Bulletproofs: Short Proofs for Confidential Transactions and More

Benedikt Biinz*!', Jonathan Bootle™, Dan Boneh*!,
Andrew Poelstra$?, Pieter Wuille'?| and Greg Maxwell!

IStanford University
2University College London
3Blockstream

Abstract

We propose Bulletproofs, a new non-interactive zero-knowledge proof protocol with very
short proofs and without a trusted setup; the proof size is only logarithmic in the witness size.
Bulletproofs are especially well suited for efficient range proofs on committed values: they enable
proving that a committed value is in a range using only 2log,(n) + 9 group and field elements,
where n is the bit length of the range. Proof generation and verification times are linear in n.

Bulletproofs greatly improve on the linear (in n) sized range proofs in existing proposals for
confidential transactions in Bitcoin and other cryptocurrencies. Moreover, Bulletproofs supports
aggregation of range proofs, so that a party can prove that m commitments lie in a given range
by providing only an additive O(log(m)) group elements over the length of a single proof. To
aggregate proofs from multiple parties, we enable the parties to generate a single proof without
revealing their inputs to each other via a simple multi-party computation (MPC) protocol for
constructing Bulletproofs. This MPC protocol uses either a constant number of rounds and
linear communication, or a logarithmic number of rounds and logarithmic communication. We
show that verification time, while asymptotically linear, is very efficient in practice. Moreover,
the verification of multiple Bulletproofs can be batched for further speed-up. Concretely, the
marginal time to verify an aggregation of 16 range proofs is about the same as the time to
verify 16 ECDSA signatures.

Bulletproofs build on the techniques of Bootle et al. (EUROCRYPT 2016). Beyond range
proofs, Bulletproofs provide short zero-knowledge proofs for general arithmetic circuits while
only relying on the discrete logarithm assumption and without requiring a trusted setup. We
discuss many applications that would benefit from Bulletproofs, primarily in the area of cryp-
tocurrencies. The efficiency of Bulletproofs is particularly well suited for the distributed and
trustless nature of blockchains.

*buenz@cs.stanford.edu
tjonathan.bootle.14@ucl.ac.uk
tdabo@cs.stanford.edu
Sapoelstra@blockstream.io
Tpieter@blockstream.com

I greg@xiph.org

mailto:buenz@cs.stanford.edu
mailto:jonathan.bootle.14@ucl.ac.uk
mailto:dabo@cs.stanford.edu
mailto:apoelstra@blockstream.io
mailto:pieter@blockstream.com
mailto:greg@xiph.org

1 Introduction

Blockchain-based cryptocurrencies enable peer-to-peer electronic transfer of value by maintaining
a global distributed but synchronized ledger, the blockchain. Any independent observer can verify
both the current state of the blockchain as well as the validity of all transactions on the ledger. In
Bitcoin, this innovation requires that all details of a transaction are public: the sender, the receiver,
and the amount transferred. In general, we separate privacy for payments into two properties: (1)
anonymity, hiding the identities of sender and receiver in a transaction and (2) confidentiality, hiding
the amount transferred. While Bitcoin provides some weak anonymity through the unlinkability of
Bitcoin addresses to real world identities, it lacks any confidentiality. This is a serious limitation
for Bitcoin and could be prohibitive for many use cases. Would employees want to receive their
salaries in bitcoin if it meant that their salaries were published on the public blockchain?

To address the confidentiality of transaction amounts, Maxwell [Max16] introduced confidential
transactions (CT), in which every transaction amount involved is hidden from public view using a
commitment to the amount. This approach seems to prevent public validation of the blockchain;
an observer can no longer check that the sum of transaction inputs is greater than the sum of
transaction outputs, and that all transaction values are positive. This can be addressed by including
in every transaction a zero-knowledge proof of validity of the confidential transaction.

Current proposals for CT zero-knowledge proofs [PBFT| have either been prohibitively large
or required a trusted setup. Neither is desirable. While one could use succinct zero-knowledge
proofs (SNARKs) [BSCG113, GGPR13], they require a trusted setup, which means that everyone
needs to trust that the setup was performed correctly. One could avoid trusted setup by using a
STARK [BSBTHRI1S]|, but the resulting range proofs while asymptotically efficient are practically
larger than even the currently proposed solutions.

Short non-interactive zero-knowledge proofs without a trusted setup, as described in this paper,
have many applications in the realm of cryptocurrencies. In any distributed system where proofs
are transmitted over a network or stored for a long time, short proofs reduce overall cost.

1.1 Owur Contributions

We present Bulletproofs, a new zero-knowledge argument of knowledge! system, to prove that a
secret committed value lies in a given interval. Bulletproofs do not require a trusted setup. They
rely only on the discrete logarithm assumption, and are made non-interactive using the Fiat-Shamir
heuristic.

Bulletproofs builds on the techniques of Bootle et al. [BCC*16], which yield communication-
efficient zero-knowledge proofs. We present a replacement for their inner-product argument that
reduces overall communication by a factor of 3. We make Bulletproofs suitable for proving state-
ments on committed values. Examples include a range proof, a verifiable shuffle, and other appli-
cations discussed below. We note that a range proof using the protocol of [BCC*16] would have
required implementing the commitment opening algorithm as part of the verification circuit, which
we are able to eliminate.

Distributed Bulletproofs generation. We show that Bulletproofs support a simple and efficient
multi-party computation (MPC) protocol that allows multiple parties with secret committed values

Proof systems with computational soundness like Bulletproofs are sometimes called argument systems. We will
use the terms proof and argument interchangeably.

to jointly generate a single small range proof for all their values, without revealing their secret values
to each other. One version of our MPC protocol is constant-round but with linear communication.
Another variant requires only logarithmic communication, but uses a logarithmic number of rounds.
When a confidential transaction has inputs from multiple parties (as in the case of CoinJoin), this
MPC protocol can be used to aggregate all the proofs needed to construct the transaction into a
single short proof.

Proofs for arithmetic circuits. While we focus on confidential transactions (CT), where our
work translates to significant practical savings, we stress that the improvements are not limited to
CT. We present Bulletproofs for general NP languages. The proof size is logarithmic in the number
of multiplication gates in the arithmetic circuit for verifying a witness. The proofs are much shorter
than [BCC*16] and allow inputs to be Pedersen commitments to elements of the witness.

Optimizations and evaluation. We provide a complete implementation of Bulletproofs that
includes many further optimizations described in Section 6. For example, we show how to batch
the verification of multiple Bulletproofs so that the cost of verifying every additional proof is
significantly reduced. We also provide efficiency comparisons with the range proofs currently used
for confidential transactions [Max16, Poe] and with other proof systems. Our implementation
includes a general tool for constructing Bulletproofs for any NP language. The tool reads in
arithmetic circuits in the Pinocchio [PHGR13] format which lets users use their toolchain. This
toolchain includes a compiler from C to the circuit format. We expect this to be of great use to
implementers who want to use Bulletproofs.

1.2 Applications

We first discuss several applications for Bulletproofs along with related work specific to these
applications. Additional related work is discussed in Section 1.3.

1.2.1 Confidential Transactions and Mimblewimble

Bitcoin and other similar cryptocurrencies use a transaction-output-based system where each trans-
action fully spends the outputs of previously unspent transactions. These unspent transaction out-
puts are called UTXOs. Bitcoin allows a single UTXO to be spent to many distinct outputs, each
associated with a different address. To spend a UTXO a user must provide a signature, or more
precisely a scriptSig, that enables the transaction SCRIPT to evaluate to true [BMC*15]. Apart
from the validity of the scriptSig, miners verify that the transaction spends previously unspent
outputs, and that the sum of the inputs is greater than the sum of the outputs.

Maxwell [Max16] introduced the notion of a confidential transaction, where the input and output
amounts in a transaction are hidden in Pedersen commitments [P791]. To enable public validation,
the transaction contains a zero-knowledge proof that the sum of the committed inputs is greater
than the sum of the committed outputs, and that all the outputs are positive, namely they lie in
the interval [0,2"], where 2™ is much smaller than the group size. All current implementations of
confidential transactions [Max16, MP15, PBFT, NM*16] use range proofs over committed values,
where the proof size is linear in n. These range proofs are the main contributor to the size of a
confidential transaction. In current implementations [Max16], a confidential transaction with only
two outputs and 32 bits of precision is 5.4 KB bytes, of which 5 KB are allocated to the range
proof. Even with recent optimizations the range proofs would still take up 3.8 KB.

We show in Section 6 that Bulletproofs greatly improve on this, even for a single range proof
while simultaneously doubling the range proof precision at marginal additional cost (64 bytes). The
logarithmic proof size additionally enables the prover to aggregate multiple range proofs, e.g. for
transactions with multiple outputs, into a single short proof. With Bulletproofs, m range proofs
are merely O(log(m)) additional group elements over a single range proof. This is already useful
for confidential transactions in their current form as most Bitcoin transactions have two or more
outputs. It also presents an intriguing opportunity to aggregate multiple range proofs from different
parties into one proof, as would be needed, for example, in a CoinJoin transaction [Max13]. In
Section 4.5, we present a simple and efficient MPC protocol that allows multiple users to generate a
single transaction with a single aggregate range proof. The users do not have to reveal their secret
transaction values to any of the other participants.

Confidential transaction implementations are available in side-chains [PBF*], private blockchains
[And17], and in the popular privacy-focused cryptocurrency Monero [NM*16]. All these implemen-
tations would benefit from Bulletproofs.

At the time of writing, Bitcoin has roughly 50 million UTXOs from 22 million transactions (see
statoshi.info). Using a 52-bit representation of bitcoin that can cover all values from 1 satoshi up
to 21 million bitcoins, this results in roughly 160GB of range proof data using the current systems.
Using aggregated Bulletproofs, the range proofs for all UTXOs would take less than 17GB, about
a factor 10 reduction in size.

Mimblewimble. Recently an improvement was proposed to confidential transactions, called Mim-
blewimble [Jed16,Poe|, which provides further savings.

Jedusor [Jed16] realized that a Pedersen commitment to 0 can be viewed as an ECDSA pub-
lic key, and that for a valid confidential transaction the difference between outputs, inputs, and
transaction fees must be 0. A prover constructing a confidential transaction can therefore sign the
transaction with the difference of the outputs and inputs as the public key. This small change
removes the need for a scriptSig which greatly simplifies the structure of confidential transactions.
Poelstra [Poe| further refined and improved Mimblewimble and showed that these improvements
enable a greatly simplified blockchain in which all spent transactions can be pruned and new nodes
can efficiently validate the entire blockchain without downloading any old and spent transactions.
Along with further optimizations, this results in a highly compressed blockchain. It consists only
of a small subset of the block-headers as well as the remaining unspent transaction outputs and
the accompanying range proofs plus an un-prunable 32 bytes per transaction. Mimblewimble also
allows transactions to be aggregated before sending them to the blockchain.

A Mimblewimble blockchain grows with the size of the UTXO set. Using Bulletproofs, it would
only grow with the number of transactions that have unspent outputs, which is much smaller than
the size of the UTXO set. Overall, Bulletproofs can not only act as a drop-in replacement for
the range proofs in confidential transactions, but it can also help make Mimblewimble a practical
scheme with a blockchain that is significantly smaller than the current Bitcoin blockchain.

1.2.2 Provisions

Dagher et al. [DBB*15] introduced the Provisions protocol which allows Bitcoin exchanges to prove
that they are solvent without revealing any additional information. The protocol crucially relies
on range proofs to prevent an exchange from inserting fake accounts with negative balances. These
range proofs, which take up over 13GB, are the main contributors to the proof sizes of almost 18GB

statoshi.info

for a large exchange with 2 million customers. The proof size is in fact linear in the number of
customers. Since in this protocol, one party (the exchange) has to construct many range proofs
at once, the general Bulletproofs protocol from Section 4.3 is a natural replacement for the NIZK
proof used in Provisions. With the proof size listed in Section 6, we obtain that the range proofs
would take up less than 2 KB with our protocol. Additionally, the other parts of the proof could
be similarly compressed using the protocol from Section 5. The proof would then be dominated by
one commitment per customer, with size 62 MB. This is roughly 300 times smaller then the current
implementation of Provisions.

1.2.3 Verifiable shuffles

Consider two lists of committed values z1,...,x, and yi,...,y,. The goal is to prove that the
second list is a permutation of the first. This problem is called a verifiable shuffie. It has many
applications in voting [FS01,Nef01], mix-nets [Cha82], and solvency proofs [DBBT15]. Neff [Nef01]
gave a practical implementation of a verifiable shuffle and later work improved on it [Gro03, GI08a).
Currently the most efficient shuffle [BG12] has size O(4/n).

Bulletproofs can be used to create a verifiable shuffle of size O(logn). The two lists of commit-
ments are given as inputs to the circuit protocol from Section 5. The circuit can implement a shuffle
by sorting the two lists and then checking that they are equal. A sorting circuit can be implemented
using O(n - log(n)) multiplications which means that the proof size will be only O(log(n)). This is
much smaller than previously proposed protocols. Given the concrete efficiency of Bulletproofs, a
verifiable shuffle using Bulletproofs would be very efficient in practice. Constructing the proof and
verifying it takes linear time in n.

