
Frequency-smoothing encryption: preventing

snapshot attacks on deterministically-encrypted

data

Marie-Sarah Lacharité
marie-sarah.lacharite.2015@rhul.ac.uk

Kenneth G. Paterson
kenny.paterson@rhul.ac.uk

November 2, 2017

Abstract

Naveed, Kamara, and Wright (CCS 2015) applied classical fre-
quency analysis to carry out devastating inference attacks on databases
in which the columns are encrypted with deterministic and order-
preserving encryption. In this paper, we propose another classical
technique, homophonic encoding, as a means to combat these attacks.
We introduce and develop the concept of frequency-smoothing encryp-
tion (FSE) which provably prevents inference attacks in the snapshot
attack model, wherein the adversary obtains a static snapshot of the
complete encrypted database, while preserving the ability to efficiently
make encrypted queries to the database. We provide provably secure
constructions for FSE schemes, and we empirically assess their security
for concrete parameters by evaluating them against real data. We show
that frequency analysis attacks (and optimal generalisations of them
for the FSE setting) no longer succeed. Finally, we discuss extending
our schemes to take advantage of the full generality and power of our
stateful FSE framework.

1 Introduction

Deterministic Encryption (DE) is an attractive option for encrypting databases
because it is equality-preserving: finding an exact match for a specific datum
is just as easy as finding an exact match for its encryption. This makes it
possible for a user to query a remote encrypted database using an encrypted
search term, with the database server identifying matches in the encrypted
domain and returning the encrypted matching records to the user. Similarly,
deterministic Order-Preserving Encryption (OPE) allows users to perform

1

efficient range searches on encrypted data. DE and OPE schemes have been
widely deployed in the industry for protecting databases in this way [20, 6].

On the other hand, classical frequency analysis is a powerful attack
against deterministically encrypted data: repetitions in the plaintext show
up as repetitions in the ciphertext. If the plaintext distribution is not uni-
form and an adversary has a reference dataset from which it can compute
expected plaintext frequencies, then the adversary, given access to a snap-
shot of the database, can match frequencies in the encrypted domain with
those in the plaintext domain. In this way, it identifies which ciphertext
corresponds to which plaintext. Such an attack does not target the encryp-
tion key, but instead infers plaintext information using statistical techniques.
This kind of inference attack was recently used to great destructive effect
in the work of Naveed et al. [20]: they were able to correctly infer large
amounts of patient information from deterministically encrypted hospital
records. Their work and related papers investigating leakage in DE and
OPE [12, 6, 8, 23, 29, 7, 15, 10] have severely dented both the industry’s
and the research community’s confidence in its ability to adequately protect
encrypted databases whilst preserving query capabilities.

Only recently have researchers begun to investigate how to mitigate at-
tacks based on frequency analysis. Kerschbaum [16] presented a frequency-
hiding OPE scheme. The scheme does not leak any frequency information
since it forbids repetition of ciphertexts. However, it has large client-side
storage requirements and, because of its order-preserving nature, is vulner-
able to partial plaintext recovery attacks in a snapshot attack model [10].
The SPLASHE component of the Seabed system of [22] attempts to smooth
frequencies by introducing extra database columns and spurious entries. Un-
fortunately, SPLASHE has limited applicability and results in a 10x storage
overhead in practice. We discuss this and other related work in greater
detail in Section 7.

Given the importance of the problem, and the current paucity of solu-
tions, we set out to develop rigorous means of preventing inference attacks
for encrypted databases. Frequency analysis is a venerable attack method,
so it is fitting that we consider a technique that is almost as old to counter it:
homophonic encoding. The goal of homophonic encoding (or homophonic
substitution) is to flatten the frequency distribution of ciphertexts, so that
frequency analysis becomes ineffective. This is done by using encryption
schemes that map each plaintext to multiple possible ciphertexts, with the
number of homophones for each plaintext m ideally being proportional to
the frequency of m. Then, in our context, an encrypted database would still
contain repetitions, but every ciphertext would occur roughly equally often;
frequency information would be of no use to a snapshot adversary who has a
complete copy of the encrypted database. Homophonic encoding has a long
history which is well documented in, for example, [13]. However, as far as we
can ascertain, it appears to have received little formal analysis. Moreover,

2

it is usually applied in contexts where adjacent data items are not indepen-
dent of one other—for example, letters or words in natural language—which
renders it vulnerable to attacks based on analysis of bi-grams rather than
single-letter frequencies. This inherent weakness does not arise in database
encryption, where each column of the database is encrypted under a separate
key and entries in adjacent rows are not correlated.

Using homophonic encoding as we do leads to encryption schemes that
are randomised: each encryption of a given m can (and should) result in
any one of its ciphertext homophones being selected. This would seem to
make performing encrypted queries on such databases impossible, since now
we have many possible homophones to match on. The solution is simple:
ensure that there are enough homophones to combat frequency analysis,
but not so many that they cannot all be computed on the fly and sent
to the database for comparison with the relevant column of ciphertexts.
The question is then whether this trade-off between preventing leakage (via
frequency analysis) and increasing query complexity (because of needing to
match on homophones) is beneficial, providing schemes that are both secure
against snapshot attackers and reasonably efficient. In the sequel, we show
that the answer to this question is positive, at least for certain types of data.

However, we must immediately issue some important caveats. In the
current work, we achieve security against only two forms of attack. The
first is inference attacks made by a snapshot attacker on a per-column basis.
The second is security in a “somewhat randomised” generalisation of the
standard security notion for deterministic encryption due to Rogaway and
Shrimpton [28]. Our security proofs and empirical evaluations are focused
on these notions. We do not defend against more advanced forms of attack,
such as attacks based on analysis of queries, as in [6, 8], or attacks based on
correlations between columns [7]. Concretely, without some kind of query
padding or query batching, it is possible to carry out frequency analysis on
the queries made in our schemes, since the number of queries required for a
given plaintext m will turn out to be roughly proportional to the frequency
of m in our approach. In addition, Grubbs et al. recently pointed out
the artificiality of the snapshot attack model [9]. Database management
systems often store additional information that an attacker would capture
in its snapshot, e.g. prior queries. Nevertheless, resisting snapshot attacks
is necessary for achieving meaningful security in any realistic threat model,
and our approach at least achieves this.

Thus, despite some limitations, we believe that our work has significant
value: currently, there are few good solutions that address any of the recent
and severe inference attacks, and we show that at least some forms of attack
can be effectively combatted at low cost. We consider that our work could
form the basis for a more complete solution to the problem of preventing
inference attacks on encrypted databases.

3

1.1 Detailed technical contributions

We introduce the concept of frequency-smoothing encryption (FSE) which
generalises (symmetric) deterministic encryption to the setting of “some-
what randomised” encryption, where each message has a relatively small
number of possible ciphertexts (homophones). Our definition of frequency-
smoothing encryption is general enough to capture schemes that handle
message distributions that are initially unknown or that change over time.
We also show how FSE supports equality queries and database joins.

We provide two security notions for FSE in Section 2. The first, called
frequency-smoothing security, prevents frequency analysis attacks by requir-
ing that a column in an encrypted database of N entries should be indistin-
guishable from random data (in a sense to be made precise). The second,
called privacy, generalises the symmetric deterministic encryption security
notion [28]. We carefully motivate our definitional choices in the main body.

We then give, in Section 3, a generic construction for FSE from any De-
terministic Encryption (DE) scheme and any Homophonic Encoding (HE)
scheme. The latter is a keyless primitive that transforms plaintext data us-
ing a non-deterministic encoding step, flattening the frequency distribution,
resulting in a distribution that is suitable for subsequent encryption using a
DE scheme. Essentially, the flattening property of the HE scheme ensures
that the resulting FSE scheme is frequency smoothing, while the privacy of
the DE scheme ensures the overall privacy of the FSE scheme. We also give
a direct construction of an FSE scheme from an HE scheme, a PRF, and any
IND$-CPA secure encryption scheme. This construction has the advantage
that decryption avoids a potentially expensive decoding step; see Section 5.

We go on to propose two simple, easy-to-implement HE schemes in Sec-
tion 4. We do not claim that these schemes are novel, but nor have we found
them in the literature. Both HE schemes are tunable in the sense that the
amount r of randomness injected during encryption can be controlled, giv-
ing trade-offs between query efficiency and resistance to frequency analysis
attacks. We are able to show, using a novel application of Kullback-Leibler
(KL) divergence and based on a framework for optimal distinguishers [3],
that our HE schemes asymptotically achieve perfect flattening in a statis-
tical sense—even for computationally unbounded adversaries. However, to
obtain an effective bound requires large values of r, which in turn results in
high query complexity.

Given this limitation, we also carry out an empirical analysis of the ef-
fectiveness of our FSE schemes when r is moderate, evaluating them against
attacks which attempt to identify plaintexts with ciphertexts via frequency
analysis, in the same way as Naveed et al. [20]. This form of attack asks more
of the adversary than is required by our frequency-smoothing security defi-
nition, so security here offers a weaker guarantee than our formal definition,
but one that is pragmatically useful. This evaluation is in Section 6.

4

The evaluation requires us to obtain an equivalent of frequency analysis
for FSE schemes, in which each plaintext can have multiple homophones in
the ciphertext space. We do so using the method of Maximum Likelihood
Estimation, deriving an efficient algorithm which is statistically optimal in
assigning ciphertexts to possible plaintexts, in the same way that frequency
analysis is—that is, by maximising the statistical likelihood of the selected
assignment, cf. [17]. We believe this algorithm to itself be novel.

We then apply this algorithm on FSE-encrypted data, using the same
medical dataset as was employed in [20], and the same metric of success,
this being the number of hospitals in which a certain fraction of records of
a given type were successfully recovered by a frequency analysis attack. In
short, we show that FSE is successful in defeating our generalised version of
frequency analysis for many data types, even while maintaining moderate
query complexity. Indeed, the success rate of the MLE adversary is usually
quickly reduced to that of a pure guessing strategy.

Section 7 contains an extended discussion of related work, while Section 8
gives our conclusions and ideas for future work.

1.2 Terminology and notation

Let D be any probability distribution on a set of messages M. We write
fD(m) for the probability mass function of a particular message m ∈ M
according to the distribution D, so 0 ≤ fD(m) ≤ 1 for all m ∈ M. The
corresponding cumulative density function (cdf) is FD : M → [0, 1], where
FD(mj) =

∑j
i=1 fD(mi) for some ordering of the messages in M. (This

ordering may be the natural one if the data is numerical; otherwise it can
be arbitrary.) The support support(D) is the subset ofM for which the pmf
is non-zero. When a data owner or an adversary must guess or estimate the
data’s true distribution D, we use D̃ for the owner’s approximation and D̂
for the adversary’s approximation.

We use ‖ to denote concatenation. Trunc (x, n) denotes truncating the
bitstring x to a length of n bits, removing the bits from the right. bxe de-
notes the integer nearest to x. When the fractional part of x is 0.5, it is
always rounded up. Note that the default rounding behaviour in program-
ming languages such as Python is bankers’ rounding, where numbers whose
fractional part is 0.5 are rounded to the nearest even integer.

Our analysis involves various distributions – for instance, the data’s ac-
tual distribution, and what the data owner or the adversary predict the
data’s distribution to be. Table 1 provides an overview of our notation for
these various distributions.

5

Table 1: Overview of our notation for various distributions.

Symbol Domain Description

D̃ M owner’s guess of the data’s distri-
bution

D̂ M adversary’s guess of the data’s
distribution

D M data’s actual distribution

Ds E encoded data’s distribution for
an HE or FSE scheme when state
is s (introduced in Sec. 4.1)

2 Frequency-smoothing encryption (FSE)

Our definition for FSE schemes is a stateful one. Statefulness allows a
powerful feature: handling initially unknown distributions. The KeyGen
algorithm accepts as input an estimate D̃ of the messages’ distribution (or,
say, the uniform distribution if it is unknown). If the precise distribution of
the messages is known, then the state does not need to be updated when
encrypting messages and the following definition simplifies accordingly.

We make the following assumptions. First, we assume that the support
of the distribution is known even if the exact distribution is not. Second,
we assume that the messages are sampled independently and are identically
distributed. If the the distribution changes over time, the estimated distri-
bution D̃ given as input to KeyGen would need to be replaced with a set
of conditional distributions describing a stochastic process. We leave this
generalization as important future work.

