tampering
experiment can be computed in a complexity class that is too weak to distinguish D0 from D1. In this hybrid,
we do use the alternate decoding procedure. But now it seems that we need decryption to be contained in
a complexity class that is too weak to decide whether x1, . . . , xn is in the support of D0 or D1, while
previously we required exactly the opposite! The key insight is that since we are in the streaming model and
since (1) the simulated ciphertexts (c′1, . . . , c

′
n, c
′) in this hybrid contain no information about x1, . . . , xn and

(2) the simulated ciphertexts precede x1, . . . , xn, the output of the tampering function in blocks containing
ciphertexts does not depend on x1, . . . , xn at all. So the decryption of the tampered ciphertexts can be given
as non-uniform advice, instead of being computed on the fly, and we avoid contradiction.

In order to get rid of the CRS and computational assumption for the NIZK, we carefully leverage some
additional properties of the NMC setting and the streaming model. First, we consider cut-and-choose based
NIZK’s (based on MPC-in-the-head), where the Verifier is randomized and randomly checks certain locations
or “slots” in the proof to ensure soundness. Specifically, given a Circuit-SAT circuit C and witness w, the
prover will secret share w := w1⊕· · ·⊕w` and run an MPC protocol among ` parties (for constant `), where
Party i has input wi and the parties are computing the output of C(w1 ⊕ · · · ⊕ w`). The prover will then

6

“encrypt” each view of each party in the MPC protocol, using the parity-based encryption scheme described
above and output this as the proof. This is then repeated λ times (where λ is security parameter). The
Verifier will then randomly select two parties from each of the λ sets, decrypt the views and check that the
views correspond to the output of 1 and are consistent internally and with each other.

We next note that in our setting, the NIZK simulator can actually know the randomness used by the
Verifier. This is because the simulated codeword and the decoding are done by the same party in the NMC
security experiment. Therefore, the level of “zero-knowledge” needed from the simulation of the NIZK is
in-between honest verifier and malicious. This is because the adversary can still use the tampering function
to “leak” information from the unchecked slots of the proof to the checked slots, while a completely honest
verifier would learn absolutely nothing about the unchecked slots. In order to switch from a real proof to a
simulated proof, we fill in unchecked slots one-by-one with parity-based encryptions of garbage. We must rely
on the fact that a bounded, streaming adversary cannot distinguish real encryptions from garbage encryptions
in order to argue security. Specifically, since we are in the bounded streaming model, we can argue that the
adversary can only “leak” a small amount of information from the unchecked slots to the checked slots. This
means that the entire output of the experiment can be simulated by a bounded, streaming adversary, which
in turn means that the output of the experiment must be indistinguishable when real, unchecked encodings
are replaced with encodings of garbage. Arguing simulation soundness, requires a similar argument, but more
slots are added to the proof and slots in an honest proof are only filled if the corresponding position in the
bit-string corresponding to the statement to be proven is set to 1. We encode the statement in such a way
that if the statement changes, the adversary must switch an unfilled slot to a filled slot. Intuitively, since the
bounded streaming attacker can only carry over a small amount of information from previous slots, this will
be as difficult as constructing a new proof from scratch.

1.3 Related Work

The notion of NMC was formalized by Dziembowski, Pietrzak and Wichs [DPW10]. Split state classes of
tampering functions introduced by Liu and Lysyanskaya [LL12], have subsequently received much attention
with a sequence of improvements achieving reduced number of states, improved rate, or other desirable fea-
tures [DKO13,ADL14,CZ14,ADKO15a], [AGM+15c,AAG+16,KLT16,CGL16,Li16,KOS17a,KOS17b]. . Re-
cently [AGM+15b,BDKM16] gave efficient constructions of non-malleable codes for “non-compartmentalized”
tampering function classes.

Faust et.al [FMVW14] presented a construction of efficient NMC in CRS model, for tampering function
families F with size |F| ≤ 2poly(n), where n is the length of codeword. The construction is based on t-wise
independent hashing for t proportional to log |F|. This gives information-theoretically secure NMC resilient
to tampering classes which can be represented as poly-size circuits. While [FMVW14] construction allows
adaptive selection of tampering function f ∈ F after the t-wise independent hash function h (CRS) is chosen,
the bound on the size of F needs to be fixed before h is chosen. In particular, this means that the construction
does not achieve security against the tampering functions f ∈ AC0 in general, since AC0 contains all poly-
size and constant depth circuit families, but rather provides tamper resilience against specific families in
AC0 (ACC0, etc.) Cheraghchi and Guruswami [CG14a] in an independent work showed the existence of
information theoretically secure NMC against tampering families F of size |F| ≤ 22

αn

with optimal rate
1−α. This paper gave the first characterization of the rate of NMC, however the construction of [CG14a] is
inefficient for negligible error.

Ball et.al [BDKM16] gave a construction of efficient NMC against nδ-local tampering functions, for any
constant δ > 0. Notably, this class includes NC0 tampering functions, namely constant depth circuits with
bounded fan-in. It should be noted however, that the results of [BDKM16] do not extend to tampering
adversaries in AC0, since even for a low depth circuit in AC0, any single output bit can depend on all input
bits, thus violating the nδ-locality constraint.

In a recent work, Chattopadhyay and Li [CL17] gave constructions of NMC based on connections between
NMC and seedless non-malleable extractors. One of their results is an efficient NMC against t-local tampering
functions, where the decoding algorithm for the NMC is deterministic (in contrast, the result in [BDKM16]

7

has randomized decoding). The locality parameters of the NMC in [CL17] are not as good as the one in
[BDKM16], but better than the deterministic-decoding construction given in the appendix of the full version
of [BDKM16]. Additionally, [CL17] also present a NMC against AC0 tampering functions. However, this
NMC results in a codeword that is super-polynomial in the message length, namely inefficient.

A recent work by Faust et.al [FHMV17] considered larger tampering classes by considering space bounded
tampering adversaries in random oracle model. The construction achieves a new notion of leaky continuous
non-malleable codes, where the adversary is assumed to learn some bounded log(|m|) bits of information
about the underlying message m. However, this result is not directly comparable to ours as the adversarial
model we consider is a that of standard non-malleability (without leakage), and for a subset of this tampering
class (streaming space-bounded adversary) we achieve information theoretic security without random oracles.

Chandran et.al [CGM+16] considered another variant of non-malleable codes, called block-wise non-
malleable codes. In this model, the codeword consists of number of blocks and the adversary receives the
codeword block-by-block. The tampering function also consists of various function fis, where each fi can
depend on codeword blocks c1, . . . , ci and modifies ci to c′i. It can be observed that standard non-malleability
cannot be achieved in this model since, the adversary can simply wait to receive all the blocks of the codeword
and then decode the codeword as part of last tampering function. Therefore, [CGM+16] define a new notion
called non-malleability with replacement which relaxes the non-malleability requirement and considers the
attack to be successful only if the tampered codeword is valid and related to the original message.

Other works on non-malleable codes include [FMNV14,CG14b,CKO14,ADKO15b,JW15,CGM+15],
[DLSZ15,FMNV15,ADKO15a,CKR16,KLT16,DSKS17,DNO17]. We guide the interested reader to [KKS11]
and [LL12] for a discussion of various models for tamper and leakage resilience.

2 Definitions

Where appropriate, we interpret functions f : S → {±1} as boolean functions (and vice-versa) via the
mapping: 0 ↔ 1 and 1 ↔ −1. The support of vector x is the set of indices i such that xi 6= 0. A bipartite
graph is an undirected graph G = (V,E) in which V can be partitioned into two sets V1 and V2 such that
(u, v) ∈ E implies that either u ∈ V1 and v ∈ V2 or v ∈ V1 and u ∈ V2.

2.1 Non-Malleable Codes

In this section we define the notion of non-malleable codes and its variants. In this work, we assume that
the decoding algorithm of the non-malleable code may be randomized and all of our generic theorems
are stated for this case. Nevertheless, only our instantiation in Section 7 requires a randomized decoding
algorithm, while our other instantiations enjoy deterministic decoding. We note that the original definition
of non-malleable codes, given in [DPW10], required a deterministic decoding algorithm. Subsequently, in
[BDKM16], an alternative definition that allows for randomized decoding was introduced. We follow here
the definition of [BDKM16]. Please see [BDKM16] for a discussion on why deterministic decoding is not
necessarily without loss of generality in the non-malleable codes setting and for additional motivation for
allowing randomized decoding.

Definition 1 (Coding Scheme). Let Σ, Σ̂ be sets of strings, and κ, κ̂ ∈ N be some parameters. A coding
scheme consists of two algorithms (E,D) with the following syntax:

– The encoding algorithm (perhaps randomized) takes input a block of message in Σ and outputs a codeword
in Σ̂.

– The decoding algorithm (perhaps randomized) takes input a codeword in Σ̂ and outputs a block of message
in Σ.

We require that for any message m ∈ Σ, Pr[D(E(m)) = m] = 1, where the probability is taken over the choice

of the encoding algorithm. In binary settings, we often set Σ = {0, 1}κ and Σ̂ = {0, 1}κ̂.

8

We next provide definitions of non-malleable codes of varying levels of security. We present general,
game-based definitions that are applicable even for NMC that are in a model with a crs, or that require
computational assumptions. The corresponding original definitions of non-malleability, appropriate for an
unconditional setting without a CRS, can be obtained as a special case of our definitions when setting
crs = ⊥ and taking G to include all computable functions. These original definitions are also presented in
Appendix A.1.

Definition 2 (Non-malleability). Let Π = (CRSGen,E,D) be a coding scheme. Let F be some family of

functions. For each attacker A, m ∈ Σ, define the tampering experiment TamperΠ,FA,m(n):

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Compute m̃ = D(crs, c̃).
6. Experiment outputs same∗ if m̃ = m, and m̃ otherwise.

Fig. 1. Non-Malleability Experiment TamperΠ,FA,m(n)

We say the coding scheme Π = (CRSGen,E,D) is non-malleable against tampering class F and attackers
A ∈ G if we have

TamperΠ,FA,m0
(n) ≈ TamperΠ,FA,m1

(n)

for any A ∈ G, m0,m1 ∈ Σ.

Definition 3 (Strong Non-malleability). Let Π = (CRSGen,E,D) be a coding scheme. Let F be some

family of functions. For each attacker A, m ∈ Σ, define the tampering experiment StrongTamperΠ,FA,m(n):

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Compute m̃ = D(crs, c̃).
6. Experiment outputs same∗ if c̃ = c, and m̃ otherwise.

Fig. 2. Strong Non-Malleability Experiment StrongTamperΠ,FA,m(n)

We say the coding scheme Π = (CRSGen,E,D) is strong non-malleable against tampering class F and
attackers A ∈ G if we have

StrongTamperΠ,FA,m0
(n) ≈ StrongTamperΠ,FA,m1

(n)

for any A ∈ G, m0,m1 ∈ Σ.

We now introduce an intermediate variant of non-malleability, called Medium Non-malleability, which
informally gives security guarantees “in-between” strong and regular non-malleability. Specifically, the

9

difference is that the experiment is allowed to output same∗ only when some predicate g evaluated on (c, c̃)
is set to true. Thus, strong non-malleability can be viewed as a special case of medium non-malleability, by
setting g to be the identity function. On the other hand, regular non-malleability does not impose restrictions
on when the experiment is allowed to output same∗. Note that g cannot be just any predicate in order for
the definition to make sense. g must be a predicate such that if g evaluated on (c, c̃) is set to true, then (with
overwhelming probability over the random coins of D) D(c̃) = D(c).

Definition 4 (Medium Non-malleability). Let Π = (CRSGen,E,D) be a coding scheme. Let F be some
family of functions.

Let g(·, ·, ·, ·) be a predicate such that, for each attacker A ∈ G, m ∈ Σ, the output of the following

experiment, ExptΠ,FA,m,g(n) is 1 with at most negligible probability:

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Challenger samples r ← U`.
6. Experiment outputs 1 if g(crs, c, c̃, r) = 1] ∧ D(crs, c̃; r) 6= m).

Fig. 3. The experiment corresponding to the special predicate g.

For g as above, each m ∈ Σ, and attacker A ∈ G, define the tampering experiment
MediumTamperΠ,FA,m,g(n) as shown in figure 4:

1. Challenger samples crs← CRSGen(1n) and sends crs to A.
2. Attacker A sends the tampering function f ∈ F to the challenger.
3. Challenger computes c← E(crs,m).
4. Challenger computes the tampered codeword c̃ = f(c).
5. Challenger samples r ← U` and computes m̃ = D(crs, c̃, r).
6. Experiment outputs same∗ if g(crs, c, c̃, r) = 1, and m̃ otherwise.

Fig. 4. Medium Non-Malleability Experiment MediumTamperΠ,FA,m,g(n)

We say the coding scheme Π = (CRSGen,E,D) is medium non-malleable against tampering class F and
attackers A ∈ G if we have

MediumTamperΠ,FA,m0,g
(n) ≈ MediumTamperΠ,FA,m1,g

(n)

for any A ∈ G, m0,m1 ∈ Σ.

We next recall some standard definitions of public-key encryption (PKE), pseudorandom generator
(PRG), and non-interactive zero knowledge proof systems with simulation soundness.

2.2 Public Key Encryption Scheme and PRG

In this section, we present the definitions of well known cryptographic primitives such as public key encryption
scheme and pseudorandom generator which are used as building blocks for particular instantiations. A public
key encryption scheme E consists of three algorithms: (Gen,Encrypt,Decrypt).

10

– Gen(1n)→ (pk, sk). The key generation algorithm takes in the security parameter and outputs a public
key pk and a secret key sk.

– Encrypt(pk,m) → c. The encryption algorithm takes in a public key pk and a message m. It outputs a
ciphertext c.

– Decrypt(sk, c)→ m. The decryption algorithm takes in a ciphertext c and a secret key sk. It outputs a
message m.

Correctness. The PKE scheme satisfies correctness if Decrypt(sk, c) = m with all but negligible probability
whenever pk, sk is produced by Gen and c is produced by Encrypt(pk,m).

Security. We define IND-CPA security for PKE schemes in terms of the following game between a challenger
and an attacker. We let n denote the security parameter.

Setup Phase. The game begins with a setup phase. The challenger calls Gen(1n) to create the initial secret
key sk and public key pk.

Challenge Phase. The attacker receives pk from the challenger. The attacker chooses two messages m0, m1

which it gives to the challenger. The challenger chooses a random bit b ∈ {0, 1}, encrypts mb, and gives
the resulting ciphertext to the attacker. The attacker then outputs a guess b′ for b. The attacker wins

the game if b = b′. We define the advantage of the attacker in this game as
∣∣∣ 12 − Pr[b′ = b]

∣∣∣.
Definition 5 (IND-CPA security). We say a Public Key Encryption scheme E = (Gen,Encrypt,Decrypt)
is IND-CPA secure if any probabilistic polynomial time attacker only has a negligible advantage (negligible
in n) in the above game.

Definition 6 (α-correctness [DNR04]).

For any function α : N→ [0, 1], a public-key encryption scheme E = (Gen,Encrypt,Decrypt) is α-correct
if Pr [Decrypt(sk, (Encrypt(pk,m)) 6= m] ≤ 1 − α(n), where the probability is taken over the random coins
of Gen used to generate (pk, sk) ← Gen(1n), for uniform random message m ∈ {0, 1}n, and for all possible
random coins of Encrypt.

Definition 7 (Almost-all-keys Perfect Decryption [DNR04]).

A public-key encryption scheme E = (Gen,Encrypt,Decrypt) is almost-all-keys perfectly correct if
with all but negligible probability over the random coins of Gen used to generate (pk, sk) ← Gen(1n),
for uniform random message m ∈ {0, 1}n, and for all possible random coins of Encrypt, it holds that
Pr [Decrypt(sk, (Encrypt(pk,m)) 6= m] = 0.

Definition 8 (Pseudorandom Generator). A pseudorandom generator is an efficient, deterministic map
prg : {0, 1}n → {0, 1}`(n), where `(n) > n such that for all PPT distinguishers D; |Pr [D(G(x)) = 1] −
Pr [D(y) = 1]| ≤ negl(n), when x ∈ {0, 1}n and y ∈ {0, 1}`(n) are chosen uniform randomly.

2.3 Non-Interactive Zero Knowledge

Another important cryptographic primitive used in the constructions of non-malleable codes in this paper is
non-interactive zero knowledge proof systems.

Definition 9 (Non-Interactive Zero Knowledge [Sah99]). Π = (`,P,V,Sim = (Sim1,Sim2)) is an
efficient adaptive single-theorem non-interactive zero knowledge proof system for language L ∈ NP with
witness relation W , if ` is a polynomial and the following are true:

– Completeness: For all x ∈ L, and all w such that W (x,w) = 1, for all strings crs of length `(|x|), we
have V(x,P(x,w, crs), crs)) = 1

– Soundness: For all adversaries A, if crs ∈ {0, 1}`(k) is chosen randomly, then Pr[V(x, π, crs) = 1] ≤
negl(k). Where, (x, π)← A(crs) and x /∈ L.

