
An Algebraic Approach to Maliciously Secure Private Set

Intersection

Satrajit Ghosh and Tobias Nilges

Department of Computer Science, Aarhus University, Denmark

Abstract

Private set intersection is an important area of research and has been the focus of many
works over the past decades. It describes the problem of finding an intersection between the
input sets of at least two parties without revealing anything about the input sets apart from
their intersection.

In this paper, we present a new approach to compute the intersection between sets based on
a primitive called Oblivious Linear Function Evaluation (OLE). On an abstract level, we use
this primitive to efficiently add two polynomials in a randomized way while preserving the roots
of the added polynomials. Setting the roots of the input polynomials to be the elements of the
input sets, this directly yields an intersection protocol with optimal asymptotic communication
complexity O(mκ). We highlight that the protocol is information-theoretically secure assuming
OLE.

We also present a natural generalization of the 2-party protocol for the fully malicious multi-
party case. Our protocol does away with expensive (homomorphic) threshold encryption and
zero-knowledge proofs. Instead, we use simple combinatorial techniques to ensure the security.
As a result we get a UC-secure protocol with asymptotically optimal communication complexity
O((n2 +nm)κ), where n is the number of parties, m is the set size and κ the security parameter.
Apart from yielding an asymptotic improvement over previous works, our protocols are also
conceptually simple and require only simple field arithmetic.

Along the way we develop tools that might be of independent interest.

Keywords: Private set intersection, oblivious linear function evaluation, multi-party, UC-security

1 Introduction

Private set intersection (PSI) has been the focus of research for decades and describes the following
basic problem. Two parties, Alice and Bob, each have a set SA and SB, respectively, and want to
find the intersection S∩ = SA∩SB of their sets. This problem is non-trivial if both parties must not
learn anything but the intersection. There are numerous applications for PSI from auctions [NPS99]
over advertising [PSSZ15] to proximity testing [NTL+11].

Over the years several techniques for two-party PSI have been proposed, which can be roughly
placed in four categories: constructions built from specific number-theoretic assumptions [Sha80,

1

MM87, HFH99, DKT10, DT10], using garbled circuits [HEK12, PSSZ15], based on oblivious trans-
fer (OT) [DCW13, PSZ14, OOS17, KKRT16, RR17] and based on oblivious polynomial evaluation
(OPE) [FNP04, HN12, FHNP16].

Some of these techniques translate to the multi-party setting. The first (passively secure) multi-
party PSI protocol was proposed by Freedman et al. [FNP04] based on OPE and later improved
in a series of works [KS05, SS08, CJS12] to achieve full malicious security. However, none of the
works reached better communication efficiency than O(n2mκ).

Hazay and Venkitasubramaniam [HV17] proposed new protocols secure against semi-honest and
fully malicious adversaries. They improve upon the communication efficiency of previous works by
designating a central party that runs a version of the protocol of [FNP04] with all other parties
and aggregates the results.

In a recent work, Kolesnikov et al. [KMP+17] presented a new paradigm for solving the prob-
lem of multi-party PSI from oblivious programmable pseudorandom functions (OPPRF). Their
approach yields very efficient protocols for multi-party PSI, but the construction achieves only
passive security against n− 1 corruptions.

1.1 Our Contribution

We propose a new approach to (multi-party) private set intersection based on oblivious linear
function evaluation (OLE). OLE allows two mutually distrusting parties to evaluate a linear function
ax+ b, where the sender knows a and b, and the receiver knows x. Nothing apart from the result
ax + b is learned by the receiver, and the sender learns nothing about x. Our techniques differ
significantly from previous works and follow a new paradigm which leads to conceptually simple
protocols. This results in significant asymptotic efficiency improvements over previous works in
both communication and computational complexity (cf. Table 1). Our approach is particularly
efficient if all input sets are of similar size.

Concretely, we achieve the following:

• Two-party PSI with communication complexityO(mκ) and computational complexityO(m logm).
The protocol is information-theoretically secure.

• Multi-party PSI with communication complexity O((n2 +nm)κ) and computational complex-
ity O(nm logm) for the central party and O(m logm) for the other parties.

In comparison to previous works which rely heavily on exponentiations in fields or groups, our
protocols require only field addition and multiplication (and symmetric primitives in the case of
MPSI).

Our results may seem surprising in light of the information-theoretic lower bound of O(n2mκ)
in the communication complexity for multi-party PSI in the fully malicious UC setting. We circum-
vent this lower bound by considering a slightly modified ideal functionality, resulting in a UC-secure
solution for multi-party PSI with asymptotically optimal communication overhead. By asymptot-
ically optimal, we mean that our construction matches the optimal bounds in the plain model for
m > n, where n is the number of parties, m is the size of the sets and κ is the security parameter.
All of our protocols work over fields F that are exponential in the size of the security parameter κ.

We believe that our approach provides an interesting alternative to existing solutions and that
the techniques which we developed can find application in other settings as well.

2

Protocol Tools Communication Computation Threshold Security

[KMP+17] OPPRF O(nmκ) O(nκ) n− 1 semi-honest
[HV17] HE O(nmκ) O(nm logm) n− 1 semi-honest

[KS05] OPE, ZK O(n2m2κ) O(n2m+ nm2κ) n− 1 malicious

[CJS12] TE, ZK O(n2mκ) O(n2m+ nmκ) t < n/2 malicious

[HV17] CRS, TE O((n2 + nm logm)κ) O(m2) n− 1 malicious

Ours OLE O((n2 + nm)κ) O(nm logm) n− 1 UC

Table 1: Comparison of multi-party PSI protocols, where n is the number of parties, m the size
of the input set and κ a security parameter. The stated computational cost does not distinguish
between exponentiations and multiplications. Some of the protocols perform better if the sizes of
the input sets differ significantly, or particular domains for inputs are used. The overhead described
here assumes sets of similar size, with κ bit elements.

1.2 Technical Overview

Abstractly, we let both parties encode their input set as a polynomial, such that the roots of the
polynomials correspond to the inputs. This is a standard technique, but usually the parties then use
OPE to obliviously evaluate the polynomials or some form of homomorphic encryption. Instead,
we devise an OLE-based construction to add the two polynomials in an oblivious way, which results
in an intersection polynomial. Now both parties simply evaluate the intersection polynomial on
their input set and check if it evaluates to 0. This construction is information-theoretically secure
in the OLE-hybrid model and requires only simple field operations. Conceptually, we compute the
complete intersection in one step, whereas previous solutions typically build the intersection step by
step. In comparison to the naive OPE-based approach1, our solution directly yields an asymptotic
communication improvement in the input size. Another advantage is that our approach generalizes
to the multi-party setting.

We start with a detailed overview of our constructions and technical challenges.
Oblivious polynomial addition from OLE. Intuitively, OLE is the generalization of OT to

larger fields, i.e. it allows a sender and a receiver to compute a linear function c(x) = ax+ b, where
the sender holds a, b and the receiver inputs x and obtains c. OLE guarantees that the receiver
learns nothing about a, b except for the result c, while the sender learns nothing about x.

Based on this primitive, we define and realize a functionality OPA that allows to add two
polynomials in such a way that the receiver cannot learn the sender’s input polynomial, while the
sender learns nothing about the receiver’s polynomial or the output. We first describe a passively
secure protocol. Concretely, assume that the sender has as input a polynomial a, and the receiver
has a polynomial b, both of degree d. The sender additionally draws a uniformly random polynomial
r of degree d. Both parties point-wise add and multiply their polynomials, i.e. they evaluate their
polynomials over a set of 2d + 1 distinct points α1, . . . , α2d+1, resulting in ai = a(αi), bi = b(αi)
and ri = r(αi) for i ∈ [2d + 1]. Then, for each of 2d + 1 OLEs, the sender inputs ri, ai, while the
receiver inputs bi and thereby obtains ci = ribi + ai. The receiver interpolates the polynomial c
from the 2d + 1 (αi, ci) and outputs it. Since we assume semi-honest behaviour, the functionality
is realized by this protocol.

1
Here we mean an OPE is used for each element of the receiver’s input set. This can be circumvented by clever

hashing strategies, e.g. [FNP04, HV17].

3

The biggest hurdle in achieving active security for the above protocol lies in ensuring non-zero b
and r. In particular, the protocol has to ensure that the inputs b and r are non-zero. Otherwise, e.g.
if b = 0, the receiver could learn a. One might think that it is sufficient to perform a coin-toss and
verify that the output satisfies the supposed relation, i.e. pick a random x, compute a(x), b(x), r(x)
and c(x) and everyone checks if b(x)r(x) + a(x) = c(x) and if b(x), r(x) are non-zero. For r(x) 6= 0,
the check is actually sufficient, because r must have degree at most d, otherwise the reconstruction
fails, and only d points of r can be zero (r = 0 would require 2d + 1 zero inputs). For b 6= 0,
however, just checking for b(x) 6= 0 is not sufficient, because at this point, even if the input b 6= 0,
the receiver can input d zeroes in the OLE, which in combination with the check is sufficient to
learn a completely. We resolve this issue by constructing an enhanced OLE functionality which
ensures that the receiver input is non-zero. We believe that this primitive is of independent interest
and describe it in more detail later in this section.

Two-party PSI from OLE. Let us first describe a straightforward two-party PSI protocol
with one-sided output from the above primitive. Let SA and SB denote the inputs for Alice and
Bob, respectively, where |SP| = m. They compute pA and pB such that pP(γ) = 0 for γ ∈ SP.
Lets say Bob is supposed to get the intersection. Alice picks a uniformly random polynomial rA
of degree m and inputs pA, rA into OPA. Bob inputs pB, obtains p∩ = pA + pBrA and outputs all
γj ∈ SB for which p∩(γj) = 0. Obviously, rA does not remove any of the roots of pB, and therefore
all points γ where pB(γ) = 0 = pA(γ) remain in p∩.

However, as a stepping stone for multi-party PSI, we are more interested in protocols that
provide output to both parties. If we were to use the above protocol and simply announce p∩ to
Alice, then Alice could learn Bob’s input. Therefore we have to take a slightly different approach.
Let uA be an additional random polynomial chosen by Alice. Instead of using her own input in the
OPA, Alice uses rA,uA, which gives sB = uA + pBrA to Bob. Then they run another OPA in the
other direction, i.e. Bob inputs rB,uB and Alice pA. Now, both Alice and Bob have a randomized
“share” of the intersection, namely sA and sB, respectively. Adding sA and sB yields a masked but
correct intersection. We still run into the problem that sending either sB to Alice or sA to Bob
allows the respective party to learn the other party’s input.

Our solution is to simply use the masks u to enforce the addition of the two shares. Let us fix
Alice as the party that combines the result. Bob computes s′B = s′B − uB and sends it to Alice.
Alice computes p∩ = s′B + sA−uA. This way, the only chance to get rid of the blinding polynomial
uB is to add both values. But since each input is additionally randomized via the r polynomials,
Alice cannot subtract her own input from the sum. Since the same also holds for Bob, Alice simply
sends the result to Bob.

The last step is to check if the values that are sent and the intersection polynomial are consistent.
We do this via a simple coin-toss for a random x, and the parties have to evaluate their inputs on
x and can abort if the relation p∩ = pBrA + pArB does not hold, i.e. p∩ is computed incorrectly.
This type of check enforces semi-honest behaviour, and was used previously e.g. in [BFO12].