Definition 1. A frequency-smoothing encryption (FSE) scheme FSE is a
triple of algorithms FSE = (KeyGen,Encrypt, Decrypt) such that:

• KeyGen : {0, 1}∗×DM → K×S takes a security parameter λ ∈ {0, 1}∗
and a distribution D̃ ∈ DM as input and outputs a secret key sk ∈ K
and a state s ∈ S that includes a description of the distribution D̃ and
maybe other information, but does not depend on the choice of sk.

• Encrypt : K×M×S → C ×S takes a key sk ∈ K, a message m ∈M,
and a state s ∈ S as input and outputs a ciphertext c ∈ C and an
updated state s′ ∈ S.

• Decrypt : K×C×S →M∪{⊥} takes a key sk ∈ K, a ciphertext c ∈ C,
and a state s ∈ S as input and outputs either a message m ∈M or ⊥.

6

KeyGen and Encrypt are randomized algorithms, while Decrypt is deter-
ministic. Note the requirement that the state output by KeyGen be inde-
pendent of the choice of key sk it outputs. Formally we require that if
(ski, si) ← KeyGen(λ, D̃) for i = 1, 2, then s1 and s2 are identically dis-
tributed. For a particular key sk, call a state s′ attainable from the state s if
s′ = s or if there exists a finite sequence of messages m1, . . . ,mn ∈Mn such
that defining s0 := s and then (ci, si)← Encrypt(sk,mi, si−1) for i = 1, . . . , n,
then sn = s′. A frequency-smoothing scheme is correct for a distribution D̃
if for all (sk, s) ← KeyGen(λ, D̃), any message m ∈ M, and any state s′

attainable from s, if (c, s′′)← Encrypt(sk,m, s′), then Decrypt(sk, c, s′′′) = m
for any s′′′ attainable from s′′.

Let HFSE
sk,s (m) := {Encrypt(sk,m, s)} be the set of all possible encryptions

(homophones) of the message m with a given state s and key sk, and let
HFSE

sk,s :=
⋃
m∈MHFSE

sk,s (m) be the set of all possible encryptions (homophones)
of messages for a given state s and key sk. We assume that the sizes of
homophone sets are independent of the choice of sk ∈ K, so we may write
|HFSE

s (m)| for |HFSE
sk,s (m)| and |HFSE

s | for |HFSE
sk,s |.

Two immediate corollaries of the correctness property are thatHFSE
s (m) ⊆

HFSE
s′ (m) for any state s′ attainable from s, and thatHFSE

s (m1) andHFSE
s (m2)

are disjoint unless m1 = m2, in which case HFSE
s (m1) = HFSE

s (m2).

2.1 Using FSE

To use frequency-smoothing encryption in the intended setting—on out-
sourced data that is queryable—the set HFSE

sk,s (m) must be easy to compute
or describe for any message m given a state s and key sk. This allows a SQL
query containing an expression such as WHERE attribute = x to be rewrit-
ten as WHERE attribute IN (x1, x2, ...), where the xi’s compose the
set of x’s homophones. This rewriting effectively incurs a query blow-up,
with a single query for item x being converted into a more complex query
for all of x’s homophones. Looking ahead, the trick will be to parameterise
our FSE schemes so that this blow-up is manageable whilst still preventing
frequency analysis attacks on the schemes.

FSE also supports joins, which follows directly from the ability to sup-
port equality queries. A join on unencrypted data such as FROM t1 JOIN

t2 WHERE t1.a=t2.b would instead be written as a UNION of join queries
having the form FROM t1 JOIN t2 WHERE t1.a IN (x1, x2, ...) AND

t2.b IN (y1, y2, ...). There is a join query for each possible plaintext
value; the xi’s compose its set of homophones in column a of table t1 and
the yi’s compose its set of homophones in column b of table t2.

FSE does not natively support range queries except other than by ex-
panding a range to a set of values and thence to a larger set of homophones.
This said, the specific constructions for FSE that follow can be adapted
to use OPE as a component, in which case range queries can be efficiently

7

supported. See Section 8 for more on this.
The state s of an FSE scheme is stored locally at the client, or in a

proxy which transparently performs the encryption and decryption opera-
tions. Note that s will typically include an accurate representation of the
message distribution, and thus FSE schemes may not be appropriate for
very large message spaces. We will evaluate the client-side storage require-
ments of our FSE schemes as we introduce them, but typically they are on
the order of r · |M| where r is a small parameter.

2.2 Frequency smoothing security

A frequency-smoothing scheme should do what its name implies: hide the
frequency of messages from an attacker with access to a collection of cipher-
texts, like a column in a database table. It should also be hard to learn
anything about individual plaintexts from ciphertexts without the secret
key. We formalize these notions of frequency-smoothing and privacy in two
security games.

The frequency-smoothing game FSE−SMOOTH (Figure 1) captures the
requirement that ciphertexts do not leak any information about message
frequencies, by making their distribution indistinguishable from uniform. In
the b = 0 case of this game, the challenger uses an estimated distribution D̃
(corresponding to a data owner’s guess of its data’s distribution) to initialize
the state and then encrypts messages sampled according to some distribution
D. In the b = 1 case, the challenger samples ciphertexts uniformly at random
from a set having the size of what would be the homophone set if the data’s
true distribution D had been known from the start. The adversary receives
N ciphertexts, the distribution D̃ that the challenger uses to initialize the
state when b = 0, and an estimate of the data’s distribution D̂ (possibly
different from D̃). The adversary’s goal is to distinguish these two cases.
Informally, if is able to distinguish the distribution of the N ciphertexts
from uniform, then the message distribution must have failed to have been
smoothed by the FSE scheme.

Definition 2. Consider the game FSE−SMOOTH in Figure 1 in which the
adversary A receives N ciphertexts, an estimate D̂ of the messages’ distri-
bution, and the distribution D̃ used to initialize the state in the b = 0 case.
The frequency-smoothing advantage of A against the FSE scheme FSE is

Advsmooth
FSE (A, D̃, D̂,D, N)

= 2 ·
∣∣∣∣Pr
[
FSE−SMOOTHA,D̃,D̂,D,NFSE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 3. An FSE scheme FSE is (α, t, D̃, D̂,D, N)-SMOOTH if for all
adversaries A running in time at most t and receiving at most N samples,

8

Game FSE−SMOOTHA,D̃,D̂,D,NFSE (λ)

b←$ {0, 1}
if b = 0 then

(sk, s0)← FSE.KeyGen(λ, D̃)

m1, . . . ,mN ←DM
for i in {1, . . . , N} do

(si, ci)← FSE.Encrypt(sk,mi, si−1)

endfor

else

(sk∗, s∗0)← FSE.KeyGen(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

c1, . . . , cN ←$Y

endif

b′ ← A(c1, . . . , cN , D̃, D̂)

return (b′ = b)

Figure 1: The frequency-smoothing game for an FSE scheme.

it holds that

Advsmooth
FSE (A, D̃, D̂,D, N) ≤ α.

From the definition of the FSE−SMOOTH game, some necessary condi-
tions are immediately obvious: first, for an FSE scheme to be FSE−SMOOTH
for arbitrary D̃ and D, the total number of homophones would always need
to be large—about the number of samples, N—to handle the case where
the distribution is extremely unimodal. Therefore, for more efficient con-
structions, it makes sense to consider schemes that are FSE−SMOOTH for
classes of distributions D and D̃ that are “close enough”.

Second, the size of a message m’s homophone set, |HFSE
s (m)|, should

be proportional to its actual frequency according to D, fD(m). This is a
consequence of the distribution over the set of all homophones being indis-
tinguishable from uniform and each homophone corresponding to exactly
one message.

The FSE−SMOOTH security notion is comprehensive; it captures the
possibility that the attacker has different information (D̂) about the mes-
sages’ actual distribution (D) than the data owner used to initialize the state
(D̃). It also captures the possibility that the adversary has information about
what the data owner estimated the data’s distribution to be (D̃). In general,
the adversary may not know exactly what distribution the data owner used
to initialize the state, but we assume for simplicity that it does—such an
adversary is more powerful.

9

An important case is when the data’s distribution is known by both the
data owner and the attacker. In Section 4, we present schemes that are
provably secure when D = D̃ (regardless of the adversary’s knowledge D̂),
while in Section 6, we present results of an empirical analysis of security
when D = D̃ = D̂ and compare it to security of DE when D̂ = D and D̂ ≈ D.

2.3 Message privacy

It is not enough for an FSE scheme to hide the frequencies of the messages:
even if the ciphertext distribution is uniform, the adversary could still be
able to decrypt messages. For example, consider the toy FSE scheme that
“encrypts” messages simply by appending bitstrings to them, with the num-
ber of different appended strings being proportional to the frequency of the
message; such a scheme would satisfy Definition 3, but an adversary could
simply truncate the “ciphertexts” to recover plaintexts. Thus frequency
smoothing alone is not sufficient for security and we also need a message
privacy notion.

To obtain our message privacy definition, we adapt the deterministic pri-
vacy (“detPriv”) security notion for deterministic encryption (DE) schemes [28]
to our setting. That definition is itself is an adaptation of the indistinguishability-
from-random-bits (“IND$”) notion of security for a nonce-based symmetric
encryption scheme [26]. It is also similar to the notion of message privacy
we use for deterministic encryption schemes in Section 3.2.

In the detPriv game [28], the adversary is tasked with distinguishing
real encryptions of messages m of its choice from random bit-strings se-
lected from the ciphertext space. Our FSE−PRIV game diverges from the
detPriv game in two ways. First, we restrict the adversary to requesting
encryptions of messages sampled according to the distribution D, so the
challenger can sample the messages on its behalf. Second, we allow the ad-
versary to receive (potentially different) encryptions of the same message. In
the deterministic setting, it was assumed without loss of generality that the
adversary does not repeat any encryption queries since repeated encryptions
would have revealed nothing new. In our setting, the encryption algorithm
is probabilistic, so we allow repeated encryptions of m, but ensure they are
either real encryptions or sampled from a randomly selected set Ym of the
appropriate size, that is, of size |HFSE

s (m)|.
In the FSE−PRIV game in Figure 2, the challenger either initializes the

state using the estimated distribution D̃ and then encrypts messages sampled
according to D, or it samples sets Ym of the “right” size for each message m
if the true distribution D had been known from the start. The adversary A
receives N plaintext-ciphertext pairs, the estimated distribution D̂, and the
distribution D̃ the challenger uses to initialize the state when b = 0. It must
determine how the plaintext-ciphertext pairs were generated.

10

Game FSE−PRIVA,D̃,D̂,D,NFSE (λ)

b←$ {0, 1}
m1, . . . ,mN ←DM
if b = 0 then

(sk, s0)← FSE.KeyGen(λ, D̃)

for i in {1, . . . , N} do

(ci, si)← FSE.Encrypt(sk,mi, si−1)

endfor

else

(sk∗, s∗0)← FSE.KeyGen(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

for i in {1, . . . , N} do

if ∃ j < i : mi = mj do

Ymi
:= Ymj

else

Ymi
←$Y, |Ymi

| = |HFSE
s∗0

(mi)|
Y := Y − Ymi

endif

ci←$Ymi

endfor

endif

b′ ← A((m1, c1), . . . , (mN , cN), D̃, D̂)

return (b′ = b)

Figure 2: The privacy game for an FSE scheme.

Definition 4. Consider the message privacy game FSE−PRIV in Figure 2
in which the adversary receives N plaintext-ciphertext pairs, an estimate D̂
of the messages’ distribution, and the distribution D̃ used to initialize the
state in the b = 0 case. The message-privacy advantage of A against the
FSE scheme FSE is

AdvprivFSE(A, D̃, D̂,D, N)

= 2 ·
∣∣∣∣Pr
[
FSE−PRIVA,D̃,D̂,D,NFSE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 5. An FSE scheme FSE is (α, t, D̃, D̂,D, N)-PRIV if for all ad-
versaries A running in time at most t and receiving at most N plaintext-
ciphertext pairs, it holds that AdvprivFSE(A, D̃, D̂,D, N) ≤ α.