11

– Single-Theorem Zero Knowledge: For all non-uniform polynomial-time adversaries A = (A1, A2) we have
that |Pr[ExptA(k) = 1]−Pr[ExptSimA (k) = 1]| ≤ negl(k) for following experiments ExptA(k) and ExptSimA (k)

ExptA(k):

crs← {0, 1}`(k)
(x,w, τ)← A1(crs)
π ← P(x,w, crs)
returnA2(π, τ)

ExptSimA (k):

(crs, κ)← Sim1(1k)
(x,w, τ)← A1(crs)
π ← Sim2(x, κ)
returnA2(π, τ)

Definition 10 (Weak Simulation Soundness [Sah99]). Let Π = (`,P,V,Sim = (Sim1,Sim2)) be
an efficient adaptive single-theorem non-interactive zero knowledge proof system for language L. We say
that Π is simulation-sound if for all non-uniform probabilistic polynomial-time adversaries A = (A1, A2),
Pr[ExptSimA,Π(k) = 1] ≤ negl(k), where ExptSimA,Π(k) is the following experiment:

ExptSimA,Π(k):

(crs, κ)← Sim1(1k)
(x, τ)← A1(crs)
π ← Sim2(x, crs, κ)
(x∗, π∗)← A2(x, π, crs, τ)
Output 1 iff (π∗ 6= π) and (x∗ /∈ L) and (V(x∗, π∗, crs) = 1)

We say Π is one-time weak simulation sound if the above holds for any probabilistic polynomial time A
only allowed a single query to Sim.

Sahai [Sah99] constructed one-time simulation sound NIZK proof system from any given efficient non-
interactive single-theorem adaptive zero knowledge proof system, and strong one-time signature schemes
(which was built from one-way functions in the same work).

Definition 11 (Same-String NIZK [DDO+01]). A NIZK argument system is called same-string NIZK
if it satisfies the following property for all k:

– (Same-String Zero Knowledge): For all non-uniform probabilistic polynomial-time adversaries A,
we have that

|Pr[X = 1]− Pr[Y = 1]| ≤ negl(k)

where X and Y are as defined in (and all probabilities are taken over) the experiment Expt(k) below:

Expt(k):

1. (crs, τ)← Sim1(1k)
2. X ← AP(·,·,crs)(crs)

3. Y ← ASim′(·,·,crs,τ)(crs)

where Sim′(x,w, crs, τ)
def
= Sim2(x, crs, τ)

12

– (Same-String Zero Knowledge,cont.): The distribution on crs produced by Sim1(1k) is the uniform
distribution over {0, 1}`(k).

Definition 12 (Non-Interactive Simulatable Proof System). A tuple of probabilistic polynomial time
algorithms ΠNI = (CRSGenNI,PNI,VNI,SimNI) is a non-interactive simulatable proof system for language
L ∈ NP with witness relation W if (CRSGenNI,PNI,VNI,SimNI) have the following syntax:

– CRSGenNI is a randomized algorithm that outputs (crsNI, τsim).
– On input crs, x ∈ L and witness w such that W (x,w) = 1, PNI(crs, x, w) outputs proof π.
– On input crs, x, π, VNI(crs, x, π) outputs either 0 or 1.
– On input crs, τsim and x ∈ L, SimNI(crs, τsim, x) outputs simulated proof π′.

Completeness: We require the following completeness property: For all x ∈ L, and all w such that W (x,w) =
1, for all strings crsNI of length poly(|x|), and for all adversaries A we have

Pr

[
(crsNI, τSim)← CRSGenNI(1n); (x,w)← A(crsNI);

π ← PNI(crsNI, x, w) : VNI(crsNI, x, π) = 1

]
≥ 1− negl(n)

Soundness: We say that ΠNI enjoys soundness against adversaries A ∈ G if: For all x /∈ L, and all adversaries
A ∈ G:

Pr

[
(crsNI, τSim)← CRSGenNI(1n);

(x, π)← A(crsNI) : VNI(crsNI, x, π) = 0

]
≥ 1− negl(n)

The security properties that we require of ΠNI will depend on our particular non-malleable code
construction as well as the particular class, F , of tampering functions that we consider. The exact properties
needed are those that will arise from Theorems 4 and 10. In subsequent sections, we will show how to construct
non-interactive simulatable proof systems satisfying these properties.

2.4 Proof Systems for Circuit SAT

We now consider proof of knowledge systems for Circuit SAT, where the prover and/or verifier have limited
computational resources.

Definition 13 (Proof of Knowledge Systems for Circuit SAT with Computationally Bounded
Prover/Verifier). For a circuit C, let L(C) denote the set of strings x such that there exists a witness w
such that C(x,w) = 1. For a class C, let L(C) denote the set {L(C) | C ∈ C}. Π = (P,V) is a Circuit SAT
proof system for the class L(C) with prover complexity D and verifier complexity E if the following are true:

– For all C ∈ C and all valid inputs (x,w) such that C(x,w) = 1, P(C, ·, ·) can be computed in complexity
class D.

– For all C ∈ C, V(C, ·, ·) can be computed in complexity class E.
– Completeness: For all C ∈ C and all (x,w) such that C(x,w) = 1, we have V(C, x,P(C, x,w)) = 1
– Extractability: For all (C, x, π), if Prr[V(C, x, π; r) = 1] is non-negligible, then given (C, x, π) it is possible

to efficiently extract w such that C(x,w) = 1.

We construct Circuit SAT proof systems for the class L(P/poly) with verifier complexity AC0 in this
section. We also construct Circuit SAT proof systems for the class. L(P/poly) with streaming verifier

13

Circuit SAT proof system for the class L(C) with prover complexity D and verifier complexity
AC0 .

– P(C, x,w) the prover simply outputs a tableau T of the computation C(x,w) = 1.
– V(C, x, T) the verifier computes an AND of all the local checks.

Completeness clearly holds. To show extractability, note that the inputs to the tableau T correspond to
x,w. Thus if tableau T accepts then the extractor can simply output those inputs corresponding to w.

Given the above, we have the following theorem:

Theorem 1. Assuming the existence of same-string, weak one-time simulation sound NIZK with determin-
istic verifier, there exists same-string, weak one-time simulation sound NIZK with verifier in AC0 .

Circuit SAT proof system for the class L(C) with prover complexity D and streaming verifier.

– P(C, x,w) the prover computes a tableau T of the computation C(x,w) = 1. Let d denote the depth of
the tableau T . For each level i ∈ [d], the i-th level, Ti, consisting of ` gates is the following ordered tuple:

[(Gji , in
j,a
i , inj,bi , outji)]j∈`,

where Gji denotes the j-th gate at that level, (inj,ai , inj,bi) denote the j-th pair of input wires at that level

and outji denotes the j-th output wire at that level. For simplicity of notation, we assume that the input
wires to the first level, T1 consist only of x, and that wires corresponding to the input w will occur as
outputs of level T1. The P outputs (T1, . . . , Td).

– V(C, x, T1, . . . , Td) the verifier chooses k at random and computes h0 = hk(x), where h is a universal
hash function. For each level i ∈ [d], the verifier then does the following:

• Parse Ti = [(Gji , in
j,a
i , inj,bi , outji)]j∈`.

• For j ∈ [`], (1) Check consistency of the gate’s computation, (2) Add (inj,ai , inj,bi) to the streaming

computation of the hash hk([(inj,ai , inj,bi)]j∈`), (3) Add outji to the streaming computation of the

hash hk([outji]j∈`).

• Check that hk([(inj,ai , inj,bi)]j∈`) = hi−1.

• Set hi := hk([outji]j∈`).
• If any of the above checks fail, abort and output 0.

If all checks succeed, the verifier outputs 1.

Completeness clearly holds. To show extractability, note that the only way the inputs/outputs of level
T1 do not correspond to x,w such that C(x,w) = 1 and yet all checks pass is if the proof ouputted

by the prover consists of consecutive levels Ti, Ti+1 such that hk([(inj,ai+1, in
j,b
i+1)]j∈`) = hk([outji]j∈2`) but

[(inj,ai+1, in
j,b
i+1)]j∈` 6= [outji]j∈2`. The probability over choice of k that this occurs for a single pair of consecutive

levels is 1/22`, since h is universal. So the probability it occurs for any pair of consecutive levels is at most
d/22`, which is negligible.

We also recall some definitions and results related to boolean analysis and present them next.

2.5 Definitons related to Boolean Analysis

Definition 14. A function f : {0, 1}n → {0, 1} has correlation c with a function g : {0, 1}n → {0, 1} if

| Pr
x←Un

[f(x) = 1|g(x) = 1|]− Pr
x←Un

[f(x) = 1|g(x) = 0|]| ≤ c.

Where, Un is the uniform random distribution over {0, 1}n.

14

Note that this is equivalent up to absolute value for a more common definition of correlation in the literature
when g is taken to be balanced (Pr[g(x) = 1] = 1/2)

Definition 15. A function f : {0, 1}n → {0, 1} has correlation c with a function g : {0, 1}n → {0, 1} if

Pr
x←Un

[f(x) = g(x)] =
1 + c

2
.

Where, Un is the uniform random distribution over {0, 1}n.

The correlation c can also be expressed as follows: Let Pr[f(x) = g(x)] = 1+c
2 . Then,

c = 2 Pr[f(x) = g(x)]]− 1

= 2 Pr[f(x) = 1|g(x) = 1] Pr[g(x) = 1] + 2 Pr[f(x) = 0|g(x) = 0] Pr[g(x) = 0]− 1

= Pr[f(x) = 1|g(x) = 1] + (1− Pr[f(x) = 1|g(x) = 0]− 1

= Pr[f(x) = 1|g(x) = 1]− Pr[f(x) = 1|g(x) = 0]

Theorem 2 ([H̊as14,IMP12]). Let f : {0, 1}n → {0, 1} be computed by a depth-d circuit of size S. Then
the correlation of f with parity is bounded by

2−cdn/ log
d−1(S),

where cd is a positive constant dependent only on d.

Definition 16 (Random Restriction [H̊as87]). A random restriction ρ parameterized by a small positive
real number p is mapping which sets the elements xi of a vector x independently as follows: Pr [xi = 0] = 1−p

2 ,

Pr [xi = 1] = 1−p
2 , and Pr [xi = ?] = p.

Lemma 1 ([H̊as87,Vio14]). Let f : {0, 1}` → {0, 1} be a function computable by a depth-d AC0 circuit of
size s. Let ρ be a random restriction with Pr[?] = q < 1/9d. The probability over ρ that fρ cannot be written
as a decision tree of depth t is ≤ s(9q1/dt)t.

Theorem 3 ([Raz16]). For any c < 1
20 , there exists α > 0, such that the the following holds: Let x

u←
{0, 1}n. Let m ≤ 2αn. Let A be an algorithm that is given as input a stream of samples, (a1, b1), . . . , (am, bm),
where each at is uniformly distributed over {0, 1}n and for every t, bt = at · x. Assume A uses at most cn2

memory bits and outputs a string x̃ ∈ {0, 1}n. Then, Pr[x̃ = x] ≤ O(2−αn).

Lemma 2 (Inner Product is a strong extractor [Rao07]). Let X,Y be random variables over {0, 1}n
such that H∞(X) ≥ kX and H∞(Y) ≥ kY . Let u ≤ kX

d(〈X,Y 〉|X : U) ≤ 2(2u−kX + 2(n+1−u−kY)/2),

where d(X|Y) :
∑
y Pr[Y = y]∆(X|Y = y;U) for U the uniform distribution (independent of X).

2.6 Computational Model for Streaming Adversaries

In this section we discuss the computational model used for analysis of the streaming adversaries. This model
is similar to the one used in [Raz16].

We first discuss streaming adversaries in general, and then discuss the specific case of streaming
adversaries for learning parity and streaming tampering functions..

15

General Streaming Adversaries. The input is represented as a stream S1, . . . , S`, where for i ∈ [`], each
Si ∈ {0, 1}B , where B is the block length. We model the adversary by a branching program. A branching
program of length ` and width w, is a directed acyclic graph with the vertices arranged in `+ 1 layers such
that no layer contains more than w vertices. Intuitively, each layer represents a time step of computation
whereas, each vertex in the graph corresponds to the potential memory state learned by the adversary. The
first layer (layer 0) contains a single vertex, called the start vertex, which represents the input. A vertex is
called leaf if it has out-degree 0, and represents the output (the learned value of x) of the program. Every
non-leaf vertex in the program has exactly 2n+1 outgoing edges, labeled by elements S ∈ {0, 1}B , with
exactly one edge labeled by each such S, and all the edges from layer j − 1 going to vertices in layer j.
Intuitively, these edges represent the computation on reading Si as streaming input. The stream S1, . . . , S`,
therefore, define a computation-path in the branching program.

We discuss the streaming branching program adversaries, and streaming adversaries for learning parity
next.

Definition 17 (Streaming Branching Program Adversaries). A branching program of length m and
width w is a directed acyclic graph with vertices arranged in m+ 1 layers containing at most w vertices each.
In the first layer, that we call layer 0, there is only one vertex, called the start vertex. A vertex of out-degree
0 is called a leaf. All the vertices in the layer m are leaves. Every non-leaf vertex in the program has exactly
2n+1 outgoing edges, labeled by elements S ∈ {0, 1}B, with exactly one edge labeled by each such S, and all
the edges from layer j − 1 going to vertices in layer j.

Computation Path: The stream S1, . . . , S` ∈ {0, 1}B that are given as input, define a computation-path
in the branching program, by starting form the start vertex and following at step i the edge labeled by Si,
until reaching a leaf.

Streaming Adversaries for Learning Parity. Recall, that in the Parity Learning setting, the adversary aims
to learn a uniform random string x ∈ {0, 1}n, from a stream of samples, (a1, b1), (a2, b2), . . . , (am, bm), where
each ai is uniformly distributed over {0, 1}n and for every i, bi = ai · x.

Definition 18 (Streaming Branching Program for Parity Learning). [Raz16] A branching program
of length m and width w, for parity learning is a directed acyclic graph with vertices arranged in m+1 layers
containing at most w vertices each. In the first layer, that we call layer 0, there is only one vertex, called
the start vertex. A vertex of out-degree 0 is called a leaf. All the vertices in the layer m are leaves. Every
non-leaf vertex in the program has exactly 2n+1 outgoing edges, labeled by elements (a, b) ∈ {0, 1}n × {0, 1},
with exactly one edge labeled by each such (a, b), and all the edges from layer j − 1 going to vertices in layer
j.

Computation Path: The samples (a1, b1), (a2, b2), . . . , (am, bm) ∈ {0, 1}n × {0, 1} that are given as
input, define a computation-path in the branching program, by starting form the start vertex and following
at step i the edge labeled by (ai, bi), until reaching a leaf.

Streaming Tampering Functions. The input is represented as a stream S1, . . . , S`, where for i ∈ [`], each
Si ∈ {0, 1}B , where B is the block length. We model the adversary by a branching program, which reads in
a block of length B and writes out a block of length B in each step. A branching program of length ` and
width w, is a directed acyclic graph with the vertices arranged in ` + 1 layers such that no layer contains
more than w vertices. Intuitively, each layer represents a time step of computation whereas, each vertex
in the graph corresponds to the potential memory state learned by the adversary. The first layer (layer 0)
contains a single vertex, called the start vertex, which represents the input. A vertex is called leaf if it has
out-degree 0, and represents the output (the learned value of x) of the program. Every non-leaf vertex in
the program has exactly 2n+1 outgoing edges, labeled by pairs of elements Sin, Sout ∈ {0, 1}B , with exactly
one edge labeled by each such Sin, and all the edges from layer j − 1 going to vertices in layer j. Intuitively,
these edges represent the computation on reading Si as streaming input, as well as the output in that time
step. The stream S1, . . . , S`, therefore, define a computation-path in the branching program.

16

Definition 19 (Streaming Tampering Functions). A branching program of length m and width w is
a directed acyclic graph with vertices arranged in m + 1 layers containing at most w vertices each. In the
first layer, that we call layer 0, there is only one vertex, called the start vertex. A vertex of out-degree 0 is
called a leaf. All the vertices in the layer m are leaves. Every non-leaf vertex in the program has exactly 2n+1

outgoing edges, labeled by pairs of elements Sin, Sout ∈ {0, 1}B, with exactly one edge labeled by each such
Sin, and all the edges from layer j − 1 going to vertices in layer j.

Computation Path: The stream S1, . . . , S` ∈ {0, 1}B that are given as input, define a computation-path
in the branching program, by starting form the start vertex and following at step i the edge labeled by Si,
until reaching a leaf.

In this work we consider the Polynomial-time uniform family of branching programs which can be
informally defined as follows:

A family of branching programs of size s (number of nodes in the branching program), denoted by
BP = {BPs : s ∈ N} is Polynomial-time uniform if there exists a deterministic Turing machine M , such that

– M runs in polynomial time (i.e. poly(s)), and
– For all s ∈ N, M outputs the description (nodes and corresponding labels) of BPs on input 1s

3 Generic Construction for One-Bit Messages

In this section we present the generic construction for encoding a single bit messages.

17

Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme with perfect correctness (see Definition 7).
Let ΠNI = (CRSGenNI,PNI,VNI,SimNI) be a non-interactive simulatable proof system with soundness against
adversaries A ∈ G (see Definition 12). Note that in the CRS model, we implicitly assume that all algorithms
take the CRS as input, and for simplicity of notation, sometimes do not list the CRS as an explicit input.

CRSGen(1n):

1. Choose (pk, sk)← Gen(1n).
2. Choose [(crsNIi , τ

i
sim)]i∈{0,...n} ← CRSGenNI(1n). Let −→crsNI := [crsNI

i]i∈{0,...n} and let −→τ sim := [τ isim]i∈{0,...n}
3. Output crs := (pk,−→crsNI).