A note on the MPSI functionality. We show that by slightly modifying the ideal function-
ality for multi-party PSI we get better communication efficiency, without compromising the security
at all. A formal definition is given in Section 6.1. Typically, it is necessary for the simulator to
extract all inputs from the malicious parties, input them into the ideal functionality, and then
continue the simulation with the obtained ideal intersection. In a fully malicious setting, however,
this requires every party to communicate in O(mκ) with every other party—otherwise the input is
information-theoretically undetermined and cannot be extracted—which results in O(n2mκ) overall

4

communication complexity.
The crucial observation here is that in the setting of multi-party PSI, an intermediate intersec-

tion between a single malicious party and all honest parties is sufficient for simulation. This is due
to the fact that inputs by additional malicious parties can only reduce the size of the intersection,
and as long as we observe the additional inputs at some point, we can correctly reduce the inter-
section in the ideal setting before outputting it. On a technical level, we no longer need to extract
all malicious inputs right away to provide a correct simulation of the intersection. Therefore, it is
not necessary for every party to communicate in O(mκ) with every other party. Intuitively, the
intermediate intersection corresponds to the case where all malicious parties have the same input.
We therefore argue that the security of this modified setting is identical to standard MPSI up to
input substitution of the adversary.

Multi-party PSI. The multi-party protocol is a direct generalization of the two-party protocol,
with some small adjustments. We consider a network with a star topology, similar to the recent
result of [HV17]. One party is set to be the central party, and all other parties (mainly) interact
with this central party to compute the result. The main idea here is to delegate most of the work
to the central party, which in turn allows to reduce the overall communication complexity. Since
no party is supposed to get any intermediate intersections, we basically let each party create an
additive sharing of their intersection with the central party.

First, consider the following (incorrect) toy example. Let each party Pi execute the two-party
PSI as described above with P0, up to the point where both parties have shares siP0

, s′Pi . All

parties Pi send their shares s′Pi to P0, who adds all polynomials and broadcasts the output. By
design of the protocols and the inputs, this yields the intersection of all parties. Further, the
communication complexity is in O(nmκ), which is optimal. However, this protocol also allows P0

to learn all intermediate intersections with the other parties, which is not allowed. Previously,
all maliciously secure multi-party PSI protocols used threshold encryption to solve this problem,
and indeed it might be possible to use a similar approach to ensure active security for the above
protocol. For example, a homomorphic threshold encryption would allow to add all these shares
homomorphically, without leaking the intermediate intersections. But threshold encryption incurs
a significant computational overhead (and increases the complexity of the protocol and its analysis)
which we are unwilling to pay.

Instead, we propose a new solution which is conceptually very simple. We add another layer
of masking on the shares sPi , which forces P0 to add all intermediate shares—at least those of the
honest parties. For this we have to ensure that the communication complexity does not increase,
so all parties exchange seeds (instead of sending random polynomials directly), which are used
in a PRG to mask the intermediate intersections. This technique is somewhat reminiscent of the
pseudorandom secret-sharing technique by Cramer et al. [CDI05]. We emphasize that we do not
need any public key operations.

Concretely, all parties exchange a random seed and use it to compute a random polynomial
in such a way that every pair of parties Pi, Pj holds two polynomials vij ,vji with vij + vji = 0.

Then, instead of sending s′Pi , each party Pi computes s′′Pi = s′Pi +
∑

vij and sends this value. If

P0 obtains this value, it has to add the values s′′Pi of all parties to remove the masks, otherwise s′′Pi
will be uniformly random.

Finally, to ensure that the central party actually computed the aggregation, we add a check
similar to two-pary PSI, where the relation, i.e. computing the sum, is verified by evaluating the
inputs on a random value x which is obtained by a multi-party coin-toss.

5

1.3 A New Flavour of OLE

One of the main technical challenges in constructing our protocols is to ensure a non-zero input
into the OLE functionality by the receiver. Recall that an OLE computes a linear function ax+ b.
We define an enhanced OLE functionality (cf. Section 3) which ensures that x 6= 0, otherwise
the output is uniformly random. Our protocol which realises this functionality makes only two
black-box calls to a normal OLE and is otherwise purely algebraic.

Before we describe the solution, let us start with a simple observation. If the receiver inputs
x = 0, an OLE returns the value b. Therefore, it is critical that the receiver cannot force the
protocol to output b. One way to achieve this is by forcing the receiver to multiply b with some
value via an OLE, lets call it x̂. Concretely, we can use an OLE where the receiver inputs x̂ and
a random s, while the sender inputs b and obtains x̂b + s. In this way, if x̂ = 0, then b cannot be
output. However, we also require that the output of the enhanced OLE is still ax+ b for non-zero
inputs x. If we could use a+ bx̂, 0 as input for another OLE, we would get ax+ bx̂x, which means
that if x̂ = x−1, we actually get the correct output. This looks like a step in the right direction,
since for x = 0 or x̂ = 0, the output would not be b. On the other hand, the receiver can now force
the OLE to output a by choosing x̂ = 0 and x = 1, so maybe we only shifted the problem.

The final trick lies in masking the output such that it is uniform for inconsistent inputs x, x̂. We
do this by splitting b into two shares that only add to b if x · x̂ = 1. The complete protocol looks like
this: the receiver plays the sender for one OLE with input x−1, s, and the sender inputs a random u
to obtain t = x−1u+s. Then the sender plays the sender for the second OLE and inputs t+a, b−u,
while the receiver inputs x and obtains c′ = (t+a)x+b−u = ux−1x+sx+ax+b−u = ax+b+sx,
from which the receiver can subtract sx to get the result. A cheating receiver with inconsistent
input x∗, x̂∗ will get ax+ b+ u(x∗x̂∗ − 1) as an output, which is uniform over the choice of u.

1.4 Structure of the Paper

We start with the definition and construction of the enhanced OLE functionality in Section 3.
In Section 4 we define an ideal functionality for the addition of polynomials and describe a protocol
that realizes this functionality black-box from OLE. Based on this primitive, we first provide a
two-party PSI protocol in Section 5 and later a multi-party PSI protocol in Section 6.

2 Preliminaries

We assume |F| ∈ θ(2κ), where κ is a statistical security parameter. Typically, x ∈ F denotes a field
element, while p ∈ F[X] denotes a polynomial. Let M0(p) denote the zero-set for p ∈ F[X], i.e.
∀x ∈M0(p),p(x) = 0.

In the proofs, x̂ denotes an element either extracted or simulated by the simulator, while x∗

denotes an element sent by the adversary.
We slightly abuse notation and denote by v = PRGd(s) the deterministic pseudorandom poly-

nomial of degree d derived from evaluating PRG on seed s.

2.1 Security Model

We prove our protocol in the Universal Composability (UC) framework of Canetti [Can01]. In
the framework, security of a protocol is shown by comparing a real protocol π in the real world

6

with an ideal functionality F in the ideal world. F is supposed to accurately describe the security
requirements of the protocol and is secure per definition. An environment Z is plugged either to the
real protocol or the ideal protocol and has to distinguish the two cases. For this, the environment
can corrupt parties. To ensure security, there has to exist a simulator in the ideal world that
produces a protocol transcript indistinguishable from the real protocol, even if the environment
corrupts a party. We say π UC-realises F if for all adversaries A in the real world there exists a
simulator S in the ideal world such that all environments Z cannot distinguish the transcripts of
the parties’ outputs.

Oblivious Linear Function Evaluation. Oblivious Linear Function Evaluation (OLE) is a
special case of Oblivious Polynomial Evaluation (OPE). In contrast to OPE, only linear functions
can be obliviously evaluated. The sender has as input two values a, b ∈ F that determine a linear
function f(x) = a · x+ b over F, and the receiver gets to obliviously evaluate the linear function on
input x ∈ F. The receiver will learn only f(x), and the sender learns nothing at all. Consider the
ideal functionality in Figure 1.

Functionality FOLE

1. Upon receiving a message (inputS, (a, b)) from the sender with a, b ∈ F, verify that there is no stored
tuple, else ignore that message. Store a and b and send a message (input) to A.

2. Upon receiving a message (inputR, x) from the receiver with x ∈ F, verify that there is no stored
tuple, else ignore that message. Store x and send a message (input) to A.

3. Upon receiving a message (deliver,S) from A, check if both (a, b) and x are stored, else ignore that
message. Send (delivered) to the sender.

4. Upon receiving a message (deliver,R) from A, check if both (a, b) and x are stored, else ignore that
message. Set y = a · x+ b and send (output, y) to the receiver.

Figure 1: Ideal functionality for oblivious linear function evaluation.

There are several implicit and explicit constructions of OLE based on a variety of assumptions,
e.g. [DKMQ12, DPSZ12, KOS16, GNN17].

2.2 Non-malleable Commitments

Roughly, the setting of concurrent non-malleable commitments is as follows. An adversary MIM
interacts in a left session with polynomially many committers, while simultaneously interacting with
receivers in m right sessions. We denote by MIMm

COM(v, z) the distribution of all values committed
by MIM in the right sessions, and Simm

COM(1κ, z) the joint distribution of all values committed by
the simulator.

Definition 1. A commitment scheme {COM.Commit,COM.Open} is said to be m-bounded-concurrent
non-malleable if for every PPT MIM, there exists a PPT simulator S such that the following en-
sembles are computationally indistinguishable:

{MIMm
COM({v}, z)}κ∈N,v∈{0,1}κ,z∈{0,1}∗ and {Simm

COM(1κ, z)}κ∈N,v∈{0,1}κ,z∈{0,1}∗

7

2.3 Commitment from FOLE

Let us briefly sketch how to obtain an efficient multiple commitment protocol from FOLE. If we
simply use the message m and a random field element r as inputs for FOLE, while the receiver
queries with a random x, we get a UC-secure commitment. Intuitively, the commitment can be
simulated because the simulator knows x and can adjust r, and it can be extracted because the
simulator learns the message as an input.

The above commitment protocol, however, does not realise FmCOM. In order to do so, we have
to include the id of the sender pid to prevent man-in-the-middle attacks, in particular copying of
the commitment. Interestingly, this poses a difficulty in the FOLE-hybrid setting, since our message
space is limited. So either we pick a larger field F′ such that we can embed in m′ ∈ F′ both m ∈ F
and pid, or we directly construct a commitment which has a slightly larger message space. We take
the second approach in Figure 2.

Protocol ΠmCOM

Let pid ∈ F denote the ID of party Pi.

Commit Phase

1. Party Pi (Input m ∈ F): Choose a random r1, r2 ∈ F. Input (inputS, (m, r1)) into F (0)
OLE and

(inputS, (m · pid, r2)) into F (1)
OLE.

2. Party Pj : Choose random x, y ∈ F. Input (inputR, x) into F (0)
OLE and (inputR, y) into F (1)

OLE to
obtain q1, q2.

Unveil Phase

3. Party Pi: Send (m, r1, r2) to Pj .

4. Party Pj : Accept if q1 = m · x+ r1 and q2 = m · pid · y + r2, abort otherwise.

Figure 2: ΠmCOM in the FOLE-hybrid model.

Lemma 2. The protocol ΠmCOM UC-realizes FmCOM in the FOLE-hybrid model.

Sketch. Corrupted Pi. The simulator against the committing party observes m̂, m̂′ and also r1, r2.
It aborts if γ = m̂′/m̂ 6= pid for Pi. Otherwise, it sends (commit, Pi, Pj , m̂) to FmCOM.

Let (α, β1, β2) denote the unveil. This simulation is indistinguishable from the real protocol,
since the check of the unveil will always fail if α 6= m̂. Let σ denote the outcome of the check from
A’s view.

σ = αx+ β1 − q1 = (α− m̂)x+ β1 − r1.

Thus, from A’s view, σ is uniform over the choice of x. We now know that α = m̂. If γ 6= pid,

σ′ = m̂ · pidy + β2 − q2 = (m̂ · pid− m̂ · γ)y + β2 − r2.