1.2.4 NIZK Proofs for Smart Contracts

The Ethereum [Wool4| system uses highly expressive smart contracts to enable complex trans-
actions. Smart contracts, like any other blockchain transaction, are public and provide no inher-
ent privacy. To bring privacy to smart contracts, non-interactive zero-knowledge (NIZK) proofs
have been proposed as a tool to enable complex smart contracts that do not leak the user in-
puts [KMS*16, MSH17, CGGN17]. However, these protocols are limited as the NIZK proof itself
is not suitable for verification by a smart contract. The reason is that communication over the
blockchain with a smart contract is expensive, and the smart contract’s own computational power
is highly limited. SNARKSs, which have succinct proofs and efficient verifiers, seem like a natural
choice, but current practical SNARKs [BSCG™13] require a complex trusted setup. The resulting
common reference strings (CRS) are long, specific to each application, and possess trapdoors. In
Hawk [KMS*16], for instance, a different CRS is needed for each smart contract, and either a
trusted party is needed to generate it, or an expensive multi-party computation is needed to dis-
tribute the trust among a few parties. On the other hand, for small applications like boardroom
voting, one can use classical sigma protocols [MSH17], but the proof-sizes and expensive verifica-
tion costs are prohibitive for more complicated applications. Recently, Campanelli et al. [CGGN17]
showed how to securely perform zero-knowledge contingent payments (ZKCPs) in Bitcoin, while
attacking and fixing a previously proposed protocol [Max|. ZKCPs enable the trustless, atomic and
efficient exchange of a cryptocurrency vs. some digital good. While ZKCPs support a wide area
of applications they fundamentally work for only a single designated verifier and do not allow for
public verification. For some smart contracts that have more than two users, public verification is

often crucial. In an auction, for example, all bidders need to be convinced that all bids are well
formed.

Bulletproofs improves on this by enabling small proofs that do not require a trusted setup.
The Bulletproofs verifier is not cheap, but there are multiple ways to work around this. First,
a smart contract may act optimistically and only verify a proof if some party challenges its va-
lidity. Incentives can be used to ensure that rational parties never create an incorrect proof nor
challenge a correct proof. This can be further improved by using an interactive referee delegation
model [CRR11], previously proposed for other blockchain applications [BGB17,TR]. In this model,
the prover provides a proof along with a succinct commitment to the verifier’s execution trace. A
challenger that disagrees with the computation also commits to his computation trace and the two
parties engage in an interactive binary search to find the first point of divergence in the computa-
tion. The smart contract can then execute this single computation step and punish the party which
provided a faulty execution trace. The intriguing property of this protocol is that even when a proof
is challenged, the smart contract only needs to verify a single computation step, i.e. a single gate
of the verification circuit. In combination with small Bulletproofs, this can enable more complex
but privacy preserving smart contracts. Like in other applications, these NIZK proofs would ben-
efit from the MPC protocol that we present in Section 4.5 to generate Bulletproofs distributively.
Consider an auction smart contract where bidders in the first round submit commitments to bids
and in the second round open them. A NIZK can be used to prove properties about the bids,
e.g. they are in some range, without revealing them. Using Bulletproofs’ MPC multiple bidders
can combine their Bulletproofs into a single proof. Furthermore, the proof will hide which bidder
submitted which bid.

1.2.5 Short Non-Interactive Proofs for Arithmetic Circuits without a Trusted Setup

Non-interactive zero-knowledge protocols for general statements are not possible without using a
common reference string, which should be known by both the prover and the verifier. Many efficient
non-interactive zero-knowledge proofs and arguments for arithmetic circuit satisfiability have been
developed [Mic94, KP95,GS08, GGPR13,BSCG™13,BSBTHR18], and highly efficient protocols are
known. However, aside from their performance, these protocols differ in the complexity of their
common reference strings. Some, such as those in [BSCG113], are highly structured, and sometimes
feature a trapdoor, while some are simply chosen uniformly at random. Security proofs assume
that the common reference string was honestly generated. In practice, the common reference string
can be generated by a trusted third party, or using a secure multi-party computation protocol. The
latter helps to alleviate concerns about embedded trapdoors, as with the trusted setup ceremony
used to generate the public parameters for [BSCGT14].

Zero-knowledge SNARKS have been the subject of extensive research [Grol10,BCCT12,GGPR13,
BCCT13,PHGR16,BSCG*13,Grol6]. They generate constant-sized proofs for any statement, and
have extremely fast verification time. However, they have highly complex common reference strings
which require lengthy and computationally intensive protocols [BGG17] to generate distributively.
They also rely on strong unfalsifiable assumptions such as the knowledge-of-exponent assumption.

A uniformly-random common reference string, on the other hand, can be derived from common
random strings, like the digits of 7 or by assuming that hash functions behave like a random oracle.
Examples of non-interactive protocols that do not require a trusted setup include [Mic94, BCC*16,
BCG*17b,BSBC*17,BSBTHRI13|.

Ben-Sasson et al. present a proof system [BCG'17a] and implementation [BSBC*17] called

Scalable Computational Integrity (SCI). While SCI has a simple setup, and relies only on collision-
resistant hash functions, the system is not zero-knowledge and still experiences worse performance
than [BSCGT13,BCC*16]. The proof sizes are roughly 42 MB large in practice for a reasonable
circuit. In subsequent work Ben-Sasson et al. presented STARKs [BSBTHRI18]|, which are zero-
knowledge and more efficient than SCI. However even with these improvements the proof size is
still over 200 KB (and grows logarithmically) at only 60-bit security for a circuit of size 2'7. A
Bulletproof for such a circuit at twice the security would be only about 1 KB. Constructing STARKSs
is also costly in terms of memory requirements because of the large FFT that is required to make
proving efficient.

Ames et al. [AHIV17] presented a proof system with linear verification time but only square
root proof size building on the MPC in the head technique. Wahby [WTTW] recently present
a cryptographic zero-knowledge proof system which achieves square root verifier complexity and
proof size based on the proofs for muggles [GKRO08] techniques in combination with a sub-linear
polynomial commitment scheme.

1.3 Additional Related Work

Much of the research related to electronic payments that predates Bitcoin [Nak08] focused on
efficient anonymous and confidential payments [CHLO05, Cha82] . With the advent of blockchain-
based cryptocurrencies, the question of privacy and confidentiality in transactions has gained a
new relevance. While the original Bitcoin paper [Nak08] claimed that Bitcoin would provide
anonymity through pseudonymous addresses early work on Bitcoin showed that the anonymity
is limited [MPJ*T13, AKR"13]. Given these limitations, various methods have been proposed to
help improve the privacy of Bitcoin transactions. CoinJoin [Max13], proposed by Maxwell, allows
users to hide information about the amounts of transactions by merging two or more transactions.
This ensures that among the participants who join their transactions, it is impossible to tell which
transaction inputs correspond to which transaction outputs. However, users do require some way
of searching for other users, and furthermore, should be able to do so without relying on a trusted
third party. CoinShuffle [RMSK14] tried to fulfill this requirement by taking developing the ideas
of CoinJoin and proposing a new Bitcoin mixing protocol which is completely decentralized. Mon-
ero [Mon] is a cryptocurrency which employs cryptographic techniques to achieve strong privacy
guarantees. These include stealth addresses, ring-signatures [vS13], and ring confidential transac-
tions [NM*16]. ZeroCash [BSCG™'14] offers optimal privacy guarantees but comes at the cost of
expensive transaction generation and the requirement of a trusted setup.

Range proofs. Range proofs are proofs that a secret value, which has been encrypted or committed
to, lies in a certain interval. Range proofs do not leak any information about the secret value, other
than the fact that they lie in the interval. Lipmaa [Lip03] presents a range proof which uses integer
commitments, and Lagrange’s four-square theorem which states that every positive integer y can
be expressed as a sum of four squares. Groth [Gro05] notes that the argument can be optimized by
considering 4y + 1, since integers of this form only require three squares. The arguments require
only a constant number of commitments. However, each commitment is large, as the security of
the argument relies on the Strong RSA assumption. Additionally, a trusted setup is required to
generate the RSA modulus or a prohibitively large modulus needs to be used [San99]. Camenisch
et al. [CCSO08| use a different approach. The verifier provides signatures on a small set of digits.
The prover commits to the digits of the secret value, and then proves in zero-knowledge that the

value matches the digits, and that each commitment corresponds to one of the signatures. They
show that their scheme can be instantiated securely using both RSA accumulators [BdM93| and
the Boneh-Boyen signature scheme [BB04]. However, these range proofs require a trusted setup.
Approaches based on the n-ary digits of the secret value are limited to proving that the secret value
is in an interval of the form [O, nk — 1]. One can produce range proofs for more general intervals by
using homomorphic commitments to translate intervals, and by using a combination of two different
range proofs to conduct range proofs for intervals of different widths. However, [CLS10] presented
an alternative digital decomposition which enables an interval of general width to be handled using
a single range proof.

2 Preliminaries

Before we present Bulletproofs, we first review some of the underlying tools. In what follows, a
PPT adversary A is a probabilistic interactive Turing Machine that runs in polynomial time in the
security parameter A\. We will drop the security parameter A from the notation when it is implicit.

2.1 Assumptions

Definition 1 (Discrete Log Relation). For all PPT adversaries A and for all n > 2

$ n

G = Setup(1*), g1,...,9n < G; . i

P » Iy n) tda; #0 A git=1| < p(A)
al,...,anEZp<—A(Gagl,-'-79n) H

We say [], gi* = 1is a non trivial discrete log relation between g1, ..., g,. The Discrete Log
Relation assumption states that an adversary can’t find a non-trivial relation between randomly
chosen group elements. For n > 1 this assumption is equivalent to the discrete-log assumption.

2.2 Commitments

Definition 2 (Commitment). A non-interactive commitment scheme consists of a pair of proba-
bilistic polynomial time algorithms (Setup, Com). The setup algorithm pp < Setup(1?) generates
public parameters pp for the scheme, for security parameter X. The commitment algorithm Compy,
defines a function My, x Ry, — Cpp for message space My, randomness space Ry, and commitment

space Cpp, determined by pp. For a message v € My, the algorithm draws r & Rpp uniformly at
random, and computes commitment com = Compp(x; 7).

Definition 3 (Homomorphic Commitments). A homomorphic commitment scheme is a non-
interactive commitment scheme such that My, Ry, and Cpp are all abelian groups, and for all
x1,%2 € Mpp, 71,72 € Rpp, we have

Com(z1;71) + Com(ze; 1) = Com(z + 22571 + 72)

Definition 4 (Hiding Commitment). A commitment scheme is said to be hiding if for all PPT
adversaries A there ezists a negligible function () such that.

pp < Setup(1*);

$ $
Plo=1v (zg,71) € Mgp — A(pp),b < {0,1},r < R, | —
com = Com(zp;7),b < A(pp,com)

where the probability is over b,r,Setup and A. If u(A\) = 0 then we say the scheme is perfectly
hiding.

Definition 5 (Binding Commitment). A commitment scheme is said to be binding if for all PPT
adversaries A there exists a negligible function p such that.

pp < Setup(1*),
L0, L1,T0,T1 < A(pp

)]w(A)

P {Com(mo;ro) = Com(z1;71) A To # 21

where the probability is over Setup and A. If u(\) = 0 then we say the scheme is perfectly binding.

In what follows, the order p of the groups used is implicitly dependent on the security parameter
A to ensure that discrete log in these groups is intractable for PPT adversaries.

Definition 6 (Pedersen Commitment). My, Rpp = Z,, Cpp = G of order p.

Setup : g, h Liel
Com(z;7) = (97h")

Definition 7 (Pedersen Vector Commitment). My, = Ly, Rpp = Zp, Copp = G with G of order p

Setup: g = (gl,...,gn),hi((}
Com(x= (.’El,...,ﬂfn);’r‘) = h"g* = hTHZg;EZ eG

The Pedersen vector commitment is perfectly hiding and computationally binding under the
discrete logarithm assumption. We will often set » = 0, in which case the commitment is binding
but not hiding.

2.3 Zero-Knowledge Arguments of Knowledge

Bulletproofs are zero-knowledge arguments of knowledge. A zero-knowledge proof of knowledge is a
protocol in which a prover can convince a verifier that some statement holds without revealing any
information about why it holds. A prover can for example convince a verifier that a confidential
transaction is valid without revealing why that is the case, i.e. without leaking the transacted
values. An argument is a proof which holds only if the prover is computationally bounded and
certain computational hardness assumptions hold. We now give formal definitions.

We will consider arguments consisting of three interactive algorithms (I, P, V), all running in
probabilistic polynomial time. These are the common reference string generator K, the prover P,
and the verifier V. On input 1*, algorithm X produces a common reference string o. The transcript
produced by P and V when interacting on inputs s and ¢ is denoted by tr < (P(s), V(t)). We write
(P(s),V(t)) = b depending on whether the verifier rejects, b = 0, or accepts, b = 1.