Languages. We define the following languages:

– Lβi : For i ∈ [n], β ∈ {0, 1}, s := (k̂, c, c) ∈ Lβi iff the i-th ciphertext ci := ki⊕ β (where c = c1, . . . , cn) and

the i-th encryption k̂i (where k̂ = k̂1, . . . , k̂n+1) is an encryption of ki under pk (where pk is hardwired
into the language).

– L: s := (k̂, c, c) ∈ L iff (x1, . . . , xn) is in the support of Db where:
1. For i ∈ [n], xi := ci ⊕ ki
2. b := c⊕ kn+1

3. k̂ is an encryption of k1, . . . , kn+1 under pk (where pk is hardwired into the language).

E(crs, b):

1. Sample x← Db, where x = x1, . . . , xn.
2. Choose an n+ 1-bit key k = k1, . . . , kn, k uniformly at random. For i ∈ [n], compute k̂i ← Encrypt(pk, ki)

and compute k̂n+1 ← Encrypt(pk, k). Let k̂ := k̂1, . . . , k̂n+1.
3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let c := c1, . . . , cn.
4. Compute c := b⊕ k.
5. For i ∈ [n], compute a non-interactive, simulatable proof Ti proving s := (k̂, c, c) ∈ Lxii relative to crsNI

i .

6. Compute a non-interactive, simulatable proof T proving s := (k̂, c, c) ∈ L relative to crsNI
0 .

7. Output CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn).

D(crs,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn)
2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the corresponding CRS.
3. If yes, output b such that x1...xn is in the support of Db. If not, output 0.

Fig. 5. Non-malleable code (CRSGen,E,D), secure against F tampering.

E1(crs,−→τ sim, r, b):

1. Sample x← Db, where x = x1, . . . , xn.
2. Choose an n+ 1-bit key k = k1, . . . , kn, k uniformly at random. For i ∈ [n], compute k̂i ← Encrypt(pk, ki)

and compute k̂n+1 ← Encrypt(pk, k). Let k̂ := k̂1, . . . , k̂n+1.
3. Compute c1 := k1 ⊕ x1, . . . , cn := kn ⊕ xn. Let c := c1, . . . , cn.
4. Compute c := b⊕ k.
5. For i ∈ [n], use τ isim and r to simulate a non-interactive proof T ′i proving (k̂, c, c) ∈ Lxii , relative to crsNI

i .

6. Use τ0sim and r to simulate a non-interactive proof T ′ proving (k̂, c, c) ∈ L, relative to crsNI0 .

7. Output CW := (k̂, c1, . . . , cn, c, T
′, x1, T

′
1, .., xn, T

′
n).

Fig. 6. Encoding algorithm with simulated proofs.

18

E2(crs,−→τ sim, r, b):

1. Sample x← Db, where x = x1, . . . , xn.
2. Choose c′1, . . . , c

′
n uniformly at random. Let c′ := c′1, . . . , c

′
n.

3. Choose c′ uniformly at random.

4. Set k′ = c′1, . . . , c
′
n, c
′. For i ∈ [n], compute k̂′i ← Encrypt(pk, k′i) and compute k̂′n+1 ← Encrypt(pk, k′). Let

k̂
′

:= k̂′1, . . . , k̂
′
n+1.

5. For i ∈ [n], use τ isim and r to simulate a non-interactive proof T ′i proving (k̂′, c′, c) ∈ Lxii , relative to crsNI
i .

6. Use τ0sim and r to simulate a non-interactive proof T ′ proving (k̂′, c′, c) ∈ L, relative to crsNI
0 .

7. Output CW := (k̂
′
, c′1, . . . , c

′
n, c
′, T ′, x1, T

′
1, .., xn, T

′
n).

Fig. 7. Encoding algorithm with simulated proofs and encryptions.

Ext(crs, sk,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),
2. Output Decrypt(sk, k̂n+1).

Fig. 8. Extracting procedure Ext.

D′(crs, k,CW):

1. Parse CW := (k̂, c1, . . . , cn, c, T, x1, T1, .., xn, Tn),
2. Check that VNI outputs 1 on all proofs T1, .., Tn, T , relative to the corresponding CRS,
3. If not, output 0. Otherwise, output b := k ⊕ c.

Fig. 9. Alternate decoding procedure D′, given additional extracted key k as input.

g(crs,CW,CW∗, r):

1. Parse CW = (k̂, c, c, T, x1, T1, .., xn, Tn), CW∗ = (k̂
∗
, c∗, c∗, T ∗, x∗1, T

∗
1 , .., x

∗
n, T

∗
n).

2. If (1) VNI outputs 1 on all proofs T ∗, T ∗1 , .., T
∗
n , relative to the corresponding CRS; and (2) (k̂, c, c) =

(k̂
∗
, c∗, c∗), then output 1. Otherwise output 0.

Fig. 10. The predicate g(crs,CW,CW∗, r).

19

Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate p, and variables c, x, y, r, z.
If p(c, x, y, r) = 1, then Ψ outputs 0. Otherwise, Ψ outputs z.

Theorem 4. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figures 5, 6, 7, 8, 9 and 10. Let F be a
computational class. If, for every adversary A ∈ G outputting tampering functions f ∈ F , all of the following
hold:

Simulation of proofs.

1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r0, r1 are sampled uniformly at random,
CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).

Simulation of Encryptions.

1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly at random,
CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).

Simulation Soundness.

Pr

[
D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

]
≤ negl(n),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at random and
CW2 ← E2(crs,−→τ sim, r, 0).

Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(sk, f(CW3)), f(CW3); r3),
where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly at random,
CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).

Then the construction presented in Figure 5 is a non-malleable code for class F against adversaries
A ∈ G.

3.1 Proof of Theorem 4

In this subsection we prove Theorem 4.

We take g to be the predicate that is used in the MediumTamperΠ,FA,m,g(n) tampering experiment. We must

argue that for every m ∈ {0, 1} and every attacker A ∈ G the output of the experiment ExptΠ,FA,m,g(n) is 1
with at most negligible probability.

Assume towards contradiction that for some A ∈ G the output of the experiment is 1 with non-
negligible probability. Then this means that the probability in the last line of experiment ExptΠ,FA,m,g(n)

that g(crs,CW,CW∗, r) = 1 ∧ D(crs,CW∗; r) 6= m is non-negligible. Parse CW = (k̂, c, c, T, x1, T1, .., xn, Tn),

CW∗ = (k̂
∗
, c∗, c∗, T ∗, x∗1, T

∗
1 , .., x

∗
n, T

∗
n).

Recall that D(crs,CW; r) = m. Thus, if the above event occurs, it means that D(crs,CW; r) 6=
D(crs,CW∗; r). But since g(crs,CW,CW∗, r) = 1, it means that VNI outputs 1 on all proofs T ∗, [T ∗i]i∈[n]

20

and (k̂, c, c) = (k̂
∗
, c∗, c∗).

This, in turn, means that there must be some bit xi, x
∗
i that CW and CW∗ differ on. But note that by

assumption ci = c∗i . Due to the fact that CW is well-formed and perfect correctness of the encryption

scheme, it must mean that c∗i /∈ L
x∗i
i . But recall that by assumption, proof T ∗i verifies correctly. This means

that soundness is broken by A ∈ G. This contradicts the security of the proof system ΠNI.

Next, recall that we wish to show that for any adversary A ∈ G outputting tampering function
{MediumTamperΠ,FA,0,g}k∈N ≈ {MediumTamperΠ,FA,1,g}k∈N

To do so we consider the following hybrid argument:

Hybrid 0: The real game, MediumTamperΠ,FA,0,g, relative to g, where the real encoding CW0 ← E(crs, 0)
and the real decoding oracle D are used.
Hybrid 1: Replace the encoding from the previous game with
CW1 ← E1(crs,−→τ sim, r1, 0) where r1 is chosen uniformly at random and g, D use random coins r1.
Hybrid 2: Replace the encoding from the previous game with CW2 ← E2(crs,−→τ sim, r2, 0), where r2 is
chosen uniformly at random and g, D use random coins r2.
Hybrid 3: Replace the decoding from the previous game, with
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). where r2 is chosen uniformly at random and g, E2 use random
coins r2.
Hybrid 4: Same as Hybrid 3, but replace the encoding with CW3 ← E2(crs,−→τ sim, r3, 1), where r3 is
chosen uniformly at random and g, D′ use random coins r3.

Now, we prove our hybrids are indistinguishable.

Claim. Hybrid 0 is computationally indistinguishable from Hybrid 1.

Proof. The claim follows immediately from the Simulation of proofs property in Theorem 4.

Claim. Hybrid 1 is computationally indistinguishable from Hybrid 2.

Proof. The claim follows immediately from the Simulation of Encryptions property in Theorem 4.

Claim. Hybrid 2 is computationally indistinguishable from Hybrid 3.

Proof. This claim follows from the fact that (1) if g(crs,CW,CW∗, r) = 1, then the experiment outputs same∗

in both Hybrid 2 and Hybrid 3; and (2) the probability that g(crs,CW,CW∗, r) = 0 and the output of the
experiment is different in Hybrid 2 and Hybrid 3 is at most negligible, due to the Simulation Soundness
property in Theorem 4.

Claim. Hybrid 3 is computationally indistinguishable from Hybrid 4.

Proof. This follows from the fact that (1) for γ ∈ {2, 3} if g(crs,CW2, f(CW2), r2) = 1 then
D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ) always outputs 0 and so

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)

≡ Ψ(g, crs,CWγ , f(CWγ), rγ ,D
′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ));

and (2) the Hardness of Db relative to Alternate Decoding property in Theorem 4.

4 One-Bit NMC for AC0 and beyond

In this section, we show that our generic construction yields efficient NMC for AC0 in the CRS model, when
each of the underlying primitives is appropriately instantiated.

21

Theorem 5. Π = (CRSGen,E,D) (presented in Figure 5) is a one-bit, computational, non-malleable code
in the CRS model, secure against tampering by AC0 circuits, if the underlying components are instantiated
in the following way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect correctness and decryption in
AC0 .

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time simulation-sound NIZK with verifier
in AC0 .

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at random, conditioned on
x1 ⊕ · · · ⊕ xn = b.

Note that given Theorem 1, proof systems ΠNI as above exist, under the assumption that same-string,
weak one-time simulation-sound NIZK with (arbitrary polynomial-time) deterministic verifier exists. Such
NIZK can be constructed in the CRS model from enhanced trapdoor permutations [Sah99]. Public key
encryption with perfect correctness and decryption in AC0 can be constructed by applying the low-decryption-
error transformation of Dwork et al. [DNR04] to the (reduced decryption error) encryption scheme of
Bogdanov and Lee [BL16]. We now provide an instantiation of the public key encryption scheme.

Public key encryption in AC0 . We now present the result presented by Bogdanov and Lee in [BL16] which
showed that the encryption scheme given by Applebaum et al. in [ABW10] can be implemented by circuit
with constant depth and size polynomial in the security parameter.

PKE Scheme based on Bipartite Graphs [ABW10]

– Gen(1n): The key generation algorithm takes security parameter n as input and outputs a random
bipartite graph G = ((U1, U2), E) as the public key pk, where |U1| = n and |U2| = r = n0.9 generated in
the following way. First choose the random subsets S1 ⊆ U1 and S2 ⊆ U2 of sizes s and s/3 respectively
for s = O(log n). Each vertex in S1 is connected to d (possibly repeated) random vertices in S2 and each
vertex outside S1 is connected to d random vertices in U2. The secret key sk is an odd size subset of S1

such that each vertex in S2 has an even number of neighbors in sk.
– Encrypt(pk, b): To encrypt bit b ∈ {0, 1}, choose a random subset S′2 ⊂ U2 and output c = y + e+ b · 1,

where each coordinate of y ∈ {0, 1}n is the degree of corresponding vertex in S1 restricted to S′2 mod 2,
e ∈ {0, 1}n is a vector with each coordinate (ei : i ∈ [n]) sampled from distribution η̂ with Pr [ei = 0] = η
independently, and 1 ∈ {0, 1}n is the vector of all 1s.

– Decrypt(sk, c): Output b =
∑
i∈sk ci mod 2.

Refer [ABW10] for the security of the scheme presented above. We next present the AC0 implementation
of the PKE presented above as shown in [BL16].

AC0 Implementation of [ABW10] PKE Scheme based on Bipartite Graphs [BL16]

– Gen:

1. Sample y1, y2, . . . , ys from [n] and w1, w2, . . . , ws/3 from [r] to represent the subsets S1 ⊆ U1 and
S2 ⊆ U2 respectively.

2. Sample vi,1, vi,2, . . . , vi,d from [r] for all i ∈ [n]. These represent the random neighbors of each vertex
in U1 \ S1.

3. Sample v̂i,1, v̂i,2, . . . v̂i,d from [s/3] for all i ∈ [s]. These become the random neighbors of the vertices
in S1 after being mapped to the wi’s by the index function ι : [s/3] → [r] such that ι(i) = wi. This
is written as:

ι(i) =

s/3∨
j=1

[(i = j) ∧ wj]

.

22

The key generation circuit outputs vi,1, vi,2, . . . , vi,d if the vertex i is not in S1 and outputs
ι(v̂i,1), ι(v̂i,2), . . . ι(v̂i,d) otherwise. Now we can output the jth random neighbor of each vertex i ∈ U1 as[

δi ∧
s∨

k=1

[(i = k) ∧ ι(v̂k,j)]

]
∨ (δ̄i ∧ vi,j),

where δi :=
∨s
k=1(i = yk) indicates whether i belongs to S1.

To come up with secret key sk, we enumerate all the possible subsets of S1 (this is still efficient since
s = O(log n)) and output the first one that satisfies the linear dependency. Given an odd size subset of
S1 indicated by the support of the vector a ∈ {0, 1}s, note that the formula

fa =

s/3∨
j=1

⊕
i:ai=1

d⊕
k=1

(v̂i,k = j)

outputs 0 only if every vertex in S2 has an even number of neighbors in support of a and outputs 1
otherwise. (Since the XOR involves only O(d log n) inputs it can be calculated with a circuit of depth 2
and size nO(d).) We can therefore, enumerate all the possible a ∈ {0, 1}s with odd hamming weight and
output the first a such that fa = 0. The secret key is represented by a vector z containing s entries in
[n], where each non-zero entry corresponds to a vertex in sk. More precisely, we output ith entry as

zi = ι

 ∨
a∈{0,1}s:wt(a) is odd

f̄a ∧
 ∧

a′<a

fa′

 ∧ (ai ∧ i)

 .

– Encrypt: Given a public key represented by the neighbors vi,1, vi,2, . . . , vi,d of each vertex i ∈ U1. To
encrypt bit b ∈ {0, 1}, choose a random vector x ∈ {0, 1}r whose support forms the subset S′2 of U2, a
noise vector e ∈ {0, 1}n by choosing each of its entries independently from η̂. The ith bit of ciphertext
can then be written as

∨
ki 6=kj ;1≤i≤j≤d;ki∈[r];a1,...,ad:a1+···+ad=1mod 2

 d∧
j=1

(vi,j = kj) ∧ (xk1 = a1) ∧ · · · ∧ (xkd = ad)

⊕ ei ⊕ b
– Decrypt: Given the ciphertext c and secret key sk represented by the vector z ∈ {0, 1}s×logn, output

s⊕
i=1

n∨
k=1

[(zi = k) ∧ ck].

Reducing the decryption error The [ABW10] encryption scheme suffers from significant encryption error (and
thus decryption error) however, this can be minimized arbitrarily by encrypting the message multiple times
independently. The decryption algorithm can then take approximate majority to compute the encrypted bit.
Approximate majority can be computed with constant depth circuits [Ajt83] (depth 3) and thus the overall
decryption algorithm is still in AC0 .

We now use the following transformation given by [DNR04] to obtain almost-all keys perfect decryption
for the above encryption scheme.

Let E = (Gen,Encrypt,Decrypt) be any public-key encryption scheme. Also let `(n) > n be the number of
bits used by Encrypt to encrypt n-bit messages. Let prg be a pseudorandom generator that expands n bits
to `(n) bits. Then the modified encryption scheme E ′ = (Gen′,Encrypt′,Decrypt′) is obtained as follows: On
input 1n, Gen′ outputs ((pk, r̄), sk) where (pk, sk)← Gen(1n) and r̄ ∈ {0, 1}`(n) is chosen uniform randomly.
To encrypt message m, Encrypt′ samples a random n-bit string r and outputs Encrypt(pk,m) using prg(r)⊕ r̄
as randomness for Encrypt. Decrypt′ is same as Decrypt, note that this preserves the computational complexity
of decryption.

23

Theorem 6. [DNR04] Let E = (Gen,Encrypt,Decrypt) be any (1 − 2−4n) correct public key encryption
scheme with Decrypt being deterministic. Then E ′ = (Gen′,Encrypt′,Decrypt) is an almost-all-key perfectly
correct public encryption scheme. Furthermore, if E is IND-CPA secure then so is E ′.

Note that the above transformation takes a public key encryption scheme E with sufficiently low
decryption error and transforms it into a public key encryption scheme that enjoys perfect correctness,
and furthermore, note that the decryption algorithm Decrypt remains unchanged. Therefore, if we start with
the (reduced decryption error) version of the AC0 Bogdanov and Lee public key encryption scheme, we obtain
a perfectly correct public key encryption scheme with decryption in AC0 , as desired.

Proof (Proof of theorem 5). To prove the theorem, we need to show that for every PPT adversary A
outputting tampering functions f ∈ F , the necessary properties from Theorem 4 hold. We next go through
these one by one.