In this case, σ′ is uniform over the choice of y and the protocol would abort. In conclusion, the
simulator extracts the right input and provides an indistinguishable simulation of the real protocol.

8

Corrupted Pj. The simulator against the receiving party observes the challenges x̂, ŷ and
simulates the commit phase with a random input ρ using randomness r1, r2. Upon receiving a
message (unveil, m̂) in the ideal setting, the simulator sets r̂1 = q̂1 − m̂x̂ and r̂2 = q̂1 − m̂pidx̂.
Since q1 and q2 are uniform over the choice of r1 and r2, respectively, the simulation is identically
distributed.

2.4 Technical Lemmata

We state several lemmata which are used to show the correctness of our PSI protocols later on.

Lemma 3. Let p,q ∈ F[X] be non-trivial polynomials. Then,

M0(p) ∩M0(p + q) =M0(p) ∩M0(q) =M0(q) ∩M0(p + q).

This lemma shows that the sum of two polynomials contains the intersection with respect to
the zero-sets of both polynomials.

Proof. Let M∩ =M0(p) ∩M0(q).
“ ⊇′′: ∀x ∈M∩: p(x) = q(x) = 0. But p(x) + q(x) = 0, so x ∈M0(p + q).
“ ⊆′′: It remains to show that there is no x such that x ∈ M0(p) ∩M0(p + q) but x /∈ M∩,

i.e. M0(p) ∩ (M0(p + q) \M∩) = ∅. Similarly, M0(q) ∩ (M0(p + q) \M∩) = ∅.
Assume for the sake of contradiction that M0(p) ∩ (M0(p + q) \M∩) 6= ∅. Let x ∈ M0(p) ∩

(M0(p + q) \ M∩). Then, p(x) = 0, but q(x) 6= 0, otherwise x ∈ M∩. But this means that
p(x) + q(x) 6= 0, i.e. x /∈ M0(p + q). This contradicts our assumption, and we get that M0(p) ∩
(M0(p + q) \M∩) = ∅.

Symmetrically, we get that M0(q) ∩ (M0(p + q) \M∩) = ∅. The claim follows.

Lemma 4. Let d ∈ poly(log |F|). Let p ∈ F[X], deg(p) = d be a fixed but unknown non-trivial
polynomial. Further let q1, . . . ,ql ∈ F[X] with deg(qi) ≤ d.

Pr
p∈F[X]

[(M0(p) ∩M0(
l∑

i=1

qi)) 6= (M0(p) ∩
l⋂

i=1

M0(qi))] ≤ negl(|F|).

This lemma is basically an extension of Lemma 3 and shows that the sum of several polynomials
does not create new elements in the intersection unless the supposedly unknown zero-set of p can
be guessed with non-negligible probability.

Proof. We first observe that
⋂l
i=1M0(qi) ⊆ M0(

∑l
i=1 qi): it holds that for all x ∈

⋂l
i=1M0(qi),

qi(x) = 0 for i ∈ [l]. It follows that
∑l

i=1 qi(x) = 0, i.e. x ∈M0(
∑l

i=1 qi).
Now, assume for the sake of contradiction that

(M0(p) ∩M0(

l∑
i=1

qi)) 6= (M0(p) ∩
l⋂

i=1

M0(qi))

with non-negligible probability ε. Let M =M0(
∑l

i=1 qi) \
⋂l
i=1M0(qi).

Then with probability at least ε, the set M is not empty. Further, we can bound |M| ≤ d.
Pick a random x ∈ M. It holds that Pr[x ∈ M0(p)] ≥ ε/d, which is non-negligible. But since

9

p is unknown, so is M0(p), and the probability that we can find x, so that x ∈ M0(p) is upper
bounded by d/|F| over p.

This is a contradiction and the claim follows.

Lemma 5. Let d, d′ ∈ poly(log |F|). Let r ∈ F[X], deg(r) = d be a uniformly random polynomial.
For all non-trivial p ∈ F[X], deg(p) = d′,

Pr
r∈F[X]

[(M0(r) ∩M0(p)) 6= ∅] ≤ negl(|F|).

This lemma establishes that the intersection of a random polynomial with another polynomial
is empty except with negligible probability.

Proof. This follows from the fundamental theorem of algebra, which states that a polynomial of
degree d evaluates to 0 in a random point only with probability d/|F|.

Since r (and therefore all x ∈M0(r)) is uniformly random and |M0(r)| = d, while |M0(p)| = d′,
we get that

Pr[(M0(r) ∩M0(p)) 6= ∅] ≤ dd′/|F|.

Lemma 6. Let d ∈ poly(log |F|). Let p ∈ F[X], deg(p) = d be a fixed but unknown non-trivial
polynomial. Further let r ∈ F[X], deg(r) = d be a uniformly random polynomial. For all non-trivial
q, s ∈ F[X] with deg(q) ≤ d and deg(s) ≤ d,

Pr
r∈F[X]

[(M0(p) ∩M0(ps + rq)) 6= (M0(p) ∩M0(q))] ≤ negl(|F|).

This lemma shows that the multiplication of (possibly maliciously chosen) polynomials does
not affect the intersection except with negligible probability, if one random polynomial is used.

Proof.

M0(p) ∩M0(ps + rq)
Lemma 3

= M0(p) ∩ (M0(ps) ∩M0(qr))

= M0(p) ∩
(
(M0(p) ∪M0(s)) ∩ (M0(q) ∪M0(r))

)
= M0(p) ∩

(
(M0(p) ∩M0(q)) ∪ (M0(p) ∩M0(r)︸ ︷︷ ︸

T1

)

∪ (M0(s) ∩M0(q)︸ ︷︷ ︸
⊆M0(q)

) ∪ (M0(s) ∩M0(r)︸ ︷︷ ︸
T2

)
)

From Lemma 5 it follows that Pr[T1 6= ∅] ≤ d
2/|F|, and also Pr[T2 6= ∅] ≤ d

2/|F|. Since

M0(p) ∩
(
(M0(p) ∩M0(q)) ∪M0(q)

)
=M0(p) ∩M0(q),

we get
Pr

r∈F[X]
[(M0(p) ∩M0(ps + rq)) 6= (M0(p) ∩M0(q))] ≤ 2d2/|F|.

10

3 Enhanced Oblivious Linear Function Evaluation FOLE+

In this section we present an enhanced version of the OLE functionality. The standard OLE
functionality allows the sender to input a, b, while the receiver inputs x and obtains ax+ b. For our
applications, we do not want the receiver to be able to learn b, i.e. it has to hold that x 6= 0. Our
approach is therefore to modify the OLE functionality in such a way that it outputs a random field
element upon receiving an input x = 0 (cf. Figure 3). A different approach might be to output a
special abort symbol or 0, but crucially the output must not satisfy the relation ax+ b. This is a
particularly useful feature, as we will show in the next section.

F
OLE

+

1. Upon receiving a message (inputS, (a, b)) from the sender with a, b ∈ F, verify that there is no stored
tuple, else ignore that message. Otherwise, store (a, b) and send (input) to A.

2. Upon receiving a message (inputR, x) from the receiver with x ∈ F, verify that there is no stored
value, else ignore that message. Otherwise, store x and send (input) to A.

3. Upon receiving a message (deliver) from A, check if both (a, b) and x are stored, else ignore that
message. If x 6= 0, set c = ax+ b, otherwise pick a uniformly random c ∈ F and send (output, c) to
the receiver. Ignore all further messages.

Figure 3: Ideal functionality for the enhanced oblivious linear function evaluation.

While it might be possible to modify existing OLE protocols in such a way that a non-zero input
is guaranteed, we instead opt to build a protocol black-box from the standard OLE functionality
FOLE.

Let us begin with a short overview of our construction. Our main goal is to prevent leakage
of the value b on input x = 0. One way to ensure that is by using an OLE and computing xb.
However, the result of the enhanced OLE should still be ax+ b for x 6= 0. Thus, we have to remove
the connection of x and b with a second OLE, while at the same time adding another connection
with a. The key idea is to force the receiver to use x−1 and x as his inputs, thus cancelling the
relation between x and b if the inputs were chosen correctly.

Concretely, one first attempt might be to execute an OLE from receiver to sender, where the
receiver inputs x−1 and a random value s. The sender inputs b and obtains bx−1 + s, then adds a
and uses (bx−1 +a+s, 0) for the second OLE. The receiver inputs x and thereby obtains ax+b+sx
from which he can subtract sx (because he knows both s and x) and output c = ax+ b.

This leaves a small problem: the receiver can still meddle with his inputs, and particularly by
first using 0 instead of x−1 and then 1 instead of x the protocol returns a. This obviously should
not be allowed. Therefore, we make a small modification to the above described protocol. Instead
of sending b to the first OLE, the sender picks a uniformly random u and obtains ux−1 + s. In
order to still get the correct result, the senders input into the second OLE has to be changed to
(ux−1 + a+ s, b− u). If the receiver cheats with his inputs, the term u will completely randomize
the output, since c = ax + b + uxx−1 − u + sx. The formal description of the protocol is given
in Figure 4.

Lemma 7. Π
OLE

+ unconditionally UC-realizes F
OLE

+ in the FOLE-hybrid model.

Proof. The simulator against a corrupted sender simulates both instances of FOLE. Let α1 be the

11

Π
OLE

+

1. Receiver (Input x ∈ F): Pick s ∈ F and send (inputS, (x−1, s)) to the first FOLE.

2. Sender (Input a, b ∈ F): Pick u ∈ F uniformly at random and send (inputR, u) to the first FOLE to
learn t = ux−1 + s. Send (inputS, (t+ a, b− u)) to the second FOLE.

3. Receiver: Send (inputR, x) to the second FOLE and obtain c = ax+ b+ sx. Output c− sx.

Figure 4: Protocol that realizes F
OLE

+ in the FOLE-hybrid model.

sender’s input in the first OLE, and (α2, α3) be the inputs into the second OLE. The simulator
sets b̂ = α1 + α3 and â = α2 − t̂, where t̂ is chosen as the uniformly random output to AS of the
first OLE. The simulator simply inputs (inputS, (â, b̂)) into F

OLE
+ . Let us briefly argue that this

simulation is indistinguishable from a real protocol run. The value t̂ is indistinguishable from a
valid t, since the receiver basically uses a one-time-pad s to mask the multiplication. Therefore,
the sender can only change his inputs into the OLEs. Since his inputs uniquely determine both â
and b̂, the extraction by the simulator is correct and the simulation is indistinguishable from a real
protocol run.

Against a corrupted receiver, the simulator simulates the two instance of FOLE and obtains
the receiver’s inputs (ξ1, ξ3) and ξ2. If ξ1 · ξ2 = 1, the simulator sets x̂ = ξ2, sends (inputR, x̂)
to F

OLE
+ and receives (output, c). It forwards c′ = c + ξ2ξ3 to AR. If ξ1 · ξ2 6= 1, the simulator

sends (inputR, 0) to F
OLE

+ and forwards the output c to the receiver. It remains to argue that this
simulation is indistinguishable from the real protocol. From A’s view, the output c is determined
as

c = uξ1ξ2 + aξ2 + b− u+ ξ2ξ3 = aξ2 + b+ u(ξ1ξ2 − 1) + ξ2ξ3.

We can ignore the last term, since it is known to A. If ξ1ξ2 6= 1, then u(ξ1ξ2 − 1) does not vanish
and the result will be uniform over the choice of u. Thus, by using ξ2 as the correct input otherwise,
we extract the correct value and the simulation is indistinguishable from the real protocol.