Let R < {0,1}* x {0,1}* x {0,1}* be a polynomial-time-decidable ternary relation. Given o,
we call w a witness for a statement w if (o, u, w) € R, and define the CRS-dependent language

Lo={z|3w: (o,z,w) € R}
as the set of statements x that have a witness w in the relation R.

Definition 8 (Argument of Knowledge). The triple (IC,P,V) is called an argument of knowledge
for relation R if it satisfies the following two definitions.

Definition 9 (Perfect completeness). (P, V) has perfect completeness if for all non-uniform poly-
nomial time adversaries A

o — K1) _ 1
(u,w) < Ao) |
Definition 10 (Computational Witness-Extended Emulation). (P,V) has witness-extended emu-

lation if for all deterministic polynomial time P* there exists an expected polynomial time emulator
E such that for all interactive adversaries A there exists a negligible function pu(X\) such that

P [(o,u,w) ¢ R or (P(o,u,w),V(o,u)y =1

[B g(—,C(]_A),(u,S) <—A(0')7
P _A(t'r) - 1 t?" - <P*(Ua U, S),V(O-’ U)> :| -
] (D < (M)
ol Al =1 (u S)Kilfzéa)
A(tr is accepting = (o,u,w) € R) (t7:,w) — 50(70, u)

where the oracle is given by O = (P*(o,u,s),V(o,u)), and permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards. We can also define com-
putational witness-extended emulation by restricting to non-uniform polynomial time adversaries

A.

We use witness-extended emulation to define knowledge-soundness as used for example in
[BCC*16] and defined in [GIO8b, Lin03]. Informally, whenever an adversary produces an argu-
ment which satisfies the verifier with some probability, then there exists an emulator producing an
identically distributed argument with the same probability, but also a witness. The value s can
be considered to be the internal state of P*, including randomness. The emulator is permitted
to rewind the interaction between the prover and verifier to any move, and resume with the same
internal state for the prover, but with fresh randomness for the verifier. Whenever P* makes a
convincing argument when in state s, £ can extract a witness, and therefore, we have an argument
of knowledge of w such that (o, u,w) € R.

Definition 11 (Public Coin). An argument (P, V) is called public coin if all messages sent from the
verifier to the prover are chosen uniformly at random and independently of the prover’s messages,
i.e., the challenges correspond to the verifier’s randomness p.

An argument is zero knowledge if it does not leak information about w apart from what can
be deduced from the fact that (o, z,w) € R. We will present arguments that have special honest-
verifier zero-knowledge. This means that given the verifier’s challenge values, it is possible to
efficiently simulate the entire argument without knowing the witness.

Definition 12 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin argument (P,V)
is a perfect special honest verifier zero knowledge (SHVZK) argument for R if there exists a prob-
abilistic polynomial time simulator S such that for all interactive non-uniform polynomial time
adversaries A

Pr [(o,u,w) e R and A(tr) =1

0 K1), (u,w, p) < A(0),]
tr «— (P(o,u,w),V(o,u; p))

— Pr [(o,u,w) € R and A(tr) =1 tr — S(u, p)

o K1Y, (u,w, p) < A(0),]

10

where p is the public coin randomness used by the verifier.

We now define range proofs, which are proofs that the prover knows an opening to a commit-
ment, such that the committed value is in a certain range. Range proofs can be used to show that
an integer commitment is to a positive number or that two homomorphic commitments to elements
in a field of prime order will not overflow modulo the prime when they are added together.

Definition 13 (Zero-Knowledge Range Proof). Given a commitment scheme (Setup, Com) over a
message space My, which is a set with a total ordering, a Zero-Knowledge Range Proof is a protocol
for the following relation:

{(1/\7 pp,com e Cp,p, [,re My, 5 x,7): com = Com(z;r) A ISz <r A ppe Setup(l)‘)}.

2.4 Notation

Let G denote a cyclic group of prime order p, and let Z, denote the ring of integers modulo p. Let
G" and Zj; be vector spaces of dimension n over G and Z,, respectively. Let Z; denote Z,\{0}.
Generators of G are denoted by g, h,v,u € G. Group elements which represent commitments are
capitalized and blinding factors are denoted by Greek letters, i.e. C = g®h® € G is a Pedersen com-
mitment to a. If not otherwise clear from context z,y, z € Z; are uniformly distributed challenges.

& Z, denotes the uniform sampling of an element from Z7. Throughout the paper, we will also
be using vector notations defined as follows. Bold font denotes vectors, i.e. a € F™ is a vector
with elements aq,...,a, € F. Capitalized bold font denotes matrices, i.e. A € F™*™ is a matrix
with n rows and m columns such that a; ; is the element of A in the ith row and jth column. For
a scalar ¢ € Z, and a vector a € Z;, we denote by b = c¢-a € Zj the vector where b; = c- a;.
Furthermore, let (a,b) = > | a; - b; denotes the inner product between two vectors a,b € F" and
aob = (aj-by,...,a,-b,) € F" the Hadamard product or entry wise multiplication of two vectors.

We also define vector polynomials p(X) = Z?:o pi - X' € Z?[X] where each coefficient p; is a
vector in Zy. The inner product between two vector polynomials [(X),r(X) is defined as

d i
AX),r(X)) =3, Y iy - X e Z,[X] (1)

i=0;=0

Let ¢(X) = {1(X),r(X)), then the inner product is defined such that ¢(z) = {I(x),r(x)) holds for
all x € Zy, i.e. evaluating the polynomials at x and then taking the inner product is the same as
evaluating the inner product polynomial at x.

For a vector g = (g1,...,9,) € G" and a € Z we write C' = g* = [[_, ¢/* € G. This quantity
is a binding (but not hiding) commitment to the vector a € Z;. Given such a commitment C' and
a vector b € Zj with non-zero entries, we can treat C' as a new commitment to a o b. To so do,

~1
define ¢} = ggbi) such that C = [T5 (g b. The binding property of this new commitment is

inherited from the old commitment.
Let a | b denote the concatenation of two vectors: if a € Zj and b € Z then a | b € Z;*™. For
0 < ¢ < n, we use Python notation to denote slices of vectors:

g = (a‘lv s ,CL@) € Fe?) = (af-i-l? SRR an) € Fn_f'

11

For k € Zj, we use k™ to denote the vector containing the first n powers of k, i.e.
— 2 —1 *
K" = (L, k, k... k") e (Z)"™.

For example, 2" = (1,2,4,...,2"). Equivalently k™" = (k=1)" = (1,k~%,... k~"F1),
Finally, we write {(Public Input; Witness) : Relation} to denote the relation Relation using the
specified Public Input and Witness.

3 Improved Inner-Product Argument

Bootle et al. [BCCT16] introduced a communication efficient inner-product argument and show how
it can be leveraged to construct zero-knowledge proofs for arithmetic circuit satisfiability with low
communication complexity. The argument is an argument of knowledge that the prover knows the
openings of two binding Pedersen vector commitments that satisfy a given inner product relation.

We reduce the communication complexity of the argument from 6logy(n) in [BCCT16] to only
2logy(n), where n is the dimension of the two vectors. We achieve this improvement by modifying
the relation being proved. Our argument is sound, but is not zero-knowledge. We then show that
this protocol gives a public-coin communication efficient zero-knowledge range proof on a set of
committed values, and a zero-knowledge proof system for arbitrary arithmetic circuits (Sections 4
and 5). By applying the Fiat-Shamir heuristic we obtain a short non-interactive proof (Section 4.4).

Overview. The inner product argument takes as input a binding vector commitment to the two
vectors a,b € Zy, as well as ¢ € Z,, and proves that ¢ = (a,b). Logarithmic communication is
achieved by running log, n iterations, where in each iteration the dimension of a and b is halved.

To give some intuition, consider a simple example: for independent generators gi, g2, suppose
the verifier is given g1, g2 and a binding commitment P = gy*g3*> € G. The prover can prove
knowledge of ai,as by sending both values to the verifier, but we can do better. Suppose the
verifier has R = ¢{? and L = g5*. It sends to the prover a random challenge x € Z,, and they both

compute:
gl = ggw_l)gg and P = L(xz) .P. R(ac72)‘

A simple calculation shows that P’ = (¢/)?*+%22 ' Now, it can be shown that the prover can
prove knowledge of ai, as by simply sending @’ = a1 -z +as -z € Zy, to the verifier. The verifier
accepts if P’ = (¢/)%. This @’ is half the size of (a1, as).

In this example the prover sends L, R and a’ to the verifier, so this proof of knowledge is no
better then sending aq, as. However, this technique generalizes to more dimensions. When the two
dimensional vector (aj,az) is replaced by an n dimensional vector a € Z,, the prover can prove
knowledge of a by only sending L, R € G and a vector of dimension n/2. This is a significant savings
over sending all of a to the verifier. We can then use the same communication efficient method to
recursively prove knowledge of the vector of dimension n/2. The resulting logs(n) round protocol
generates only O(logy(n)) traffic.

Moreover, we show in Protocol 2 that this can be done for two vectors in parallel such that the
inner product of the two vectors only changes by a correction factor that the verifier can compute
itself from the challenge. This lets the prover convince the verifier that the inner-product of two
committed vectors a, b is a value c.

The inner-product argument. The inputs to the inner product argument are independent
generators g,h € G", a scalar ¢ € Zp,, and the binding vector commitment P € G such that

12

Vip iz <7 (4)
V“p — P|P X (5)
P =Py (6)

(7)

Run Protocol 2 on Input (g, h,u”, P’;a,b)

Protocol 1: Proof system for Relation (2) using Protocol 2. Here u € G is a fixed group element
with an unknown discrete-log relative to g, h € G™.

P = g?hP. The argument demonstrates that (a, b) = ¢, assuming that it is hard to find non-trivial
discrete log relations between g, h. This is implied if g, h are chosen randomly from G and the
discrete logarithm assumption holds in G. We assume that n is a power of 2. When using the
argument we can easily pad the circuit/range proof construction to ensure that this holds.

With this setup, the inner product protocol, described in Protocol 1, is an efficient proof system
for the following relation:

{(g,heG”, PeG, ceZy; a,beZy): Pzgathc=<a,b>} (2)

Protocol 1 uses internally a fixed group element v € G that has an unknown discrete-log relative
to g,h. The protocol’s total communication is 2 - [logy(n)] elements in G plus 2 elements in
Zy. The prover’s work is dominated by 4n group exponentiations and the verifier’s work by 2n
exponentiations. For more details on our implementation and its optimizations see Section 6.

We describe the protocol in two parts. Protocol 2 is a proof system for the following relation:

{(gheG",u,PeG;abeZ): P = gahbu<a:b>} 3)
Then Protocol 1 uses the proof system for Relation (3) to build a new proof system for Relation (2).

Theorem 1 (Inner-Product Argument). The argument presented in Protocol 1 for the relation (2)
has perfect completeness and statistical witness-extended-emulation for either extracting a non-
trivial discrete logarithm relation between g, h,u or extracting a valid witness a, b.

The proof for Theorem 1 is given in Appendix B.

3.1 Inner-Product Verification through Multi-Exponentiation

Protocol 2 has a logarithmic number of rounds and in each round the prover and verifier compute
a new set of generators g’,h’. This requires a total of 4n exponentiations: n in the first round,
5 in the second and 5i%7 in the jth. We can reduce the number of exponentiations to a single
multi-exponentiation of size 2n by delaying all the exponentiations until the last round. This
technique provides a significant speed-up if the proof is compiled to a non interactive proof using
the Fiat-Shamir heuristic (as in Section 4.4).

Let g and h be the generators used in the final round of the protocol and z; be the challenge

from the jth round. In the last round the verifier checks that g*hPu®® = P, where a,b € Ly, are

13

input: (g,heG",u,PeG; a,beZy)
Pip’s input: (g, h,u, P,a,b)
Vip’s input: (g, h,u, P)
output:{Vjp accepts or Vip rejects}
ifn=1:
Pp —Vip:a,beZ,
Vip computes ¢ = a - b and checks if P = g*hbu’:

if yes, Vjp accepts; otherwise it rejects

else: (n > 1)

Pip computes:

Ccr, = <a[:n/], b[n’]> € Zp
CR = <a[n/:], b[n/]> € Zp

_ 21 P
L= 8] h[:n,] ult eG

_ 2P e
R = 8] h[n,:] u“teG

Vip > Pp:x

Pip and Vip compute:
g =gl o8l G
h' =hf johf, eG"
P = L"PR" " €G
Pip computes:
a' = ap, -z +ap,- = Zg/
b’ =bp, 27 + by ae ZZ’

recursively run Protocol 2 on input (g’,h’,u, P’;a’,b’)

Protocol 2: Improved Inner-Product Argument

14

given by the prover. By unrolling the recursion we can express these final g and h in terms of the
input generators g, h € G" as:

g=ﬁgfieG, hzﬁhysie(ﬁ}
-1 i=1

where s = (s1,...,8n) € Zj only depends on the challenges (1, ..., Tiog,(n)). Thescalars s1,..., s, €
Zy, are calculated as follows:

logs (1)

. b - . 1 the jthbit of i —1is 0

fori=1,...,n: s = . where b(i,7) =
‘ 31:[1 J (i,5) { —1 otherwise

Now the entire verification check in the protocol reduces to the following single multi-exponentiation
of size 2n + 2logy(n) + 1:

-1 ? logy(n) z2 x7?
g b utt=p.] L R .
j=1

Because a multi-exponentiation can be done much faster than n separate exponentiations, as we
discuss in Section 6, this leads to a significant savings.