– Simulation of proofs.
1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),
where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r0, r1 are sampled uniformly at random,
CW0 ← E(crs, 0) and CW1 ← E1(crs,−→τ sim, r1, 0).
This follows immediately from the zero-knowledge property of ΠNI = (CRSGenNI,PNI,VNI,SimNI).

– Simulation of Encryptions.
1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),
where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly at random,
CW1 ← E1(crs,−→τ sim, r1, 0) and CW2 ← E2(crs,−→τ sim, r2, 0).
This follows immediately from the fact that c, c and c′, c′ are identically distributed when generated by E1

versus E2 and from the semantic security of the public key encryption scheme E = (Gen,Encrypt,Decrypt).

– Simulation Soundness.

Pr

[
D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)

∧g(crs,CW2, f(CW2), r2) = 0

]
≤ negl(n),

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at random and
CW2 ← E2(crs,−→τ sim, r, 0).
Note that g(crs,CW2, f(CW2), r2) = 0 only if either of the following is true: (1) VNI did not
output 1 on all tampered proofs T ∗, T ∗1 , . . . , T

∗
n in f(CW2); or (2) the first 3 elements of CW2 and

f(CW2) are not identical (i.e., (k̂, c, c) 6= (k̂∗, c∗, c∗)). Now in case (1), both D(crs, f(CW2); r2), and
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) output 0. This is contradiction to the claim that D(crs, f(CW2); r2) 6=
D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2). In case (2), the extractor Ext(crs, sk, f(CW2)) outputs k∗n+1 :=

Decrypt(sk, k̂∗n+1) and D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) outputs b∗ = c∗ ⊕ k∗n+1. Now, if
D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) but VNI outputs 1 on all tampered proofs
T ∗, T ∗1 , . . . , T

∗
n in f(CW2) then one-time simulation soundness of ΠNI = (CRSGenNI,PNI,VNI,SimNI) does

not hold.

– Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3),

24

where (crs, sk,−→τ sim)← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly at random,
CW2 ← E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).

Let X denote a random variable where X is sampled from D0 with probability 1/2 and X is sampled
from D1 with probability 1/2 and let random variable CW denote the output of E2 when X replaces x.

To show (1), assume Pr[g(crs,CW2, f(CW2), r2) = 1] and Pr[g(crs,CW3, f(CW3), r3) = 1] differ by a
non-negligible amount. This implies that takes as input X, hardwires all other random variables, and
outputs 1 in the case that g(crs,CW, f(CW), r) = 1 and 0 otherwise, implying that it has non-negligible
correlation to the parity of its input X. We will show that the above can be computed by an AC0 circuit
with input X, thus contradicting Theorem 2, which says that an AC0 circuit has at most negligible
correlation with parity of its input X, denoted P(X). Details follow.

We construct the distribution of circuits C1F . A draw C ∼ C1F is done as follows:
1. Sample (crs, sk,−→τ sim)← CRSGen(1n).
2. Sample tampering function A(crs)→ f .
3. Sample c′, c′ uniformly at random.
4. Set k′ = c′1, . . . , c

′
n, c. For i ∈ [n], compute k̂′i ← Encrypt(pk, k′i) and compute k̂′n+1 ← Encrypt(pk, k′).

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β
i]β∈{0,1},i∈[n] and T ′ (as described in Figure 7).

7. Output the following circuit C that has the following structure:
• hardwired variables: crs, sk, f , k̂

′
, c′, c′, r, [T

′β
i]β∈{0,1},i∈[n].

• input: X.
• computes and outputs:

g(crs,CW, f(CW), r).

Note that given all the hardwired variables, computing CW is in AC0 since all it does is, for i ∈ [n],

select the correct simulated proof T
′xi
i based on the corresponding input bit xi. Additionally, f in

AC0 and g in AC0 , since bit-wise comparison is in AC0 and V SAT is in AC0 . Thus, the entire circuit
is in AC0 .

To show (2), assume D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and
D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance. This implies that a cir-
cuit that takes as input X, hardwires all other random variables, and outputs D′(crs,Ext(crs, sk, f(CW)), f(CW); r2)
has non-negligible correlation to the parity of X. We will show that D′(crs,Ext(crs, sk, f(CW)), f(CW); r2)
can be computed by an AC0 circuit with input X, thus contradicting Theorem 2, which says that an AC0

circuit has at most negligible correlation with the parity of its input X, denoted P(X). Details follow.

We construct the distribution of circuits C2F . A draw C ∼ C2F is done as follows:
1. Sample (crs, sk,−→τ sim)← CRSGen(1n).
2. Sample tampering function A(crs)→ f .
3. Sample c′, c′ uniformly at random.
4. Set k′ = c′1, . . . , c

′
n, c. For i ∈ [n], compute k̂′i ← Encrypt(pk, k′i) and compute k̂′n+1 ← Encrypt(pk, k′).

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β
i]β∈{0,1},i∈[n] and T ′ (as described in Figure 7).

7. Output the following circuit C that has the following structure:
• hardwired variables: crs, sk, f , k̂

′
, c′, c′, r, [T

′β
i]β∈{0,1},i∈[n].

• input: X.
• computes and outputs:

D′(crs,Ext(crs, sk, f(CW)), f(CW); r2).

Note that Ext ∈ AC0 since decryption for E := (Gen,Encrypt,Decrypt) in AC0 . Moreover, as above,
given all the hardwired variables, computing CW is in AC0 since all it does is, for i ∈ [n], select the

correct simulated proof T
′xi
i based on the corresponding input bit xi. Additionally, f in AC0 and D′

is in AC0 , since xor of two bits is in AC0 and V SAT is in AC0 . Thus, the entire circuit is in AC0 .

We present the analysis for more tampering classes next.

25

4.1 Tampering classes beyond AC0 .

Let F (P be a tampering class. Relative to this class F , define the circuit classes C1F and C2F as in the proof
above.

Theorem 7. Let {D0,D1} be (probabilistic polynomial time) samplable distributions with disjoint support.
If the following hold:

– There exists a ppt distinguishing algorithm D such that for b ∈ {0, 1},

Pr
x∼Db

[D(x) = b] = 1.

– For all C ∈ C1F ∪ C2F ∣∣∣∣ Pr
x∼D0

[C(x) = 1]− Pr
x∼D1

[C(x) = 1]

∣∣∣∣ ≤ negl(n).

Then, under the same assumptions as Theorem 5, Π = (CRSGen,E,D) is a computational non-malleable
code against tampering by F that encodes a single bit.

We informally argue that Theorem 8 yields non-malleable codes against new classes: small threshold
circuits and time-bounded probabilistic RAM machines. As noted earlier, non-malleable codes (in the CRS
model without computational assumptions) from [FMVW14] are resilient against these classes. We provide
theorems simply to demonstrate the applicability of our framework to a broad class of correlation bounds.

Theorem 8 ([CSS16]). For all d there exists εd > 0 such that the following holds. There exists a
probabilistic polynomial time computable f (the Generalized Andreev Function) such that for any depth-d

threshold circuit with n1+εd wires, C, f has correlation at most 2−n
Ω(1)

with C.

Corollary 1. Let f be as in Theorem 8. Fix x0, x1 such that f(xb) = b. Let Db define a variable, X, which
is defined by rejection sampling the uniform distribution over {0, 1}n conditioned on f(X) = b; if after O(n)
tries the rejection sampling has not succeeded, output xb.

Then, assuming PKE in AC0 and same-string weak one-time simulation-simulation sound NIZK, there
exists a constant d0 such that for d > d0, Π = (CRSGen,E,D) is a computational non-malleable code against
depth-d threshold circuits with n1+ε

′
d wires, where ε′d is any positive constant less than εd from Theorem 8.

The corollary follows from the fact that given the appropriate choice of security parameters for the
encryption scheme and NIZK, any C ∈ C1F ∪C2F has a representation as depth-d threshold circuit with 1 + εd
wires, so long as d is large enough, and the fact that rejection sampling fails with very low probability as f
is balanced.

Using a generalization of a Theorem from [BRSV17] (combined with a result on prime finding
from [OS17]):

Theorem 9 ([BRSV17]). Let k be an integer (constant). Assuming one of the following:

1. a randomized variant of the Strong Exponential Time Hypothesis (BPSETH): ∀ε > 0,∃q such that no
randomized algorithm running in time O(21−ε)n) is correct with probability > 2/3 on every instance of
qSAT.

2. the randomized k-Orthogonal Vector Conjecture (BPkOVC): the k-Orthogonal Vector problem requires
time Ω(nk−o(1)) for randomized algorithms that are correct with probability > 2/3 on every instance.
k-Othogonal Vector is a generalization of the well-studied Orthogonal Vector problem that asks given k
sets of vectors U1, . . . , Uk ⊂ {0, 1}log

2 n each of size n, does there exist u(1) ∈ U1, . . . , u
(k) ∈ Uk such that∑

i∈[log2n] u
(1)
i · · ·u

(k)
i = 0?

26

Then, there exists a function FOVk such that any randomized time t = Ω(2log
ε n) (for ε > 0) algorithm

whose output (on a random instance x) is correct (the algorithm outputs FOVk(x)with probability at least δ
must obey the following bound:

t

δ2
= Ω(nk−o(1))

Combining the above with simulation sound zk-SNARKS, for example from [GM17], to reduce the proof
size and verification time we get the following corollary.

Corollary 2. Let k ∈ N. Let t(n) = Ω(2log
ε(n)) and δ(n) > 0 such that T/δ2 = Ω(nk−o(1)). Let Lk be as

in Theorem 8. Fix x0, x1 such that Lk(xb) = b. Let Db define a variable, X, which is defined by rejection
sampling the uniform distribution over {0, 1}n conditioned on Lk(X) = b; if after O(n) tries the rejection
sampling has not succeeded, output xb.

Then, assuming BPSETH or BPkOVC, PKE, and simulation sound zk-SNARK, Π = (CRSGen,E,D) is
a computational (BPTIME(t(n)), δ(n) + negl(n))-non-malleable code.

In other words, for all A ∈ BPP,

Tamper
Π,BPTIME(t(n))
A,0 ≈δ(n)+negl(n) Tamper

Π,BPTIME(t(n))
A,1

Note, however, that the tampering experiments are only inverse-polynomially indistinguishable (not
negligible). Stronger bounds on the probability of correctness (δ) in Theorem 9 will yield stronger bounds
on the tampering experiments.

5 Construction for Multi-Bit Messages

The construction for encoding multi-bit messages is similar to that for encoding a single bit, presented
in section 3. The construction repeats the procedure for encoding single bit m times, for encoding m-bit
messages and binds it with a proof T .

27

Let E = (Gen,Encrypt,Decrypt) be a public key encryption scheme with perfect correctness (see Definition 7).
Let ΠNI = (CRSGenNI,PNI,VNI,SimNI) be a non-interactive simulatable proof system with soundness against
adversaries A ∈ G (see Definition 12). Note that in the CRS model, we implicitly assume that all algorithms
take the CRS as input, and for simplicity of notation, sometimes do not list the CRS as an explicit input.

CRSGen(1n):

1. Choose (pk, sk)← Gen(1n).
2. Choose [crsNIi,j , τ

i,j
sim](i,j)=(0,0),i∈[m],j∈[n] ← CRSGenNI(1n). Let −→crsNI := [crsNI

i,j](i,j)=(0,0),i∈[m],j∈[n] and let
−→τ sim := [τ i,jsim](i,j)=(0,0),i∈[m],j∈[n]

3. Output crs := (pk,−→crsNI).

Languages. We define the following languages:

– Lβi,j : For i ∈ [m], j ∈ [n], β ∈ {0, 1}, s := ([k̂
i
]i∈[m], c, c) ∈ Lβi,j iff the (i, j)-th ciphertext cij := kij ⊕ β

(where c = [cij]i∈[m],j∈[n]) and the (i, j)-th encryption k̂ij (where k̂
i

= k̂i1, . . . , k̂
i
n+1) is an encryption of kij

under pk (where pk is hardwired into the language).

– L: s := ([k̂
i
]i∈[m], c, c) ∈ L iff For each i ∈ [m], (xi1, . . . , x

i
n) is in the support of Dbi where:

1. For i ∈ [m], j ∈ [n], xij := cij ⊕ kij
2. bi := ci ⊕ kin+1 (where c := c1, . . . , cm)

3. k̂
i

is an encryption of ki1, . . . , k
i
n+1 under pk (where pk is hardwired into the language).

E(crs, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

2. Choose an m · (n + 1)-bit key k := [ki]i∈[m] = [ki1, . . . , k
i
n, k

i]i∈[m] uniformly at random. For i ∈ [m], j ∈
[n+ 1], compute k̂ij ← Encrypt(pk, kij). For i ∈ [m], let k̂

i
:= k̂i1, . . . , k̂

i
n+1.

3. For i ∈ [m], j ∈ [n], compute cij := kij ⊕ xij . Let c := [cij]i∈[m],j∈[n].
4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].

5. For i ∈ [m], j ∈ [n], compute a non-interactive, simulatable proof T ij proving ([k̂
i
]i∈[m], c, c) ∈ L

xij
i,j relative

to crsNIi,j .

6. Compute a non-interactive, simulatable proof T proving ([k̂
i
]i∈[m], c, c) ∈ L relative to crsNI

0,0.

7. Output CW := ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j)]i∈[m],j∈[n]).

D(crs,CW):

1. Parse CW := ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j)]i∈[m],j∈[n])

2. Check that VNI outputs 1 on all proofs [T ij]i∈[m],j∈[n], T , relative to the corresponding CRS.
3. If yes, output [bi]i∈[m] such that xi1...x

i
n is in the support of Dbi . If not, output 0.

Fig. 11. Non-malleable code (CRSGen,E,D), secure against F tampering.

28

E1(crs,−→τ sim, r, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

2. Choose an m · (n + 1)-bit key k := [ki]i∈[m] = [ki1, . . . , k
i
n, k

i]i∈[m] uniformly at random. For i ∈ [m], j ∈
[n+ 1], compute k̂ij ← Encrypt(pk, kij). For i ∈ [m], let k̂

i
:= k̂i1, . . . , k̂

i
n+1.

3. For i ∈ [m], j ∈ [n], compute cij := kij ⊕ xij . Let c := [cij]i∈[m],j∈[n].
4. For i ∈ [m], compute ci := ki ⊕ bi. Let c := [ci]i∈[m].

5. For i ∈ [m], j ∈ [n], simulate, using τ i,jsim and r, a non-interactive proof T
′i
j proving s := ([k̂

i
]i∈[m], c, c) ∈ L

xij
i,j ,

relative to crsNIi,j .

6. Simulate, using τ0,0sim and r, a non-interactive proof T ′ proving s := ([k̂
i
]i∈[m], c, c) ∈ L, relative to crsNI

0,0.

7. Output CW := ([k̂
i
]i∈[m], c, c, T

′, [(xij , T
′i
j)]i∈[m],j∈[n]).

Fig. 12. Encoding algorithm with simulated proofs.

E2(crs,−→τ sim, r, b := b1, . . . , bm):

1. Sample x := x1, . . . ,xm ← Db, where for i ∈ [m], xi = xi1, . . . , x
i
n.

2. Choose [c
′i
j]i∈[m],j∈[n] uniformly at random. Let c′ := [c

′i
j]i∈[m],j∈[n].

3. Choose [c
′i]i∈[m] uniformly at random. Let c′ := [c

′i]i∈[m].

4. Set the m · (n+ 1)-bit key k′ := [k
′i]i∈[m] = [c

′i
1 , . . . , c

′i
n , c

′i]i∈[m]. For i ∈ [m], j ∈ [n+ 1], compute

k̂
′i
j ← Encrypt(pk, k

′i
j). For i ∈ [m], let k̂

′i
:= k̂

′i
1 , . . . , k̂

′i
n+1.

5. For i ∈ [m], j ∈ [n], simulate, using τ i,jsim and r, a non-interactive proof T
′i
j proving s := ([k̂

i
]i∈[m], c, c) ∈ L

xij
i,j ,

relative to crsNIi,j .

6. Simulate, using τ0,0sim and r, a non-interactive proof T ′ proving s := ([k̂
i
]i∈[m], c, c) ∈ L, relative to crsNI0,0.

7. Output CW := ([k̂
′i

]i∈[m], c
′, c′, T ′, [(xij , T

′i
j)]i∈[m],j∈[n]).

Fig. 13. Encoding algorithm with simulated proofs and encryptions.

Ext(crs, sk,CW):

1. Parse CW := ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j)]i∈[m],j∈[n]),

2. Output [Decrypt(sk, k̂in+1)]i∈[m].

Fig. 14. Extracting procedure Ext.

D′(crs, [ki]i∈[m],CW):

1. Parse CW := ([k̂
i
]i∈[m], , c, c, T, [(x

i
j , T

i
j)]i∈[m],j∈[n]),

2. Check that VNI outputs 1 on all proofs [T ij]i∈[m],j∈[n], T , relative to the corresponding CRS,
3. For i ∈ [m], output bi := ki ⊕ ci.

Fig. 15. Alternate decoding procedure D′, given additional extracted key [ki]i∈[m] as input.

29

g(crs,CW,CW∗, r):

1. Parse CW = ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j)]i∈[m],j∈[n]), CW

∗ = ([k̂
∗i

]i∈[m], c
∗, c∗, T ∗, [(x∗ij , T

∗i
j)]i∈[m],j∈[n]).