From this definition, one necessary condition is immediately obvious: the

11

sizes of the final homophone sets in the b = 0 case, |HFSE
sN

(m)|, must equal
the sizes of the homophone sets in the b = 1 case, |Ym| = |HFSE

s∗0
(m)|.

Recall that in the smoothness game (Figure 1), the adversary sees only
ciphertexts. Frequency smoothness enforces that the sizes of each message’s
homophone set must be proportional to that message’s frequency. In the
message privacy game (Figure 2), the adversary sees plaintext-ciphertext
pairs. Message privacy enforces that there is no link between plaintexts and
ciphertexts except what is necessary for correctness. Both conditions are
necessary for a secure frequency-smoothing scheme. In the next section, we
present constructions for FSE that reflect this two-part approach.

3 Building FSE from HE and DE

One approach to building a frequency-smoothing encryption scheme is to
first probabilistically encode the messages in a way that smooths the plain-
text distribution, then deterministically encrypt them. In this section, we
present such a two-part, modular construction that composes homophonic
encoding (to smooth the frequencies) with deterministic symmetric-key en-
cryption (to provide privacy). Sections 3.1 and 3.2 present definitions for ho-
mophonic encoding and deterministic encryption schemes respectively, while
Section 3.3 describes how to compose them to get an FSE scheme.

3.1 Homophonic encoding

We consider stateful encoding schemes that are given an estimated distri-
bution of the messages as input.

Definition 6. A (stateful) homophonic encoding scheme HE is a triple of
algorithms (Setup,Encode,Decode) such that:

• Setup : {0, 1}∗×DM → S is a probabilistic algorithm that takes a con-
figuration parameter λ ∈ {0, 1}∗ and an estimate distribution D̃ over
M as input and outputs some state s ∈ S that includes a description
of the distribution D̃ and any other scheme parameters.

• Encode : M × S → E × S is a probabilistic algorithm that takes a
message m ∈ M and a state s ∈ S as input and outputs an encoded
message e ∈ E and an updated state s′ ∈ S.

• Decode : E × S → M ∪ {⊥} is a deterministic algorithm that takes
an encoded message e ∈ E and a state s ∈ S as input and outputs a
message m ∈M or ⊥.

We emphasize that all algorithms and parameters in a homophonic en-
coding scheme are keyless, and therefore provide no message privacy.

12

Let HHE
s (m) := {Encode(s,m)} be the set of all possible encodings (ho-

mophones) of the message m ∈ M for a given state s, and let HHE
s :=⋃

m∈MHHE
s (m). In order to use HE for its intended purpose, we require

that the set of homophones of a message is easy to compute or describe
given a state.

Again, call a state s′ attainable from the state s if s′ = s or there exists
some finite sequence of messages m1, . . . ,mn ∈Mn such that setting s0 := s
and letting (ei, si)← Encode(mi, si−1) for i = 1, . . . , n, then we have sn = s′.

A homophonic encoding scheme is correct for a distribution D̃ ∈ DM
if for all states s output by Setup(λ,D), any message m ∈ M, and any
state s′ attainable from s, if (e, s′′) ← Encode(m, s′), then it holds that
Decode(e, s′′′) = m for any s′′′ attainable from s′′. In particular, the cor-
rectness property requires that any two sets of homophones HHE

s (m) and
HHE

s (m′) are disjoint unless m = m′.
While encoding schemes can be fixed-length or variable-length, depend-

ing on whether the encoded messages E all have the same length, we consider
only fixed-length schemes in this paper. The usual advantage of variable-
length codes—their low average codeword length—is not as much of an
advantage in this setting.1

In Figure 3, we introduce a game HE−SMOOTH for HE schemes that
is similar to the FSE−SMOOTH game (Figure 1). Note that in the b = 1
case of the FSE−SMOOTH game, the adversary receives ciphertexts sam-
pled uniformly at random from some set of the right size, while in the b = 1
case of the HE−SMOOTH game, the adversary receives ciphertexts sampled
uniformly at random from the actual set of homophones. We also define
the advantage of an adversary and the security of an HE scheme in a man-
ner similar to the corresponding FSE−SMOOTH definitions of the previous
section.

Definition 7. Consider the game HE−SMOOTH in Figure 3. The frequency-
smoothing advantage of A against the homophonic encoding scheme HE is

Advsmooth
HE (A, D̃, D̂,D, N)

= 2 ·
∣∣∣∣Pr
[
HE−SMOOTHA,D̃,D̂,D,NHE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
1In a database table, it is likely that every value in a column is allocated the same

amount of storage according to the declared data type of the attribute. Variable-length
entries are still possible, however. For example, the MySQL version 5.7 reference manual
describes four variable-length data types, all for strings: VARCHAR, VARBINARY, BLOB and
TEXT [21]. Values in a VARCHAR column, for example, are stored with a prefix indicating
their length in bytes. While the maximum length of an entry in the column must be
specified, the data is not padded. Since we are considering applications where the data
items are no longer than a few bytes, it is space-efficient to pad data to a fixed size and
omit the length prefix.

13

Game HE−SMOOTHA,D̃,D̂,D,NHE (λ)

b←$ {0, 1}
if b = 0 then

s0 ← HE.Setup(λ, D̃)

m1, . . . ,mN ←DM
for i in {1, . . . , N} do

(ei, si)← HE.Encode(mi, si−1)

endfor

else

s∗0 ← HE.Setup(λ,D)

e1, . . . , eN ←$HHE
s∗0

endif

b′ ← A(e1, . . . , eN , D̃, D̂)

return (b′ = b)

Figure 3: The frequency-smoothing game for an HE scheme.

Definition 8. An HE scheme HE is (α, D̃, D̂,D, N)-SMOOTH if for all ad-
versaries A, it holds that

Advsmooth
HE (A, D̃, D̂,D, N) ≤ α.

Note that our definition of HE smoothness allows the adversary to be
computationally unbounded. Our specific HE schemes in Section 4 will
achieve HE smoothness in this sense.

3.2 Deterministic encryption

Deterministic encryption is the second ingredient in our modular construc-
tion for FSE schemes. We include the standard definition here for complete-
ness.

Definition 9. A deterministic (secret-key) encryption (DE) scheme DE is
a triple of algorithms (KeyGen,Encrypt, Decrypt) with associated sets K, M,
and C such that:

• KeyGen : {0, 1}∗ → K is a probabilistic algorithm that takes a security
parameter λ as input and outputs a secret key sk ∈ K.

• Encrypt : K ×M → C is a deterministic algorithm that takes a secret
key sk ∈ K and a message m ∈ M as input, and outputs a ciphertext
c ∈ C.

14

• Decrypt : K × C → M ∪ {⊥} is a deterministic algorithm that takes
a key sk ∈ K and a ciphertext c ∈ C as input and outputs a message
m ∈M or ⊥.

A deterministic encryption scheme is correct if

Decrypt(sk,Encrypt(sk,m)) = m

for all m ∈M and all sk ∈ K.
The security notion we choose to use for deterministic encryption is

based on indistinguishability from random bits. See Figure 4. Such def-
initions have already been used in the context of nonce-based symmetric
encryption [26] and deterministic authenticated encryption (DAE) for key-
wrapping [28]. The adversary adaptively queries an encryption oracle with
messages and consistently receives either the corresponding ciphertext or a
string of random bits that has the same length as the ciphertext. Without
loss of generality, we assume the adversary does not repeat any queries to its
encryption oracle. The adversary’s goal is to determine whether the oracle
is responding with real ciphertexts or random bitstrings. However, to make
a definition that is well-suited to the potentially small message spaces we
will encounter in our FSE schemes, we deviate from previous definitions in
the literature: in the “random bits” case, we sample ciphertexts uniformly
at random without replacement from a random ciphertext set Y ⊂ C of an
appropriate size. This makes our definition closer to that of PRI-security
for DAE [28, Section 8], though we dispense with the decryption oracle in
that notion.

Game DE−PRIVA,NDE (λ)

b←$ {0, 1}
sk← DE.KeyGen(λ)

Y ←$ C, |Y | = |M|
b′ ← AENC

return (b′ = b)

ENC(m)

if b = 0 then

c = DE.Encrypt(sk,m)

else

c←$Y

Y = Y \ {c}
endif

return c

Figure 4: The message privacy game for a DE scheme. We assume that A
does not repeat queries.

Definition 10. Consider the deterministic privacy game in Figure 4. The
message privacy advantage of A against the deterministic encryption scheme

15

DE is

AdvprivDE (A, N)

= 2 ·
∣∣∣∣Pr
[
DE−PRIVA,NDE (λ)⇒ 1

]
− 1

2

∣∣∣∣ .
Definition 11. A DE scheme DE is said to be (α, t,N)-private if for all
adversaries A running in time at most t and making at most N encryption
queries, it holds that AdvprivDE (A, N) ≤ α.

A block cipher that is a PRP is easily seen to meet this definition; AES
would be a good candidate. For more flexibility in selecting the message
spaceM, one could pad short strings and use a block cipher, or use a small-
domain PRP [19, 24] or a format-preserving encryption scheme [5, 4]. For
larger domains, a wide-block PRP or an encryption mode such as SIV could
be used [28].

3.3 FSE from HE and DE

Now that we have defined stateful HE schemes, DE schemes, and their secu-
rity, we are ready to present our modular construction for an FSE scheme.

Definition 12. Let HE = (Setup,Encode,Decode) be a stateful homophonic
encoding scheme with message space M and encoded message space E. Let
DE = (KeyGen,Encrypt,Decrypt) be a deterministic encryption scheme with
key space K, message space E, and ciphertext space C. The composed FSE
scheme (HE,DE)− FSE is defined as follows.

• KeyGen takes a security parameter λ ∈ {0, 1}∗ and a distribution D ∈
DM as input. It runs DE.KeyGen(λ) to obtain a key sk ∈ K. It also
runs HE.Setup(λ,D) to obtain an initial state s0. It outputs (sk, s0).

• Encrypt takes a key sk ∈ K, a message m ∈ M, and a state s ∈
S as input. It runs HE.Encode(m, s) to obtain (e, s′). It then runs
DE.Encrypt(sk, e) to obtain a ciphertext c ∈ C. It outputs (c, s′).

• Decrypt takes a key sk ∈ K, a ciphertext c ∈ C, and a state s ∈ S
as input. It runs DE.Decrypt(sk, c) to obtain a message e ∈ E or ⊥.
In the former case, it then runs HE.Decode(e, s) to obtain a message
m ∈M or ⊥. It outputs m, or ⊥ if it occurred in either step.

When the HE scheme is frequency-smoothing and the DE scheme is
message-private, the composed FSE scheme is both frequency-smoothing
and private, in the senses of Definitions 3 and 5. See Appendix A for the
proof of the following theorem.

16

Theorem 13. Suppose that HE is an (αHE, D̃, D̂,D, N)-SMOOTH homo-
phonic encoding scheme on (M, E ,S) for some D̃, D̂,D ∈ DM and that DE
is an (αDE, t+ tHE.Setup +N · (tHE.Encode + tHE.Decode), N)-PRIV deterministic
encryption scheme on (K, E , C). Then the FSE scheme (HE,DE)-FSE is

• (αHE + αDE, t, D̃, D̂,D, N)-SMOOTH, and

• (αHE + αDE, t, D̃, D̂,D, N)-PRIV.

4 Some static HE schemes

Henceforth, we narrow our focus to frequency-smoothing encryption for the
scenario where the data’s actual distribution is known to both the data owner
and the adversary (so D̃ = D̂ = D) and the homophonic encoding scheme is
static, i.e., its state depends only on D̃. We will write Advsmooth

HE (A,D, N) for
the adversary’s advantage when D̃ = D̂ = D. We leave the development of
schemes for more complex settings to future work, but note that the second
HE scheme in this section can be made dynamic to cope with a changing
distribution D.

We begin with a general result about an adversary’s smoothness advan-
tage against an HE scheme. Then, we present two concrete homophonic
encoding schemes. The first one is an interval-based scheme, which we anal-
yse in detail, and the second one is a banded scheme, which we briefly
consider and compare to the first scheme. We will prove the smoothness of
both schemes using the general bound we now develop.