4 Randomized Polynomial Addition from OLE

In this section we will define and construct our principal tool which allows the addition of two
polynomials in an oblivious way. Concretely, we have two parties, each with a polynomial of degree
d as input, and the goal is that one party obtains the sum of these two polynomials such that it
cannot learn the other party’s polynomial. We want to achieve this privacy property by using a
randomization polynomial that prevents the receiving party from simply subtracting its input from
the result. This functionality is defined in Figure 5.

Notice that we have some additional requirements regarding the inputs of the parties. First,
the degree of the inputs has to be checked, but the functionality also makes sure that the receiver
does not input a 0 polynomial, because otherwise he might learn the input of the sender.

4.1 Passively Secure Protocol for FOPA

It is instructive to first consider a passively secure protocol. In the semi-honest case, both sender
and receiver evaluate their input polynomials on a set of distinct points P = {α1, . . . , α2d+1},

12

FOPA

Implicitly parameterized by d signifying the maximal input degree.

1. Upon receiving a message (inputS, (a, r)) from the sender where a, r ∈ F[X], check whether

• r 6= 0

• deg(r) ≤ d and deg(a) = 2d OR deg(r) = d and deg(a) ≤ 2d

and ignore that message if not. Store (a, r) and send (input) to A.

2. Upon receiving a message (inputR,b) from the receiver where b ∈ F[X], check whether deg(b) ≤ d
and b 6= 0. If not, ignore that message. Otherwise, retrieve a, r, compute s = r · b + a and send
(res, s) to the receiver. Ignore all further messages.

Figure 5: Ideal functionality that allows to obliviously compute an addition of polynomials.

where d is the degree of the input polynomials. The sender additionally picks a random polynomial
r ∈ F[X] of degree d and also evaluates it on P.

Instead of using OLE in the “traditional” sense, i.e. instead of computing ab+ r where r blinds
the multiplication of the polynomials, we basically compute rb + a. This means that the sender
randomizes the polynomial of the receiver, and then adds his own polynomial. This prevents the
receiver from simply subtracting his input polynomial and learning a. In a little more detail, sender
and receiver use 2d + 1 OLEs to add the polynomials as follows: for each i ∈ [2d + 1], the sender
inputs (ri, ai) in OLE i, while the receiver inputs bi and obtains si = ribi+ai. He then interpolates
the resulting polynomial s of degree 2d using the 2d+ 1 values si. The above protocol is described
in Figure 6.

Due to the security guarantees of OLE, the sender learns nothing about the result, while the
receiver’s input is randomized by r, i.e. he is not able to reconstruct a.

Πsh
OPA

Let P = {α1, . . . , α2d+1}, αi ∈ F be a set of distinct points.

1. Sender (Input a ∈ F[X], deg(a) = d): Pick r ∈ F[X] of degree d uniformly at random. Evaluate a, r

on P to obtain (ai, ri), i ∈ [2d+ 1]. Input (ri, ai) into F (i)
OLE.

2. Receiver (Input b ∈ F[X], deg(b) = d): Evaluate b on P and obtain bi, i ∈ [2d + 1]. Input bi into

F (i)
OLE and receive si = ribi + ai. Reconstruct s from the si and output s

Figure 6: Protocol that realizes FOPA in the FOLE-hybrid model with passive security.

Lemma 8. Πsh
OPA UC-realizes FOPA with passive security in the FOLE-hybrid model.

Sketch. Since both parties provide inputs according to the protocol, it is ensured that the input
polynomials have the correct degrees and b and r are non-zero. Given the inputs of the parties,
we can clearly provide a perfect simulation of the protocol by simulating the OLEs. It remains to
argue that bi 6= 0 in Πsh

OPA for honest inputs, since otherwise the receiver can learn the sender’s
input. This follows from the fundamental theorem of algebra: we evaluate b in 2d + 1 distinct

13

points independent of b, and b has exactly d roots. The probability that even a single root is
contained in P is therefore (2d+ 1) · d/|F|, which is negligible in |F|.

4.2 Actively Secure Protocol for FOPA

In going from passive to active security, we have to ensure that the inputs of the parties are correct.
Here, the main difficulty obviously lies in checking for b = 0. In fact, since FOPA does not even
leak a single point ai we have to make sure that all bi 6= 0. However, this can easily be achieved by
using F

OLE
+ instead of FOLE. We also have to verify that the inputs are well-formed via a simple

polynomial check. For a more detailed overview we refer the reader to the introduction.
Adding the above described steps to the passively secure protocol is sufficient to achieve active

security. The complete actively secure protocol is shown in Figure 7.

ΠOPA

Let P = {α1, . . . , α2d+1}, αi ∈ F be a set of distinct points.

1. Sender (Input a, r ∈ F[X], deg(a) ≤ 2d, deg(r) = d): Evaluate a, r on P to obtain (ai, ri), i ∈ [2d+1].

Input (ri, ai) into F (i)

OLE
+ .

2. Receiver (Input b ∈ F[X], deg(b) ≤ d): Evaluate b on P and obtain bi, i ∈ [2d + 1]. Input bi into

F (i)

OLE
+ and receive si = ai + bi · ri. Reconstruct s from the si and check if deg(s) = 2d, otherwise

abort.

3. Sender: Pick a random xS ∈ F and send it to the receiver.

4. Receiver: Compute b(xS), s(xS) and pick a random xR ∈ F. Send (b(xS), s(xS), xR) to the sender.

5. Sender: If s(xS) 6= a(xS) + b(xS) · r(xS), abort. Send (a(xR), r(xR)) to the receiver.

6. Receiver: If s(xR) 6= a(xR) + b(xR) · r(xR) or r(xR) = 0 or a(xR) = 0, abort, otherwise output s.

Figure 7: Protocol that realizes FOPA in the F
OLE

+-hybrid model.

Lemma 9. ΠOPA unconditionally UC-realizes FOPA in the F
OLE

+-hybrid model.

Proof. Corrupted Sender. The simulator SS against a corrupted sender proceeds as follows. It

simulates F (i)

OLE
+ and thereby obtains (r∗i , a

∗
i) for all i ∈ [2d+ 1]. From these values, the simulator

reconstructs r̂ and â. It aborts in Step 6 if deg(r̂) > d or deg(â) > 2d. It also aborts if â or r̂ are
zero, and otherwise sends (inputS, (â, r̂)) to FOPA.

The extraction of the corrupted sender’s inputs is correct if his inputs r∗ corresponds to a
polynomial of degree d and a∗ corresponds to a polynomial of degree 2d. Thus, the only possibility
for an environment to distinguish between the simulation and the real protocol is by succeeding
in answering the check while using a malformed input, i.e. a polynomial of incorrect degree or
0-polynomials. If the polynomials have degree greater than d and 2d, respectively, the resulting
polynomial s has degree 2d + 1 instead of 2d, i.e. the receiver cannot reconstruct the result from
2d + 1 points. Since the sender learns nothing about the receiver’s inputs, the thus incorrectly
reconstructed polynomial will be uniformly random from his point of view and the probability that
his response to the challenge is correct is 1/|F|. Also, both â and r̂ have to be non-zero, because
in each case the polynomials are evaluated in 2d + 1 points, and it requires 2d + 1 zeros as ai, ri

14

to get a 0 polynomial. But since both a, r have degree at most 2d, there are at most 2d roots of
these polynomials. Therefore, in order to pass the check, a(x) and b(x) would need to be 0, which
is also checked for.

Corrupted Receiver. The simulator SR against a corrupted receiver simulates F (i)

OLE
+ and

obtains b∗i for all i ∈ [2d+ 1]. It reconstructs b̂ and aborts the check in Step 5 if deg(b̂) > d. The
simulator sends (inputR, b̂) to FOPA and receives (res, ŝ). It evaluates ŝ on P and returns si for
the corresponding OLEs. SR simulates the rest according to the protocol.

Clearly, if the corrupted receiver AR inputs a degree d polynomial, the simulator will extract
the correct polynomial. In order to distinguish the simulation from the real protocol, the adversary
can either input 0 in an OLE or has to input a polynomial of higher degree, while still passing

the check. In the first case, assume w.l.o.g. that AR cheats in F (j)

OLE
+ for some j. This means AR

receives a value ŝi, which is uniformly random. This means that only with probability 1/|F| will
ŝi satisfy the relation rb + a and the check will fail. In the second case, the resulting polynomial
would be of degree 2d+ 1, while the receiver only gets 2d+ 1 points of the polynomial. Therefore
the real polynomial is underdetermined and A can only guess the correct value ŝ(x), i.e. the check
will fail with overwhelming probability.

Remark. We use the abstraction of FOPA to modularize the construction of our PSI protocols. For
practical purposes it is possible to remove the check in ΠOPA, since this check only ensures that
the inputs and output of the protocol are well-formed polynomials and this can also be checked
directly in the PSI protocols.

5 Maliciously Secure Two-party PSI

In this section we provide a maliciously secure two-party PSI protocol with output for both parties,
i.e. we realize FPSI as described in Figure 8.

FPSI

1. Upon receiving a message (input, P, SP) from party P ∈ {A,B}, store the set SP . Once all inputs
are given, set S∩ = SA ∩ SB and send (output, S∩) to A.

2. Upon receiving a message (deliver) from A, send (output, S∩) to the honest party.

Figure 8: Ideal functionality FPSI for two-party PSI.

We briefly sketch the protocol in the following; a more detailed overview can be found in the
introduction. First, Alice and Bob simply transform their input sets into polynomials. Then, both
compute a randomized share of the intersection via our previously defined OPA in such a way
that Alice can send her share to Bob without him being able to learn her input. This can be
achieved by adding a simple mask to the intermediate share. Bob adds both shares and sends the
output to Alice. The protocol only requires two OPA and a simple check which ensures semi-honest
behaviour, and no computational primitives. A formal description is given in Figure 9.

Theorem 1. The protocol Π2PSI UC-realises FPSI in the FOPA-hybrid model with communication
complexity O(mκ).

15

Π2PSI

Let m = maxi |Si|.

Computation of Intersection

1. Alice (Input SA): Compute a polynomial pA of degree m such that pA(γj) = 0 for all γj ∈ SA.
Generate a random polynomial rA of degree m and a random polynomial uA of degree 2m.

• Input rA,uA into F (1)
OPA.

• Input pA into F (2)
OPA and obtain sA = pArB + uB.

• Set s′A = sA − uA and send it to Bob.

2. PB (Input SB): Compute a polynomial pB of degree m such that pB(γj) = 0 for all γj ∈ SB. Generate
a random polynomial rB of degree m and a random polynomial uB of degree 2m.

• Input rB,uB into F (2)
OPA.

• Input pB into F (1)
OPA and obtain sB = pBrA + uA.

• Upon receiving s′A, compute p∩ = s′A + sB − uB and send it to Alice.

Output Verification

3. Alice: Pick a random xA ∈ F and send it to Bob.

4. Bob: Set αB = pB(xA) and βB = rB(xA). Pick a random xB ∈ F and send (xB, αB, βB) to Alice.

5. Alice: Check if pA(xA) ·βB +αB ·rA(xA) = p∩(xA), otherwise abort. For each γj ∈ SA: If p∩(γj) = 0,
add γj to S∩. Send αA = pA(xB) and βA = rA(xB) to Bob. Output S∩.

6. Bob: Check if αA · rB(xB) + pB(xB) ·βA = p∩(xB), otherwise abort. For each γj ∈ SB: If p∩(γj) = 0,
add γj to S∩. Output S∩.

Figure 9: Protocol Π2PSI UC-realises FPSI in the FOPA-hybrid model.