2. If (1) VNI outputs 1 on all proofs T ∗, [T ∗ij)]i∈[m],j∈[n], relative to the corresponding CRS; and (2)

([k̂
i
]i∈[m], c, c) = ([k̂

∗i
]i∈[m], c

∗, c∗), then output 1. Otherwise output 0.

Fig. 16. The predicate g(crs,CW,CW∗, r).

Let Ψ(p, c, x, y, r, z) be defined as a function that takes as input a predicate p, and variables c, x, y, r, z.
If p(c, x, y, r) = 1, then Ψ outputs the m-bit string 0. Otherwise, Ψ outputs z.

Theorem 10. Let (E,D), E1, E2, Ext, D′ and g be as defined in Figures 11, 12, 13, 14, 15 and 16. Let
F be a computational class. If, for every pair of m-bit messages b0, b1 and if, for every adversary A ∈ G
outputting tampering functions f ∈ F , all of the following hold:

– Simulation of proofs.

1. Pr[g(crs,CW0, f(CW0), r0) = 1] ≈ Pr[g(crs,CW1, f(CW1), r1) = 1],

2. Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r0, r1 are sampled uniformly at random, CW0 ←
E(crs, b0) and CW1 ← E1(crs,−→τ sim, r1, b0).

– Simulation of Encryptions.

1. Pr[g(crs,CW1, f(CW1), r1) = 1] ≈ Pr[g(crs,CW2, f(CW2), r2) = 1],

2. Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly at random, CW1 ←
E1(crs,−→τ sim, r1, b0) and CW2 ← E2(crs,−→τ sim, r2, b0).

– Simulation Soundness.

Pr
r

[D(crs, f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)∧g(crs,CW2, f(CW2), r2) = 0] ≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at random and CW2 ←
E2(crs,−→τ sim, r, b0).

– Hardness of Db relative to Alternate Decoding.
1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ F ◦ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly at random, CW2 ←
E2(crs,−→τ sim, r2, b0) and CW3 ← E2(crs,−→τ sim, r3, b1).

Then the construction presented in Figure 11 is a non-malleable code for class F against adversaries
A ∈ G.

We present the proof of theorem 10 next.

30

5.1 Generic Analysis

Similarly to the one-bit case, we take g to be the predicate that is used in the MediumTamperΠ,FA,m,g(n)
tampering experiment. We must argue that for every m ∈ Σ and every attacker A ∈ G the output of the
experiment ExptΠ,FA,m,g(n) is 1 with at most negligible probability

Assume towards contradiction that for some A ∈ G the output of the experiment is 1 with non-
negligible probability. Then this means that the probability in the last line of experiment ExptΠ,FA,m,g(n) that

g(crs,CW,CW∗, r) = 1∧D(crs,CW∗; r) 6= m is non-negligible. Parse CW = ([k̂
i
]i∈[m], c, c, T, [(x

i
j , T

i
j)]i∈[m],j∈[n]),

CW∗ = ([k̂
∗i

]i∈[m], c
∗, c∗, T ∗, [(xij , T

∗i
j]i∈[m],j∈[n]).

Recall that D(crs,CW; r) = m. Thus, if the above event occurs, it means that D(crs,CW; r) 6=
D(crs,CW∗; r). But since g(crs,CW,CW∗, r) = 1, it means that VNI outputs 1 on all proofs T ∗, [T ∗ij)]i∈[m],j∈[n]

and ([k̂
i
]i∈[m], c, c) = ([k̂

∗i
]i∈[m], c

∗, c∗). This, in turn, means that there must be some bit xij , x
∗i
j that CW

and CW∗ differ on. But note that by assumption cij = c∗ij . Due to the fact that CW is well-formed and perfect

correctness of the encryption scheme, it must mean that c∗ij /∈ Lx
∗i
j

i,j . But recall that by assumption, proof

T ∗ij verifies correctly. This means that soundness is broken by A ∈ G. This contradicts the security of the

proof system ΠNI.

Next, recall that we wish to show that for any b0, b1 and any adversary A ∈ G outputting tampering
function f ∈ F , {MediumTamperΠ,FA,b0,g

}k∈N ≈ {MediumTamperΠ,FA,b1,g
}k∈N

To do so we consider the following hybrid argument, which proceeds almost identically to the hybrid
argument for the one-bit case:

Hybrid 0: The real game, MediumTamperΠ,FA,b0,g
, relative to g, where the real encoding CW0 ← E(crs, b0)

and the real decoding oracle D are used.
Hybrid 1: Replace the encoding from the previous game with CW1 ← E1(crs,−→τ sim, r1, b0) where r1 is
chosen uniformly at random and g, D use random coins r1.
Hybrid 2: Replace the encoding from the previous game with CW2 ← E2(crs,−→τ sim, r2, b0), where r2 is
chosen uniformly at random and g, D use random coins r2.
Hybrid 3: Replace the decoding from the previous game, with D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2).
where r2 is chosen uniformly at random and g, E2 use random coins r2.
Hybrid 4: Same as Hybrid 3, but replace the encoding with CW3 ← E2(crs,−→τ sim, r3, b1), where r3 is
chosen uniformly at random and g, D′ use random coins r3.

The proofs of indistinguishability of consecutive hybrid distributions follow identically to the one bit case,
except for the final hybrid.

Claim. Hybrid 3 is computationally indistinguishable from Hybrid 4.

Proof. First note that for γ ∈ {2, 3} if g(crs,CW2, f(CW2), r2) = 1 then D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)
always outputs 0 and so

D′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)

≡ Ψ(g, crs,CWγ , f(CWγ), rγ ,D
′(crs,Ext(crs, sk, f(CWγ)), f(CWγ); rγ)).

Now, assume towards contradiction that the two distributions
Ψ(g, crs,CW2, f(CW2), r2,D

′(crs,Ext(sk, f(CW2)), f(CW2); r2)) and
Ψ(g, crs,CW3, f(CW3), r3,D

′(crs,Ext(sk, f(CW3)), f(CW3); r3)) are distinguishable. By the above, this im-
plies that D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3) are distin-
guishable. Note that since D′ outputs m bits, this implies that there exists a distinguishing circuit F over
m-bit inputs such that∣∣Pr[F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) = 1]

− Pr[F ◦ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3)] = 1
∣∣ ≥ negl(n).

31

But this yields a contradiction to the Hardness of Db relative to Alternate Decoding property in
Theorem 10.

6 Efficient, Multi-Bit NMC for AC0

Theorem 11. Π = (CRSGen,E,D) (presented in Figure 11) is an m-bit, computational, non-malleable

code in the CRS model against tampering by depth-(mlogδm/2 − c) circuits with unbounded fan-in and size
δ · logm

log logm − p(n) (where c is constant and p(·) is a fixed polynomial), and m is such that n = m3+5δ, if the
underlying components are instantiated in the following way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect correctness and decryption in
AC0 .

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time simulation-sound NIZK with verifier
in AC0 .

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at random, conditioned on
x1 ⊕ · · · ⊕ xn = b.

For as in the one-bit case, given Theorem 1, proof systems ΠNI as above exist, under the assumption that
same-string, weak one-time simulation-sound NIZK with (arbitrary polynomial-time) deterministic verifier
exists. See the beginning of Section 4 for a discussion of how such NIZK and public key encryption can be
instantiated.

Before proving the theorem, we state some claims on Fourier concentration of AC0 circuits and then prove
Claim 6, which will be used in the proof of Theorem 11.

Claim ([Tal17]). AC0 circuits of depth d and size k have at most 2−Ω(n/(log k)d−1

of their Fourier mass at
level n or above.

Setting d = (2 + δ) · logm
log logm , k = mlogδm, n = m3+5δ, for constant 0 ≤ δ < 1, and noting that

n

(log k)d−1
≥ n

(log k)d
=

m3+5δ

(logm)(1+δ)d
=

m3+5δ

2(1+δ)d·log logm
=

m3+5δ

2(1+δ)(2+δ) logm

=
m3+5δ

m2+3δ+δ2
= m1+2δ−δ2 ∈ Ω(m1+δ),

We have the following corollary:

Corollary 3. An AC0 circuit of depth d = (2 + δ) · logm
log logm and size k = mlogδm has at most ε ∈ 2−Ω(m1+δ)

of its Fourier mass at level n := m3+5δ or above.

We now prove the main technical claim of this section:

Claim. Let n be security parameter. Let C ∈ AC0 be a circuit of depth d ≤ (2 + δ) · logm
log logm and size

k ≤ mlogδm that takes inputs x of length n bits. Let m be such that n = m3+5δ, where 0 < δ ≤ 1. For
γ ∈ {0, 1} let Xγ be a random variable distributed as Dγ . Then for every Boolean function F over m
variables,

|Pr[F (C(X0)) = 1]− Pr[F (C(X1)) = 1]| ∈ 2−Ω(mδ).

Note, the above claim implies that

F (C(X0))
s
≈ F (C(X1)).

32

Proof (of Claim 6). The conclusion of the claim is implied by showing that |Pr[F (C(x)) = 1 | PAR(x) =

1] − Pr[F (C(x)) = 1 | PAR(x) = −1]| ∈ 2−Ω(mδ), where the probability is taken over choice of x from the
distribution which sets x ← D0 with probability 1/2 and x ← D1 with probability 1/2. Thus, in order to
prove the claim, it is sufficient to show that for every (inefficient) distinguisher F ,

|E[F ◦ C(x) · PAR(x)]| ∈ 2−Ω(mδ).

Recall that the correlation of F ◦C with PAR(x) is defined as |E[F ◦C(x) ·PAR(x)]|. Thus, to complete
the proof, we must show that for every (inefficient) F , the correlation of F ◦ C with PAR(x) is negligible.

Analyzing the correlation of χS ◦ C with PAR(x). First, note that since each output bit of C, computed by
Ci, i ∈ [m] is in AC0 it has depth at most δ · logn

log logn .

We next claim that for S ⊆ [m], there is a circuit computing χS ◦C(x) = χS(C1(x), . . . , Cn(x)) of depth

at most d = (2 + δ) · logm
log logm and size at most k = mlogδm.

This follows since the circuit for χS(C1(x), . . . , Cm(x)) can be constructed by computing C(x) :=

C1(x), . . . , Cm(x) in size mlogδm/2 and depth δ · logm
log logm and then feeding this into a circuit that computes

parity over (at most)m bits, which (by recursively computing parity over logm bits in depth 2 and polynomial

size), has size mlogδm/2 and depth 2 logm
log logm .

By plugging in Claim 3, we have that
(
χ̂S ◦ C([n])

)2
= ε. Since |E[χS ◦ C(x) · PAR(x)]| = χ̂S ◦ C([n]),

we have that for S ⊆ [m], the correlation of χS(C1(x), . . . , Cn(x)) with PAR(x) is at most
√
ε ∈ 2−Ω(m1+δ):

|E[χS ◦ C(x) · PAR(x)]| ≤
√
ε. (6.1)

Analyzing the correlation of F ◦C with PAR(x). Since F ◦C(x) =
∑
S⊆[m] F̂ (S) · χS(C1(x), . . . , Cn(x)), we

have that

|E[F ◦ C(x) · PAR(x)]| = |
∑
S⊆[m]

F̂ (S)E[χS(C1(x), . . . , Cm(x)) · PAR(x)]|

≤
∑
S⊆[m]

|F̂ (S)||E[χS(C1(x), . . . , Cm(x)) · PAR(x)]| (6.2)

≤ 2m ·
√
ε ∈ 2−Ω(mδ), (6.3)

where (5.1) follows by the triangle inequality and (5.2) follows from (6.1) and the fact that for all S ⊆ [n],
|F̂ (S)| ≤ 1.

So we have shown that |E[F ◦ C(x) · PAR(x)]| is negligible (in m and therefore also in n, since m and n
are polynomially related), thus completing the proof.

We are now ready to complete the proof of the theorem.

Proof (of Theorem 11). The proof proceeds identically to the one-bit proof, until we reach the final property:

Hardness of Db relative to Alternate Decoding.

1. Pr[g(crs,CW2, f(CW2), r2) = 1] ≈ Pr[g(crs,CW3, f(CW3), r3) = 1],

2. For every Boolean function, represented by a circuit F over m variables,

F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ F ◦ D′(Ext(crs, sk, f(CW3)), f(CW3); r3),

33

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly at random, CW2 ←
E2(crs,−→τ sim, r2, b0) and CW3 ← E2(crs,−→τ sim, r3, b1).

We consider a sequence of distributions where we switch the internal random variables of E2 from from
xi ← Dbi0

, for all i ∈ [m] to xi ← Dbi1
, for all i ∈ [m]. Namely, for each i ∈ {0, . . . ,m} we consider a

distribution where for j ≤ i, xj ← Dbi1
and for j > i, xj ← Dbi0

.

We must show that (1) and (2) hold for each consecutive pair of distributions. When considering the i-th
consecutive pair, fix all random variables except the i-th variable Xi to values x1, . . . ,xi−1,xi+1, . . . ,xm.
Let Xi be a random variable such that with probability 1/2, Xi ← Dbi0

and with probability 1/2, Xi ← Dbi1
.

Xi = Xi,γ where γ ← {0, 1}, and let random variable CWi denote the output of E2 when using random
variables x1, . . . ,xi−1,Xi,xi+1, . . . ,xm.

To show (1), assume Pr[g(crs,CW2, f(CW2), r2) = 1] and Pr[g(crs,CW3, f(CW3), r3) = 1] differ by a non-
negligible amount. This implies that, for some i ∈ [m], there is a circuit that takes as input Xi, hardwires all
other random variables, and outputs 1 in the case that g(crs,CWi, f(CWi), r) = 1 and 0 otherwise, implying
that it has non-negligible correlation to the parity of its input Xi. We will show that the above can be
computed by an AC0 circuit with input Xi, thus contradicting Theorem 2, which says that an AC0 circuit
has at most negligible correlation with parity of its input Xi, denoted P(Xi). Details follow.

We construct the distribution of circuits C1F . A draw C ∼ C1F is done as follows:

1. Sample (crs, sk,−→τ sim)← CRSGen(1n).
2. Sample tampering function A(crs)→ f .
3. Sample c′, c′ uniformly at random,

4. Set the m · (n + 1)-bit key k′ := [k
′i]i∈[m] = [c

′i
1 , . . . , c

′i
n , c

′i]i∈[m]. For i ∈ [m], j ∈ [n + 1], compute

k̂
′i
j ← Encrypt(pk, k

′i
j). For i ∈ [m], let k̂

′i
:= k̂

′i
1 , . . . , k̂

′i
n+1.

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β,i
j]β∈{0,1},i∈[m],j∈[n] and T ′ (as described in Figure 12).

7. Sample x1, . . . ,xi−1 from Dbi0
, and xi+1, . . . ,xm from Dbi1

.

8. Output the following AC0 circuit C that has the following structure:

– hardcoded variables: crs, sk, f , [k̂
′i

]i∈[m], c
′, c′, r, [T

′β,i
j]β∈{0,1},i∈[m],j∈[n], x

1, . . . ,xi−1,xi+1, . . . ,xm.

– input: Xi.
– computes and outputs:

g(crs,CW, f(CW), r).

Note that given all the hardwired variables, computing CW is in AC0 since all it does is, for j ∈ [n], select

the correct simulated proof T
′Xij ,i

j based on the corresponding input bit Xi
j . Additionally, f in AC0 and

g in AC0 , since bit-wise comparison is in AC0 and V SAT is in AC0 . Thus, the entire circuit is in AC0 .

To show (2), assume D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) and
D′(Ext(crs, sk, f(CW3)), f(CW3); r3) have non-negligible statistical distance. This implies that there exists a
distinguisher F (represented by anm-bit Boolean function) such that F◦D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2)
is far from F ◦ D′(Ext(crs, sk, f(CW3)), f(CW3); r3). This implies that, for some i ∈ [m], the output of
F ◦ D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri) is correlated with the parity of its input Xi. We will show that
D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri) can be computed by an AC0 circuit C (drawn from some distribution
C) with input Xi. We then use Claim 6, which says that if C is an AC0 circuit taking inputs of length n bits
and F is any m-bit function then the output F (C(Xi)), conditioned on the parity of Xi being 0 is statistically
close to the output F (C(Xi)), conditioned on the parity of Xi being 1. This yields a contradiction, since it
means that F ◦D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri) cannot be correlated with the parity of its input Xi.
Details follow.

We construct the distribution of circuits C2F . A draw C ∼ C2F is done as follows:

34

1. Sample (crs, sk,−→τ sim)← CRSGen(1n).
2. Sample tampering function A(crs)→ f .
3. Sample c′, c′ uniformly at random,

4. Set the m · (n + 1)-bit key k′ := [k
′i]i∈[m] = [c

′i
1 , . . . , c

′i
n , c

′i]i∈[m]. For i ∈ [m], j ∈ [n + 1], compute

k̂
′i
j ← Encrypt(pk, k

′i
j). For i ∈ [m], let k̂

′i
:= k̂

′i
1 , . . . , k̂

′i
n+1.

5. Sample r uniformly at random.

6. Sample simulated proofs [T
′β,i
j]β∈{0,1},i∈[m],j∈[n] and T ′ (as described in Figure 12).

7. Sample x1, . . . ,xi−1 from Dbi0
, and xi+1, . . . ,xm from Dbi1

.

8. Output the following AC0 circuit C that has the following structure:

– hardcoded variables: crs, sk, f , [k̂
′i

]i∈[m], c
′, c′, r, [T

′β,i
j]β∈{0,1},i∈[m],j∈[n], x

1, . . . ,xi−1,xi+1, . . . ,xm.