4.1 Bounding an HE−SMOOTH adversary’s advantage

When the distribution is public and the HE scheme is static, we can re-
interpret the HE−SMOOTH game from Figure 3 in terms of the resulting
distribution over the encoded message space E . Let Ds be this distribution—
for a static HE scheme, it depends solely on the initial state s output by
Setup(λ,D). (For an arbitrary homophonic encoding scheme, the distri-
bution over the encoding space will involve a stochastic process.) Since
a message m’s homophone is chosen uniformly at random, for each of its
homophones e, fDs(e) = fD(m)

|HHE(m)| .

The adversary must distinguish receiving N samples drawn according
to Ds and N samples drawn according to the uniform distribution over the
set of homophones. The following bound on an HE−SMOOTH adversary’s
advantage follows directly from a result of [3] showing that the error proba-
bility of an optimal distinguisher given a number of samples from two close
distributions D0 and D1 can be bounded in terms of the Kullback-Leibler

17

(KL) divergence of D0 with respect to D1:

KL (D0,D1) :=
∑
m∈M

fD0(m) · log
fD0(m)

fD1(m)
.

Theorem 14. Let HE be a static homophonic encoding scheme with message
spaceM and encoded message space E. Let D ∈ DM be a public distribution
over M, and let Ds be the resulting distribution over E for a state s output
by HE.Setup(λ,D). If fDs(e) is close to 1/|HHE

s | for all encodings e ∈ HHE
s ,

then, for any HE−SMOOTH adversary A, and for sufficiently large N ,

Advsmooth
HE (A,D, N) ≤

∣∣∣∣∣∣∣∣
1

2
− Φ

−
√√√√N ·KL

(
Ds,U|HHE

s |

)
2

∣∣∣∣∣∣∣∣

where Φ(·) is the cdf of the standard normal distribution.

Note that this theorem applies even to computationally unbounded ad-
versaries. Recall that the cdf of the standard normal distribution, Φ, equals

1/2 at 0, so the closer N · KL
(
Ds,U|HHE

s |

)
is to 0, the smaller is any

HE−SMOOTH adversary’s advantage. Hence, in order to establish a smooth-
ness bound on any particular static scheme HE, it is sufficient to prove

bounds on KL
(
Ds,U|HHE

s |

)
. Finally, using the fact that the pdf of a stan-

dard normal distribution peaks at 0 with value 1/
√

2π, it is easy to see that
a good over-bound for Advsmooth

HE (A,D, N) is given by

Advsmooth
HE (A,D, N) ≤ 1

2
√
π
·
√
N ·KL

(
Ds,U|HHE

s |

)
. (1)

This suggests that to make the adversary’s advantage very small, we need

KL
(
Ds,U|HHE

s |

)
� 1/N .

We now turn to the analysis of specific static encoding schemes. For
convenience in what follows, we assume that M⊆ {0, 1}n.

4.2 Interval-based homophonic encoding

Informally, interval-based homophonic encoding (IBHE) partitions the set
of r-bit strings according to the distribution D: message m will be allocated
an interval of about fD(m) · 2r bitstrings. Each message will be replaced by
one of its corresponding r-bit strings.

One way (others are possible) of partitioning the set of r-bit strings
according to D is as follows. Suppose, without loss of generality, that the
messages M = {m1,m2, . . .} are ordered by increasing frequency according

18

to D. Now, consider the cumulative distribution FD. To simplify notation,
let FD(m0) := 0. Then, the homophone set of any message mi is{

b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1
}
,

where integers in this set are represented with r bits. This interval has size
approximately 2r · fD(mi), as desired. The encoding algorithm for IBHE
simply selects the encoding e of mi uniformly at random from the relevant
interval.

It is clear that the encoding bitlength r must be at least log2 |support(D)|
so each message can have at least one possible encoding. In addition, we
require that r is big enough so that each message is assigned a non-empty
interval using this partitioning technique. The following straightforward
proposition relates a message distribution, an IBHE encoding length, and a
lower bound on the number of homophones each message has.

Proposition 15. Let M = {m1,m2 . . .} be a set of messages ordered by
increasing frequency according to an arbitrary distribution D whose support
is M, and let h ≥ 1 be a positive integer. Then, when encoded with r-bit
IBHE, every message m ∈ M has at least h homophones if and only if
r ≥ rmin−h, where

rmin−h :=

⌈
max

1≤i≤|M|
log2

i · h− 0.5

FD(mi)

⌉
Proof. Let `i and ri represent the left and right endpoints (inclusive) of
message mi’s homophone set:

`i := b2r · FD(mi−1)e and ri := b2r · FD(mi)e − 1,

so the size of message mi’s homophone set is |HHE(mi)| = ri − `i + 1. By
definition, `1 = 0 and `i = ri−1 + 1 for i = 2, . . . , |M|.

Suppose every message in M has at least h homophones. This happens
if and only if, for each i from 1 to |M|, we have

ri ≥ h+ `i − 1

⇔ b2r · FD(mi)e − 1 ≥ i · h− 1

⇔ 2r · FD(mi) ≥ i · h− 0.5

⇔ r ≥ log2
i · h− 0.5

FD(mi)
.

Since this inequality must hold for all i and r is an integer, we obtain the
desired expression for rmin−h.

For correctness (i.e., to ensure that no message is assigned an empty
homophone set), r ≥ rmin−1 is necessary and sufficient.

19

It is possible to obtain a simpler sufficient (though not necessary) con-
dition for every message to have at least h homophones by noting that
messages are ordered according to D, so FD(mi) ≥ i · fD(m1). We state this
useful result in the following corollary.

Corollary 16. If messages are encoded with r-bit IBHE for some r ≥
log2

h
fD(m1)

, then every message m ∈M has at least h homophones.

Proof. For any i from 1 to |M|, we have

log2
h

fD(m1)
≥ log2

i · h− 0.5

i · fD(m1)
≥ log2

i · h− 0.5

FD(mi)
.

Therefore, the condition r ≥ log2
h

fD(m1)
is enough to guarantee that all

messages have at least h homophones.

Definition 17. The interval-based homophonic encoding (IBHE) scheme
with message space M⊆ {0, 1}n is defined as follows:

• Setup : (λ,D) 7→ s, computes the maximum r of the minimum encoding
length rmin−1 and the encoding length rD,λ determined by D and λ, and
outputs the state s := (r,D).

• Encode : (m, s) 7→ e, chooses an integer e uniformly at random from the
set of m’s homophones HHE

s (m) :=
{
b2r · FD(mi−1)e , . . . , b2r · FD(mi)e−

1
}

, and outputs the r-bit representation of e.

• Decode : (e, s) 7→ m, determines the message mi such that e ∈ {FD(mi−1),
. . . , FD(mi)− 1}, and outputs m := mi.

Note that it is possible for the encoded bitlength r to be smaller than
the data’s bitlength n, in which case IBHE compresses data. Also note that
IBHE’s Encode and Decode algorithms need access to tables mapping the
messages mi to their intervals{

b2r · FD(mi−1)e , . . . , b2r · FD(mi)e − 1
}

via the cdf FD of D, and vice versa. Since each interval can be represented
by 2r bits, we see that the total client-side storage for these tables is 4r · |M|
bits.

In order to apply Theorem 14 to bound the HE-smoothness of IBHE,
and thereby Theorem 13 to construct an FSE scheme, we need an upper
bound on the Kullback-Leibler divergence of the encoded data’s distribution
Ds relative to the uniform distribution U|HHE

s |. For IBHE, if the encoding
length r is at least rmin−h, as defined in the statement of Prop. 15, then this
bound is approximately 1/2h2. This result is stated in the following lemma,
whose proof is in Appendix B.

20

Definition 18. Let D be a distribution over M and suppose that m1 is the
least frequent message according to D. Suppose that the encoding length r in
the IBHE scheme is such that r ≥ rmin−h for some positive integer h and
let s := (r,D). Then,

KL (Ds,U2r) ≤
1

2h2
.

Suppose one has a distribution D, N samples, and a given target ε for the
frequency-smoothing advantage Advsmooth

HE (A,D, N) for the IBHE scheme.
Using the approximation in eqn. 1 from the start of this section and the
bound from the above lemma, we obtain after some manipulation the re-
quirement

h ≥
√
N

2
√

2πε
.

Combining this value with the sufficient condition from Cor. 16 enables us
to derive a value for r to use in the IBHE scheme:

r ≥ log2

√
N

2
√

2πε · fD(m1)
.

Note that to halve the upper bound on an adversary’s advantage, the mini-
mum encoding length increases by 1 bit.
A numerical example. Suppose D is such that fD(m1) = 2−5. Suppose
N = 210 and ε = 2−10. Then we get h ≥ 215/2

√
2π ≈ 212.7. Applying the

bound from Cor. 16 to guarantee r ≥ rmin−h, we find that we need r ≥ 18
to limit the frequency-smoothing advantage of any adversary to at most ε
against IBHE for these parameters.

4.2.1 IBHE variants

We now describe, with practicality in mind, two variants of IBHE.
(Variant 1) Encodings are appended to messages rather than replacing

them. This enables, for instance, faster decoding when processing query
results.

(Variant 2) Modify how intervals (homophone sets) are allocated in such
a way that smaller encoding bitlengths are possible (as long as they are still
at least log2 |support(D)|). Some distributions can yield prohibitively large
values of rmin−1 if fD(m1) is relatively tiny.

The change to how intervals of {0, . . . , 2r − 1} are assigned can be inter-
preted simply as building intervals (in the same way as before) for a modified
distribution D′. The algorithm shown in Figure 5 takes as input a distri-
bution D and a desired encoding length. It outputs a second distribution,
D′, with the same support as D that can be used to construct intervals,

21

encode, and decode with the desired encoding length. Starting with the
least frequent message, this algorithm changes the distribution just enough
that one homophone is assigned to each “too small” message. It does this
until until each of the remaining messages can be assigned at least one ho-
mophone after being scaled to share the error introduced by assigning “too
many” homophones to the least frequent messages. When r ≥ rmin−1, this
algorithm does not change the distribution.

The resulting modified IBHE scheme would run this algorithm as part
of Setup and use the adjusted distribution D′ in the state, s := (r,D′), for
all encodings and decodings. The original distribution D does not need to
be stored.

Distribution adjustment algorithm

isBigEnough = False, maxAdj = 0, scaleFactor = 1

for i in{1, . . . , |M|} do

if i = 1 then

if fD(mi) < 1/2r+1 then

fD′(mi) = 1/2r+1

maxAdj = 1

scaleFactor = (1− fD(mi))/(1− fD′(mi))

else

fD′(mi) = fD(mi)

// second value could still be too small

else // i ≥ 2

if isBigEnough then

fD′(mi) = fD(mi)/scaleFactor

else

if fD(mi) ≥ 1/2r · scaleFactor then

isBigEnough = True

fD′(mi) = fD(mi)/scaleFactor

else

fD′(mi) = 1/2r

maxAdj = i

scaleFactor = (1− FD(mmaxAdj))/

(1− FD′(mmaxAdj))

return D′

Figure 5: Distribution adjustment algorithm for distribution D and desired
encoding length r, with r ≥ log2 |support(D)|.

22

4.3 Banded homophonic encoding

We next present a simple homophonic encoding scheme that appends tags
to messages rather than replacing them with encodings, which the previous
scheme did. The tags can have any length l ≥ 1 and each message has
at most 2l homophones. Suppose again that the messages are ordered by
increasing frequency according to the distribution D:

fD(m1) ≤ fD(m2) ≤ . . . ≤ fD(m|M|).

Based on these frequencies, each message has a band that determines the
number of possible tags that can be appended to it and therefore the number
of homophones it has. Divide the interval (0, fD(m|M|)] into 2l bands each of

width w := fD(m|M|)/2
l, numbered 1 to 2l. The messages whose frequencies

are in band i, in the interval ((i− 1) · w, i · w], will all have i homophones. In
particular, the most frequent message, m|M|, will have 2l homophones—all
possible l-bit strings can be appended to it.

Definition 19. The banded homophonic encoding (BHE) scheme with mes-
sage space M⊆ {0, 1}n is defined as follows:

• Setup : (λ,D) 7→ s computes the tag length l determined by λ and D,
the band width w := fD(m|M|)/2

l, and outputs s := (l,w,D).