Proof. Corrupted Alice. We show the indistinguishability of the simulation of SA (cf. Figure 10).
The simulator extracts Alice’s inputs and then checks for any deviating behaviour. If such behaviour
is detected, it aborts, even if the protocol would succeed. Proving indistinguishability of the
simulation shows that the check in the protocol basically enforces semi-honest behaviour by Alice,
up to input substitution.

Consider the following series of hybrid games.

Hybrid 0: Real
AA
Π2PSI

.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA, learns all inputs and aborts if
α∗A 6= p̂A(x) or β∗A 6= r̂A(x), but the check is passed.

Let α∗A = αA + e be AA’s check value. Then the check in Step 6 will fail with overwhelming
probability. Let σ denote the outcome of the check. If AA behaves honestly, then

σ = αA · rB(x) + pB(x) · βA − p∩(x) = 0.

16

Simulator SA

1. Extract the inputs p̂A, r̂A, ûA by simulating FOPA.

2. Find the roots γ̂1, . . . , γ̂m of p̂A and thereby the set ŜA = {γ̂1, . . . , γ̂m}.

3. Send (input,A, ŜA) to FPSI.

4. Upon receiving (output, Ŝ∩) from FPSI, pick a random degree m polynomial p̂B such that p̂B(γ) = 0
for all γ ∈ Ŝ∩.

5. Use p̂B as input for simulating the FOPA together with random polynomials r̂B and ûB, i.e. keep
ŝB = p̂B · r̂A + ûA and send ŝA = p̂A · r̂B + ûB to A.

6. Simulate the rest according to Π2PSI, but abort in Step 6, if

s′∗A + ûA − ûB 6= p̂A · r̂B

or αA 6= p̂A(x) or βA 6= r̂A(x), even if the check would pass.

Figure 10: Simulator SA against a corrupted Alice.

Using α∗A, however, we get

σ′ = (αA + e) · rB(x) + pB(x) · βA − p∩(x) = e · rB(x) 6= const.

This means that the outcome of the check is uniformly random from AA’s view over the choice
of rB (or pB for β∗A 6= rB(x)). Therefore, the check will fail except with probability 1/|F| and
Hybrids 0 and 1 are statistically close.

Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 6 in Figure 10.

An environment distinguishing Hybrids 1 and 2 must manage to send s′∗A such that

s′∗A + ûA − ûB 6= p̂A · r̂B
while passing the check in Step 6 with non-negligible probability.

Let f = s′∗A + ûA − ûB − p̂A · r̂B. We already know that f(x) = 0, otherwise we have
α∗A = αA+ f(x) 6= αA (or an invalid β∗A), and the check fails. But since x is uniformly random,
the case that f(x) = 0 happens only with probability m/|F|, which is negligible. Therefore,
Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3: Identical to Hybrid 2, except that S3 generates the inputs ŝA, ŝB according to Step 5
in Figure 10 and adjusts the output. This corresponds to Ideal

SA
FPSI

.

The previous hybrids established that the inputs p̂A, r̂A are extracted correctly. Therefore, by
definition, ŜA =M0(p̂A). It remains to argue that the simulated outputs are indistinguish-
able. First, note that the received intersection Ŝ∩ = M0(p̂B) defines p̂B. From Lemma 6
it follows that M0(p∩) = M0(p̂A) ∩M0(p̂B) = Ŝ∩ w.r.t. M0(p̂B), even for a maliciously
chosen r̂A, i.e. the AA cannot increase the intersection even by a single element except with
negligible probability.

Further, note that ŝA = p̂A · r̂B + ûB is uniformly distributed over the choice of ûB, and p̂∩ is
uniform over the choice of r̂B, therefore nothing but M0(p̂∩) can be learned. In conclusion,
the Hybrids 2 and 3 are statistically close.

17

As a result we get that for all environments Z,

Real
AA
Π2PSI

(Z) ≈s Ideal
SA
FPSI

(Z).

Corrupted Bob. The simulator against a corrupted Bob in Figure 11 (and therefore the
proof) is essentially the same as the one against a corrupted Alice, except for a different way to
check his inputs.

Simulator SB

1. Extract the inputs p̂B, r̂B, ûB by simulating FOPA.

2. Find the roots γ̂1, . . . , γ̂m of p̂B and thereby the set ŜB = {γ̂1, . . . , γ̂m}.

3. Send (input,B, ŜB) to FPSI.

4. Upon receiving (output, Ŝ∩) from FPSI, pick a random degree m polynomials p̂A such that p̂A(γ) = 0
for all γ ∈ Ŝ∩.

5. Use p̂A as input for simulating the FOPA together with random polynomials r̂A and ûA, i.e. send
ŝB = p̂B · r̂A + ûA to AB and keep ŝA = p̂A · r̂B + ûB.

6. Simulate the rest according to Π2PSI, but abort in Step 5, if

p∗∩ 6= p̂Ar̂B + p̂Br̂A,

the extracted p̂B(x) 6= αB or r̂B(x) 6= βB, even if the check passes otherwise.

Figure 11: Simulator SB against a corrupted Bob.

Consider the following series of hybrid games.

Hybrid 0: Real
AB
Π2PSI

.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA, learns all inputs and aborts if
α∗A 6= p̂A(x) or β∗A 6= r̂A(x), but the check is passed.

This step is identical to the case of a corrupted Alice. Let α∗B = αB + e be AB’s check value.
Then the check in Step 5 will fail with overwhelming probability. Let σ denote the outcome
of the check. If AB behaves honestly, then

σ = αB · rA(x) + pA(x) · βB − p∩(x) = 0.

Using α∗B, however, we get

σ′ = (αB + e) · rA(x) + pA(x) · βB − p∗∩(x) = e · rA(x) 6= const.

This means that the outcome of the check is uniformly random from AB’s view over the choice
of rA (or pA for β∗B 6= rB(x)). Therefore, the check will fail except with probability 1/|F| and
Hybrids 0 and 1 are statistically close.

Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 6 in Figure 11.

An environment distinguishing Hybrids 1 and 2 must manage to send p∗∩ such that

p∗∩ 6= p̂Ar̂B + p̂Br̂A,

18

while passing the check in Step 5 with non-negligible probability.

Let f = p∗∩ − p̂Ar̂B + p̂Br̂A. We already know that f(x) = 0, otherwise we have α∗B =
αB + f(x) 6= αB (or an invalid β∗B), and the check fails. But since x is uniformly random,
the case that f(x) = 0 happens only with probability m/|F|, which is negligible. Therefore,
Hybrid 1 and Hybrid 2 are statistically close.

Hybrid 3: Identical to Hybrid 2, except that S3 generates the inputs ŝB, ŝA according to Step 5
in Figure 11 and adjusts the output. This corresponds to Ideal

SB
FPSI

.

The previous hybrids established that the inputs p̂B, r̂B are extracted correctly. Therefore, by
definition, ŜB =M0(p̂B). It remains to argue that the simulated outputs are indistinguish-
able. First, note that the received intersection Ŝ∩ =M0(p̂A) defines p̂A. From Lemma 6 it
follows thatM0(p∩) =M0(p̂B)∩M0(p̂A) = Ŝ∩ w.r.t.M0(p̂A), even for a maliciously chosen
r̂B, i.e. AB cannot increase the intersection even by a single element except with negligible
probability.

Further, note that ŝB = p̂B · r̂A + ûA is uniformly distributed over the choice of ûA, and p̂∩ is
uniform over the choice of r̂A, therefore nothing but M0(p̂∩) can be learned. In conclusion,
the Hybrids 2 and 3 are statistically close.

As a result we get that for all environments Z,

Real
AB
Π2PSI

(Z) ≈s Ideal
SB
FPSI

(Z).

Efficiency. The protocol makes two calls to OPA, which in turn is based on OLE. Overall,
2m calls to OLE are necessary in OPA. Given the recent constant overhead OLE of Ghosh et
al. [GNN17], the communication complexity of Π2PSI lies in O(m).

On the computational side, the parties have to compute interpolations of polynomials of degree
m, which brings the computational complexity to O(m logm) using FFT. This concludes the proof.

6 Maliciously Secure Multi-party PSI

6.1 Ideal Functionality

The ideal functionality for multi-party private set intersection FMPSI simply takes the inputs from

all parties and computes the intersection of these inputs. Our functionality F*
MPSI in Figure 12

additionally allows an adversary to learn the intersection and then possibly update the result to be
only a subset of the original result.

Let us briefly elaborate on why we chose to use this modified functionality. In the UC setting,
in order to extract the inputs of all malicious parties, any honest party has to communicate with
all malicious parties. In particular, since the simulator has to extract the complete input, this
requires at least O(nm) communication per party for the classical MPSI functionality. In turn, for
the complete protocol, this means that the communication complexity lies in O(n2m).

Instead, we want to take an approach similar to the recent work of Hazay et al. [HV17], i.e. we
have one central party, and some of the work is delegated to this party. This removes the need for
the other parties to extensively communicate with each other and potentially allows communication

19

F*
MPSI

Let A denote the set of malicious parties, and H the set of honest parties.

1. Upon receiving a message (input, Pi, Si) from party Pi, store the set Si. Once all inputs i ∈ [n] are
input, set S∩ =

⋂n
i=1 Si and send (output, S∩) to A.

2. Upon receiving a message (deliver, S′∩) from A, check if S′∩ ⊆ S∩. If not, set S′∩ = ⊥. Send
(output, S′∩) to H.

Figure 12: Ideal functionality F*
MPSI for multi-party PSI.

complexity O(mn), which is asymptotically optimal in any setting. However, if we assume that the
central party and at least one additional party are corrupted, the honest party does not (extensively)
interact with this additional party and does not learn its inputs; it can only learn the input of the
central party. If the input set of the other malicious party is the same as the one of the central party,
the output remains the same. If this input is different, however, the actual intersection might be
smaller. One might argue that this case simply corresponds to input substitution by the malicious
party, but for any type of UC simulation this poses a problem, since the output of the honest party
in the protocol might be different from the intersection in the ideal world. Thus, F*

MPSI allows
a malicious party to modify the output. Crucially, the updated intersection can only be smaller
and may not changed arbitrarily by the adversary. We believe that this weaker multiparty PSI
functionality is sufficient for most scenarios.

6.2 Multi-party PSI from OLE

Our multi-party PSI protocol uses the same techniques that we previously employed to achieve
two-party PSI. This is similar in spirit to the approach taken in [HV17], who employ techniques
from the two-party PSI of [FNP04] and apply them in the multi-party setting. We also adopt
the idea of a designated central party that performs a two-party PSI with the remaining parties,
because this allows to delegate most of the computation to this party and saves communication.
Apart from that, our techniques differ completely from [HV17]. Abstractly, they run the two-party
PSI with each party and then use threshold encryption and zero-knowledge proofs to ensure the
correctness of the computation. These tools inflict a significant communication and computation
penalty.

In our protocol (cf. Figure 13) we run our two-party PSI between the central party and ev-
ery other party, but we ensure privacy of the aggregation not via threshold encryption and zero-
knowledge proofs, but instead by a simple masking of the intermediate values and a polynomial
check. This masking is created in a setup phase, where every pair of parties exchanges a random
seed that is used to create two random blinding polynomials which cancel out when added.

Once the central party receives all shares of the computation, it simply add these shares, thereby
removing the random masks. The central party broadcasts the result to all parties. Then, all
parties engage in a multi-party coin-toss and obtain a random value x. Since all operations in the
protocol are linear operations on polynomials, the parties evaluate their input polynomials on x
and broadcast the result. This allows every party to locally verify the relation and as a consequence
also the result. Here we have to ensure that a rushing adversary cannot cheat by waiting for all

20

answers before providing its own answer. We solve this issue by simply committing to the values
first, and the unveiling them in the next step. This leads to malleability problems, i.e. we have to
use non-malleable commitments2.