– input: Xi.
– computes and outputs:

D′(crs,Ext(crs, sk, f(CWi)), f(CWi); ri)

.
Note that Ext ∈ AC0 since decryption for E := (Gen,Encrypt,Decrypt) in AC0 . Moreover, as above, given
all the hardwired variables, computing CWi is in AC0 since all it does is, for j ∈ [n], select the correct

simulated proof T
′Xij ,i

j based on the corresponding input bit Xi
j . Additionally, f in AC0 and D′ is in AC0

, since xor of two streams of bits is in AC0 and V SAT is in AC0 . Thus, the entire circuit is in AC0 .

6.1 Tampering with decision trees

Theorem 12. Π = (CRSGen,E,D) (presented in Figure 11) is an m-bit, computational, non-malleable code
in the CRS model against tampering by depth-d circuits with unbounded fan-in and size ≤ 2m

ε

(where d, ε
are constants), and m is such that n = m1+ε, if the underlying components are instantiated in the following
way:

– E := (Gen,Encrypt,Decrypt) is a public key encryption scheme with perfect correctness and decryption in
AC0 .

– ΠNI := (CRSGenNI,PNI,VNI,SimNI) is a same-string, weak one-time simulation-sound NIZK with verifier
in AC0 .

– For b ∈ {0, 1}, Db is the distribution that samples bits x1 . . . xn uniformly at random, conditioned on
x1 ⊕ · · · ⊕ xn = b.

The proof of this theorem follows exactly as the proof of Theorem 11, except we replace Claim 6 with
Claim 6.1 below. But first, we present a simple corollary of the theorem.

Corollary 4. Under the assumptions of Theorem 12, (CRSGen,E,D) is an m-bit, computational, non-
malleable code against tampering by decision trees of complexity ≤ mε, where 0 < ε ≤ 1 is a constant,
and n = m1+ε.

This follows from the above theorem when put together with the fact that decision trees of depth t can
be represented as a disjunction of 2t terms (each term is a path to some 1).

Claim. Let n be security parameter. Fix some d ∈ Z. Let ε ≥ 1/d. Let m be such that n = m1+ε Let
C : {0, 1}n → {0, 1}m be composed of depth-d circuit with unbounded fan-in and size s = 2m

ε

. For γ ∈ {0, 1}
let Xγ be a random variable distributed as Dγ . Then for every Boolean function F : {0, 1}m → {0, 1} over
m variables, ∣∣Pr[F ◦ C(X0) = 1]− Pr[F ◦ C(X1) = 1]

∣∣ ≤ 1

2
+

(k + 1)

2 exp(mε)
.

35

Proof. Let n = m1+ε/q for 1 > ε ≥ 1/d. Let ρ be a random restriction over {0, 1}` such that Pr[?] = q =
1

18dedmdε
≤ 1

18dedm
. Let t = mε. Then, by lemma 1 and a union bound the probability that some output bit

of Cρ cannot be represented by a decision tree of depth t− 2 is at most ms(9q1/dt)t.

ms(9q1/dt)t ≤ m2m
ε

(
9mε

18emε
mε)m

ε

(6.4)

= m exp(−mε). (6.5)

If Cρ can be represented by a decision tree of depth t− 1 call Cρ “simple.”

Any F : {0, 1}m → {0, 1} has decision tree complexity at most than m. If we compose this with a simple
Cρ, the resulting decision tree has complexity < m1+ε − 1 [Tal13].

Additionally, by standard Chernoff bounds, the probability that ρ contains more than 4`q ?’s is at most
exp(−mε). Call such a ρ “bad.” Note that if this is the case, then Cρ is a function over at least m1+ε

variables.

If neither event happens, ρ is not bad and Cρ is simple, then F ◦ Cρ is completely uncorrelated with
parity. Otherwise, the correlation is bounded by 1. Therefore, we can simply bound correlation with the
probability that either ρ is bad or Cρ is not simple: (m+ 1) exp(−mε).

We will define a (non-Boolean) function F ◦C ′ such that |E[F ◦C ′(b) ·PAR(b)]| = 0 and then show that
|E[F ◦ C(b) · PAR(b)]| − |E[F ◦ C ′(b) · PAR(b)]| ≤ negl(n), thus obtaining a contradiction to the above.

6.2 Defining F ◦ C′:

For i ∈ [n], define C ′i to be the same as Ci, except Fourier weight on levels at or above n1+2δ is completely
removed. Note that C ′i may no longer be a Boolean function. Define C ′(b) := C ′1(b)|| · · · ||C ′n(b).

Note that the Fourier representation of F (C ′1(b), C ′2(b), ..., C ′n(b)), is simply the composition of the Fourier
representation of F with the Fourier representation of the C ′i’s, i.e. replace each xi variable in the Fourier
representation of F (x1, . . . , xn) with the Fourier representation of C ′i(b).

6.3 F ◦ C′ is not correlated with PAR(b):

Recall that the correlation of F ◦C ′ with PAR(b) is defined as E[F ◦C ′(b) ·PAR(b)]. It is also exactly equal

to the Fourier coefficient of F̂ ◦ C ′(S) corresponding to χS := PAR(b).

We therefore consider the Fourier representation of F (C ′1(b), C ′2(b), ..., C ′n(b)). Note that
F (C ′1(b), C ′2(b), ..., C ′n(b)) is a function over n3 variables, but only has Fourier weight on parities χS of size
at most n · (n1+2δ − 1) < n2+2δ.

Since PAR(b) corresponds to the parity function over n2+2δ variables, and since F ◦ C ′ has 0 Fourier
weight on parities χS of size n2+2δ, then, by definition, F ◦ C ′ has 0 correlation with PAR(b).

6.4 Closeness of F ◦ C′ and F ◦ C:

By Markov’s inequality, this means that for i ∈ [n], with probability 1 −
√
ε over choice of b, we have that

(Ci(b) − C ′i(b))2 ≤ ε. This in turn means that for i ∈ [n], with probability 1 −
√
ε over choice of b, we

have that |Ci(b)− C ′i(b)| ≤ ε1/4. Finally, we have that for i ∈ [n], with probability 1−
√
ε over choice of b,

C ′i(b) = (1− εb,i)Ci(b), where 0 ≤ εb,i ≤ ε1/4.

Note that since each C ′i, i ∈ [n] is in AC0, then due to Corollary 3, we have that for i ∈ [n], Eb[(Ci(b)−
C ′i(b))2] ≤ ε, where ε ∈ 2−Ω(n1+ε). By Markov’s inequality, this means that for i ∈ [n], with probability 1−

√
ε

over choice of b, we have that (Ci(b) − C ′i(b))2 ≤ ε. This in turn means that for i ∈ [n], with probability
1−
√
ε over choice of b, we have that |Ci(b)−C ′i(b)| ≤ ε1/4. Finally, we have that for i ∈ [n], with probability

1−
√
ε over choice of b, C ′i(b) = (1− εb,i)Ci(b), where 0 ≤ εb,i ≤ ε1/4.

36

Now, for every S ⊆ [n], we have that with probability 1− n ·
√
ε = 1− ε′ over choice of b,

|χS(C1(b), . . . , Cn(b))− χS(C ′1(b), . . . , C ′n(b)| = |Πi∈SCi(b)−Πi∈SC
′
i(b)|

= |Πi∈SCi(b)−Πi∈S(1− εb,i)Ci(b)|
= |Πi∈SCi(b) · (1−Πi∈S(1− εb,i)) |
= 1− (Πi∈S(1− εb,i)) (6.6)

≤ 1− (1− ε1/4)n (6.7)

≤ n · ε1/4 = ε′′,

where (5.1) follows since |Ci(b)| = 1 and (5.2) follows since |S| ≤ n.

with probability 1− 2n · ε′ over choice of b, |F ◦ C(b)− F ◦ C ′(b)| ≤ 2n · ε′′.
Next we have that:

|E[F ◦ C(b) · PAR(b)]| − |E[F ◦ C ′(b) · PAR(b)]| = |E[F ◦ C(b) · PAR(b)]− E[F ◦ C ′(b) · PAR(b)]| (6.8)

≤ E[|F ◦ C(b) · PAR(b)− F ◦ C ′(b) · PAR(b)|] (6.9)

= E[|(F ◦ C(b)− F ◦ C ′(b)) · PAR(b)|]
= E[|F ◦ C(b)− F ◦ C ′(b)| · |PAR(b)|]
= E[|F ◦ C(b)− F ◦ C ′(b)|] (6.10)

≤ 2n · 2n · ε′ + 2n · ε′′

where (5.3) follows since |E[F ◦ C ′(b) · PAR(b)]| = 0, (5.4) follows from the triangle inequality, (5.5) follows
since |PAR(b)| = 1 and (5.6) follows since for all b, |F◦C(b)−F◦C ′(b)| ≤ 2n. Now since 22n·ε′, 2n·ε′′ ∈ 2−Ω(nε)

are negligible, then we have that |E[F ◦ C(b) · PAR(b)]| − |E[F ◦ C ′(b) · PAR(b)]| ≤ negl(n).

Thus, if |E[F ◦ C(b) · PAR(b)]| is non-negligible, we obtain |E[F ◦ C ′(b) · PAR(b)]| > 0, which yields a
contradiction since we have shown above that |E[F ◦ C ′(b) · PAR(b)]| = 0.

7 One-Bit NMC Against Streaming Adversaries

We begin by describing constructions of the underlying components required to instantiate the generic
constructions in the streaming adversaries setting.

In the following, we assume that the tampering class F corresponds to streaming adversaries with memory
o(n′′). We then choose parameter n ∈ ω(n′′) and parameter n′ ∈ ω(n). n is the parameter for the hard
distribution described in Section 7.1, n′ is the parameter for the encryption scheme described in Section 7.2,
n′′ is the parameter for the weak encryption scheme (Hide,Rec) described in Section 7.3.

7.1 The Hard Distribution Db (parameter n)

Let n = (µ+ 1)2 − 1

For b ∈ {0, 1}, a draw from the distribution Db is defined as follows: Choose a parity χS uniformly at
random from the set of all (non-zero) parities over µ variables (∅ 6= S ⊆ [µ]). Choose y1, . . . , yµ ∼ {0, 1}µ
uniformly at random. Choose y uniformly at random, conditioned on χS(y) = b. Output the following n-bit
string: [(yi, χS(yi)]i∈[µ]||y.

The hardness of the distribution follows from Theorems 3 and lemma 2.

Claim. Let A be a streaming algorithm with o(n) space, and α > 0. Then,

‖ Pr
x∼D0

[A(x) = 0]− Pr
x∼D1

[A(x) = 0]‖ ≤ 2αn/3.

37

7.2 Encryption scheme E = (Encrypt,Decrypt) (parameter n′ ∈ ω(n))

The Learning Parity problem yields an encryption scheme with semantic security against streaming
adversaries with o(n′) storage. We can use this encryption scheme to encrypt the key k, bit-by-bit, thus
yielding an encryption scheme with the necessary properties.

To encrypt a bit b, Encrypt(b) outputs z, where z ∼ Db and Db is the same as above, except with
parameter n′.

To decrypt a ciphertext z, with Θ(n′) storage, Decrypt(z) runs the parity learning algorithm to recover
b.

Renaming variables and plugging in Claim 7.1 from above, we have

Claim. Let A be a streaming algorithm with o(n) space, and α > 0. Then,

‖ Pr
z∼Encrypt(0)

[A(z) = 0]− Pr
z∼Encrypt(1)

[A(z) = 0]‖ ≤ 2αn/3.

7.3 Weak Encryption Scheme (parameter n′′ ∈ o(n))

Let n′′ = (µ′′ + 1)2 − 1 Given a bit string k = k1, . . . , kµ′′ of length µ′′ bits, and a vector y := y1, . . . , yµ′′ of
length µ′′ bits, let Sk ⊆ [µ′′] denote the set of positions in k that are set to 1. Let m = m1, . . . ,m` be a bit
string of length ` bits (where ` is polynomial in µ′′). let χSk(y) :=

⊕
i∈Sk yi.

On input m ∈ {0, 1}` and k as above, Hide(k,m) chooses random strings y01 , . . . , y
0
µ′′ , y1, . . . , y` ← Uµ′′

and outputs ([y0i , χSk(y0i)]i∈[µ′′], [(yi, χSk(yi)⊕mi)]i∈[`]).

On input ([y0i , χSk(y0i)]i∈[µ′′], [(yi, χSk(yi) ⊕ mi)]i∈[`]), Rec uses the first µ′′ examples to learn χSk and
then returns [mi]i∈[`] := χSk(yi)⊕m′i.

7.4 Non-Interactive Simulatable Proof System (parameter n′′ ∈ o(n))

In the following construction, inputs and proofs have λ parallel components, corresponding to λ parallel
invocations of the MPC-in-the-head paradigm. To simplify the exposition, we assume that the bounded,
streaming computations read in λ symbols in parallel from each of the λ parallel components and output λ
symbols in parallel for each of the λ parallel components. Note that this increases the required storage by a
factor of λ, but since we set λ� n′′, the overall storage bound remains below n′′.

We begin by introducing a simplified proof system and proving its soundness. We then present the actual
proof system used in our construction. Looking ahead, proving that the Simulation Soundness property
required by Theorem 4 holds, will reduce to the soundness of the simplified proof system.

Simplified Proof System Π ′ Let λ′ be security parameter and ` is a constant (e.g. ` = 5).

P: On input statement s, encoding [s1u, . . . , s
λ′

u]u∈[`] and witness w:

1. Check that for q ∈ [λ′], sq1 ⊕ · · · ⊕ s
q
` = s: Compute streaming hash h∗ := Hh(s) and λ′ streaming

hashes in parallel, hq := [Hh(sq1 ⊕ · · · ⊕ s
q
`)]q∈λ′ , where H is Merkle Damgard and h← H, where H is a

universal family of hash function. Check that for all q ∈ [λ′], hq = h∗. If not, output ⊥.
2. Run MPC-in-the-head: For q ∈ [λ], secret share w into ` additive shares (wq1, . . . , w

q
`) and run

MPC(P1(sq1, w
q
1) . . . , P`(s

q
` , w

q
`), producing views [Viewqu]q∈[λ′],u∈[`] (here, each view is a tableau of the

parties’ computation, as described in the construction of circuit SAT proof system for streaming verifiers
in Section 2.4).
Note that of the input wires to the views, some will be public (corresponding to the shares of s) and
some will be private (corresponding to the shares of w).

3. Encrypt the Views. For q ∈ [λ′], u ∈ [`], choose kqu uniformly at random from {0, 1}µ′′ . Compute

Squ ← Hide(kqu,View
q
u), where Hide is run with parameter n′′. Output proof T = ([k̂qu, S

q
u]q∈[λ′],u∈[`]).

38

V: On input statement s, encoding [s1u, . . . , s
λ′

u]u∈[`] and proof T , parse T = ([k̂qu, S
q
u]q∈[λ′],u∈[`]).

1. Generate randomness. Choose randomness r1, . . . , rλ′ and hash function h ← H. For each q ∈ [λ],
choose a subset Sq ⊆ [`] using random coins rq.

2. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ sq` = s: Repeat the same steps as P to check that for q ∈ [λ],
sq1 ⊕ · · · ⊕ s

q
` = s if not, output ⊥.

3. Prepare hashes of input for later equality checks. This is done in parallel to the previous item.
For q ∈ [λ′], u ∈ Sq, compute hq,u = Hh(squ).

4. Open selected views. For q ∈ [λ], u ∈ S1q , recover kqu = Decap(k̂qu), recover Viewqu, where Viewqu :=
Rec(Squ) (where Rec is run with parameter n′′) and corresponding inputs s̃qu, w̃

q
u.

5. Check consistency of views. This is done in parallel to the previous item. (1) Check that the opened
views are internally consistent (using the verifier described in the construction of circuit SAT proof
system for streaming verifiers in Section 2.4). (2) Check that the opened views are consistent with each
other (i.e. same transcript) using similar hashing techniques as above. (3) Check that hq,u = Hh(s̃qu).

6. Output. If all checks succeed, output 1. Otherwise, output 0.

Claim. Soundness of proof system follows from perfect correctness of the MPC and security of the universal
hash function family H.

The Actual Proof System Π As above, in the following construction, inputs and proofs have λ parallel
components, corresponding to λ parallel invocations of the MPC-in-the-head paradigm. To simplify the
exposition, we assume that the bounded, streaming computations read in λ symbols in parallel from each
of the λ parallel components and output λ symbols in parallel for each of the λ parallel components. Note
that this increases the required storage by a factor of λ, but since we set λ� n′′, the overall storage bound
remains below n′′.

Let λ be security parameter and ` is a constant.

P: On input statement s := s1, . . . , st, encoding [sq1, . . . , s
q
`]q∈[λ] and witness w:

1. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s: Compute streaming hash h∗ := Hh(s) (with block length λ)

and λ streaming hashes (all with block length λ) in parallel, hq := [Hh(sq1 ⊕ · · · ⊕ s
q
`)]q∈λ, where H is

Merkle Damgard and h← H, where H is a universal family of hash function. Check that for all q ∈ [λ],
hq = h∗. If not, output ⊥.

2. Run MPC-in-the-head: For q ∈ [λ], secret share w into ` additive shares (wq1, . . . , w
q
`) and run

MPC(P1(sq1, w
q
1) . . . , P`(s

q
` , w

q
`)), producing views [Viewqu]q∈[λ],u∈[`].