4 Range Proof Protocol with Logarithmic Size

We now present a novel protocol for conducting short and aggregatable range proofs. The protocol
uses the improved inner product argument from Protocol 1. First, in Section 4.1, we describe how
to construct a range proof that requires the verifier to check an inner product between two vectors.
Then, in Section 4.2, we show that this check can be replaced with an efficient inner-product
argument. In Section 4.3, we show how to efficiently aggregate m range proofs into one short proof.
In Section 4.4, we discuss how interactive public coin protocols can be made non-interactive by
using the Fiat-Shamir heuristic, in the random oracle model. In Section 4.5 we present an efficient
MPC protocol that allows multiple parties to construct a single aggregate range proof. Finally, in
Section 4.6, we discuss an extension that enables a switch to quantum-secure range proofs in the
future.

4.1 Inner-Product Range Proof

We present a protocol which uses the improved inner-product argument to construct a range proof.
The proof convinces the verifier that a commitment V' contains a number v that is in a certain
range, without revealing v. Bootle et al. [BCC*16] give a proof system for arbitrary arithmetic
circuits, and in Section 5 we show that our improvements to the inner product argument also
transfer to this general proof system. It is of course possible to prove that a commitment is in a
given range using an arithmetic circuit, and the work of [BCC*16] could be used to construct an
asymptotically logarithmic sized range proof (in the length of v). However, the circuit would need
to implement the commitment function, namely a multi-exponentiation for Pedersen commitments,
leading to a large complex circuit.

15

We construct a range proof more directly by exploiting the fact that a Pedersen commitment V'
is an element in the same group G that is used to perform the inner product argument. We extend
this idea in Section 5 to construct a proof system for circuits that operate on committed inputs.

Formally, let v € Z,, and let V € G be a Pedersen commitment to v using randomness . The
proof system will convince the verifier that v € [0,2" — 1]. In other words, the proof system proves
the following relation which is equivalent to the range proof relation in Definition 13:

g heGV.n;, v,yeZ,) :V=hg"rvel0,2" —1]}. 34
P

Let ap = (a1,...,ay) € {0,1}" be the vector containing the bits of v, so that {(ar,2") = v. The
prover P commits to aj using a constant size vector commitment A € G. It will convince the

verifier that v is in [0, 2™ — 1] by proving that it knows an opening aj, € Zy of A and v, € Z; such
that V = h7¢¥ and

(ar,2"y=v and apoar=0" and arp=ap—1" (35)

This proves that ai,...,a, are all in {0, 1}, as required and that ay, is composed of the bits of v.
To prove that the three conditions in (35) hold, we use the following observation: to prove that
a committed vector b € Zj satisfies b = 0™ it suffices for the verifier to send a random y € Z, to
the prover and for the prover to prove that (b,y™) = 0. If b % 0" then the equality will hold with
at most negligible probability n/p. Hence, if (b, y™) = 0 the verifier is convinced that b = 0™.
Using this observation, and using a random y € Z, from the verifier, the prover can prove
that (35) holds by proving that

(ap,2")=v and {ar, agoy")=0 and {(ar—1"—agr, y")=0. (36)

We can combine these three equalities into one using the same technique: the verifier chooses a
random z € Z, and then the prover proves that

22 {ap, 2™y +z2-{(ap —1" —agr, y") +{a., agoy™) = 2% - 0.

This equality can be re-written as:
<aL—z-1" , y”o(aR—i-z-l”)+z2-2n>:z2-v—|—5(y,z) (37)

where §(y, 2) = (2—2%)-(1", y")—23(1",2") € Z, is a quantity that the verifier can easily calculate.
We thus reduced the problem of proving that (35) holds to proving a single inner-product identity.

If the prover could send to the verifier the two vectors in the inner product in (37) then the
verifier could check (37) itself, using the commitment V' to v, and be convinced that (35) holds.
However, these two vectors reveal information about ay, and therefore the prover cannot send them
to the verifier. We solve this problem by introducing two additional blinding terms sz, sg € Z; to
blind these vectors.

Specifically, to prove the statement (34), P and V engage in the following zero knowledge
protocol:

16

Pip on input v,y computes: (38)
ar €{0,1}" s.t(ag, 2"y =v (39)
ar = aj, — 1" e ZZ (40)
ad Ly, (41)
A =h%*"h? e G /) commitment to ap and ap (42)
SL,SR & Z, // choose blinding vectors sy, Sp (43)
$
p =Ly (44)
S = h’g’h®t e G)/ commitment to s;, and Sg (45)
Po>V:iAS (46)
V:iy,z & Z, // challenge points (47)
V—->P:yz (48)

With this setup, let us define two linear vector polynomials [(X),r(X) in Zy[X], and a quadratic
polynomial ¢(X) € Z,[X] as follows:

I(X)=(a—2-1")+s.- X € Z,[X]
r(X)=y"o(ag +2z-1" +sp-X) 4 22-2" € Zy[X]
H(X) = AX),r(X))=to+t1- X +1t2- X2 € Z,[X]

where the inner product in the definition of £(X) is as in (1). The constant terms of [(X) and r(X)
are the inner product vectors in (37). The blinding vectors s;, and sg ensure that the prover can
publish /(x) and r(z) for one x € Z; without revealing any information about az, and ag.

The constant term of ¢(x), denoted ¢, is the result of the inner product in (37). The prover
needs to convince the verifier that this o satisfies (37), namely

to=v-2°+6(y,2).

To so do, the prover commits to the remaining coefficients of ¢(X), namely ¢1,t2 € Z,. It then
convinces the verifier that it has a commitment to the coefficients of ¢(X) by checking the value of
t(X) at a random point x € Z;. Specifically, they do:

17

Pip computes: 49
71,72 & Ly 50
Ti=g"h"eG, i=/{1,2} /) commit to ty,t 51

P -V 11,1 52

(49)
(50)
(51)
(52)
viedz (53)
Vo>P:x // a random challenge (54)
Pip computes: (55)
l=l(z)=ar—2z-1"+s, -v€Z, (56)
(57)

(58)

(59)

(60)

(61)

59
60

61

rzr(x)=y"o(aR+z-1"+SR'Q:)+22-2”€ZZ

i=ryez, /b=t

To=Tat 4T w42 yED // blinding value for t

p=o+p -zl /) a,p blind A, S
P-V:ir,utlr

The verifier checks that 1 and r are in fact I(x) and r(x) and checks that ¢(z) = {1,r). In order to
construct a commitment to ag oy’ the verifier switches the generators of the commitment from h €
G™ to b’ = h®™"), This has the effect that A is now a vector commitment to (ay, ag oy™) with
respect to the new generators (g, h’, h). Similarly S is now a vector commitment to (s;, sg o y™).
The remaining steps of the protocol are:

= h"eG, Viell,n] /0 = (g0) (62)
gthm Ly e Ty - T2”32 /) check that t = t(x) = to + t1x + tax® (63)
P=hpt-A-8%.- g~ (h/)z-y”+z2-2" eG /) compute a commitment to l(x),r(x) (64)
r gl (n)* // check that 1,r are correct (65)
t={,ryeZ, // check that t is correct (66)

Equation (63) is the only place where the verifier uses the given Pedersen commitment V' to v.

Corollary 2 (Range Proof). The range proof presented in Section 4.1 has perfect completeness,
perfect honest verifier zero-knowledge and computational special soundness.

Proof. The range proof is a special case of the aggregated range proof from section 4.3 with m = 1.

This is therefore a direct corollary of Theorem 3. 0

4.2 Logarithmic Range Proof

Finally, we can describe the efficient range proof that uses the improved inner product argument.
In the range proof protocol from Section 4.1, P transmits 1 and r, whose size is linear in n. Our
goal is a proof whose size is logarithmic in n.

18

We can eliminate the transfer of 1 and r using the inner-product argument from Section 3.
These vectors are not secret and hence a protocol the only provides soundness is sufficient.

To use the inner-product argument observe that verifying (65) and (66) is the same as verifying
that the witness 1, r satisfies the inner product relation (2) on public input (g, h', P, f). That is,
P € G is a commitment to two vectors 1,r € Z; whose inner product is t. We can therefore replace
(61) with a transfer of (7, u,1), as before, and an execution of an inner product argument. Then
instead of transmitting 1 and r, which has a communication cost of 2-n elements, the inner-product
argument transmits only 2 - [logy(n)] + 2 elements. In total, the prover sends only 2 - [logy(n)] + 4
group elements and 5 elements in Z,,.

4.3 Aggregating Logarithmic Proofs

In many of the range proof applications described in Section 1.2, a single prover needs to perform
multiple range proofs at the same time. For example, a confidential transaction often contains
multiple outputs, and in fact, most transactions require a so-called change output to send any
unspent funds back to the sender. In Provisions [DBB*15] the proof of solvency requires the
exchange to conduct a range proof for every single account. Given the logarithmic size of the range
proof presented in Section 4.2, there is some hope that we can perform a proof for m values which
is more efficient than conducting m individual range proofs. In this section, we show that this can
be achieved with a slight modification to the proof system from Section 4.1.
Concretely, we present a proof system for the following relation:

{(9h € G, VeG™ ; v,yeZ) :V; = high av; € [0,2" —1] Vj e [1,m]} (67)

The prover is very similar to the prover for a simple range proof with n - m bits, with the
following slight modifications. In line (39), the prover should compute aj € Zy™ such that
2", ap[(j-1)m:jm-1]) = v; for all j in [1,m], i.e. ar is the concatenation of all of the bits for
every v;. We adjust r(X) accordingly so that

r(X) =y" ™o (ag+2- 1" +sp- X) + > 2 (00—1)'” | 2 | o<m—f'>'") (68)
j=1

In the computation of 7., we need to adjust for the randomness of each commitment Vj, so that
Te =TI T+ T 22+ 23”21 2149 -7y;. Further, d(y, z) is updated to incorporate more cross terms.

8y, 2) = (2 = 2%) - (A" y" ™) = 3112
j=1

The verification check (63) needs to be updated to include all the V; commitments.
ginme L) e e g

Finally, we change the definition of P (64) such that it is a commitment to the new r.

P =hrAST . g% G A H h
j=1

Zitl.gn
[G—1)m: jom—1]

19

The aggregated range proof which makes use of the inner product argument uses 2- [logy(n-m)|+4
group elements and 5 elements in Z,. Note that the proof size only grows by an additive term of
2 -logy(m) when conducting multiple range proofs as opposed to a multiplicative factor of m when
creating m independent range proofs.

Theorem 3. The aggregate range proof presented in Section 4.3 has perfect completeness, perfect
honest verifier zero-knowledge and computational special soundness.

The proof for Theorem 3 is presented in Appendix C. It is analogous to the proof of Theorem 4
which is described in greater detail in Appendix D.

4.4 Non-Interactive Proof through Fiat-Shamir

So far we presented the proof as an interactive protocol with a logarithmic number of rounds.
The verifier is a public coin verifier, as all the honest verifier’s messages are random elements
from Z;. We can therefore convert the protocol into a non-interactive protocol that is secure and
full zero-knowledge in the random oracle model using the Fiat-Shamir heuristic [BR93]. All random
challenges are replaced by hashes of the transcript up to that point. For instance y = H(A, S) and
z=H(A,S,y)

To avoid a trusted setup we can use such a hash function to generate the public parameters
g,h, g, h from a small seed. The hash function needs to map from {0,1}* to G\{1}, which can be
built as in [BLS01]. This also makes it possible to provide random access into the public parameters.
Alternatively, a common random string can be used.

4.5 A Simple MPC Protocol for Bulletproofs

In several of the applications described in Section 1.2, the prover could potentially consist of multiple
parties who each want to generate a single range proof. For instance, multiple parties may want
to create a single joined confidential transaction, where each party knows some of the inputs and
outputs and needs to create range proofs for their known outputs. The joint transaction would not
only be smaller than the sum of multiple transactions, it would also hide which inputs correspond to
which outputs and provide some level of anonymity. These kinds of transactions are called CoinJoin
transactions [Max13]. In Provisions, an exchange may distribute the private keys to multiple servers
and split the customer database into separate chunks, but it still needs to produce a single short
proof of solvency. Can these parties generate one Bulletproof without sharing the entire witness
with each other? The parties could certainly use generic multi-party computation techniques to
generate a single proof, but this might be too expensive and incur significant communication costs.
This motivates the need for a simple MPC protocol specifically designed for Bulletproofs which
requires little modification to the prover and is still efficient.