• Encode : (m, s) 7→ m‖t computes message m’s frequency band, b :=
dfD(m)/we, picks an integer t uniformly at random in {0, 1, ..., b− 1},
and outputs the (n+ l)-bit string m‖t, where t is represented using l
bits.

• Decode : (e, s) 7→ Trunc (e, n) removes the last l bits of e to recover
m := Trunc (e, n).

The main advantages of this banded HE scheme are that there is no
minimum tag length and decoding is fast—in particular, it does not need
any table of frequency information for D. Encoding requires storing a table
of l · |M| bits.

Another feature is that if the distribution changes, the scheme can adapt
to the new frequencies without re-encoding every data item. This can be
done by using so-far-unused l-bit tags if an item’s frequency increases (ef-
fectively increasing its band number), or by over-sizing l to begin with and
using a deliberately under-sized sets of homophones initially and, if an item’s
frequency decreases, re-scaling the bands used for all the other items. By
contrast, the interval-based encoding scheme cannot adapt to changes in the
distribution without re-encoding all of the messages.

A negative aspect of the banded homophonic encoding scheme is that
the total number of encodings, |HHE

s |, is not fixed. For Theorem 14 to apply,
the distribution of the encoded data must already be close enough to the

23

uniform distribution on its homophones. Consider the rounding errors for
each message: let

δi :=
⌈
2l · fD(m)/fD(m|M|)

⌉
− 2l · fD(m)/fD(m|M|),

so δi ∈ [0, 1) for each mi, 1 ≤ i ≤ |M|. The total number of homophones is
then

|HHE
s | =

2l

fD(m|M|)
+

|M|∑
i=1

δi.

Whereas the total number of homophones was predictable (fixed, actually)
for IBHE, here it may vary by as much as |M| − 1 depending on the dis-
tribution and the rounding errors δi it produces. For the encoded data’s
distribution to be close enough to uniform so we can apply Theorem 14, we
require |M| � 2l

fD(m|M|)
. This unpredictability indicates that values of l for

BHE will need to be much higher than values of r for IBHE to guarantee
smoothness. This is quantified in the following lemma.

Definition 20. Let D be a distribution overM and suppose that m|M| is the
most frequent message according to D. Suppose that l in the BHE scheme
is such that |M| � 2l

fD(m|M|)
, and let |HHE

s | be the size of the resulting set of

homophones. Then

KL
(
Ds,U|HHE

s |

)
≤
|M| · fD(m|M|)

2l+1
.

The proof of this Lemma is in Appendix C.
Suppose one has a distribution D, N samples, and a given target ε for

the frequency-smoothing advantage Advsmooth
HE (A,D, N) for the BHE scheme.

Using the above lemma and the bound on an adversary’s advantage in eqn. 1
from the start of this section, we obtain the requirement

l ≥ log2

(
N · |M| · fD(m|M|)

(2ε)2 · π

)
− 1.

Note that since fD(m|M|) is the maximum frequency, fD(m|M|) ≥ 1
|M| , so

regardless of the distribution, the added bitlength l must be at least

log2

(
N

(2ε)2 · π

)
− 1.

A numerical example. Suppose N = 210 and ε = 2−10, and let D be the
given distribution on the message spaceM. A lower bound on the required

tag length l in the BHE scheme is log2

(
210

(2·2−10)2·π

)
−1 ≈ 25. The minimum

value of l needed for a specific distribution may be greater still.
Recall the similar example at the end of Section 4.2: for the same values

of N and ε, the minimum required encoding bitlength for interval-based
HE was r ≥ 12.7 + log2

1
fD(m1)

. With banded HE, the minimum additional
bitlength is l = 25.

24

5 Building FSE from HE and CIV

While the modularity of the composed approach to achieving FSE may offer
control over the security-efficiency trade-offs and choice of DE scheme, an
all-in-one approach with no separate decryption and decoding steps can be
more efficient. In this section, we describe how to build an FSE scheme
of this type, from any HE scheme, a PRF, and an IND$-CPA encryption
scheme. This approach is somewhat inspired by the synthetic IV (SIV)
construction of Rogaway and Shrimpton [27].

Definition 21. Let HE = (HE.Setup, HE.Encode, HE.Decode) be a homo-
phonic encoding scheme with associated spaces M, E, DM, and P. Let
CIV = (CIV.KeyGen,CIV.Encrypt,CIV.Decrypt) be a conventional IV-based
encryption scheme, as defined in [27], with key space K1, message space
E, IV space IV, and ciphertext space C. Let PRF be a pseudorandom
function with keyspace K2 and output space {0, 1}n ⊆ IV. The SIV-like
(HE,CIV)− FSE scheme is defined as follows.

• KeyGen takes a security parameter λ ∈ {0, 1}∗ and a distribution D ∈
DM as input. It runs CIV.KeyGen(λ) to obtain keys sk ∈ K1 and
selects sk2←$K2. It also runs HE.Setup(λ,D) to obtain an encoding
parameter p. It outputs (sk1, sk2, p).

• Encrypt takes keys (sk1, sk2) ∈ K1×K2, an encoding parameter p ∈ P,
and a message m ∈ M as input. First, it runs HE.Encode(p,m) to
obtain the encoded message e ∈ E. It then computes PRF(sk2, e) to get
iv ∈ IV. Lastly, it runs CIV.Encrypt(sk1,m; iv) to obtain a ciphertext
c ∈ C. It outputs ĉ = iv‖c.

• Decrypt takes keys (sk1, sk2) ∈ K1×K2 and a ciphertext ĉ as input. It
parses ĉ as iv‖c ∈ IV × C. It runs CIV.Decrypt(sk1, c; iv) to obtain a
message m, and returns m.

Notice that this scheme does not run HE.Decode during decryption, so
avoiding the need to store a decoding table for HE and making it potentially
more attractive for implementation.

We omit a detailed security analysis of this scheme. Its FSE-privacy
follows easily from the IND$-CPA security of CIV, noting that the use of
a PRF PRF to generate the IVs from encodings e produces IVs that are
indistinguishable from random, up to repetitions induced by the encoding
scheme, such encodings arising only from message repetitions, and therefore
resulting in identical ciphertexts ĉ = iv‖c. FSE-smoothness, on the other
hand, follows from the smoothness of HE, the pseudorandomness of PRF and
the IND$-CPA security of CIV.

The construction here generalises to build an FSE scheme from any HE
scheme, a PRF, and any DAE scheme, in the sense introduced in [28], in-
cluding SIV (though the integrity properties enjoyed by DAE are overkill

25

for FSE in our snapshot attacker model). The idea is to set the header for
the DAE scheme to be PRF(sk2, e) where e = HE.Encode(p,m), as in the
above construction.

6 Empirical assessment of FSE

In this section, we report on an empirical assessment of the security of FSE
against frequency analysis attacks. Of course, we are also interested in
achieving FSE−PRIV, but this is easily done using our HE-DE construction
with an appropriate DE component, e.g., a block cipher such as AES.

Recall that FSE−SMOOTH security is an indistinguishability-style no-
tion designed to prevent frequency analysis attacks. However, as we have
seen in numerical examples for our IBHE encoding scheme, achieving typical
cryptographic security levels for this notion would require large values of r,
leading to a serious blow-up in query complexity. In this section, therefore,
we adopt a more pragmatic approach, working with moderate values of r
and choosing as a security metric the number of data items that an attacker
can correctly decrypt, as per Naveed, Kamara, and Wright [20]. Our aim
is to reduce the attacker’s success rate to that of a naive guessing attack.
We develop a maximum likelihood attack for this setting, and then assess
its performance using the same health data as was attacked in [20]. This
allows us to compare the security of FSE and of DE, and of FSE to naive
guessing attacks.

This approach is in line with the paradigm of accelerated provable secu-
rity [11]: we designed a scheme and proved its security based on the security
of its primitives, but we relax the primitives for practical use and rely on
cryptanalysis to assess security.

6.1 Details of the approach

We work with an FSE scheme built from static HE and DE using our mod-
ular construction. For the HE component, we use IBHE (Section 4.2) with
the distribution adjustment algorithm (variant 2). Our attacks on FSE are
in the public distribution setting, where D̃ = D̂ = D. This grants the adver-
sary greater power than in the scenario considered in [20], where D̂ is only
approximately D.

To obtain D, we work with patient discharge data from the 200 largest
hospitals in the 2009 Nationwide Inpatient Sample (NIS), from the Health-
care Cost and Utilization Project (HCUP), run by the Agency for Healthcare
Research and Quality in the United States [1]. The largest hospitals were
those with the greatest total number of discharges in that year. The 12
target attributes are listed in Table 2 in Appendix D. They include age in
years, length of stay in days, sex, major diagnostic category, and admission
type.

26

We simulate FSE-encrypting and then attacking the HCUP data of the
individual largest hospitals using each of the hospitals’ data to define a
per-hospital reference distribution for each of the 12 target attributes. We
assume this per-hospital distribution is always known to the attacker. This
experimental setup is good for the attacker—in reality, it is likely that an
attacker attempting to steal a particular hospital’s data would only have
access to, say, national statistics from previous years. That was the situation
considered in [20]. To simplify our analysis, we ignore all values that were
identified as missing, invalid, unavailable, or inconsistent.

6.2 A maximum likelihood attack on static FSE

Given the selected metric of success—the number of records an attacker can
correctly decrypt—we must determine how an attacker would maximize this
number. We apply the technique of maximum likelihood estimation (MLE)
to derive an efficient attack on a static FSE scheme under the assumption
that only frequency information is meaningful, thus assessing security in the
FSE−SMOOTH sense. MLE is an asymptotically optimal technique; as the
number of samples tends toward infinity, the maximum likelihood estimator
is an unbiased estimator with the smallest variance.

Suppose the adversary has N FSE-encrypted items, each of whose under-
lying plaintext was sampled independently fromM according to the known
distribution D. The adversary can compute the number of homophones
|HFSE

s (m)| for each m in M, since this set’s size depends on the state s,
which in turn depends only on the distribution and not the particular choice
of key.

Suppose there are |M| = |support(D)| distinct plaintext items and |HFSE| =
|C| distinct ciphertexts, so that every possible ciphertext appears at least
once. The adversary’s goal is to find the correct many-to-one decryption
mapping θ : C → M. Let n(c) denote the number of times that ciphertext
c ∈ C occurs in the set of samples. The attack is as follows, with Ap-
pendix E discussing the required assumptions and justification. Label the
distinct observed ciphertexts so their counts are in decreasing order:

n(c1) ≥ n(c2) ≥ · · · ≥ n(c|C|).

Also label the |M| plaintext items so their scaled frequencies are in decreas-
ing order:

fD(m1)

|HFSE
s (m1)|

≥ fD(m2)

|HFSE
s (m2)|

≥ · · · ≥
fD(m|M|)

|HFSE
s (m|M|)|

.

Then the attack sets θ so that

θ :{c1, . . . , c|HFSE
s (m1)|} 7→ m1,

θ :{c|HFSE
s (m1)|+1, . . . , c|HFSE

s (m1)|+|HFSE
s (m2)|} 7→ m2,

27

and so on, until all observed ciphertexts have been assigned a message.
This efficient procedure creates a decryption mapping θ that is not nec-

essarily unique: if two or more encrypted data item counts are the same,
then permuting them will result in decryption mappings that are equally
likely. Similarly, if two or more scaled plaintext frequencies are the same,
then permuting them will result in equally likely decryption mappings. In
our experiments, such ties were broken randomly.

Notice that if deterministic encryption were used in place of FSE, so
that |HFSE

s (m)| = 1 for each m ∈ M, then this attack reduces to a basic
frequency analysis attack of the type used in [20], which was shown to be
maximum likelihood in [17]. Thus our attack generalises basic frequency
analysis.

This attack is easily modified for the case where the attacker and data
owners have different information about the data’s distribution (D̂ 6= D̃).
In this case, the attacker would number the plaintext items according to
fD̂(m)/|HFSE

s̃ (m)|, where s̃ depends only on D̃.

6.3 Results

We use the aforementioned MLE attack to simulate an attacker attempting
to decrypt FSE-encrypted records in a database. Our results are presented
in a series of graphs in Appendix F, one for each of the attributes in Ta-
ble 2, and with various encoding lengths r for each attribute. These graphs
show complementary cumulative distributions, since we are interested in the
number of hospitals for which at least some fraction of the records were re-
covered. We consider each attribute separately, so “percentages of records
recovered” refers not to entire records (rows) in a database, but to the values
of a particular attribute (column) in those records.