Note that of the input wires to the views, some will be public (corresponding to the shares of s) and
some will be private (corresponding to the shares of w).

3. Select the Slots. For each position q, u there are ` · 2t slots [Sz,pq,u]z∈[`],p∈[2t], where t = |s|. Let
sq[z, p] denote the p-th bit position of the string sqz. Let S ′q,z be the set of positions in the string
[sq[z, p]||sq[z, p]]p∈[t] that are set to 1. Note that |S ′q,z| = t.

4. Encrypt the Views. For q ∈ [λ], u ∈ [`], z ∈ [`], p ∈ [2t], choose kz,pq,u uniformly at random from

{0, 1}µ′′ . For q ∈ [λ], u ∈ [`], z ∈ [`] and p ∈ S ′q,z, compute Sz,pq,u ← Hide(kz,pq,u,View
q
u), where Hide is run

with parameter n′′. For q ∈ [λ], u ∈ [`], z ∈ [`] and p /∈ S ′q,z, set Sz,pq,u ← Hide(kz,pq,u,0). Output proof

T = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],u∈[`],z∈[`],p∈[2t]).

V: On input statement s := s1, . . . , st, encoding [sq1, . . . , s
q
`]q∈[λ], and proof T , parse T = ([k̂pq,u, S

p
q,u]q∈[λ],u∈[`],p∈[2t]).

1. Generate Randomness. Choose randomness (r11, r
2
1) . . . , (r1λ, r

2
λ) and hash function h ← H. Choose

subsets S1q ,S2q ⊆ [`], each of size 2, using random coins (r1q , r
2
q).

2. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ sq` = s: Repeat the same steps as P to check that for q ∈ [λ],
sq1 ⊕ · · · ⊕ s

q
` = s if not, output ⊥.

39

3. Prepare hashes of input for later equality checks. This is done in parallel to the previous item. Do
the following in parallel: (1) For q ∈ [λ], u ∈ S1q , compute h1q,u = Hh(squ) in a streaming fashion, using

block size λ and space O(λ2). (2) For q ∈ [`], u ∈ S2q , compute h2q,u = Hh(squ) in a streaming fashion,
using block size λ and space O(λ2).

4. Open selected views and check consistency across slots. For q ∈ [λ], u ∈ S1q , do the following:

(1) For each z ∈ [S2q], p ∈ [2t], recover kz,pq,u = Decap(k̂pq,u). (2) For each z ∈ [S2q], recover Viewz,pq,u, where
Viewz,pq,u := Rec(Sz,pq,u), and Rec is run with parameter n′′. Let [Viewz,pq,u]p∈S′zq,u be the views (out of [2t]) that

do not decrypt to 0 (i.e. S ′zq,u is the set of slots that are filled). Let s′
z
q,u denote the vector corresponding

to S ′zq,u. (3) Use hashing as above to check that for each q, r all the recovered views Viewz,pq,u are identical.
(4) Let Viewqu denote the contents of these identical views and let (s̃qu, w̃

q
u) be the corresponding inputs.

5. Check consistency of views. This is done in parallel to the previous item. (1) For q ∈ [λ], u ∈ S1q
check that the view Viewqu is internally consistent (using the verifier described in the construction of
circuit SAT proof system for streaming verifiers in Section 2.4). (2) For q ∈ [λ], Check that the views
[Viewqu]u∈S′q are consistent with each other (i.e. same transcript) using similar hashing techniques as

above. (3) For each u ∈ S1q , check that h1q,u = Hh(s̃qu). (4) For each u ∈ S2q , check that h2q,u = Hh(s̃qu).
6. Output. If all checks succeed, output 1. Otherwise, output 0.

Sim: On input statement s := s1, . . . , st, encoding [sq1, . . . , s
q
`]q∈[λ], . . . , [s

q
1, . . . , s

q
`]q∈[λ]:

1. Check that for q ∈ [λ], sq1 ⊕ · · · ⊕ s
q
` = s: Compute streaming hash h∗ := Hh(s) and λ streaming

hashes in parallel, hq := [Hh(sq1 ⊕ · · · ⊕ s
q
`)]q∈λ, where H is Merkle Damgard and h← H, where H is a

universal family of hash function. Check that for all q ∈ [λ], hq = h∗. If not, output ⊥.
2. Run MPC-in-the-head Simulation: For q ∈ [λ], choose subset S1q ⊆ [`] using random coins r1q . run

SimMPC to produce the views of parties Pu, u ∈ S1q (note that each of these parties has public input squ)
producing views [Viewqu]q∈[λ],u∈Sq .

3. Select the Slots. For each position q, u there are ` · 2t slots [q, u, z, p]z∈[`],p∈[2t], where t = |s|. Let
sq[z, p] denote the p-th bit position of the string sqz. Let S ′q,z be the set of positions in the string
[sq[z, i]||sq[z, i]]i∈[t] that are set to 1. Note that |S ′q,z| = t.

4. Encrypt the Views. Choose subset S2q ⊆ [`] using random coins r2q . For q ∈ [λ], u ∈ [`], z ∈ [`], p ∈ [2t],

choose kz,pq,u uniformly at random from {0, 1}µ′′ . For q ∈ [λ], u ∈ [S1q], z ∈ [S2q] and p ∈ S ′q,z, compute
Sz,pq,u ← Hide(kz,pq,u,View

q
u), where Hide is run with parameter n′′. For q ∈ [λ] and u, z, p such that u /∈ [S1q]

OR z /∈ [S2q] OR p /∈ S ′q,z, set Sz,pq,u ← Hide(kz,pq,u,0). Output proof π = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],u∈[`],z∈[`],p∈[2t]).

Remark 1. Note that if the simulated proof and encoding [sq1, . . . , s
q
`]q∈[λ] are generated at the same time, then

we can first produce the simulated proof π independently of s. This can be done because the simulated proof
depends only on [squ]q∈[λ],u∈[S1

q∪S2
q]

, which can be chosen uniformly at random (since our parameter settings

ensure that |S1q | + |S2q | = ` − 1). Given the simulated proof π and the choice of [sqy]q∈[λ],y∈[S1
q∪S2

q]
, we can

then output the entire encoding [sq1[1], . . . , sq` [1]]q∈[λ], . . . , [s
q
1[t′], . . . , sq` [t

′]]q∈[λ] and proof π in a streaming
fashion, given input s in a streaming fashion, requiring only O(λ2) memory. This is done by hardwiring
[sqy]q∈[λ],y∈[S1

q∪S2
q]

, and, in a block-by-block streaming fashion (with block length λ), outputting, in parallel,

the i-th block of each share for each q ∈ [λ], along with the missing share: [s⊕
(⊕

y∈[S1
q∪S2

q]
sqy

)
]q∈λ.

Remark 2. Note that for two statements s1 6= s2 and their proofs πs1 , πs2 , for each q, there exists a pair
(z∗q , p

∗
q) such that for each u ∈ [`], slot [q, u, z∗q , p

∗
q] contains encryptions of 0 in πs1 and encryptions of Viewqu

in πs2 . Moreover, for any two statements s1 6= s2 and every q ∈ [λ], the probability over choice of r2 that
z∗q ∈ [S2q], (which means that slots [q, u, z∗, p∗]u∈S1

q
will be checked by V) is at least 1/`.

Claim. Let A be an unbounded adversary that takes as input random variable S1
tamp||S2

tamp. Let S1, S2 denote
the random variables corresponding to the initial contents of A’s input (before tampering).

Let f be a streaming tampering function with memory o(n′′) that reads in random variable S1||I||S2

(chunk-by-chunk), where I = Hide(k,m) is an encoding of m with random key k and parameter n′′, and

40

(in a streaming fashion) outputs the random variable S1
tamp||Itamp||S2

tamp (chunk-by-chunk). For i ∈ [3], let
f(S1||I||S2)[i] denote the i-th chunk outputted by f .

Then for any m0,m1, when I encodes m0 vs. I encodes m1 the resulting output distributions of
A(f(S1||I||S2)[1], f(S1||I||S2)[3]) are statistically close.

Proof. If the claim is false, then there exists a distinguisher D. Using D, A, f , we can now construct a
streaming branching program with space o(n′′) that distinguishes whether I encodes 0 or 1. We do so in the
following way:

1. Fix the random variables S1 = s1 and S2 = s2

2. Construct a branching program BPs1,s2,D,A,f that hardcodes s1, s2 and emulates f(s1||I||s2). Note the
following about the emulation:
– S1

tamp = s1tamp = f(s1||I||s2)[1] and the entire inner state of f up to the moment right before it starts
reading I can be hardcoded into the transition function for BP .

– from this point on, we can emulate f(s1||I||s2) using space o(n′′) until the moment that f finishes
reading I.

– from this point on, we can determine the output of A(s1tamp, f(S1||I||S2)[3]) without requiring any
more memory. To do this, we use the fact that s1, s1tamp, s

2 are hardcoded and simply precompute

the output of A(s1tamp, f(s1||I||s2)[3]) for each of the possible 2o(n
′′) internal states of f (by using the

internal state of f at the moment that f finishes reading I to compute S2
tamp = s2tamp and then running

A on (s1tamp, s
2
tamp)) and then output whatever D outputs. This implies that given the internal state

of f at the moment f finishes reading I, we can immediately transition to the output level of the
branching program, without requiring additional state.

3. Note that BP succeeds with the same probability as D.

Theorem 13. Π = (E,D) (presented in Figure 5) is a one-bit, unconditional non-malleable code against
streaming adversaries with space o(n′′), if the underlying components are instantiated in the following way:

– E := (Encrypt,Decrypt) is the encryption scheme described in Section 7.2 (with parameter n′ := n′(n)).
– ΠNI := (PNI,VNI,SimNI) the simulatable proof system with streaming verifier described in Section 7.4 with

parameter n′′ := n′′(n).
– For b ∈ {0, 1}, Db is the distribution described in Section 7.1 (with paramter n).

Note that no CRS or computational assumptions are needed for this result. Indeed we can assume that
the adversary A outputting tampering function f is computationally unbounded. To maintain consistency,
we continue to use the variables crs, sk, −→τ sim but we simply assume that all of them are set to ⊥.

Proof. To prove the theorem, we need to show that the necessary properties from Theorem 4 hold. We next
go through these one by one.

– Simulation of proofs.

1.
Pr[g(CW0, f(CW0), r0) = 1] ≈ Pr[g(CW1, f(CW1), r1),= 1],

2.

Ψ(g, crs,CW0, f(CW0), r0,D(crs, f(CW0); r0)) ≈ Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly at random, CW0 ←
E(crs, b0) and CW1 ← E1(crs,−→τ sim, r1, b0).
To prove this, we must switch from all real proofs (as outputted by E) to all simulated proofs (as outputted
by E). Looking closer at the construction from Section 7.4, to switch from a real to a simulated proof, we
must go through a sequence of hybrids starting from honestly generated proofs from E and ending with
simulated proofs from E1. In hybrid H[q,u,p] we switch to using encoding algorithm E[q,u,p], which works

41

the same way as the encoding in the previous hybrid, except when generating the proofs, if r /∈ Sq, it sets
random variable Spq,u to Spq,u ← Hide(kpq,u,0). Note that for u ∈ Sq, H[q,u,p] is identical to the previous

hybrid. Let CW[q,u,p] denote the random variable representing the codeword in each hybrid distribution.
We use Claim 7.4 to show that for every fixed random string r and u /∈ Sq, the output of g in consecutive
hybrids is indistinguishable and the output of Ψ in consecuitve hybrids is indistinguishable. To see this,
note that we set A from Claim 7.4 to be equal to D, f = f , S1 denotes the codeword up to the [q, u, p]
position, S2 denotes the codeword after the [q, u, p] position, and I := Spq,u. The key is that VNI (which
checks the proofs during computation of g and Ψ) with random coins r := r1, . . . rq will not check slot
[q, u, p] when determining its output and so the conditions of Claim 7.4 are satisfied.

– Simulation of Encryption.
1.

Pr[g(CW1, f(CW1), r1) = 1] ≈ Pr[g(CW2, f(CW2), r2),= 1],

2.

Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) ≈ Ψ(g, crs,CW2, f(CW2), r2,D(crs, f(CW2); r2)),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r1, r2 are sampled uniformly at random, CW1 ←
E1(crs,−→τ sim, r1, b0) and CW2 ← E2(crs,−→τ sim, r2, b0).
To see this, we will show that g(CW1, f(CW1), r1), Ψ(g, crs,CW1, f(CW1), r1,D(crs, f(CW1); r1)) can
be computed in a streaming fashion with memory o(n′), while distinguishing encryptions of ki from
encryptions of k′i in a streaming fashion requires memory Ω(n′) (see Claim 7.2). We will show that each
of E1/E2, f,D, g can be computed in a streaming fashion with memory o(n′). This implies that their
(parallel) composition can also be computed in a streaming fashion with memory o(n′).
To see that this is true for E1/E2, we use the observation from Remark 1. It is true for f by definition
of the tampering class F . D consists of (1) determining b such that x is in the support of Db and (2)
running the verifier for Π. Note that (1) can be done in a streaming fashion using Θ(n) bits of memory.
Since we choose n′ = ω(n), the required memory is o(n′). (2) can be done in a streaming fashion with
space o(n′), since the only memory intensive part of the verification is running Rec. Similar to the above,
we set parameters of Hide/Rec such that this can be done using Θ(n′′) bits of memory, where n′′ = o(n).
Finally, g consists of a bit-wise comparison of two strings obtained in a streaming fashion and running
the verifier for Π, both of which can be done in a streaming fashion with memory o(n′). Thus, we have
shown that each of each of E1/E2, f,D, g can be computed in a streaming fashion with memory o(n′).

– Simulation Soundness.

Pr
r

[D(f(CW2); r2) 6= D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ∧ g(CW2, f(CW2), r2) = 0] ≤ negl(n),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2 is sampled uniformly at random and CW2 ←
E2(crs,−→τ sim, r, 0).
We give a reduction from the above property with Π instantiated with security parameter λ to the
soundness of Π ′ with security parameter λ′ = λ/2`.
First, if g(CW2, f(CW2), r2) = 0 then it must be the case that either the verification of the proofs rejects
(in both D and D′, since they are the same) or s1 6= s2, where s1 is the statement for the proofs in CW
and s2 is the statement for the proofs in f(CW), and s2 /∈ L. Therefore, by Remark 2, for each q, there
exists a pair (z∗q , p

∗
q) such that for each u ∈ [`], slot [q, u, z∗q , p

∗
q] contains encryptions of 0 in πs1 and (is

supposed to contain) encryptions of Viewqu in πs2 .
We now consider the distribution over slots ([q, u, z∗q , p

∗
q]q∈[λ],u∈[`]). Note that by Claim 7.4 the

distribution over these slots only is statistically close in the case that f gets as input a codeword with a
simulated proof, versus a proof where all Sz,pq,u encrypt 0.

Therefore, our reduction R will construct a simulated proof π′ = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],u∈[`],z∈[`],p∈[2t]), for s1

where all Sz,pq,u encrypt 0. Note that this simulated proof π′ has no dependence on (r11, r
2
1) . . . , (r1λ, r

2
λ),

since all slots encrypt 0 so there is no information at all in the proof. R will then extract a proof

42

π′′ = ([k̂z,pq,u, S
z,p
q,u]q∈[λ],r∈[`],z∈[`],p∈[2t]) for some statement s2 6= s1 from the tampered codeword. It will

now choose random coins r2q and sets S2q ⊆ [`], for q ∈ [λ] (using random coins r2q). Using Remark 2, we
know that the probability over choice of random coins r2q that z∗q ∈ S2q is at least 1/`. Therefore, with all
but negligible probability, there is a set Q ⊆ [λ] of size at least 1/2` · λ such that z∗q ∈ S2q for all q ∈ Q.

Moreover, note that if w.h.p. over choice of r11, . . . , r
2
λ, all checks for [k̂z,pq,u, S

z,p
q,u]q∈Q,u∈[`],z∈[`],p∈[2t] pass

then it must be the case that [k̂
z∗q ,p

∗
q

q,u , S
z∗q ,p

∗
q

q,u]q∈[Q],u∈[`] is a proof for statement s2 for proof system Π ′

for which VΠ
′

accepts w.h.p. But this breaks the soundness of proof system Π ′ with security parameter
λ′ = |Q| ≥ λ/2`.

– Hardness of Db relative to Alternate Decoding.
1.

Pr[g(CW2, f(CW2), r2) = 1] ≈ Pr[g(CW3, f(CW3), r3) = 1],

2.
D′(crs,Ext(sk, f(CW2)), f(CW2); r2) ≈ D′(Ext(sk, f(CW3)), f(CW3); r3),

where (crs, sk,−→τ sim) ← CRSGen(1n), f ← A(crs), r2, r3 are sampled uniformly at random, CW2 ←
E2(crs,−→τ sim, r2, 0) and CW3 ← E2(crs,−→τ sim, r3, 1).

Let X denote a random variable where X ← D0 with probability 1/2 and X ← D1 with probability
1/2 and let random variable CW denote the output of E2 when X replaces x.