ΠMPSI

Let m = maxi {|Si|} and NMCOM be a bounded-concurrent non-malleable commitment scheme against

synchronized adversaries. F (i,j)
OPA denotes the jth instance for parties P0 and Pi.

Setup

1. All parties Pi and Pj for i, j ∈ {1, . . . , n−1} exchange a random polynomial as follows. For all j 6= i,
if vij = ⊥, Pi picks seedij uniformly at random and sets vij = PRG2m(seedij). It sends seedij to Pj ,
who sets vji = −PRG2m(seedij).

Share Computation

2. P0 (Input S0): Compute a polynomial p0 of degree m s.t. p0(γj) = 0 for all γj ∈ S0. Generate

n − 1 random polynomials ri0, i ∈ {1, . . . , n − 1} of degree m each and n − 1 random polynomials
ui

0, i ∈ {1, . . . , n− 1} of degree 2m. For i ∈ [n− 1]

• Input ri0,u
i
0 into F (i,1)

OPA for each i ∈ {1, . . . , n− 1}.

• Input p0 into F (i,2)
OPA and obtain si0 = p0 · ri + ui.

3. Pi (Input Si): Compute a polynomial pi of degree m s.t. pi(γj) = 0 for all γj ∈ Si. Additionally,
pick ri ∈ F[X] uniformly of degree m and ui ∈ F[X] uniformly of degree 2m.

• Input pi into F (i,1)
OPA and obtain si = pi · r

i
0 + ui

0.

• Input ri,ui into F (i,2)
OPA.

• Set s′i = si − ui +
∑

i 6=j vij and send it to P0.

Output Aggregation and Verification

4. P0: Compute p∩ =
∑n−1

i=1 s′i + si0 − ui
0 and broadcast p∩.

5. All parties:

• Run a multiparty coin-toss protocol ΠCT to obtain a random x ∈ F.

• Evaluate αi = pi(x), βi = ri(x) and compute (comi, unvi) = NMCOM.Commit(αi, βi). Broad-
cast comi.

• Once all commitments are received, broadcast unvi and (αi, βi). Abort if
∑
α0 · βi + αi · β0 6=

p∩(x) or NMCOM.Open(comi, unvi, (αi, βi)) 6= 1.

• For each γj ∈ Si : if p∩(γj) = 0, add γj to S∩. Output S∩.

Figure 13: Protocol ΠMPSI UC-realises F*
MPSI in the FOPA-hybrid model.

Let us briefly give an intuition on why this protocol computes the intersection of all parties.

2
In order to achieve our claimed efficiency we actually use UC commitments, but non-malleable commitments are

sufficient for the security of the protocol.

21

The intersection polynomial p∩ =
∑n−1

i=1 (p0 · ri + pi · r
i
0) is the sum of all two-party intersection

polynomials. Every such intermediate polynomial contains exactly the intersection between the
parties Pi and P0 in its roots (plus some additional, but random, roots). By simply adding all
of these polynomials, the common roots of the intermediate polynomials are preserved, while the
other roots are blinded by random values. The probability that two of these random blindings
cancel out is negligible in the field size. Therefore, from the view of each party, the common roots
of p∩ and pi represent the intersection with all other parties.

Theorem 2. The protocol ΠMPSI computationally UC-realises F*
MPSI in the FOPA-hybrid model

with communication complexity in O((n2 + nm)κ).

Proof. We have to distinguish between the case where the central party is malicious and the case
where it is honest. We show UC-security of ΠMPSI by defining a simulator S for each case which
produces an indistinguishable simulation of the protocol to any environment Z trying to distinguish
the ideal world from the real world. The approach of the simulation is straightforward: the simulator
extracts the input polynomials into FOPA and thus obtains an intersection of the adversary’s inputs.

In the case of an honest central party, all parties communicate with this party, i.e. the simulator
can extract all inputs of all malicious parties. In the case where P0 is malicious, however, the
simulator can at most learn the central party’s input at the beginning. He inputs this result into
the ideal functionality and uses the intermediate result for the simulation. The malicious central
party can later “simulate” the other malicious parties and thereby possibly change the intersection
for the honest parties. We show that A can only reduce the intersection unless it already knows
x ∈ Sj for at least one j ∈ H, i.e. we assume that A cannot predict a single element of the set of
an honest party except with negligible probability. This reduced intersection can be passed by the
simulator to the ideal functionality.

P0 is malicious: Consider the simulator in Figure 14.

We show the indistinguishability of the simulation and the real protocol through the following
hybrid games. In the following, let A denote the dummy adversary controlled by Z.

Hybrid 0: RealAΠMPSI
.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA and learns all inputs.

Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 7 in Figure 14.

Hybrid 3: Identical to Hybrid 2, except that S3 aborts if the extracted p̂0 are not identical, but
the check is passed.

Hybrid 4: Identical to Hybrid 3, except that S4 replaces the vjl between honest parties j, l by
uniformly random polynomials.

Hybrid 5: Identical to Hybrid 4, except that S5 generates the inputs ŝj0, ŝj according to Step 6

in Figure 14 and adjusts the output. This corresponds to Ideal
SP0

F*
MPSI

.

22

Simulator SP0

Let A = {i|Pi is malicious} denote the index set of corrupted parties, where |A| = t ≤ n− 1. Further let H
denote the index set of honest parties.

1. Simulate the setup and obtain all v∗ij for i ∈ A and j ∈ H. Pick uniformly random v̂jl ∈ F[X] of
degree 2m for j, l ∈ H and set v̂lj = −v̂jl.

2. Extract the inputs (p̂j
0, r̂

j
0, û

j
0) of P0 for all j ∈ H by simulating FOPA.

3. Abort in Step 5 of ΠMPSI if the p̂j
0 are not all identical. Set p̂A = p̂j

0 for a random j ∈ H, and find

the roots γ̂1, . . . , γ̂2m of p̂A and thereby the set ŜA = {γ̂1, . . . , γ̂2m}.

4. Send (input, Pi, ŜA) to F*
MPSI for all parties i ∈ A.

5. Upon receiving (output, Ŝ∩) from F*
MPSI, pick n − t random degree m polynomials p̂j such that

p̂j(γ) = 0 for all γ ∈ Ŝ∩, j ∈ H.

6. Use the p̂j as input for each instance of FOPA together with random polynomials r̂j and ûj for j ∈ H,

i.e. send ŝj0 = p̂j
0 · r̂j + ûj to A and keep ŝj = p̂j · r̂

j
0 + ûj

0.

7. Simulate the rest according to ΠMPSI, but abort in Step 5, if the extracted p̂A(x) 6= α0 or r̂j0(x) 6= βj
0

for any j ∈ H, even if the check passes otherwise.

8. Upon receiving p∗∩ from A, set p̂′A = p∗∩ −
∑

j∈H (p̂j · r̂
j
0 + p̂0 · r̂j). If the check in Step 5 of ΠMPSI

passes, test for all s ∈ Ŝ∩ if p̂′A(s) = 0. If yes, set Ŝ′∩ = Ŝ′∩ ∪ s. Send (deliver, Ŝ′∩) to F*
MPSI.

Figure 14: Simulator SP0
for P0 ∈ A.

Hybrids 0 and 1 are trivially indistinguishable. We show that Hybrid 1 and Hybrid 2 are
computationally indistinguishable in Lemma 9.1. This step ensures that the correct p̂0 was ex-
tracted, and that all the intermediate values of the honest parties are added up. Hybrids 2 and 3
are indistinguishable due to the security of the coin-toss. This is formalized in Lemma 9.2. As
an intermediate step to complete the full simulation, we replace all pseudorandom polynomials
vjl between honest parties j, l by uniformly random ones. Computational indistinguishability of
Hybrid 3 and Hybrid 4 follows from a straightforward reduction to the pseudorandomness of PRG.
We establish the statistical indistinguishability of Hybrids 4 and 5 in Lemma 9.3. As a result we
get that for all PPT environments Z,

RealAΠMPSI
(Z) ≈c Ideal

SP0

F*
MPSI

(Z).

Lemma 9.1. Assume that NMCOM is a bounded-concurrent non-malleable commitment scheme
against synchronizing adversaries. Then Hybrid 1 and Hybrid 2 are computationally indistinguish-
able.

Proof. The only difference between Hybrid 1 and Hybrid 2 lies in the fact that S2 aborts if the
extracted p̂A evaluated on x does not match the check value α0, but the check is still passed.
Therefore, in order for Z to distinguish both hybrids, it has to be able to produce a value α∗0 6= p̂A(x)
and pass the check with non-negligible probability ε. W.l.o.g. it is sufficient that α∗0 is incorrect for
only one p̂0. We show that such a Z breaks the non-malleability property of NMCOM.

23

Let σ denote the outcome of the check. If A is honest, i.e. α0 = p̂0(x) and βi0 = r̂i0(x), then

σ =
n∑
i=0

(α0βi + αiβ
i
0)− p∩(x) = 0, (1)

where
p∩ =

∑
i∈A

(si + si0) +
∑
j∈H

(sj + sj0).

We first observe that
∑

j∈H (sj + sj0) =
∑

j∈H p̂j r̂
j
0 + p̂0r̂j is uniform over the choice of the r̂j ,

since p̂0 6= 0. Therefore, if A uses p∗∩ without adding
∑

j∈H (sj + sj0), the check will fail with
overwhelming probability.

Since A controls the inputs of the malicious parties i ∈ A, in order to pass the check it is
sufficient for A to satisfy the following simplification of Equation (1).

σ′ =
∑
j∈H

(α0βj + αjβ
j
0)−

∑
j∈H

(sj(x) + sj0(x)) = const

Here const is a fixed constant known to A (0 if A is honest) determined by setting the inputs αi, βi
for i ∈ A accordingly. But if α∗0 6= p̂0(x), i.e. α∗0 = α0 + e, then we get that

σ′ =
∑
j∈H

((α0 + e)βj + αjβ
j
0)−

∑
j∈H

(sj(x) + sj0(x))

=
∑
j∈H

(α0βj + αjβ
j
0)−

∑
j∈H

(sj(x) + sj0(x)) + e
∑
j∈H

βj

= e
∑
j∈H

βj 6= const

Similarly for βj0 6= r̂j0 for any j ∈ H. Thus, except for the case of α∗0 = α0+e/
∑

j∈H βj , the check will

fail for α∗0 6= p̂0(x). But since we assumed that A passes the check with non-negligible probability,
and NMCOM is statistically binding, A has to produce a valid commitment to α̃0 = α0 +e/

∑
j∈H βj

with the same probability.
Note, thatA interacts in both the left and right session of NMCOM with the same party (actually

all parties simultaneously, since everything is broadcast). But this means that A cannot let the left
session finish before starting the right session, i.e. A is a synchronizing adversary against NMCOM.
Concretely, in the left session, S2 commits to (p̂j(x), r̂j(x)) = (αj , βj) for j ∈ H, while A commits

in the right session to (α0, {β
i
0}i∈[n]) and (αi, βi) for i ∈ A to S2. Further, the number of sessions

that A can start is bounded in advance at n−1, i.e. it is sufficient to consider bounded-concurrency.
Consider the two views

Real = {ŝj , {comj}}j∈H, Rand = {ŝj , {ĉomj}}j∈H,

where comj ← NMCOM.Commit(αj , βj) and ĉomj ← NMCOM.Commit(0). Real corresponds to a

real protocol view of A before committing itself3.