Our goal, informally, is that attacking FSE is hard—in particular, at
least as hard as attacking DE. If our attacks are less successful against FSE
than DE, then the lines corresponding to FSE will be to the left of and
below those for DE, and the area under them will be smaller.

The trivial guessing attack. Of course an attacker can always simply
guess that every ciphertext it sees corresponds to the most likely plaintext. It
would succeed quite well with this metric for certain attributes, irrespective
of the encryption method used. This is the case, for example, with DIED

where there is one very likely plaintext (and one quite unlikely one). Each
attribute’s graph in Appendix F includes a solid gray line, labelled “max fD”,
that represents the success rate of this trivial attack. No encryption method
can force the trivial attacker below this line, so little security is achievable
for certain attributes like DIED using any form of encryption (according to
the metric chosen for our evaluation).

Recall that our MLE approach does not capture this trivial attack since
it looks for a correct decryption mapping that respects the numbers of ho-

28

mophones each plaintext has. Thus, it is possible for the trivial attack to
actually perform better than an “optimal” attack. As can be seen from the
graphs, by setting r appropriately, we can ensure that this is the case, mak-
ing the MLE attack worse than simple guessing. Since it is not possible for
any encryption scheme to protect against simple guessing attacks, the fact
that the MLE attack is made worse than the trivial attack by homophonic
encoding is a positive feature of our approach. Indeed, once this is achieved
for a particular value of r, there is no benefit in increasing r further (except
perhaps to disguise which database column is which).

Comparison with DE. Naveed et al. attacked DE-encrypted 2009 data
using aggregated 2004 data across the 200 largest hospitals for the auxiliary
distribution [20]. The power of frequency analysis attacks on DE can be
further strengthened by assuming the attacker knows the exact distribution
on a per-hospital basis. In evaluating DE, we consider both situations,
yielding two curves for DE in each graph: one from using an aggregated
distribution (D̂ ≈ D, similar to [20], but from the same year) and the other,
a per-hospital distribution (D̂ = D). Our experiments attacking FSE always
assume that the attacker has exact knowledge of the data’s distribution D,
giving the attacker the most power.

For some attributes, frequency analysis on DE even with aggregated data
recovers nearly all records for all hospitals (e.g., APRDRG Risk Mortality,
DIED, FEMALE). Frequency analysis of DE with per-hospital distributions per-
forms even better, recovering nearly 100% of records correctly in every case.
And, as can be seen from our graphs in Appendix F, FSE withstands attacks
much better than DE in the majority of cases, even when the adversary is
given the per-hospital distributions. The results for AGE, LOS, and MDC are
particularly encouraging. One exception is DIED; using FSE barely reduces
the number of records an attacker can recover, even with large encoding
lengths. The reason is that DIED is binary and one value accounts for over
98% of records in a data set, on average. Thus the MLE attack will still
succeed with high probability, as it will assign the majority of ciphertexts to
the high probability value and be correct most of the time. As noted above,
in such a situation, the trivial plaintext recovery attack that just assigns
every ciphertext to the most likely plaintext value performs even better and
is also unavoidable for any encryption scheme.

Limit case. As the encoding length r increases, there are fewer repeated
ciphertexts, and eventually, no ciphertext will occur more than once. Recall
that given N ciphertext items, the MLE attack assigns approximately N ·
fD(m) of them to message m. For large enough N , we can approximate
this assignment of plaintexts to ciphertexts in the following manner: for
each ciphertext, the attacker independently samples from M according to
D to determine its guess. The probability that any single ciphertext is
assigned the correct plaintext is then f :=

∑
m∈M fD(m)2, and the number

of correct guesses then follows a binomial distribution with N trials and

29

success probability f . We have simulated such an attack strategy using each
individual hospital’s distribution and indicated the resulting curves with
r → ∞ in the graphs. The fraction of records recovered quickly converges
to this random guessing strategy, even using encoding bitlengths much less
than the values of rmin.

Success when using distribution adjustment algorithm. Recall
variant 2 of our IBHE scheme: when the desired encoding length is less
than rmin, intervals are constructed in a different way that guarantees even
the least frequent items have at least one homophone. The values of rmin
were highest for AGE (20) and LOS (23). Using an encoding length of 8
for AGE still resulted in fewer records decrypted than with DE. For LOS,
whose minimum unencoded bitlength is 9, there was a drastic drop in the
percentage of records recovered even with an encoding length of only 10.
Using only DE, 50% of hospitals had at least 80% of their records recovered,
while with 10-bit IBH encoding, no hospital had more than 22% of its records
recovered.

Query complexity. For large enough encoding lengths r, our results
indicate that this statistically optimal MLE attack offers no advantage over
guessing—even when the attacker has precise knowledge of the underlying
data’s distribution. However, the parameter r affects query complexity in
addition to storage cost: an equality query for one item becomes an equality
query for each of its homophones. Nevertheless, the results quickly converge
to random guessing for all attributes, and the effect on query complexity is
manageable. For example, encoding AGE with r = 10 bits results in a query
expansion of 2r · fD(0) ≈ 27 in the worst case (for the most frequent age, 0).
Encoding MDC with r = 10 bits results in a query expansion of about 28 for
the most frequent item.

For a few attributes, such as ASOURCE and RACE, even an attacker using
the random guessing strategy succeeds more often than may be acceptable.
In these cases, higher values of r cannot help limit the adversary’s success.
These attributes had few possible plaintext values (5 and 6 respectively) and
their unencoded distributions were skewed: for example, the most common
ASOURCE value was about 29 times more frequent than the least common
value. As we noted above, such guessing attacks are unavoidable in this
situation.

One of the strengths of interval-based homophonic encoding is the tun-
ing of parameters it allows: a value of r can be chosen that strikes the right
balance between security and efficiency for the intended application. How-
ever, users of this scheme should be aware that, in common with any other
encryption scheme, it cannot prevent simple guessing attacks. These can be
effective for skewed distributions.

30

7 Related work

In this section, we compare our work to related work—schemes that at-
tempt to hide plaintext frequencies, or prevent frequency analysis. These
schemes include order-preserving encryption (OPE) schemes and searchable
encryption schemes.

As noted in the introduction, homophonic substitution is a classical cryp-
tographic technique introduced to combat frequency analysis on substitution
ciphers (which, after all, is what a DE scheme is). While the idea of apply-
ing it in the current domain is not groundbreaking, we present the original
analysis required to assess its security in theory and practice. In particular,
we did not find our MLE analysis from Section 6.2 in the literature on this
topic.

The first OPE scheme [2] uses a kind of homophonic encoding in its
construction. Its goal is not necessarily to hide frequencies, but to hide the
input’s distribution by transforming it to have some target distribution. The
paper used the Kolmogorov-Smirnov test to determine whether (i) the input
data’s distribution was indistinguishable from uniform after flattening, and
(ii) the encoded data’s distribution was indistinguishable from data with
the target distribution (Gaussian, Zipf, or uniform). In their experiments,
the data items had 32 bits and encodings had 64 bits. In contrast to [2],
our work applies to any type of data, not just numeric, and we focus on DE
rather than OPE. Both of our HE schemes can be combined with OPE in an
analogous way to our (HE,DE)−FSE construction to produce an FSE scheme
that is order-preserving. However, OPE schemes suffer from high leakage
even without repeated messages, so we have not pursued that direction.

Recent work by Kerschbaum describes a frequency-hiding OPE scheme [16].
The security notion used is indistinguishability under frequency-analysing
ordered chosen plaintext attack (IND-FA-OCPA). The adversary is tasked
with distinguishing between encryptions of two equal-length sequences of
plaintexts, not necessarily distinct, which have at least one randomized or-
der in common (this being a ranking in which ties are allowed to be broken
arbitrarily). The IND-FA-OCPA security notion captures the idea that the
ciphertext leaks only the randomized order. It does not leak any frequency
information, since each message and ciphertext value occurs exactly once.
For snapshot attacks against this scheme, see [10]. Roche et al. [25] intro-
duced a partial order-preserving encoding scheme that uses the same security
notion. This approach is incomparable to ours since we do not require ci-
phertexts to be distinct. Allowing repetition in turn enables us to achieve
more flexible trade-offs between security and performance.

Papadimitriou et al.’s splayed additively symmetric homomorphic en-
cryption (SPLASHE) construction [22] hides frequencies while supporting
aggregate operations such as COUNT and SUM by expanding each column into
as many columns as there are possible values. Their enhanced SPLASHE

31

construction addresses the attendant storage expansion by assigning individ-
ual columns to the “most frequent” values and grouping together the “least
frequent” values in one column. To distinguish the less frequent values, a
column of deterministically encrypted (DE) values is added. The frequencies
of the “least frequent” values in this column are smoothed with a rudimen-
tary padding technique. The threshold separating most frequent and least
frequent values is chosen to ensure that there are enough records having
their own columns so that their entries in the DE column can be used to
equalize the counts of the least frequent values’ DE values. SPLASHE was
designed for data analytics and in particular it does not support equality
queries or joins. It also suffers from significant data expansion, about 10x
for a real-world analytics database.

Another recent construction is a secure order-preserving indexing (OPI)
that supports efficient point and range queries while hiding frequencies [18].
OPI expands the plaintext domain to the ciphertext domain by assigning
an interval of indices to each plaintext whose size is proportional to its
frequency, much like we do with IBHE in Section 4.2. However, there is no
formal security analysis nor suggestion about how to choose the size of the
ciphertext domain. The schemes we propose have adjustable parameters to
attain the desired balance of security and efficiency.

We imagine FSE applied to columns in a database, and there exist other
solutions for securely querying an encrypted database. For example, Kamara
and Moataz [14] developed a structured encryption scheme for relational
databases that supports many types of SQL queries and does not leak any
frequency information. However, the storage cost can be very high, and
unlike our schemes, it is not a scheme that could be added to an existing SQL
database in a legacy-friendly manner; it would entirely replace a database
and change how queries are treated.

8 Conclusions and applications

Deterministic encryption has many useful applications, but as recent re-
search has demonstrated, the frequency information it leaks can be devas-
tating to security. Using our approach based on homophonic encoding (HE)
lets data owners gain control over how much information their encrypted
data leaks when it is at rest. We have provided an empirical evaluation of
our approach for moderate parameters, in the spirit of accelerated provable
security [11]. We used the same metric as Naveed et al. did in their inference
attacks on DE [20]: the proportion of items that the attacker successfully
recovers in a maximum likelihood attack. FSE can withstand attackers that
know the data’s actual distribution, which DE cannot. We showed that our
approach rapidly reduces the success rate of such an attacker to that of the
trivial guessing strategy (which cannot be prevented by any cryptographic

32

means) as r, the encoding parameter of the IBHE scheme, increases. In
passing, we note that our approach can further impede attacks by disguis-
ing the number of plaintexts in a column, making it harder to identify which
column corresponds to which encrypted attribute.

Encrypting values in database columns to preserve query capabilities is
only one application of deterministic encryption. Many OPE scheme are de-
terministic, while some searchable encryption schemes use deterministically-
encrypted per-document keyword tags to find search results. These schemes
are then susceptible to frequency analysis attacks. In future work, we plan
to explore the application of HE to these areas. In particular, as we have
already noted, our HE schemes are compatible with OPE: OPE can simply
replace DE in the construction of Section 3.3; our IBHE and BHE schemes
do not rely on messages being ordered by frequency, and they work equally
well when the messages are in numerical order. Moreover, numerical order-
ing is preserved by the HE schemes. However, the recent snapshot attack [10]
on the FH-OPE scheme of Kerschbaum [16] suggests caution is warranted
here.

Relatedly, it would be interesting to determine the effect of HE on the
success of pairwise column attacks like those described in [7] (see also [10]).
Those attacks were specific to OPE, but it would also be instructive to look
at such attacks on DE-encrypted database columns which may be weakly
correlated, and assess the impact of applying our HE techniques. Addressing
the same issue would be of great interest for indices in searchable encryption,
especially in view of the attacks in [6].