To show (1), assume Pr[g(CW2, f(CW2), r2) = 1] and Pr[g(CW3, f(CW3), r3) = 1] differ by a non-
negligible amount. This implies that a circuit that takes as input X, hardwires all other random variables,
and outputs 1 in the case that g(CW, f(CW), r) = 1 and 0 otherwise, implying that it has non-negligible
correlation to the function that outputs b such that X is in the support of Db. We will show that the
above can be computed by a streaming adversary with storage o(n) and input X, thus contradicting
Claim 7.1. Indeed, this follows since the output of E2 can be computed in a streaming fashion using a
similar trick to the AC0 case, f can be computed by streaming adversaries with storage o(n) by definition
of tampering class F , and verification for Π can also be computed in a streaming fashion with memory
Θ(n′′), where n′′ = o(n). So the composition of the three can also be computed by streaming adversaries
with storage o(n).

To show (2), assume D′(crs,Ext(sk, f(CW2)), f(CW2); r2) and D′(crs,Ext(sk, f(CW3)), f(CW3); r3) have
non-negligible statistical distance. This implies that a circuit that takes as input X, hardwires
all other random variables, and outputs D′(crs,Ext(sk, f(CW)), f(CW); r2) has non-negligible corre-
lation to the function that outputs b such that X is in the support of Db. We will show that
D′(crs,Ext(sk, f(CW)), f(CW); r2) can be computed by a streaming adversary with storage o(n) and
input X, thus contradicting Claim 7.1. To show this, note first that the output kn+1 of Ext(sk, f(CW))
can be given as non-uniform advice since it does not depend on X. This is the case because the key
is extracted by looking at the first part of the tampered codeword, which is independent of X. Since
the tampering function is streaming as well, it means that the output of the tampering function was
determined independently of X.
Now, we must show that E2, f , and D′(crs, kn+1, ·; r2) can all be computed in a streaming fashion. We
have already argued that E2, f can be computed in a streaming fashion. Note that D′(crs, kn+1, ·; r2)
simply decrypts (by xor’ing kn+1 with c) and checks all proofs using the verifier of Π, which can be done
in a streaming fashion, with space Θ(n′′) = o(n).

7.5 Multi-Bit NMC Against Streaming Adversaries

The result from the previous section extends trivially for any number m of bits. Moreover, when we increase
the number of bits m, all other parameters (n, n′, n′′) can remain the same and do not need to be increased
as in our previous multi-bit constructions. To see this, note that the only additional property that needs

43

to be proved in the multi-bit case is that for every Boolean function, represented by a circuit F over m
variables,

F ◦ D′(crs,Ext(crs, sk, f(CW2)), f(CW2); r2) ≈ F ◦ D′(crs,Ext(crs, sk, f(CW3)), f(CW3); r3).

But in the bounded, streaming model, F as above can be computed without requiring any additional memory
beyond what is required in the one-bit case. To see this, recall that the streaming adversary can receive the
decryptions of the m ciphertexts in the tampered codeword as non-uniform advice, since tampering on this
part of the codeword does not depend on the values of [xi]i∈[m]. Thus, the streaming adversary needs only
to check the m · n + 1 proofs, in a streaming fashion, in order to determine the output of D′: If all proofs
verify correctly, the output of D′ will consist of the hardcoded, “candidate” bits; otherwise, D′ will output
0. Thus, the streaming adversary can compute the output of D′ using the same amount of space as in the
one-bit case. Now, F needs to be applied to the output of D′. But note that computing F does not require
any additional space. Indeed, given the state of the streaming adversary at the moment the output of D′ is
determined, we can simply hardcode the output of F in the transition function. Thus, no additional memory
is required.

Acknowledgments

The first and fourth authors are supported in part by the Defense Advanced Research Project Agency
(DARPA) and Army Research Office (ARO) under Contract #W911NF-15-C-0236, and NSF grants #CNS-
1445424 and #CCF-1423306. Any opinions, findings and conclusions or recommendations expressed are
those of the authors and do not necessarily reflect the views of the the Defense Advanced Research Projects
Agency, Army Research Office, the National Science Foundation, or the U.S. Government. The second and
third authors are supported in part by an NSF CAREER Award #CNS-1453045, by a research partnership
award from Cisco and by financial assistance award 70NANB15H328 from the U.S. Department of Commerce,
National Institute of Standards and Technology. This work was performed, in part, while the first author
was visiting IDC Herzliya’s FACT center and supported in part by ISF grant no. 1790/13 and the Check
Point Institute for Information Security. The first author is additionally supported by the Leona M. & Harry
B. Helmsley Charitable Trust.

References

AAG+16. Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. Optimal computational split-state non-malleable codes. In Kushilevitz and Malkin
[KM16b], pages 393–417. 2, 7

ABW10. Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different
assumptions. In Leonard J. Schulman, editor, 42nd ACM STOC, pages 171–180. ACM Press, June
2010. 22, 23

ADKO15a. Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable reductions
and applications. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 459–468.
ACM Press, June 2015. 2, 7, 8

ADKO15b. Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Leakage-resilient non-
malleable codes. In Dodis and Nielsen [DN15], pages 398–426. 8

ADL14. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive combinatorics.
In David B. Shmoys, editor, 46th ACM STOC, pages 774–783. ACM Press, May / June 2014. 2, 7

AGM+15a. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. Explicit
non-malleable codes against bit-wise tampering and permutations. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 538–557. Springer, 2015. 2

44

AGM+15b. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. Explicit
non-malleable codes against bit-wise tampering and permutations. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 538–557. Springer, Heidelberg,
August 2015. 7

AGM+15c. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In Dodis and
Nielsen [DN15], pages 375–397. 7

Ajt83. M Ajtai. σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24:607–620, 1983. 23

BDKM16. Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes for bounded
depth, bounded fan-in circuits. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 881–908. Springer, Heidelberg, May 2016. 2, 7, 8

BL16. Andrej Bogdanov and Chin Ho Lee. Homomorphic evaluation requires depth. In Kushilevitz and Malkin
[KM16a], pages 365–371. 3, 4, 22

BRSV17. Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case fine-grained
hardness. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 483–496. ACM, 2017. 26

CCFP11. Hervé Chabanne, Gérard D. Cohen, Jean-Pierre Flori, and Alain Patey. Non-malleable codes from the
wire-tap channel. CoRR, abs/1105.3879, 2011. 2

CDTV16. Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable encryption:
Simpler, shorter, stronger. In Kushilevitz and Malkin [KM16a], pages 306–335. 1

CG14a. Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Moni Naor, editor,
ITCS 2014, pages 155–168. ACM, January 2014. 2, 7

CG14b. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-state
tampering. In Lindell [Lin14], pages 440–464. 2, 8

CGL16. Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with their many
tampered extensions. In Wichs and Mansour [WM16], pages 285–298. 2, 7

CGM+15. Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj Upadhyay. Block-wise
non-malleable codes. Cryptology ePrint Archive, Report 2015/129, 2015. http://eprint.iacr.org/

2015/129. 8
CGM+16. Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj Upadhyay. Block-wise

non-malleable codes. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, ICALP 2016, volume 55 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl, July 2016. 2,
3, 8

CKM11. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. BiTR: Built-in tamper resilience. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 740–758. Springer,
Heidelberg, December 2011. 2

CKO14. Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updatable and locally decodable
codes. In Lindell [Lin14], pages 489–514. 8

CKR16. Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-theoretic local
non-malleable codes and their applications. In Kushilevitz and Malkin [KM16b], pages 367–392. 8

CL17. Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits, and
affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th ACM STOC, pages
1171–1184. ACM Press, June 2017. 2, 3, 7, 8

CMTV15. Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-bit public-
key encryption via non-malleable codes. In Dodis and Nielsen [DN15], pages 532–560. 1

CSS16. Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. Average-case lower bounds and satisfiability
algorithms for small threshold circuits. In Ran Raz, editor, 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 1:1–1:35.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. 26

CZ14. Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state
tampering. In 55th FOCS, pages 306–315. IEEE Computer Society Press, October 2014. 7

CZ16. Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient functions. In
Wichs and Mansour [WM16], pages 670–683. 1

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust
non-interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–
598. Springer, Heidelberg, August 2001. 12

45

http://eprint.iacr.org/2015/129
http://eprint.iacr.org/2015/129

DKO13. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-source
extractors. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 239–257. Springer, Heidelberg, August 2013. 2, 7

DLSZ15. Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable and updatable
non-malleable codes and their applications. In Dodis and Nielsen [DN15], pages 427–450. 8

DN15. Yevgeniy Dodis and Jesper Buus Nielsen, editors. TCC 2015, Part I, volume 9014 of LNCS. Springer,
Heidelberg, March 2015. 44, 45, 46

DNO17. Nico Döttling, Jesper Buus Nielsen, and Maciej Obremski. Information theoretic continuously non-
malleable codes in the constant split-state model. Cryptology ePrint Archive, Report 2017/357, 2017.
http://eprint.iacr.org/2017/357. 8

DNR04. Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing encryption schemes from decryption
errors. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 342–360. Springer, Heidelberg, May 2004. 4, 11, 22, 23, 24

DPW10. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew Chi-Chih
Yao, editor, ICS 2010, pages 434–452. Tsinghua University Press, January 2010. 1, 2, 7, 8, 47, 48

DSKS17. Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper and lower bounds for leakage-
resilient, locally decodable and updatable non-malleable codes. In Serge Fehr, editor, PKC 2017, Part I,
volume 10174 of LNCS, pages 310–332. Springer, Heidelberg, March 2017. 8

DW08. Ronald De Wolf. A brief introduction to fourier analysis on the boolean cube. Theory of Computing,
Graduate Surveys, 1:1–20, 2008. 5

FHMV17. Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-malleable codes
for space-bounded tampering. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II,
volume 10402 of LNCS, pages 95–126. Springer, Heidelberg, August 2017. 2, 3, 8

FMNV14. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-
malleable codes. In Lindell [Lin14], pages 465–488. 8

FMNV15. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper and leakage
resilient von neumann architecture. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages
579–603. Springer, Heidelberg, March / April 2015. 8

FMVW14. Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 111–128. Springer, Heidelberg, May 2014. 2, 3, 7, 26

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-
extractable snarks. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part II, volume 10402 of Lecture Notes in Computer Science, pages 581–612. Springer, 2017.
27

GPR16. Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments. In Wichs and
Mansour [WM16], pages 1128–1141. 1

H̊as87. Johan H̊astad. Computational limitations of small-depth circuits. 1987. 15
H̊as14. Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM Journal on Computing,

43(5):1699–1708, 2014. 15
IMP12. Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm for ac 0. In

Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 961–972.
Society for Industrial and Applied Mathematics, 2012. 15

JW15. Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes. In Dodis
and Nielsen [DN15], pages 451–480. 8

KKS11. Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable and leaky
memory. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 373–390. Springer,
Heidelberg, August 2011. 8

KLT16. Aggelos Kiayias, Feng-Hao Liu, and Yiannis Tselekounis. Practical non-malleable codes from l-more
extractable hash functions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 16, pages 1317–1328. ACM Press, October 2016. 7, 8

KM16a. Eyal Kushilevitz and Tal Malkin, editors. TCC 2016-A, Part I, volume 9562 of LNCS. Springer,
Heidelberg, January 2016. 45

KM16b. Eyal Kushilevitz and Tal Malkin, editors. TCC 2016-A, Part II, volume 9563 of LNCS. Springer,
Heidelberg, January 2016. 44, 45

46

http://eprint.iacr.org/2017/357

KOS17a. Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state non-malleable codes
with explicit constant rate. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678
of LNCS, pages 344–375. Springer, Heidelberg, November 2017. 2, 7

KOS17b. Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable randomness
encoders and their applications. Cryptology ePrint Archive, Report 2017/1097, 2017. https://eprint.
iacr.org/2017/1097. 2, 7

Li16. Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In Irit Dinur,
editor, 57th FOCS, pages 168–177. IEEE Computer Society Press, October 2016. 2, 7

Lin03. Yehuda Lindell. A simpler construction of cca2-secure public-key encryption under general assumptions.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 241–254. Springer, Heidelberg,
May 2003. 2, 3

Lin14. Yehuda Lindell, editor. TCC 2014, volume 8349 of LNCS. Springer, Heidelberg, February 2014. 45, 46
LL12. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In Reihaneh

Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 517–532. Springer,
Heidelberg, August 2012. 2, 7, 8

NY90. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. 2, 3

OS17. Igor Carboni Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential time.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 665–677. ACM, 2017. 26

Rao07. Anup Rao. An exposition of bourgains 2-source extractor. In Electronic Colloquium on Computational
Complexity (ECCC), volume 14, 2007. 15

Raz16. Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning. CoRR,
abs/1602.05161, 2016. 6, 15, 16

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999. 2, 3, 11, 12, 22

Tal13. Avishay Tal. Properties and applications of boolean function composition. In Robert D. Kleinberg,
editor, ITCS 2013, pages 441–454. ACM, January 2013. 36

Tal17. Avishay Tal. Tight bounds on the fourier spectrum of AC0. In Ryan O’Donnell, editor, 32nd
Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs,
pages 15:1–15:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. 6, 32

Vio14. Emanuele Viola. Extractors for circuit sources. SIAM J. Comput., 43(2):655–672, 2014. 15
WM16. Daniel Wichs and Yishay Mansour, editors. 48th ACM STOC. ACM Press, June 2016. 45, 46

A Standard Definitions and Preliminaries

A.1 Non-Malleability

The following Definitions 20, 21 are the standard definitions of non-malleability and strong non-mallebility,
appropriate for the information theroetic setting (without CRS). These definitions are special cases of the
corresponding Definitions 2, 3, when taking crs to be ⊥ and G to be the set of all functions (namely the
adversary is not restricted, and there’s no CRS). Similarly, Definition 22 corresponds to a special case of
Definition 4 of medium non-malleability that we introduced.

Definition 20 (Non-malleability [DPW10]). Let k be the security parameter, F be some family of
functions. For each function f ∈ F , and m ∈ Σ, define the tampering experiment:

Tamperfm
def
=

{
c← E(m), c̃ := f(c), m̃ := D(c̃).

Output : m̃.

}
,

where the randomness of the experiment comes from the encoding algorithm. We say a coding scheme (E,D)
is non-malleable with respect to F if for each f ∈ F , there exists a PPT simulator Sim such that for any
message m ∈ Σ, we have

47

https://eprint.iacr.org/2017/1097
https://eprint.iacr.org/2017/1097

Tamperfm ≈ IdealSim,m
def
=

{
m̃ ∪ {same∗} ← Simf(·).

Output : m if that is same∗; otherwise m̃.

}
Here the indistinguishability can be either computational or statistical.

Definition 21 (Strong Non-malleability [DPW10]). Let k be the security parameter, F be some family
of functions. For each function f ∈ F , and m ∈ Σ, define the tampering experiment

StrongNMf
m

def
=

{
c← E(m), c̃ := f(c), m̃ := D(c̃)

Output : same∗ if c̃ = c, and m̃ otherwise.

}
The randomness of this experiment comes from the randomness of the encoding algorithm. We say that

a coding scheme (E,D) is strong non-malleable with respect to the function family F if for any m,m′ ∈ Σ
and for each f ∈ F , we have:

{StrongNMf
m}k∈N ≈ {StrongNMf

m′}k∈N
where ≈ can refer to statistical or computational indistinguishability.

Definition 22 (Medium Non-malleability). Let k be the security parameter, F be some family of
functions. Let c ← E(m) and let g(c, c̃, r) be a predicate such that, for every c in the support of E(m)
and every c̃,

Pr[g(c, c̃, r) = 1] ∧ D(c̃; r) 6= m] ≤ negl(n).

For g as above, each function f ∈ F , and m ∈ Σ, define the tampering experiment

MediumNMf
m,g

def
=

{
c← E(m), c̃ := f(c), r ← U`, m̃ := D(c̃; r)

Output : same∗ if g(c, c̃, r) = 1, and m̃ otherwise.

}
The randomness of this experiment comes from the randomness of the encoding algorithm and r (the

random coins od decoding). We say that a coding scheme (E,D) is medium non-malleable with respect to the
function family F if there exists a g as above and for any m,m′ ∈ Σ and for each f ∈ F , we have:

{MediumNMf
m,g}k∈N ≈ {MediumNMf

m′,g}k∈N
where ≈ can refer to statistical or computational indistinguishability.

It is straightforward to check that Medium Non-Malleability implies non-malleability.

48

B Figure to explain MPC in head from section 7.4

0

1

1

1

1

0

0

0

1

1

0

0

1

0

1

1

0

1

P1 P2 P3 P4 P5

sq1

· · ·

sqi

· · ·

sq`

Fig. 17. A pictorial representation of the Prover’s output in the NI Simulatable Proof System Π. Let
` = 5 be the number of parties, and λ be the security parameter. In the q-th iteration, each party Pi for i ∈ [`] has
inputs (wqi , s

q
i). We encode each sqi as sqi ||s

q
i , where sqi is the bit-wise complement of sqi . For example 001 is encoded

as 001100. For each bit of the encoding of sqi , if the bit is 1 then each party Pi places a weak encryption of its view,
viewi, in the corresponding slot (represented by filled-in rectangles of various shades of gray in the figure). Otherwise,
if the bit is 0 then each party places a weak encryption of all 0’s in the corresponding slot, (represented by blank
rectangles in the figure). During verification, the verifier checks in the first step that input s = sq1 ⊕ s

q
2 ⊕ . . .⊕ s

q
` . To

check the consistency of the views, the verifier selects 2 columns (P2 and P4) and 2 rows (sqi and sq`) at random and
does the following: (1) checks that sqi and sq` are consistent with the values read in the first step (2) runs Rec on the
weakly encrypted views and checks that the resulting views are consistent with each other and internally.

49

	Non-Malleable Codes from Average-Case Hardness: AC0, Decision Trees, and Streaming Space-Bounded Tampering