Note that for aggregate range proofs, the inputs of one range proof do not affect the output
of another range proof. Given the composable structure of Bulletproofs, it turns out that m
parties each having a Pedersen commitment (Vj);", can generate a single Bulletproof that each
Vi commits to a number in some fixed range. The protocol either uses a constant number of
rounds but communication that is linear in both m and the binary encoding of the range, or it
uses a logarithmic number of rounds and communication that is only linear in m. We assume for
simplicity that m is a power of 2, but the protocol could be easily adapted for other m. We use

20

the same notation as in the aggregate range proof protocol, but use k£ as an index to denote the
kth party’s message. That is A%) is generated just like A but using only the inputs of party k.

The MPC protocol works as follows, we assign a set of distinct generators (g("“),h("“))?:1 to
each party and define g as the interleaved concatenation of all g*¥) such that g; = g[((i;l) mod m+1)
Define h and h® in an analogous way.

We first describe the protocol with linear communication. In each of the 3 rounds of the
protocol, the ones that correspond to the rounds of the range proof in Section 4.1, each party
simply generates its part of the proof, i.e. the A(k),S("‘);Tl(k),TQ(k);Tg(;k),u("’),f(k),l(k),r(k) using
its inputs and generators. These shares are then sent to a dealer (which could be one of the
parties), who simply adds them homomorphically to generate the respective proof component, e.g.

A= Hﬁc:l A®) and 7, = 22:1 ngk). In each round, the dealer generates the challenges using the
Fiat-Shamir heuristic and the combined proof components and sends them to each party. Finally,
each party sends 1%) r(¥) to the dealer who computes L, r as the interleaved concatenation of the
shares. The dealer runs the inner product argument and generates the final proof. The protocol
is complete as each proof component is simply the (homomorphic) sum of each parties’ proof
components, and the challenges are generated as in the original protocol. It is also secure against
honest but curious adversaries as each share constitutes part of a separate zero-knowledge proof.

The communication can be reduced by running a second MPC protocol for the inner product
argument. The generators were selected in such a way that up to the last log, (1) rounds each parties’
witnesses are independent and the overall witness is simply the interleaved concatenation of the
parties’ witnesses. Therefore, parties simply compute L®) R%) in each round and a dealer computes
L, R as the homomorphic sum of the shares. The dealer then again generates the challenge and
sends it to each party. In the final round the parties send their witness to the dealer who completes
Protocol 2. A similar protocol can be used for arithmetic circuits if the circuit is decomposable
into separate independent circuits. Constructing an efficient MPC protocol for more complicated
circuits remains an open problem.

4.6 Perfectly Binding Commitments and Proofs

Bulletproofs, like the range proofs currently used in confidential transactions, are computationally
binding. An adversary that could break the discrete logarithm assumption could generate accept-
able range proofs for a value outside the correct range. On the other hand, the commitments are
perfectly hiding and Bulletproofs are perfect zero-knowledge, so that even an all powerful adver-
sary cannot learn which value was committed to. Commitment schemes which are simultaneously
perfectly-binding and perfectly-hiding commitments are impossible, so when designing commitment
schemes and proof systems, we need to decide which properties are more important. For cryptocur-
rencies, the binding property is more important than the hiding property [RM]. An adversary that
can break the binding property of the commitment scheme or the soundness of the proof system
can generate coins out of thin air and thus create uncontrolled but undetectable inflation rendering
the currency useless. Giving up the privacy of a transaction is much less harmful as the sender of
the transaction or the owner of an account is harmed at worst. Unfortunately, it seems difficult to
create Bulletproofs from binding commitments. The efficiency of the system relies on vector com-
mitments which allow the commitment to a long vector in a single group element. By definition,
for perfectly binding commitment schemes, the size of the commitment must be at least the size of
the message and compression is thus impossible. The works [GH98, GVW02] show that in general,

21

interactive proofs cannot have communication costs smaller than the witness size, unless some very
surprising results in complexity theory hold.

While the discrete logarithm assumption is believed to hold for classical computers, it does
not hold against a quantum adversary. It is especially problematic that an adversary can create a
perfectly hiding UTXO at any time, planning to open to an arbitrary value later when quantum
computers are available. To defend against this, we can use the technique from Ruffing and Mala-
volta [RM] to ensure that even though the proof is only computationally binding, it is later possible
to switch to a proof system that is perfectly binding and secure against quantum adversaries. In
order to do this, the prover simply publishes g7, which turns the Pedersen commitment to v into
an ElGamal commitment. Ruffing and Malavolta also show that given a small message space, e.g.
numbers in the range [0,2"], it is impossible for a computationally bounded prover to construct a
commitment that an unbounded adversary could open to a different message in the small message
space.

Note that the commitment is now only computationally hiding, but that switching to quantum-
secure range proofs is possible. Succinct quantum-secure range proofs remain an open problem, but
with a slight modification, the scheme from Poelstra et al. [PBFT] can achieve statistical soundness.
Instead of using Pedersen commitments, we propose using ElGamal commitments in every step of
the protocol. An ElGamal commitment is a Pedersen commitment with an additional commitment
g" to the randomness used. The scheme can be improved slightly if the same ¢" is used in multiple
range proofs. In order to retain the hiding property, a different h must be used for every proof.

5 Zero-Knowledge Proof for Arithmetic Circuits

Bootle et al. [BCC'16] present an efficient zero-knowledge argument for arbitrary arithmetic circuits
using 6 logy(n)+ 13 elements, where n is the multiplicative complexity of the circuit. We can use our
improved inner product argument to get a proof of size 2 log,(n)+ 13 elements, while simultaneously
generalizing to include committed values as inputs to the arithmetic circuit. Including committed
input wires is important for many applications (notably range proofs) as otherwise the circuit would
need to implement a commitment algorithm. Concretely a statement about Pedersen commitments
would need to implement the group exponentiation for the group that the commitment is an element
of.

Following [BCC*16], we present a proof for a Hadamard-product relation. A multiplication
gate of fan-in 2 has three wires; ‘left’ and ‘right’ for the input wires, and ‘output’ for the output
wire. In the relation, ay is the vector of left inputs for each multiplication gate. Similarly, ar
is the vector of right inputs, and ap = ay o ar is the vector of outputs. [BCC"16] shows how
to convert an arbitrary arithmetic circuit with n multiplication gates into a relation containing a
Hadamard-product as above, with an additional (< 2 - n linear constraints of the form

(Wrg,an) +{Wrg,ar) +{Wo,4,20) = ¢4

for 1 < ¢ < Q, with wp 4, Wr 4, Wo 4 € Zy and cq € Zj.

We include additional commitments V; as part of our statement, and give a protocol for a
more general relation, where the linear consistency constraints include the openings v; of the
commitments V;. For simplicity and efficiency we present the scheme with V; being Pedersen
commitments. The scheme can be trivially adapted to work with other additively homomorphic
schemes by changing the commitments to ¢(X) and adapting the verification in line (86).

22

5.1 Inner-Product Proof for Arithmetic Circuits

As with the range proof we first present a linear proof system where the prover sends two vectors
that have to satisfy some inner product relation. In Section 5.2 we show that the inner product
relation can be replaced with an efficient inner product argument which yields short proofs for
arbitrary circuits where input wires can come from Pedersen commitments. Formally we present a
proof system for the following relation.

{(,heG,g,heG", VeG™, WL, Wg, Wg e ZEX",WV € ngm,c € Zg;aL,amao €Zy,v,yeLy):
V;=g"hViVje[l,m]napocar=ao A Wr-ar,+Wgr-ap+Wp-ap0 =Wy -v+c}

(69)

Let Wy € ZI? “™ be the weights for a commitment Vj. The presented proof system only works for

relations where Wy is of rank m, i.e. the columns of the matrix are all linearly independent. This

restriction is minor as we can construct commitments that fulfill these linearly dependent constraints

as a homomorphic combination of other commitments. Consider a vector w{, = a- Wy € Zy' for a

vector of scalars a € Zg then we can construct commitment V' = v&Wv. Note that if the relation
holds then we can conclude that (wy, ;,ar)+{Wgj,ar)+{Wo j,a0) = (Wi, vy+c. The protocol is
presented in Protocol 3. It is split into two parts. In the first part P commits to {(X), r(X),#(X) in
the second part P convinces V that the polynomials are well formed and that {I(X), (X)) = t(X).

Theorem 4. The proof system presented in Protocol 3 has perfect completeness, perfect honest
verifier zero-knowledge and computational special soundness.

The proof of Theorem 4 is presented in Appendix D.

5.2 Logarithmic-Sized Protocol

As for the range proof, we can reduce the communication cost of the protocol by using the inner
product argument. Concretely transfer (78) is altered to simply 7., 4, and additionally P and V
engage in an inner product argument on public input (g, h’, g, P- h™*,1). Note that the statement
proven is equivalent to the verification equations (88) and (84). The inner product argument
has only logarithmic communication complexity and is thus highly efficient. Note that instead of
transmitting 1, r the inner product argument only requires communication of 2-[log,(2-n)] elements
instead of 2 - n. In total the prover sends 2 - [logy(n)] + 9 group elements and 6 elements in Z,.
Using the Fiat-Shamir heuristic as in 4.4 the protocol can be turned into an efficient non interactive
proof. We report implementation details and evaluations in Section 6.

Theorem 5. The arithmetic circuit protocol using the improved inner product argument (Proto-
col 2) has perfect completeness, statistical zero-knowledge and computational soundness under the
discrete logarithm assumption.

Proof. Completeness follows from the completeness of the underlying protocols. Zero-knowledge
follows from the fact that 1 and r can be efficiently simulated, and because the simulator can
simply run Protocol 2 given the simulated witness (I,r). The protocol also has a knowledge-
extractor, as the extractor of the range proof can be extended to extract 1 and r by calling the
extractor of Protocol 2. The extractor uses O(n?) valid transcripts in total, which is polynomial
in A if n = O(X). The extractor is thus efficient and either extracts a discrete logarithm relation
or a valid witness. However, if the generators g, h, g, h are independently generated, then finding

23

Input: (g,heG,gheG", W, Wg, Wo e ZZ*",
Wy € ngm,c € Zg;aL,aR,ao €Z,,yeZ)
P’s iDPUt: (g7h7g7h7WL7WR7WO7WV,C;aL7aR7307’Y)
V’s input: (g7h7g7h7WLawRaW07WV7c)
Output: {V accepts,V rejects }
P computes:
3

a,B,p < Zp

Ar = h%g* h?*? e G

Ao = hPgo e G

SL,SR ﬁ ZZ

S =hPg’h®F € G
P-V: A[,Ao,s’
V:iy,z & Zy
V->P:yz
P and V compute:

yn = (17y7y27 v 7yn71) € ZZ

1
Z?ﬁ =(z,2%,...,29) EZI(?

8(y,2) =y "o (221 Wg), 221!

[1:] [1:] "Wi)

‘P computes:
(X)=ar-X+ao-X>+y "o(z3] - Wg)- X
+s.-X? e Z2[X]
r(X)=y"oar - X —y"+z3; - (Wi X + Wo)
+y'osp- X% e Z7[X]

HX) = A0X), 7 (X)) = Yt X' € Z,[X]

w=W;p-a,+Wpgr-ar+ Wp-ap
to ={ar,agpoy”y —(ap,y") + <Z[Q1:§1,W> +0(y,2) € Zy
<7z, Vie[l,3,4,5,6]
T, = g%h™ Vie[l,3,4,5,6]
P—-V:T11,15,Ty,T5,T5

4
a

4
4

4
4

4

commit to ap,ar

commitment to ap

choose blinding vectors sy, Sgr

commitment to Sp, SR

challenge per witness
challenge per constraint

cross terms that are independent of the witness

/o ta=d(y,z) + <Z[Q1§1,c + Wy -v)

4

commitments to t1,t3,t4,15,t¢

Protocol 3: Part 1: Computing commitments to [(

24

X),r(X) and t(X)

V:xﬁZ;

V->P:x

P computes:
1=1(z) e Z,
r=r(z) €z,
t=0r)e7Z,

6
Te = Z T;

i=1,i#2

gt +:cz~<z[Q1:J]rl,WV Yy €L,

2 3
p=o-z+p-2°+p-x°€,
P—-V:ir,utlr

V computes and checks:

hy=h!

i+1

Vie [1,n]
Q+1

Wy = /"0 W

Wgr = gy_no(zﬁ:ﬁl'wR)
Q+1

Wo = /™01 Wo

i<,
Q+1 2~(ZQ§1

gEhT” ; gmz-(d(y,z)Jr(z[l:]) Ve o

6 .
g1

P=A§~Ag2)-h’7yn-WE-W}%-WO-S(“/’E')
PLinp.gl.n”

if all checks succeed: V accepts

“Wv) | e

else: V rejects

Y

4
4

4
4
V4
7
7/

4

4

Random challenge

t=t(z)

blinding value for t

W = (h, B ...
Weights for ay,
Weights for ay,
Weights for ay,
Check that t is correct

5
t=t(z) = Ztlzl
i=1

commitment to l(x),r(x)

Check that 1 = l(x) and r = r(x)

Protocol 3: Part 2: Polynomial identity check for {I(z),r(z)) = t(z)

25

a discrete logarithm relation between them is as hard as breaking the discrete log problem. If the
discrete log assumption holds in G then a computationally bounded P cannot produce discrete-
logarithm relations between independent generators. The proof system is therefore computationally
sound. 0

6 Performance

6.1 Theoretical Performance

In Table 1 we give analytical measurements for the proof size of different range proof protocols.
We compare both the proof sizes for a single proof and for m proofs for the range [0,2" — 1]. We
compare Bulletproofs against [PBF*] and a X-protocol range proof where the proof commits to
each bit and then shows that the commitment is to 0 or 1. The table shows that Bulletproofs

Table 1: Range proof size for m proofs. m = 1 is the special case of a single range proof

m range proofs for range [0,2" — 1]

‘ # G elements ‘ # Z, elements
¥ Protocol [CD9S| mn 3mn +1
Poelstra et al. [PBF*] | 0.63 - mn 1.26-mn +1
Bulletproofs 2(logy(n) + logy(m)) +4 | 5

have a significant advantage when providing multiple range proofs at once. The proof size for the
protocol presented in Section 4.3 only grows by an additive logarithmic factor when conducting m
range proofs, while all other solutions grow multiplicatively in m.