3
For ease of notation, here we assume that the commitments are completely sent before A commits himself.

The very same argument also holds if A only received synchronized messages of comj and has to start committing
concurrently.

24

Obviously, Real ≈c Rand if NMCOM is non-malleable. However, we will argue that A cannot
output a valid commitment on α̃0 except with negligible probability, i.e.

Pr[(com∗0, unv
∗
0, (α̃0, {β̃

i
0}i∈[n])← A(Rand) ∧ valid] ≤ negl(κ),

where valid is the event that NMCOM.Open(com∗0, unv
∗
0, (α̃0, {β̃

i
0}i∈[n]) = 1. We first observe that

p̂j and r̂j for j ∈ H cannot be obtained by A via ŝj = p̂j · r̂
j
0 − ûj . The polynomial ŝj itself is

uniformly random over the choice of ûj , and the only equation that A has is p̂∩ =
∑

i∈A (si + si0)+∑
j∈H (sj + sj0) =

∑
i∈A (p̂0 · r̂i + p̂i · r̂

i
0) +

∑
j∈H (p̂0 · r̂j + p̂j · r̂

j
0). Note, that the honest r̂j have

degree d and therefore hide the p̂j . Thus, having only one equation, but at least two unknowns, it is
information-theoretically impossible to reconstruct p̂j or r̂j (and therefore α̃0) except with negligible
probability. Further, the commitments comj contain the value 0 and are therefore independent of
p̂j and r̂j . Thus, the probability that A obtains a commitment on α̃0 is negligible.

But since Real ≈c Rand, we also get that

Pr[(com∗0, unv
∗
0, (α̃0, {β̃

i
0}i∈[n])← A(Real) ∧ valid] ≤ negl(κ),

which contradicts our assumption that A produces the commitment with non-negligible probability
ε.

In conclusion, Hybrid 1 and Hybrid 2 are computationally indistinguishable.

Lemma 9.2. Assume that ΠCT provides a uniformly random x with computational security. Then
Hybrid 2 and Hybrid 3 are computationally indistinguishable.

Proof. Assume that there exists an environment Z that distinguishes Hybrids 2 and 3 with non-
negligible probability ε. In order to distinguish Hybrid 2 and Hybrid 3 Z has to provide two distinct
polynomials for a malicious P0 and still pass the check in the protocol. Then we can construct from
Z an adversary B that predicts the outcome of ΠCT with non-negligible probability.

Let A input w.l.o.g. two polynomials p̂1
0 6= p̂2

0. The check with the random challenge x allows A
to send only one value α∗0, but from Lemma 9.1 we know that it has to hold that α∗0 = p̂1

0(x) = p̂2
0(x),

or the check will fail. First note that two polynomials of degree m agree in a random point x over
F only with probability m/|F|, which is negligible in our case.

Our adversary B proceeds as follows. It simulates the protocol for Z according to S1 up to
the point where S1 learns the polynomials p̂1

0 6= p̂2
0. B sets f = p̂1

0 − p̂2
0 and computes the roots

γ1, . . . , γm of f . One of these roots has to be the random point x, otherwise p̂1
0(x) − p̂2

0(x) 6= 0
and the check in ΠMPSI fails (since there is only one α∗0). B picks a random index l ∈ [m] and
predicts the output of the coin-flip as γl. Thus, B predicts the outcome of the coin-toss correctly
with probability ε/m, which is non-negligible. This contradicts the security of ΠCT.

This establishes the indistinguishability of Hybrid 2 and Hybrid 3.

Lemma 9.3. Hybrid 4 and Hybrid 5 are statistically close.

Proof. A malicious environment Z can distinguish Hybrid 4 and Hybrid 5 if (a) the extracted
inputs are incorrect or if (b) the simulated messages can be distinguished from real ones.

Concerning (a), if the inputs were not correctly extracted, Z would receive different outputs in
the two hybrids. We already established that the extracted polynomial p̂0 is correct. Similarly, the

25

extracted r̂j0 are also correct. By implication this also ensures that the intermediate intersection is
computed correctly.

We argue that the correction of the intersection is also correct, i.e. the set Ŝ′∩ is computed
correctly. First of all, we have to show that the intermediate intersection polynomial p̂int actually
provides the intersection for all parties. For all Pi it holds with overwhelming probability:

M0(p̂j) ∩M0(p̂int) = M0(p̂j) ∩M0(
∑
j∈H

(p̂0 · r̂j + p̂j · r̂
j
0))

Lemma 4
= M0(p̂j) ∩ (

⋂
j∈H
M0((p̂0 · r̂j + p̂j · r̂

j
0))

Lemma 6
= M0(p̂j) ∩ (

⋂
j∈H
M0(p̂0) ∩M0(p̂j))

= Ŝ∩

Since all of A’s inputs for p̂int are known to S4, it can simply subtract that polynomial from
p∗∩ and thereby obtain the intersection p̂upt of the previously not involved malicious parties i ∈ A.
From this the final intersection can be obtained. It remains to show that this final intersection does
not include any points that were not already in the intermediate intersection.

For this, we consider the intersection of every honest party’s (unknown) input pi with the
intersection. It has to hold that |Ŝ′∩| ≤ |Ŝ∩| for all Pi except with negligible probability. Here we
require that Pr[x← A(p̂int), s.t. p̂j(x) = 0, p̂int(x) 6= 0] ≤ negl(|F|).

M0(p̂j) ∩M0(p∗∩) = M0(p̂j) ∩ (M0(p̂int + p̂upt))

Lemma 4
= M0(p̂j) ∩ (M0(p̂int) ∩M0(p̂upt))

= M0(p̂j) ∩ (Ŝ∩ ∩M0(p̂upt))

⊆ M0(p̂j) ∩ Ŝ∩ = Ŝ∩

Therefore, |Ŝ′∩| ≤ |Ŝ∩|, and the output in both hybrids is identical.
Regarding (b), we make the following observations. Since S4 sends ŝ′j = ŝj −uj +

∑
i 6=j vij , the

value ŝ′j is uniformly random over the choice of uj (and over
∑

vij , if t ≤ n − 2). Therefore, the

simulation of ŝ′j is identically distributed to Hybrid 4.
Similarly, we have:∑

j∈H
(ŝ′j + ŝj0) =

∑
j∈H

(p̂0 · r̂j + p̂j · r̂
j
0) [+

∑
i∈A,j∈H

vij]

= p̂0 · (
∑
j∈H

r̂j) +
∑
j∈H

(p̂j · r̂
j
0) [+

∑
i∈A,j∈H

vij]

We can ignore the vij values, since these are known to A. The sum is uniform over the choice of

the r̂j apart from the points γ ∈ Ŝ∩ (since FOPA guarantees that p̂0 6= 0) and therefore identically
distributed to Hybrid 4, since the extraction in correct.

P0 is honest: Consider the simulator in Figure 15.

26

Simulator SP̄0

Let A = {i|Pi is malicious} denote the index set of corrupted parties, where |A| = t ≤ n− 1. Further let H
denote the index set of honest parties.

1. Simulate the setup and obtain all v∗ij for i ∈ A and j ∈ H.

2. Extract the inputs (p̂i, r̂i, ûi) for all i ∈ A by simulating FOPA.

3. Set p̂A =
∑

i∈A p̂i, and find the roots γ̂1, . . . , γ̂2m of p̂A and thereby the set ŜA = {γ̂1, . . . , γ̂2m}.

4. Send (input, Pi, ŜA) to F*
MPSI for all parties i ∈ A.

5. Upon receiving (output, Ŝ∩) from F*
MPSI, pick n − t random degree m polynomials p̂j such that

p̂j(γ) = 0 for all γ ∈ Ŝ∩, j ∈ H.

6. Use the p̂j as input for each instance of FOPA together with random polynomials r̂i0 and ûi
0 for i ∈ A,

i.e. keep ŝi0 = p̂0 · r̂i + ûi and send ŝi = p̂i · r̂
i
0 + ûi

0 to A.

7. Simulate the rest according to ΠMPSI, but abort in Step 5, if∑
Pi∈A

(s′∗i + ûi − ûi
0 −

∑
Pj∈H

v∗ij) 6=
∑
Pi∈A

p̂i · r̂
i
0

or αi 6= p̂i(x) or βi 6= r̂i(x).

Figure 15: Simulator SP̄0
for P0 /∈ A.

We show the indistinguishability of the simulation and the real protocol through the following
hybrid games.

Hybrid 0: RealAΠMPSI
.

Hybrid 1: Identical to Hybrid 0, except that S1 simulates FOPA, learns all inputs and aborts if
αi 6= p̂i(x) or βi 6= r̂i(x) for any i ∈ A, but the check is passed.

Hybrid 2: Identical to Hybrid 1, except that S2 aborts according to Step 7 in Figure 15.

Hybrid 3: Identical to Hybrid 2, except that S3 generates the inputs ŝj0, ŝj according to Step 6

in Figure 15. This corresponds to Ideal
SP̄0

F*
MPSI

.

We prove the computational indistinguishability of Hybrids 0 and 1 in Lemma 9.4. This does
not rule out that A adds a masking polynomial, thereby leading to an incorrectly extracted input.
Lemma 9.5 takes care of this problem by showing the indistinguishability of Hybrids 1 and 2. From
this point on A’s input is correctly defined, which allows to show that Hybrid 2 and Hybrid 3 are
statistically close. Let us briefly argue that setting p̂A =

∑
i∈A p̂i yields the correct intersection.

27

With overwhelming probability over p̂j it holds that

M0(p̂A) = M0(
∑
i∈A

p̂i)

Lemma 4
=

⋂
i∈A

(M0(p̂i))

=
⋂
i∈A

Si.

Then, independent of A’s inputs, p̂∩ returns the correct intersection Ŝ∩ for all i ∈ A except with
negligible probability.

M0(p̂i) ∩M0(p̂∩) = M0(p̂i) ∩M0(

n−1∑
l=1

(p̂0 · r̂l + p̂l · r̂
l
0))

Lemma 4
= M0(p̂i) ∩ (

n−1⋂
l=1

M0((p̂0 · r̂l + p̂l · r̂
l
0))

Lemma 6
= M0(p̂i) ∩ (

n−1⋂
l=1

M0(p̂0) ∩M0(p̂l))

= Ŝ∩

The polynomial ŝi = p̂0 · r̂i + ûi0 and in particular its roots are uniformly distributed over the
choice of ûi0 from A’s view. Replacing p̂0 with p̂′0 does not change this. Since we established that
the extracted inputs are correct, the intersection polynomial p̂∩ contains exactly the set of the
intersection as its roots, and is otherwise random over the choice of r̂i0. Thus, the output of the
simulation is identical to the output of the ideal functionality.

As a result we get that for all PPT environments Z,

RealAΠMPSI
(Z) ≈c Ideal

SP̄0

F*
MPSI

(Z).

Lemma 9.4. Assume that NMCOM is a bounded-concurrent non-malleable commitment scheme
against synchronizing adversaries. Then Hybrid 0 and Hybrid 1 are computationally indistinguish-
able.

Proof. The only difference between Hybrid 0 and Hybrid 1 lies in the fact that S1 aborts if the
extracted p̂i evaluated on x does not match the check value αi, but the check is still passed. Our
proof follows along the lines of the proof of Lemma 9.1, with some small modifications.

In order for Z to distinguish both hybrids, it has to be able to produce a value α∗i 6= p̂i and
pass the check with non-negligible probability ε. W.l.o.g. it is sufficient if α∗i is incorrect for only
one p̂i. We show that such a Z breaks the non-malleability property of NMCOM.