Finally, our general definition of FSE is conducive to the development
of schemes that can adapt to changing distributions in the underlying data.
Relatedly, it is important to assess how the attack prevention capability of
our static HE techniques degrades as D changes gradually, to understand
how much change can be tolerated.

References

[1] Agency for Healthcare Research and Quality, Rockville, MD. HCUP
Nationwide Inpatient Sample (NIS), Healthcare Cost and Uti-
lization Project (HCUP), 2009. http://www.hcup-us.ahrq.gov/

nisoverview.jsp.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving en-
cryption for numeric data. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, pages
563–574, New York, NY, USA, 2004. ACM.

33

http://www.hcup-us.ahrq.gov/nisoverview.jsp
http://www.hcup-us.ahrq.gov/nisoverview.jsp

[3] T. Baignères, P. Junod, and S. Vaudenay. How far can we go beyond
linear cryptanalysis? In P. J. Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 432–450. Springer, Heidelberg, Dec. 2004.

[4] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-
preserving encryption. In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-
Naini, editors, SAC 2009, volume 5867 of LNCS, pages 295–312.
Springer, Heidelberg, Aug. 2009.

[5] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In
B. Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 114–
130. Springer, Heidelberg, Feb. 2002.

[6] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks
against searchable encryption. In I. Ray, N. Li, and C. Kruegel:, editors,
ACM CCS 15, pages 668–679. ACM Press, Oct. 2015.

[7] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed
by order-revealing encryption? In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages
1155–1166. ACM Press, Oct. 2016.

[8] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and
V. Shmatikov. Breaking web applications built on top of encrypted
data. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, editors, ACM CCS 16, pages 1353–1364. ACM Press, Oct.
2016.

[9] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your encrypted
database is not secure. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems (HotOS XVI), May 2017.

[10] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Risten-
part. Leakage-abuse attacks against order-revealing encryption. In
2017 IEEE Symposium on Security and Privacy, pages 655–672. IEEE
Computer Society Press, May 2017.

[11] V. T. Hoang, T. Krovetz, and P. Rogaway. Robust authenticated-
encryption AEZ and the problem that it solves. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 15–44. Springer, Heidelberg, Apr. 2015.

[12] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation. In
NDSS 2012. The Internet Society, Feb. 2012.

34

[13] D. Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet (2nd edition).
Scribner, Oct. 1997.

[14] S. Kamara and T. Moataz. SQL on structurally-encrypted databases.
Cryptology ePrint Archive, Report 2016/453, 2016. http://eprint.

iacr.org/2016/453.

[15] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks
on secure outsourced databases. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages
1329–1340. ACM Press, Oct. 2016.

[16] F. Kerschbaum. Frequency-hiding order-preserving encryption. In
I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15, pages 656–667.
ACM Press, Oct. 2015.

[17] M.-S. Lacharité and K. G. Paterson. A note on the optimality of fre-
quency analysis vs. `p-optimization. Cryptology ePrint Archive, Report
2015/1158, 2015. http://eprint.iacr.org/2015/1158.

[18] S. S. Moghadam, G. Gavint, and J. Darmonti. A secure order-preserving
indexing scheme for outsourced data. In 2016 IEEE International Car-
nahan Conference on Security Technology (ICCST), pages 1–7, Oct
2016.

[19] B. Morris, P. Rogaway, and T. Stegers. How to encipher messages on
a small domain. In S. Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 286–302. Springer, Heidelberg, Aug. 2009.

[20] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on
property-preserving encrypted databases. In I. Ray, N. Li, and
C. Kruegel:, editors, ACM CCS 15, pages 644–655. ACM Press, Oct.
2015.

[21] Oracle. MySQL 5.7 reference manual, 2017. https://dev.mysql.com/
doc/refman/5.7/en/storage-requirements.html.

[22] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Hae-
berlen, H. Singh, A. Modi, and S. Badrinarayanan. Big data analytics
over encrypted datasets with seabed. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 587–
602, GA, 2016. USENIX Association.

[23] D. Pouliot and C. V. Wright. The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM
CCS 16, pages 1341–1352. ACM Press, Oct. 2016.

35

http://eprint.iacr.org/2016/453
http://eprint.iacr.org/2016/453
http://eprint.iacr.org/2015/1158
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html

[24] T. Ristenpart and S. Yilek. The mix-and-cut shuffle: Small-domain
encryption secure against N queries. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 392–409.
Springer, Heidelberg, Aug. 2013.

[25] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich. POPE:
Partial order preserving encoding. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages
1131–1142. ACM Press, Oct. 2016.

[26] P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and
W. Meier, editors, FSE 2004, volume 3017 of LNCS, pages 348–359.
Springer, Heidelberg, Feb. 2004.

[27] P. Rogaway and T. Shrimpton. Deterministic authenticated-encryption:
A provable-security treatment of the key-wrap problem. Cryptology
ePrint Archive, Report 2006/221, 2006. http://eprint.iacr.org/

2006/221.

[28] P. Rogaway and T. Shrimpton. A provable-security treatment of the
key-wrap problem. In S. Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 373–390. Springer, Heidelberg, May / June 2006.

[29] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong
to us: The power of file-injection attacks on searchable encryption.
In T. Holz and S. Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages
707–720. USENIX Association, 2016.

A Security of an (HE-DE)-FSE scheme

Figure 6 depicts the sequence of games in the proof of smoothness.

Proof. First, consider smoothness of the composed FSE scheme. We prove
that (HE,DE)-FSE is smooth with the given parameters using the sequence of
games illustrated in Figure 6. The transitions between successive games are
based on indistinguishability and we omit some details of the construction
of the corresponding distinguishers for brevity.

Let A be any SMOOTH adversary for (HE,DE)-FSE that runs in time
at most t, and let Game 0 be the FSE−SMOOTH game, as in Figure 1.
When b = 0, the ciphertexts are obtained by sampling messages mi from
M according to D, encoding them using D̃ to initialize the state, and then
encrypting them. When b = 1, the ciphertexts are chosen uniformly at ran-
dom from a subset of C of the correct size, the number of FSE homophones
of each message.

36

http://eprint.iacr.org/2006/221
http://eprint.iacr.org/2006/221

Let Game 1 be the same as Game 0 except when b = 0: the ciphertexts
are obtained by first sampling N encodings ei uniformly at random from the
set of HE homophones, and then encrypting them with DE.

Consider the following (α′, D̃, D̂,D, N)-SMOOTH adversary A′ for HE,
which will distinguish games 0 and 1. A′ receives (e1, . . . , eN , D̃, D̂) and flips
a coin b ∈ {0, 1}. If b = 0, it runs DE.KeyGen(λ) to generate a secret key and
encrypts the ei’s with it, resulting in ci’s. If b = 1, it runs HE.Setup(λ,D) to
generate an initial state s∗0 and samples N ci’s uniformly at random from a
subset of C whose size is HFSE

s∗0
. It then gives the ci’s, D̃, and D̂ to A, which

returns a bit b′. If b′ = b, then A′ outputs 1. Otherwise, it outputs 0. By
definition, the advantage of A′ is the absolute difference in the probabilities
that A′ outputs 1 when its input was real encodings and when its input
was uniformly sampled encodings. If A′ received real encodings, then A
is playing game 0. If A′ received uniformly sampled encodings, then A is
playing game 1. Therefore,

Advsmooth
HE (A′, D̃, D̂,D, N) =|Advgame0

FSE (A, D̃, D̂,D, N)

− Advgame1
FSE (A, D̃, D̂,D, N)|

Since HE is (αHE, D̃, D̂,D, N)-SMOOTH for adversaries with unbounded run-
time, we have

|Advgame0
FSE (A, D̃, D̂,D, N)− Advgame1

FSE (A, D̃, D̂,D, N)| < αHE.

Next, let Game 2 be the same as Game 1 except when b = 0, where
the N ciphertexts are chosen from a subset of C of the right size, with
repetitions according to the pattern of repetitions in the randomly selected
ei (but otherwise being sampled without replacement, as in the b = 1 case
of the DE−PRIV game, cf. Figure 4). We can again build an adversary
A′′—this time for DE−PRIV—that interpolates between games 1 and 2 and
has advantage

AdvprivDE (A′′, N)

=
∣∣∣Advgame1

FSE (A, D̃, D̂,D, N)− Advgame2
FSE (A, D̃, D̂,D, N)

∣∣∣ .
A′′ flips a coin b and either runs HE.Setup(λ,D) to get an initial state s∗0 ,
uniformly samples N encoded messages ei from HHE

s∗0
, and queries its ENC

oracle with the ei (avoiding repeated queries to ENC when repeated ei are
encountered), or uniformly samples N ciphertexts from a subset of C having
size |HFSE

s∗0
|. It then runs A on these N ciphertexts, D̃, and D̂ and outputs

1 if A’s output b′ equals b. Its running time is therefore the time to run
A, tHE.Setup, the time to sample N messages (which we assume is less than
N · tHE.Encode), and the time it takes to query its oracle (which we assume is

37

instantaneous). Since DE is (αDE, t+ tHE.Setup +N · tHE.Encode, N)-PRIV,∣∣∣Advgame1
FSE (A, D̃, D̂,D, N)− Advgame2

FSE (A, D̃, D̂,D, N)
∣∣∣ < αDE.

Finally, we consider Game 3. In the b = 0 case of this game, we now
sample the ci’s with replacement from a subset of C of the right size, no longer
relying on the ei, which were sampled from a set of the same size, to dictate
repetitions in the ci’s. It is straightforward to see that the distribution on
the ci’s is the same in Game 2 and in Game 3. Hence∣∣∣Advgame2

FSE (A, D̃, D̂,D, N)− Advgame3
FSE (A, D̃, D̂,D, N)

∣∣∣ = 0.

Finally, since |HFSE
s∗0
| = |HHE

s∗0
|, the b = 0 and b = 1 cases of Game 3 are

identical, so Advgame3
FSE (A, D̃, D̂,D, N) = 0. We therefore have

Advsmooth
FSE (A, D̃, D̂,D, N) = Advgame0

FSE (A, D̃, D̂,D, N)

< αHE + αDE

for any FSE−SMOOTH adversary A running in time at most t.
Next, consider message privacy of the composed scheme. We prove that

FSE is (αHE+αDE, t, D̃, D̂,D, N)-PRIV by showing that if HE is (αHE, D̃, D̂,D, N)-
HE−SMOOTH and there is an (α, t, D̃, D̂,D, N)-PRIV adversary AFSE for
FSE, then there is also an (α−αHE, t+tHE.Setup+N ·(tHE.Decode+tHE.Encode), N)-
PRIV adversary ADE for DE.
ADE can query its provided encryption oracle ENCDE at most N times

(without repetition), while it must simulate encrypting N messages sampled
according to D (with repetition) for AFSE. First, ADE initializes the homo-
phonic encoding scheme HE: it runs HE.Setup(λ,D) to generate a state s∗0. It
samples N encodings ei uniformly at random with replacement fromHHE

s∗0
. It

decodes these ei’s to obtain the messages mi. That is, for i = 1 to N , it sets
mi := HE.Decode(ei, s

∗
0). Next, it queries ENCDE with each of the distinct

encodings ei to obtain c1, . . . , cN . It provides AFSE with the distributions D̃
and D̂, and the N plaintext-ciphertext pairs ((m1, c1), . . . , (mN , cN)). Even-
tually, AFSE outputs a bit b′. ADE then outputs the same bit.

Note that AFSE’s view is exactly the same as in the FSE−PRIV game in
Figure 2. If ENCDE is operating with bDE = 0 (real ciphertexts), then ADE

is perfectly simulating the b = 0 case for AFSE since, by the HE-SMOOTH
property, encodings sampled uniformly at random from HHE

s∗0
have the same

distribution as if they were encodings of messages sampled according to D,
with an initial state determined by D̃.

If ENCDE is operating with bDE = 1 (random bitstrings without replace-
ment), then ADE is perfectly simulating the b = 1 case for AFSE. By the
HE−SMOOTH property, the distribution of encodings of messages sampled
according to D is uniform on the set of all homophones HHE

s∗0
. Since this

38

set of homophones is partitioned into the sets of individual messages’ ho-
mophones, the distribution on the latter is thus uniform as well. Hence, as
required, each message’s encoding (and thus its ciphertext) is chosen uni-
formly at random from a set of the correct size with replacement. Therefore,
ADE’s advantage is at least AFSE’s advantage less the probability that the
HE encodings were distinguishable:

AdvprivDE (ADE, N) > α− αHE.