6.2 An Optimized Verifier Using Multi-Exponentiation and Batch Verification

In many of the applications discussed in Section 1.2 the verifier’s runtime is of particular interest.
For example, with confidential transactions every full node needs to check all confidential transac-
tions and all associated range proofs. We therefore now present a number of optimizations for the
non-interactive verifier. We present the optimizations for a single range proof but they all carry
over to aggregate range proofs and the arithmetic circuit protocol.

Single multi-exponentiation. In Section 3.1 we showed that the verification of the inner product
can be reduce to a single multi-exponentiation. We can further extend this idea to verify the whole
range proof using a single multi-exponentiation of size 2n+2log,(n)+7. Notice that the Bulletproofs
verifier only performs two checks (66) and (14). The idea is to delay exponentiation until those
checks are actually performed and then to combine them into a single check. We, therefore, unroll
the inner product argument as described in Section 3.1 using the input from the range proof. The
resulting protocol is presented below with x,, being the challenge from Protocol 1, and z; being the
challenge from round j of Protocol 2. L; and R; are the L, R values from round j of Protocol 2.
The verifier does:

26

input: proof m = {A, S, T, Ts, (Lj, Rj)?fin) €G, 7,t,pabe Zp} (91)
compute challenges from 7 : {y, z, x, Ty, (xj);ff(n)} (92)
gi—6(y,z)hm . V—Z2 . Tfff . T{ﬁ ; 1 (93)
o 1 if the jth bit of 1 — 1is 0
bi,) = | (94)
—1 otherwise
fori=1,...,n (95)
logy n o ‘
l; = H wz(m) ca—y'tz €7, (96)
j=1
' logy o '
=yt ([a2 e e, o7)
j=1
1= (l1,...,ln) €Zy (98)
r=(ry,...,m)€Z, (99)
. logy(n) 22 a2 o
glhtgmutpr . A=1g—2 H L;"R;7 =1 (100)
j=1

We can combine the two multi-exponentiations in line (93) and (100) by using a random value

cd Zyp. This is because if A°B =1 for a random c then with high probability A =1 A B = 1.
Various algorithms are known to compute the multi-exponentiations (100) and (93) efficiently.
As explained in [BDLO12|, algorithms like Pippenger’s [Pip80] perform a number of group op-
erations that scales with O%, i.e. sub-linearly. For realistic problem sizes these dominate
verification time.
Computing scalars. A further optimization concerns the computation of the [; and r; values.
logy n b(i,j)
=1 1
only one multiplication in Z, by applying batch division. First we compute M = (T] jozgfn z;)" ! to
3

Instead of computing z(* = IT for each 7, we can compute each challenge product using

get the first challenge value using a single inversion. Then computing 2 = m(l)x%, x’ = x(l)x%,
and for example z(7) = J:(g)xg. In general in order to compute z(9) we let k be the next lower power
of 2 of i — 1 and compute z(*) = z(i=F) . T3 +1 Which takes only one additional multiplication in Z,
and no inversion. Further, note that the squares of the challenges are computed anyway in order
to check equation (100).

Batch verification. A further important optimization concerns the verification of multiple proofs.
In many applications described in Section 1.2 the verifier needs to verify multiple (separate) range
proofs at once. For example a Bitcoin node receiving a block of transactions needs to verify all
transactions and thus range proofs in parallel. As noted above, verification boils down to a large
multi-exponentiation. In fact, 2n + 2 of the generators only depend on the public parameters, and
only 2log(n)+5 are proof-dependent. We can therefore apply batch verification [BGR98] in order to
reduce the number of expensive exponentiations. Batch verification is based on the observation that
checking g* = 1 A g¥ = 1 can be checked by drawing a random scalar « from a large enough domain

27

and checking g®®*¥ = 1. With high probability, the latter equation implies that ¢g* =1 A g¥ = 1,
but the latter is more efficient to check. The same trick applies to multi-exponentiations and
can save 2n exponentiations per additional proof. This is equivalent to the trick that is used
for combining multiple exponentiations into one with the difference that the bases are equivalent.
Verifying m distinct range proofs of size n now only requires a single multi-exponentiation of size
2n 42+ m- (2-log(n) + 5) along with O(m - n) scalar operations.

Note that this optimization can even be applied for circuits and proofs for different circuits if
the same public parameter are used.

Even for a single verification we can take advantage of the fact that most generators are fixed
in the public parameters. Both the verifier and the prover can used fast fixed-base exponentiation
with precomputation [Gor98] to speed-up all the multi-exponentiations.

6.3 Implementation and Performance

To evaluate the performance of Bulletproofs in practice we give a reference implementation in C
and integrate it into the popular library libsecp256k1 which is used in many cryptocurrency clients.
libsecp256k1 uses the elliptic curve secp256k1? which has 128 bit security.

In their compressed form, secp256kl points can be stored as 32 bytes plus one bit. We use
all of the optimizations described above, except the pre-computation of generators. The prover
uses constant time operations until the computation of 1 and r. By Theorem 2, the inner product
argument does not need to hide 1 and r and can therefore use variable time operations. The verifier
has no secrets and can therefore safely use variable time operations like the multi-exponentiations.

All experiments were performed on an Intel i7-6820HQ system throttled to 2.00 GHz and using
a single thread. Less than 100 MB of memory was used in all experiments. For reference, verifying
an ECDSA signature takes 86 us on the same system. Table 2 shows that in terms of proof size
Bulletproofs bring a significant improvement over the 3.8 KB proof size in [PBF*]. A single 64-
bit range proof is 688 bytes. An aggregated proof for 32 ranges is still 1 KB whereas 32 proofs
from [PBF*] would have taken up 121 KB. The cost to verify a single 64-bit range proof is 3.9 ms
but using batch verification of many proofs the amortized cost can be brought down to 470 us or
5.5 ECDSA verifications. Verifying an aggregated proof for 64 ranges takes 62 ms or 1.9 ms per
range. The marginal cost of verifying an additional proof is 2.58 ms or 81 us per range. This is less
than verifying an ECDSA signature, which cannot take advantage of the same batch validation.

To aid future use of Bulletproofs we also implemented Protocol 3 for arithmetic circuits and
provide a parser for circuits in the Pinocchio [PHGR13| format to the Bulletproofs format. This
hooks Bulletproofs up to the Pinocchio toolchain which contains a compiler from a subset of C to
the circuit format. To evaluate the implementation we analyze several circuits for hash preimages
in Table 3 and Figure 3.

Specifically, a SHA256 circuit generated by jsnark® and a Pedersen hash function over an em-
bedded elliptic curve similar to Jubjub* are benchmarked. A Bulletproof for knowing a 384-bit
Pedersen hash preimage is about 1 KB and takes 69 ms to verify. The marginal cost of verifying
a second proof is 4.7 ms. The SHA256 preimage proof is 1.3 KB and takes 832 ms to verify. The
marginal cost of verifying additional proofs is just 58 ms. Figure 3 shows that the proving and
verification time grow linearly. The batch verification first grows logarithmically and then linearly.

*http://www.secg.org/SEC2-Ver-1.0.pdf
3See https://github.com/akosba/jsnark.
“See https://z.cash/technology /jubjub.html.

28

http://www.secg.org/SEC2-Ver-1.0.pdf
https://github.com/akosba/jsnark

For small circuits the logarithmic number of exponentiations dominate the cost while for larger
circuit the linear scalar operations do.

Figure 1: Sizes for range proofs

9 T T T
Sigma Protocol —&—
Confidental Assets —*—
8 Bulletproofs
7
6
5
os]
X
4 /
3 P
1 / -
0
0 8 16 24 32 40 48 56 64
Range (bits)

Table 2: Range proofs: performance and proof size

Problem size | Gates | m Size Timing (ms)
(bytes) | prove ‘ verify ‘ batch
Range proofs (range x aggregation size)
8 bit 8 490 7 1.0 0.31
16 bit 16 956 14 1.5 0.35
32 bit 32 622 27 2.5 0.40
64 bit 64 688 54 3.9 0.47
64 bit x 2 128 754 107 6.4 0.57
per range 64 377 54 3.2 0.29
64 bit x 4 256 820 210 10.7 0.73
per range 64 205 53 2.7 0.18
64 bit x 8 512 886 416 19.7 1.02
per range 64 111 52 2.5 0.13
64 bit x 16 1024 952 825 34.0 1.56
per range 64 60 52 2.1 0.10
64 bit x 32 2048 1018 | 1621 62.2 2.58
per range 64 32 51 1.9 1 0.08

The first 4 instances are n-bit range proofs and the later ones are m aggregated 64-bit proofs and the normalized

costs per range. “batch” is the marginal cost of verifying an additional proof.
g g g

29

Table 3: Protocol 3: Performance numbers and proof sizes

Problem size

Timing (ms)

prove ‘ verify ‘ batch

Pedersen hash preimage (input

48 bit
96 bit
192 bit
384 bit
768 bit
1536 bit
3072 bit

Gates | m Size
(bytes)

128 864
256 928
512 992
1024 1056
2048 1120
4096 1184
8192 1248

size)
152
299
599
1173
2318
4614
9570

13.1
21.8
39.1
69.2
127.3
235.7
439.9

1.69
247
3.21
4.74
8.04
16.95
30.11

Unpadded SHA256 preimage
1376 | 36351 | 832.9 | 58.44

64 byte

| 25400 |

Bulletproofs for proving knowledge of x s.t. H(z) = y for different sized x’s. The first 7 rows are for the Pedersen

hash function and the final row is for SHA256. “batch” is the marginal cost of verifying an additional proof.

Figure 2: Timings for range proofs

(64 bit ranges)

10000

Proving time —&—
Verification time ——
Batch verification time

1000

=

;/B/E

100
—

ms

/
_—

3//E
7

ms

1 2 4 8
Aggregate size

32

30

Figure 3: Timings for arithmetic circuits

10000

(Pedersen Hash)

1000

Proving time —=—
Verification time —%—

Batch verification time

o

//}(/}{/’

=

100

]

-

P
/z/
o

i
128

i
512 2048

Number of multiplication gates

8192

Acknowledgments

We thank Shashank Agrawal for coming up with the Bulletproof name (short like a bullet with
bulletproof security assumptions). We thank Peter Dettmann for pointing out the batch inversion
trick. We thank Sean Bowe for various optimizations applicable to arithmetic circuits for Pedersen
hash functions. Further we thank Philip Hayes and the anonymous reviewers for helpful corrections.
This work was supported by NSF, DARPA, a grant from ONR, and the Simons Foundation.

References

[AHIV17]

[AKR*13]

[And17]

[BBO4|

[BCC*16]

[BCCT12]

[BCCT13]

[BCGT17a]

[BCG*17b]

Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2087-2104. ACM, 2017.

Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan
Capkun. Evaluating User Privacy in Bitcoin. In Financial Cryptography, 2013.

Oleg Andreev. Hidden in Plain Sight: Transacting Privately on a Blockchain. blog.
chain.com, 2017.

Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Advances
i Cryptology - EUROCRYPT 2004, pages 5673, 2004.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 327-357. Springer, 2016.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Innovations in Theoretical Computer Science 2012, pages 326-349, 2012.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 111-120, 2013.

Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive oracle proofs with constant rate and query complexity. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 40:1-40:15, 2017.

Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Haji-
abadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic
circuit satisfiability. Cryptology ePrint Archive, Report 2017/872, 2017. http:
//eprint.iacr.org/2017/872.

31

blog.chain.com
blog.chain.com
http://eprint.iacr.org/2017/872
http://eprint.iacr.org/2017/872

[BDLO12]

[BAM93]

[BG12]

[BGB17]

[BGG17]

[BGRYS]

[BLSO1]

[BMC*15]

[BR93]

[BSBC*+17]

[BSBTHR1§|

[BSCG*13)

Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. Faster
batch forgery identification. In International Conference on Cryptology in India,
pages 454-473. Springer, 2012.

Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract). In Advances in Cryptology -
EUROCRYPT ’93, pages 274-285, 1993.

Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 263—280. Springer, 2012.

Benedikt Biinz, Steven Goldfeder, and Joseph Bonneau. Proofs-of-delay and
randomness beacons in ethereum. IFEFE SECURITY and PRIVACY ON THE
BLOCKCHAIN (IEEE S&B), 2017.

Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol for
constructing the public parameters of the pinocchio zk-snark. IACR Cryptology
ePrint Archive, 2017:602, 2017.

Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Kaisa Nyberg, editor, Advances in Cryptol-
ogy — EUROCRYPT’98, pages 236-250, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pair-
ing. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 514-532. Springer, 2001.

Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll,
and Edward W. Felten. Research Perspectives and Challenges for Bitcoin and Cryp-
tocurrencies. IEEE Symposium on Security and Privacy, 2015.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS ’93, pages 62-73, 1993.

Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin,
Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran
Tromer, et al. Computational integrity with a public random string from quasi-
linear pcps. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 551-579. Springer, 2017.

Eli Ben-Sasson, Iddo Ben-Tov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. https://eprint.iacr.
org/2018/046.pdf, 2018.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKSs for C: Verifying program executions succinctly and in zero knowledge. In
CRYPTO, 2013.

32

https://eprint.iacr.org/2018/046.pdf
https://eprint.iacr.org/2018/046.pdf

[BSCG+14]

[CCS08]

[CDYS]

[CGGN17]

[Cha82]
[CHLO5]

[CLS10]

[CRR11]

[DBB*15]

[FS01]

[GGPR13]

[GHOS]

[GI08a]

[GI0Sb]

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, lan Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
Bitcoin. In IEEE Symposium on Security and Privacy. IEEE, 2014.

Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set mem-
bership and range proofs. Advances in Cryptology-ASIACRYPT 2008, pages 234—252,
2008.

Ronald Cramer and Ivan Damgard. Zero-knowledge proofs for finite field arithmetic,
or: Can zero-knowledge be for free? In CRYPTO 98, pages 424-441. Springer, 1998.

Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-
knowledge contingent payments revisited: Attacks and payments for services. Com-
mun. ACM, 2017.

David Chaum. Blind signatures for untraceable payments. In CRYPTO, 1982.

Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In

EUROCRYPT, 2005.

Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat. Additive combinatorics and dis-
crete logarithm based range protocols. In Information Security and Privacy - 15th
Australasian Conference, ACISP 2010, Sydney, Australia, July 5-7, 2010. Proceed-
imngs, pages 336-351, 2010.

Ran Canetti, Ben Riva, and Guy N Rothblum. Practical delegation of computation
using multiple servers. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 445-454. ACM, 2011.

G Dagher, B Biinz, Joseph Bonneau, Jeremy Clark, and D Boneh. Provisions:
Privacy-preserving proofs of solvency for bitcoin exchanges (full version). Techni-
cal report, IACR Cryptology ePrint Archive, 2015.

Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Crypto,
volume 1, pages 368-387. Springer, 2001.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct nizks without pcps. In Advances in Cryptology - EU-
ROCRYPT 2013, pages 626-645, 2013.

Oded Goldreich and Johan Hastad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205-214, 1998.

Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of
a shuffle. Advances in Cryptology-EUROCRYPT 2008, pages 379-396, 2008.

Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for correctness of
a shuffle. In Advances in Cryptology - EUROCRYPT 2008, pages 379-396, 2008.

33

[GKROS]

[Gor98|

[Gro03]

[Gro05]

[Grol0]

[Grol6)

[GS08]

[GVW02]

[Jed16]
[KMS™16]

[KP95]

[Lin03]

[Lip03]

[Max]

[Max13]

Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating compu-
tation: interactive proofs for muggles. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 113-122. ACM, 2008.

Daniel M Gordon. A survey of fast exponentiation methods. Journal of algorithms,
27(1):129-146, 1998,

Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In Public Key
Cryptography, volume 2567, pages 145-160. Springer, 2003.

Jens Groth. Non-interactive zero-knowledge arguments for voting. In International
Conference on Applied Cryptography and Network Security, pages 467—482. Springer,
2005.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Ad-
vances in Cryptology - ASITACRYPT 2010, pages 321-340, 2010.

Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology - EUROCRYPT 2016, pages 305-326, 2016.

Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Advances in Cryptology - EUROCRYPT 2008, pages 415-432, 2008.

Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complezity, 11(1-2):1-53, 2002.

TE Jedusor. Mimblewimble, 2016.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 839-858.
IEEE, 2016.

Joe Kilian and Erez Petrank. An efficient non-interactive zero-knowledge proof sys-
tem for NP with general assumptions. FElectronic Colloquium on Computational
Complezity (ECCC), 2(38), 1995.

Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computa-
tion. J. Cryptology, 16(3):143-184, 2003.

Helger Lipmaa. On diophantine complexity and statistical zero-knowledge argu-
ments. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 398-415. Springer, 2003.

G Maxwell. Zero knowledge contingent payment. 2011. URI: hitps://en. bitcoin.
it /wiki/Zero_Knowledge_Contingent_Payment (visited on 05/01/2016).

Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. bitcointalk.org,
August 2013.

34

bitcointalk.org

[Max16]

[Mic94]

[Mon]

[MP15]

[MPJ*13]

[MSH17]

[NakOg]

[NefO1]

[NM*16]

[P+91]

[PBF+]

[PHGR13]

[PHGR16]

[Pip80]

[Poe]

[RM]

[RMSK14]

Greg Maxwell. Confidential transactions. https://people.xiph.org/~greg/
confidential_values.txt, 2016.

Silvio Micali. Cs proofs. In Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on, pages 436—453. IEEE, 1994.

Monero - Private Digital Currency . https://getmonero.org/.

Gregory Maxwell and Andrew Poelstra. Borromean ring signatures. http://diyhpl.
us/~bryan/papers2/bitcoin/Borromeany20ring%20signatures.pdf, 2015.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon Mec-
Coy, Geoffrey M Voelker, and Stefan Savage. A fistful of bitcoins: characterizing
payments among men with no names. In IMC, 2013.

Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for
boardroom voting with maximum voter privacy. TACR Cryptology ePrint Archive,
2017:110, 2017.

S Nakamoto. Bitcoin: A peer-to-peer electionic cash system. Unpublished, 2008.

C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Proceed-
ings of the 8th ACM conference on Computer and Communications Security, pages
116-125. ACM, 2001.

Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1-18,
2016.

Torben P Pedersen et al. Non-interactive and information-theoretic secure verifiable
secret sharing. In Crypto, volume 91, pages 129-140. Springer, 1991.

Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter
Whille. Confidential assets.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In Security and Privacy (SP), 2013 IEEE Sympo-
stum on, pages 238-252. IEEE, 2013.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: nearly
practical verifiable computation. Commun. ACM, 59(2):103-112, 2016.

Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal on
Computing, 9:230-250, 1980.

Andrew Poelstra. Mimblewimble.

Tim Ruffing and Giulio Malavolta. Switch commitments: A safety switch for confi-
dential transactions.

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. CoinShuffle: Practical de-
centralized coin mixing for Bitcoin. In ESORICS, 2014.

35

https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://getmonero.org/
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf

[San99) Tomas Sander. Efficient accumulators without trapdoor extended abstract. Infor-
mation and Communication Security, pages 252262, 1999.

[TR] Jason Teutsch and Christian Reitwiener. A scalable verification solution for
blockchains.

[vS13] Nicolas van Saberhagen. Cryptonote v 2. 0, 2013.

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger. http://

gavwood. com/paper.pdf, 2014.

[WTTW] Riad S Wahby, Ioanna Tzialla, Justin Thaler, and Michael Walfish. Doubly-efficient
zksnarks without trusted setup.

A A General Forking Lemma

We briefly describe the forking lemma of [BCC™16] that will be needed in the proofs.

Suppose that we have a (2u + 1)-move public-coin argument with 4 challenges, z1,...,z, in
sequence. Let n; > 1 for 1 < i < p. Consider [[f; n; accepting transcripts with challenges in the
following tree format. The tree has depth p and Hf;l n; leaves. The root of the tree is labeled
with the statement. Each node of depth i < p has exactly n; children, each labeled with a distinct
value of the ith challenge z;.

This can be referred to as an (n,...,n,)-tree of accepting transcripts. Given a suitable tree
of accepting transcripts, one can compute a valid witness for our inner-product argument, range
proof, and argument for arithmetic circuit satisfiability. This is a natural generalization of special-
soundness for Sigma-protocols, where 4 = 1 and n = 2. Combined with Theorem 6, this shows that
the protocols have witness-extended emulation, and hence, the prover cannot produce an accepting
transcript unless they know a witness. For simplicity in the following lemma, we assume that the
challenges are chosen uniformly from Z, where |p| = A, but any sufficiently large challenge space
would suffice.

Theorem 6 (Forking Lemma, [BCC*16]). Let (K, P,V) be a (2u+ 1)-move, public coin interactive
protocol. Let £ be a witness extraction algorithm that always succeeds in extracting a witness from
an (ni,...,n,)-tree of accepting transcripts in probabilistic polynomial time. Assume that [[n;
is bounded above by a polynomial in the security parameter A. Then (IC,P,V) has witness-extended
emulation.

B Proof of Theorem 1

Proof. Perfect completeness follows directly because Protocol 1 converts an instance for relation (2)
into an instance for relation (3). Protocol 2 is trivially complete. For witness extended emulation
we show that there exists an efficient extractor £ as defined in Theorem 6. First we show how to
construct an extractor £ for Protocol 2 which on input (g, h, u, P), either extracts a witness a, b, ¢
such that the relation holds, or discovers a non-trivial discrete logarithm relation between g, h, u.
Note that the hardness of computing a discrete log relation between g’, h’, u implies the hardness of
computing one between g, h, u as defined in Protocol 2. We will, therefore, use a recursive argument
showing that in each step we either extract a witness or a discrete log relation. If n = |g| = 1, then

36

http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

the prover reveals the witness (a,b) in the protocol and the relation P = g®hPu®® can simply be
checked directly. Now, we show for each recursive step that on input (g, h,u, P), we can efficiently
extract a witness a,b or a non-trivial discrete logarithm relation between g, h,u. The extractor
runs the prover to get L and R. Then, using 3 different challenges =1, xs, 3, the extractor obtains
a(), b(l), S A(3), b(g), such that

L% PR™ = grohPoy@0P0> e [1,3] (101)

Using the same 3 challenge values for x, we compute 71,72, 73 such that

3 3 3
Znim?:l/\Zm:O/\me;Q:O
i=1 i=1 i=1

and using these 1 to construct linear combinations of (101) we can compute ar, by and ¢y, such
that L = g22hPLycc. Repeating this process with different combinations, we can also compute
ap,apr,bp,bpr,cp and cgr such that

R = g®RhPRryCR
P = g?PhPrycr
Given the extracted witness (a’,b’) from the previous recursion and the computed representations

of L, P and R, we get for each challenge =

Lx2PR5672 _ gaL~I2+ap+aR~CE72 X th~aZ2+bp+bR-x72 . UCL‘$2+CP+CR‘I72

= (8 ©8fp)™ * (g o) -0
o L
— a .zl = ar] - 2% + ap[.p] T ar /] cx?
Anoa -z =app 2’ tappy tagp] T
A bx= bL,[:n’] cx? 4 bp’[;n/] + bR,[:n’] Lz ?
-2

A bzl = bL,[n’:] -z + bP,[n’:] + bR,[n/:] - T
A c’=cL-x2+6p+cR'x*2

If the implications do not hold, we directly obtain a non-trivial discrete logarithm relation be-

tween the generators (g1,...,9n, P, .., hp,u). If the implications do hold, we can deduce that the

following two equalities hold.

ap] 2 + (Ap) — L) T+ (@R — apwa) 2T —ag)0 =0 (102)

bL,[n’:] cad + (bP,[n’:] - bL,[:n/]) Tt (bR,[n’:] - bP,[:n’]) !l — bR,[:n’] 273 =0 (103)

The equalities (102) and (103) hold for all 3 challenges 1, z2, z3. They would hold for all challenges
x if and only if

ar] = AR,[n:] = bR,[:n’] = bL,[n’:] =0 (104)
A Ar[n:] T Ap[/] N AR [:n/] T AP[n':] (105)
A BLw =bpg A BRI = bp L (106)

37

If we find a value of aj,ap,ar,by,bp, or bg which is not of this form, we can directly compute
one of the given form, using two of the three challenges and the equations (102) and (103). This,
however, directly results in two distinct representations of L, P or R, which yields a non-trivial
discrete logarithm relation.
Finally, using the fact that a’ = aprn] T +app]- r~! and b’ = bp - rt+ bp -z we
see for all 3 challenges that:
@ phy="<
=cr 2 +ctep-x?
= <aP,[:n/] - T+ apn] " x_la bP,[:n’] ’ x_l + bP,[n’:] ’ $>
= <aP,[:n’]a bP,[n’:]> s + <aP,[:n’]7bP,[:n’]> + <aP,[n’:]7 bP,[n’:]> + <aP,[n’:]7 bP,[:n’]> Lz
These equalities only hold for three distinct challenges if (ap,bp) = c¢. Therefore, the extractor
either extracts discrete logarithm relations between the generators or the witness (ac, be). Using
the generalized forking lemma from [BCC*16] (see Theorem 6) we can see that the extractor uses
3logz ()] < 2 challenges in total and thus runs in expected polynomial time in n and .
We now show that using Protocol 1 we can construct an extractor £ that extracts a valid witness
for relation (3). The extractor uses the extractor £ of Protocol 2. On input (g, h,u, P,¢) £ runs
the prover with on a challenge x and uses the extractor £ to get witness a, b such that: P-4 =
g2hPu= @b Forking the P, supplying him with a challenge 2’ and rerunning the extractor &; yields
a second witness (a’,b’). Again the soundness of Protocol 2 implies that P - u?’¢ = g hP'y @b
From the two witnesses, we can compute:

z—1z')-c a—a’hb—b’u:c~<a,b>—z’~<a’,b’>

aa=ve g

Unless a = a’ and b = b’ we get a not trivial discrete log relation between g, h and u. Otherwise
we get u(#=%)c — y(z=2')@b) — ¢ — (a b). Thus, (a,b) is a valid witness for relation (3). Since
& forks the prover once, and uses the efficient extractor £; twice, it is also efficient. This shows
that the protocol has witness extended emulation.]