Let σ denote the outcome of the check. If A is honest, i.e. αi = p̂i(x) and βi = r̂i(x), then

σ =
n∑
i=0

(α0βi + αiβ
i
0)− p∩(x) = 0, (2)

28

where
p∩ =

∑
i∈A

(si + si0) +
∑
j∈H

(sj + sj0).

Since A does not control the inputs of the honest parties j ∈ H, in order to pass the check it is
sufficient for A to satisfy the following simplification of Equation (2).

σ′ =
∑
i∈A

(α0βi + αiβ
i
0)−

∑
i∈A

(si(x) + si0(x)) = const

Here const is a fixed constant known to A (0 if A is honest) determined by setting the inputs for
si, s

i
0 for i ∈ A accordingly. But if α∗i 6= p̂i(x), i.e. α∗i = αi + e, then we get that

σ′ =
∑
i∈A

((αi + e)βi0 + α0βi)−
∑
i∈A

(si(x) + si0(x))

=
∑
i∈A

(αiβ
i
0 + α0βi)−

∑
i∈A

(si(x) + si0(x)) + eβi0

= eβi0 6= const

Similarly for βi 6= r̂i(x) for any i ∈ A. Thus, except for the case of α∗i = αi + e/βi0, the check will
fail for α∗i 6= p̂i(x). But since we assumed that A passes the check with non-negligible probability,
and NMCOM is statistically binding, A has to produce a valid commitment to α̃i = αi + e/βi0 with
the same probability.

Consider the two views

Real = {p̂∩, {comj}}j∈H, Rand = {p̂∩, {ĉomj}}j∈H,

where comj ← NMCOM.Commit(αj , βj) and ĉomj ← NMCOM.Commit(0). Real corresponds to
a real protocol view of A before committing itself. Obviously, Real ≈c Rand if NMCOM is non-
malleable. However, we will argue that A cannot output a valid commitment on α̃i except with
negligible probability, i.e.

Pr[(com∗i , unv
∗
i , (α̃i, β̃i)← A(Rand) ∧ valid] ≤ negl(κ),

where valid is the event that NMCOM.Open(com∗i , unv
∗
i , (α̃i, β̃i) = 1. We first observe that p̂0 and r̂i0

for i ∈ A cannot be obtained byA via p̂∩ =
∑

i∈A (si + si0)+
∑

j∈H (sj + sj0) =
∑

i∈A (p̂0 · r̂i + p̂i · r̂
i
0)+∑

j∈H (p̂0 · r̂j + p̂j · r̂
j
0). Thus, having only one equation, but at least two unknowns, it is information-

theoretically impossible to reconstruct p̂0 or r̂i0 (and therefore α̃i) except with negligible probability.
Further, the commitments comj contain the value 0 and are therefore independent of p̂0 and r̂i0.
Thus, the probability that A obtains a commitment on α̃i is negligible.

But since Real ≈c Rand, we also get that

Pr[(com∗i , unv
∗
i , (α̃i, β̃i)← A(Real) ∧ valid] ≤ negl(κ),

which contradicts our assumption that A produces the commitment with non-negligible probability
ε.

In conclusion, Hybrid 0 and Hybrid 1 are computationally indistinguishable.

29

Lemma 9.5. Assume that ΠCT provides a uniformly random x with computational security. Then
Hybrid 1 and Hybrid 2 are computationally indistinguishable.

Proof. The only difference between Hybrid 1 and Hybrid 2 lies in the fact that S2 aborts if∑
i∈A

(s′∗i + ûi − ûi0 −
∑
j∈H

v∗ij) 6=
∑
i∈A

p̂i · r̂
i
0,

while S1 does not.
If Z wants to distinguish Hybrid 1 and Hybrid 2, it thus has to provide a value s′∗i for which the

above equation does not hold, but at the same time the check in Step 5 has to pass. In other words,
for at least one malicious party Pi, A either does not use the same ûi as input in FOPA and for
ŝ′∗i , or the same vij , leaving p̂i · r̂

i
0 + f , where f is a non-zero polynomial of degree 2m. Intuitively,

this means that if A provides such an input and passes the check, the extracted input is incorrect
(because S only looks at the p̂i values, and e changes the intersection polynomial non-trivially).

Lemma 9.4 establishes that if αi 6= p̂i(x), then the check fails. It follows that the check can
only be passed if f(x) = 0, since otherwise αi = p̂i(x) + f(x).

Assume that Z succeeds in this endeavour with polynomial probability ε. Then we can construct
from Z an adversary B that predicts the outcome of ΠCT with polynomial probability.

First note that f is of degree 2m and the probability that f(x) = 0 in a random point x over
F is 2m/|F|, which is negligible in our case. Our adversary B proceeds as follows. It simulates the
protocol for Z according to S1 up to the point where S1 learns the polynomials p̂i, r̂i and ûi. After
receiving ŝ′∗i for i ∈ A, B sets

f =
∑
i∈A

(s′∗i + ûi − ûi0 −
∑
j∈H

v∗ij)−
∑
i∈A

p̂i · r̂
i
0

and computes the roots γ1, . . . , γ2m of f . One of these roots has to be the biased point x, otherwise
f(x) 6= 0 and the check in ΠMPSI fails. B picks a random j ∈ [2m] and predicts the output of
the coin-flip as γj . Thus, B predicts the outcome of the coin-toss correctly with probability ε/2m,
which is polynomial. This contradicts the security of ΠCT.
In conclusion, Hybrid 1 and Hybrid 2 are computationally indistinguishable.

Efficiency. The setup, i.e. the distribution of seeds, has communication complexity O(n2κ).
The oblivious addition of the polynomials has communication overhead of O(nmκ). The check

phase first requires a multi-party coin-toss.
We propose to use a standard Blum coin-toss and generalise it as follows to n parties. Let ΠCT

proceed as follows. Every party picks a random field element xi. It commits to the field element
using a concurrent non-malleable commitment (similar to the check in ΠMPSI). Then, every party
broadcasts xi and verifies that the commitment is correct. If that holds, the output is defined as
xCT =

∑
xi, otherwise party Pi aborts. The communication complexity of ΠCT is in O(n2 · ccom),

where ccom is the communication overhead for the commitment used.
The check itself also requires sending O(n2) non-malleable commitments. The most efficient

(bounded-)concurrent non-malleable commitment that we are aware of is due to Goyal et al. [GRRV14]
(concurrency was shown in [COSV17]). This commitment has communication complexity O(κ2) in
our setting, i.e. the check and coin-toss would require communication in O(n2κ2).

30

Therefore, in order to achieve an asymptotically optimal construction, we opt to use an OLE-
based UC-secure commitment from the supplementary material 2.3 instead of the non-malleable
one. UC-security implies concurrent non-malleability in the strongest form, so that this step does
not jeopardize the security of the protocol. This commitment has a constant rate, i.e. the commu-
nication complexity of the check is reduced to O(n2κ). Combining the above observations, ΠMPSI

has communication complexity O((n2 + nm)κ) in the FOLE-hybrid model.
For concrete instantiations of FOLE, the OLE protocol of Ghosh et al. [GNN17] has a con-

stant communication overhead per OLE. In summary, the complete protocol has communication
complexity O((n2 + nm)κ), which is asymptotically optimal for m ≥ n.

Similar to the two-party case, the computational cost is dominated by the cost of polynomial
interpolation. In particular, the central party has to run the two-party protocol n times, which
leads to a computational overhead of O(nm logm). The other parties basically have the same
computational overhead as in the two-party case.

References

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 663–680. Springer, Hei-
delberg, August 2012.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. In Joe Kilian, editor, TCC 2005,
volume 3378 of LNCS, pages 342–362. Springer, Heidelberg, February 2005.

[CJS12] Jung Hee Cheon, Stanislaw Jarecki, and Jae Hong Seo. Multi-party privacy-preserving
set intersection with quasi-linear complexity. IEICE Transactions, 95-A(8):1366–1378,
2012.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round
concurrent non-malleable commitments from one-way functions. In Advances in Cryp-
tology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 127–157, 2017.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 13, pages 789–800. ACM Press, November 2013.

[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. David & Goliath obliv-
ious affine function evaluation - asymptotically optimal building blocks for univer-
sally composable two-party computation from a single untrusted stateful tamper-
proof hardware token. Cryptology ePrint Archive, Report 2012/135, 2012. http:

//eprint.iacr.org/2012/135.

31

http://eprint.iacr.org/2012/135
http://eprint.iacr.org/2012/135

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private
set intersection protocols secure in malicious model. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 213–231. Springer, Heidelberg, December
2010.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Hei-
delberg, August 2012.

[DT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
143–159. Springer, Heidelberg, January 2010.

[FHNP16] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Efficient set
intersection with simulation-based security. Journal of Cryptology, 29(1):115–155, Jan-
uary 2016.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious
linear function evaluation with constant overhead. IACR Cryptology ePrint Archive,
2017:409, 2017.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. In 55th FOCS, pages 41–50. IEEE Computer Society Press, Octo-
ber 2014.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust
in electronic communities. In Proceedings of the 1st ACM Conference on Electronic
Commerce, EC ’99, pages 78–86, 1999.

[HN12] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious
adversaries. Journal of Cryptology, 25(3):383–433, July 2012.

[HV17] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party
private set-intersection. In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of
LNCS, pages 175–203. Springer, Heidelberg, March 2017.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 16, pages 818–829. ACM Press, October 2016.

32

[KMP+17] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Prac-
tical multi-party private set intersection from symmetric-key techniques. Cryptology
ePrint Archive, Report 2017/799, 2017. http://eprint.iacr.org/2017/799.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
16, pages 830–842. ACM Press, October 2016.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Vic-
tor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer,
Heidelberg, August 2005.

[MM87] C. Meadows and D. Mutchler. Matching secrets in the absence of a continuously
available trusted authority. IEEE Transactions on Software Engineering, SE-13(2):289–
292, Feb 1987.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In EC, pages 129–139, 1999.

[NTL+11] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and
Dan Boneh. Location privacy via private proximity testing. In NDSS 2011. The Internet
Society, February 2011.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-n OT
extension with application to private set intersection. In Topics in Cryptology - CT-
RSA 2017 - The Cryptographers’ Track at the RSA Conference 2017, San Francisco,
CA, USA, February 14-17, 2017, Proceedings, pages 381–396, 2017.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set
intersection using permutation-based hashing. In 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015., pages 515–530,
2015.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. Cryptology ePrint Archive, Report 2014/447, 2014. http:

//eprint.iacr.org/2014/447.

[RR17] Peter Rindal and Mike Rosulek. Improved private set intersection against mali-
cious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Heidelberg,
May 2017.

[Sha80] Adi Shamir. On the power of commutativity in cryptography, pages 582–595. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1980.

[SS08] Yingpeng Sang and Hong Shen. Privacy preserving set intersection based on bilinear
groups. In Proceedings of the Thirty-first Australasian Conference on Computer Science
- Volume 74, ACSC ’08, pages 47–54, 2008.

33

http://eprint.iacr.org/2017/799
http://eprint.iacr.org/2014/447
http://eprint.iacr.org/2014/447

	Introduction
	Our Contribution
	Technical Overview
	A New Flavour of OLE
	Structure of the Paper

	Preliminaries
	Security Model
	Non-malleable Commitments
	Commitment from
	Technical Lemmata

	Enhanced Oblivious Linear Function Evaluation
	Randomized Polynomial Addition from OLE
	Passively Secure Protocol for
	Actively Secure Protocol for

	Maliciously Secure Two-party PSI
	Maliciously Secure Multi-party PSI
	Ideal Functionality
	Multi-party PSI from OLE