The running time ofADE is at most the time to runAFSE, tHE.Setup, sample N
values from HHE

s∗0
(which we again assume is less than N · tHE.Encode), decode

N items, and make at most N queries to its encryption oracle (which we
assume is instantaneous), achieving the required bounds.

B A bound on KL divergence for IBHE

In this Appendix, we prove Lemma 18.

Proof. For ease of notation, suppose M = support(D), E = HHE
s = {0, 1}r,

and write HHE for HHE
s . Recall that messages are ordered by increasing

frequency, and since r ≥ rmin−h, each message has at least h homophones
in E .

Let

δi := bFD(mi) · 2re − FD(mi) · 2r

be a rounding error associated with each message, so δi ∈ (−0.5, 0.5]. For
convenience, set δ0 := 0. Then, we can express the size of a message’s
homophone set as

|HHE(mi)| = fD(mi) · 2r + δi − δi−1. (2)

In order to apply Theorem 14, the distribution of the encoded data, Ds,
must already be somewhat close to uniform. This requirement arises when

approximating log
fDs (e)
2−r with a second-order MacLaurin series in the analysis

of [3] on which Theorem 14 relies. Suppose e ∈ HHE(mi). By applying eqn. 2
and recalling how Ds is defined, we get

fDs(e)

2−r
=
fD(mi) · 2r

|HHE(mi)|
= 1 +

δi−1 − δi
|HHE(mi)|

.

For the approximation to hold, δi−1−δi
|HHE(mi)|

must be small for all i from 1 to

|M|. Since the difference of the rounding errors, δi−1 − δi, could take on
any value in the interval (−1, 1), we must instead bound |HHE(mi)| using
the fact that r ≥ rmin−h.

39

We are now able to use the following approximation:

KL (Ds,U2r) ≈
1

2

∑
e∈E

(fDs(e)− 2−r)2

2−r

≈ 2r−1
∑
e∈E

(fDs(e)− 1/2r)2

≈ 2r−1
|M|∑
i=1

|HHE(mi)| ·
(

fD(mi)

|HHE(mi)|
− 1/2r

)2

≈ 2r−1
|M|∑
i=1

(
fD(mi)

2

|HHE(mi)|
− 2 · fD(mi)

2r
+
|HHE(mi)|

22r

)

≈ 2r−1
|M|∑
i=1

(
fD(mi)

2

|HHE(mi)|

)
− 1 +

1

2
.

Next, we simplify the sum using eqn. 2:

|M|∑
i=1

fD(mi)
2

|HHE(mi)|
=

|M|∑
i=1

(
|HHE(mi)| − (δi − δi−1)

)2
22r · |HHE(mi)|

=
1

22r

|M|∑
i=1

(
|HHE(mi)| − 2(δi − δi−1) +

(δi − δi−1)2

|HHE(mi)|

)

=
1

2r
+

1

22r

|M|∑
i=1

(δi − δi−1)2

|HHE(mi)|
.

where the middle term collapsed to zero by virtue of δ0 = δ|M| = 0. Finally,
by noting that δi ∈ (−0.5, 0.5] guarantees that (δi − δi−1)2 ≤ 1, using the
assumption that each message has at least h homophones, and hence that
|M| can be at most 2r/h, we get the bound

|M|∑
i=1

(δi − δi−1)2

|HHE(mi)|
≤ |M|1

h
≤ 2r

h2
.

Combining the equations and inequalities above yields the desired bound:

KL (Ds,U2r) ≤
1

2h2
.

C A bound on KL divergence for BHE

Proof. For ease of notation, supposeM = support(D), E =
⋃
m∈MHHE

s (m),
and write HHE for HHE

s . Recall that the number of homophones of m ∈ M

40

is its band number,
⌈
2l · fD(m)/fD(m|M|)

⌉
, where m|M| is the most frequent

message according to D. Letting

δi := |HHE(mi)| − 2l · fD(mi)/fD(m|M|),

we can write

|HHE| = 2l

fD(m|M|)
+

|M|∑
i=1

δi. (3)

By assumption, |M| � 2l

fD(m|M|)
, so Theorem 14 applies and we can use the

following approximation for the Kullback-Leibler divergence:

KL
(
Ds,U|HHE|

)
≈ 1

2

∑
e∈E

(
fDs(e)− 1/|HHE|

)2
1/|HHE|

≈ |H
HE|
2

|M|∑
i=1

|HHE(mi)| ·
(

fD(mi)

|HHE(mi)|
− 1

|HHE|

)2

≈ |H
HE|
2

|M|∑
i=1

(
fD(mi)

2

|HHE(mi)|
− 2 · fD(mi)

|HHE|
+
|HHE(mi)|
|HHE|2

)

≈ |H
HE|
2

|M|∑
i=1

fD(mi)
2

|HHE(mi)|

− 1 +
1

2

Next, we estimate the sum using the fact that δi ∈ [0, 1) for i = 1, . . . , |M|:

|M|∑
i=1

fD(m)2

|HHE(m)|
=

|M|∑
i=1

fD(mi)
2

2l · fD(mi)/fD(m|M|) + δi

≤
|M|∑
i=1

fD(mi)
2

2l · fD(mi)/fD(m|M|)

≤
fD(m|M|)

2l
.

Finally, combining this upper bound on the sum with an upper bound on
the total number of homophones from Equation 3 yields the desired bound:

KL
(
Ds,U|HHE|

)
≤

2l

fD(m|M|)
+ |M|

2

(
fD(m|M|)

2l

)
− 1

2

≤
|M| · fD(m|M|)

2l+1
.

41

Game 0

b←$ {0, 1}
if b = 0 then

sk← DE.KeyGen(λ)

s0 ← HE.Setup(λ, D̃)

m1, . . . ,mN ←DM
for i in {1, . . . , N} do

(ei, si)← HE.Encode(mi, si−1)

ci ← DE.Encrypt(sk, ei)

endfor

else

s∗0 ← HE.Setup(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

c1, . . . , cN ←$Y

endif

b′ ← A(c1, . . . , cN , D̃, D̂)

return (b′ = b)

Game 1

b←$ {0, 1}
if b = 0 then

sk← DE.KeyGen(λ)

s∗0 ← HE.Setup(λ,D)

for i in {1, . . . , N} do

ei←$HHE
s∗0

ci ← DE.Encrypt(sk, ei)

endfor

else

s∗0 ← HE.Setup(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

c1, . . . , cN ←$Y

endif

b′ ← A(c1, . . . , cN , D̃, D̂)

return (b′ = b)

Game 2

b←$ {0, 1}
if b = 0 then

s∗0 ← HE.Setup(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

for i in {1, . . . , N} do

ei←$HHE
s∗0

if ∃ j < i : ei = ej do

ci := cj

else

ci←$Y, Y := Y \ {ci}
endif

endfor

else

s∗0 ← HE.Setup(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

c1, . . . , cN ←$Y

endif

b′ ← A(c1, . . . , cN , D̃, D̂)

return (b′ = b)

Game 3

b←$ {0, 1}
if b = 0 then

s∗0 ← HE.Setup(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

c1, . . . , cN ←$Y

else

s∗0 ← HE.Setup(λ,D)

Y ←$ C, |Y | = |HFSE
s∗0
|

c1, . . . , cN ←$Y

endif

b′ ← A(c1, . . . , cN , D̃, D̂)

return (b′ = b)

Figure 6: Sequence of games in the proof of smoothness of an (HE,DE)-FSE
scheme.

42

D Targeted attributes

Table 2: The 12 attributes targeted in our experiments.

Attribute Num. Min. bitlength rmin

values unencoded (IBHE)

Age (AGE) 125 7 20

Admission month (AMONTH) 12 4 4

Admission source (ASOURCE) 5 3 10

Admission type (ATYPE) 6 3 12

Patient died (DIED) 2 1 5

Sex (FEMALE) 2 1 1

Length of stay (LOS) 365 9 23

Major diagnostic category (MDC) 25 5 10

Primary payer (PAY1) 6 3 7

Ethnicity group (RACE) 6 3 7

Disease severity (APRDRG Severity) 4 2 10

Mortality risk (APRDRG Risk Mortality) 4 2 10

E Derivation of the MLE attack

Our analysis relies on the following two assumptions. The first is that a static
FSE scheme’s Encrypt algorithm outputs each of a message’s homophones
with equal probability. This property holds for composed FSE schemes aris-
ing from both of our static HE constructions. It is reasonable to assume
that it would hold for any static FSE scheme since the state is not updated
in such schemes and, after all, the goal of a frequency-smoothing scheme
is to smooth the distribution to become indistinguishable from uniform.
Our second assumption is that the adversary considers only “proper” de-
terministic decryption functions—its solution cannot map one ciphertext to
multiple plaintexts, nor can it assign one plaintext more homophones than
it has. This rules out attacks that may otherwise appear to perform well,
such as simply guessing that every item is the plaintext having the highest
frequency in the reference distribution. Such a naive attack could actually
perform better than the MLE attack with respect to this metric.

We let C′ denote the collection of N ciphertexts available to the adver-
sary. We let n(c) denote the number of times that ciphertext c ∈ C occurs in
C′. According to the MLE approach, a most likely decryption θ maximises

43

the likelihood L(θ|C′) := Pr[C′|θ]. Thus we wish to compute

arg max
θ

Pr
[
C′|θ

]
= arg max

θ

∏
c∈C

(
fD(θ(c))

|HFSE(θ(c))|

)n(c)
= arg max

θ

∏
m∈M

(
fD(m)

|HFSE(m)|

)∑
c∈θ−1(m) n(c)

= arg max
θ

∑
m∈M

 ∑
c∈θ−1(m)

n(c)

 · log
fD(m)

|HFSE(m)|

where at the last step, we use the fact that maximising a product of terms
can be achieved by maximising the sum of the logs of those terms. To maxi-
mize this expression, θ should map the most frequently occurring ciphertexts
(with largest n(c) values) to the messages with the largest “scaled frequen-
cies” fD(m)/|HFSE(m)|. This observation leads directly to the attack given
in the main body.

When not all possible ciphertexts appear in the set C′, there is an addi-
tional consideration: the sizes of the sets θ−1(m) no longer need to be equal
to the number of homophones of m, |HFSE(m)|. In this case, we scale the

terms fD(m)
|HFSE(m)| in the above analysis and the ensuing attack by an additional

factor that is equal to the proportion of all possible ciphertexts that occur
in the sample C′.

44

F Experiment results: FSE-smoothness

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 8
FSE, r= 10
FSE, r→∞
DE

DE (D̂≈D)
max fD

Age

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Admission month

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Mortality risk

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Disease severity

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Admission source

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Admission type

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Patient died

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Sex

45

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 10
FSE, r= 12
FSE, r→∞
DE

DE (D̂≈D)
max fD

Length of stay

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 8
FSE, r= 10
FSE, r→∞
DE

DE (D̂≈D)
max fD

Major diagnostic category

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Primary payer

0.0 0.2 0.4 0.6 0.8 1.0

Cumulative fraction of records recovered

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 h
os

pi
ta

ls

FSE, r= 6
FSE, r= 8
FSE, r→∞
DE

DE (D̂≈D)
max fD

Ethnicity group

46

	Introduction
	Detailed technical contributions
	Terminology and notation

	Frequency-smoothing encryption (FSE)
	Using FSE
	Frequency smoothing security
	Message privacy

	Building FSE from HE and DE
	Homophonic encoding
	Deterministic encryption
	FSE from HE and DE

	Some static HE schemes
	Bounding an HE-SMOOTH adversary's advantage
	Interval-based homophonic encoding
	IBHE variants

	Banded homophonic encoding

	Building FSE from HE and CIV
	Empirical assessment of FSE
	Details of the approach
	A maximum likelihood attack on static FSE
	Results

	Related work
	Conclusions and applications
	Security of an (HE-DE)-FSE scheme
	A bound on KL divergence for IBHE
	A bound on KL divergence for BHE
	Targeted attributes
	Derivation of the MLE attack
	Experiment results: FSE-smoothness