C Proof of Theorem 3

Proof. Perfect completeness follows from the fact that tog = (y,2) + 22 - (z™,v) for all valid
witnesses. To prove perfect honest-verifier zero-knowledge we construct a simulator that produces a
distribution of proofs for a given statement (g, h € G,g,h € G"™,V € G™) that is indistinguishable
from valid proofs produced by an honest prover interacting with an honest verifier. The simulator
chooses all proof elements and challenges uniformly at random from their respective domains or
computes them directly as described in the protocol. S and 7} are computed according to the
verification equations, i.e.:

_ —z— 2y —r - Zitl.an —z
S = (h H.A-g D U Hh/[(j—l)-m:j-m])
j=1

Ty = (b ghva) iy gty

—1

Finally, the simulator runs the inner-product argument with the simulated witness (L,r). All
elements in the proof are either independently randomly distributed or their relationship is fully

38

defined by the verification equations. The inner product argument remains zero knowledge as we
can successfully simulate the witness, thus revealing the witness or leaking information about it
does not change the zero-knowledge property of the overall protocol. The simulator runs in time
OV + PinnerProduct) and is thus efficient.

In order to prove special soundness, we construct an extractor £ as follows. The extractor £
runs the prover with n different values of y, (Q + 1) different values of z, and 7 different values of
the challenge x. This results in 14 (Q + 1) - n valid proof transcripts. The extractor € first runs the
extractor EjnnerProduct for the inner-product argument to extract a witness 1, r to the inner product
argument such that g'h™ = P A (I,r) = £. Using this witness and 3 valid transcripts with different
x challenges, £ can compute linear combinations of (65) in order to extract «, p,ar,ag,sr,sg such
that A = h*g®Lh?R_ as well as S = h°gSLh5E,

If for any other set of challenges (z,y, z) the extractor can compute a different representation
of A or S, then this yields a non-trivial discrete logarithm relation between independent generators
h, g, h which contradicts the discrete logarithm assumption.

Using these representations of A and S, as well as 1 and r, we then find that for all challenges
x,y and z

1n-m

l=a;—z- r+Sr-x

m
r=y""o(ag+z- 1" +sp-x)+ Y 20U 2nolm)
j=1

If these equalities do not hold for all challenges and 1,r from the transcript, then we have two
distinct representations of the same group element using a set of independent generators. This
would be a non-trivial discrete logarithm relation.
For given values of y and z, the extractor £ now takes 3 transcripts with different z’s and uses
linear combinations of equation (63) to compute 71, 72, t1, t2, v,y such that
m
Ty = g"h™ ATy = g"h™ A g°h? =] [1
j=1

Zitl.gn
[(—1)-m:j-m]

Repeating this for m different z challenges, we can compute (v;, 'Yj)}n:1 such that g"7 k% = V; Vj e [1,m].
If for any transcript 0(y, 2) + 371, 272 (v;, 2" + 1) -7 + to - ¥ # £ then this yields a violation of
the binding property of the Pedersen commitment, i.e. a discrete log relation between g and h. If
not, then for all y, z challenges and 3 distinct challenges X = z;,j € [1, 3]:

2
Dt X =p(X) =0
i=0

with o = d(y, 2) + 271, 242 (v, 2" and p(X) = 32 pi - X' = ((X),7(X)). Since the polyno-
mial ¢(X) — p(X) is of degree 2, but has at least 3 roots (each challenge z;), it is necessarily the
zero polynomial, i.e. t(X) = {I(X),r(X)).

Since this implies that tg = pg, the following holds for all y, z challenges:

DL At (v 27 + 6(y, 2)

<aLa ynm o aR> +2z- <aL — ap, ynm> + Z;’q‘:l Zj+1<aL7[(j—1)'m:j'm]7 2n>
—Z2 . <1n-m7yn-m> _ Z;’Ll Z]+2 3 <1n7 2n> e Zp

39

Using n - m y challenges and m + 2 z challenges we can infer the following.

aj,oap = 0" €Z,"™
arp = ajy, — 1mm € Zg-m
Vj = <aL,[(j—1)-m:j-m]7 2n> € va] € [17 m]

The first two equations imply that ay € {0,1}"™. The last equation imply that v; € [0,2"71]
for all j. Since g¥hY = V we have that (v,~) is valid witness for relation (67). The extractor
rewinds the prover 3 (m + 1) -n-O(n?) times. Extraction is efficient and polynomial in A because
n,m = O(A). O

D Proof of Theorem 4
Proof. Perfect completeness follows from the fact that
_ Q+1 _ Q+1
to = 6(y,2) + <z[1:] s Wip-ap+Wg-ar+ Wop-ap) = (y,2) + <z[1:] Wy v +c) (107)

whenever the prover knows a witness to the relation and is honest. To prove perfect honest-
verifier zero-knowledge we construct a simulator that produces a distribution of proofs for a given
statement

(g,heG,g,he G", Ve G™, (w,—w,wR,q,waq)qQ:1 € Zn>3, (w‘/—,q)qQ:1 €eZm ce 73)

that is indistinguishable from valid proofs produced by an honest prover interacting with an honest
verifier. The simulator acts as follows:

Y. 2 e < Ty (108)
$ n
Lr < Z7 (109)
t={,r) (110)
A, Ao &G (111)
7117*3
g (Az ‘AzOQ 'g—lh/*y"*r WE-WE-Wo - h™H) (112)
Ty, T4 T5, Ts < G (113)
2, 2@+ o\ _f 2. (5QF1, S\
T = (pre g G+)ty @]} W) e e) (114)
Output: (47, Ao, S;y, 2 T, (T7)$; ;5 T, 1, 1,1, 1) (115)

The values Ay, Ao, 1, r, u, 7. produced by an honest prover interacting with an honest verifier are
random independent elements, i.e. if s, p, o, 71, (73)$, p as well as z,y, z are chosen independently
and randomly. £ is the inner product of I, r as in any verifying transcript. The simulated S is fully
defined by equations (88). The honestly produced T" are perfectly hiding commitments and as such
random group elements. Their internal relation given ¢ and 7, is fully defined by equation (86),
which is ensured by computing 77 accordingly. Therefore, the transcript of the proof is identically
distributed to an honestly computed proof with uniformly selected challenges. The simulator runs
in time O(V) and is thus efficient.

40

In order to prove special soundness we construct an extractor £ as follows. The £ runs the prover
with n different y, (Q + 1) different z and 7 different x challenges. This results in 14 - (Q + 1) - n
valid proof transcripts. £ takes 3 valid transcripts for x = x1, x2, 3 and fixed y and z. From the
transmitted L, r, ¢ for each combination of challenges, £ can compute 71,72, 73 such that

3

3 3
Zﬁi'ﬂfz’:l/\Zm-xz:Zm-z?:O
i=1 i=1

i=1

Using these 7’s to compute linear combinations of equation (88), £ computes o € Zy,ar,agr € Ly,
such that h®g?rh?r = A;. If for any other set of challenges (z,y, z) the extractor can compute a
different o, a/; , a/; such that h"' g2 h®r = A; = h®g®Lh®R, then this yields a non-trivial discrete
log relation between independent generators h, g, h which contradicts the discrete log assumption.
Similarly, the extractor can use the same challenges and Equation (88) to compute unique 3, p €
Zp,a0,1,,30,R,SL,SR € ZZ such that hﬂgaO’LhaOﬁ = Ap and hPgSLh5r = S.

Using Equation (88), we can replace A, Ap, S with the computed representations and read
1,r,? from the transcripts. We then find that for all challenges z, v, :

lzaL‘IE+aO,L‘$2+y_nO(Z[Q131'WR)-X+SL~1‘3
I‘:ynoaR'Sﬁ—yn-l-Zgj]rl-(WL-x—i—Wo)+y"oao,R-x2—|—y”osR-x

t={r)

If these equalities do not hold for all challenges and 1,r from the transcript, then we have two
distinct representations of the same group element using a set of independent generators. This
would be a non-trivial discrete log relation. We now show that to indeed has the form described
in (107). For a given y,z the extractor takes 7 transcripts with different z’s and uses linear
combinations of equation (86) to compute (7;,¢;),4 € [1,3,...,6] such that T; = g'“h™. Note that

3

i Q+1,
the linear combinations have to cancel out the other 7% terms as well as (v’ Wv)xQ. U

Q+1.
these (7i,t;) we can compute v, such that g"hY = V*ui Wy

sing
. Repeating this for m different z
Q+1,

challenges, we can compute (v;,7;)jL; using linear combinations of g”h? = Vi1 WY guch that
g"hY = V;Vj e [1,m]. This will however only succeed if the weight vectors wy; are linearly
independent, i.e if the matrix Wy, has rank m. This necessarily implies that Q > m. If for any
transcript t1 -« + Z?:g ti-xt + 22 (<z851, Wy -v +c¢)+d(y, 2)) #t then this yields a violation of
the binding property of the Pedersen commitment, i.e. a discrete log relation between g and h. If
not, then for all y, z challenges and 7 distinct challenges x = z;,j € [1,7]:

Zti-w—p(x) =0 (116)

with ty = <Z[Q1§1, Wy -v+c¢)+0(y,2) and p(z) = 30, pi -2 = {(z),r(z)) . Since the polynomial
t(x) — p(x) is of degree 6, but has at least 7 roots (each challenge z;), it is necessarily the zero
polynomial, i.e. t(z) = {I(z),r(x)). Finally, we show that this equality implies that we can extract
a witness (ar,ag,ap € Ly, v, € sz,) which satisfies the relation.

The quadratic coefficient of p is:

p2 ={ar,y"oagr)—<{ao,r,y")+ <Zﬁj]rl, Wi -ar+Wgg-agp+Wo-ao)+06(y,2) €Z,

41

The polynomial equality implies that any challenge vy, z, po = t2. Using a fixed y and (Q + 1)
different z challenges we can infer that all coefficients of pa(z) — t2(2) have to be zero. Using n
different y challenges, i.e. n - (Q + 1) total transcripts we can infer the following equalities:

ar car —ap,L :OnEZZ (117)

WL-aL+WR-aR+WO-aO,L:Wv-v+ceZ§ (118)

From equation (117) we can directly infer that a;, o ar = ap,. Equations (118) are exactly the
linear constraints on the circuit gates.

Defining ap = ap 1, we can conclude that (ar,agr,ap,v,7) is indeed a valid witness. The
extractor rewinds the prover 14 - (Q + 1) - n times. Extraction is efficient and polynomial in A
because n,Q = O(\). O

42

	Introduction
	Our Contributions
	Applications
	Confidential Transactions and Mimblewimble
	Provisions
	Verifiable shuffles
	NIZK Proofs for Smart Contracts
	Short Non-Interactive Proofs for Arithmetic Circuits without a Trusted Setup

	Additional Related Work

	Preliminaries
	Assumptions
	Commitments
	Zero-Knowledge Arguments of Knowledge
	Notation

	Improved Inner-Product Argument
	Inner-Product Verification through Multi-Exponentiation

	Range Proof Protocol with Logarithmic Size
	Inner-Product Range Proof
	Logarithmic Range Proof
	Aggregating Logarithmic Proofs
	Non-Interactive Proof through Fiat-Shamir
	A Simple MPC Protocol for Bulletproofs
	Perfectly Binding Commitments and Proofs

	Zero-Knowledge Proof for Arithmetic Circuits
	Inner-Product Proof for Arithmetic Circuits
	Logarithmic-Sized Protocol

	Performance
	Theoretical Performance
	An Optimized Verifier Using Multi-Exponentiation and Batch Verification
	Implementation and Performance

	A General Forking Lemma
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4

